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ABSTRACT 
 

Future optical micro systems such as Micro Electro Mechanical Systems (MEMS) scanners and 

micro-mirrors will extend the resolution and sensitivity offered by their predecessors. These 

systems face the challenge of achieving nanometer precision subjected to various disturbances. 

Predicting the performance of such systems early in the design process can significantly impact 

the design cost and also improve the quality of the design. Our approach aims to predict the 

performance of such systems under various disturbance sources and develop a generalized 

design approach for MEMS structures including a sensitivity analysis framework. In this study, 

we use ANSYS for modeling and analysis of a torsional MEMS scanner mirror. ANSYS modal 

analysis results, which are eigenvalues (natural frequencies) and eigenvectors (mode shapes), 

are used to obtain the state space representation of the mirror. The state space model of the 

scanner mirror is reduced using various reduction techniques to eliminate the states that are 

insignificant for the transfer functions of interest. The results of these techniques are compared 

to obtain the best approach for achieving a lower order model that still contains all of the 

relevant dynamics of the original model. After the model size is reduced significantly, a 

disturbance analysis is performed using Lyapunov approach to obtain root-mean-square (RMS) 

values of the mirror rotation angle under the effect of a disturbance torque. The Lyapunov 

approach results were validated using a time domain analysis. The sensitivity framework 

described in this study is directly related to the disturbance analysis framework. Analytical 

formulas are derived for the calculation of the modal parameter sensitivities and the results are 

verified by the finite difference method. The analytical formulas for the calculation of physical 

parameter sensitivities are described but they are found to be very inefficient due to the 

complexity and computational expense in calculating the eigenvalue and eigenvector derivatives 

included in these equations. Instead, the finite difference method is used to calculate the 

physical parameter sensitivities for the torsional MEMS scanner. Disturbance characteristics of 

the microscanners are measured, using the experimental techniques. The resulting data is 

utilized in the disturbance analysis framework. 
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ÖZET 
 
Geleceğin, mikro-elektro-mekanik sistem tarayıcıları ve mikro aynalar gibi optik mikro 

sistemleri öncülleri tarafından sunulan çözünürlüğü ve hassasiyeti geçeceklerdir. Bu sistemler 

mekanik ya da elektronik bozucu etmenlerin yoğun olduğu ortamlarda dahi nanometre 

ölçüsünde toleransları yakalamalıdır. Sistem performansını erken tasarım aşamasında saptamak 

tasarım masrafını düşürürken, dizayn kalitesini önemli ölçüde geliştirecektir. Yaklaşımımız, bu 

sistemlerin bozucu etmenler karşısında sergilediği performansını öngören ve hassasiyet analizini 

(sensitivity analysis) de kapsayan bir dizayn aracı geliştirmeyi amaçlamaktadır. ANSYS modal 

analiz sonuçları olan doğal frekans ve mod şekilleri, aynanın durum-yer (state-space)  

gösterimini elde etmek için kullanılmaktadır. Tarayıcı aynanın durum-yer modeli transfer 

fonksiyonları için önemsiz sayılabilecek durumları elemek için çeşitli indirgeme teknikleri 

kullanarak sadeleştirilebilir. Bu tekniklerin sonuçları, orijinal modelin bütün ilgili dinamiklerini 

kapsayacak; daha düşük derece bir model elde etmek için karşılaştırılabilir. Model, önemli 

ölçüde indirgendikten sonra, bozucu tork etkisi altında aynanın dönme açısının standart sapması 

(RMS) Lyapunov yaklaşımı kullanılarak hesaplanmıştır. Bu çalışmada konu edilen hassasiyet 

analizi çerçevesi, doğrudan bozunma analizi çerçevesine bağlıdır. Modal parametre 

hassasiyetlerinin hesaplanması için analitik formüller oluşturulup, sonuçlar sonlu farklılıklar 

metodu kullanılarak doğrulanabilir. Fiziksel parametre hassasiyetlerini hesaplamak için 

geliştirilen analitik formüller de çalışma dahilinde açıklanmıştır, fakat formüller karmaşıklıkları 

ve içerdikleri doğal frekans ve mod şekli türevlerinin hesaplamasının zorluğu yüzünden oldukça 

verimsiz bulunmuşlardır. Onun yerine, burulmalı MEMS tarayıcısı için fiziksel parametre 

hassasiyetlerini hesaplamak için sonlu farklılıklar metodu kullanılmıştır.  

 



 v

 

ACKNOWLEDGEMENTS  
 

I would like to express my sincere gratitude to my thesis advisor Dr. İpek Başdoğan for giving 

me the opportunity to carry out this thesis within her research team. I appreciate Koc University 

College of Engineering for supporting me through travel grants that enabled me to participate 

international conferences. 

 

I also would like to thank to Dr. Hakan Ürey and Dr. Erdem Alaca for taking part in my thesis 

jury. Additional thanks to Dr. Ürey for his hours spent to discuss my results and for his 

invaluable advices. 

 

As my colleagues, many thanks to Evren, Burak, Hüseyin, Ufuk, Göker, Sabri Bora, and Volkan 

for making those long hours spent in the office as enjoyable as they were. The OML staff 

Çağlar, Olgaç, Hamdi and Özgür for their hospitability… To Ozan for his patience in revising 

and decoding my code… Of course, my appreciations and gratitude go to Davut Otar for his 

incredible friendship from day and night and even though from Afghanistan. 

 

Finally, I would like to thank to Ekrem Bey, Meral Hanım and Başak. Even though you were 

not here with me, none of these would be possible without you. 

 



vi 

LIST OF FIGURES 

 

Figure 1.2-1: (a)Retinal Scanning Display Technology of Microvision, Inc uses a 2D 

MEMS microscanner. (Photo courtesy of Microvision, Inc), (b)Hand-held barcode 

readers are potential applications of MEMS microscanners (Photo courtesy of STAR-

System, Inc)...................................................................................................................... 2 

 

Figure 1.2-2: A  microscanner  for  optical  switching  applications,  shown  alone  and  

in  an array........................................................................................................................ 3 

 

Figure  1.2-3: Torsional MEMS Scanner showing the design parameters ....................... 4 

 

Figure 2.2-1: Finite element model of the MEMS torsional scanner. The model is 

created in ANSYS using 3D solid elements..................................................................... 6 

 

Figure 2.2-2: Five fundamental vibration modes of a box shaped microscanner............. 9 

 

Figure 2.2-3: Simplified finite element model of the MEMS torsional scanner. Beam 

and shell elements are used for model simplification..................................................... 10 

 

Figure 2.4-1: dc gain values plotted for each mode, the first mode being the torsional 

mode has the greatest dc gain among all ........................................................................ 15 

 

Figure 2.4-2: First six modes are used to construct the reduced model ......................... 17 

 

Figure 2.4-3: Modes are sorted according to the “dc gain” and “peak gain” approach. 

First six modes with higher gains are used to construct the reduced model................... 17 

 

Figure 3.2-1: Disturbance shaping filter connected in series with the mirror model ..... 19 

 

Figure 3.2-2: The frequency response and phase diagrams for the disturbance filter. The 

magnitude falls down quickly after the corner frequency (2510rad/sec ~400Hz) ......... 20 

 



 vii

Figure 3.2-3:  Comparison of Different Corner Frequencies For Disturbance Filter ..... 20 

 

Figure 3.3-1: Lumped mass-spring-damper model ........................................................ 23 

 

Figure 3.3-2: Time history of the disturbances. A randomly generated number array 

then scaled down to the expected disturbances’ magnitude level .................................. 24 

 

Figure 3.3-3: The angular displacement as a function of time. The equation of motion 

representing the lumped system is integrated using the MATLAB function ‘lsim’. The 

torque input is a randomly created disturbance array..................................................... 25 

 

Figure 4.1-1: Torsional MEMS Scanner showing the design parameters ...................... 27 

 

Figure 4.2-1: (a) The transfer function plot for the torsional scanner. Three modes can 

be observed while the others cannot. (b) The modes’ dc gain values, however modes are 

sorted with respect to their dc gain contribution. Three modes having larger gains can 

be easily noticed among the others................................................................................. 34 

  

Figure 4.2-2: Variation of the error between finite difference method solutions and the 

exact solution with respect to the perturbation factor. The error of the finite difference 

method grows logarithmically with the increasing perturbation size............................. 35 

 

Figure 4.2-3: Comparison of two different sensitivity analysis methods, applied on a 

cantilever beam. The physical parameters, which sensitivities are calculated with 

respect to are ‘A’ beam cross sectional area, ‘E’ elastic modulus, and ‘ρ’ the density of 

the beam material ........................................................................................................... 40 

 
Figure 4.3-1: The schematic of the design procedure with performance prediction and 

sensitivity analysis.......................................................................................................... 42 

 
Figure 5.2-1: The LABView screen shot. The program is constructed in order to 

measure the disturbances................................................................................................ 44 

 



 viii

Figure 5.2-2:  Microvision Biaxial MEMS scanner. First picture showing the scanner in 

the casing with the permanent magnets, below this picture coils used to drive the 

scanner can be seen on the outer frame. The third one is a close up picture, slow scan 

and fast scan frames and flexures can be identified ....................................................... 45 

 

Figure 5.2-3: the schematic showing the setup for piezoresistive sensor readings. The 

sensors can be directly connected to an oscilloscope or a pc with a data acquisition 

system............................................................................................................................. 46 

 

Figure 5.2-4: LDV measurement point, for the torsional mode of the outer frame ....... 47 

 

Figure 5.2-5: Schematic view of the LDV measurement setup, for the description of 

“small angle θ” assumption............................................................................................ 48 

 

Figure5.3-1: Schematic of disturbance measurement procedure.................................... 49 

 

Figure 5.4-1: LDV Readings versus Piezo Sensor readings. (The noise on the piezo 

sensor data can be seen easily) ....................................................................................... 50 

 

Figure 5.4-2: The position obtained by integration of the velocity and obtained from 

piezoresistive sensors. The left hand side y- axis represents the integrated LDV results 

for position, while the right hand side represents piezoresistive sensor outputs ............ 51 

 

Figure 5-4-3: Ideal and measured position data. The measured data seems to fit with the 

ideal one, however there occurs a little difference which is enough for disturbance 

calculations..................................................................................................................... 52 

 

Figure 5.4-4: The time history for the disturbances, the difference between the measured 

and the ideal.  RMS values for the measured disturbance is calculated as 3.6x10-5....... 52 



 ix

LIST OF TABLES 

 
Table 3.3-1: Effective mass moment of inertia and effective stiffness terms for the 

torsional mode of a torsional scanner ............................................................................. 24 

