
A MOLECULAR DYNAMICS SIMULATION STUDY OF

TORSIONAL DEFORMATIONS OF SINGLE-WALLED CARBON

NANOTUBES

by

Ufuk Paralı

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computational Sciences and Engineering

Koç University

August, 2005

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ufuk Paralı

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Prof. Dr. Tekin Dereli

Assist. Prof. Dr. Attila Gürsoy

Assist. Prof. Dr. Özgür Müstecaplıog̃lu

Date:

ABSTRACT

In this study we present the tight binding molecular dynamics (TBMD) simulation

results for torsional response of 10x10 single-walled carbon nanotubes for varying numbers of

layers, twist angles and temperature conditions. TBMD method we use has O(N) complexity

and it has been executed both in sequential and parallel modes. The code is executed in a

distributed memory system utilizing the concept of parallel virtual machines (PVM). The

mechanical properties of the simulated structure such as bond length distribution, bond

angle distribution, torsional deformations, total energy, shear modulus and torsion stiffness

were studied under various simulation conditions. We also presented the efficiency and

speedup graphs of the parallel computation.

iii

ACKNOWLEDGMENTS

First, I would like to thank my supervisor, Prof. Dr. Tekin Dereli for his guidance,

encouragement and support during this research. In addition, I would like to thank Prof.

Dr. Gülay Dereli for her insightful suggestions and helpful discussions. I also would like

to thank Assist. Prof. Dr. Cem Özdog̃an for his help in using the parallel O(N) TBMD

simulation code. I would like to thank Banu Süngü and Önder Eyecioğlu for discussions on

the computational aspects.

Finally, I would like to express my deepest gratitude to my parents and to my family

for their support and encouragement.

iv

TABLE OF CONTENTS

List of Tables vii

List of Figures viii

Nomenclature xi

Chapter 1: Introduction 1

Chapter 2: Classification of Carbon Nanotubes 5

2.1 Chiral Vector: Ch . 6

2.2 Translational Vector:T . 7

2.3 Symmetry Vector: R . 8

Chapter 3: Continuum Theory of Stresses and Strains 12

3.1 Definition of Stress At a Point . 12

3.2 Stress Notation . 13

3.3 Symmetry Of The Stress Array and Stress On An Arbitrarily Oriented Plane 14

3.4 Differential Equations of Motion of a Deformable Body 16

3.5 Strain Theory . 18

3.6 Torsion of Circular Cross-Section Bars . 20

3.7 Torsion of a Single Thin-Walled Tube . 22

Chapter 4: Computational Techniques for Nanoscale Simulations 24

4.1 Classical molecular dynamics . 25

4.2 Generalized tight-binding molecular dynamics 27

4.3 Ab initio simulation methods . 28

4.4 Parallel Computing . 30

v

Chapter 5: Results and Discussion 37

Chapter 6: Conclusion 44

Bibliography 45

Vita 47

vi

LIST OF TABLES

Table 2.1 : Classification of carbon nanotubes

Table 2.2 : Values for characterization parameters for selected carbon nanotubes labeled

by the chiral vector Ch = (n,m)

Table 2.3 : Parameters for carbon nanotubes

vii

LIST OF FIGURES

Figure 2.1 : Classification of carbon nanotubes

Figure 2.2 : The unrolled honeycomb lattice of a nanotube

Figure 2.3 : Space group symmetry operation

Figure 2.4 : Symmetry vector, translation vector, chiral vector reltionship

Figure 3.1 : A general loaded body cut by plane Q

Figure 3.2 : Force transmitted through incremental area of cut body

Figure 3.3 : Body forces

Figure 3.4 : Stress components at a point in a loaded body

Figure 3.5 : General deformed body

Figure 3.6 : Stress components showing changes from face to face along with body force

per unit volume including inertial forces

Figure 3.7 : Orthogonal curvilinear coordinates

Figure 3.8 : Line segment PQ in undeformed and deformed body

Figure 3.9 : Line segments PA and PB before and after deformation

Figure 3.10 : Torsion of a circular cross section bar

Figure 3.11 : Observable deformations in torsion

Figure 3.12 : Torsional displacements in a circular bar

Figure 3.13 : Shear stresses in the interior and on the boundary

Figure 3.14 : Stresses in a thin-walled circular cross section

Figure 3.15 : Equilibrium for a single thin walled tube

Figure 3.16 : Equilibrium for relating the torque to the shear stress

Figure 3.17 : Shear stresses and shear flow in a single tube

Figure 5.1 : 10x10, 20 layers, twist angle = 360 deg

Figure 5.2 : 10x10, 20 layers, 300 K

Figure 5.3 : 10x10, 300 K, twist angle = 90 deg

viii

Figure 5.4 : 10x10, 300 K, twist angle = 360 deg

Figure 5.5 : 10x10, 50 layers, 300 K

Figure 5.6 : 10x10, 50 layers, twist angle = 180 deg

Figure 5.7 : 10x10, 20 layers, twist angle = 360 deg, 300 K

Figure 5.8 : 10x10, 20 layers, twist angle = 360 deg, 600 K

Figure 5.9 : 10x10, 20 layers, twist angle = 360 deg, 900 K

Figure 5.10 : 10x10, 20 layers, twist angle = 360 deg, 1200 K

Figure 5.11 : 10x10, 20 layers, twist angle = 45 deg, 300 K

Figure 5.12 : 10x10, 20 layers, twist angle = 90 deg, 300 K

Figure 5.13 : 10x10, 20 layers, twist angle = 120 deg, 300K

Figure 5.14 : 10x10, 40 layers, twist angle = 90 deg, 300 K

Figure 5.15 : 10x10, 60 layers, twist angle = 360 deg, 300 K

Figure 5.16 : 10x10, 50 layers, twist angle = 360 deg, 300 K

Figure 5.17 : 10x10, 50 layers, twist angle = 180 deg, 300 K

Figure 5.18 : 10x10, 50 layers, twist angle = 180 deg, 600 K

Figure 5.19a : 10x10, 20 layers, 300 K, twist angle = 360 deg

Figure 5.19b : 10x10, 20 layers, 300 K, twist angle = 360 deg

Figure 5.20a : 10x10, 20 layers, 600 K, twist angle = 360 deg

Figure 5.20b : 10x10, 20 layers, 600 K, twist angle = 360 deg

Figure 5.21a : 10x10, 20 layers, 900 K, twist angle = 360 deg

Figure 5.21b : 10x10, 20 layers, 900 K, twist angle = 360 deg

Figure 5.22a : 10x10, 20 layers, 1200 K, twist angle = 360 deg

Figure 5.22b : 10x10, 20 layers, 1200 K, twist angle = 360 deg

Figure 5.23a : 10x10, 20 layers, 300 K, twist angle = 45 deg

Figure 5.23b : 10x10, 20 layers, 300 K, twist angle = 45 deg

Figure 5.24a : 10x10, 20 layers, 300 K, twist angle = 90 deg

Figure 5.24b : 10x10, 20 layers, 300 K, twist angle = 90 deg

Figure 5.25 : 10x10, 20 layers, 300 K, twist angle = 120 deg

Figure 5.26a : 10x10, 40 layers, 300 K, twist angle = 90 deg

Figure 5.26b : 10x10, 40 layers, 300 K, twist angle = 90 deg

ix

Figure 5.27a : 10x10, 60 layers, 300 K, twist angle = 360 deg

Figure 5.27b : 10x10, 60 layers, 300 K, twist angle = 360 deg

Figure 5.28 : 10x10, 50 layers, 300 K, twist angle = 360 deg

Figure 5.29 : 10x10, 20 layers, twist angle = 360 deg

Figure 5.30 : 10x10, 20 layers, 300 K

Figure 5.31 : 10x10, 300 K, twist angle = 90 deg

Figure 5.32 : 10x10, 300 K, twist angle = 360 deg

Figure 5.33 : 10x10, 50 layers, 300 K

Figure 5.34 : 10x10, 50 layers, twist angle = 180 deg

Figure 5.35 : Initial Bond-Length Distribution Function For All Cases

Figure 5.36 : Initial Bond-Angle Distribution Function For All Cases

Figure 5.37 : 10x10, 20 layers, twist angle = 360 deg

Figure 5.38 : 10x10, 20 layers, 300 K

Figure 5.39 : 10x10, 300 K, twist angle = 90 deg

Figure 5.40 : 10x10, 300 K, twist angle = 360 deg

Figure 5.41 : 10x10, 50 layers, 300 K

Figure 5.42 : 10x10, 50 layers, twist angle = 360 deg

Figure 5.43 : Shear modulus for 10x10, 20 layers, 300 K CNTs

Figure 5.44 : Shear modulus for 10x10, 20 layers, twist angle = 360 deg CNTs

Figure 5.45 : Torsion stiffness for 10x10, 20 layers, 300 K CNTs

Figure 5.46 : Torsion stiffness for 10x10, 20 layers, twist angle = 360 deg CNTs

Figure 5.47 : Efficiency for 2, 4, 6, 8 processors

Figure 5.48 : Speedup for 2, 4, 6, 8 processors

x

NOMENCLATURE

SWCN Single-Walled Carbon Nanotube

MWCN Multi-Walled Carbon Nanotube

MD Molecular Dynamics

TBMD Tight Binding Molecular Dynamics

CNT Carbon Nanotube

DFT Density Functional Theory

LDA Local Density Approximation

PW Plane Wave

MPPs Massively Parallel Processors

PVM Parallel Virtual Machine

SPMD Single Program Multiple Data

TID Task Identifier

MPI Message Passing Interface

xi

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Carbon nanotubes have been the focus of considerable research since their discovery

in 1991. They combine exceptional mechanical, thermal and electrical properties. They

have high modulus, stronger than steel, thermally stable up to 2800oC in vacuum, thermal

conductivity is twice that of diamond, and the electric - current carrying capacity is 1000

times higher than that of copper wire. All of these properties open up the broad application

areas for carbon nanotubes [1]. In the simplest terms, carbon nanotubes can be thought

of as rolled up, closed graphite sheets. This sheet can be rolled up at different discrete

angles to create SWNTs. Thus, an SWNT is a single, closed molecule with few to no

atomic imperfections, and a hexagonal ring bonding structure similar to graphite. The ring

bonding structure, specifically the hybridized sigma bonds (sp2) imparts the impressive

mechanical properties. Multi-walled nanotubes also exist, consisting of nested SWNTs 3.4

Angstrom apart, which widen the range of tube properties and application possibilities.

The single-wall nanotubes are interesting nanoscale materials for the following four reasons:

1) Single-wall (and also multi-wall) nanotubes have very good elasto-mechanical prop-

erties due to the two-dimensional arrangement of carbon atoms in a graphene sheet that

allows large out-of-plane distortions, while the strength of carbon-carbon in-plane bonds

keeps the graphene sheet exceptionally strong against any in-plane distortion or fracture.

These structural and material characteristics of nanotubes point towards their possible use

in making next generation of extremely lightweight, but highly elastic, and very strong

composite materials.

2) A single-wall nanotube can be either conducting or semiconducting, depending on its

chiral vector (n, m), where n and m are two integers. All armchair CNTs are conducting and

zig-zag CNTs are semiconducting. The rule is that when the difference n-m is a multiple

of three, a conducting nanotube is obtained. If the difference is not a multiple of three, a

Chapter 1: Introduction 2

semiconducting nanotube is obtained. In addition, it is also possible to connect nanotubes

with different chiralities creating nanotube hetero-junctions, which can form a variety of

nanoscale molecular electronic device components.

3) Nanotubes, by structure, are high aspect-ratio objects with good electronic and me-

chanical properties. Consequently, the applications of nanotubes in field-emission displays

or scanning probe microscopic tips for metrological purposes, have started to materialize

even in the commercial sector.

