
Single Period Stochastic Inventory Problem with Downside Risk 

Considerations 

 

 

by  

 

 

Aysun Aker 

 

A Thesis Submitted to the  

Graduate School of Engineering  

in Partial Fulfillment of the Requirements for  

the Degree of  

 

Master of Science 

 

in 

 

Industrial Engineering 

 

Koç University 

 

July 2005 

Koç University 

Graduate School of Sciences and Engineering 

 

 

 



 
 
 

 ii 

This is to certify that I have examined this copy of a master’s thesis by 

 

Aysun Aker 

 

and have found that it is complete and satisfactory in all respects, 

and that any and all revisions required by the final  

examining committee have been made. 

 

 

Committee Members: 

 

Assoc. Prof. Fikri Karaesmen (Advisor) 

 

Prof. Barış Tan (Advisor) 

 

Assoc. Prof. Taner Bilgiç (Boğaziçi University) 

 

Prof. Refik Güllü (Boğaziçi University) 

 

Prof. Selçuk Karabatı 

 

Date:  

 

 

 

 

 



 
 
 

 iii 

 

 

ABSTRACT 

 

 

 In this thesis, we study the single period stochastic inventory (newsvendor) problem 

with downside risk constraints. The aim in the classical newsvendor problem is maximizing 

the expected profit. In the classical problem, the risk of earning less than the desired target 

profit or losing more than an acceptable level due to the randomness of demand is not taken 

into account. In the literature, there are some models for maximizing the profit while 

controlling the financial risk or for only controlling the financial risk. In this study, we utilize 

Value at Risk (VaR) and Conditional Value at Risk (CVaR) as the risk measures in 

newsvendor framework. In this study, we investigate the multi-product newsvendor problem 

under VaR and CVaR constraints. Analytical results for two products are obtained. An 

approximation method for the N product problem is also developed. Effects of the system 

parameters on the optimum product quantities are investigated numerically. In the second 

part of the thesis, the inventory problem with the objective of minimizing CVaR is analyzed. 

By using the LP representation of the CVaR problem, this model is solved for N products 

where the profit function has an arbitrary distribution function. The numerical studies are 

performed for both risk measures. 
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Chapter 1 

 

INTRODUCTION 

 

 

 The single-period stochastic inventory (newsvendor) model is a well-known problem 

in inventory management. Expected profit maximization for such a model has received a 

significant attention in this area. The profit function in this problem is a random variable 

since demands of the products are modeled as random variables. During the optimization of 

the expected profit function in the standard formulation of this model, the maximum loss or 

the minimum gain that could be reached is not taken into consideration. Today, managers 

and decision makers are also interested in financial risks in managing the supply chain. 

Examples for such risks are losing more than an acceptable level or gaining less than a 

minimum desired profit level besides the maximization of the expected profit function. This 

study is motivated by the need of incorporating financial risk in inventory decisions. 

 From this point of view, the objective of the problem should be controlling the 

maximum loss or the minimum gain; or maximizing the expected profit while controlling the 

financial risk. Various risk measures are available to evaluate the riskiness of a system in the 

literature. Utility functions, the satisfaction probability function, the scalarization method, 

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are among the frequently used 

risk measures in the finance and operations research literature. 

 In order to obtain some familiarity with the risk measures frequently used in the 

literature, let us give some brief information on how the risk concept is used for each one. 

The detailed analysis of the most frequently risk measures used in the inventory literature is 

given in Chapter 3. The utility function indicates a decision maker’s preference among 
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rewards under risk. The satisfaction probability function is the probability of achieving the 

target profit value. In the scalarization method, the expected profit function and the 

satisfaction probability function are scalarized according to their importance for the system. 

VaR measures the maximum value of the random function or the variable in a β confidence 

interval. Glasserman [1] expresses VaR as a measure of the maximum potential change in 

value of a portfolio of financial instruments over a pre-set horizon. VaR answers the question 

that how much one can lose with x% probability over a given time horizon. If a portfolio is 

expressed as a 95% one-day VaR of $100 million, this means that there is only a 5% chance 

that the portfolio will lose more than $100 million over the next day. JP Morgan1 has placed 

a VaR calculator on their web page. This gives us how the portfolio could change in value 

over the next 24 hours, with 95% confidence. CVaR is also a related criterion which 

measures the conditional expected loss exceeding VaR and accounts for the risks beyond the 

VaR value.  

 In a newsvendor setting, using a risk measure in the expected profit maximization is 

the focus of this study. In the literature, the satisfaction probability maximization model is 

solved for a single-product case and is investigated for two products; an exact solution has 

not been presented yet. The satisfaction probability constraint combines the products and 

creates a close relation between the products. Therefore, solving this model for more than 

one product is not as easy as solving a newsvendor model for multiple-products.  

 In order to control the risk of gaining profit in an amount less than a minimum 

desirable profit value, using the satisfaction probability as a VaR constraint in the 

newsvendor problem seems to be a reasonable approach. In real life, manufacturers, retailers, 

decision makers desire to control a system for multiple products instead of a single product. 

A decision maker would like to decide how much to invest on different assets and know the 

effects of the system parameters on the decision variables with risk consideration. Our 

                                                 
1 JP Morgan is a global financial services firm that serves governments, corporations, institutions, individuals 
and privately held firms with complex financial needs through an integrated range of advisory, financing, 
trading, investment and related capabilities. 
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objective is developing a methodology to find a solution for a product portfolio with a given 

number of products. 

 For two products, the VaR constraint is examined in disjoint sets according to the 

random demands and product order quantities. The analytical numerical solutions for two-

product case are given in this study. For a larger product portfolio, it is difficult to utilize this 

method. A normal approximation method is proposed to solve the model for N-product 

portfolio in this thesis. 

 In the second part of the thesis, we optimize the CVaR function in terms of the 

newsvendor profit function or loss function for a large product portfolio. By using the 

solution, we then investigate the effects of parameters on the decision variables and the 

objective function in this model. The CVaR function for a given loss distribution can be 

converted to a Linear Programming (LP) model. By using this result, the CVaR optimization 

problem where the CVaR function defined in terms of the newsvendor’s profit or loss is 

formulated with an LP model for a large product portfolio in this thesis. Both the CVaR 

optimization and the newsvendor problem with a CVaR constraint are studied. 

 The previous studies in the literature about different risk measures, the risk-averse 

newsvendor problem and the other related topics to this thesis are summarized in Chapter 2. 

The risk measures frequently used in the past studies are analyzed in Chapter 3 in order to 

introduce the risk concept. The newsvendor problem is analyzed under a VaR constraint; an 

exact solution methodology for two products and an approximate solution method for N 

products are proposed in Chapter 4. The CVaR optimization and the CVaR constraint 

formulation and the solution methodology are explained in Chapter 5. In Chapter 6, the 

numerical experiments, the results and the comments on the results are given. Finally, the 

concluding remarks, the results are discussed in Chapter 7. 
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Chapter 2 

 

LITERATURE REVIEW 

 

 

 The issue of optimality criteria in stochastic inventory models has received a 

significant attention in the literature. In single period models, the most frequently employed 

criterion is maximizing the expected profit in terms of a newsvendor problem. In recent 

research, the financial risk in the management of inventory systems is considered from 

various perspectives. There are many risk measures that are used in risk management in 

stochastic inventory models such as the satisficing probability maximization, the 

scalarization method, the utility functions, VaR and CVaR. Below, we explain each of these 

measures in detail.  

 

2.1 The Satisficing Probability Function 

 

 Some authors model the risk concept as a satisficing probability function. This 

function is defined as the probability of exceeding a prespecified fixed target profit level. In 

Section 4.2, the satisfaction probability function is used as a constraint of the classical 

newsvendor problem and the aim is to solve this model for N product case. 

 Sankarasubramanian and Kumarasamy [2] consider a single-period stochastic 

inventory problem in which it is required to determine the product order quantity which 

maximizes the probability of realizing a predetermined level of profit. A condition for 

deciding the optimal order quantity is found and explicit expressions for the optimal order 

quantities in three special cases are given.  
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 The satisfaction probability is used as an objective function in a number of studies 

(Lau [3], Lau and Lau [4], Lau et al. [5], Lau et al. [6] and Parlar and Weng [7]). The aim is 

to maximize the satisfaction probability function in terms of the product order quantity. Lau 

[3] solves the satisfaction probability maximization problem for a single product under the 

assumption of zero salvage value. Parlar and Weng [7] find the condition where the optimum 

point for the satisfaction probability value maximization is less than the optimum point for 

the expected profit maximization in the classical newsvendor problem. 

 Lau and Lau [4] consider the maximization of the probability of achieving a target 

profit in a two-product newsvendor problem. Solution procedures are developed to find the 

optimal order quantities of each product that will maximize the probability of achieving the 

target profit value. Lau et al. [5] and Lau et al. [6] present an analytical solution procedure to 

maximize the probability of achieving a target profit in a two-product newsvendor problem 

for uniformly and exponentially distributed demands respectively. Limited analytical results 

are presented for only restrictive cases. 

 

2.2 The Scalarization Method 

    

 In scalarization method, the satisfaction probability function- denotes the riskiness of 

the newsvendor problem- and the profit maximization-the objective function in the 

newsvendor problem- are to be balanced according to their importance in the system. Parlar 

and Weng [7] balance the two different and the conflicting objectives for the newsvendor 

problem. The first objective is the standard one in the newsvendor model that is the expected 

profit maximization. The other one is known as the satisficing objective that is the 

probability of exceeding the expected profit. A scalarization method is used to combine the 

standard objective with the new objective of maximizing the probability of exceeding the 

moving target. The aim of the scalarization method is to normalize and control the 



 
Chapter 2: Literature Review                                                                                                  6 
 

 

importance of each objective. This is a bi-criteria newsvendor model where a Vector 

Optimization Problem (VOP) was formulated and solved. 

 

2.3 The Utility Functions 

 

 In literature, risk is also modeled by using utility functions. Lau [3] maximizes the 

expected utility of the newsvendor problem. The utility function is defined in terms of the 

expected value of the random profit and its standard deviation. This is the mean-standard 

deviation trade-off approach.  Lau [3] also uses the von Neumann-Morgenstern’s utility 

function as a different approach to the expected utility maximization in newsvendor models. 

 Eeckhoudt et al. [8] examine the risk aversion in the newsvendor problem by using a 

utility function of the newsvendor’s random profit. As the utility function is an exponential 

utility function, the riskiness factor is directly located in this definition. Effects of risk, 

comparative-static effects of changes in the various price and cost parameters are determined 

and related to the newsvendor’s risk aversion. How various parameters in the problem affect 

the optimum order quantity is thoroughly analyzed. Also, Bouakiz and Sobel [9] examine the 

risk aversion in the newsvendor problem with an exponential utility function and show that a 

base-stock policy to be an optimal strategy when a dynamic version of the newsvendor 

model is optimized with respect to an exponential utility criterion.    

 Schweitzer and Cachon [10] investigate the decision bias in the newsvendor problem 

with a known demand distribution. They compare the optimum order quantity for the 

classical newsvendor problem with the optimum order quantities for the utility maximization 

orders with risk neutral, risk-averse, risk-seeking, prospect theory, loss-averse, waste-averse, 

stock out-averse and minimizing ex-post inventory error preferences. Results from these 

studies show that choices systematically deviate from those that maximize the expected 

profit. It is concluded that subjects order fewer than optimum order quantities maximizing 

the expected profit for high-profit products and order more than optimum order quantities 
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maximizing expected profit for low-profit products. (Products are defined as a high-profit 

product when (r-c)/(r-s)≥1/2 or as a low-profit product otherwise.) In this thesis, the effect of 

the risk concept on the optimum order quantity is studied in the VaR-constrained single-

period stochastic inventory problem for more than one-product.  

 Anvari [11] examined the use of market valuation models in analyzing the stochastic 

inventory problems. A newsvendor problem (single-period stochastic inventory problem) is 

studied using the capital asset pricing model (CAPM). Unlike the other working-capital 

decisions, the use of CAPM need not imply conflicting assumptions to analyze inventory 

problems. The resulting optimal policy is characterized and compared with the classical 

expected benefit maximization framework and it is observed that results are dramatically 

different from each other. 

 Up to this point, the only decision variable is the product order quantity. Lau and Lau 

[12] consider the classical newsvendor problem where a stochastic price-demand relationship 

exists for the product. Besides the order quantity, price also becomes a decision variable. A 

flexible approach capable of modeling price-demand relationships at various levels of 

complexities is presented. Solution procedures are then presented for different optimization 

objectives such as the maximizing the probability of achieving a target profit level. For the 

simplest price-demand relationship, analytical solutions are obtainable. For other cases, very 

efficient numerical procedures are developed. The solutions provided insights on the effects 

of price sensitivity and demand uncertainty.  

 Agrawal and Seshadri [13] consider the newsvendor problem in which a risk-averse 

retailer confronts with an uncertain customer demand and makes a product order quantity 

and a selling-price decision with the objective of maximizing the expected utility. This 

problem is similar to the classical newsvendor problem, except two differences. The first 

difference is that the distribution of demand is a function of the selling price, which is 

determined by the retailer. The second difference is that the objective of the retailer is to 

maximize his/her expected utility. The effect of the price on the distribution of the demand is 
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studied in two different ways. Price affects either the scale of the distribution or the location 

of the distribution. A methodology by which this problem with two decision variables can be 

reduced to a problem in a single variable is presented. A risk-averse retailer in the first model 

will determine a higher price and order less in comparison to a risk neutral retailer; whereas a 

risk-averse retailer in the second will determine a lower price in comparison to a risk-neutral 

retailer. This study provides a better insight for the pricing behavior of the retailers that 

would lead to improved price contracts and decision policies. 