 

Table 3.3-2: Mass and mass moment of inertia terms for a rectangular mirror geometry25 

 

Table 3.3-3: Comparison of Lypunov approach and time domain analysis ................... 26 

 

Table 4.2-1: Modal parameter sensitivity analysis results of Torsional scanner. Analytic 

solution and finite difference solution techniques are compared ................................... 33 

 

Table 4.2-2: Physical parameter sensitivity analysis of the torsional MEMS scanner... 41 



 x

TABLE OF CONTENTS 

 
Chapter 1..............................................................................................................................................1 

INTRODUCTION ...............................................................................................................................1 

1.1 Generalized Design Approach............................................................................................1 

Chapter 2..............................................................................................................................................6 

MODELING ........................................................................................................................................6 

2.1 Introduction ........................................................................................................................6 

2.2 Finite Element Model .........................................................................................................6 

Natural Frequency and Mode Shapes ......................................................................................7 

2.3 State-Space Modeling.......................................................................................................10 

2.4 Model Reduction ..............................................................................................................13 

Chapter 3............................................................................................................................................18 

DISTURBANCE ANALYSIS FRAMEWORK ..............................................................................18 

3.1 Introduction ......................................................................................................................18 

3.2 Disturbance Analysis using Lyapunov Approach ............................................................18 

3.3 Disturbance Analysis in Time Domain ............................................................................23 

Chapter 4............................................................................................................................................27 

SENSITIVITY ANALYSIS FRAMEWORK .................................................................................27 

4.1 Introduction ......................................................................................................................27 

4.2 Sensitivity Analysis Framework.......................................................................................28 

4.2.1 Lagrange Multiplier Method ............................................................................29 

4.2.2 Modal Parameter Sensitivities Using Analytical Approach .............................31 

4.2.3 Modal Parameter Sensitivities Using Finite Difference Approach ..................34 

4.2.4 Physical Parameter Sensitivities Using Analytical Approach..........................35 

4.2.5 A Benchmark Example for Physical Parameter Sensitivities Using 

Analytical Solution: Cantilever Beam Example.............................................38 

4.2.6 Physical Parameter Sensitivities Using Finite Difference Approach ...............39 

4.2.7 Sensitivity Analysis of a Microscanner............................................................40 

4.3 Design Procedure .............................................................................................................41 



 xi

Chapter 5............................................................................................................................................43 

EXPERIMENTAL STUDY..............................................................................................................43 

5.1 Introduction ......................................................................................................................43 

5.2 Equipment ........................................................................................................................43 

5.2.1 Microscanner ....................................................................................................44 

5.2.2 Piezoresistive Sensors ......................................................................................45 

5.2.3 Laser Doppler Vibrometer................................................................................47 

5.3 Procedure..........................................................................................................................48 

5.4 Results ..............................................................................................................................49 

5.4.1 Piezoresistive Sensors and Position Measurements .........................................49 

5.4.2 LDV and Velocity Measurements ....................................................................50 

5.4.3 Torque Intensity ...............................................................................................53 

 



 
Chapter 1: Introduction                                                                                                    1 
 

 

Chapter 1 

INTRODUCTION 

 

1.1 Generalized Design Approach  

The Microsystems design and manufacturing technology is developing rapidly. There is a 

variety of specialized computer aided design tools in the MEMS and MOEMS area such as 

SUGAR [1], ANSYS [2] and FEMLAB [3].  Although these tools can provide a lot of insight 

into the design of MEMS devices, they are limited with the built-in algorithms. These 

algorithms are not expandable if the user wants to do further analysis. For conceptual design, 

there are a few existing design synthesis studies. Li and Antonsson [4] developed an approach 

for automatic synthesis of MEMS mask layouts. Mukherjee and Fedder [5] have presented a 

structured design method for MEMS. Other examples include the automated design synthesis 

method for MEMS by Zhan and et al. [6]  

 

Our approach aims to integrate some of the existing analysis tools and develop a generalized 

design approach for MEMS structures. The methodologies developed in this thesis incorporate 

tools for analyzing end-to-end system performance and sensitivity of design parameters of 

MEMS devices.  

 

The contributions of this thesis can be summarized in four areas: 

• A generic MATLAB code was developed to generate the state space representation of a 

structure, based on the Finite Element Analysis (FEA) results. (e.g.: MEMS scanner) 

• A disturbance analysis tool was developed to predict the performance of MEMS devices 

under the effect of various disturbance sources. 

• A sensitivity analysis tool was developed to calculate the sensitivities of the design 

parameters for MEMS devices. 

• Various experimental techniques were adopted to characterize the disturbances acting 

on the MEMS devices. 

 

A microscanner mirror is chosen as the case study to demonstrate the capability of the design 

tools that we developed. A microscanner is a tiny movable mirror that can steer a laser beam in 

1D, 2D or 3D. Due to their promising mechanical, optical and electrical properties, there has 

been a significant amount of research and development efforts on microscanner and micromirror 
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technologies. Some of the major application areas of micromirror and microscanner 

technologies are given below. 

 

Display and Imaging: The fundamental application field of MEMS microscanners is the display 

and imaging systems [7]. Fast scanning speeds and high scan angles achieved by the 

microscanner technologies make them a good candidate for this type of applications. There are a 

wide variety of display applications that utilize MEMS devices as mirrors and scanners. Some 

of the display product examples are Retinal Scanning Display (RSD) and barcode readers 

(Figure 1.2-1). 

 

 
Figure 1.2-1: (a)Retinal Scanning Display Technology of Microvision, Inc uses a 2D MEMS 

microscanner. (Photo courtesy of Microvision, Inc)  

(b)Hand-held barcode readers are potential applications of MEMS microscanners (Photo 

courtesy of STAR-System, Inc) 

 

RSD is a head mounted micro-display developed by Microvision, Inc. Performance constraints 

for a microscanner based high-resolution display system like RSD require a very careful design 

of the microscanner. The trade-offs and critical issues of microscanner design for display 

systems are challenging, and have been the subject of several articles [8]. Barcode reading is the 

most important imaging application of today’s microscanner technologies [9]. They offer 

effective solutions for reading both regular 1D and new 2D barcodes. One major issue about 

barcode scanners may be the mechanical reliability, since a hand-held device may experience 

high shocks due to dropping, hitting, etc. In addition to the mentioned devices, there are various 

other technologies that use microscanners for display and imaging applications [10].  
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Optical Switching: Another major application field of optical MEMS is the telecommunications 

industry [11]. Figure 1.2-2 shows a stand alone microscanner designed for optical switching; 

and an array of these.   

 

 
Figure 1.2-2: A microscanner for optical switching applications, shown alone and in an array. 

 

Another application field of MEMS microscanners is spectroscopy [20]. A diffraction grating is 

formed on the mirror surface. As the scanner rotates, different wavelengths are diffracted onto a 

single photodetector, producing the spectrum of the incoming light at the detector output. Some 

other crucial applications of MEMS microscanners and micromirrors that were not mentioned 

here include endoscopic optical coherence tomography, optical storage, adaptive optics, and 

interferometry.  

 
The scanning capability of such mirrors can be significantly impacted by the disturbances 

coming from the outside sources. Driving electronics jitter, control loop sensor errors and 

thermal changes in the environment are examples of disturbances that may effect the 

performance of the mirror during the operation mode. Accurate representation of these 

disturbances is important in order to predict the performance of these mirrors.  

 

In this study, we developed a generalized design approach for MEMS devices that incorporates 

modeling and analysis tools in MATLAB environment. Our integrated design approach starts 

with the generation of Finite Element Model (FEM) of the torsional scanner mirror using 

ANSYS software. The details of this model are given in chapter 2. The state space 
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representation of the system is constructed in MATLAB using ANSYS results. The state space 

model is reduced using some reduction techniques which will be outlined also in chapter 2.  The 

reduction algorithms are carefully chosen to keep the significant states for the transfer functions 

of interest. The input to our model is the disturbance torque acting on the mirror about the 

scanning axis. The output or equivalently the performance is defined as the variation of the 

mirror position under the effect of a disturbance torque. The absolute value of this rotation 

should be kept as small as possible in order to improve the performance of the mirror. 

 
Figure  1.2-3: Torsional MEMS Scanner showing the design parameters 

 

After developing a reduced model of the system, the next step is to predict the system 

performance under anticipated disturbance conditions. Chapter 3 outlines the disturbance 

analysis framework. A disturbance filter is generated based on the results of the experimental 

measurements of the disturbances on microscanners. Integrating the disturbance filter with the 

plant model forms the required governing equations for the overall system. The disturbance 

analysis is conducted using the Lyapunov approach. Lyapunov approach predicts the variation 

of the mirror rotation in a very accurate and efficient way. Lyapunov approach results are 

validated using a time domain analysis. 

 

After determining the performance of these systems under the effect of the anticipated 

disturbances, the next goal is to combine the disturbance analysis with the sensitivity analysis 

framework. Sensitivity analysis is one of the design techniques that can be used to identify the 

critical design parameters for optimizing the performance of a system. Sensitivity information 
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provides the performance change of a system with respect to the changing design parameters. In 

a previous work by Shi, Ramesh and Mukherjee [13], sensitivity analysis was carried out using 

the direct differentiation approach to compute the design sensitivity coefficients. The coupled 

electromechanical design sensitivities were presented by Allen, Raulli, Maute and Frangopol 

[14] for a reliability based analysis. Additionally Sigmund [15] presented the use of sensitivity 

analysis for topological optimization of electromechanical systems. 

 

 

In chapter 4, the exact modal parameter sensitivities are calculated and compared with the 

sensitivities calculated using the finite difference approach. While these sensitivities do identify 

which modes are the most important, they do not reveal directly what physical characteristics of 

the design should be modified to affect the modes and improve the design. Physical parameter 

sensitivities are more intuitive, and this fact motivates to investigate the physical parameter 

sensitivities for the torsional MEMS scanner. This chapter also describes the analytical 

formulations for the physical parameter sensitivies derived by Gutierrez [16]. But it is found to 

be an inefficient method for the mirror application due to the complexity and computational 

expense in calculating the eigenvalue and eigenvector derivatives included in these equations. 

Chapter 4, also summarizes the physical sensitivity analysis results obtained by using the finite 

difference method. 