4) Since nanotubes are hollow, tubular, caged molecules, they have been proposed as

lightweight large surface area packing material for gas-storage and hydrocarbon fuel storage

devices, and gas or liquid filtration devices, as well as nanoscale containers for molecular

drug-delivery and casting structures for making nanowires and nanocapsulates [4], [5].

Due to the high specific stiffness and strength, nanotubes represent a very promising

material as reinforcements in composite materials. Elastic properties of both multi- and

single-walled nanotubes (SWNT) have been investigated extensively through experimenta-

tion and theoretical approaches. Experimental studies have been performed to characterize

nanotube materials. Due to the difficulty in performing these experiments, the scatter in the

results is considerable. The shear stiffness of carbon nanotubes was found to lie between 0.5

- 4 TPa while the tensile modulus and strength of nanotubes have been reported to range

from 0.27 TPa to 3.6 TPa and 11 to 200 GPa, respectively. Stating these values under-

scores two common continuum assumptions. First that they are linear elastic materials and

second they have a thickness corresponding to density of graphite (thickness = 0.34 nm).

Naturally, with such poor resolution, the validity of these assumptions can not be checked

with experiment [4], [8]. Theoretcal studies in this respect are essential.

Theoretical approaches can be classified into two categories: namely the ”bottom up”

approach based on quantum/molecular mechanics including the classical molecular dynam-

ics (MD) and ab initio methods, and the ”top down” approach based on continuum me-

chanics. In general, ab initio methods give more accurate results than MD, but they are

also much more computationally expensive (only suitable for small systems containing at

most hundreds of atoms). Despite constant increases in available computational power and

improvement in numerical algorithms, even classical molecular dynamics computations are

still limited to simulating on the order of 106 − 108 atoms for a few nanoseconds. The

Chapter 1: Introduction 3

simulation of larger systems or longer times must currently be left to continuum methods.

However, at the nanoscale, theories for describing continuum materials have reached their

limit. The accuracy of using these continuum theories becomes questionable in many of the

most interesting cases of nanomechanics

Atomic simulations have proven to be a good vehicle for studying nanotube mechanical

responses. Molecular mechanics has been used to obtain Young’s moduli of 0.75 - 1.25

TPa, using the same assumptions as described above. Molecular mechanics is a method

of modeling the interatomic forces, including bonding and non-bonded forces, with simple

polynomial and trigonometric expansions. This method was developed for the modeling

of large molecules such as proteins and lends itself well to the study of nanotubes. The

advantage of molecular mechanics is the precision with which tests can be performed. Not

only can virtual tension tests be performed, but other tests such as torsion can be performed

which are not yet feasible experimentally. The accuracy of these methods vary, but have

been shown to predict moduli with the same precision as quantum mechanical methods [4].

In this study, a tight-binding molecular dynamics (TBMD) method has been used to

understand the torsional deformations of 10x10 single-walled carbon nanotubes in different

twist angle and temperature conditions with different layer values. The tight binding theory

of electronic structure has played an increasingly important role in computational materials

science. It has developed as an effective tool for calculations of atomic and electronic struc-

tures, total energies, diffusion barriers and inter atomic forces of large condensed matter and

molecular systems. The advantages of TB theory include the ease of implementation, low

computational workload, robust transferability as well as relatively good reliability. Tradi-

tional TB solves the Schrdinger equation in reciprocal space by direct matrix diagonaliza-

tion, which results in cubic scaling with respect to the number of atoms. The complexity

of the applied TBMD method is O(N). This O(N) algorithm has been executed both in

sequential and in parallel modes which is the main aim of this study. The O(N) methods

solve for the band energy in real space and make the approximation that only the local

environment contributes to the bonding, and hence band energy, of each atom. It is worth

noting that usually O(N) schemes can be efficiently parallelized through the use of message

passing libraries [7], [9].

At the end of this computational study the following results have been obtained for the

Chapter 1: Introduction 4

investigated structure for different temperature, twist angle and layer values : Total energy,

bond-length distribution, bond-angle distribution, torsional deformations, shear modulus,

torsion stiffness, efficiency and speedup values. The necessary comparisons have been done

and commented in this study.

In Chapter 2, geometrical classification of carbon nanotubes is given. In Chapter 3, con-

tinuum elastic theory of stresses and strains and the mechanics of torsion are presented. In

Chapter 4, computational techniques for nanoscale computations are reviewed. In Chapter

5, the physical results of nanoscale computations are discussed. We conclude in Chapter:

6.

Chapter 2: Classification of Carbon Nanotubes 5

Chapter 2

CLASSIFICATION OF CARBON NANOTUBES

A single-walled carbon nanotube can be described as a graphene sheet rolled into a cylin-

drical shape so that the structure is one-dimensional with axial symmetry, and in general

exhibiting a spiral conformation, called chirality. The chirality, as defined in this chapter,

is given by a single vector called the chiral vector. To specify the structure of carbon nan-

otubes, several important vectors are defined, which are derived from the chiral vector. The

references for the following review are [2] and [3].

A single-walled nanotube is defined by a cylindirical graphene sheet with a diameter of

about 0.7 - 10.0 nm, though most of the observed single-walled nanotubes have diameters

< 2 nm. If we neglect the two ends of a carbon nanotube and focus on the large aspect ratio

of the cylinder (i.e., length/diameter which can be as large as 104−105), these nanotubes can

be considered as one-dimensional nanostructures. An interesting and essential fact about

the structure of a carbon nanotube is the orientation of the six-membered carbon ring

(hereafter called a hexagon) in the honeycomb lattice relative to the axis of the nanotube.

Three examples of single-walled carbon nanotubes (SWCN’s) are shown in Figure 2.1. From

this figure, it can be seen that the direction of the six-membered ring in the honeycomb

lattice can be taken almost arbitrarily, without any distortion of the hexagons except for the

distortion due to the curvature of the carbon nanotube. This fact provides many possible

structures for carbon nanotubes, even though the basic shape of the carbon nanotube wall

is a cylinder. In Figure 2.1 we show the terminations of each of the three nanotubes.

The terminations are often called caps and consist of a ”hemisphere” of a fullerene. Each

cap contains six pentagons and an appropriate number and placement of hexagons that

are selected to fit perfectly to the long cylindrical section. In this chapter we focus on

the periodic structure along the nanotube axis. The primary symmetry classification of a

carbon nanotube is as either being chiral or achiral. An achiral carbon nanotube is defined

by a carbon nanotube whose mirror image has an identical structure to the original one.

Chapter 2: Classification of Carbon Nanotubes 6

There are only two cases of achiral nanotubes; armchair and zigzag nanotubes, as are shown

in Figure 2.1 (a) and (b), respectively. The names of armchair and zigzag arise from the

shape of the cross-sectional ring, as is shown at the edge of the nanotubes in Figure 2.1

(a) and (b) respectively. Chiral nanotubes exhibit a spiral symmetry whose mirror image

cannot be superposed on to the original one. We call this tube a chiral nanotube, since such

structures are called axially chiral in the chemical nomenclature. Axial chirality is commonly

discussed in connection with optical activity. We have thus a variety of geometries in carbon

nanotubes which can change with diameter, chirality and cap structures. A classification of

carbon nanotubes is given in Table 2.1.

2.1 Chiral Vector: Ch

The structure of a single-walled carbon nanotube is specified by the vector (OA in figure

2.2) which corresponds to a section of the nanotube perpendicular to the nanotube axis (the

equator of the nanotube). In Figure 2.2, the unrolled honeycomb lattice of the nanotube

is shown, in which OB is the direction of the nanotube axis, and the direction of OA

corresponds to the equator. By considering the crystallographically equivalent sites O, A,

B, and B′, and by rolling the honeycomb sheet so that points O and A coincide (and points

B and B′ coincide), a paper model of carbon nanotube can be constructed. The vectors OA

and OB define the chiral vector Ch and the translational vector T of a carbon nanotube,

respectively. The chiral vector Ch can be expressed by the real space unit vectors a1 and

a2 (see Figure 2.2) of the hexagonal lattice:

Ch = na1 + ma2 ≡ (n, m), (n, m are integers, 0 ≤ |m| ≤ n). (2.1)

The specific chiral vectors Ch for the carbon nanotubes shown in Figure 2.1 are, respectively,

(a) (5,5), (b) (9,0), and (c) (10,5), and the chiral vector shown in Figure 2.2 is (4.2). As

is shown in Table 2.1, an armchair nanotube corresponds to the case of n=m, that is

Ch=(n,n), and a zigzag nanotube corresponds to the case of m=0, or Ch=(n,0). All other

(n,m) chiral vectors correspond to chiral nanotubes. Because of the hexagonal symmetry

of the honeycomb lattice, we need to consider only 0 < |m| < n in Ch=(n,m) for chiral

nanotubes.

Chapter 2: Classification of Carbon Nanotubes 7

The diameter of the carbon nanotube is

dt = L/π, L = |Ch| =
√

Ch.Ch = a
√

n2 + m2 + nm (2.2)

where L is the circumferential length of the carbon nanotube. It is noted here that a1 and

a2 need not be orthogonal to each other and that the inner products between a1 and a2

yield:

a1.a1 = a2.a2 = a2, a1.a2 =
a2

2
(2.3)

where the lattice constant a = 1.44A ×
√

3 = 2.49A for the honeycomb lattice. The C-C

bond length of graphite is 1.42A. In the case of carbon nanotubes, the C-C bond length is

known to be slightly larger than graphite: 1.44A [3].

The chiral angle θ (Figure 2.2) is defined as the angle between the vectors Ch and a1,

with values of θ in the range 0 ≤ |θ| ≤ 30, because of the hexagonal symmetry of the

honeycomb lattice. The chiral angle θ denotes the tilt angle of the hexagons with respect

to the direction of the nanotube axis, and the angle θ specifies the spiral symmetry. The

chiral angle θ is defined by taking the inner product of Ch and a1, to yield an expression

for cos θ:

cos θ =
Ch.a1

|Ch||a1|
(2.4)

thus relating θ to the integers (n,m) defined in equation 2.1. In particular, zigzag and

armchair nanotubes correspond to θ=0 and θ=30, respectively [3].

2.2 Translational Vector:T

The translational vector T is defined to be the unit vector of a 1D carbon nanotube. The

vector T is parallel to the nanotube axis and is normal to the chiral vector Ch in the unrolled

honeycomb lattice in Figure:2.2. The lattice vector T shown as OB in Figure:2.2 can be

expressed in terms of the basis vectors a1 and a2 as:

T = t1a1 + t2a2 ≡ (t1, t2). (2.5)

The translation vector T corresponds to the first lattice point of the 2D graphene sheet

through which the vector OB (normal to the chiral vector Ch) passes. From this fact, it

is clear that t1 and t2 do not have a common divisor except for unity. Using Ch.T=0 and

Chapter 2: Classification of Carbon Nanotubes 8

equations 2.1, 2.3, and 2.5, we obtain expressions for t1 and Ch given by:

t1 =
2m + n

dR
, t2 = −2n + m

dR
(2.6)

where dR is the greatest common divisor (gcd) of (2m+n) and (2n+m). Furthermore, by

introducing d as the greatest common divisor of n and m, then dR can be related to d:

dR =

 d if (n−m) 6= multiple of 3d

3d if (n−m) = multiple of 3d .
(2.7)

In the case of Figure:2.2, where Ch=(4,2), we have d=dR=2, T=(4,-5). The length of the

translation vector, T, is given by:

|T | =
√

3L/dR (2.8)

where the circumferential nanotube length L is given by equation 2.2. We note that the

length T is greatly reduced when (n,m) have a common divisor or when (n-m) is a mul-

tiple of 3d. In fact, for the Ch=(5,5) armchair nanotube, we have dR=3d=15, T=(1,-1)

(Figure:2.1a), while for the Ch=(9,0) zigzag nanotube we have dR=d=9, and T=(1,-2)

(Figure:2.1b) [3]

The unit cell of the 1D carbon nanotube is the rectangle OAB′B defined by the vectors

Ch and T (Figure:2.2), while the vectors a1 and a2 define the area of the unit cell of 2D

graphite. When the area of the nanotube unit cell |Ch × T | (where the symbol × denotes

the vector product operator) is divided by the area of a hexagon |a1 × a2|, the number of

hexagons per unit cell N is obtained as a function of n and m as in equation 2.1 as:

N =
|Ch.T |
|a1xa2|

=
2(m2 + n2 + nm)

dR
=

2L2

a2dR
(2.9)

where L and dR are given by equations 2.2 and 2.7, respectively, and we note that each

hexagon contains two carbon atoms. Thus there are 2N carbon atoms in each unit cell of

the carbon nanotube [3].