  

2.4 The Properties of the Value-at-Risk (VaR) and the Conditional Value-at-Risk 

(CVaR) Measures 

 

 Artzner et al. [14] study both market and non-market risks and discuss the methods of 

the risk measurements. They present and justify the desirable properties for a risk measure. 

VaR and CVaR are important risk measures that are emphasized in the literature. They are 

also concerned with these risk measures and their properties. 

  

2.4.1 The Value-at-Risk (VaR) 

  

 In finance, VaR is defined to be the maximum value of the random function or the 

variable in β confidence interval. VaR is a measure of the maximum potential change in 

value of a portfolio of financial instruments over a pre-set horizon. 

 Duffie and Pan [15], Dowd [16], Jorion [17] and Simons [18] give a review of value 

at risk (VaR). Duffie and Pan [15] describe some of the basic issues involved in measuring 

the market risk of a financial firm and the list of positions in various instruments that expose 

the firm to financial risk. While there are many sources of financial risk, concentration is 

here on the market risk, meaning the risk of unexpected changes in prices, rates or demands 

in relation to those. 
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 In Tapiero [19] , an asymmetric valuation between ex-ante expected costs above an 

appropriate target cost and the expected costs below that same target level, provide an 

explanation for the VaR criterion when it is used as a tool for VaR efficiency design. This 

approach gives some insights regarding the selection of the VaR probability that turns out to 

be the ratio of the asymmetric linear cost parameters in this case. This approach is used in a 

single-period stochastic inventory problem. Also, some numerical studies for a multi-period 

stochastic inventory problem are presented. 

 Gan et al. [20] incorporate the VaR concept to a newsvendor problem with a 

downside risk constraint for a single product. This is a decision making problem of a risk-

averse newsvendor subject to the downside risk which is characterized as the probability that 

the newsvendor’s realized profit is less than or equal to his specified target profit. In the first 

part of this thesis, this model is studied for N-product case and the effects of the parameters 

on the optimum order quantities and the optimum profit are observed. 

 In this study, a single-period stochastic inventory problem for a large product 

portfolio is considered with the satisfaction probability constraint where VaR is denoted as 

the target profit value in the constraint. To solve this problem for N products will be 

meaningful and help decision makers in deciding how much to order from each product 

while controlling the risk. As the satisfaction probability function combines profit functions 

corresponding to each product, the constraint create a close relation between the products. 

Therefore, solving the newsvendor problem with VaR constraint for N products is harder 

than solving the unconstrained newsvendor problem. In this thesis; an exact solution method 

is given for two-product case and an approximation method is proposed for N-product case. 

 

2.4.2 The Conditional Value-at-Risk (CVaR) 

 

 CVaR measures the conditional expected loss exceeding VaR and accounts for the 

risks beyond the VaR value. CVaR was studied in both supply chain and finance literature. 
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 Chen et al. [21] focus on the inventory management for risk-averse retailers. CVaR 

maximization for one product in profit sense is structured and solved. They propose a general 

framework for incorporating risk aversion in multi-period inventory models as well as multi-

period models that coordinate inventory and pricing decisions for one product case. 

 Acerbi and Simonetti [23], Coleman et al. [24] and Coleman [25] point out the 

difficulties encountered if we deal with the VaR and the CVaR optimization and give some 

insights about how these difficulties could be eliminated by the linearization methods that 

was first proposed by Rockafellar and Uryasev [27]. 

 Palmquist et al. [26] and Rockafellar and Uryasev [27] focus on the portfolio 

optimization with the CVaR measure rather than with the VaR measure because CVaR is 

considered to be more consistent measure of risk than VaR is considered to be. This 

approach calculates VaR and optimizes CVaR simultaneously in which the calculations often 

come down to linear programming or non-smooth programming. 

 Rockafellar and Uryasev [22] derive the fundamental properties of CVaR, as a 

measure of risk with significant advantages over VaR for loss distributions in finance that 

can involve discreetness. The CVaR measure is able to quantify dangers beyond the VaR 

value. Rockafeller and Uryasev [22] modeled the problem as an LP for loss functions that 

have definite distribution functions. It provides optimization short cuts through the linear 

programming techniques. 

 Bertsimas et al. [28] examine the shortfall as a risk measure and define the CVaR 

measure as the shortfall. They express the advantages of this risk measure over VaR and 

discuss the optimization of shortfall. 

 In the second part of our study, the CVaR function for the newsvendor problem is 

studied for the N-product case. The CVaR function used in the finance literature has a given 

distribution function. The CVaR function which is defined in terms of the newsvendor’s 

profit or loss does not have a given distribution. This function is shown to be convex. 

Therefore, the CVaR optimization for a large product portfolio where the CVaR function is 



 
Chapter 2: Literature Review                                                                                                  11 
 

 

defined in terms of the newsvendor loss function is solved by utilizing the LP formulation 

developed in the finance literature.  

 Tomlin and Wang [29] apply the CVaR measure in studying the mix-flexibility and 

dual-sourcing literatures by considering the unreliable supply chains that produce multiple 

products. A firm can invest in product-dedicated resources and totally flexible resources. The 

product demands are uncertain at the time of investment, and the products can differ in their 

contribution margins. The resource investments can fail, and the firm may decide to invest in 

multiple resources for a given product to cope with such failures. The optimization problem 

is converted to CVaR optimization and simplified to an LP formulation by using the 

approach initiated by Rockafellar and Uryasev [27] and Rockafellar and Uryasev [22]. A 

flexible strategy is strictly preferred to a dedicated strategy when the dedicated resources are 

costlier than the flexible resource if the firm is risk-neutral or if the resource investments are 

perfectly reliable. 
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Chapter 3 

 

RISK CONCEPT IN INVENTORY MANAGEMENT 

 

 

3.1 Introduction 

  

 In this thesis, the main focus is on the risk feature of the newsvendor models and the 

optimization of the newsvendor models for a multi-product portfolio in a risky environment. 

In both finance and operations research literature, various researchers discussed different risk 

concepts. In order to have a better understanding on the main risk concepts; these concepts 

are examined and summarized in this chapter. The main motivation is to present a brief 

summary on the risk concepts and provide an introduction to the following chapters.      

 For this purpose, the classical newsvendor problem and its solution are briefly 

reviewed in section 3.2. The models of the newsvendor problems in a risky environment are 

discussed in section 3.3 and in its subsections. 

  

3.2 The Classical Newsvendor Problem  

 

 The newsvendor problem often referred as the newsvendor problem has received a 

significant attention in the literature. In a typical newsvendor problem; r the product’s unit 

selling price, c the product’s unit variable cost and s the product’s unit salvage price are the 

values where the condition r>c>s is satisfied. In a single period model, the objective is to 

maximize the expected profit in terms of a newsvendor problem. The expected profit 

function to be maximized written as: 
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E [π (q, D)] = (r-c) q-(r-s) E [max (q-D, 0)]       (3.1) 

 

where D is the random demand and q is the product order quantity. 

  

 The solution of the problem was found as, Porteus [30]: 

 










−

−
= −

sr

cr
Fq D

1*           (3.2) 

 

 Generally, managers make their decisions about the products’ quantities to be 

purchased or to be manufactured in order to maximize the firm’s expected profit in a random 

demand environment. This is the generalized classical newsvendor model for N product case 

in the literature. The project portfolio management, the manufacturing and the buying 

decisions, the plant capacity decisions, the overbooking, and the target production levels for 

planned economies are some examples for this type of an optimization problem.   

 The classical formulation of the newsvendor problem does not take into account 

various risks that are involved explicitly. More specifically, it does not consider the possible 

losses or minimum gains as a part of the optimization problem. Increasing the expected profit 

may cause a raise in the risk.  Controlling the risk during the optimization of the firm’s profit 

or only controlling the risk is of interest in this study.  

 

3.3 Models of Newsvendor Problems in a Risky Environment 

 

 In the literature on risk modeling, various researchers model the risky environment 

with different models that include different objectives and constraints. Following subsections 

briefly introduce these different models and their solution procedures: 
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3.3.1 The Satisficing Probability 

 

 The satisficing probability is defined as the probability of exceeding a target profit 

level π0. This model is: 

 

)),(Pr(max 0
0

ππ ≥
≥

Dq
q

          (3.3) 

 

 In a single period stochastic inventory problem, the satisficing probability 

maximization model was used by Lau and Lau [4], [5] and [6] and Parlar and Weng [7]. Lau 

and Lau [4] present the optimum order quantity (q*) that maximizes the satisficing 

probability value when salvage value is assumed to be zero as: 

 

( )cr
q

−
= 0* π

           (3.4) 

 

 There is no analytical solution available for this problem when the salvage value is 

greater than zero. Parlar and Weng [7] found some bounds and properties for this quantity. 

The standard assumption s<c<r holds. Random profit versus the order quantity graph can be 

seen in Figure 3.1. S(q) and E[π(q,D)] are satisficing probability and expected profit 

functions, respectively. S(q) can be written as: 

  

( ) ( )[ ][ ] ( ) ( )[ ] ∫=≤≤=≥=
)(

)(

21

2

1

)(Pr,),(Pr

qx

qx

dxxfqxXqxDqEDqqS ππ    (3.5) 
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Figure 3.1: Random Profit versus the Decision Variable (Order Quantity) 

 

 The difference function ∆ (q) =x2(q)-x1(q) is minimized at a unique point q~ which 

satisfies the condition *~ qq < . For demand densities having the property that ( ) ( )qq βα <  for 

all ,~qq ≥  where: 

 

( ) ( )[ ]
( )[ ]qxf

qxf
q

1

2=α  and 
( )

( )qF

qF

cr

s
q

−









−
=

1
)(β       (3.6) 

  

 The satisficing probability function S(q) is maximized at some point *

Sq  that is at 

least as large as q~  but smaller than q~ . Under this condition, the optimal solutions *

Sq  and 

*q  have the property that 
** ~ qqqS << . 

 

 

cqxqsrx −−− )(

π 

E[π(q,D)] 

0 

-(c-s) q 
q ( )qx1

( )qx2

cqqxsrq −−− )(

( ) ( )qcrq −=maxπ

x 
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3.3.2 The Scalarization Method 

 

 Another model used to control the risk in a newsvendor problem is the bi-criteria 

newsvendor model. This model is defined by Parlar and Weng [7]. There are two criteria 

which are the satisficing probability and the expected profit in this model as the name 

suggests. The model is an unconstrained maximization problem where the objective function 

is written in terms of these two criteria. These two criteria are scalarized in order to 

normalize and control the importance of each criterion. The model is: 

 

( )[ ] ( ) ( ) 10,1, max
0

≤≤−+
≥

wqSwcDqwEc sp
q

π       (3.7) 

 

where E[π(q,D)] is the expected profit function and S(q) is the satisficing probability 

function. The constants cp (equals 1/E[π(q*,D)]) and cs (equals 1/S(
*

Sq )) are introduced to 

normalize the weighted objective function since the values of the objectives are generally 

very different from each other. The expected profit function E[π(q,D)]  may assume any real 

value whereas the satisficing probability S(q) must take values between zero and one. Weight 

constant w is regulated according to the importance of each criterion. 

 This model is a Vector Optimization Problem (VOP). In this problem, a procedure is 

needed to be developed which generates the set of points in PS-plane (PS-plane is the 

solution pairs for expected probability function and satisficing probability function) that are 

not inferior to any other points. This set of non-inferior points is known as the efficient 

frontier. (Parlar and Weng [7]): 

 

Definition: The point q* is a non-inferior solution of VOP if there exists no other feasible 

solution q such that E[π(q,D)]> E[π(q*,D)] and S(q)>S(q*).  
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 The solution which is the optimum order quantity that maximizes both objectives 

(criteria) simultaneously is unattainable. For this problem; Parlar and Weng [7] defined the 

distance in terms of the relative weighted deviations from the ideal solution and solved this 

optimization problem.   

 

3.3.3 Utility Functions 

  

 Another model is maximizing the expected utility of the profit. A utility function is a 

mathematical expression that assigns a value to all possible choices. In portfolio theory the 

utility function expresses the preferences of economic entities with respect to perceived risk 

and expected return. There are several utility functions that are used for the purpose of 

defining an objective function for the risk-averse newsvendor problem such as the mean-

standard deviation trade-off and the exponential utility function. 

 

3.3.3.1 The Mean-Standard Deviation Trade-off Function 

   

 This is a popular approach that considers a trade-off between the expected value of 

the random profit and its standard deviation. The model is as below: 

 

( )[ ] ( )( )DqkDqEDqUDqU
Q

,,)),((where)),((max πσπππ −=     (3.8) 

 

 Here, k is the magnitude that reflects an investor’s individual degree of risk aversion. 

This problem could not be solved analytically. Lau [3] found that the optimum order quantity 

q
* for the classical newsvendor problem is an upper bound for the optimum order quantity 

found for this utility function. 
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3.3.3.2 The Exponential Utility Function 

 

 Eeckhoudt et al. [8] examined risk aversion by an exponential utility in the 

newsvendor problem. They consider a utility function of the newsvendor profit and locate the 

riskiness factor in the utility function. The model is: 

 

[ ] ( ) ( )qDcDqscqrDzDqDqUE
Q

−−−+−+=
≥

,0max,0max),(where)),((max *

0
0

ππ  (3.9) 

  

 In this model, z0 is the initial wealth. The newsvendor is allowed to obtain additional 

newspapers at c* if demand exceeds his original order. A natural assumption is that 

rccs ≤<<≤ *0 . The utility function is defined to be as ( ) ( )ππ zU −−= exp  where z 

represents the newsvendor’s degree of risk aversion. The degree of absolute risk aversion is 

given by z(π) =-U’’(π)/U’(π). This measure is constant in profit. When the newsvendor is 

risk neutral (U’’(π)=0), the solution is equal to the well known solution: 

 

( )
sc

cc
qF

−

−
=

*

*
*           (3.10) 

 

 The case of a risk-averse newsvendor implies that: 

 

( )
sc

cc
qF

−

−
<

*

*
*           (3.11) 

 

3.3.4 The Value-at-Risk (VaR) 

 

 The risk of earning less than a threshold value or losing more than a critical value is 

an important issue. Investors, production planners, in short, all decision makers would aim to 
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maximize their profit and control their risk below a determined level at the same time. The 

VaR and CVaR are used for these purposes. Some firms consider the risk in terms of 

inventory on hand that is called the value of inventory at risk that resembles the VaR 

concept. 