 

The disturbance analysis tools in Chapter 3 provide acceptable results if and only if the 

disturbances are modeled properly. Chapter 5, describes the experimental set-up and the 

techniques that we developed to characterize the disturbances. 
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Chapter 2 

MODELING 

 

2.1 Introduction 

Finite Element Model (FEM) and Finite Element Analysis (FEA) are the most commonly used 

design tools for modeling and analysis. FEA provide various engineering analysis tools for 

many disciplines. Some of these disciplines include structural mechanics, thermodynamics, 

electrostatics and electromagnetism. In this chapter, we are going to use the structural modeling 

and modal analysis tools of the ANSYS software. The details of the structural model are given 

in Section 2.2. The generation of the state space model and the model reduction techniques are 

described in sections 2.3 and 2.4. 

 

2.2 Finite Element Model 

The finite element model of the torsional scanner mirror is created in ANSYS. The model is 

constructed using APDL, which stands for ANSYS Parametric Design Language. APDL 

provides an easy way to change the design parameters. In the first model, 3D solid elements are 

used and modal analysis is conducted with the model. 

 

 
 

Figure 2.2-1. Finite element model of the MEMS torsional scanner. The model is created in 

ANSYS using 3D solid elements.  
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Natural Frequency and Mode Shapes 

The governing equations for the undamped free vibration of multi-degree of freedom system 

generated by Finite Element Analysis is [17] 

0=+ KzzM &&       (2.1) 

and a solution of the form is assumed 

)sin( φ+ω= tΦz      (2.2) 

where ‘Φ’ is the vector of amplitudes of vibration, ‘ω’ is the frequency, and ‘φ’ is the phase 

angle. ‘z’ is the vector of physical coordinates. Differentiation of Eq. 2.2 twice with respect to 

time leads to 

)sin(2 φ+ωω−= tΦz&&       (2.3) 

substituting Eqs 2.2 and 2.3 into Eq. 2.1 lead to 

0)sin()sin(2 =φ+ω+φ+ωω− tt KΦMΦ     (2.4) 

which leads to 

02 =− MΦKΦ ω       (2.5) 

Equation 2.5 which is called the standard eigenvalue problem can be considered as a system of 

homogenous equations in the vector of unknown amplitudes Φ . This equation can be written in 

the following form 

[ ] 02 =− ΦMK ω       (2.6)  

This equation has a nontrivial solution if and only if the coefficient matrix is singular, that is  

02 =− MK ω        (2.7) 

This equation is called the characteristic equation and leads to a polynomial of order n in ω2. the 

roots of this polynomial denoted as ω1
2, ω 2

2,…., ω n
2,are called the eigenvalues. The square 

roots of these numbers ω1, ω 2,…., ω n , are called the natural frequencies of the undamped 

multi-degree of  freedom system. Thus a system with n degrees of freedom has n natural 

frequencies.  

 

Associated with each characteristic value ωi there is an n-dimensional vector called the 

eigenvector  Φ i which can be obtained by using Eq. 2.6 

[ ] 02 =− ii ΦMK ω       (2.8) 

This is a system of homogenous algebraic equation with a singular coefficient matrix since ω i
2 

is one of the roots of the polynomial resulting from Eq. 2.7. Therefore Eqn. 2.8 has a non-trivial 
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solution which defines the eigenvector Φ i to within an arbitrary constant. The eigenvector 

(amplitude) Φ i is sometimes referred to as ith mode shape of vibration.  

0  KΦΦxCΦΦxMΦΦ TTT =++ &&&    (2.9) 

where ‘Φ ’ is the combination of the eigenvectors calculated for all eigenvalues and  ‘x’ is the 

vector of modal coordinates.  

 

For the damped case equation of motion turns into 

0xKxCxM ppp =++ &&&     (2.10) 

where 
ppp KCM ,, are diagonal modal mass, damping and stiffness matrices, respectively. 

Equation 2.10 can them be rewritten as  ‘n’ uncoupled differential equation 

02 2 =++ iiiiii xxx ωως &&&     (2.11) 

Where iς  is the modal damping factor, 
iω is the natural frequency of mode i, and n is the 

number of independent dof. The modal damping factor 
iς  is assumed to be 0.2%. 

 

Natural Modes of Vibration of the Microscanner 

Basic one-axis torsional scanner geometry and the first five fundamental vibration modes are 

illustrated in Figure 2.2-2. The figure presents the FEA (ANSYS) modal analysis results for a 

1D scanner [18]. Mirror vibration frequency requirements determine the flexure beam 

dimensions that suspend the mirror. Thus, predicting the frequencies for the torsion and other 

fundamental vibration modes is critical. If torsion is the desired mode, which is the case for 

microscanners, other modes are often undesired and should be well separated from the torsional 

mode frequency and its harmonics.  

 

x 
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Figure 2.2-2: Five fundamental vibration modes of a box shaped microscanner.  

 

The model consists of 1312 elements and 21294 degrees of freedom. The Lyapunov equation 

calculations for the disturbance analysis take excessive time for large order systems. In order to 

reduce the time for the disturbance analysis, this model needs to be simplified without 

sacrificing its predicting capability of the system behavior. The second FEM is created using 

beam and shell elements, consisting of 288 elements and 6930 degrees of freedom (see Figure 

2.2-3). First 5 natural frequencies are as follows: torsional 5578 Hz, horizontal sliding 9406 Hz, 

horizontal rocking 10664 Hz, vertical sliding 22726 Hz, vertical rocking 27342 Hz. 

 

 

Torsional Mode 

Horizontal Rocking Mode 

Horizontal Sliding Mode 
Vertical Rocking Mode 

Vertical Sliding Mode 
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Figure 2.2-3. Simplified finite element model of the MEMS torsional scanner. Beam and shell 

elements are used for model simplification. 

 

 

2.3 State-Space Modeling 

State-Space representation is a simplified form of the linear differential equation sets [19]. The 

very well known equation of motion is  

Fkxxcxm =++ &&&      (2.12) 

where m is mass, c is damping coefficient, k is stiffness, and F is the external force, a second 

order differential equation. In order to propose a more effective and faster solution technique, 

the differential equation order is reduced to first order but the number of equations is doubled. 

Introducing the new variables x 

  
xx
xx

2

1

&=
=       (2.13) 

The differential equation of motion can be written in the form  

m
Fx

m
kx

m
cx

xx           

122

21

+−−=

=

&

&
     (2.14) 

Now a second order differential equation is written in the form of two first order differential 

equations, which is easier to solve. For systems having n degrees of freedom, ‘n’ 2nd order 

differential equations will represent the system. And the state-space representation of this 
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system will be in the form of ‘2n’ differential equations of first order. Rewriting the system in 

matrix form 

[ ] [ ]












=












−−=

+







=












+




















−−=









m
F
0

B      
m
c

m
k

1  0   
A

D
x
x

C

m
F
0

x
x

m
c

m
k

1  0   

x
x

2

1

2

1

2

1

,

y

&

&

     (2.15) 

Also the system output parameter can be defined as the combination of two states defined by the 

C matrix. D is the direct transformation matrix which directly effects the output regardless of 

the states. 

 

ANSYS modal analysis results, eigenvalues and eigenvectors, are used to construct the state-

space equations of the mirror. The state-space equations representing the system are, 

 

( ) ( ) ( )
( ) ( ) ( )
t t u t
t t u t

= +
= +

x Ax B
y Cx D
&

                (2.16) 
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In Eqns. 2.17 k1 and k2 are first and second natural modes’ stiffnesses, and m1 and m2 are the 

modal masses for the corresponding mode shapes as defined in equations 2.10 and 2.11. For 

example the first mode shape is a torsional mode and the effective stiffness for this mode is the 

torsional stiffness of flexure beams, while the effective mass is, mainly due to the rotational 

moment of inertia of the scanner mirror. These are the physical system parameters which are 

available at the physical coordinate system. The effective stiffness and effective mass are also 

physical parameters dependent on the design variables which are used to construct the model in 

the FEM. A new coordinate system called ‘the principal coordinate system’ may be defined 

using the system eigenvectors, which are modal analysis results. The ‘physical parameters’ need 

to be changed with the ‘principal modal parameters’ the conversion of physical parameters into 

principal (modal) parameters is given in Eq 2.9. Using these principal modal parameters state-

space matrices can be formed as follows 
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where iω  is the natural frequency, iζ is the damping factor, and Φ  is the modal 

transformation matrix obtained from the ANSYS modal analysis results.  

 

During the dynamic analysis of the microscanner, it was realized that the dynamic behavior is 

significantly affected by the amount of damping. Thus, it is a critical issue to accurately 

determine the amount of the damping in MEMS. Damping is the dominant factor that limits the 

oscillation amplitude of a microscanner. The air between the moving scanner mirror and the 

stationary part creates an opposing force to the moving device. This resistive force is directly 

proportional with the mirror angular velocity, and limits the maximum mirror displacement. For 

such resonating microscanners a damping value of 0.002 of the critical damping may be used. 

However, experimental methods are available to obtain more accurate values for damping [20]. 

 

The state space form in Laplace domain allows the calculation of the transfer functions H(s), 

that relates the output rotation, y(s), to the given torque disturbance inputs, u(s), such that  

 

( )
( )

( )
s

s
s

=
y

H
u

                                     (2.19) 

 

We can reduce the size of the matrices by taking only the degree-of-freedoms (dofs) associated 

with the rotation about the flexure axis (x-axis). We are especially interested in the amount of 

jitter about the x-axis because it is a torsional mirror and it is designed to work in the torsional 

mode. The results of the ANSYS modal analysis are written to text files and standard MATLAB 

routines are used to read these files and extract the eigenvectors and eigenvalues to construct the 

state space matrices.  

 

2.4 Model Reduction 

The Lyapunov equation calculations in disturbance analysis (see section 3.1) may take a long 

time if the full scale FEM is used. We need to reduce the size of the model while still 

maintaining the desired input/output relations. The MATLAB Control Toolbox has a function 

“modred” which can be used for reducing models while retaining the overall system dc gain. 

The “mdc” or “Matched DC” gain option for the function “modred” reduces the selected states 
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by setting their derivatives to zero, then solving for the remaining states. It is analogous to 

Guyan reduction because the low frequency effects of the eliminated states are included in the 

remaining states. The other option for “modred” is the “del” option which simply eliminates the 

defined states, typically associated with the higher frequency modes. The derivation of the 

“mdc” option is given in [19] and can be found below. 

