
A Novel Scheduling Model for Computational Grid Economy Systems

by

Ömer Ozan Sönmez

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical & Computer Engineering

Koç University

August, 2005

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ömer Ozan Sönmez

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assist. Prof. Attila Gürsoy

Assoc. Prof. Ceyda Oǧuz

Assist. Prof. Öznur Özkasap

Date:

To my parents

iii

ABSTRACT

Computational grids have emerged to exploit geographically distributed resources such

as clusters or idle personal computers to solve large-scale computational and data demand-

ing scientific problems. It has been considered that developing computational grid economy

systems in which users pay for using resources or services, would motivate people to share

their resources making the computing power economically available that the communities

require. In this thesis, we present a novel economic-based job scheduling heuristic to be

used in such a grid system. The heuristic basically tries to complete a sequential workflow

or a parameter sweep application using one or more optimization strategies (cost, time or

time-cost) according to the deadline and budget constraints of the user. The experimental

results reveal that our heuristic outperforms the related heuristics in the literature. Besides,

we present two market models, a commodity market and a combinatorial double auction

model, that are expected to meet the requirements of the resource owners and users in the

economic respect and ensure efficient scheduling in a computational grid economy system.

We performed simulation experiments to compare the market models, and the experimen-

tal results demonstrate that the models have both advantages and drawbacks in terms of

achieving social welfare in the market.

iv

ÖZETÇE

Sayısal Şebeke (Grid) sistemleri atıl halde duran kullanıcı bilgisayarları yada yüksek

başarım bilgisayarları gibi coǧrafi olarak daǧıtılmış kaynakları bir araya getirerek daha

yüksek bir hesaplama gücü ortaya çıkarmayı hedefler. Bu yüksek hesaplama gücü büyük

ölçekte hesaplama ve veri gerektiren bilimsel problemlerin çözümünde kullanılabilir. Bu

sistemlerde piyasa ekonomisi modellerinin kullanılması sayesinde, kişilerin kar maksadıyla

daha çok kaynaǧı paylaşıma açacaǧı düşünülmektedir. Bu tezde, böyle bir sistemde kul-

lanılmak üzere yeni bir iş zamanlama sezgisel (heuristic) yöntemi geliştirdik. Yöntem kısaca

kullanıcının işlerini belirtilen zaman ve para kısıtlarında bitirmeye çalışıyor. Bu amaçla,

mevcut zaman ve para miktarını dikkate alarak zaman, para yada her ikisini birden en iyi

şekilde kullanmaya çalışıyor. Bu yöntemi benzer çalışmalardaki yöntemlerle, simülasyona

dayalı deneylerle karşılaştırıp başarılı sonuçlar elde ettik. Bunun yanı sıra, kaynak sahip-

lerinin ve kullanıcıların ekonomik yönden beklentilerinin karşılanması ve etkin iş zamanlama

sonuçları üretebilmek için mal piyasası ve açık arttırma modellerine dayanan piyasa model-

leri geliştirdik. Yaptıǧımız deneysel çalışmalar bu modellerin birbirlerine karşı olan avantaj

ve dezavantajlarını ortaya çıkardı.

v

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Assist. Prof. Attila Gürsoy, whose

experience, understanding and patience added considerably to my graduate experience. I

would like to thank the members of my thesis committee for critical reading of this thesis

and for their valuable comments. I would also like to thank to my cousin M. Süleyman

Mermut, who is a finance specialist, for his contributions to my thesis. I am grateful to

all my friends from Koç University, for their close friendship, to name some, Zülküf Genç,

Utkan Öǧmen, Tayfun Elmas, Bengi Mizrahi, Gökçe Görbil, and Selim Aytuna. I must give

immense thanks to my very special friend Feray Dor and to my parents for their continuous

support during the course of this thesis.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Nomenclature xii