 VaR is defined to be the β- percentile of the distribution of a random variable-ξ (a 

smallest value such that the probability that the random variable exceeds or equals to this 

value is greater than or equal to β). In financial applications, it can be defined as a maximum 

value in a specified period with some confidence level β. VaR is the maximum loss that 

could be reached with a confidence interval of β. It quantifies the downside risk compared to 

variance which is impacted by high returns. VaR is characterized as in the equation and in 

the graph below: 

 

 

 

 

Figure 3.2: VaR of a Loss Distribution 
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 Artzner et al. [14] found that the VaR measure creates a non-convex risk surface. It 

was difficult to optimize for non-normal distribution because VaR has many extreme points. 

 The VaR-constrained optimization problem is defined as the maximization of the 

expected profit with a downside risk constraint in the literature. This model for one product 

was solved by Gan et al. [20]. The decision problem is as follows: 

 

( )[ ]

( )( ) βππ

π

≤≤

≥

0

0

,Pr

subject to

max

Dq

q,DE
q

         (3.14) 

 

where the profit function is { } cqDqrDq −= ,min),(π (salvage value is assumed to be zero).  

 For any target profit level π0, there is a critical order quantity: 

 

cr
q

−
= 00 π

          (3.15) 

 

such that for an order quantity q≤q0, the downside risk probability is one, and for q>q0, the 

downside risk is: 

 








 +

r

cq
F 0π

          (3.16) 

 

 The proof which is presented by Gan et al. [20] is as follows: 

  

Proof: If q≤q0, then { } .,min),( 0

00 ππ =−≤−= cqrqcqDqrDq  Therefore, 

( )( ) .1,Pr 0 =≤ππ Dq  If q>q0, then clearly ( ){ } { }[ ] 0,Pr 0 =>≤ qDDq Iππ  and, furthermore, 
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 In summary, for the single product newsvendor with risk aversion pair (π0,β), 

β>F(q0), the optimal order quantity is: 
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where 








 −
= −

r

cr
Fq 1ˆ          (3.19) 

 

3.3.5 The Conditional Value-at-Risk (CVaR) 

 

 CVaR measures the conditional expected loss exceeding VaR and accounts for the 

risks beyond the VaR value. CVaR for continuous distributions usually coincides with 

conditional expected loss exceeding VaR (also called Mean Excess Loss or Expected 

Shortfall). CVaR measures downside risk and accounts for risks beyond VaR. CVaR is the 

mean loss above the maximum loss could be reached with a β confidence interval. As it is the 

expected value of the loss function above the VaR value, the CVaR function has a smooth 

surface. CVaR is applicable to non-symmetric loss distributions. It has a convex risk surface 

with respect to control variables and has a unique global optimum. CVaR is characterized as 

in the equation and in the graph below: 

 

 )](|[CVaR 0 ξπξξ
β

≥= E
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Figure 3.3: CVaR of a Loss Distribution 

  

 Chen et al. [21] maximize the CVaR function for a single product newsvendor 

problem. This CVaR function is defined in terms of profit distribution of a newsvendor 

problem. The maximization of the CVaR function is more plausible than a maximization of 

the expected profit function subject to CVaR is less than or equal to CVaR bound because 

the CVaR bound cannot be calculated in a certain manner, it could only be simulated and 

used approximately. The model is as follows: 
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 where 
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and [a]- = min (a,0).  
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The optimal product order quantity for the CVaR function is calculated by the 

equation ( )( ){ }DqCVaRq q ,maxmaxarg
00

* πβπ≥= . For fixed q, the objective function is 

differentiated in terms of π0, and then the function is differentiated in terms of q. Finally the 

optimum order quantity is as below; the optimum order quantity does not depend on π0: 

 










−

−
= −

sr

cr
Fq D β1*          (3.22) 

 

 Rockafeller and Uryasev [22] studied general properties of VaR and CVaR in finance 

literature. Let f(x,y) be the loss associated with the decision vector x and the random vector y 

and p(y) is the probability distribution of random vector y. The probability of f(x,y) not 

exceeding a threshold β is given then by: 

 

( ) ( )
( )

.,
0,

0 ∫ ≤
=

π
πψ

yxf
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 The β-VaR and β-CVaR values for the loss random variable associated with x and any 

specified probability level β in (0,1) will be denoted by ( )x
β

π 0  and ( )xβφ . They are given 

by: 
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The optimization problem is minimization of the function below: 
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where  [a]+ = max (a,0).  

Rockafellar and Uryasev [22] show that this optimization problem can be reduced to 

the following linear programming problem: 
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where 

 

kp : is the discrete probability value for loss distribution f(x,y) in the kth discretization 

 interval. 

k: is the discretization interval which takes values 1 to N. 

kz : the auxiliary variable defined to determine the non-negativity of the function  

 

   In this problem, the general loss function f(x,y) is discretized in N intervals and used 

the discretized value and the corresponding probability values are used in the described 

model. 
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3.4 Conclusion 

 

 In this chapter, some of the risk measures and the risk models are discussed. In this 

thesis, we focus on the VaR and CVaR measures in controlling the risk in single period 

stochastic inventory models.   

 These measures are easy to interpret by the managers and also provide additional 

advantages.  For example, it is not easy to determine the utility functions to be used in a 

particular application.  Furthermore, VaR and CVaR measure the downside risk of the 

system, while most of the risk measures in the literature consider both the upside and the 

downside risk together and measure the risk of deviating from the target. In stochastic 

inventory models, measuring the downside risk with respect to the system’s total profit is 

more meaningful.  
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Chapter 4 

 

NEWSVENDOR PROBLEM WITH A VALUE-AT-RISK (VaR) CONSTRAINT 

 

 

4.1 Introduction 

 

 The solution of a single product newsvendor problem for both risk-averse and risk-

neutral cases is well known in the literature. The objective of this chapter is to model and to 

investigate newsvendor problems with a downside risk constraint (VaR constraint) for two or 

more products.  In particular, we present an exact solution for two products. For the multi-

product case, due to the difficulty of finding a solution to the problem, we present an 

approximation method.  

 The problem description is given in section 4.2. We provide a detailed analysis of the 

two-product newsvendor problem with the VaR constraint in section 4.3. The analytical 

solution methods are presented and the results are discussed. We present an approximation 

solution method for N-product case by using the Central Limit Theorem (CLT) approach in 

the section 4.4. The numerical performances of the approximation, the solutions and 

discussion are also provided in that section. The conclusion of this chapter is given in the 

section 4.5. 
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4.2 Problem Description 

 

 In order to introduce the model and the challenges, the newsvendor problem – a 

newsvendor problem- is considered with a downside risk constraint which is defined as the 

probability of achieving the target profit value (π0) is less than or equal to the threshold 

probability value (β). The demand for a product in the problem is a random variable with a 

known distribution. This situation makes the profit function a random function with a given 

distribution function, F. The expected profit function which is expressed in terms of the 

product quantity q, the unit salvage price s, the unit variable cost c, the unit selling price r 

and the random demand D was shown in Equation 3.1. We assume that the relationship 

between the cost and revenue parameters r>c>s holds. 

 The newsvendor problem with and without a VaR constraint for a single product 

solution is discussed and the effects of the system parameters are examined in section 6.2.1.  

 The problem is the maximization of the expected profit function subject to the 

downside risk constraint. The decision variable is the product order quantity. The 

optimization problem was given in Equation 3.14.  

 

4.3 Two-Product Case 

 

 We first present the extension of the model by Gan et al. [20] for two products. The 

constraint is the complement of the satisfaction probability function. Here, we present a 

solution for the expected profit maximization subject to the downside risk constraint for a 

two-product newsvendor problem. The formulation of the model for two-product 

newsvendor problem is as below: 
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where  

( ) ( ) 22222111112121 minmin)( qc,Dqrqc,Dqr,D,D,qqπ −+−=    (4.9) 

 

ri, ci, qi and Di are revenue values, cost values, quantities ordered and demands for product i 

respectively.(i=1, 2 in this case). Salvage values are taken to be zero in this part. The risk 

constraint (4.9) can be rewritten as: 

 

1-g(q1,q2)≤β 

where 

g (q1,q2) = ( ) ( )( )( )02222211111 minminPr πqc,Dqrqc,Dqr ≥−+−  

  

 In order to analyze this function, we consider the function by conditioning on four 

events as below: 

 

g (q1,q2) = ( )( ) ( )22112211022221111 ,Pr , Pr qDqDqDqDqcDrqcDr ≤≤≤≤≥−+− π +      

       ( )( ) ( )+>≤≤≥−+− 221111022221111 ,Pr  Pr qDqDqDqcqrqcDr π       

       ( )( ) ( )221122022221111 ,Pr  Pr qDqDqDqcDrqcqr ≤>≤≥−+− π +        

       ( )( ) ( )2211022221111 ,Pr Pr qDqDqcqrqcqr >>≥−+− π  

 

 In order to compute g(q1,q2) by using the above expression, all of the the sub-cases 

for each event must be analyzed. It will be complex to study all these sub-cases in the 

equation, especially for the first event. Also; if we need to examine this function for demand 

distributions with bounded probability distributions such as the uniform distribution, there 



 
Chapter 4: Newsvendor Problem with a VaR Constraint               29                                                  
  

 

will be additional sub-conditions because of the upper and lower bound of the demand 

distribution. For this reason, a different method is proposed below to study the equation 

easily.  

 Let us define two critical values for demands L1 and L2 that are defined as the 

minimum values of D1 and D2 required to achieve π0 respectively. After defining these 

critical values L1 and L2 for demands, the constraint can be defined in terms of these values 

in four cases: 

 

Case-I: If L1 and L2 are both greater than zero, the satisfaction probability region can be seen 

in Figure 4.1 and the satisfaction probability function becomes:  

 

( ) ( ) ( ) ( )∫ ∫∫ ∫
∞ ∞∞

−++

+==≥
1 2

1

1 21122110

0
2211

)/(

2211

I

0I      Pr)Pr(
q L

q

L rDrqcqcπ

DdFDdFDdFDdF
π

ππ  

 

 

Figure 4.1: Satisfaction Probability Region in Case-I  
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  Up to now, the satisfaction probability function is examined for general demand 

distributions. If there is a lower and upper bound in the demand distribution e.g. the demand 

for the first product and the second product are uniformly distributed in the intervals (l1,u1) 

and (l2,u2) respectively. As the boundaries on the demand distribution affect the boundaries 

of the integration in risk probability calculation, there occur four sub-cases in Case-I. Each 

sub-case is defined by the following conditions (the risk constraint corresponding to each 

region is calculated - in a similar manner to the above calculation - with their integration 

bounds): 

 

� Case-I_1: 11 lL >  and 22 lL >  

� Case-I_2: 11 lL ≤  and 22 lL >  

� Case-I_3: 11 lL >  and 22 lL ≤  

� Case-I_4: 11 lL ≤  and 22 lL ≤   

 

Case-IIa: If L1 is negative and L2 is positive, the satisfaction probability region can be seen in 

Figure 4.2 and the satisfaction probability function becomes: 
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Figure 4.2: Satisfaction Probability Region in Case-IIa  

 

 For Case-IIa, there are three sub-cases if there is a lower and upper bound in the 

demand distribution- (l1,u1) and (l2,u2) for the first and the second products respectively. 

Each sub-case is defined by the following conditions (the risk constraint corresponding to 

each region is calculated - in a similar manner to above calculation - with their integration 

bounds): 

 

� Case-IIa_1: 22 lL >  

� Case-IIa_2: 22 lL ≤  and ( ) 22122110 l/rarqcqcπ >−++  

� Case-IIa_3: 22 lL ≤  and ( ) 22122110 l/rarqcqcπ ≤−++  

 

Case-IIb: If L1 is positive and L2 is negative, the satisfaction probability region can be seen in 

Figure 4.3 and the satisfaction probability function becomes: 

 

  D2 
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L1 
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Figure 4.3: Satisfaction Probability Region in Case-IIb  

 

 For Case-IIb, there are three sub-cases if there is a lower and upper bound in the 

demand distribution- (l1,u1) and (l2,u2) for the first and the second products respectively. 

Each sub-case is defined by the following conditions (the risk constraint corresponds to each 

region is calculated - in a similar manner to above calculation - with their integration 

bounds): 

 

� Case-IIb_1: 11 lL >  

� Case-IIb_2: 11 lL ≤ and ( ) 22122110 l/rarqcqcπ >−++  

� Case-IIb_3: 11 lL ≤ and ( ) 22122110 l/rarqcqcπ ≤−++  

 

   D2 

r1D1+r2D2-c1q1-c2q2= π0 

r1D1+r2q2-c1q1-c2q2=π0 

 

   q2 

L2 

D1 L1 q1 



 
Chapter 4: Newsvendor Problem with a VaR Constraint               33                                                  
  

 

Case-III: If L1 is negative and L2 is negative, the satisfaction probability region can be seen in 

Figure 4.4 and the satisfaction probability function becomes: 
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Figure 4.4: Satisfaction Probability Region in Case-III  

 

 For Case-III, there are two sub-cases if there is a lower and upper bound in the 

demand distribution- (l1,u1) and (l2,u2) for the first and the second products respectively. 