 

From the original system xr are the states those wanted to be reduced into, and xe are the states 

those are going to be eliminated. 

[ ] uy

u

..

..

D
x
x

CC

B
B

x
x

AA
AA

x
x

e

r

er

e

r

e

r

eere

rerr

e

r

+







=









+
















=








&

&

    (2.20) 

writing in open form 

u
u
.B.xA.xAx
.B.xA.xAx

e.eee.rer.e

r.ere.rrr.r

++=
++=

&

&     (2.21) 

truncating the unwanted modes means ex& = 0, then 

u.B.xA.xA e.eee.rer. ++=0      (2.22) 

taking xe to the left hand side 

u..BA.x.AAx e

1

eerer

1

eee

−− −−=     (2.23) 

substituting this back into the rx&  equation 

u

uu

).B.AAB).x.A.AA-A     

.B)..BA.x.AA.(A.xAx

e.ee.rerrer

1-

eererr

r.e

1

eerer

1

eere.rrr.r

.(( 1−

−−

−+=

+−−+=&    (2.24) 

so the output equation turns into 

u

uuy

)..B.AC-D).x.A.ACC

D.)..BA.x.AA.(C.xC

e

1

eeerer

1

eee.r.

e

1

eerer

1

eee.rr.

−−

−−

+−=

+−−+=

((
   (2.25) 

reduce system state space matrices are defined as 
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1
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er

-1

eererrred
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=

.1      (2.26) 

 

In the original space state equations D, direct transmission matrix, is equal to zero, however 

when reducing the model (not truncating) there comes an extra  .B.AC-D 1

eee

−   term. This 

yields a different characteristic for the frequency response, which does not capture the behavior 

at higher frequencies. 

 

 
Figure 2.4-1. dc gain values plotted for each mode, the first mode being the torsional mode has 

the greatest dc gain among all 

 

An alternative method is called the “dc gain” and “peak gain” approach. ‘dc’ gain (for damped 

and undamped cases) is defined as  

2

.ji nji nki

k i i

y y y
dcgain

u ω
= =      (2.27) 



 
Chapter 2: Modeling                                     16 
 

 

where .nji nkiy y  is the product of the thj  (output) row and thk   (force applied) row terms of the 

thi    eigenvector divided by the square of the eigenvalue for the thi mode.   

 

At resonances, the peak gain amplitude of each mode is given by the formula: 

 

( )

2

.

2

2

ji nji nki

k i i

y y y
peakgain

u

dcgain

j

j
ωζ

ζ

= =
−

−
=

         (2.28) 

 

If the same value of ζ  is used for all modes, then all the dc gain terms are divided by the same 

2ζ  terms and the relative amplitudes of the dc gains and peak gains are the same, so there is no 

difference between sorting a uniform damping model using “dc gain” or “peak gain”. 

 

The results of the two reduction methods are shown in Figures 2.4-2 and 2.4-3.  Figure 2.4-2 

shows the frequency response of the overall system for “del” “modred” option, where all the 

modes above 27342 Hz are eliminated (only 6 lowest modes are kept). As it is expected, it does 

not capture the higher frequency modes since they are not included in the calculations.  Figure 

2.4-3 shows the results of sorting the modes according to the “dc gain” and “peak gain” 

approach. Although the size of the state space model has been decreased significantly (e.g. Size 

of the matrix A is reduced from 210x210 to 12x12), the reduced model captures all the 

significant dynamics. This method is found to be the most efficient way to reduce the state 

space model of the mirror for the transfer function of interest and reduced model obtained with 

this technique will be used for the remaining part of this study. 
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Figure 2.4-2: First six modes are used to construct the reduced model. 
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Figure 2.4-3: Modes are sorted according to the “dc gain” and “peak gain” approach.  

First six modes with higher gains are used to construct the reduced model.
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Chapter 3 

DISTURBANCE ANALYSIS FRAMEWORK 

 

3.1 Introduction 

After developing a reduced, state-space model of the physical system using FEA results, as 

described in the previous chapter, the next step is to predict the performance when the model is 

subjected to the anticipated disturbances. The performance of optical microsystems is directly 

related to its ability to steer the light beam in the desired direction. In this study, the 

performance is defined as the rotation of the mirror about the x-axis. The variance of this 

rotation angle under the effect of a disturbance torque is important. This variance should be kept 

as small as possible in order to improve the performance of the mirror. Disturbance analyses are 

usually conducted in order to predict the effect of disturbances on system outputs of interest. 

The disturbances can be modeled in a number of forms, and as a result, various types of 

disturbance analyses can be performed. 

 

In this study, two different approaches for disturbance analysis are discussed. These are 

Lyapunov analysis and time domain analysis. The Lyapunov approach uses the state space 

model where a lumped single degree of freedom model is used in the time domain analysis. 

 

3.2 Disturbance Analysis using Lyapunov Approach 

For stochastic linear systems driven by white noise, the solution of the Lyapunov equation 

represents the variance of the state vector [21]. The disturbance torque is modeled as the output 

of a first order shaping filter which is driven by unit intensity white noise. 

 

When assessing the impact of disturbances on high-performance systems, it is critical that the 

disturbance models should be representative of the actual disturbances. An accurate plant model 

can still produce incorrect results when improperly modeled disturbances are applied to it. If 

design trades and decisions are based on the results of disturbance analyses that use mismodeled 

disturbances, the performance of the actual system in operation might be quite different from 

that which was predicted. As a result, the disturbance characterization process should be given 

as high a priority as the modeling process. This is especially true for high performance systems 

such as MEMS devices in which even low disturbance levels can cause the response to exceed 

requirements.[16] 
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Disturbances can be quantified by their frequency content, magnitude level, and the location and 

direction at which they enter the structure. The frequency content determines which modes of 

the structure can be excited and what the bandwidth of a control system should be. The 

magnitude level determines how much energy enters the structure. The location and direction 

information determine to what extent the modes in the frequency range can be excited. 
 

In this study, we will induce the disturbances as the outputs of a shaping filter. The disturbance 

filter can be modeled in state-space form as (see Figure 3.2-1).  

( ) ( ) . ( )
( ) . ( )
d d d d d

d d

t t t
u t t

= +
=

x A x B x
C x

&
    (3.3) 

 

 

 
 

Figure 3.2-1: Disturbance shaping filter connected in series with the mirror model. 

 

The frequency content of the disturbances is constituted by defining a corner frequency for the 

disturbance filter. The frequency response of the constructed disturbance system is shown in the 

Figure 3.2-2. Ogata [22] showed that the logarithmic representation of the frequency-response 

curve can be approximated by two straight-line asymptotes, one a straight line at ‘0’ dB and the 

other a straight line with a slope ‘-20dB/decade’ (or ‘-6dB/octave’). The frequency at which two 

asymptotes meet is called the corner frequency (or break frequency). The corner frequency is 

indicated on the Figure 3.2-2, which is ‘251 rad/sec’ about ‘40 Hz’. The effect of the corner 

frequency can be better understood if Figure 3.2-3 is observed carefully. Different corner 

frequencies are applied to the same filter, one at 10Hz and other at 10kHz. The filter is fed with 

a white noise signal. The blue line corresponds to 10 Hz corner frequency which means that 

faster than 10 Hz the magnitude of the input signal will be attenuated by the filter. Conversely 

the red line corresponds to 10 kHz corner frequency, the magnitude stays still up to 10 kHz. The 

corner frequency of the created disturbance filter is 40Hz,  
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Model 
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(Mirror) 
Model

d 
white noise  

y 
 

u 
 



 
Chapter 3: Disturbance Analysis Framework                                                                 20 

 

10
1

10
2

10
3

10
4

-90

-45

0

P
ha

se
 (d

eg
)

-40

-35

-30

-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
 (d

B
)

 System: SYS_dist 
 Frequency (rad/sec): 251 

 Magnitude (dB): -3 

Bode Diagram

Frequency  (rad/sec)

 
Figure 3.2-2: The frequency response and phase diagrams for the disturbance 

filter. The magnitude falls down quickly after the corner frequency 

(2510rad/sec ~400Hz). 

 

 
Figure 3.2-3:  Comparison of Different Corner Frequencies For Disturbance Filter 
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The magnitude level of the disturbances are obtained experimentally. Chapter 5 summarizes the 

experimental procedure and its application in disturbance analysis framework. The magnitude 

content of the disturbance shaping filter is defined with a constant ‘Disturbance Torque 

Intensity’. Torque intensity is used to scale the unit intensity white noise into the desired 

magnitude of the disturbance torques.  

 

Placing the state-space form of the disturbance filter in series with the plant equations from 

Eq.3.2, an overall system of the form  

( ) ( ) ( )
( ) ( )

zd zd

zd

t t d t
t t

= +

=

x A x B
y C x
&

       (3.2) 

can be represented. 

 

Solution of the following steady-state Lyapunov equation leads to the state covariance matrix 

qΣ . 

0T T
zd q q zd zd zd+ + =A Σ Σ A B B               (3.3) 

This is a matrix equation with the unknown matrix qΣ , and solution techniques are available 

through standard commercial software packages such as MATLAB. It should be emphasized 

that qΣ  represents the steady-state covariance matrix. One can imagine that if the stochastic 

disturbances d (see Figure 3.2-1) are suddenly applied to the system, there will be a period when 

transient behavior is dominant and the performance outputs are not steady state, so the above 

solution does not apply but a dynamical version of the Lyapunov equation represents the system 

for this case 

)()()( ttt q

T

zdzd

T

zdqqzd Σ=+Σ+Σ &BBAA     (3.4) 

and it is assumed that the initial state covariance matrix Σq0 is specified. When these transient 

effects decay away, the outputs can be characterized as stationary random processes with a 

covariance matrix equal to qΣ . 

 

The performance covariance matrix is given by 
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T
z zd q zd=Σ C Σ C                               (3.5) 

 

and the root-mean-square (RMS) values of the performance metrics can be obtained from the 

square roots of the diagonal entries of the matrix 
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Σ

L

L

M M O M

L

             (3.6) 

 

Using the Lyapunov approach RMS estimates (in the sense of statistical steady state) can be 

calculated easily and directly by solving a single matrix equation. It provides the exact mean-

square values of the performance variables with subject to the accuracy of the disturbance and 

plant models. The diagonal terms of Σz represent the mean-square values 2
ziσ , and the root-

mean-square (RMS) values are simply σ zi [16]. 