2.3 Symmetry Vector: R

The carbon atom site vectors are denoted within the 1D nanotube unit cell by i times the

vector R, that is, iR, where i is an integer (i=1...N). When iR goes out of the unit cell,

we shift it to lie within the unit cell through translation by an integral number of Ch or

Chapter 2: Classification of Carbon Nanotubes 9

T vectors, using periodic boundary conditions. The vector R is used for generating the

coordinates of carbon atoms in the nanotube. It is convenient to express the R vector in

terms of its projections on the orthogonal vectors Ch and T of the nanotube unit cell, as

shown in Figure 2.3. The symmetry vector R is then defined as the site vector (shown by

OR in Figure 2.2) having the smallest component in the direction of Ch, and R is expressed

in terms of a1 and a2 as:

R = pa1 + qa2 ≡ (p, q) (2.10)

where p and q do not have a common divisor except for unity and they are integers. The

Ch component of R, or Ch.R, is proportional to the value of T ×R given by:

T ×R = (t1q − t2p)(a1xa2) (2.11)

where (t1q − t2p) on the right hand side is an integer. We select p and q of R to form the

smallest site vector (i=1), such that

t1q − t2p = 1, (0 < mp− nq ≤ N) (2.12)

The solution of equation 2.12 for p and q is uniquely determined if t1 and t2 of equation

2.5 do not have a common divisor except for unity. The second condition in equation 2.12,

0 < mp − nq < N , arises from the fact that R exists within the 1D nanotube unit cell, so

that

0 <
R.T

T 2
=
|ChxR|

LT
=

mp− nq

N
< 1 (2.13)

using equations 2.2, 2.8, and 2.9. Similarly, using equations 2.6 and 2.9, we obtain another

necessary condition arising from R being within the 1D unit cell:

0 <
R.Ch

L2
=
|RxT |
LT

=
t1q − t2p

N
≤ 1 (2.14)

and from equation 2.14, we get the condition,

0 < t1q − t2p ≤ N. (2.15)

Since the first condition of equation 2.12 satisfies equation 2.14, it is not necessary to add

this condition to the definition of R [3].

To determine all N site location vectors iR, (i=1...N) of the nanotube unit cell, we use

expression i(t1q-t2p)=i for each i, and note that the maximum value of i(t1q-t2p) becomes

Chapter 2: Classification of Carbon Nanotubes 10

N. Using the fact that the Ch component of NR is always equal to |Ch|=L, the vectors iR

define N inequivalent sites in the nanotube unit cell, and will thus have different values for

their projections along the direction of Ch. Therefore iR, (i=1...N), uniquely generates N

different atom sites in the unit cell of the nanotube.

Taking the indicated vector products R × Ch and R × T and using equations 2.2, 2.8,

2.9, and 2.12, we obtain the expressions for the length of τ and the rotation angle ϕ as :

τ =
|R× Ch|

L
=

(mp− nq)|a1 × a2|
L

=
(mp− nq)T

N
,

ϕ =
|T ×R|

T

2π

L
=

dR(t1q − t2p)√
3L

√
3a2

2
=

2π

N
. (2.16)

Using these definitions, the rotation angle ϕ becomes 2π/N, where N is the number of

hexagons in the 1D unit cell of the nanotube given by equation 2.9 [3].

According to Figure 2.3, the symmetry operation that brings the lattice point O to an

equivalent lattice point C is shown in Figure 2.4. Here

NR = Ch + MT (2.17)

and where

M ≡ mp− nq (2.18)

is an integer which denotes the number of T vectors that are necessary for reaching the

distance from O to NR [3].

In Table 2.2 the characteristic parameters of carbon nanotubes are listed specified by

(n,m), including d, the greatest common divisor of n and m, and the related quantity dR

which is given by equation 2.7. Also listed in table 2.2 are the nanotube diameters dt in

units of A, the lengths of the chiral vector L and of the translation repeat distance T of

the 1D lattice (both in units of the lattice constant a =
√

3aC−C for 2D graphene sheet),

the number N of hexagons per unit cell of the 1D nanotube, the translation vector T, the

symmetry vector R and the integer M. The basic symmetry operation R = (ϕ|τ) can be

obtained from Table 2.2, equation 2.16 and values for T = (t1, t2) and R = (p, q).

To show the use of Table 2.2, take the Ch = (4, 2) nanotube shown in Figure 2.2, which

has T = (4,−5), R = (1,−1), N = 28, d = dR = 2, T =
√

21a, L =
√

28a, τ = 6T/28

and M = 6 translations of vector T to reach the point C in Figure 2.4. For the case

Chapter 2: Classification of Carbon Nanotubes 11

of the nanotube Ch = (7, 4) which is a chiral nanotube with n − m = 3, there are no

common divisors, so d = 1, but since n − m = 3, we have dR = 3. Thus we obtain

L =
√

93a, T =
√

31a,N = 62 and M = 11 translations of the vector T. For the armchair

nanotube (5,5), which needs half C60 fullerenes to form its end caps, the highest common

divisor is 5, and since n-m=0, we have dR = 3×5 = 15, yielding N = 10, ϕ = 2π/10, τ = T/2,

and M = 9 [3].

All parameters defined in this section are summarized in Table 2.3. The values of all

parameters listed here depend on the two integers, n and m, of the chiral vectors Ch.

Chapter 3: Continuum Theory of Stresses and Strains 12

Chapter 3

CONTINUUM THEORY OF STRESSES AND STRAINS

Since in this study, torsion response of CNTs is studied, we must understand the con-

cept of strain energy stored in the system. The source of the stored strain energy is the

deformation of the system due to torsion. In order to understand the strain energy, we

must understand the concept of theory of stresses and strains. The torsion of SWNT is

modeled as the torsion of a thin walled tube by using continuum elasticity theory and the

calculations of shear modulus and torsion stiffnes is calculated with respect to this model.

The references for this review are [10], [11], [12].

3.1 Definition of Stress At a Point

Consider a general body subjected to forces acting on its surface Figure 3.1. Pass a fictitious

plane Q through the body, cutting the body along surface A (Figure 3.2). Assume that one

side of plane Q as positive and the other side as negative. The portion of the body on the

positive side of Q exerts a force on the portion of the body on the negative side. This force

is transmitted through the plane Q by direct contact of the parts of the body on the two

sides of Q. The force is transmitted through an incremental area of ∆A of A by the part

on the positive side Q, denoted by ∆F. According to the Newton’s third law, the portion

of the body on the negative side of Q transmits through area ∆A a force -∆F.

The force ∆F may be resolved into components ∆FN and ∆FS , along the unit normal

N and unit tangent S, respectively, to the plane Q. The force ∆FN is called the normal

force on area ∆A and ∆FS is called the shear force on ∆A. The forces ∆F , ∆FN , and

∆FS depend on the area ∆A and the orientation of plane Q. The magnitudes of the average

forces per unit area ∆F/∆A, ∆Fn/∆A, and ∆Fs/∆A approach limits different from zero

in general. The limiting ratio of ∆F/∆A as ∆A goes to zero defines the stress vector σ.

Thus, the stress vector σ is given by

σ = lim
∆A→0

∆F

∆A
(3.1)

Chapter 3: Continuum Theory of Stresses and Strains 13

The stress vector σ always lies along the limiting direction of force vector ∆F , which in

general is neither perpendicular nor tangent to the plane Q.

Similarly the limiting ratios of ∆FN/∆A and ∆FS/∆A define the normal stress vector

σn and the shear stress vector σs that act at a point in the plane Q. These stress vectors

are defined by the relations

σN = lim
∆A→0

∆FN

∆A
, (3.2)

σS = lim
∆A→0

∆FS

∆A
. (3.3)

The unit vectors associated with σN and σS are perpendicular and tangent, respectively, to

the plane Q.

3.2 Stress Notation

Free body diagrams are used to specify the state of stress at a point and to obtain relations

between various stress components. In general a free body diagram may be a diagram of

a complete member, a portion of the member obtained by passing a cutting plane through

the member, or a boxlike volume element of the member. The loads that act on any of

these free bodies can be divided into two types as follows:

1) Surface forces, which are forces that act on the surface of the free body. 2) Body

forces, which are forces that act throughout the volume of that portion of the member

considered in the free body diagram.

Examples of surface forces are contact forces and distributed loads. Concentrated loads

and reaction at a point are considered contact forces. Distributed loads may be either line

loads with dimensions of force per unit length or surface loads with dimensions of force per

unit area (dimensions of pressure or stress). Distributed loads on beams are often indicated

as loads per unit length. Examples of surface loads are pressure exerted by a fluid in contact

with the body or shear stresses that act on a cut section of the body. [10], [11], [12]

Examples of body forces are gravitational forces, magnetic forces and inertia forces.

Since the body force is distributed through out the volume of the free body, it is convenient

to define body force per unit volume. For body force per unit volume, the notation B or

Bx, By, Bz, where B stands for body and subscripts (x,y,z) denote components in the (x,y,z)

directions, respectively, of the rectangular coordinate system (x,y,z) (Figure:3.3).

Chapter 3: Continuum Theory of Stresses and Strains 14

In Figure:3.4, a free body diagram of a box shaped volume element at a point O in

a member is shown, with sides parallel to the (x,y,z) axes. It is assumed that the stress

components are uniform (constant) throughout the volume element. The surface forces are

represented by the product of the stress components and the areas on which they act. Body

forces, represented by the product of the components (Bx, By, Bz) and the volume of the

element (product of the three infinitesimal lengths of the sides of the element), are higher

order terms and are not shown on the free body diagram in Figure 3.4. The face from

which the positive x axis is extended is taken to be the positive face; the opposite face

perpendicular to the x axis is taken to be the negative face. The stress components σxx,

σxy and σxz acting on the positive face are taken to be in the positive sense as shown when

they are directed in the positive x, y and z directions.

According to Newton’s third law, the positive stress components σxx, σxy and σxz shown

acting on the negative face in Figure 3.4 are in the negative (x,y,z) directions, respectively.

A positive stress component σxx exerts a tension (pull) parallel to the x axis. There are

nine components of stress exist at point O:

(σxx, σxy, σxz), (σyy, σyx, σyz), (σzz, σzx, σzy).

3.3 Symmetry Of The Stress Array and Stress On An Arbitrarily Oriented

Plane

The nine stresses with respect to a rectangular coordinate axes (x,y,z) can be shown in array

form as follows:

t =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (3.4)

where t symbolically represents the stress array called the stress tensor. In this array, the

stress components in the first, second, and third rows act on planes perpendicular to the

(x,y,z) axes, respectively. These nine stress components are required to describe the state

of stress at a point in a member. However, if the only forces that act on the free body in

Figure 3.4 are surface forces and body forces, from the equilibrium of volume element in

Figure 3.4, the three pairs of the shear stresses are equal. Summation of moments gives the

Chapter 3: Continuum Theory of Stresses and Strains 15

following results:

σyz = σzy (3.5)

σzx = σxz (3.6)

σxy = σyx (3.7)

So, according to above results, we can write (3.4) as below:
σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (3.8)

For this type of stress theory, only six components of stress are required to describe the

state of stress at a point in a member.