Each sub-case is defined by the following conditions (the risk constraint corresponds to each 

region is calculated - in a similar manner to above calculation - with their integration 

bounds): 

 

� Case-III_1: ( ) 22122110 l/rarqcqcπ >−++  

   D2 

r1D1+r2D2-c1q1-c2q2= π0 

L1 

 

L2 

D1 q1 

q2 
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� Case-III_2: ( ) 22122110 l/rarqcqcπ ≤−++  

 

 The risk constraint that is considered in four cases above could be shown in q1-q2 

coordinate system below and it can be seen that each case falls into separate regions. When 

the slope of L1 is less than the slope of L2-that means c1c2< (r1-c1)(r2-c2), the graph will be as 

Figure 4.5a:  

 

 

Figure 4.5a: Regions of Satisfaction Probability Constraints   

 

 When the slope of L1 is greater than the slope of L2-that means c1c2> (r1-c1)(r2-c2), the 

graph will be as Figure 4.5b:  

 

q2 L2=0 

q1 

L1=0 

Case-III 

 

Case-IIb Case-I 
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(r1-c1)q1+(r2-c2)q2- π0=0 
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Figure 4.5b: Regions of Satisfaction Probability Constraints   

 

 From these two graphs, we have four optimization problems that are each defined in 

their own regions as shown above: 
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Case-IIa:  
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Case-IIb:  
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Case-III:  
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 All cases (and sub-cases for a bounded demand distribution) defined above are added 

as additional constraints to the problem. The risk probabilities for each of these sub-cases are 
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calculated in terms of q1 and q2 for determined cost, revenue and other parameters. This 

problem with the calculated risk probabilities and region constraints are solved separately by 

using GAMS software (BARON-Branch-And-Reduce Optimization Navigator) for all sub-

cases. The case that gives the maximum profit of all cases is chosen. In order to verify this 

procedure yields the maximum profit, a simulation test is performed. This test calculates the 

estimated profit and estimated probability that profit exceeds the target profit. At the end of 

the numerical results, these two values that are calculated by the non-linear solver and the 

simulation test are found to be close to each other. Detailed numerical results are presented in 

section 6.2. 

  

4.4 An Approximation Method for the Multi-product Case    

 

 In section 4.3, an exact solution to the 2-product newsvendor problem with a VaR 

constraint is obtained. As explained in the VaR model section, this model creates four 

regions in x-y coordinate system in which separate non-linear optimization problems should 

be solved and the global optimum of these local optimums should be selected. If this exact 

solution method is tried to be extended even to the three product case, there would be so 

many regions in the three-coordinate system (one coordinate for each product) and the 

problem would become would become very complex.  

 This complexity motivates the necessity of finding an alternative solution to the VaR 

model. The normal approximation could be a promising approach to the VaR problem 

provided that the number of products is sufficiently large.  

 Now, let us introduce the VaR approximation method in detail. 
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 The product’s demands are taken to be independently distributed random variables. 

Under the assumption that the conditions for Central Limit Theorem2 are satisfied, the 

distribution of the profit function approaches to a normal distribution in a large product 

portfolio. Then the probabilistic VaR constraint can be expressed: 
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where  

Eπ = ( )[ ]nn DDDqqqE ,..,,,,..,, 2121π  and σπ = ( )[ ]nn DDDqqqVar ,..,,,,..,, 2121π . 

By using the inverse of the normal distribution function, the same condition can be written 

as: 
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when  β≤0.5 and π0≤ Eπ. 

 Since we consider products with independent demand distributions, Eπ  and σπ can be 

calculated as ( )[ ]∑
=

=
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 Then, the solution of the optimization problem given in the equation (4.10) can be 

approximated by the solution of the following problem: 
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 The normal approximation problem can be solved for the N-product case for different 

demand distributions because the problem becomes a single NLP problem with a single 

constraint without any complexities caused by the regions.  

 Let us consider first uniformly distributed demand case.  When the demands of the 

products are uniformly distributed with parameters lower bound ai and upper bound bi, then 

the expected value and the variance of the profit function are given as 
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 Using these equations in (4.15) and solving the NLP yields the order quantities that 

maximize the expected profit subject to the VaR constraint. 

 Similarly, when the demands of the products are exponentially distributed with 

parameter λi, then the expected value and the variance of the function are as below: 
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 In order to compare the performance of this approximation method, the solution of 

the NLP formulation obtained by a non-linear solver and the simulation results for the 

original VaR problem are compared for different demand distributions.   

 We solved our approximation model for the products which have independent and 

exponentially distributed demands with mean 10 and independent and uniformly distributed 

demands in the interval [0,20]. The results can be seen in Table 4.1a and Table 4.1b. In the 

second columns of each table, there is an optimum profit value and the optimum product 

portfolio given as a result of the approximation model for identical products. The trials are 

done for various sized product portfolios such as 2-product, 5-product, 10-product, 20-

product and 30-product. Also, a VaR simulation is run, its outputs are processed and the 

results are given in the third column. The optimum order quantities reported in the simulation 
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column is gathered through a total enumeration method with an incremental size of 0.1. In 

simulation, the probability values and the profit values are calculated. The simulated profit 

and probability values would have some small instabilities with respect to the real values 

because of the random behavior of the demands and the profit. In order to get rid of these 

instabilities, the probability values and profit values are fitted to an appropriate function. A 

clear interpretation could be gathered throughout this method. In the third column, the 

maximum of these fitted profit values where the fitted probability values satisfy the risk 

constraint are given. 

   

Approximation Simulation 

 

Profit Quantity pairs Profit Quantity pairs 

Product Quantity's 

Percentage 

Absolute Error  

2-product 68.19  (9.24,9.24) 68.64     (9.4,9.4) 1.70% 

5-product 180    (12,...,12) 180.97  (12,..,12) 0.00% 

10-product 360     (12,..,12) 359.92  (12,..,12) 0.00% 

20-product 720     (12,..,12) 718.41  (12,..,12) 0.00% 

30-product 1080   (12,...,12) 1083.62    (12,..,12) 0.00% 

 

Table 4.1a: The Results of the Approximation Method for Uniformly Distributed Demands  

(Demands ~U (0,20), π0=0, uc =6, oc =4, β=0.05) 
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Approximation Simulation 

 

Profit Quantity pairs Profit Quantity pairs 

Product Quantity's 

Percentage Absolute 

Error 

2-product 39.77  (5.27,5.27) 44.09  (7.5,7.5) 29.72% 

5-product 116.68  (8.91,...8.91) 116.61  (8.5,...,8.5) 4.81% 

10-product 233.48  (9.16,..,9.16) 234.44  (9.2,...,9.2) 0.40% 

20-product 466.77  (9.16,..,9.16) 471.43  (9.2,…,9.2) 0.40% 

30-product 700.45  (9.16,...,9.16) 707.55  (9.2,...,9.2) 0.40% 

 

Table 4.1b: The Results of the Approximation Method for Exponentially Distributed 
Demands 

(π0=0, uc =6, oc =4, 1/λ= 10, β=0.05) 

 

 We expect that there would be a decrease in the percentage errors as the product 

amount in the portfolio increases. In both tables, these error percentages decrease as we have 

expected. Another observation is that, the percentage errors are lower in products that have 

uniformly distributed demands than in products that have exponentially distributed demands. 

This is understandable since the profit induced by uniform and exponential demand 

distribution may converge to a normal distribution at different rates. 

 In Table 4.1a, the optimum product order quantities percentage error is zero for 5-

product, 10-product, 20-product and 30-product because the constraint is not binding for 

these cases. In Table 4.1b, the optimum product order quantities percentage error is 0.40 for 

10-product, 20-product and 30-product because the constraint is not binding for these cases. 

(This small difference is because of the quantity increment of 0.1 used in the simulation. If 

the increment size of 0.01 is used in the simulation, the error would be zero.) From these 

results seen from Table 4.1a and 4.1b, the target profit value should be determined for each 

size of a product portfolio and this is a managerial problem.  
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4.5 Conclusion  

 

 In this chapter, the risk-averse newsvendor problem is considered where the risk is 

controlled by the VaR constraint. As stated before, this problem was solved for single 

product in the literature. The aim is to solve the problem for a large product portfolio and 

investigate the parameters effect on the decision variables and the objective function. 

Initially, the problem is considered for two products. The risk constraint is studied in four 

different disjoint regions because of the nature of the newsvendor problem. Four NLP 

models are solved for these regions separately and the one which attains the maximum 

expected profit of all is chosen. For the N product case, this approach would be very complex 

and cannot be applied. As stated before, decision makers generally desire to solve this model 

for a large product portfolio and know how much to invest on each product or asset. A 

normal approximation for large product portfolio is proposed because the profit function for 

more products converges to a normal distribution –Central Limit Theorem approach. The 

numerical results demonstrate that the error is small so that the approach could be reasonable 

for large product portfolios. 
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Chapter 5 

 

NEWSVENDOR PROBLEM WITH A CONDITIONAL VALUE-AT-RISK (CVAR) 

CONSTRAINT 

 

 

5.1 Introduction 

 

 In the literature, the classical newsvendor problem was solved for risk-neutral buyers 

and sellers. In Chapter 3, the questions “What type of risk measures were used in the 

literature?” and “What kind of properties do these risk measures have?” were answered. In 

Chapter 4, the newsvendor problem was considered with a VaR constraint. CVaR is defined 

as the conditional expected loss exceeding the VaR value. VaR and CVaR are popular risk 

measures in the finance literature. In this chapter, we examine the solution procedure and the 

results for the newsvendor problem with the CVaR constraint. This motivates the use of 

CVaR in different applications. This chapter focuses on the investigation of the multi-

product newsvendor problem with a CVaR type of risk constraint where CVaR is defined in 

terms of a random newsvendor’s profit function (the distribution of the CVaR is arbitrary in 

contrast with the optimization of CVaR in finance literature). 

 The model description is given in section 5.2. In section 5.3, the CVaR model for two 

products is studied. Then, an LP formulation of the CVaR optimization problem for the 

newsvendor problem is given in section 5.4. 
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5.2 Model Description 

 

 As expressed before, the objective of the standard newsvendor problem is the 

maximization of the expected profit without any constraint for a risk neutral newsvendor. 

Using the CVaR measure, there are several alternative formulations which are plausible. Our 

focus is on two main models. The first is the maximization of the CVaR function if it is 

defined in terms of the newsvendor’s profit function (or the minimization of the CVaR 

function if it is defined in terms of the newsvendor’s loss function). The maximization of the 

CVaR function which is defined in terms of the profit function and the minimization of the 

CVaR function which is defined in terms of the loss function are as follows: 
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 At this point; let us give some insights about these two CVaR functions above, where 

the CVaR functions are given in terms of the newsvendor profit or loss function. In equation 

(5.1); the newsvendor profit function is zero if the product order quantity is zero. In order to 

have a non-zero integrand in equation (5.1), VaR should be greater than or equal to zero. So, 

the equation becomes –β π0/(1- β). To attain the optimum value under these circumstances, 

VaR (π0) is set to zero and the optimum CVaR is zero. On the other hand, if the integrand is 

zero where VaR is less than or equal to zero, the equation becomes π0. To attain the optimum 

value under these conditions, VaR is set to zero and the optimum CVaR is zero. 

 Moreover, the newsvendor loss function is zero if the product order quantity is zero in 

equation (5.2). If the integrand is non-zero in equation (5.2), VaR is less than or equal to zero 

and the equation becomes –β π0/(1- β). To attain the optimum value under these conditions, 
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VaR is set to zero and the optimum CVaR value is zero. On the other hand; if the integrand is 

zero where VaR is greater than or equal to zero, the equation becomes π0. VaR is set to zero 

and CVaR is found to be zero in the optimum point for this case.  

 The second model is the maximization of the expected profit function subject to the 

CVaR constraint where the CVaR function is controlled below a CVaR0 value. This is 

similar to the formulation of the VaR-constrained problem studied in Chapter 4. This model 

is shown as below: 

 

 ( )[ ]nnqqq DDDqqqE
n

,..,,,,..,,max 2121,,..,, 021
ππ  

 subject to          (5.3) 

      0CVaRCVaR ≤  

 

5.3 Two-Product Case 

 

 The maximization of the CVaR function, which is defined in terms of the profit 

function of the two product newsvendor problem, without any constraint is of interest in this 

part of this study. This is the extension of the single-product model initiated by Chen et al. 

[21]. This objective function could be examined in different regions for the two products 

case similar to the VaR problem discussed in Chapter 4. The maximization of the CVaR 

model and the CVaR function is defined as below: 
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 In order to analyze this function, we consider the function in four regions (salvage 

value is assumed to be zero) as follows: 
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 The expression [K]- in the CVaR function could be expressed as [ ]+− KK  where K is 

given in equation (5.5). The second part of the equation resembles the downside risk 

constraint in the VaR problem and a similar method used in section 4.3 can be adapted in this 

calculation. 