 

There are some shortcomings of the presented Lyapunov approach; first of all it does not 

provide any direct insight into the frequency content of the outputs. Rather, it yields the overall 

variances of the states and the outputs. In addition to that, the solution time for the Lyapunov 

equation can be excessive for large-order systems. In such cases, model reduction should first be 

performed to bring the number of states to a reasonable level without sacrificing the predictive 

capability of the model. Some model reduction techniques, discussed in the previous chapter, 

are available for an acceptable reduction of the model. 

 

The disturbance analysis of the mirror is conducted with an external disturbance torque acting 

on the mirror. As we had mentioned at the beginning, quantifying the disturbances for MEMS 

devices is important in order to predict their performances accurately. But at the same time, 

measuring and modeling these disturbances is a very tedious process since they can vary 

depending on the electronics or sensors used. 
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3.3 Disturbance Analysis in Time Domain 

Same system properties are used to construct a lumped mass-spring-damper system (see Figure 

3.3-1). The stiffness and inertia terms are calculated using formulation derived by Urey [23]. 

The purpose of creating such a model is solving the same disturbance problem in the time 

domain and comparing the results of the two methods.  

 
Figure 3.3-1: Lumped mass-spring-damper model 

 

The lumped system can be represented with the following equation: 

tors dist

eff eff eff

k Tb
J J J

θ θ θ+ + =&& &      (3.7) 

where θ is the tilt angle of the lumped mirror model, b is the damping of the system, ktors is the 

torsional stiffness of the flexure beams, Jeff is the effective inertia of the scanner, and Tdist is the 

disturbance torque applied due to the environmental disturbances. See Table 3.3-1 and Table 

3.3-2 for ktors and Jeff formulas. 

 

Table 3.3-1: Effective mass moment of inertia and effective stiffness terms for the torsional 

mode of a torsional scanner 
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Table 3.3-2: Mass and mass moment of inertia terms for a rectangular mirror geometry 

Mirror Mass Mass Moment of Inertia 

mmm DtLM ρ=  ( )22
, 12 m

m
xxm tDMJ +=  

 

‘a’, ‘b’ and ‘Lf’ are half width, height and length of the flexure beams, respectively. Gxy and Gxz 

are shear modulus of elasticity The lumped model is excited with random forces which can be 

assumed to be the disturbances [24]. An array of random numbers are created and normalized to 

unity then they are multiplied with the measured disturbance torque magnitude. Disturbance 

time history is given in Figure 3.3-2. Numerical integration of Eq. 3.7 can be performed using 

MATLAB built-in function “lsim”.  Integrating randomly excited system on time provides the 

time versus angular displacement plot which then can be used to calculate the RMS value of the 

angular displacement of the disturbed system. Angular displacement of the mirror is given as a 

function of time in Figure 3.3-3. 
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Figure 3.3-2: Time history of the disturbances. A randomly generated number array then scaled 

down to the expected disturbances’ magnitude level. 
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Figure 3.3-3: The angular displacement as a function of time. The equation of motion 

representing the lumped system is integrated using the MATLAB function ‘lsim’. The torque 

input is a randomly created disturbance array  

 

 The results of the Lyapunov approach and the time domain analysis are compared and they are 

found to be on the same order of magnitude (See Table 3.3-3). The time domain analysis proved 

that the Lyapunov approach is a very accurate and very efficient method to calculate the jitter of 

the mirror when it is exposed to random disturbances.  

 

Table 3.3-3 Comparison of Lyapunov approach and time domain analysis. 

Lyapunov 

Approach (rad) 

Lumped Model 

(rad) 

RMS value of the mirror 

angular displacement 

1.75x10-8 1.27x10-8 
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The tilting angle of the micro mirror is defined as the mechanical scan angle. The mechanical 

scan angle is given as 5o in [30]. If this system is used to write a SVGA (800x600) display then 

600 lines will be written with this 5o scan angle. Therefore the amount of radians corresponding 

to a line can be calculated using the following equation, and it is found to be 1.45x10-4. 

 

rad 087.0
360

2.5
=

π
o

o

,  rad  rad 41045.1
600

087.0 −×=   (3.8) 

 

The display is not acceptable if the pixels are distorted by an amount of 20% [27]. 

rad  rad  54 109.2100201045.1 −− ×=× .     (3.9) 

 

As a result an absolute value of the variation of the mirror rotation should be smaller than the 

value found in equation 3.9. Only then, the written display quality is acceptable. The 

disturbance analysis results are significantly smaller than the required display quality value. The 

environmental and driving electronics’ disturbances are not impacting the quality of the display 

image, according to our newly developed disturbance analysis tool. 
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Chapter 4 

SENSITIVITY ANALYSIS FRAMEWORK 

 

4.1 Introduction 

Although there are newly developed design tools in MEMS area, there is always a probability of 

a design not to meet the specified requirements. Predicting and improving the performance of a 

certain design before production provides countless benefits. Sensitivity analysis is one of the 

design techniques that can be used to identify the critical design parameters for optimizing the 

performance of a system. Sensitivity information provides the performance change of a system 

with respect to the changing design parameters.  

 

This chapter combines the disturbance analysis framework with the sensitivity analysis 

framework. The sensitivity analysis is demonstrated through a case study which includes the 

sensitivity analysis of a torsional MEMS scanner mirror (see Figure 4.1-1). 

 
Figure 4.1-1: Torsional MEMS Scanner showing the design parameters 

 

Sensitivity analysis is an intermediate tool between design and redesign stages.  Especially, 

when a system does not satisfy specified performance requirements, sensitivity information can 

identify which components in the system are important.  
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4.2 Sensitivity Analysis Framework 

Determining sensitivity of design parameters can provide useful information when the system 

does not meet the specified requirements. For systems with many design parameters, sensitivity 

information can identify which parameters in the system are the most significant. These 

parameters might be the focus of redesign efforts that attempt to improve the performance. 

 

This section describes the mathematical theory for computing sensitivities when the system is 

written in state-space form. The state-space equations of the torsional MEMS scanner can be 

represented in the matrix form [16] 

( ) ( ) ( )
( ) ( ) ( )
t t u t
t t u t

= +
= +

x Ax B
y Cx D
&

     (4.1) 

where ( )ty  is the output or equivalently the performance of the mirror about the scanning axis 

due to the given input disturbance torque. Placing this state-space system in series with the 

disturbance state-space equations, an overall system of the form can be represented as follows: 

( ) ( ) ( )
( ) ( )

zd zd

zd

t t d t
t t

= +
=

x A x B
y C x
&

       (4.2) 

Solution of the following steady-state Lyapunov equation leads to the state covariance matrix 

qΣ . 

0T T
zd q q zd zd zd+ + =A Σ Σ A B B               (4.3) 

This is a matrix equation with the unknown matrix qΣ , and it can be solved using  MATLAB. 

The performance covariance matrix is given by 
T

z zd q zd=Σ C Σ C       (4.4) 

where zΣ  is a square matrix containing the mean square values of the performance metrics 
2

ziσ at its diagonal entries; 2
ziσ  occurs in Equation 4.5 writing this equation only for an 

interested performance metric, 
T

ziqzizi CΣC ..2 =σ      (4.5) 

these can be used to calculate the exact root mean square (RMS) values of the performance 

variables.  

 

In order to compute the sensitivities following expression must be evaluated; 
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=
∂

∂
p

ziσ
Sensitivity of a performance RMS with respect to parameter p  (4.6) 

The first step is to find the derivative of the variance 2
ziσ with respect to p.  Taking the 

derivative of Eq. 4.4 with respect to p is not possible because qΣ  is the solution to Eq. 4.3; 

therefore, qΣ  is implicitly dependent on p. To get around this problem, it is possible to use the 

Lagrange Multiplier method, treat the Lyapunov equation Eq. 4.3 as a constraint equation, and 

augment it to Eq. 4.4 with the help of a symmetric Lagrange multiplier matrix. The Lagrange 

multiplier method was applied to modal and physical parameter sensitivity problems by 

Gutierrez [16] and the resulting equations for sensitivity calculations are presented in the 

following sections. As suggested by Gutierrez, the problem is going to be separated into two 

sections. The first one will be to perform the modal parameter sensitivity analysis and the 

second will be the physical parameter sensitivity analysis.  

 

4.2.1 Lagrange Multiplier Method 

The Lagrange Multiplier Method of optimization is named for its developer Joseph Louis 

Lagrange (1746-1814), a French mathematician and astronomer [25]. This method is important 

when dealing with nonlinear optimization problems. It uses a function called the ‘Lagrange 

Expression’ or ‘Lagrangian’, LE, ( 2
ziσ )* in our problem, which consists of the objective 

function U(x,y,z), 2
ziσ in our case, and constraint functions, hi(x,y,z), Lyapunov Equation in our 

case, multiplied by Lagrange multipliers, Li. 

LE = U(x,y,z) + L1. h1(x,y,z) + L2. h2(x,y,z) + … + Li. hi(x,y,z)   (4.7) 

The additional unknown, Li is introduced into the Lagrange expression so that in determining 

the optimum values of x, y, z the problem can be treated as though it was unconstrained. The 

conditions that must be satisfied for the optimum points are as follows. 

0...0,0

,0,0,0
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L
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z
LE

y
LE

x
LE

          

              (4.8) 

where ‘i’ is the number of Lagrange Multipliers. 

Returning back to the sensitivity analysis problem, it is stated that treating the Lyapunov 

equation, Eq.4.3 as a constraint equation, and augmenting it to Eq.4.4 via a symmetric Lagrange 
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multiplier matrix Li is a solution. (A subscript i is used since there will be a different matrix for 

every performance metric.) The notation ( 2
ziσ )* is used to denote the Lagrangian of 2

ziσ . In 

addition to that “trace” is the summation of the diagonal terms of the matrix represented by 

)...( T

zdzd

T

zdqqzdiL BBAΣΣA ++  

[ ]

[ ])...(

..

)...(

)*( 22
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+++

=

+++

= σσ
   (4.9) 

The derivative of the variance 2
ziσ  with respect to p is equal to the derivative of the Lagrangian 

function if and only if the derivatives with respect to qΣ and Li are equal to zero. 