Chapter 1: Introduction 1

1.1 Computational Grids . 2

1.2 Contributions . 3

1.3 Organization . 4

Chapter 2: A Survey On Grid Scheduling 5

2.1 Overview of Grid Scheduling . 5

2.1.1 Issues in Grid Scheduling . 5

2.1.2 A Generic Grid Scheduling Process 6

2.1.3 Grid Scheduling Models . 7

2.2 Conventional Grid Scheduling Strategies . 7

2.3 Market-based Grid Scheduling Strategies . 11

2.3.1 The Economic Problem . 11

2.3.2 Economic Models for Grid Scheduling 12

2.3.3 Market-based Scheduling Studies in Conventional Distributed Systems 14

2.3.4 Market-based Scheduling Studies in Grid Systems 15

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 19

3.1 Characteristics . 19

3.2 Assumptions . 20

3.3 Methods . 21

vii

3.4 Simulation Architecture . 25

3.5 Experimental Results . 26

Chapter 4: Market Models for a Computational Grid Economy System 31

4.1 The Commodity Market Model . 32

4.1.1 A Dynamic Pricing Policy . 33

4.1.2 A Pricing Policy based on Stochastic Approximation 34

4.2 Auction Models . 35

4.2.1 A Combinatorial Double Auction Model 36

4.3 Experimental Results . 38

4.3.1 Comparison of the Pricing Policies . 39

4.3.2 Comparison of the Market Models . 43

Chapter 5: Conclusions 49

5.1 State of the Art . 49

5.2 Summary . 49

5.3 Future Directions . 51

Appendix A: The GridSim Toolkit 52

A.1 Simulation of Scheduling in Time-Shared Resources 53

A.2 Simulation of Scheduling in Space-Shared Resources 53

Appendix B: Heuristics of the Nimrod/G System 54

B.1 Deadline and budget constrained scheduling with cost optimization 54

B.2 Deadline and budget constrained scheduling with time optimization 55

B.3 Deadline and budget constrained scheduling with cost-time optimization . . . 56

Bibliography 57

Vita 64

viii

LIST OF TABLES

3.1 Notation for the SFTCO Heuristic . 23

3.2 Attributes of the simulated resources . 27

3.3 Variation intervals for job parameters . 27

4.1 Attributes of the simulated resources . 39

4.2 Variation intervals for job parameters . 39

ix

LIST OF FIGURES

2.1 Nimrod/G Architecture [6] . 17

2.2 The Components of CPM Architecture [64] 18

3.1 A sequential workflow schema . 20

3.2 Interactions among grid components . 21

3.3 Interactions between the simulation entities 25

3.4 Cost optimization comparison . 28

3.5 Time optimization comparison . 28

3.6 Cost-Time optimization comparison . 29

3.7 Workflow scheduling comparison . 29

4.1 Bids submitted to an auctioneer . 37

4.2 Average income distribution under the fixed (the chart on the left), the dy-

namic (the chart on the middle), and stochastic approximation based (the

chart on the right) pricing policies . 40

4.3 Average price-per MI of the resources under the pricing policies 40

4.4 Average utilization of the resources under the pricing policies 41

4.5 Average application completion percentages under the pricing policies 41

4.6 Average Gridlet completion percentages under the pricing policies 42

4.7 Average duration usage percentages under the pricing policies 42

4.8 Average Gridlet completion percentages under the market models 43

4.9 Average price-per MI of the resources under market models, when there is

high demand in the market (i.e. λ > 35.10−4) 44

4.10 Average budget consumption percentages under market models 46

4.11 Average response time . 46

x

4.12 Average income distribution under the auction (the left column), and the

commodity market (the right column) models 47

4.13 Average utilization of the resources under the market models 48

xi

NOMENCLATURE

QoS Quality of Service

WAN Wide Area Network

BSP Bulk Synchronous Parallel

MIPS Million Instructions Per Second

PPMI Price Per Million Instructions

SPEC Standard Performance Evaluation Corporation

xii

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Grid computing [1] systems have emerged in the mid-1990s with the aim of enabling the

sharing, selection, and aggregation of geographically distributed resources such as clusters,

supercomputers, storage systems and data resources to solve large-scale computational and

data demanding problems in science, engineering, and industry.

In fact, the name “grid” has been chosen as an analogy to the electric power grids that

supply consistent, persistent, and transparent access to electricity, regardless of its source

[2]. Similarly, grid systems virtualise the heterogeneous resources, which belong to different

administrative domains and are managed by different policies, to the end users [1]. In other

words, grid is a distributed environment where users can run their jobs or use services

without knowing where the resources are or even who owns them.