Similarly; let us define two critical values for demands L1 and L2 that are defined as 

the minimum value of D1 required to achieve π0 and the minimum value of D2 required to 

achieve π0 respectively. After defining these critical values L1 and L2 for demands, the 

objective function can be defined in terms of these values in four cases: 

 

Case-I: If L1 and L2 are both greater than zero, the CVaR objective function region can be 

seen in Figure 5.1 and the objective function becomes:  
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Figure 5.1: CVaR Objective Function Region in Case-I  

 

Case-IIa: If L1 is negative and L2 is positive, the CVaR objective function region can be seen 

in Figure 5.2 and the objective function becomes:  
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Figure 5.2: CVaR Objective Function Region in Case-IIa  

 

Case-IIb: If L1 is positive and L2 is negative, the CVaR objective function region can be seen 

in Figure 5.3 and the objective function becomes:  
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Figure 5.3: CVaR Objective Function Region in Case-IIb 

 

Case-III: If L1 is negative and L2 is positive, the CVaR objective function region can be seen 

in Figure 5.4 and the objective function becomes: 
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Figure 5.4: CVaR Objective Function Region in Case-III 

 

 The CVaR objective function that is considered in the four cases above could be 

shown in the q1-q2 coordinate system below and it can be seen that each case falls into 

separate regions. When the slope of L1 is less than the slope of L2-that means c1c2< (r1-c1) 

(r2-c2), the graph will be as the Figure 4.5a. When the slope of L1 is greater than the slope of 

L2-that means c1c2> (r1-c1) (r2-c2), the graph will be as the Figure 4.5b.  

 From these two graphs, we have four optimization problems that are defined in their 

own regions as shown above-some constraints added to define these regions: 
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Case-III:  
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 Here, the procedure is similar to the procedure defined in section 4.3. The CVaR 

optimization problem with the region constraints are solved separately by using GAMS 

software (BARON-Branch-And-Reduce Optimization Navigator) for all sub-cases. The case 

that gives the maximum CVaR value of all cases is chosen. A simulation test is performed in 

order to verify this value. This test calculates the estimated profit and estimated probability 

that profit exceeds the target profit. At the end of the numerical results, these two values that 

are calculated by the non-linear solver and the simulation test are found to be close to each 

other. The numerical results are deeply analyzed in section 6.3. 

 

5.4 The Case with Multiple Products 

 

 If we try to generalize the CVaR model to the N-product case, we encounter similar 

complications with the complications that appear during the generalization of VaR model to 

the N product case with difficult characterizations. There would be more than four regions in 

more than 2 dimensions. Therefore, as an alternative approach we adapt the LP model which 

is developed by Rockafellar and Uryasev [22]. As expressed in the section 3.3.5, the original 

CVaR optimization problem is converted to an LP model.  
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5.4.1 CVaR Optimization via an LP approach 

 

 The minimization of the CVaR function in terms of a general loss distribution was 

converted to an LP model by Rockafellar and Uryasev [22]. This CVaR function and the LP 

conversion are given in the equations (3.26) and (3.27). This formulation is motivated by 

financial problems. The important point in this approach is that the loss function f(x,y) used 

in the CVaR function has a known probability distribution. In contrast, the loss function in 

the newsvendor problem is not directly known but has to be calculated using the problem 

structure. 

 The result of the LP formulation above is proved to be optimal by Rockafellar and 

Uryasev [27]. The minimization of the CVaR function with respect to x and ξ can be carried 

out by first minimizing over ξ for fixed x and then minimizing the result over x. The proof 

states that if the CVaR function is convex over x and ξ, and the constraints is a convex set, 

the solution is optimal. Also, convexity is a key property in optimization that eliminates the 

possibility of a local minimum being different from a global minimum. (Rockafellar [31] and 

Lemaréchal and Hiriart-Urruty [32]) 

 For this purpose Rockafellar and Uryasev [27] prove that the CVaR function is 

convex with respect to (x, ξ ) whenever the integrand [ ( )ζ,xf - π0 ]
+ is convex with respect 

to (x, ξ). For each random variable, ( )ζ,xf - π0  is convex. Also, [t]+ is a non-decreasing and 

convex function. So, [ ( )ζ,xf -π0]
+ can be expressed as a convex function. The convexity of 

the CVaR function follows from the fact that minimizing of an extended-real-valued convex 

function of two vector variables with respect to one of those variables, results in a convex 

function of the remaining variable. 

  Our CVaR function that consists of a newsvendor’s loss function does not have a 

given profit distribution since the profit function depends on the random demand. The CVaR 

function is as below: 
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 Our function should be examined in terms of convexity. We know that the 

newsvendor’s profit function is concave in terms of the product order quantities (q’s). There 

is a key property that if a function f is concave, another function g which is formed by 

multiplying f  by minus one is a convex function. So; the function in the equation (5.6) is 

convex in terms of qi’s and π0. According to the proof in Rockafellar and Uryasev [27] 

described above; the integrand [M]+  is also convex in terms of qi’s and π0. 

 So, the adaptation of the CVaR minimization for the newsvendor’s loss function to an 

LP model would yield an optimum result. We adapt the minimization of the CVaR function 

for m products to an LP model as follows: 
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    π0:      unconstrained 

 

Notations: 

ki
p :  is the discrete probability value for demand of product k where im is the         

            discretization  intervals. 

im :  is the discretization interval for product m which takes values 1 to N. 

miiz ..1
:  the auxiliary variable defined to determine the non-negativity of the function 

  ( ) ∑∑
==

−−−+−
m

j

jjj

m

j

ijj qcrxsr
j

11

0 )(π  for all products in each   

  discretization interval. 

ki
x :  the variable defined to determine the non-negativity of the                                                                                                                                       

            function
kik Dq − for product k in each discretization interval. 

    

 In this problem, we have a general demand distribution for each product. In the 

numerical experiments, we have discretized the demand in N intervals and used the 

discretized demand and the corresponding probability values in the described model. 

  

5.4.2 The CVaR-Constrained Newsvendor Problem via an LP Approach 

 

 Recall that we are also interested in the problem of the maximization of the expected 

profit function subject to a CVaR constraint. The adaptation of this second model to an LP is 

as follows: 
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 It is difficult to estimate CVaR0 (upper bound of CVaR) without solving the 

optimization problem intuitively. The upper bound value CVaR0 is found by using π0 value 

which is used in the VaR-constrained problem and the optimum order quantities (q*) of this 

VaR-constrained problem by simulation. 

 

5.5 Conclusion 

 

 In this chapter, the risk-averse newsvendor problem is investigated where the 

financial risk of the system is controlled by the Conditional Value-at-Risk constraint or 

optimizing the CVaR function in terms of the newsvendor’s profit or loss function. For a 

given CVaR distribution, adapting the CVaR optimization to an LP formulation is known. In 

this chapter, the CVaR function does not have a given distribution because of the nature of 

the newsvendor profit or loss function. LP formulations for both CVaR optimization and the 

expected profit maximization with CVaR constraint where the CVaR function is defined in 

terms of the newsvendor function are presented. Numerical studies and the results of the 

experiments on CVaR optimization are presented in section 6.3. 
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Chapter 6 

 

NUMERICAL RESULTS 

 

 

6.1 Introduction 

 

 Up to now, the newsvendor problem is discussed where the risk behavior of the 

problem is desired to be controlled. Two different approaches are discussed in the previous 

chapters. The first approach is the VaR-constrained newsvendor problem and the other one is 

the CVaR-constrained newsvendor problem or the CVaR optimization. The proposed 

methods are discussed in Chapter 4 and 5. 

 In this chapter, the results of the numerical experiments are presented. For the single 

product case, the problem for each model was solved in the past. The parameters’ effects on 

the decision variables and the objective function are investigated. For two or more product 

cases, our models are solved and sensitivity analysis is performed. The numerical analysis 

for the VaR-constrained problem and the CVaR problem are given in sections 6.2 and 6.3 

respectively. 

  

6.2 Numerical Analysis for a Newsvendor Problem with a VaR Constraint 

 

 In this section, numerical results for the VaR-constrained newsvendor problem are 

analyzed. In section 6.2.1, the results of the past studies for a single product are analyzed. In 

section 6.2.2, the two products newsvendor problem with VaR constraint is solved for 
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different instances and numerical results are evaluated. For more products, it was solved in 

section 4.4.  

 

6.2.1 The Single Product Problem 

  

 As stated in the literature review, the unconstrained and VaR-constrained newsvendor 

problems for a single product were solved by Gan et al. [20]. The solutions for these 

problems are also stated in the subsection 3.3.4. The effects of the variables on the optimum 

order quantity will be given in the two sub-sections below for both the risk-averse and the 

risk-neutral newsvendor problem. 

 

6.2.1.1 Single Product Risk-Neutral Newsvendor Problem 

 

 The solution for the classical risk-neutral newsvendor problem where the profit 

function is π (q, D) = (r-c) q-(r-s) max (q-D, 0) was given in Equation 3.2. 

 In this problem, cu is denoted as the underage cost that equals r-c. When the product 

order quantity is taken to be fewer than the product’s demand, this opportunity profit –cu- is 

lost. As the underage cost (cu) increases, the optimum order quantity (q*) increases. Second 

derivative of the q* in terms of cu is less than zero, q
* versus cu is a concave function. The 

proof for these claims for any demand distribution is given in the Appendix A1. 

 As stated before, co is denoted as the overage cost that equals c-s. When the product 

order quantity is chosen to be more than the product’s demand, this cost –co- is lost. As co 

increases, the optimum order quantity q* decreases. The second derivative of the q* in terms 

of co is greater than zero, q
* is a convex function in co. The proof for these claims for any 

demand distribution is given in the Appendix A2.  

 There is also an interesting parameter that was an important effect on the optimum 

order quantity. This is the demand’s coefficient of variation (cv). The coefficient of variation 
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of a demand is the ratio of the standard deviation of the demand to the expected value of the 

demand.  

 While observing the effect of the demand’s cv on the optimum product quantity, the 

demand’s mean should be kept constant in order to isolate demand’s mean effect on the 

optimum product quantity. For uniformly distributed demand – U (a,b),  the coefficient of 

variation is 
( )

( )ab

ab

+

−

3
. 

 Keeping the mean demand constant indicates that the denominator of the cv is also 

constant. In order to observe the effect of cv on the optimum product quantity, looking at the 

effect of the difference of the upper bound and the lower bound parameters of the uniform 

distribution is sufficient: 
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 The result shows that if cu is greater than co, increasing the difference results in a raise 

in q* with a linear trend; Otherwise, if cu is less than co, increasing the difference results in a 

fall in q* with a linear trend for uniformly distributed demand. 

 For a product that has a normally distributed demand with parameters µ and σ, the 

optimum order quantity is given as below: 

 

σµ ** zq +=            (6.2) 

 

 where ( )  variable.random normal standard  theis  and * Z
cc

c
zF

ou

u
Z

+
=  

 Keeping the mean demand constant and increasing the standard deviation means 

increasing the coefficient of variation of a demand. If the cv of the product demand increases 
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and cu/(cu+co) is greater than 0.5, the optimum order quantity increases. If the cv of the 

product demand increases and cu/(cu+co) is less than 0.5, the optimum order quantity 

decreases. These properties carry over to the standard formulation of the multi-product 

problem with independent demands. 

 

6.2.1.2 The Single Product Risk-Averse Newsvendor Problem 

 

 As stated before, the newsvendor problem with the downside risk constraint with zero 

salvage value is solved by Gan et al. [20] and the optimum order quantity was summarized 

with the equations 3.18 and 3.19. 

 As cu increases, q
* increases with a linear trend. This result can be observed from the 

equation for the optimum quantity in the binding constraint region that is manipulated and 

shown below: 

 

( ) ( )

o

ou*

c

πβFcc
q 0

1 −+
=

−

         (6.3) 

 

 In order to observe the effect of cu for both of the regions, risk-averse and risk-neutral 

cases are combined and the graph in the Appendix A3 is formed. In this graph, the regions 

where the problem is infeasible, the risk constraint is binding or not and the behavior of the 

optimum order quantity according to the underage cost is shown in detail. 

 The effect of the overage cost co on the optimum order quantity has two different 

behaviors depending on a single condition. If the condition ( )βπ 1

0

−> Fcu  is satisfied, the 

optimum product quantity q* is an increasing concave function. If this condition is not 

satisfied, q* is a decreasing convex function. These can be shown as below: 
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 In order to observe the effect of co for both of the regions, risk-averse and risk-neutral 

cases are combined and the graphs in the Appendix A4 are formed. In this graph, the regions 

where the problem is infeasible, the risk constraint is binding or not and the behavior of the 

optimum order quantity according to the overage cost is shown in detail. 

 The optimum order quantity versus cv of the demand is an increasing linear function 

if β is greater than ½ where the demand is uniformly distributed with parameters a and b. If β 

is less than ½, it is a decreasing linear function. This claim can be observed from the 

optimum order quantity defined below: 
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 In this setting, the optimization problem could be either in an infeasible state, or has a 

binding constraint or does not have a binding constraint. If the problem has a binding 

constraint, the optimum quantity is equal to the solution of the constrained optimization 

problem. If the problem does not have a binding constraint, the optimum quantity is equal to 

the solution of the classical newsvendor problem. The regions defining the problem states 

and the corresponding problem states can be summarized in the Appendix A5. 

 If the product demand is normally distributed with parameters µ and σ, the optimum 

order quantity is shown as below: 
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 Keeping the mean demand constant and increasing the standard deviation means 

increasing the coefficient of variation of a demand. If the cv of the product demand increases 

and β is greater than 0.5, the optimum order quantity increases. If the cv of the product 

demand increases and β is greater than 0.5, the optimum order quantity decreases for the 

single product VaR constrained newsvendor problem.  

 

6.2.2 Two-Product Case 

 

6.2.2.1 The Effect of the Average Demand 

 

 The first set of experiments focus on the effect of demand mean in the risk-averse 

newsvendor problem with a VaR constraint. Initial values are given in the Table-6.1 below: 

 

 Product 1 Product 2 

co 4 4 

cu 6 6 

µ 10 10 

Demand U(0,20) U(0,20) 

π0=0 β=0.05 

 

Table-6.1: Initial Values Used in the VaR Numerical Experiments 
 

 In order to observe and comment on the results properly, we have to get rid of the 

variability factor of the demand or somehow keep variability constant. For this purpose, the 

mean of the second product is changed while its CV is held constant. The results of this 

experiment can be seen in Table-6.2.  