( )
( ) ( )
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The derivative with respect to Li is, 

( ) ( )[ ]T

zdzd

T

zdqqzdi

ii

zi Ltrace
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++
∂
∂

=
∂

∂ σ    (4.11) 
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Following the matrix derivative formula results  

( )
0...*2

=++=
∂

∂ T

zdzdqzd

T

zdq

i

zi

L
BBΣAAΣσ     (4.13) 

Similarly the derivative with respect to qΣ  is, 

( )
( )








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L
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..*2σ    (4.14) 
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Following the matrix derivative formula for the above equation and making the use of the fact 

that Li is symmetric leads to  

( ) 0..*2

=++=
∂

∂
i

T

zdzdii

T

i

q

zi LL AACC
Σ

σ     (4.16) 

This produces another Lyapunov equation that is used to determine Li. 

0.. =++ i

T

ii

T

zdzdi LL CCAA     (4.17) 

Finally taking the derivative of (4.9) with respect to p leads to 
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Above equations contain derivative terms of Azd with respect to parameter p. Here p can be a 

physical parameter as well as a modal parameter. If p is a physical parameter since Azd and Czd 

is constructed using modal analysis results, evaluating the derivative requires the derivatives of 

the eigenvector and eigenvalues to be calculated. However p being a modal parameter (ωj, jth 

natural frequency or ζ, modal damping) makes life easier in the sense of calculating the 

derivatives of state-space elements Azd and Czd. Therefore the sensitivity analysis is first 

conducted using modal parameters.  

 

4.2.2 Modal Parameter Sensitivities Using Analytical Approach 

While the modal sensitivities do identify which modes are the most important, they do not 

reveal directly what physical characteristics of the design should be modified to affect the 

modes and improve the design. The sensitivity calculation with respect to a modal parameter is 

the first step to calculate the physical parameter sensitivities. In this study, the modal parameter 

is chosen to be the thj  natural frequency jω . Since the state-space system is constructed in the 

modal form, it is easy to calculate the system sensitivities with respect to the modal parameters. 
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zdA  matrix in Eq. 4.2 can be written as follows 


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where the plant matrix A  is,  
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It can be easily differentiated with respect to the modal parameter jω (i.e. j=1). 
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The matrix derivatives with respect to jω  consist entirely of zeros except at the location where 

those specified modal parameters appear. 

 

The only state-space element including a modal element is the A  matrix, therefore the 

sensitivity solution reduces to 

1 .
2

T
zi zd zd

i q q
zi

trace L
p p p

σ
σ

  ∂ ∂ ∂
= +  ∂ ∂ ∂  

A AΣ Σ        (4.22) 

where qΣ  is the steady state covariance matrix, which is the solution of the Lyapunov equation 

(Eq. 4.3). Li is the Lagrange multiplier obtained by treating the Lyapunov equation as a 

constraint equation. 

 

In order to compare sensitivities taken with respect to parameters of different units, the 

normalized sensitivities are computed as follows. 
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Results obtained for the modal sensitivity analysis of mirror are shown in Table 4.2-1.  The first 

mode analytical sensitivity is -1.7308, which means if the first natural frequency of the mirror is 

increased by an amount of 1%, it will result in a 1.73% decrease in the performance RMS value. 

 

Table 4.2-1.Modal parameter sensitivity analysis results of Torsional 

scanner. Analytic solution and finite difference solution techniques are 

compared 

 

 Analytic 

Solution 

Finite 

Difference 

1st mode sensitivity -1.7308  -1.7286  

2nd mode sensitivity -1.3786 e -5 -1.3766 e -5 

3rd mode sensitivity -1.1561 e -6 -1.1544 e -6 

4th mode sensitivity 3.8074 e -15  0 

5th mode sensitivity 1.7141 e -16  0 

6th mode sensitivity -1.8287 e -16  0 

 

If Table 4.2-1 is observed carefully, it can be seen that the first mode’s sensitivity is 

significantly larger than the others. Additionally second and third modes’ sensitivities are close 

to each other and they are much larger than the fourth, fifth, and sixth modes. This is an 

expected result if we observe the transfer function plot that relates the mirror rotation output to 

the given torque disturbance input in Figure 4.2-1(a).  The first mode of the scanner at 5578 Hz 

is very dominant so performance is very sensitive to this mode. From the transfer function plot, 

it can be seen that second and third modes are also dominating at higher frequencies and they 

both have similar gains. The same trend is observed for the 2nd and 3rd modes sensitivities in 

Table 4.2-1. The 4th, 5th and the 6th modes are not observed in the transfer function plot and their 
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sensitivities are close to zero. In figure 4.2-1 it is emphasized that three modes are very 

dominant compared with the others. These three can be observed also in Table 4.2-1. 

 
(a) (b) 

Figure 4.2-1 (a)The transfer function plot for the torsional scanner. Three modes can be 

observed while the others cannot. (b) the modes’ dc gain values, however modes are 

sorted with respect to their dc gain contribution. Three modes having larger gains can be 

easily noticed among the others. 

  

4.2.3 Modal Parameter Sensitivities Using Finite Difference Approach 

Instead of computing the sensitivity exactly, another approach is to approximate the derivative 

with finite difference method. The finite difference technique is used in the modal and physical 

parameter sensitivity calculations as an alternative method to the exact solution.   

 

In the modal parameter sensitivity analysis, the natural frequency value is perturbed, the 

Lyapunov equations are solved both for perturbed and unperturbed cases and the difference of 

the performances is calculated. The ratio of the difference of the two performances and the 

perturbed parameter’s perturbation size gives the sensitivity value as an approximation.  

ω
σ

ωω
σσ

∆
∆

=
−

−
zi

perturbed

perturbedzizi      (4.24) 

 

Modal parameter sensitivities calculated by finite difference method are listed in Table 4.2-1. 

As it can be observed from the tabulated results, they all show good correlation between the 

finite difference and analytical values. The magnitude of the percent error between the finite 
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difference value and the exact value is shown as a function of perturbation size in Figure 4.2-2. 

The error in the sensitivities with respect to frequency decrease as the perturbation size becomes 

smaller. This is an expected result because the 
ω

σ
∆

∆ zi  approximation to the derivative should 

approach the exact answer in the limit as ∆ω approaches 0. 

 

 
Figure 4.2-2: Variation of the error between finite difference method solutions and the exact 

solution with respect to the perturbation factor. The error of the finite difference method grows 

logarithmically with the increasing perturbation size. 

 

4.2.4 Physical Parameter Sensitivities Using Analytical Approach 

If the nominal design of a MEMS device fails to meet specified requirements, the physical 

parameters can be modified to improve the performance of the system. Especially for the 

systems with many design parameters, it is very difficult to identify the critical parameters that 

would affect the performance of the system. When the physical parameter sensitivity 

information is available it becomes easier to identify the areas for redesign.  

 

If sensitivity is calculated with respect to a physical parameter p, it will not appear explicitly in 

the state-space matrices zdA , zdB  and zdC . However the mode shapes in Φ, the modal 

frequencies in Ω and the modal masses in Μ can depend on p. Thus the parameter dependence 

can be expressed in functional notations. 
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Then the derivatives of matrices zdA , zdC  and their transposes need to be computed [16]. 
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N n
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j i ijp p= =

  ∂∂ ∂
=  

∂ ∂Φ ∂  
∑∑

ΦC C                            (4.27) 

 

 

At this point, it is apparent that two types of derivatives are required. The first type is the 

derivative of state-space matrices with respect to modal parameters (frequencies, mode shapes 

and modal masses); the second type is the frequency, mode shape and modal mass derivatives 

with respect to physical parameters. These derivatives can be computed exactly using methods 

developed by Fox and Kapoor [6] and Nelson [8]. This is the reason for dividing the problem 

into two sections of modal and physical parameter sensitivities. The first type was studied in 

section 4.2.1 and the second type will be briefly discussed in this section.  

 

The natural frequency and mode shape derivatives with respect to physical parameters can be 

generalized under the category of eigenvalue and eigenvector sensitivities. The eigenvalue 

derivative can be determined by first considering the familiar eigenvalue problem for a 

structural system, constructed as stiffness [K] and mass [M] matrices. 

( )2 0j jω φ− + =M K                              (4.28) 

Differentiating the above eigenvalue problem and pre-multiplying each term by φj
T yields  
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In Eq. 4.29 the first addition term is the transpose of the initial eigenvalue problem and yields to 

zero, the last term includes a multiplication of a mode shape by its transpose which results in 

unity. So the derivative equation simplifies into 
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As indicated in the above equation derivatives of mass and stiffness matrices with respect to 

physical parameter p need to be calculated in order to obtain the natural frequency derivative. 

 

However computation of mode shape derivatives is a bit complicated. If (4.26) is differentiated 

but this time not pre-multiplied by φj
T the following equation is obtained 
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As indicated in [14 ] the solution of the above equation is not possible with direct methods such 

as Gauss-Jordan elimination, therefore alternative solution techniques are required. First of all a 

solution in the form assumed 

jj

j a
p

φψ
φ

+=
∂

∂      (4.32) 

As a summation of particular and homogenous solutions which are two perpendicular vectors. 

 

Then another relation φj
TMφj=1 is differentiated with respect to p and the assumed solution is 

substituted, a solution for coefficient a can be obtained here as  

j

T

j p
a φφ

∂
∂

=
M

2
1      (4.33) 

In order to obtain the particular solution for ψj , another technique is suggested by Nelson [27]. 

Applying the Nelson’s technique enables Eq. 4.29 to be solved using standard techniques. 

 

Differentiating the above eigenvalue problem and obtaining the derivatives of mass and stiffness 

matrices with respect to physical parameter p need to be calculated in order to obtain the natural 

frequency derivative. One difficulty arises here since the stiffness and mass matrices are not 

very easy to obtain for larger order systems. Computation of mode shape derivatives is even 

more complicated. In order to obtain the particular solution for p
j

∂
∂φ

, a technique is suggested by 

Nelson. Applying the Nelson’s technique enables the calculation of mode shape derivatives.  
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Considering the amount of computation time required to calculate the natural frequency and 

mode shape derivatives, and the difficulty of obtaining the stiffness and mass matrices, the 

analytical method is not found to be suitable for our sensitivity framework.  Besides the stiffness 

and mass matrices are not easy to obtain for larger order systems especially when different types 

of elements are used in the finite element model. Considering all these drawbacks of the 

analytical approach, finite difference method is selected for the calculation of the physical 

parameter sensitivities of the torsional MEMS scanner. 