To construct a grid system it is significant to have a common middleware, and to benefit

from the grid several issues have to be addressed such as site autonomy, heterogeneity, re-

source allocation or co-allocation, online control and delivery of nontrivial QoS [2]. Globus

toolkit [3] is the de facto standard in the grid computing world that addresses many of

these issues. Globus toolkit provides a software infrastructure, i.e. a middleware, that

provides uniform and secure environment for accessing the resources. The toolkit comprises

a set of components that implement fundamental services, such as security, resource loca-

tion, resource management, data management, resource reservation, and communications.

Today, several resource management applications and tools such as MPICH-G [4], Cactus

[5], Nimrod-G [6], and Condor-G [7] use the Globus toolkit as an infrastructure to be a

grid-enabled system.

Chapter 1: Introduction 2

1.1 Computational Grids

Basically, three types of architectural models have been offered for grid computing [1]; data

grids, service grids, and computational grids. In this thesis, we concentrate only on the

computational grids.

Computational grids are designed to aggregate the processing power from a distributed

collection of processing resources in order to solve distributed parallel computing applica-

tions or applications that need to be executed many times with different parameters. A

typical example of a computational grid is the SETI@home project [8] in which idle cycles

of the personal computers, dispersed over the world, are combined to create a computational

grid used to analyze radio transmissions received from outer space.

The main concern in a computational grid is to determine which resource should run

or service the job submitted to the system [2]. To make use of a computational grid, a

scheduling mechanism is needed that can gather and compare dynamic and static informa-

tion of the resources and assign each job to the most appropriate resource considering the

QoS parameters of the grid users.

Scheduling in the computational grids can be classified as conventional and market-based

scheduling [2, 9]. In general, conventional scheduling methods use heuristics to assign jobs

to the grid resources; whereas, market-based methods, i.e. computational markets, let the

software agents exchange resources in a market-like way. Besides, we can classify the work

on the computational markets into two main groups [10]: Resource allocation studies where

the market is used for maximizing (or minimizing) some global measure, and implementation

of real markets where the computational agents represent people or companies.

For the first type of studies, economic markets have been thought as a very natural way

to manage large distributed resource allocation problems. However, attaining the optimal

resource allocation has not been considered as the only motivation behind applying market-

based mechanisms in grid computing. Since there is no strong motivation to make people

or companies share their resources in the current grid systems, it has been considered that

economic models in which users pay for using resources or services, would give people

incentive to share their resources making the computing power economically available that

the society requires [11]. This is the mainstream behind developing real market-based grid

scheduling and resource management systems or namely grid economies.

Chapter 1: Introduction 3

1.2 Contributions

In this thesis, we present a novel job scheduling heuristic to be used in a computational

grid economy system. It is primarily designed for scheduling sequential workflow type

of applications [12] using cost, time and time-cost optimization strategies at each stage

considering the deadline and budget constraints. In addition, treating the entire job set

as a single stage workflow application it can also deal with parameter sweep applications

[13]. Using the GridSim toolkit [14], we performed simulation based experiments in order

to compare the proposed heuristic with the similar heuristics that are being used in the

Nimrod/G [6] system for scheduling parameter sweep applications.

We also present two market models (a commodity market and an auction model), that

are expected to meet the requirements of the resource owners, typically CPU providers,

and users in the economic respect and ensure efficient scheduling in a computational grid

economy system.

For the commodity market model we consider three pricing policies that the resource

owners may use; a fixed pricing policy that actually does nothing but preserve the initial

prices, a dynamic pricing policy that adjusts prices according to the supply-demand dy-

namics, and a stochastic approximation based policy [15], which was actually proposed to

be used in the e-commerce applications. In addition, the user preferences are represented

by the proposed job scheduling heuristic.

Regarding the distributed system field, in most of the computational market studies

which make use of auction models [16, 17, 18, 19], resource owners auction themselves using

a central auctioneer, and users desire only one commodity (resource) in each auction session.

However, a central mechanism is a point of failure in a distributed system, and generally

users need multiple commodities at the same time for their applications (i.e. co-allocation)

in a computational grid system. Considering these factors, we present a combinatorial

double auction model that enables resource owners to perform auctioning on their own, and

users to get multiple commodities concurrently.