 In the second and third columns of Table-6.2; the optimum order quantities and the 

corresponding optimum profit values are given respectively. In the fourth and fifth columns 

of Table-6.2; the unconstrained optimum order quantities and the corresponding optimum 
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profit values are given respectively. As the mean demand of the second product increases, 

the total optimum profit increases, both the first and the second product order quantities 

increase. But the increasing rate of the second product is higher than the first product, then 

the second product’s percentage in the portfolio increases. 

 

  

Optimum 

Order 

Quantity 

Pair 

Optimum 

Profit 

Value 

Unconstrained   

Optimum Order 

Quantity Pair 

Unconstrained  

Optimum Profit 

Value 

*

2

*

1

*

2

qq

q

+
 

U(0,10) (6.7,4.5)  45.83 (12,6)  54.1824 0.40 

U(0,20) (7.9,7.9)  63.6 (12,12)  71.98 0.50 

U(0,40) (8.9,13.4)  91.66 (12,24)  107.212 0.60 

U(0,80) (11.8,19.3)  128.51 (12,48)  179.987 0.62 

U(0,100) (11.9,21.4)  141.5 (12,60)  212.498 0.64 

 

Table-6.2: The Effect of the Average Demand on the Product Portfolio Distribution 
 

 In this experiment, it can be seen that increasing the mean demand of a product seems 

to have a diminishing effect on the satisfaction probability level. At the beginning of this 

experiment, the VaR constraint is binding. As the mean demand of a product is increased, it 

becomes impossible to catch up with the threshold probability satisfaction level, to make the 

constraint unbinding and to equalize the optimum profit in the risky newsvendor problem 

with the unconstrained newsvendor problem’s profit. 

 A similar experiment is performed for exponentially distributed demands. For 

exponentially distributed demands, there are four regions and four optimization problems 

corresponding to these regions. There are not any sub-cases in these main regions in contrast 

to uniformly distributed demand. The maximum of these four cases is taken to be the global 
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optimum and compared to the simulation test results. The mean demand of the first product 

is the same and the mean demand of the second product is changed.  

 In this experiment, the unconstrained and VaR constrained newsvendor results are 

compared. In the Table-6.3, the first column gives experimental demand means 1/λ and the 

second column presents the points where the newsvendor problem attains the maximum 

profit without considering the risk constraint in each trial. The third column displays the 

unconstrained optimum expected profit. In the fourth column, the satisfaction probability 

values at the unconstrained optimum point are given in order to realize if the risk constraint 

is satisfied or not. The VaR constrained problem is solved by the NLP model in four regions; 

the maximum of the four is chosen and demonstrated in the fifth column of the Table-6.3. 

 The CV of an exponentially distributed demand stays constant and equals one. 

Therefore; as the mean demand of the second product decreases, the optimum profit and the 

fraction of the second product in the portfolio increases. Moreover, Table-6.3 and the 

associated Figure 6.1 reveal the effects of the change in mean demand in detail.  

 

Constrained Optimum  

1/λ2 

Unconstrained 

Optimum Point 

(q1,q2) 

Unconstrained 

Optimum Expected 

Profit 

Satisfaction Probability Values 

at the Unconstrained Optimum 

Point Profit (q1,q2) 

5 (9.16,4.58) 35.02 0.79 25.67 (3.2,3.4) 

10 (9.16,9.16) 46.7 0.82 35.17 (4.24,4.24) 

20 (9.16,18.32) 70.04 0.79 54.6 (4.8,7.4) 

40 (9.16,36.65) 116.74 0.74 73.43 (7.9,10.2) 

50 (9.16,45.81) 140.09 0.73 82.6 (8.3,11.9) 

 

Table-6.3: Effect of the Demand Mean on the Optimum Point 

(
1u

c =6, 
2u

c =6, 
1o

c =4, 
2o

c =4, 1/λ1=10, π0=0, β=0.05)  
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 From Table-6.3, the simulated satisfaction probability values decrease in the case of 

increasing the mean demand as we have expected above. From the Figure 6.1, the rate of 

increase in the optimum profit without any risk is greater than the rate of increase in the 

optimum profit with a risk as the demand mean increases. Interestingly, the rate of increase 

in the optimum profit is reduced by the risk constraint. 

 

 

Figure 6.1: Optimum Profit versus Mean Demand 

 

6.2.2.2 Effect of CV (Coefficient of Variation) of Demand 

 

 Secondly, let us observe the effect of CV of the demand. In order to see the effect of 

CV of the demand on the optimum order point and the optimum profit, all the parameters are 

taken to be same and only the second product’s demand distribution is changed. When 

changing the second demand, the upper and lower parameters of the second demand are 

changed while the mean of the demand is kept constant. By this way; cv of the demand 

changes, whereas the mean demand remains constant.  

 In Table-6.4a, the results to the Non-Linear Programming (NLP) model for the 

regions of the problem are given. The results are reported in two columns which correspond 
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the optimum expected profit and the corresponding quantity pairs. The outputs of the Case-I, 

Case-IIb_2 and Case-IIb_3 are all infeasible in this problem and not included in the Table-

6.4a. In Table-6.4b, the simulation column indicates the point where the expected profit 

attains the maximum value while the newsvendor’s realized profit is less than or equal to his 

specified target profit (π0) with threshold probability value (β). The simulation results are 

reported with an error less than 0.1 for product order quantities and 0.5 for profit values 

within a 95% confidence interval.  The unconstrained column indicates the optimum point 

for the unconstrained newsvendor problem for two products. 

 According to the Table-6.4a and the Table-6.4b, the point that gives the maximum 

profit of Case-I, Case-IIa, Case-IIb and Case-III and the point that is given as an output of 

the simulation are very close. The two profits at these points are also very close. All 

numerical results in these two tables illustrate this same situation. So, solving the risk-averse 

newsvendor problem for all regions separately and choosing the one that gives the maximum 

profit of all seems to be a valid optimization approach. 

 

Case-IIa Case-IIb 

Case-III 

Case-IIa_1 Case-IIa_2 Case-IIa_3 Case-IIb_1 

Case-III_1 Case-III_2 
 

Profit Pair Profit Pair Profit Pair Profit Pair Profit Pair Profit Pair 

U(0,20) 62.4 (6.3,9.5) Infeasible Infeasible 62.4 (9.5,6.3) 63.6 (7,9,7.9) Infeasible 

U(4,16) 56.8 (3.2,14.7) 77.5 (8.4,12.6) 54.4 (3.8,6.3) 78.9 (13.3,8.9) 81.5 (11.4,10.8) 54.3 (4,6) 

U(8,12) Infeasible 84 (8,12) 85.3 (7.4,11) 88.9 (14.5,9.7) 91.2 (12,10.4) 90 (10,10) 

U(9,11) Infeasible 64.1 (9,13.5) 87.1 (7,10.5) 91.4 (14.7,9.8) 93.5 (12,10.2) 93.6 (12,10.2) 

 

Table-6.4a: The Solution of the VaR-Constrained Newsvendor Problem 
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VaR Constrained 

Simulation 
Unconstrained 

Demand Distribution 

of the Second 

Product 

CV of the Second 

Product’s 

Demand Profit Pair Profit Pair 

U(0,20) 1.73 63.9 (8,8) 72 (12,12) 

U(4,16) 1.04 81.96 (11.4,10.8) 82 (12,11.2) 

U(8,12) 0.35 91.85 (12,10.4) 92 (12,10.4) 

U(9,11) 0.17 93.6 (12,10.2) 93.8 (12,10.2) 

 

Table-6.4b: The Simulated and the Unconstraint Solution to the VaR-constrained Problem  

 

 The values in the Table-6.4a and the Table-6.4b indicate that as the CV of the second 

product’s demand decreases, the realized profit and the optimum profit increases. Also; as 

the CV of the second product demand decreases, the probabilities that the realized profit of 

the newsvendor achieves the targeted profit increases. So, the maximum profit to be attained 

with the risk constraint becomes closer to the maximum profit to be attained without any risk 

constraint.  This leads us to a simple conclusion that the risk constraint becomes no more 

binding and the optimum profit becomes equal to the profit for newsvendor problem without 

any risk constraint as the CV of the second product’s demand decreases. 

 These results motivate the following question. Although the coefficient of variation of 

the second product decreases, why does the second product’s percentage in the portfolio 

decrease? Should not the decision maker try to invest more on the less risky asset (that means 

the product that has lower variability on its demand)?  

 After more numerical experiments, we observe that the ratio of the underage cost to 

the overage cost is an important factor in this situation. Figure 6.2a shows that when the ratio 

of the overage cost to the underage cost is less than one, decreasing the coefficient of 

variation of a product causes a fall in the percentage of the product in the portfolio. Figure 



Chapter 6: Numerical Results                69 
 

 

6.2b shows that if this ratio is greater than one, there occurs an increase in the product’s 

percentage in the portfolio and demand would get the higher portion from the portfolio. 

 The underage cost means the net profit gained in a possible product selling case and 

the overage cost means the net loss in a possible over-ordering case. The possible cause for 

this result is that if the ratio is greater than one (losing money because of over-ordering is 

more important than losing money because of under-ordering), the product with lower 

variability has a higher portion in the product portfolio. 

 Also, the optimum points with the VaR constraint for different overage and underage 

costs can be seen from the Table-6.5. In both of the scenarios; as the cv of the second 

product’s demand decreases, the quantities for both the first product and the second product 

increase. A possible reason for this is that the risk in the system decreases in the case of a fall 

in the cv of the second product’s demand. But, as we have expressed above the percentage of 

the second product in the product portfolio depends on the ratio of the overage cost to the 

underage cost. 

 

1u
c =

2u
c =6, 

1o
c =

2o
c =4 

1u
c =

2u
c =2, 

1o
c =

2o
c =8 

Optimum with the VaR 

Constraint 

Optimum with the VaR 

Constraint 

Demand Distribution of 

the Second Product  

CV of the Second 

Product’s Mean 

Profit Optimum Pair Profit Optimum Pair 

U(0,60) 0.58 190.86  (23.72,23.72) 9.04 (2.53,2.53) 

U(4,56) 0.50 212.64 (26.87,27.29) 17.68 (5.27,6.32) 

U(8,52) 0.42 230.6 (30.36,30.26) 20.16 (6.38,11.07) 

U(12,48) 0.35 244.37  (34.21,32.53) 17.7 (6.75,12) 

U(16,44) 0.27 254. 4     (36,32.8) 5.92 (7.75,16) 

U(20,40) 0.19 264 (36,32) 55.37 (9.25,24) 

 

Table-6.5: Results of the VaR-Constrained Problem for Different Cost Values  
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Figure 6.2a: Percentage of Second Product in Portfolio (co=4, cu=6) 
 

 
 

Figure 6.2b: Percentage of Second Product in Portfolio (co=8, cu=2) 
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6.2.2.3 The Effect of the Overage Cost (co) 

 

 Now; let us look at the changes when the overage cost (
2o

c ) - the cost incurred when 

the product order quantity is greater than the realized demand- changes so that 
2u

c /
2o

c  ratio 

changes. Initial values are given in the Table-6.1.  

 In this testing, the unconstrained and VaR constrained newsvendor results are 

compared. In Table-6.6, the first column gives experimental overage costs (co) and the 

second column presents the points where the newsvendor problem attains the maximum 

profit without considering the risk constraint in each trial. The third column displays the 

unconstrained optimum expected profit. In the fourth column, the satisfaction probability 

values at the unconstrained optimum point are given in order to realize if the risk constraint 

is satisfied or not. The VaR constrained problem is solved by the NLP model in four regions; 

the maximum of the four is chosen and demonstrated in the fifth column of the Table-6.6. 

 Obviously, an increase in the overage cost results in a decrease in the optimum profit 

values. From Table-6.6, it can be seen that as 
2o

c  increases and 
2u

c /
2o

c decreases- that 

means losing the profit opportunity becomes less important than increasing the cost because 

of over-ordering-, the cost of the second product increases and the percentage of the second 

product in the portfolio decreases as we expected. Also, where the cost values and revenue 

values of products are equal, second product’s percentage is near to 50%.  
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Constrained Optimum   

2o
c  

Unconstrained 

Optimum Point 

(q1,q2) 

Unconstrained 

Optimum Expected 

Profit 

Satisfaction Probability Values at 

the Unconstrained Optimum Point 
Profit (q1,q2) 

2 (9.16,13.86) 55.62 0.83 41.81 (2.79,8.37) 

3 (9.16,10.98) 50.39 0.83 39.52 (4.06,5.89) 

4 (9.16,9.16) 46.7 0.83 35.17 (4.24,4.24) 

5 (9.16,7.88) 43.93 0.83 33.51 (4.47, 3.73) 

 

        Table-6.6: Effect of the Overage Cost on the Optimum Point 

(
1u

c =6, 
2u

c =6, 
1o

c =4, 1/λ1= 1/λ2=10, π0=0, β=0.05) 

 

 In addition, we wonder how changing the overage cost or wholesale price would 

affect the satisfaction probability levels. In Table-6.6, the satisfaction probability values at 

the unconstrained optimum points show that satisfaction probability level remains same. 