 

4.2.5 A Benchmark Example for Physical Parameter Sensitivities Using Analytical 

Solution: Cantilever Beam Example 

The derived equations are applied on a cantilever beam example for demonstration. The main 

reason for choosing a cantilever beam is the simplicity in calculating mass and stiffness matrices 

and their derivatives. Also the beam example is a single element model of a Bernoulli-Euler 

beam which has six degrees of freedom at each node that enables the calculation of the modes 

and mode shapes by hand. Finally, a beam is a 1D structure therefore it does not include any 

coordinate transformations. The stiffness and mass matrices of a Bernoulli-Euler beam are 

given. The derivative of these matrices can be easily obtained for the desired physical 

parameter. 
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Since the example is a single element cantilever beam, the stiffness and mass matrices can be 

reduced to 6x6 matrices (fixed end stiffness and mass components can be eliminated) and 

calculation becomes easier. For a system different than a cantilever beam, the stiffness and mass 

matrices are not so straightforward to obtain. Also different element types bring different 

directional orientations and need to be connected properly. Considering these drawbacks the 

analytical solution does not appear to be an appropriate method for sensitivity calculations. 

 

The derivative term 
p

j

∂
∂ 2ω  in Eq. 4.28 can be calculated using the mass and stiffness matrices 

given in Eq. 4.34 and 4.35. The eigenvector derivative 
p

j

∂
∂φ cannot be obtained directly; as a 

result Nelson’s method is used. 

 

The achieved results are then compared with a finite difference solution. It is observed that 

results obtained by finite difference approach match well with the analytical solution. 

 

4.2.6 Physical Parameter Sensitivities Using Finite Difference Approach 

The finite difference solution technique for the physical parameters’ sensitivities is similar to 

the modal parameters’ sensitivities. The physical parameters are perturbed one at a time in the 

finite element analysis, the state space model is reconstructed for the perturbed system, and the 
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performance is calculated using the Lyapunov approach. The performance difference between 

the perturbed system and the original system is then divided by the perturbed parameter step 

size and the sensitivity value is approximated. The same example demonstrated in section 4.2.3 

is solved again with finite difference approach and it is found that the method also works well. 

The analytic solution and finite difference solutions of the beam example are compared in 

Figure 4.2-3, and it is found that they match well with each other. 
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Figure 4.2-3: Comparison of two different sensitivity analysis methods, applied on a cantilever 

beam. The physical parameters, which sensitivities are calculated with respect to are ‘A’ beam 

cross sectional area, ‘E’ elastic modulus, and ‘ρ’ the density of the beam material.  

 

4.2.7 Sensitivity Analysis of a Microscanner 

The microscanner model shown in Figure 4.1-1 is analyzed for its parameters’ sensitivities. The 

box shaped flexures of the scanner are the main design variables when the stiffness of the 

system is considered. We performed the physical sensitivity analysis on the design variables 

shown in Figure 4.1-1 using the finite difference approach (see section 4.2.2 for details).  Table 

4.2-2 tabulates the physical parameter sensitivities for the torsional MEMS scanner.  
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Table 4.2-2. Physical parameter sensitivity analysis of the torsional MEMS 

scanner.  

 Computed Normalized 

Sensitivity  

Flexure Width (w) -1.507 

Flexure Thickness (t) -1.507 

Flexure Length (L) 0.7549 

Elastic Modulus (E) -0.7540 

Density (ρ) -0.2398 

Mirror Thickness (tm) -0.2398 

Mirror Width (wm) -0.5990 

Mirror Height (hm) -0.3596 

 

Among the computed sensitivities, the greatest sensitivity belongs to the flexure beam width and 

thickness. A 1% increase in the flexure width or thickness will result in 1.507% decrease in the 

RMS performance value. Since the performance is defined as the deviation of the mirror tilt 

angle under random disturbances, increasing the beam thickness or width results in an increase 

in system stiffness and a decrease in this deviation. For the flexure beam length, it is the adverse 

effect. Increasing the flexure length by 1% results in an increase at the performance by an 

amount of 0.755%. The flexure parameters such as width and thickness are suitable for redesign 

however changing the length of the flexure may not always be possible due to spacing 

problems. The mirror dimensions are directly related to optical resolution of the system so they 

are not generally included in the structural redesign efforts. However, the sensitivity results 

show that they are as significant as the flexure dimensions in terms of determining the 

performance of the torsional scanner.  

 

4.3 Design Procedure 

The analysis steps may be employed from the beginning to the end of a certain design to 

predict the performance of the design and change it if necessary. These schematic of these 

are shown below in figure 4.3-1. 

 

The procedure begins with FEM of the newly designed structure. A detailed model can be 

used as well as a simplified model as long as it represents the real system dynamics. 
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Figure 4.3-1: The schematic of the design procedure with performance prediction and 

sensitivity analysis. 

 

The modal analysis is conducted with the FEM and the results are output to text files. The 

performance should be determined at this step, because only the directions related with the 

performance definition are going to be extracted from modal analysis solutions. The state-

space representation is constructed using the FEM modal analysis results. Since the model is 

ready now, further analysis for performance prediction may be applied. The design is 

successful, if the performance of the design meets the specified requirements. However, 

redesign is necessary if it fails. In order to concentrate the redesign efforts on the correct 

parameters, the sensitivity analysis should be conducted. It is possible to identify the critical 

parameters of the system with sensitivity analysis. A new design is build by changing the 

identified parameters, the FEM must be created for this design and analysis steps should be 

employed from the beginning. This procedure can be applied as a loop for a performance 

optimization routine. 
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Chapter 5 

EXPERIMENTAL STUDY 

 

5.1 Introduction 

Any unwanted effect that is coming from the environment or from the equipment used can be 

considered as disturbance, in that it potentially interferes with the accuracy of the desired 

output. Development of a disturbance framework requires the real time disturbance inputs to be 

measured and to be modeled as precise as possible. The disturbance shaping filter, introduced in 

Chapter 3, is constructed using the measured disturbances. Measurement of the disturbance is a 

complicated process, since disturbances are never desired system inputs and there are no tools 

for direct measurement of the environmental disturbances. This chapter summarizes the 

procedure and the techniques that we developed to calculate the disturbances acting on the 

microscanners. The following section describes the equipment used in the experiments. The 

details of the procedure and the results are presented in Sections 5.3 and 5.4. 

 

5.2 Equipment 

The experimental equipment is provided by Optical Microsystems Laboratory and Mechanical 

Vibrations and Design Laboratories at KOÇ University. The microscanner used is a product of 

Microvision Company, with its self testing board. A function generator is used to create the 

drive signal for the microscanner. The fundamental measurement device is a Polytec Laser 

Doppler Vibrometer (LDV), which is placed directly across the scanner surface. LDV readings 

can be seen from an oscilloscope or data can be transferred to a PC and processed, using a data 

acquisition card and suitable software, such as Labview. The Labview program created and used 

during the measurements is shown in Figure 5.2-1. 
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Figure 5.2-1: The LABView screen shot. The program is constructed in order to measure the 

disturbances. 

 

5.2.1 Microscanner  

In the experimental study, disturbances on a biaxial scanner are measured. The scanner is a 

product of Microvision Company. The scanner chip is attached to a carrier printed circuit board 

(PCB) which is a part of a standard MEMS test system at Microvision. This is shown in Figure 

5.2-2. The test system consists of drive circuitry for the horizontal and vertical axes, as well as 

an optical mounting interface. Onboard phase control circuitry provides analog closed loop 

operation of the part. A ZIF socket allows easy part changes [28]. This is a biaxial scanner with 

horizontal, fast scan and vertical, slow scan axes. These two main moving frames, whose 

motion axes are perpendicular to each other, enable the scanner to create a 2D image or scan a 

2D area with the reflected light beam. The scanner that was modeled in the previous chapters, is 

a single axial scanner. We used a 2D scanner instead since the 1D scanner was not available at 

the time of the experiments. The characterization  of the disturbances for both scanners are the 

same since they measured in the same environment.  
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Figure 5.2-2:  Microvision Biaxial MEMS scanner. First picture showing the scanner in the 

casing with the permanent magnets, below this picture coils used to drive the scanner can be 

seen on the outer frame. The third one is a close up picture, slow scan and fast scan frames and 

flexures can be identified. 

 

The microscanner is electro-magnetically actuated. The permanent magnets on the sides create a 

constant magnetic field. When a current is passed through the coils on the moving plate, an in-

plane electromagnetic force is exerted on the mirror, which leads to torsional deflection. This 

force is proportional to the magnetic field intensity, the current passing through the conductor 

and the length of the conductor inside the magnetic field.  

 

5.2.2 Piezoresistive Sensors 

The flexures of the moving frames are coated with a layer of piezoresistive material, for position 

sensing. Piezoresistivity is the dependence of electrical resistivity on strain. The resistivitiy of 
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the material depends on the internal atom positions and their motions. Strains change these 

arrangements and, hence, the resistivity [29].  Piezoresistive layers enable the sensing of the 

strain and position. The test board of the scanner facilitates data acquisition from these sensors 

to an oscilloscope or a data acquisition system. However, piezoresistive sensors measure voltage 

due to strain and angular displacement where LDV measures translational velocity. Therefore a 

conversion factor is necessary to obtain correct angular position data from piezoresistive 

sensors’. The scaling factor between the voltage output and actual rotation can be found as 

described in figure 5.2-3.  

 

 
Figure 5.2-3: the schematic showing the setup for piezoresistive sensor readings. The sensors 

can be directly connected to an oscilloscope or a pc with a data acquisition system.  

 

R is screen mirror distance and D is the measured scan line. The length of the scan line can be 

easily measured and the corresponding peak to peak voltage (Vpp) value of piezoresistive 

sensors can be read from the oscilloscope. Using basic geometric relations, the angular position 

can be easily calculated using the measure voltage.  
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5.2.3 Laser Doppler Vibrometer 

A Laser Doppler Vibrometer (LDV) is a device that measures the velocity of a moving particle 

using the Doppler Effect. Doppler Effect is the phenomenon of the wavelength shift of the light 

due to the moving light source. In the case of LDV, the light beam is reflected from a moving 

surface, this also results a shift in the wavelength of the light which is then used to calculate the 

velocity of the moving object. 

 

 
Figure 5.2-4: LDV measurement point, for the torsional mode of the outer frame. 

 

LDV is measuring the translational velocity of a point. The desired output is the angular 

position of the outer frame. The angular velocity of the outer frame can be calculated using the 

following equation. 

ω×= rV       (5.3) 

V is the translational velocity of the point which is read by LDV, ω is the angular velocity of the 

outer frame, and r is the distance between the spot and the frame rotation axis. Eq 5.3 is only 

valid when small angle assumption is made as it is demonstrated in Figure 5.2-5. The distance 

between the location of the spot and the rotation axis is equal to a constant ‘r’ if and only if 

1cos ≅θ . 
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Figure 5.2-5: Schematic view of the LDV measurement setup, for the description of “small 

angle θ ” assumption. 