The stress vectors σx, σy and σz on planes that are perpendicular, respectively, to the

the x, y and z axes are

σx = σxxi + σxyj + σxzk (3.9)

σy = σyxi + σyyj + σyzk (3.10)

σz = σzxi + σzyj + σzzk (3.11)

where i, j and k are unit vectors relative to the (x,y,z) axes (σx on Figure 3.5). Consider

the stress vector σP on an arbitrary oblique plane P through point O of a member (Figure

3.6). The unit normal vector to plane P is

N = li + mj + nk (3.12)

where (l,m,n) are direction cosines of the unit vector N. Vectorial summation of forces acting

on the tetrahedral element of OABC gives

σp = lσx + mσy + nσz. (3.13)

In terms of projections (σPx, σPy, σPz) of the stress vector σP along the axes (x,y,z), it can

be written as

σp = σPxi + σPyj + σPzk (3.14)

Comparison of (3.13) and (3.14) gives:

σPx = lσxx + mσyx + nσzx, (3.15)

Chapter 3: Continuum Theory of Stresses and Strains 16

σPy = lσxy + mσyy + nσzy, (3.16)

σPz = lσxz + mσyz + nσzz. (3.17)

Equations (3.15), (3.16), (3.17) allow the computation of components of stress on any oblique

plane defined by the unit normal N:(l,m,n), provided that the six components of stress

σxx, σyy, σzz, σxy = σyx, σxz = σzx, σyz = σzy (3.18)

at point O are known. When point O lies on the surface of the member where the surface

forces are represented by distribution of normal and shear stresses, equations (3.15), (3.16),

(3.17) represent the stress boundary conditions at point O.

3.4 Differential Equations of Motion of a Deformable Body

These equations are needed when the theory of elasticity is used to derive load-stress and

load-deflection relations for a member. In Figure 3.5, a general deformed body is considered

and a differential volume element at point O is chosen. The form of the differential equa-

tions of motion depends on the type of orthogonal coordinate axes employed. Rectangular

coordinate axes (x,y,z) whose directions are parallel to the edges of the volume element is

chosen. Since our concentration is mainly on small displacements, we do not distinguish

between coordinate axes in the deformed state and in the undeformed state. Six cutting

planes bound the volume element shown as a free-body diagram in Figure: 3.6. In general,

the state of stress changes with the location of point 0.In particular, the stress compo-

nents undergo changes from one face of the volume element to another face. Body forces

(Bx, By, Bz) are included in the free body diagram.

To write the differential equations of motion, each stress component must be multiplied

by the area on which it acts and each body force must be multiplied by the volume element

since (Bx, By, Bz) have dimensions of force per unit volume. The equations of motion for

the volume element in Figure 3.6 are then obtained by summation of these forces and

summation of moments. In Equations (3.5), (3.6), (3.7) summation of moments has already

been used to obtain the stress symmetry conditions. Summation of forces in the x direction

gives :
∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ Bx = 0 (3.19)

Chapter 3: Continuum Theory of Stresses and Strains 17

where σxx, σyx=σxy, and σxz=σzx are stress components in the x direction and Bx is

the body force per unit volume in the x direction including inertial (acceleration) forces.

Summation of forces in the y and z directions give similar results. The three equations of

motions are:
∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ Bx = 0, (3.20)

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ By = 0, (3.21)

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ Bz = 0. (3.22)

The form of differential equations of motion depends on the coordinate axes. Equations

(3.20), (3.21), (3.22) are derived for rectangular coordinate axes. Below is the most general

form of the differential equations of motion relative to orthogonal curvilinear coordinates

(x, y, z):

∂(βγσxx)
∂x

+
∂(γασyx)

∂y
+

∂(αβσzx)
∂z

+ γσyx
∂α

∂y
+ βσzx

∂α

∂z
− γσyy

∂β

∂x
− βσzz

∂γ

∂x
+ αβγBx = 0

(3.23)
∂(βγσxy)

∂x
+

∂(γασyy)
∂y

+
∂(αβσzy)

∂z
+ ασzy

∂β

∂z
+ γσxy

∂β

∂x
− ασzz

∂γ

∂y
− γσxx

∂α

∂y
+ αβγBy = 0

(3.24)
∂(βγσxz)

∂x
+

∂(γασyz)
∂y

+
∂(αβσzz)

∂z
+ βσxz

∂γ

∂x
+ ασyz

∂γ

∂y
− βσxx

∂α

∂z
− ασyy

∂β

∂z
+ αβγBz = 0

(3.25)

where (α, β, γ) are metric coefficients that are functions of the coordinates (x, y, z). They

are defined by:

ds2 = α2dx2 + β2dy2 + γ2dz2 (3.26)

where ds is the differential arc length representing the diagonal of a volume element (Figure

3.7) with edge lengths αdx, βdy, and γdz, and where (Bx, By, Bz) are the components of

body force per unit volume including inertial forces. For rectangular coordinates, α=β=γ=1

and equations (3.23), (3.24), (3.25) reduce to equations (3.20), (3.21), (3.22).

To obtain a cylindrical coordinate system, let x = r, y = θ, z = z. The differential length

ds is defined by the relation

ds2 = dr2 + r2dθ2 + dz2 (3.27)

From which we obtain

α = 1, β = r, γ = 1 (3.28)

Chapter 3: Continuum Theory of Stresses and Strains 18

Substituting (3.28) into equations (3.23), (3.24), (3.25), the following differential equations

of motion are obtained:

∂σrr

∂r
+

1
r

∂σθr

∂θ
+

∂σzr

∂z
+

σrr − σθθ

r
+ Br = 0 (3.29)

∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

∂σzθ

∂z
+

2σrθ

r
+ Bθ = 0 (3.30)

∂σrz

∂r
+

1
r

∂σθz

∂θ
+

∂σzz

∂z
+

σrz

r
+ Bz = 0 (3.31)

where (σrr, σθθ, σzz, σrθ, σrz, σθz) represent stress components defined relative to cylindrical

coordinates (r, θ, z).

3.5 Strain Theory

The theory of stresses of a continuous medium depends only on Newton’s laws. The theory

of strains depends only on geometrical concepts. Both the theories of stresses and strains are

independent of material behavior, they are applicable to the study of all materials. Although

the theories of stresses and strains are based on different physical concepts, mathematically,

they are equivalent.

When a body is deformed, the particle at point P(x,y,z) goes to the point P ∗(x∗, y∗, z∗)(Figure

3.8). Also the particle at point Q(x+ dx, y + dy, z + dz) goes to the point Q∗(x∗ + dx∗, y∗ +

dy∗, z∗ + dz∗), and the infinitesimal line element PQ = ds passes into the line element

P ∗Q∗ = ds∗.The engineering strain εE of the line element PQ = ds is given by

ε =
ds∗ − ds

ds
. (3.32)

Therefore, by definition, εE > −1. The total differential for dx∗ is obtained as:

dx∗ =
∂x∗

∂x
dx +

∂x∗

∂y
dy +

∂x∗

∂z
dz (3.33)

with similar expressions for dy∗ and dz∗. Here,

x∗ = x + u (3.34)

y∗ = y + v (3.35)

z∗ = z + w (3.36)

Chapter 3: Continuum Theory of Stresses and Strains 19

where (u,v,w) are the (x,y,z) components of the displacement of P to P ∗. Also

ds2 = dx∗2 + dy2 + dz2 (3.37)

ds∗2 = dx∗2 + dy∗2 + dz∗2 (3.38)

So, we can determine the magnification factor

M =
1
2
[(

ds∗

ds
)2 − 1] (3.39)

= εE +
1
2
ε2E (3.40)

= l2εxx + lmεxy + lnεxz + mlεyx (3.41)

+m2εyy + mnεyz + nlεzx + nmεzy + n2εzz (3.42)

M = l2εxx + m2εyy + n2εzz + 2lmεxy + 2lnεxz + 2mnεyz. (3.43)

Although εE can be directly computed from (3.32), it is mathematically simpler to form the

quantity M. For small εE , εE
∼=M. In M;

εxx =
∂u

∂x
+

1
2
[(

∂u

∂x
)2 + (

∂v

∂x
)2 + (

∂w

∂x
)2] (3.44)

εyy =
∂v

∂y
+

1
2
[(

∂u

∂y
)2 + (

∂v

∂y
)2 + (

∂w

∂y
)2] (3.45)

εzz =
∂w

∂z
+

1
2
[(

∂u

∂z
)2 + (

∂v

∂z
)2 + (

∂w

∂z
)2] (3.46)

εxy = εyx =
1
2
(
∂v

∂x
+

∂u

∂y
+

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y
) (3.47)

εxz = εzx =
1
2
(
∂w

∂x
+

∂u

∂z
+

∂u

∂x

∂u

∂z
+

∂v

∂x

∂v

∂z
+

∂w

∂x

∂w

∂z
) (3.48)

εyz = εzy =
1
2
(
∂w

∂y
+

∂v

∂z
+

∂u

∂y

∂u

∂z
+

∂v

∂y

∂v

∂z
+

∂w

∂y

∂w

∂z
) (3.49)

are the finite strain-displacement relations and where

l =
dx

ds
(3.50)

m =
dy

ds
(3.51)

n =
dz

ds
(3.52)

In small displacement theory, the quadratic terms in equations (3.44), (3.45), (3.46), (3.47),

(3.48), (3.49) are neglected.

Chapter 3: Continuum Theory of Stresses and Strains 20

3.6 Torsion of Circular Cross-Section Bars

Consider a straight, constant-diameter circular bar, as shown in Figure 3.10. The loading

consists of torques T, applied in opposite directions at the ends of the bar. The lateral

or cylindrical surface is assumed to be stress free. The observable deformations of the bar

are shown in Figure 3.11. At the beginning, the lines are parallel to the axis of the bar.

After torsion, some helices appear to have become with the circumferential lines remaining

circumferential, that is, no distortion of a cross section, at least on the circumferential

surface of the bar. So here, we make two basic assumptions:

1) Any plane section which is perpendicular to the axis of the bar remains a plane

section.

2) Each diameter of a section rotates with the same angle φ(x).