From the Figure 6.3, the profit rate decrease with the risk case is close to the profit rate 

decrease without risk. In the Table-6.6, it can be seen that changing the wholesale price does 

not affect the rate of change of the expected profit. An interesting result is that as the overage 

cost of the second product increases, the optimum order quantity of the first product 

increases and the optimum order quantity of the second product decreases whereas the total 

product quantity in the portfolio decreases. 
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Figure 6.3: Optimum Profit versus the Overage Cost (co) of the Second Product 

 

6.2.2.4 The Effect of the Target Profit Level 

 

 Another variable to observe its effect on the optimum profit line is the target profit 

level (π0) which is called the VaR profit. In this testing, the unconstrained and VaR 

constrained newsvendor results are compared. In Table-6.7, the first column gives πo value 

and the second column presents the points where the newsvendor problem attains the 

maximum profit without considering the risk constraint in each trial. The third column 

displays the unconstrained optimum expected profit. In the fourth column, the satisfaction 

probability values at the unconstrained optimum point are given in order to realize if the risk 

constraint is satisfied or not. Once again, the VaR-constrained problem is solved by the NLP 

model in four regions; the maximum of the four is chosen and demonstrated in the fifth 

column of the Table-6.7. 

 While the target profit (π0) is increased, the satisfaction probabilities decrease and 

profits remain the same. In the Figure 6.4a, the decreasing trend of the satisfaction 

probabilities is shown. As the VaR profit increases, the optimum profit decreases. For higher 

VaR profit levels, the optimization problem turns out to be an infeasible problem. The result 

is comprehensible because the satisfaction probability level decreases as stated in Table-6.7. 
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For greater VaR profits, it is impossible to get the satisfaction probability level above the 

threshold probability value-0.95 in our setting. The results are shown in Figure 6.4b. 

 

Constrained Optimum 

π0 
Unconstrained 

Optimum Point (q1,q2) 

Unconstrained 

Optimum Expected 

Profit 

Satisfaction Probability Values at 

the Unconstrained Optimum Point Profit (q1,q2) 

0 (9.16,9.16) 46.7 0.83 35.17 (4.24,4.24) 

5 (9.16,9.16) 46.7 0.81 31.72 (3.61,3.61) 

10 (9.16,9.16) 46.7 0.80 Infeasible 

15 (9.16,9.16) 46.7 0.78 Infeasible 

20 (9.16,9.16) 46.7 0.75 Infeasible 

25 (9.16,9.16) 46.7 0.68 Infeasible 

30 (9.16,9.16) 46.7 0.64 Infeasible 

 

  Table-6.7: Effect of the Target Profit Level on the Optimum Point 

(
1u

c =6, 
2u

c =6, 
1o

c =4, 
2o

c =4, 1/λ1=10, 1/λ2=10, β=0.05) 
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Figure 6.4a: Satisfaction Probability Plot with Different Target Profit Levels 

 

 

Figure 6.4b: Optimum Profits with and without Risk versus Target Profit Level 

  

6.3 Numerical Analysis for Newsvendor Problem with a CVaR Constraint 

  

 The solution methodology for the CVaR optimization problems was given in chapter 

5 where the CVaR function is defined in terms of the newsvendor’s profit or loss function. 
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The single-product CVaR optimization problem with newsvendor consideration was solved 

by Chen et al.[21]. The solution and parametric effects of the solution for single product are 

presented in section 6.3.1. The experimental results for two products and more products are 

investigated in section 6.3.2 and 6.3.3 respectively. 

 

6.3.1 The Single Product Analysis 

  

 The first model stated above was studied for one product by Chen et al. [21]. The 

optimum order quantity is given as: 

 

( ){ }00

* ,CVaRmaxmaxarg
0

ππ qq
q≥

=  










−

−
= −

sr

cr
Fq β1*  

 

 The underage cost (cu) equals r-c in the newsvendor problem. The effect of cu on the 

optimum order quantity in the CVaR problem is similar to the effect of cu on the optimum 

order quantity in the risk-neutral newsvendor problem. As cu increases, the optimum order 

quantity increases. The overage cost (co) equals c-s in the newsvendor problem. Also, effect 

of co on the optimum order quantity is similar to the effect of co on the optimum order 

quantity in the risk-neutral newsvendor problem. As co increases, the optimum order quantity 

decreases. 

 The effect of coefficient of variation (cv) on the optimum order quantity is also 

interesting. The mean of the demand should be kept constant to see the effect of cv on the 

optimum order quantity clearly. For uniformly distributed demand- U(a,b), q* is as shown 

below: 
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 The result shows that if ( )12 −βuc  is greater than co, increasing the difference results 

in a raise in q* in a linear trend. Otherwise if ( )12 −βuc  is less than co, increasing the 

difference between the distribution parameters results in a fall in q* in a linear trend. 

 If the product demand is normally distributed with parameters µ and σ, the optimum 

order quantity is shown as below: 

 

µσβφ +
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= −

ou

u

cc

c
q 1*  

 

 Keeping the mean demand constant and increasing the standard deviation means 

increasing the coefficient of variation of a demand. If the cv of the product demand increases 

and (β cu/(cu+co)) is greater than 0.5, the optimum order quantity increases and if the cv of 

the product demand increases and (β cu/(cu+co)) is less than 0.5, the optimum order quantity 

decreases for the single product constrained newsvendor problem. 

 

6.3.2 Two-Product Case 

 

6.3.2.1 CVaR Optimization 

 

 In section 5.5.1, the LP model formulation of the CVaR optimization problem is 

given. As stated in section 5.5.1, the CVaR minimization in terms of the newsvendor’s loss 

function could be solved via an LP formulation. Because of the convexity of our CVaR 

function, the LP model gives the optimum solution for the problem.  
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 If an LP model is written for the CVaR maximization in terms of the newsvendor’s 

profit function similarly, could we guarantee that the solution is optimal? Let us look at a 

numerical example for this purpose. 

 In this experiment, there are two products that each have exponentially distributed 

demands with same mean value 10. Underage costs and overage costs are same for the 

products and 6, 4 respectively. In Section 5.4, the solution procedure of CVaR maximization 

for two-product newsvendor profit function is given. It resembles the solution procedure for 

two-product VaR-constrained newsvendor problem. The CVaR maximization problem is 

solved for all regions and the maximum of all is chosen among them. In the Table-6.8, the 

column called “Result of the CVaR Maximization with NLP in Four Different Regions” 

displays the optimum CVaR values and the corresponding Value-at-Risk and product order 

quantity values-(VaR, q1, q2 ) for all four regions. The maximum of four regions is selected 

as the optimum result of this NLP method. The column called “Result of the CVaR 

Maximization with LP Formulation” displays the solution for the LP formulated CVaR 

maximization of the two-product newsvendor problem. In this table, simulation results are 

also available. The result of the NLP formulation is very close to the simulation results; but 

the LP formulation result does not seem to be acceptable according to the simulation result. 

Rockafellar et. al.’s LP formulation is not applicable in CVaR optimization for newsvendor 

problem. The reason could be the concavity of the CVaR function. This could be a future 

research.  
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Result of the CVaR Maximization with NLP in Four Different Regions 

Case-I Case-IIb 

CVaR (VaR, q1, q2) CVaR (VaR, q1, q2) 

2.88 (4.88,1.29,1.29) 2.42 (3.93,1.5,1.27) 

Case-IIa Case-III 

Maximum of Four 

Regions 

Result of the CVaR 

Maximization with LP 

Formulation 

Simulation 

CVaR (VaR, q1, q2) CVaR (VaR, q1, q2) CVaR (VaR, q1, q2) CVaR (VaR, q1, q2) CVaR (VaR, q1, q2) 

2.42 (3.93,1.27,1.5) 1.97 (2.97,1.49,1.49) 2.88 (4.88,1.29,1.29) 0.6 (0.60,0.05,0.05) 2.89 (5,1.3,1.3) 

 

Table-6.8: Comparison of NLP and LP CVaR Maximization Results with Simulation 

(D1~Exponential (0.1) and D2~Exponential (0.1), 
1u

c =
2u

c =6, 
1o

c =
2o

c =4, β =0.95) 

 

6.3.2.2 The Effect of the Average Demand 

 

 Firstly, let us perform a numerical study to see the effect of the average demand in the 

risk-averse newsvendor problem. The initial values are given in the Table-6.9 below: 

 

 Product 1 Product 2 

co 4 4 

cu 6 6 

µ 10 10 

Demand U(0,20) U(0,20) 

π0=0 β=0.95 

 

Table-6.9: Initial Values Used in the CVaR Numerical Experiments 
 

 In this experiment; only the second product’s distribution is changed. In order to 

observe the effect of the demand mean purely, we have to get rid of the variability effect of 

the demand by keeping the coefficient of variation constant. In the Table-6.10, the optimum 

CVaR values and the corresponding optimum pairs are given for this experiment. As the 
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mean demand of the second product increases, the second product’s percentage in the 

product portfolio increases and the optimum CVaR value is improved. An interesting result 

in this experiment is the change in the first product optimum order quantity. As the second 

product’s demand mean increases, the optimum order quantity of the first product also 

increases.  

 

min CVaR 

µ2 

Optimum CVaR Value 
Optimum Triple 

(VaR, q1, q2) 

U(0,10) -4.13 (-7.1,1.8,1.55) 

U(0,20) -5.68 (-10,2.5,2.5) 

U(0,40) -8.26  (-14.2,3.1,3.6) 

U(0,80) -12.72  (-21.8,3.9,5.4) 

U(0,100) -14.81 (-25.6,4.3,6.3) 

 

Table-6.10: Demand Mean Effect on the Optimum Point in CVaR Minimization 
 

6.3.2.3 The Effect of CV (Coefficient of Variation) of the Demand 

 

 Secondly, let us observe the effect of the CV of the demand on the optimum point and 

profit values. In order to see the effect of CV of the demand on the optimum order point and 

the optimum profit, all the parameters are taken to be same and only the demand distribution 

of the second product is changed. When changing the second demand, the upper and the 

lower parameters of the second demand are changed and at the same time the mean of the 

demand is taken to be the same (CV of demand changes, mean remains constant). 
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min CVaR Simulation 
Second Product's 

Demand Distribution 

CV of the Second 

Product’s 

Demand 

Optimum 

CVaR Value 

Optimum Triple  

(VaR, q1, q2) 

Optimum 

CVaR Value 

Optimum Triple  

(VaR, q1, q2) 

U(0,20) 1.73 -5.68 (-10,2.5,2.5) -5.7 (-10,2.5,2.5) 

U(4,16) 1.04 -28.47 (-31.68,1.94,5.74) -28.8 (-31,1.9,5.7) 

U(8,12) 0.35 -50.96 (-53.12,1.26,8.86) -50.84 (-53,1.3,8.9) 

U(9,11) 0.17 -56.46 (-58.22,0.96,9.51) -56.33 (-58,1,9.5) 

 

Table-6.11: CV of the Demand Effect on the Optimum Point in CVaR Minimization 
 

 In the Table-6.11, the minimization of the CVaR function is solved via LP 

formulation. In all of the experimental studies in this chapter, demands are discretized with 

equal probability values in 100 equal intervals. The optimum CVaR values and the 

corresponding optimum pairs are given in that table. Also, the optimum CVaR values and the 

optimum points found via simulation are also available. The simulation results are reported 

with an error less than 0.1 for product order quantities and 0.5 for VaR and optimum CVaR 

values within a 95% confidence interval. The results of the LP formulation and the 

simulation results are close to each other. From this point, examining only the LP results for 

the CVaR minimization would be sufficient in order to perform an experimental study.   

 As the CV of the second product’s demand decreases, which means the riskiness of 

the second product demand falls, the percentage of the second product in the portfolio 

increases and the optimum CVaR value is improved as expected. During this change, the 

optimum order quantity of the first product is decreased whereas the total quantity in the 

portfolio increases. 

 At this point, we wonder if the ratio of the underage cost to the overage cost has an 

effect or not on the CV experiment on the second product percentage in the product portfolio 

similar to the VaR experiments. For this purpose, we have performed 3 experiments where 

(cu,co) pairs are the same for all products and (6,4),(2,8) and (8,2). The first product’s 

demand is uniformly distributed between 0 and 60. The second product’s demand is varied in 
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order to observe the effect of the CV while keeping the demand’s mean constant. The Figure 

6.5 shows that when the ratio of the overage cost to the underage cost increases, second 

product’s percentage in the product portfolio increases for the same input variables. It is 

reasonable because if the overage cost is more important than the underage cost, the decision 

maker should avoid over-ordering. So, the decision maker would order more from the less 

risky product. 

 

 

Figure-6.5: CV effect on the Optimum Product Portfolio Distribution 

 

6.3.2.4 The Effect of the Overage Cost (co) 

 

 Another variable to examine the effects on the optimum product portfolio is the 

overage cost (co). Only, the overage cost of the second product is changed. In Table-6.12, the 

optimum CVaR values and the corresponding optimum pairs are given for this experiment. 
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As the second product’s overage cost increases, the second product’s percentage in the 

product portfolio decreases and the optimum CVaR value is worsened. Increasing the 

overage cost means over-ordering causes higher risk for the system. So, in order to avoid this 

risk it is logical to lower the optimum order quantities. An interesting result in this 

experiment is the change in the first product optimum order quantity. As the second 

product’s overage cost increases, the optimum order quantity of the first product also 

decreases. 

 

min CVaR 

2o
c  

Optimum CVaR Value 
Optimum Triple 

(VaR, q1, q2) 

2 -4.72 (-7.48,1.59,2.06) 

3 -3.65 (-5.86,1.44,1.68) 

4 -2.92 (-5.15,1.31,1.31) 

5 -2.39 (-4.29,1.11,1.03) 

 

Table-6.12: The Effect of the Overage Cost on the Optimum Point in CVaR Minimization 

(
1u

c =
2u

c =6, 
1o

c =4, λ1=λ2=0.1, β=0.95) 

 

6.3.2.5 The Effect of the Underage Cost (cu) 

 

 Another variable to examine the effects on the optimum product portfolio is the 

underage (cu). Only, the underage cost of the second product is changed. In the Table-6.13, 

the optimum CVaR values and the corresponding optimum pairs are given for this 

experiment. As the second product’s underage cost increases, the second product’s optimum 

order quantity increases as expected. Also, the optimum order quantity of the first product 

increases. But, the second product’s percentage in the product portfolio decreases. However, 

the optimum CVaR value is improved. Increasing the underage cost means under-ordering 
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becomes more important than over-ordering. It is intuitively anticipated that increasing the 

underage cost results in an increase in the optimum order quantities.   