 

5.3 Procedure 

The experimental procedure (see Fig.5.3-1) that we developed starts with measuring the 

translational velocity using LDV and measuring the angular position using the piezoresistive 

sensors. Piezosensors and LDV data can be collected simultaneously. Piezoresistive sensor data 

was polluted with a lot of noise and it showed a stairway like behavior so it was not used for 

further analysis. 

 

Angular velocity of the outer frame is calculated using Eqn. 5.3 utilizing the translational 

velocity measured by LDV. The next step is integrating the velocity data in order to obtain the 

position. The sampling rate and sampling time are important parameters for the integration. 

100,000 samples per second is the sampling rate while 0.1 is the sampling time. Integration for 

position is nothing but summing the displacements over the sampling time domain (Eq 5.4). 

∑= dt.ωθ int      (5.4) 
 

As we had explained at the beginning, any variation from the ideal output is generated by the 

disturbances acting on the system. If we subtract the “ideal” from the “measured”, that should 

give us the variation in the angular position. A low-pass filter was used to filter the high 

frequency signals from the measured data. The filtered data is called the ‘ideal’ case. Eqn. 5.5 is 

used to calculate the torque variance. Torque intensity used in the disturbance filter is calculated 

using the relation in Eqn. 5.6. 
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Figure5.3-1: Schematic of disturbance measurement procedure. 

 
5.4 Results 

Direct position data from piezoresistive sensors and velocity data from LDV are gathered and 

analyzed. 

 

5.4.1 Piezoresistive Sensors and Position Measurements 

The first set of data that was collected with piezoresistive sensors. The data contains too much 

sensor noise, electrical noise, and electronic jitter. Also it has got a stairway like behavior due to 

the discreet sampling time nature of the sensor. 

 

The piezoresistive sensor data is taken into MATLAB, and filtered with a low-pass filter to 

reduce the effect of the noise on the signal.  
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Figure 5.4-1: LDV Readings versus Piezoresistive Sensor readings. (The noise on the 

piezoresistive sensor data can be seen easily) 

 

 

5.4.2 LDV and Velocity Measurements 

The LDV readings are more smoother compared with the piezoresistive sensor readings, 

therefore they are used to calculate the disturbances. Besides LDV can measure small 

oscillations of velocity which results significant position deviations. 

 

When two data sets are compared, in figure 5.4-1, a certain phase difference can be observed. 

The phase difference should be 90o, considering the fact that one is position data and the other 

is the velocity. However the different electronic circuits behind these two independent systems 

create their own internal delay times, and these delays are completely independent of each other. 

Therefore the observed phase difference between the position and velocity is not always 90o. 

the velocity data is integrated to get the position data. As it can be seen from Figure 5.4-4 the 

phase difference disappears. Note that the units in Figure 5.4-3 and 5.4-4 do not reflect the real 

velocity and position values. 
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Figure 5.4-2: The position obtained by integration of the velocity and obtained from 

piezoresistive sensors. The left hand side y- axis represents the integrated LDV results for 

position, while the right hand side represents piezoresistive sensor outputs. 

 

As it was explained in Section 5.3 the difference between the ‘measured’ position and the 

‘ideal’ position occurs due to disturbances acting on the mirror. We applied some smoothing 

algorithms, to filter the measured data and generate an ‘ideal’ case. These signals are shown 

in the Figure 5.4-3. Figure  5.4-4 represents the difference between those two signals. 
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Figure 5-4-3: Ideal and measured position data. The measured data seems to fit with the ideal 

one, however there occurs a little difference which is enough for disturbance calculations. 
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Figure 5.4-4: The time history for the disturbances, the difference between the measured and the 

ideal.  RMS values for the measured disturbance is calculated as 3.6x10-5 
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5.4.3 Torque Intensity 

The disturbance analysis tool, based on the Lyapunov approach, is derived for ‘unit intensity 

white noise’, and this unit intensity must be modified with the real disturbance intensity. 

 

The variation of the position is (see Figure 5.4-6) is plugged into the following equation to 

obtain the disturbance torque. 

disttorseff kbJ Tθθθ =++ &&&     (5.5) 

The inertia, damping and stiffness properties are calculated using the same formulas that was 

introduced in section 3.4. Figure 5.4-7 demonstrates the disturbance torque calculated using 

Eq. 5.5. The disturbance noise intensity is defined in [30] as 

D = max[ Φ (w)]     (5.6) 

where Φ (w) is the frequency dependent power spectrum of zero-mean disturbance. The 

intensity of the disturbance is calculated using the above formula. 

 

The disturbance intensity for the input torque is calculated as 1.75x10-12 Nm. The calculated 

disturbance intensity is used as the disturbance magnitude input for the disturbance analysis 

toolbox. 
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Chapter 6 

DISCUSSION AND CONCLUSION 

 

In this thesis, we have developed an integrated design approach that incorporates modeling and 

analysis tools for analyzing system performance, sensitivity of design parameters and critical 

components of MEMS devices. We demonstrated the use of the developed methodology 

through a case study which includes the disturbance and sensitivity analysis of a MEMS scanner 

mirror.  

 

The MEMS scanner mirror is modeled using the commercial FEM software , ANSYS. Modal 

analysis module of ANSYS was used to obtain the mode shapes and natural frequencies of the 

system. As described in Chapter 2, two models were generated. One of them was with solid 

elements and the other one with ‘shell and beam’ elements. The solid model is reduced from 

21294 degrees of freedom to 6930 degrees of freedom by modeling with ‘shell and beam’ 

elements. The modal analysis’ calculation time is significantly less for ‘shell and beam element 

model’  compared to ‘solid element model’. The main reason for less calculation time is the 

smaller number of elements and nodes for ‘shell and beam’ element model. We did not loose 

any accuracy in our predictions by reducing the fidelity since the mode shapes and natural 

frequencies of these two models matched quite well. Another advantage of using a simplified 

model is that, ‘shell and beam’ elements have rotational degrees of freedom in three mutually 

perpendicular axes. On contrary, solid elements have only translational freedoms at their nodes. 

Besides, the performance of the system is defined as the rotation of the mirror, which 

corresponds to the rotational degree of freedom about flexure axis (x- axis) in FEM. As a result, 

using an accurate simple ‘shell and beam model’ of the micro scanner is advantageous over  the 

‘solid element model’.  

 

The FEM results were then transferred to MATLAB in order to build the state model of the 

mirror. The state-space form is one of the commonly used mathematical representations of a 

dynamical system. The state-space representation provides an easy way to solve second order 

differential equations and it is a very efficient way to investigate the input and output relations 

for transfer functions. Inputs are defined as torque disturbances acting on the mirror and 
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outputs are the amount of variance about the mirror rotation axis. This variance should be 

kept as small as possible in order to improve the performance of the scanner mirror.  
 

Disturbance analysis  and  sensitivity analysis with Lyapunov approach takes great amount of 

time if large scale systems are used. Therefore, some model reduction techniques are performed 

to reduce the size of the FEM. These techniques were discussed in detail in Chapter 2. The 

applied algorithms aim to eliminate the insignificant states for the transfer functions of interest. 

For the scanner mirror example, the “dc gain” and “peak gain” approach worked really well. 

The reduced model transfer functions obtained by the “dc gain” and “peak gain” technique 

matched really well with the unreduced model. The reduced model is used in the performance 

prediction and sensitivity analysis studies.. 

 

A methodology was developed to predict the performance of a MEMS scanner mirror under 

random disturbance sources. The methodology uses Lyapunov equations in disturbance analysis 

and calculates the RMS value of the angular displacement which defines the performance of the 

scanning mirror. The results are compared with the time domain simulation of the same mirror 

modeled as a lumped mass-spring and damper system. The Lyapunov approach is found to be a 

very efficient and accurate method. Disturbance analysis is also required for the sensitivity 

analysis framework. Few drawbacks of this approach are; it may take too much time to solve the 

Lyapunov equations for large order systems and the solution does not provide any frequency 

insight for the variances. In other words, the frequency dependency of the performance is not 

observable from the results. 

 

Sensitivity analysis framework is built on the disturbance analysis framework. First, the exact 

modal parameter sensitivities are calculated and validated with the results of the finite 

difference method. Modal parameter sensitivities are able to identify which modes are the most 

important however they do not provide any information regarding what physical characteristics 

of the design should be modified to affect the modes and improve the design. The analytical 

formulations for the physical parameter sensitivities are discussed and demonstrated, on the 

other hand, due to the complexity and the computational time required performing these 

calculations, they are not found to be suitable for the application of interest. Instead, the finite 

difference method is used to calculate the physical parameter sensitivities and concluded that 

the flexure dimensions play an important role in determining the performance of the mirror. 
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Sensitivity analysis tool is an extremely valuable tool especially when the MEMS system has 

many design parameters. One can easily identify the most significant design parameters that 

may effect the performance of the system using  the methodology developed in this thesis. Then 

the designer can focus on these parameters to improve the performance.  

 

The disturbances used in the disturbance analysis framework are obtained experimentally. An 

experimental set-up was built to measure the disturbances on the scanner mirror. The set-up 

includes an LDV that measures the translational velocity and a piezoresistive-sensor that 

measures the angular position of the mirror. LDV data was found to be much noiseless than the 

Piezoresistive sensor data.  A methodology was developed to calculate the magnitude level of 

the disturbances acting on the system. The procedure to calculate the torque intensity in the 

disturbance shaping filter is explained in detail in Chapter 5.  

 

This thesis summarizes our initial attempt to create a design and analysis tool for MEMS 

devices.  The disturbance analysis framework provides the means for predicting the 

performance of such systems in a very efficient and accurate way. The sensitivity analysis 

framework is very valuable for diagnosing the problematic components that degrade the overall 

system performance. All the governing equations are written in MATLAB code which provides 

any easy way for further additions to the design tool. An automated routine was developed to 

generate state space model from the results of the finite element model. This routine can be 

applied to other MEMS devices to perform disturbance and sensitivity analysis. The Sensitivity 

analysis framework can be extended and then be used to perform a simultaneous optimization 

routine. In this study, we investigated the disturbances only for scanner mirrors. Since most of 

these disturbances are sensor and electronics dependent, other MEMS devices must be also 

studied to obtain various disturbance models.  
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