Chapter 1: Introduction 4

1.3 Organization

Chapter 2, overviews the grid scheduling subject presenting several conventional and eco-

nomic based grid scheduling studies, including theoretical and real applications. Chapter

3 introduces the economic-based job scheduling heuristic and presents the experimental

results with a detailed discussion. Chapter 4 describes the market models and presents

the related experimental results with a detailed discussion. Thesis finalizes by a chapter

for conclusion, Chapter 5, and an Appendix section that contains information about the

simulation toolkit, and the pseudo codes of the compared heuristics.

Chapter 2: A Survey On Grid Scheduling 5

Chapter 2

A SURVEY ON GRID SCHEDULING

2.1 Overview of Grid Scheduling

Scheduling, is the assignment of tasks to resources over time [20]. In grid computing these

tasks refer to computational jobs such as required by protein modeling or docking appli-

cations, Monte Carlo simulations, 3D modeling and fluid dynamics, and resources refer to

data and processing units such as clusters and supercomputers.

Scheduling has been widely studied in distributed systems before grid systems have

emerged; however, grid concept has introduced specific requirements that make grid schedul-

ing different than conventional distributed system scheduling. To begin with, a grid envi-

ronment spans multiple administrative domains each with its own schedulers and manage-

ment policies; hence, grid scheduling requires additional mechanisms to find appropriate

resources, interact with different local policies and manage execution of jobs on those di-

verse administrative domains [2]. Second, in cluster or single site scheduling which can be

classified under conventional distributed system scheduling, the main goal of the users is

to minimize the total execution time, i.e. makespan, of a set of jobs; however, in a grid

environment users may have various goals in addition to minimizing the makespan, more

specifically, they may require a specific operating system, they may have data and memory

requirements, they may pay attention to deadline more than minimizing the makespan and

so forth [21]. Consequently, a system framework, i.e. a complicated software architecture,

is needed to handle scheduling in grid systems since local schedulers are far away to realize

all those needs single-handedly.

2.1.1 Issues in Grid Scheduling

Scheduling in grid systems is a complex task due to a variety of factors such as geographical

distances, site autonomy, domain size and dynamic characteristics of resources [22]. In this

Chapter 2: A Survey On Grid Scheduling 6

section, we explain all these issues, including their possible solutions.

Grid resources may be connected with relatively slower WANs in which transferring

large input and output files can cause network latency. If this is the case for a particular

grid environment, intelligent data management schemes such as replicating frequently used

data or caching techniques, should be a part of the scheduling framework [23].

Conventional scheduling systems, which refer to the local schedulers in grid environ-

ments, have a complete control on the resources that they belong; however, in a grid system

placing a central control for those resources is rather difficult since resources are distrib-

uted across autonomous domains. Therefore, a grid scheduling system should conserve site

autonomy allowing local policies to run as a part of the grid scheduling framework. A

decentralized scheduling mechanism is required not only since the resources are dispersed

across different domains but also because there exist hundreds of sites, thousands of users

and resources in a typical grid environment.

Another problem that grid schedulers should cope with, is the dynamic characteristics

of the grid resources [23]. The availabilities and capabilities of resources vary rapidly in a

grid environment; as a remedy, grid schedulers should choose online strategies instead of

offline ones which assume constant availability of resources. These strategies are mentioned

in section 2.2.

2.1.2 A Generic Grid Scheduling Process

In general, scheduling is performed in four steps in a grid environment: In the fist step,

a user submits the jobs and QoS parameters and then grid scheduler performs a resource

discovery operation to find the resources that fit to the request. In the second phase,

dynamic information (e.g. load on a resource) of those resources are gathered to specify if

they are available to execute jobs in that time frame. In the third phase scheduling strategy

is applied to choose the best mapping, i.e. assigning jobs to the resources in the most

appropriate way [24, 25]. And in the final phase, which is optional, execution of the jobs

are monitored to make further improvements or to recover from failure.

Chapter 2: A Survey On Grid Scheduling 7

2.1.3 Grid Scheduling Models

The structure of the scheduler affects the structure and scalability of the resource man-

agement system [22]. The current scheduling systems can be categorized as centralized,

decentralized, and hierarchical models.