According to Figure 3.12, the displacements v and w of point P can be expressed in

terms of the angle φ through which the cross section rotates as

v(x, y, z) = y∗ − y = rcos(β + φ)− rcosβ = y(cosφ− 1)− zsinφ

w(x, y, z) = z∗ − z = rsin(β + φ)− rsinβ = z(cosφ− 1)− ysinφ

The displacement in the direction of the axis of the bar is taken to be a constant u0

that can be set equal to zero with no loss in generality. Using the linear strain-displacement

relations then gives:

εx =
∂u

∂x
= 0 (3.53)

εy =
∂v

∂y
= cosφ− 1 (3.54)

εz =
∂w

∂z
= cosφ− 1 (3.55)

γxy =
∂u

∂y
+

∂v

∂x
= −ysinφ

dφ

dx
− zcosφ

dφ

dx
(3.56)

γyz =
∂w

∂y
+

∂v

∂z
= sinφ− sinφ = 0 (3.57)

γxz =
∂u

∂z
+

∂w

∂x
= −zsinφ

dφ

dx
+ ycosφ

dφ

dx
(3.58)

If we make the following assumptions; dφ
dx is small, cosφ≈1, sinφ≈φ and that products of φ

and dφ
dx can be neglected, we find:

εx = εy = εz = γyz = 0 (3.59)

Chapter 3: Continuum Theory of Stresses and Strains 21

γxy = −z
dφ

dx
(3.60)

γxz = y
dφ

dx
(3.61)

If we assume that the material is linear and isotropic so that

τxy = Gγxy = −Gz
dφ

dx
(3.62)

τxz = Gγxz = Gy
dφ

dx
(3.63)

According to Figure 3.13a, it is seen that the torque can be represented in terms of the

stresses as

T =
∫

Area
(yτxz − zτxy)dA (3.64)

T = G
dφ

dx

∫
Area

(x2 + y2)dA = G
dφ

dx

∫
Area

r2dA = JG
dφ

dx
(3.65)

or

T = JG
dφ

dx
(3.66)

where J = πa4

2 is the polar moment of the area of the circular cross section. (3.66) is

the basic force-displacement relation for the elementary torsion problem. Eliminating Gdφ
dx

between (3.62), (3.63) and (3.66), the stresses can be expressed in terms of the torque T as

τxy = −Tz

J
(3.67)

and

τxz =
Ty

J
(3.68)

These stresses are shown at an arbitrary location in the cross section in Figure 3.13b. The

stress vector can be expressed as

t = −j
Tz

J
+ k

Ty

J
= (−jz + ky)

T

J
(3.69)

which, with z=rsinβ and r=cosβ, becomes

t = (−jsinβ + kcosβ)
Tr

J
(3.70)

The vector in the brackets is the unit vector eβ in the direction shown. So, the direction

of the shear stress is everywhere tangent to the circle at that location, and with t = τeβ it

follows that the shear stress is given by

τ =
Tr

J
(3.71)

Chapter 3: Continuum Theory of Stresses and Strains 22

for the case of the torsion of a circular bar.

In summary, given the torque transmitted, the stresses are determined by the (3.71)

with the observable angle of twist φ obtained by integrating the force displacement relation

T=JGdφ
dx .

3.7 Torsion of a Single Thin-Walled Tube

The problem of the torsion of a single thin walled tube has an exact solution when the tube

is a constant thickness circular tube. The stresses in Figure:3.14a are given by (3.71) with

J = π(a4 − b4)/2. The corresponding torque-rate of twist equation is T = JGdφ
dx . When

the thickness t=a-b is small compared to the average radius R = (a + b)/2, the average

shear stress in the tube can be computed according to tavg = TR/J (Figure:3.14b). Generic

formulation for the torsion of a single tube can be formulated on an arbitrary cross section

as shown in Figure:3.15a. In this model, the wall thickness, which is small compared to the

tube diameter, can vary with position around the perimeter of the tube but not along the

axis of the tube. The wall thickness, which is small compared to the tube diameter, can

vary with position around the perimeter of the tube but not along the axis of the tube. Also

the area and orientation of the cross section are constant along the tube, that is, there is

no initial twist of the tube. The equilibrium equation is based on consideration of a typical

segment, as shown in Figure:3.15b. At any point s around the periphery of the tube the

shear stress is constant across the thickness. Summing forces in the axial or x-direction

gives

ΣFx = −τ1t1δx + τ2t2δx = 0 (3.72)

from which τ1t1 = τ2t2. This means that the product of the shear stress and the thickness

is a constant around the periphery of the tube. The product q = τt as defined the shear

flow, is constant around the periphery. According to Figure: 3.16a, it is seen that the total

torque T is

T =
∮

r df =
∮

rq ds = q

∮
r ds (3.73)

where since the shear flow is constant it can be brought outside the integral. According to

Figure:3.16b :

T = q

∮
(ρcosθ)ds = q

∮
ρ(cosθds) = q

∮
2dA = 2A0q (3.74)

Chapter 3: Continuum Theory of Stresses and Strains 23

where A0 is the area with the midline of the tube. Since q = τt, this relation can be written

as :

τ =
T

2A0t
(3.75)

Equation (3.75) verifies that the maximum shear stress occurs at the point around the

periphery of the tube where the thickness is a minimum. The constant character of the

shear flow, which is always tangent to the tube is shown in Figure:3.17.

Chapter 4: Computational Techniques for Nanoscale Simulations 24

Chapter 4

COMPUTATIONAL TECHNIQUES FOR NANOSCALE

SIMULATIONS

Until about 40 years ago, researchers computed the thermodynamic properties of inter-

acting, bulk condensed-matter systems with analytical approximation methods for infinite

systems. These analytical methods were valid only in the weakly interacting system limit

and the approximations had to be carried out numerically beyond a few orders. In re-

cent times, a new kind of approximation scheme based on exact numerical computation of

properties of a finite-sample system has become the most common approach to studying

interacting condensed-matter systems. Molecular dynamics (MD) refers to the situation

where the motion of atoms or molecules have treated in approximate finite difference equa-

tions of Newtonian mechanics. Except when dealing with very light atoms and very low

temperatures, the use of classical mechanics is well justified, [1].

Until about 20 years ago, MD computations primarily used simplistic pair potentials to

describe inert gases in condensed-matter systems or the materials that tend to form hexag-

onal closed packing structures. A slow transition to describe dynamics of more complex

condensed-matter systems such as metals or semiconductors with explicit or implicit many-

body force-field functions began with embedded-atom-method type of potentials for metals

and bond-order type potentials for semiconductors. Based on the variations of these three

types potentials, researchers have proposed and used a wide variety of force-field functions

in classical MD simulations. Many of the potentials are expected to work well in the regimes

of physical parameters in which they were constructed in the first place, [6].

In recent years, several accurate quantum MD schemes have computed the forces be-

tween atoms at each time step with quantum mechanical calculations within the Born-

Oppenheimer approximation. The dynamic motion for ionic positions are still governed by

Newtonian or Hamiltonian mechanics and described by MD. The most widely known and

accurate scheme is the Car-Parrinello MD method which describes the electronic states and

Chapter 4: Computational Techniques for Nanoscale Simulations 25

atomic forces using ab initio density functional method (usually within the local density

approximation). Although we can now perform such ab initio MD simulations for systems

consisting of a few hundred atoms, for a vast range of system sizes such calculations start

to stretch the limits of present-day computational resources. In the intermediate regimes

between large-scale classical MD and quantum Car-Parrinello MD methods, semiempiri-

cal quantum simulation approaches cover an important system size range where classical

potentials are not accurate enough and ab initio computations are not feasible. The tight-

binding molecular dynamics (TBMD) approach thus provides an important bridge between

the accurate ab initio quantum MD and classical MD methods, [1].

In computational nanotechnology research, these three simulation methods can be used

in a complementary manner to improve computational accuracy and efficiency. Based on

experimental observations or theoretical dynamic and structure simulations, we can first

investigate a nanosystems atomic structure. After we finalize the nanoscale systems con-

figurations, we can investigate its electronic behaviors through static ab initio electronic

energy minimization schemes or through studies of the systems quantum conductance be-

havior. Investigating the ab initio electronic structure provides highly accurate information

about not only the systems thermodynamic minimum energy configurations but also the

chemical reactions and charge transfers that occur when two nanoscale systems are brought

together or taken apart. Studies of transport behavior are important in designing nanode-

vices, where the operating characteristics are usually determined by electronic, thermal,

acoustic, or chemical signal transfer through the system, [1], [18], [19].

4.1 Classical molecular dynamics

In earlier days, the structural, mechanical, and thermal properties of interacting, bulk con-

densed matter systems were studied with analytical approximation methods for infinite

systems. Numerical computer simulations of the finite sample systems have become more

common recently because powerful computers to simulate nanoscale systems in full com-

plexity are now available. Atomistic molecular dynamics (MD) refers most commonly to the

situation where the motion of atoms or molecules is treated in approximate finite difference

equations of Newtonian mechanics. Except when dealing with very light atoms and very

low temperatures, the use of the classical MD method is well justified. In MD simulation,

Chapter 4: Computational Techniques for Nanoscale Simulations 26

the dynamic evolution of the system is governed by Newtons classical equation of motion,

d2RI/dt2 = FI = −dV/dRI (4.1)

which is derived from the classical Hamiltonian of the system,

H = ΣP 2
I /2MI + V (RI) (4.2)

The atomic forces are derived as analytic derivatives of the interaction energy functions,

FI(RI) = −dV/dRI (4.3)

and are used to construct Newtons classical equations of motion which are second-order ordi-

nary differential equations. In its global structure, a general MD code typically implements

an algorithm to find a numerical solution of a set of coupled first-order ordinary differential

equations given by the Hamiltonian formulation of Newtons second law. The equations of

motion are numerically integrated forward in finite time steps using a predictor-corrector

method [18].

The MD code for carbon based systems involves analytic many-body force field functions

such as Tersoff-Brenner potentials [19] for C-C and C-H interactions. The Tersoff-Brenner

potential is specially suited for carbon-based systems, such as diamond, graphite, fullerenes,

and nanotubes [19], and has been used in a wide variety of scenarios with results in agree-

ment with experimental observations. Currently, there is no universal analytic many-body

force field function that works for all materials and in all scenarios. A major distinguishing

feature of the Tersoff-Brenner potential for carbon-based systems is that short-range bonded

interactions are reactive, so that chemical bonds can form and break during the course of

a simulation. Therefore, compared to some other molecular dynamics codes, the neighbor

list describing the environment of each atom includes only a few atoms and needs to be

updated more frequently. The computational cost of the many-body bonded interactions is

relatively high compared to the cost of similar methods with non-reactive interactions with

simpler functional forms. As a result, the overall computational costs of both short-range

interactions and long-range, non-bonding van der Waals interactions are roughly compara-

ble. For large-scale atomistic modeling (from 105 upto 108 atoms), multiple processors are

used for MD simulations, and the MD codes are generally parallelized [1], [18], [19].

Chapter 4: Computational Techniques for Nanoscale Simulations 27

4.2 Generalized tight-binding molecular dynamics

In recent years, several more accurate quantum molecular dynamics schemes have been

developed in which the forces between atoms are computed at each time step via quan-

tum mechanical calculations within the Born-Oppenheimer approximation. The dynamic

motions for ionic positions are still governed by Newtonian or Hamiltonian mechanics and

described by molecular dynamics. In the most general approach of full quantum mechan-

ical description of materials, atoms are described as a collection of quantum mechanical

particles, nuclei, and electrons, governed by the Schrödinger equation

HΦ[RI , ri] = EtotΦ[RI , ri] (4.4)

with the full quantum many-body Hamiltonian operator

H = ΣP 2
I /2MI + ΣZIZJe2/RIJ + Σp2

i /2me + Σe2/rij − ΣZIe
2/|RI − ri| (4.5)

where RI and r are the coordinates of the nuclei and electrons. Using the Born-Oppenheimer

approximation, the electronic degrees of freedom are assumed to follow adiabatically the

corresponding nuclear positions, and the nuclei coordinates become classical variables. With

this approximation, the full quantum many-body problem is reduced to a quantum many-

electron problem

H[RI]Ψ[ri] = EelΨ[ri] (4.6)

where

H = ΣP 2
I /2MI + H[RI] (4.7)

In the intermediate regimes, for up to few thousand atoms, the tight-binding molecular dy-

namics (TBMD) approach provides very good accuracy for both structural and mechanical

characteristics. The computational efficiency of the tight-binding method derives from the

fact that the quantum Hamiltonian of the system can be parameterized. Furthermore, the

electronic structure information can be easily extracted from the tight-binding Hamiltonian,

which in addition also contains the effects of angular forces in a natural way [7], [6], [18]

In the tight-binding method, further approximation simplifies the quantum many elec-

tron problem. We assume that the crystal potential is strong that when an ion captures

an electron during its motion through the lattice, the electron remains at that site for a

Chapter 4: Computational Techniques for Nanoscale Simulations 28

long time before leaking, or tunneling, to the next ion site. During the capture interval,

the electron orbits primarily around a single ion uninfluenced by other atoms, so that its

state function is essentially that of an atomic orbital. Usually, the electron is tightly bound

to its own atom. modulated by a Bloch wave-function phase factor for a periodic lattice.