 

min CVaR 

2u
c  

Optimum CVaR Value 
Optimum Triple 

 (VaR, q1, q2) 

4 -1.69 (-3.06,0.78,0.91) 

5 -2.28 (-4,1.04,1.13) 

6 -2.92  (-5.15,1.31,1.31) 

7 -3.58  (-6.12,1.45,1.34) 

 

Table-6.13: The Effect of the Underage Cost on the Optimum Point in CVaR Minimization 

(
1u

c =6, 
1o

c =
2o

c =4, λ1=λ2=0.1, β=0.95) 

 

6.3.2.6 The Effect of the Threshold Probability (β) 

 

 Let us examine the effects of the threshold probability (β) on the optimum product 

portfolio. Initial values of the experiment can be seen in the Table-6.9. 

 In the Table-6.14, the optimum CVaR values and the corresponding pairs are given 

for various threshold probability values (β). As the β increases, the decision maker cares 

more about the riskiness of the environment. So; the optimum product order quantities fall 

and the optimum CVaR value is increased. 

 

 

 

 

 

 



Chapter 6: Numerical Results                85 
 

 

min CVaR 

Threshold probability (β) 
Optimum CVaR Value 

Optimum Pair 

 (VaR, q1, q2) 

0.75 -19.17 (-36.4,4.7,4.7) 

0.8 -15.89 (-29.6,4.3,4.3) 

0.85 -12.61 (-22.8,3.9,3.9) 

0.9 -9.24 (-15.6,3.3,3.3) 

0.95 -5.68 (-10,2.5,2.5) 

0.98 -3.2 (-4.4,1.7,1.7) 

0.99 -2.5 (-3.2,1.1,1.1) 

 

Table-6.14: The Effect of the Threshold probability on the Optimum Point in CVaR 
Minimization 

 

6.3.3 The Case with Multiple Products 

 

 The number of products in the portfolio is another variable that we are concerned 

with its effect on the optimum point in CVaR minimization problem. The results of the 

experiment are summarized in the Table-6.15 below: 

  

Min CVaR Simulation 

Product Portfolio 
Optimum Profit 

Value 
Optimum Point (VaR, qi) 

Optimum Profit 

Value 

Optimum Point  

(VaR, qi) 

Single Product -1.8 (-3,0.5) -1.75 (-3,0.5) 

2-product -5.6 (-10,2.5,2.5) -5.63 (-10,2.5,2.5) 

3-product -18.2 (-25,3,3,3) -17.52 (-25,3,3,3) 

4-product -29.4 (-43,4.5,4.5,4.5,4.5) -29.66 (-42,4.5,4.5,4.5,4.5) 

 

Table-6.15: The Effect of the Portfolio Size on the Optimum Point in CVaR Minimization 

(
1u

c =
2u

c =6, 
1o

c =
2o

c =4 Demand=U(0,20) β=0.95) 



Chapter 6: Numerical Results                86 
 

 

 The experiment is performed for single-product, identical 2-product, identical 3-

product and identical 4-product problems. In this experiment, we have taken 20 equal 

intervals for demand discretization in order to cope with the problem size. Increasing the 

number of discretization intervals would increase the problem size. In the second and third 

columns, the optimum profit values and the corresponding optimum points calculated by the 

LP formulation and the simulation are given respectively. As the number of products in the 

portfolio is increased, the optimum CVaR value is improved and the optimum order 

quantities for each product also increase. 

 

6.3.4 CVaR-Constrained Newsvendor Problem 

 

 Lastly, we turn our attention to the model where the expected profit is maximized 

with a CVaR constraint. The results of the experiment are summarized in the Table-6.16. In 

the second column, the results of the VaR problem for different trials are shown. As 

explained before, the CVaR constraint controls the CVaR function below an upper bound 

value (CVaR0). The CVaR0 bound is estimated by using the results of the VaR problem with 

a simulation. The expected profit maximization with the CVaR constraint is solved and the 

results are revealed in the third column. The optimum profit values and the corresponding 

optimum pairs are very close to each other. 
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VaR-Constrained Optimization CVaR-Constrained Optimization Second Product's 

Demand 

Distribution 
Optimum Profit 

Value 

Optimum Pair 

 (q1, q2) 

Optimum Profit 

Value 

Optimum Triple  

(VaR, q1, q2) 

U(0,20) 63.6 (7.9,7.9) 63.56 (-0.88,7.88,7.9) 

U(4,16) 81.5 (11.4,10.8) 81.2 (-2.38,10.94,10.66) 

U(8,12) 91.2 (12,10.4) 91.2 (-0.09,11.9,10.38) 

U(9,11) 93.5 (12,10.2) 93.6 (0,11,12,10.2) 

 

Table-6.16: CVaR-Constrained Newsvendor Problem Result 

 

6.4 Conclusion 

 

 In this chapter, the experimental studies and the results for the two main models 

which are the VaR-constrained newsvendor problems and the CVaR optimization for 

newsvendor problems are available. According to the numerical results, both of the models 

lower the optimum order quantities if the risk measure is binding. Otherwise, the decision 

variables are equal to the decision variables for the unconstrained newsvendor problem. 

   To summarize, increasing the mean of the demand has the similar effect on the 

optimum order quantities for both of the models. It increases the optimum order quantity of 

the product as well as optimum profit value. Increasing the overage cost causes a decrease in 

the optimum order quantity and the optimum profit value. Increasing the underage cost has 

the opposite effect on the optimum order quantity and the optimum profit value with 

increasing the overage cost. In addition, demand pooling effect can be observed from these 

experimental results. Increasing the number of product types in the product portfolio causes a 

decrease in the risk of the model and the product order quantities increase in product basis-

total product order quantities increase by this way. 
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 Moreover, the product order quantities are found to be closely related even if we 

work with the independent demands. This reveals the binding property of the VaR and CVaR 

measures. 

 Finally, both of the models are found to be input sensitive. The demand distribution 

of the products and the cost ratios are extremely important. As an example, the coefficient of 

variation of a product demand effect on the optimum point changes according to the overage-

underage cost ratios. The best example is the effect of the coefficient of variation of a 

demand on the optimum order quantities and profit values. The effect of cv of a demand on 

the decision variables and the objective function depends on whether the product is a high-

profit product or a low-profit product. (As stated before, a product is defined as a high-profit 

product when (r-c)/(r-s) ≥1/2 or as a low-profit product otherwise) 
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Chapter 7 

 

CONCLUSION 

 

 

 In this thesis, we are primarily interested in the multi-product newsvendor problems 

with financial risk constraints. The necessity and the importance of controlling the risk in 

making inventory decisions in a stochastic demand environment are emphasized. Our 

motivation is to control the risk of earning less than a threshold value or losing more than a 

critical value while maximizing the expected profit of the system. 

 Two important and complementing risk measures, VaR and CVaR, are used to 

control the risk in finance literature. The main aim of this thesis is to use VaR and CVaR 

measures in controlling the financial risk in the single period stochastic inventory models for 

a large product portfolio. The VaR-constrained newsvendor problem and the CVaR 

optimization in a newsvendor problem are solved for the single-product case in the past. It is 

beneficial to extend these models to N-product case for investors, retailers in short all 

decision makers. This study gives a solution approach for each model described above. The 

VaR-constrained newsvendor problem is solved for two products exactly and an 

approximation method is proposed for more-products case. CVaR optimization is solved by 

an LP formulation for a large product portfolio where the CVaR function is defined in terms 

of the newsvendor’s profit or loss function. 

 The focus of the first part of this thesis is on inventory control using the Value-at-

Risk concept. As expressed before, the satisfaction probability is the probability of exceeding 

a prespecified, fixed target profit level. The VaR value is taken to be this target profit value 

in the complement of the satisfaction probability function in this study. We used the 
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satisfaction probability function as the VaR constraint where the objective is the expected 

profit maximization in the newsvendor problem. The main objective of this part is to solve 

this VaR-constrained newsvendor problem for large product portfolios. As the satisfaction 

probability function is defined in terms of the newsvendor’s profit, it combines the products 

and creates a relation between them.  Therefore, a numerical analytical solution is found by 

solving an NLP formulation for two-product case and an approximation method is proposed 

for larger product portfolios. By using the Central Limit Theorem for large products, the total 

profit distribution is approximated with a normal distribution. The errors reported for this 

approximation method seem adequate. 

 In the second part of the thesis, we focus on Conditional Value-at-Risk that has a 

convex risk surface with respect to control variables and has a unique global optimum. In this 

study, the CVaR value is expressed in terms of the newsvendor’s profit or loss function and 

the aim is to optimize this value by deciding the ordering quantities for each product. For 

large product portfolios, this CVaR optimization model for the N-product newsvendor 

problem is solved by using a LP formulation. 

 Many experiments on these VaR and CVaR models are performed and the effects of 

the parameters on the optimum order quantities and the expected profit values are examined. 

Some interesting results are gathered from these experiments. First of all, the optimum 

quantities and the total profit for the VaR-constrained newsvendor problem are lower than 

for the unconstrained newsvendor problem if the risk constraint is binding. If the risk 

constraint is not binding, all values are identical with each other. The CVaR optimization 

problem lowers the optimum order quantities similar to the VaR-constrained newsvendor 

problem. 

 Secondly, we work with the products which have independent demands in both VaR 

constrained newsvendor optimization and CVaR optimization for the newsvendor problem. 

Although the product demands are independently distributed, it is observed that the product 

order quantities are closely related. 
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 Moreover, the problem is found to be input sensitive. Its behavior changes according 

to demand distributions, overage and underage cost ratios.  In addition, the demand pooling 

effect can be observed for both of the models we are concerned with in this study. 

 As a future research, both of the models could be studied for correlated demands and 

the effect of the correlation coefficient between the products could be inspected. Extending 

these two models to the multi-period risk-averse newsvendor problem would also be an 

interesting extension to this research. For a long time horizon, the financial risk of a 

stochastic inventory model could be controlled in every time interval separately leading to a 

Stochastic Dynamic Programming (SDP) problem. 
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Appendix A: SENSITIVITY ANALYSIS FOR A SINGLE PRODUCT 

NEWSVENDOR PROBLEM WITH AND WITHOUT VaR CONSTRAINT 

 

A.1 The Effect of the Underage Cost (cu) on the Optimum Order Quantity for a Single 

Product Unconstrained Newsvendor Problem 

 

 As the underage cost (cu) increases, the optimum order quantity (q*) increases. 

Second derivative of the q* in terms of cu is less than zero, q
* versus cu is a concave function. 

 

Proof: The optimum order quantity satisfies the equation FD(q
*)=cu/(cu+co). The optimum 

order quantity q* in terms of cu is an increasing function. First derivative of this function is in 

the following: 
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The optimum order quantity in terms cu is a concave function. Second derivative of this 

function is in the following: 
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A.2 The Effect of the Overage Cost (co) on the Optimum Order Quantity for a Single 

Product Unconstraint Newsvendor Problem 

 

As co increases, the optimum order quantity q* decreases. The second derivative of the q* in 

terms of co is greater than zero, q* versus co is a convex function. 

 

Proof: The optimum order quantity satisfies the equation FD(q
*)=cu/(cu+co). The optimum 

order quantity q* in terms of co is a decreasing function. First derivative of this function is in 

the following: 
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The optimum order quantity in terms co is a convex function. Second derivative of this 

function is in the following: 
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A.3 The Effect of the Underage Cost (cu) on the Optimum Order Quantity for a Single 

Product VaR-Constrained Newsvendor Problem 

 

 In order to observe the effect of cu for both of the regions, risk-averse and risk-neutral 

cases are combined and the graph in the following is formed. In this graph, the regions where 
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the problem is infeasible, the risk constraint is binding or not and the behavior of the 

optimum order quantity according to the overage cost is shown in detail. 

 

 

 

  Figure A.1: Effect of Underage Cost (cu) on the optimum order quantity (q*) 

 

A.4 The Effect of the Overage Cost (co) on the Optimum Order Quantity 

 

 In order to observe the effect of co for both of the regions, risk-averse and risk-neutral 

cases are combined and the graph in the following is formed. In this graph, the regions where 

the problem is infeasible, the risk constraint is binding or not and the behavior of the 

optimum order quantity according to the overage cost is shown in detail. Note that if the 
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is satisfied, the VaR constraint is not binding and the overage cost does not affect the 

feasibility of the problem. Also, assume that the condition 
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 is satisfied-the Figure A.2 is drawn where the condition ( )βFcα u

1−>  is satisfied; if that 

condition is not satisfied the Figure A.3 will be as the second graph: 

 

 

Figure A.2: Effect of Overage Cost (co) on the optimum order quantity (q*) 
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Figure A.3: Effect of Underage Cost (co) on the optimum order quantity (q*) 

 

A.5 The Effect of the Coefficient of Variation (cv) on the Optimum Order Quantity 

 

 In this setting, the optimization problem could be either in an infeasible state, or has a 

binding constraint or does not have a binding constraint. If the problem has a binding 

constraint, the optimum quantity is equal to the solution of the constraint optimization 

problem. If the problem does not have a binding constraint, the optimum quantity is equal to 

the solution of the classical newsvendor problem. The state of the problem depends on two 

variables β, (b-a) and in which region each variable fall. If β is greater or less than 1/2, there 

are three different regions that (b-a) can fall into for both two conditions. Each region defines 

the problem state. The regions defining the problem states and the corresponding problem 

states can be summarized as follows:  
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