In a centralized model, all jobs are submitted to a central scheduler that is in charge

of scheduling them on the appropriate resources. A central scheme is a single point of

failure in distributed systems and it yields poor scalability in a grid environment where the

resource and user quantity can be extremely high. Moreover, this scheme cannot ensure site

autonomy, which is a major requirement for grid computing.

A decentralized model addresses several significant problems such as fault-tolerance,

scalability and site autonomy. However, decentralized schedulers have to coordinate with

each other using some complex protocols that will affect the system’s overall scalability [26].

In a hierarchical model, the schedulers are organized in a hierarchy in which higher

level schedulers control larger set of resources and lower level schedulers control small set

of resources. This model is a combination of the centralized and decentralized models.

2.2 Conventional Grid Scheduling Strategies

The problem of finding an optimal scheduling in high computing distributed domains has

been shown to be NP-complete [27, 28]; therefore, heuristics have been developed to get

near optimal scheduling solutions. Existing scheduling heuristics can be grouped into two

classes: online (dynamic) and offline mode (static) heuristics [29, 30].

Online mode heuristics assign jobs to the resources as soon as they arrive at the scheduler;

however, in the offline mode heuristics jobs are collected into a set that is processed at

predetermined intervals for mapping. Also, online mode heuristics map a job to a resource

only once; however, offline mode heuristics may remap a job at each evaluation interval

until it starts execution [29, 30].

Offline mode heuristics theoretically make better decisions than online mode heuristics

since they have the chance to deal with a group of jobs rather than a single one [29]; however,

this scheme has some drawbacks. As it is mentioned in section 2.1.1, availabilities and capa-

bilities of the resources vary rapidly in a grid environment. Thus, the dynamic information

about resources that an offline heuristic considers can be quickly out of date. Moreover, re-

Chapter 2: A Survey On Grid Scheduling 8

sources may go offline, and in the next interval the heuristic has to reprocess jobs that have

been already mapped to the previously online resources. It is apparent that this condition

will dissatisfy the job owners who pay attention to makespan minimization. Actually, online

and offline heuristics should be tested before deciding to place into a scheduling framework,

since grid domains may present differences and may have different characteristics.

Both online and offline mode heuristics assume that execution time of the jobs are known

a priori. Methods for estimating execution times based on task profiling and analytical

benchmarking are argued in [31].

Various heuristics in the literature of distributed system scheduling have been proposed

to be used in the computational grids, yet we present the important ones briefly:

Online Mode Heuristics

- FCFS: First Come First Served strategy arbitrarily assigns jobs to the resources

according to the arrival order.

- OLB: Opportunistic Load Balancing [32, 33, 34] is a simple strategy that assigns each

job in arbitrary order to the next available resource without regarding the expected

execution time on that resource. The intuition behind OLB is to keep all resources as

busy as possible.

- MET: Minimum Execution Time [32, 34], assigns each job in arbitrary order to the

resource that gives the best expected execution time for that job, regardless of the

current load on that resource.

- MCT: Minimum Completion Time [32, 34] assigns each job to the resource that offers

the minimum completion time considering its next available time. The idea behind

MCT is simply to join the benefits of OLB and MET.

Offline Mode Heuristics

- Min-min: Min-min heuristic has two phases: In the first step, the minimum comple-

tion times are calculated for all jobs, next, from all jobs, the job with the minimum

Chapter 2: A Survey On Grid Scheduling 9

overall completion time is selected and assigned to the corresponding resource. This

process repeats until all the jobs are assigned to a resource.

- Max-min: Max-min heuristic applies the first step as Min-min; however, it assigns

the job with the maximum completion time to the corresponding resource in the

second phase. The Max-min heuristic is beneficial in a condition where completion

time for the jobs varies significantly.

- Sufferage: The idea behind Sufferage heuristic is that a resource is allocated to a

job that would ‘suffer’ most in terms of expected completion time if that particular

resource is not allocated to it. The sufferage value of a job is defined as the difference

between its second best and its best estimated completion times. After the sufferage

values of the jobs have been calculated, they are assigned correspondingly to the

resources that offer the best completion times.