This ensures that an electron in a tight-binding level will be found, with equal probability,

in any cell of the crystal, because its wave function changes only by the phase factor as

one electron moves from one cell to another. The tight-binding method is computationally

efficient because we can parameterize the Hamiltonian (4.7). Furthermore, we can easily

extract the electronic structure information from the tight-binding Hamiltonian, which also

contains the effects of angular forces in a natural way [9], [7].

TBMD methods advantage is that it can be used to find an energy-minimized structure

of a nanoscale system under consideration without symmetry constraints. Sometimes a

systems symmetry-unconstrained dynamic energy minimization can help us find the systems

global energetic minimum, which is not easily conceptualized on the symmetry consideration

alone. The parallelization of the TBMD code involves parallelizing the direct diagonalization

(of the electronic Hamiltonian matrix) part as well as the MD part. Parallelizing a sparse

symmetric matrix with many eigenvalues and eigenvectors is a complex bottleneck in the

simulation of large intermediate-range system and requires new algorithms [19].

4.3 Ab initio simulation methods

Additionally, the ab-initio or first principles method is a simulation method to directly

solve the complex quantum many-body Schrdinger equation using numerical algorithms.

An ab-initio method provides a more accurate description of quantum mechanical behavior

of materials properties even though the system size is currently limited to only about few

hundred atoms. Current ab-initio simulation methods are based on a rigorous mathematical

foundation of the density functional theory (DFT). This is derived from the fact that the

ground state total electronic energy is a functional of the density of the system. It has been

shown that the DFT can be reformulated as a single-electron problem with self-consistent

effective potential, including all the exchange-correlation effects of electronics interactions:

HI = p2/2me + VH(r) + VXC [ρ(r)] + Vion−el(r), (4.8)

Chapter 4: Computational Techniques for Nanoscale Simulations 29

HIΨi(r) = εΨi(r), i = 1, ..., Ntot, (4.9)

ρ(r) = Σ|Ψi(r)|2. (4.10)

This single-electron Schrdinger equation is known as the Kohn-Sham equation, and the

local density approximation (LDA) has been introduced to approximate the unknown ef-

fective exchange-correlation potential. This DFT-LDA method has been very successful in

predicting materials properties without using any experimental inputs other than the iden-

tity of the constituent atoms. For practical applications, the DFT-LDA method has been

implemented with a pseudopotential approximation and a plane wave (PW) basis expan-

sion of single-electron wave functions. These approximations reduce the electronic structure

problem to a self-consistent matrix diagonalization problem [18].

The TBMD method described earlier is another quantum mechanical simulation method

based on the linear combination of atomic orbital approximations to describe the quantum

mechanical electronic wave functions. Because of the simple basis expansion using atomic

orbitals, the TBMD method is approximately 1,000 times more efficient than the ab initio

method. However, the ab initio method provides a more accurate description of quantum

mechanical behavior of materials properties even though it limits system size to a few hun-

dred atoms. From this viewpoint MD, TBMD and ab initio methods form a complementary

set of simulation tools to study diverse atomic-scale processes in nanodevice modeling [1].

The three simulation methods described above each have their own advantages and are

suitable for studies for a variety of properties of material systems. MD simulations have

the least computational cost, followed by Tight Binding methods. Ab initio methods are

the most costly among the three. MD simulations can study systems with up to millions of

atoms. With well-fitted empirical potentials, MD simulations are quite suitable for studies

of dynamical properties of large-scale systems, where the detailed electronic properties of

systems are not always necessary. While DFT methods can provide higher accuracy for

self-consistent electronic structures, the high computational cost limits them to systems

up to hundreds of atoms currently. To take the full capacity of DFT methods, a careful

choice of an appropriate sized system is necessary. Tight Binding methods lay in between

MD simulations and DFT methods, as to the computational cost and accuracy, and are

applicable for systems up to thousands of atoms. For moderate-sized systems, TB methods

can provide quite accurate mechanical and electronic characteristics [1], [6].

Chapter 4: Computational Techniques for Nanoscale Simulations 30

4.4 Parallel Computing

Parallel processing as a method of having many small tasks solve one large problem has

emerged as a key enabling technology in modern computing. The past several years have

witnessed an everincreasing acceptance and adoption of parallel processing, both for high-

performance scientific computing and for more “general purpose” applications, was a result

of the demand for higher performance, lower cost, and sustained productivity. The accep-

tance has been facilitated by two major developments: massively parallel processors (MPPs)

and the widespread use of distributed computing [13], [14].

MPPs are now the most powerful computers in the world. These machines combine a few

hundred to a few thousand CPUs in a single large cabinet connected to hundreds of gigabytes

of memory. MPPs offer enormous computational power and are used to solve computational

grand challenge problems such as global climate modeling and drug design. As simulations

become more realistic, the computational power required to produce them grows rapidly.

Thus, researchers on the cutting edge turn to MPPs and parallel processing in order to get

the most computational power possible. The second major development affecting scientific

problem solving is distributed computing. Distributed computing is a process whereby a set

of computers connected by a network are used collectively to solve a single large problem. As

more and more organizations acquire highspeed local area networks interconnecting many

general purpose workstations, the combined computational resources may exceed the power

of a single high performance computer. In some cases, several MPPs have been combined

using distributed computing to produce unequaled computational power [13], [14], [15].

In all parallel processing, data must be exchanged between cooperating tasks. Several

paradigms have been tried including shared memory, parallelizing compilers, and message

passing. The message passing model has become the paradigm of choice, from the per-

spective of the number and variety of multiprocessors that support it, as well as in terms

of applications, languages, and software systems that use it. The Parallel Virtual Machine

(PVM) system is used in this study. PVM uses the message passing model to allow program-

mers to exploit distributed computing across a wide variety of computer types, including

MPPs. A key concept in PVM is that it makes a collection of computers appear as one

large virtual machine, hence its name [14].

PVM is an integrated set of software tools and libraries that emulates a general purpose,

Chapter 4: Computational Techniques for Nanoscale Simulations 31

flexible, heterogeneous concurrent computing framework on interconnected computers of

varied architecture. The overall objective of the PVM system is to enable such a collection

of computers to be used cooperatively for concurrent or parallel computation. Detailed

descriptions and discussions of the concepts, logistics, and methodologies involved in this

network based computing process are contained in the User Guide of PVM. Briefly, the

principles upon which PVM is based include the following:

1) User configured host pool: The application’s computational tasks are executed on

a set of machines that are selected by the user for a given run of the PVM program.

Both singleCPU machines and hardware multiprocessors (including shared memory and

distributed memory computers) may be part of the host pool. The host pool may be

altered by adding and deleting machines during operation. (This is an important feature

for fault tolerance).

2) Translucent access to hardware: Application programs either may view the hardware

environment as an attributeless collection of virtual processing elements or may choose to

exploit the capabilities of specific machines in the host pool by positioning certain compu-

tational tasks on the most appropriate computers.

3) Process based computation: The unit of parallelism in PVM is a task, an independent

sequential thread of control that alternates between communication and computation. No

process to processor mapping is implied or enforced by PVM; in particular, multiple tasks

may be executed on a single processor.

4) Explicit messagepassing model: Collections of computational tasks, each performing a

part of an application’s workload using data, functional, or hybrid decomposition, cooperate

by explicitly sending and receiving messages to one another. Message size is limited only

by the amount of available memory.

5) Heterogeneity support: The PVM system supports heterogeneity in terms of ma-

chines, networks, and applications. With regard to message passing, PVM permits messages

containing more than one datatype to be exchanged between machines having different data

representations.

6) Multiprocessor support: PVM uses the native messagepassing facilities on multipro-

cessors to take advantage of the underlying hardware [13], [16].

The PVM system is composed of two parts. The first part is a daemon, called pvmd3

Chapter 4: Computational Techniques for Nanoscale Simulations 32

and sometimes abbreviated pvmd, that resides on all the computers making up the virtual

machine. Pvmd3 is designed so that any user with a valid login can install this daemon

on a machine. When a user wishes to run a PVM application, first virtual machine must

be created by starting up PVM. The PVM application can then be started from a Unix

prompt on any of the hosts. Multiple users can configure overlapping virtual machines, and

each user can execute several PVM applications simultaneously. The second part of the

system is a library of PVM interface routines. It contains a functionally complete repertoire

of primitives that are needed for cooperation between tasks of an application. This library

contains usercallable routines for message passing, spawning processes, coordinating tasks,

and modifying the virtual machine. The PVM computing model is based on the notion

that an application consists of several tasks. Each task is responsible for a part of the

application’s computational workload. Sometimes an application is parallelized along its

functions; that is, each task performs a different function, for example, input, problem

setup, solution, output, and display. This process is often called functional parallelism.

A more common method of parallelizing an application is called data parallelism. In this

method all the tasks are the same, but each one only knows and solves a small part of

the data. This is also referred to as the SPMD (single program multiple data) model of

computing. PVM supports either or a mixture of these methods. Depending on their

functions, tasks may execute in parallel and may need to synchronize or exchange data,

although this is not always the case. [13]

The PVM system currently supports C, C++ and Fortran languages. This set of lan-

guage interfaces have been included based on the observation that the predominant majority

of target applications are written in C and Fortran, with an emerging trend in experimenting

with object based languages and methodologies. The C and C++ language bindings for the

PVM user interface library are implemented as functions, following the general conventions

used by most C systems, including Unix like operating systems. To elaborate, function

arguments are a combination of value parameters and pointers as appropriate, and function

result values indicate the outcome of the call. In addition, macro definitions are used for

system constants, and global variables such as errno and pvm errno are the mechanism

for discriminating between multiple possible outcomes. Application programs written in C

and C++ access PVM library functions by linking against an archival library (libpvm3.a)

Chapter 4: Computational Techniques for Nanoscale Simulations 33

that is part of the standard distribution. Fortran language bindings are implemented as

subroutines rather than as functions. This approach was taken because some compilers on

the supported architectures would not reliably interface Fortran functions with C functions.

One immediate implication of this is that an additional argument is introduced into each

PVM library call for status results to be returned to the invoking program. Also, library

routines for the placement and retrieval of typed data in message buffers are unified, with

an additional parameter indicating the datatype. Apart from these differences (and the

standard naming prefixes — pvm for C, and pvmf for Fortran), a one to one correspondence

exists between the two language bindings. Fortran interfaces to PVM are implemented as

library stubs that in turn invoke the corresponding C routines, after casting and/or deref-

erencing arguments as appropriate. Thus, Fortran applications are required to link against

the stubs library (libfpvm3.a) as well as the C library [13].