In reference [32] a set of 11 heuristics, OLB, MET, MCT, Min-min, Max-min, Duplex,

Genetic Algorithm, Simulated Annealing, Genetic Simulated Annealing, Tabu and A*, has

been implemented and compared by simulation studies for independent job scheduling, i.e.

jobs with no inter-task data dependencies, in the heterogeneous distributed computing sys-

tems. In this study, the performance of the heuristics is based on minimizing the execution

of the metatask. As the outcome of the simulations, Min-min heuristic outperforms the

other techniques.

Maheswaran et al. [30] also compare heuristics in their study and state that the selection

of the heuristics to use in distributed system scheduling, depends on parameters such as

heterogeneity among jobs and resources, and the arrival rate of the jobs.

In addition to comparison of heuristics, some other works aim to develop new heuristics:

In reference [35], Sufferage heuristic is improved as XSufferage to be capable of scheduling

parameter sweep applications with file and I/O requirements. In [36], k-windows schedul-

ing heuristic is proposed which schedules independent tasks on the clusters regarding the

parameters such as available CPU load, free memory and the number of remaining jobs.

In [29], the QoS guided Min-min heuristic is presented in which the conventional Min-min

heuristic is enhanced in order to take QoS criteria of grid users into account.

Chapter 2: A Survey On Grid Scheduling 10

Beside heuristics, mathematical models, such as divisible load theory [37], have also been

applied to solve scheduling problems in grid computing. In references [38, 39, 40], divisible

load theory is proposed to solve problem of allocating and scheduling computing resources

on a grid environment for excessive number of independent tasks from large number of

users. Divisible load scheduling can be applied to the optimization of distributed computing

problems where both communication and computation load can be divided arbitrarily among

a number of processors and links [41]. The aim of divisible load scheduling, which uses

a linear mathematical model, is to reduce the total execution time of the jobs on the

computational resources. However, divisible load theory based studies have a restriction

of arbitrary-sized divisible load assumption, which is not necessarily the case in the real

world. In reality, jobs and data are usually measured as integer number of units, and the

integer programming problem is NP-complete [21]. Therefore, the theoretical optimization

that divisible load theory presents may loose its validity in a real world problem.

In most of the conventional grid scheduling studies, especially in simulation based ones

some common assumptions can be noticed that force us to discuss them in the context

of grid concept. First, there are only a few studies that consider scheduling dependent

jobs [42], typically, jobs are assumed to be independent that no inter-task dependencies

exist; however, a grid domain should support both type of jobs. Second, in general, a

few QoS criteria are considered; in most cases reducing makespan is the only goal. And

last, no site autonomy is allowed, that is local sites could not run their own scheduling

policies. Besides, there are also two well organized studies; [23] and [43] that consider most

of the aspects that we mentioned above. They allow site autonomy by dividing scheduling

into two phases; external and internal scheduling. External schedulers use site selection

strategies to dispatch jobs and internal schedulers organize those jobs over local resources

using heuristics. Moreover, [23] allows priority to local policies and considers dynamic data

replication as part of the scheduling problem, and [43] considers dependent tasks and allow

users to specify deadline for their jobs.

In addition to the theoretical and simulation works, a number of application level

scheduling systems have been developed for grid computing [4, 5, 44, 7, 45], and they

are explained and compared in several studies [9, 22, 26]. Among them, we explain the

AppLeS [44] and Condor/Condor-G [7, 46] systems briefly.

Chapter 2: A Survey On Grid Scheduling 11

The Application Level Scheduling System (AppLeS) provides a methodology, applica-

tion software, and software settings for adaptively scheduling and deploying applications

in heterogeneous, multi user grid domains. AppLeS employs decentralized scheduling and

uses services of Network Weather Service (NWS) [47] to observe changes in performance of

resources dynamically [2]. In AppLeS, applications are embedded into agents that perform

resource scheduling based on static and dynamic resource information provided by NWS.

Also, these agents can use the services of some core grid middlewares such as Legion [48],

Globus [3] and NetSolve [49].

Condor is a resource management system primarily designed for utilizing idle resources

on a network. Condor employs a centralized scheduling scheme in which a user submits

jobs to a central scheduler which is responsible for finding the appropriate resources for the

execution of the jobs [50]. The scheduler can transfer a running job among machines until

it is completed. Each machine in the Condor system advertises its resources and reports

their availabilities to the central scheduler. Condor-G, the complementary tool for Condor,

merges the inter-site resource management protocols of the Globus and intra-site resource

and job managing schemes of Condor to let users exploit multi-site resources as though they

all exist in a single site.