All PVM tasks are identified by an integer task identifier (TID) . Messages are sent to

and received from TID. Since TID must be unique across the entire virtual machine, they are

supplied by the local pvmd and are not user chosen. Although PVM encodes information

into each TID the user is expected to treat the tids as opaque integer identifiers. PVM

contains several routines that return TID values so that the user application can identify

other tasks in the system. There are applications where it is natural to think of a group of

tasks while cases exists where a user would like to identify his tasks by the numbers 0-(p-1),

where p is the number of tasks. PVM includes the concept of user named groups. When

a task joins a group, it is assigned a unique “instance” number in that group. Instance

numbers start at 0 and count up. In keeping with the PVM philosophy, the group functions

are designed to be very general and transparent to the user. For example, any PVM task

can join or leave any group at any time without having to inform any other task in the

affected groups. Also, groups can overlap, and tasks can broadcast messages to groups

of which they are not a member. To use any of the group functions, a program must be

linked with libgpvm3.a. The general paradigm for application programming with PVM is

as follows. A user writes one or more sequential programing C, C++, or Fortran 77 that

contain embedded calls to the PVM library. Each program corresponds to a task making

up the application. These programs are compiled for each architecture in the host pool,

and the resulting object files are placed at a location accessible from machines in the host

Chapter 4: Computational Techniques for Nanoscale Simulations 34

pool. To execute an application, a user typically starts one copy of one task (usually the

“master” or “initiating” task) by hand from a machine within the host pool. This process

subsequently starts other PVM tasks, eventually resulting in a collection of active tasks that

then compute locally and exchange messages with each other to solve the problem. Tasks

interact through explicit message passing, identifying each other with a system assigned,

opaque TID. [13]

In this study, we used an O(N) parallel tight binding molecular dynamics simulation

code developed in [7]. In that study the linear scaling of the code is provided by using

divide and conquer approach to carry out quantum calculations. The basic strategy for

this method is to divide a large system into many subsystems, determining the electron

density of each subsystem separately, and summing the corresponding contributions from

all subsystems to obtain only from the electron density. In traditional TB approach, the

Hamiltonian of the system is solved in frequency space (reciprocal space, k space) by direct

matrix diagonalization. This causes O(N3) scaling with respect to the number of atoms.

But in the linear scaling method, the Hamiltonian of the system is solved in real space by

making the approximation that only the local environment contributes to the bonding of

each atom. Since this approximation is made, for an O(N) tbmd algorithm, there is a very

important parameter which is called cutoff radius. The cutoff radius determines which two

atoms are in interaction with each other. But during the molecular dynamics simulation,

since the coordinates of the atoms change, the atoms which are in interaction in an MD

step may not be interaction with each other in the next MD step. So the interacting pairs

must be checked whether they are in interaction or not. But this search is quite expensive,

being of the order N2, if no special algorithms are applied [7]. To speed up this process,

either the linked cells algorithm or a Verlet list or both of them can be used [7]. Since divide

and conquer algorithm for tbmd is used, it is inherently possible to make use of linked cells

technique and apply parallelization algorithm [7].

The main cost of all computation in an O(N) tbmd simulation is spent for calculation

of energy and forces.The approach followed in the study [7] is ; not to distribute all parts of

tbmd simulation to avoid higher cost of the internode communication time. Instead of that,

only calculation of energy and forces are distributed to processors, collecting the resulting

forces, and doing the rest of calculation (non-bonding potentials, velocity rescaling, etc.)

Chapter 4: Computational Techniques for Nanoscale Simulations 35

on only one processor. By this way, it becomes possible to reduce the communication

requirements and to obtain a better scaling to large number of processors. The parallel

O(N) tbmd flowchart used in the study [7] is given below

Master Node, Sending all necessary information to slaves

Slave Node

Divide and Conquer Scheme

–Computing Repulsive Forces and Energy, Urep

–From i = 1 to (Number of Cells/Number of Processors)

—-Computing O(N) Hamiltonian and diagonalization

—-Internode communication; Computing Ebs

–Internode communication; Cal. Chemical Potential for the Whole System

–From i = 1 to (Number of Cells/Number of Processors)

—-Computing the Hellmann.Feynman Forces partially

—-Internode communication; Computing the Hellmann.Feynman Forces

End of Divide and Conquer Scheme

Computing Kinetic Energy, Rescaling Velocities to keep Temperature constant

Compute Total Energy per Atom, ET = Urep + Ebs + Ekin

MD Loop,MD Time Step ≡ 1

–Compute new positions ri(n+ 1)

–Internode communication; Updating Positions in each node

–Divide and Conquer Scheme

–Compute new forces Fi(n + 1) and accelerations ai(n+ 1)

–Compute new velocities vi(n+ 1)

–Computing Instantaneous Temperature, Kinetic Energy

–Rescaling Atomic velocities to Keep Temperature Constant

–Computing Pair Correlation Function and Radial Distribution Function

–Computing Bond Angle Distribution and Atomic Coordination Number

–Computing Bond Length Distribution

–Compute Total Energy, ET = Urep + Ebs + Ekin

–Saving Intermediate Configuration

–Drawing Atomic Structure (PovRay)

Chapter 4: Computational Techniques for Nanoscale Simulations 36

–mds = mds + 1

End of MD Loop, (n ≡ MD time step; i = 1, . . . ,Number of Atoms)

Chapter 5: Results and Discussion 37

Chapter 5

RESULTS AND DISCUSSION

In this thesis, we report an O(N) parallel tight binding molecular dynamics simulation study

of (10x10) structured carbon nanotubes (CNT) at temperatures 300 K, 600 K, 900 K, 1200

K with different layers (20, 40, 50, 60) and applied torsion to these CNTs for different twist

angles (45o, 90o, 120o, 180o, 360o). The tight-binding (TB) theory has been established as a

good compromise between ab initio simulations and model potential ones, bridging the gap

between them, either as far as the overall numerical efficiency and /or as far as the accu-

racy were concerned. Tight-binding molecular dynamics (TBMD) is a computational tool

designed to run finite temperature MD simulations within the semiempirical tight-binding

scheme. This technique can be used to simulate material systems at different conditions

of temperature, pressure, etc., including materials at extreme thermodynamical conditions.

The electronic structure of simulated system can be calculated by a TB Hamiltonian so

that the quantum mechanical many-body nature of interatomic forces is naturaly taken

into account. The traditional TB theory solves the Schrödinger equation by direct matrix

diagonalization, which results in cubic scaling with respect to the number of atoms [O(N3)].

The O(N) methods, on the other hand, make the approximation that only the local envi-

ronment contributes to the bonding and hence the band energy of each atom. In this case

the run time would be in linear scaling with respect to the number of atoms. Moreover,

O(N) schemes can be efficiently parallelized through the use of message passing libraries.

Message passing libraries such as PVM and MPI are making simulations possible on clusters

of computers [9]. All the simulations presented here were carried out in canonical (N, V,

T) ensemble. The Newton equations of motion were integrated using the velocity Verlet

algorithm with a time step equal to 0.1 fs. To avoid inaccurate integration of the Newton

equations of motion, the velocities of the constituent atoms were occasionally rescaled to

maintain the temperature of the system at target value. Periodic boundary conditions were

applied in the uniaxial direction. The details of parallel O(N) TBMD algorithm used in this

Chapter 5: Results and Discussion 38

study can be found in [7], [8], [9] [17].

In this study, there are three different kinds of comparisons for a 10× 10 piristine CNT.

These are the effects of layer number, temperature and twist angle changes on the torsional

response of CNT. In our study, torsion is applied to the structure at one of its ends while

the other end is kept fixed. In Figure 5.1, temperature effect on torsional response of CNT

is given. MD steps versus total energy changes of the system results are given for 20 layers,

360o twist angle, 10× 10 piristine CNT. The temperatures values are set at 300 K, 600 K,

900 K and 1200 K. As seen from Figure 5.1, there is no significant difference in the torsion

response of CNT for the temperature conditions of 300 K and 600 K. For both of these

conditions there are separated atoms from the body of CNT. These can be easily detected

from the jumps in Figure 5.1. These jumps and the separated atoms can be clearly seen in

Figures 5.7 and 5.8, respectively. For 900 K, there are also separated atoms, but the total

system stabilizes at a higher energy value compared with the lower temperature values.

Another thing that must be noted here is that, there is only one separated atom for 900

K. This is an expected behavior since the temperature increase makes the total structure

more ductile and this ductility provides the system to keep its atoms together more strongly

as torsion is applied to the CNT. The effect of temperature on the ductility of the system

can be easily seen when the temperature is increased to 1200 K. At higher temperature, as

expected, the system stabilizes at a higher energy value. But more important observation

here is that there are no atoms separated from the body of the CNT. This can be seen in

Figures 5.10 and 5.22a-b. This is a very clear result that shows how the temperature effects

the ductility of the system. The jumps of energy graphs, the separated atoms and the

deformations have been shown clearly for the given temperature values in Figures 5.19a-b,

5.20a-b, 5.21a-b, 5.22a-b, 5.7, 5.8, 5.9, 5.10, respectively. In Figure 5.2, the effect of twist

angle to the final total energy of the whole system (20 layer, 300 K, 10x10 CNT) is given.

As expected, total energy of the system increases as the twist angle increases since the strain

enegy stored in the system increases. But unexpectedly, the total energy, for the case of

360o twist angle, decreases to an energy value which is close to the total energy value for

the case of 45o twist angle. The main reason for this unexpected behavior can be explained

as follows : In the case of 45o twist angle, there is no separated atom in the structure due

to the applied torsion. This can be seen in Figures 5.2, 5.11 and 5.23a-b. In Figure 5.11,

Chapter 5: Results and Discussion 39

there is no jump in the total energy value after torsion is applied. Jumps in total energy

graphs mean separation of atoms from the structure due to the bond breaking between

atoms. Also, in Figures 5.23a-b, it is clearly seen that no atoms have been separated from

the piristine structure of 10×10 CNT. Briefly, all the strain energy due to applied torsion is

stored in the structure. But for the case of 360o twist angle, there are two separated atoms

in the structure because of the applied torsion. This can be easily detected in Figures 5.7

and 5.19a-b. In Figure 5.7 there are two jumps in the total energy graph. This means that

at these moments of MD step, two atoms have separated from the structure. Naturaly and

expectedly, the bonds around these atoms have been broken. Total energy of the system

decreases because of these relaxations of atoms and bonds. These separated atoms can be

seen in Figure 5.19a-b. Figure 5.3 is a good example to investigate the effect of number

of layers on the torsional response of CNTs. In this graph for the same temperature and

twist angle values, torsional response of CNT’s with 20 layer and 40 layers are shown. The

total energy of the 20 layered carbon nanotube system is greater than the total energy of

the 40 layered carbon nanotube system. This is due to the stored strain energy in the

system as for the same amount of applied torsion, a shorter system has more displacement

than the longer system. From Figures 5.24a-b, 5.26a-b, 5.12 and 5.14 it is seen that for

20 layered carbon nanotube there are 7 atoms separated from the structure. But for 40

layered carbon nanotube there are 11 separated atoms. This layer effect can not be seen

when the applied twist angle is increased to 360o. In Figure 5.4, for the 20 and 60 layered

CNTs, at the tempearture of 300 K, a twist angle of 360o is applied. As opposed to the

Figure 5.3, at torsion step of molecular dynamic simulation, the total energy of the longer

system is at higher values with respect to the shorter system. In Figure 5.27a-b, there

are 29 atoms seen separated from the structure of carbon nanotube. This is almost 15-fold

increased relaxation for the case of 20 layered carbon nanotube. But 60 layered CNT system

stabilizes at a higher energy value than the 20 layered system. This may also be caused by

the fact that the number of atoms contained in the structure of 60 layer system is larger.

In Figure 5.5, the twist angle effect on the torsional response of 50 layered carbon nanotube

is given. As expected, total energy of the system increases as the applied torsion increases.

In the case of 50 layered carbon nanotube, the increase in the energy value for stabilization

of the structure for twist angle 360o occurs. As explained above, the total energy of the

Chapter 5: Results and Discussion 40

system does not decrease as in the case of 20 layered carbon nanotube for twist angle 360o.

This is seen in Figures 5.5, 5.16 and 5.17. In Figure 5.6, a 50 layered CNT with twist angle

of 180o is investigated for an increasing temperature in the case of applied torsion. Same

torsional response characteristics are seen here with 20 layered CNT response to the torsion.