2.3 Market-based Grid Scheduling Strategies

2.3.1 The Economic Problem

The economic problem exists only when the resources are scarce and the participants,

namely consumers and producers, maximize their utility by deciding among needs that

cannot be concurrently satisfied and lead to different utility levels [51]. If resources are

reachable, whenever required, and their utilizations result the same in value, there would

be no problem of allocating the resources for utility maximization, or in other words there

would be no economic problem.

Considering the statement above, we can assert that economic problem exists in the

computational grids. Although the amount of resources are not few, resources appear

scarce due to heavy loads of the users, and allocation of the resources leads to different

utility levels in the users’ point of view since grid resources are heterogeneous. Therefore,

scheduling in grid computing is very much related to the economics that is the study of how

Chapter 2: A Survey On Grid Scheduling 12

limited resources, goods, and services are allocated among competing uses [52].

2.3.2 Economic Models for Grid Scheduling

In the real-world markets, various economic models are used for setting the price of a com-

modity or a service, based on the supply-demand and their value to the users [11]. Some

of these models are convenient to design a real grid economy system or solving the resource

allocation problems.

Commodity Market Model

In a commodity market model, resource owners competitively set their service price and

charge consumers according to the amount of resource they consume [11]. The pricing policy

of the commodity market model can be flat or variable depending on the supply and demand

on the resources. In the flat price policy, price of a resource is fixed for a certain period

and it remains the same regardless of the demand or service quality, whereas in a variable

pricing policy, prices change frequently according to the supply and demand variations. As

one of the main principles of economic theory, the increase of demand or the decrease of

supply, increases the prices, and the decrease of demand or the increase of supply, lowers

the prices until there exists an equilibrium between supply and demand.

Bargaining Model

In the bargaining model, consumers bargain with resource owners for lower service prices

and longer usage periods [11]. Both consumers and resource owners have their own utiliza-

tion functions and they bargain with each other until they agree on a price or one of the

sides is not willing to bargain any further. As a drawback, if the consumers start negotia-

tion offering relatively low prices then it may take considerable amount of time to reach an

agreement causing waste of time.

Tender/Contract-net Model

Tender/Contract-net model is based on the contracting mechanism used by businesses

to manage the exchange of goods and services [11]. The trading protocol of this model

is simply as follows: Consumers announce their requirements such as memory, architec-

Chapter 2: A Survey On Grid Scheduling 13

ture and deadline whenever they require to commerce. In the second step, the interested

resource owners evaluate the announcements and reply with their bids. And finally, the

announcement owner evaluates bids and start trading with the resource owner of the most

appropriate bid. As a disadvantage, a less capable resource may be selected if a more ca-

pable one is busy at the announcement time and moreover, consumers are not obliged to

inform the participating contractors that an agreement has already been made.

Auction Model

Auction by definition is the process of selling a property to the highest bidder [11]. This

model provides a one-to-many negotiation scheme between resource providers and con-

sumers. The typical steps involved in an auction process are as follows: A resource owner

announces its services and invites bids in the first step. Then, in the second step, consumers

offer their bids. This step continues until no consumer is willing to bid a higher price or the

resource owner ends if the minimum price value is not met. Auctions can be carried out

as open or closed depending on whether the consumers can see each other’s offers or not.

Additionally, consumers may raise the offered bid and auctioneers may update the offered

sale price.

Community Model

In a community model, market players share each other’s resources to form a cooperative

computing environment [11]. This model is suitable when those players have to be both

producers and consumers. The trading can be realized by credits that are given proportion-

ally in response to the amount shared by the resource owner.

Monopoly/Oligopoly

Monopoly is a market in which there is only one seller of a product or service [11].

Consumers cannot affect the prices of the services and they have to buy the service at the

given price. This may be the case in a grid environment if there is a single owner of a

particular service. In addition, market situation can be an oligopoly if a small number of

producers control the market and set the prices.