In Figure 5.29, the temperature effect on bond length distribution is given for a 20 layered

360o twist angle 10× 10 carbon nanotube. The most significant thing seen from this figure

is that, when the temperature is increased, the lenghts of the bonds get longer in the case

of same amount of torsion and this effect explains why the structure does not tear apart at

higher temperatures. This effect can also be easily seen in Figure 5.1. Since in this figure,

there are jumps for the temperature values 300 K, 600 K and 900 K. As explained above,

these jumps show the breaking-of the atoms from the carbon nanotube. These separated

atoms can be seen in Figures 5.19a-b, 5.20a-b and 5.21a-b. In Figures 5.22a-b, the case

for 1200 K and 360o twist angle is shown. Some deformations do exist at sides of the tube

but as it can also be detected from Figure 5.1, there is no separated atom. In Figure 5.30,

the twist angle effect on bond length distribution is given for a 20 layered, 300 K constant

temperature 10 × 10 carbon nanotube. When the twist angle increases from 45o to 90o,

longer values for the bond lengths are obtained in the distribution function. But when the

twist angle increases from 90o to 120o, distribution function unexpectedly narrows beyond

to the values of twist angle 45o. This is a significant physical torsion response of carbon

nanotube. As the twist angle is increased from 120o to 360o, the distribution function barely

widens beyond to the values of 45o. In Figure 5.31, the layer effect on torsional response

of carbon nanotubes is given for twist angle 90o. As the number of layers increases, the

deformation over the bonds due to the torsion decreases. This is an expected behaviour

since as the length of the tube increases, the strain energy stored in the system due to

torsion decreases. This can also be easily detected from Figure 5.3. But in Figures 5.32

and 5.4, we see the opposite behaviour. In these plots we can see that as the number of

layers increases, the stored strain energy in the system due to torsion with a twist angle of

360o also increases. This is a very dramatic effect of layer number on torsional response of

carbon nanotube. The Figures 5.33 and 5.34 shows the twist angle effect and temperature

effect on bond length distribution of a 50 layered carbon nanotube. In Figures 5.35 and

5.36, the initial bond length distribution and bond angle distribution functions are given

Chapter 5: Results and Discussion 41

respectively. In Figure 5.37, the temperature effect on bond angle distribution is given.

As expected, the distribution function graphs widen as the temperature values increase.

Due to torsion with a twist angle of 360o, for higher temperatures, deformations over the

structure of carbon nanotube increase dramatically and this causes the angle distribution

functions to widen. In Figure 5.38, the twist angle effect on bond angle distribution is given

with the same interesting behaviour as in Figure 5.30. For the increase in the twist angle

value from 45o to 90o, distribution function widens as expected. But after 90o, as the twist

angle value increases, the distribution function narrows. The same behaviour for torsional

response has been seen in bond length distributions. For twist angle values greater than

90o, the structure of 10 × 10, 20 layer carbon nanotube tends to be homogenous in the

means of angle and length values up to 120o of twist angle. As we increase the twist angle

from 120o to 360o, the distribution function widens. In Figure 5.39, layer effect on bond

angle distribution function is given.The observed behaviour is expected since for a longer

structure, the distortion in the angles will be less than that of a shorter structure in the

case of torsion according to continium elesticity theorem. This is what exactly is seen in

this figure. But in Figure 5.40, we cannot observe the same behaviour. In this figure, for a

longer structure, 60 layered carbon nanotube, the distribution function is wider than that

of a shorter structure, 20 layered carbon nanotube. This is due to difference in twist angle

values. The structure behaves differently for the twist angle values smaller than 90o and

larger than 90o. In Figure 5.41 the twist angle effect on bond length distribution is seen

for a 50 layered carbon nanotube at a temperature of 300 K. In Figure 5.42, temperature

effect is seen on bond length distribution for a 50 layered carbon nanotube with a twist

angle of 180o.The same behaviour is seen here with the Figures 5.34 and 5.6. The effect of

the increase in the temperature is not very significant for a 50 layered carbon nanotube at

the given twist angle value.

From the continuum elasticity theorem, the torsion stiffness of a carbon nanotube is

defined as

K =
1
L

d2E

dθ2
(5.1)

where E is the total energy of the structure, L is the axial length and θ is the applied twist

angle. Also from continuum elasticity theorem, the shear strain and the total energy due

Chapter 5: Results and Discussion 42

to shear strain are defined as

ε =
Rθ

L
(5.2)

and

E =
1
2
G

∫
(ε2dV), (5.3)

respectively. V is the volume, R is the radius and G is the shear modulus of carbon nanotube.

Doing the necessary simplifications, we can obtain the the torsion stiffness as

K = G(2πh)
R3

L3
(5.4)

where h is the wall thickness of carbon nanotube and is equal to 1.42 Angstrom. Also,

by writing the shear strain expression into the total energy expression and evaluating the

integral, and making necessary modifications, we can obtain an analytical expression for

shear modulus as

G =
2EL2

R2θ2(V2 − V1)
(5.5)

Therefore, we can define the torsion stiffness

K = CG (5.6)

where C is a constant given by

C =
2πhR3

L2
. (5.7)

For the above expressions, the unit of shear modulus is [eV/radian2Angstrom3] which is

equal to TPa and the unit of torsion stiffness is [eV/radian2Angstrom]. In Figure 5.43,

the effect of twist angle on the shear modulus of 10 × 10, 20 layered carbon nanotube at

temperature of 300 K is shown. Shear modulus is a coefficient of elasticity for a shearing

force. It is defined as the ratio of shear stress to the displacement per unit sample length

[10]. Briefly, it is a material property defining the resistance to shearing stresses. In this

study, this shearing force is the applied torsion. From the figure it is clearly seen that, as

the twist angle increases, the resistance of the structure to shearing stresses decreases. In

Figure 5.44, the effect of temperature on the shear modulus of 10 × 10, 20 layered carbon

nanotube with the twist angle of 360o is shown. As the temperature increases from 300 K to

600 K, shear modulus of the structure increases unexpectedly. But after this temperature,

resistance of the structure decreases against shearing forces as the temperature increases. In

Chapter 5: Results and Discussion 43

Figures 5.45 and 5.46, twist angle and temperature effects on the torsion stiffness of 10×10,

20 layered carbon nanotube is given with respect to different twist angles and different

temperature values. Since torsion stiffness is obtained from shear modulus by multiplying

it with a constant which is obtained from radius and axial length of the carbon nanotube,

Figures 5.45 and 5.46 have the same characteristics as the Figures 5.43 and 5.44.

Finally, in Figures 5.47 and 5.48, efficiency and speedup tendency of the tbmd simulation

O(N) algorithm is given in the case of parallel execution. In Figure 5.47, as the number

of processors increases, the efficiency decreases. Also in Figure 5.48, the speedup value

increases upto 4 processors. After 4 processors speedup value starts to decrease. The main

reason for this decrease is the increase of communication time spend between processors.

Because of this communication time, speedup can not increase linearly.

Chapter 6: Conclusion 44

Chapter 6

CONCLUSION

In this study, O(N) tight binding molecular dynamics simulation method of Dereli and

Özdoğan [6] has been applied to a computational physics problem on the parallel compu-

tation platform at Koç University by using PVM library. The mechanical properties of

(n,m)=(10,10) SWNTs with 20, 40, 50 and 60 layers have been computed for different mag-

nitudes of torsional load and temperature conditions. Shear modulus and torsion stiffness

of the 20 layered SWNT have been computed. Efficiency and speedup effect of parallel pro-

gramming is presented. In conclusion, the following observations can be made : Firstly, the

torsion stiffness of the carbon nanotube we studied decreases as the twist angle increases.

This is the expected behavior. The expectations from the continuum elastic theory are not

met for two other cases. The torsion stiffness increases with increasing temperature up to

a point (shown and explained in Chapter 5) and then it decreases with further increase in

temperature. This significant effect needs a further study. Moreover, the torsional response

of carbon nanotubes as given by the bond-angle and bond-length distributions exhibit dis-

tinct behavior below and above a specific twist angle value which is about 90o degrees for

the SWNTs we studied. The precise value seems to be insensitive to the number of layers.

This effect also needs to be further investigated and should be understood. Finally we

would like to comment on parallel computation. From the efficiency and speedup graphs it

is seen that parallel computation is advantageous in computational time with 4 processors

only. Increasing the number of processors didn’t give any improvement. As a future project,

using the same O(N) TBMD algorithm, the response characteristics of carbon nanotubes in

the case of bending, complex bending (combination of torsion and bending) and buckling

can be investigated.

Bibliography 45

BIBLIOGRAPHY

[1] B. Bhushan (Editor), Handbook of Nanotechnology, (Springer, 2003)

[2] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon

Nanotubes, (Academic Press, 1996)

[3] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nan-

otubes, (Imperial College Press, 1998)

[4] www.wag.caltech.edu/foresight/foresight 2.html

[5] www.pa.msu.edu./cmp/csc/ntproperties/equilibriumstructure.html

[6] D.C. Rapaport, The Art of Molecular Dynamics Simulation, (Cambridge Uni-

versity Press, 1997)

[7] C. Özdog̃an, G. Dereli, T. Cag̃ın, O(N) parallel tight binding molecular dynamics

simulation of carbon nanotubes, Computer Physics Communications 148, (2002), 188-

205.

[8] G.Dereli, C. Özdog̃an, Structural stability and energetics of single-walled carbon nan-

otubes under uniaxial strain, Physical Review B67, (2003),035416.

[9] G.Dereli, C. Özdog̃an, O(N) algorithms in tight binding molecular dynamics simula-

tions of the electronic structure of carbon nanotubes, Physical Review B67, (2003),

035415.

[10] Robert D. Cook, Waren C. Young, Advanced Mechanics of Materials, (Prentice

Hall, Second Edition, 1999)

[11] William B. Bicford, Advanced Mechanics of Materials, (Addison Wesley, 1998)

Bibliography 46

[12] Arthur Boresi, Richard Schmidt, Omar Sidebottom, Advanced Mechanics of Ma-

terials, (John Wiley&Sons, Fifth Edition, 1993)

[13] A. Geist, A. Beguelin, W. Jiang, R. Manchek, V. Sunderam, PVM Users’ Guide

and Tutorial for Networked Parallel Computing , (The MIT Press, 1996)

[14] D. Culler, J. Singh, A. Gupta, Parallel Computer Architecture : A Hard-

ware/Software Approach , (Morgan Kaufmann Publishers)

[15] A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel Computing

(Addison Wesley, Second Edition, 2003)

[16] J. Dongarra, B. Tourancheau (Editors),Environments and Tools for Parallel Sci-

entific Computing, (Amsterdam ; New York : North-Holland, 1993)

[17] W. Yu, W.X. Xi, N. Xianggui, Atomistic simulation of the torsion deformation of

carbon nanotubes, Modelling and Simulation in Materials Science and Engineering,

12, (2004), 1099-107.

[18] D. Srivastava, M. Menon, K Cho, Computational Nanotechnology with Carbon Nan-

otubes and Fullerenes, IEEE Computing in Science and Engineering, 1521 − 9615,

(2001), 42-55.

[19] D. Srivastava, S.T. Barnard, Molecular dynamics simulation of large-scale carbon nan-

otubes on a shared-memory architecture, SC97 Technical Paper, 1997 ACM 0-89791-

985-8/97/0011

Vita 47

VITA

UFUK PARALI was born in Delice,Kırıkkale, Turkey on July 20, 1979. He received

his B.Sc. degree in Aeronautical Engineering and in Electronics & Telecommunication

Engineering from Istanbul Technical University, Istanbul, Turkey in 2002. He worked as

an R&D engineer in Northern Electric Telecommunication A.S. in 2003 for eight months.

From August 2003 to August 2005, he attended Computational Sciences and Engineering

Graduate Program in Koc University, Istanbul, Turkey. He worked as a teaching and

research assistant in the Department of Physics.