Chapter 2: A Survey On Grid Scheduling 14

2.3.3 Market-based Scheduling Studies in Conventional Distributed Systems

Adapting market-based approaches to scheduling problems in distributed computing sys-

tems is not a new idea; a number of systems have been developed before grid systems have

evolved. All those early studies make use of economics to obtain effective resource allocation

solutions. Some of the important systems are explained in this section.

The Enterprise task scheduler [53] utilizes the concepts of contract-net model to ex-

ploit idle resources in the distributed network. The scheduling procedure in the Enterprise

system simply proceeds as follows: A client publicizes a task indicating relative priorities,

description of required resources and information for machines to estimate the execution

time. Subsequently, idle machines offer bids to the requests specifying the estimated exe-

cution time of the tasks. Finally, the machine that provides the shortest execution time is

chosen by the client in order to process the task.

Actually, Enterprise system does not utilize a real market approach; it uses artificial pri-

orities instead of a price mechanism which, in fact, can eliminate such a need [51]. Hence,

clients are unable to make decisions between fast and slow resources to submit tasks. More-

over, machines have no incentive to compete with each other in order to obtain a job by

giving the best offer, since any utility maximizing behavior has not been defined for the

machines.

The Walras [54] system is an application of general equilibrium theory to management

of distributed systems. The tatonnement process is implemented to attain the equilibrium

price for the resources. In the tatonnement process, there is a central auctioneer that

receives utility functions of the consumers and calculates the equilibrium prices using the

Smale’s theorem [55]. Besides, for each resource it initiates a distinct auction, and after the

calculation, the resulting prices are sent to all consumers [20]. Consumers can respond to

the new prices by adjusting their utility functions. This process is repeated until the prices

reach to a steady state.

Spawn [17] is a scheduling system designed as a market economy that is composed of

interactive consumers (buyers of CPU time) and resource owners, to run in a distributed

computing environment. As the economic model; Vickrey auction is used to handle the

sales. In addition to independent tasks, Spawn also supports concurrent tasks which are

assumed to be tree-based. Each node in the tree which refers to a subtask, associated with

Chapter 2: A Survey On Grid Scheduling 15

a manager and has a funding rate shared by the root node. The managers of the nodes

participate in an auction independently from each other. After the trading finishes, they

inform the root manager and deliver the results.

2.3.4 Market-based Scheduling Studies in Grid Systems

Assuming that the scheduling problem must be decentralized in a grid system, market

approaches can offer several advantages [56]. First, markets are naturally decentralized,

and self-interested agents may yield global optimum solutions by focusing on only their own

good. Second, communication is limited to the exchange of bids and prices between agents,

and a pricing mechanism has the potential to differentiate resources more dynamically

compared to a priority mechanism [51]. Considering these advantages, several market-

like systems (not real economies) have been proposed to attain optimal resource allocation

solutions in computational grids as in the conventional distributed systems.

In [20], a contract-net based model is proposed for scheduling parallel jobs in grid envi-

ronments. In this work, simulations have been carried out to compare the proposed market-

based method with the conventional FCFS-Backfilling heuristic. The results revealed that

their method outperforms the conventional one in terms of average-weighted-response-time

and average-weighted-wait-time metrics. Besides, in [57] and [58] the continuous double

auction protocol is used for the same purpose. In [57], the continuous double auction

outperforms the conventional FCFS and Minimum Completion Time (MCT) heuristics in

terms of job completion ratios and in [58] the protocol outperforms the conventional Round

Robin heuristic in terms of weighted-completion-time metric. In addition to these studies

that compare market-like approaches with the conventional ones, in [59] the tatonnement

process is compared with the Vickrey auction in terms of grid wide price stability, market

equilibrium, application efficiency and resource efficiency. Simulation results point that the

tatonnement process is more successful than the auction model in controlling grid resources

in terms of these criteria.

Market mechanisms can also be considered to build real computational grid economies

to prompt individuals or companies share their resources and let the users benefit from the

extensive resources in return for a fee.

There would be, naturally, two main players in a real computational grid market:

Chapter 2: A Survey On Grid Scheduling 16

Providers (resource owners) and consumers (resource users) [2]. Resource owners would

like to maximize their utilities, i.e. make profits or recover their costs, by charging the

users for accessing or using their resources, and users would like to solve their problems by

using the resources that satisfy their utilities i.e. budget, deadline and other QoS criteria.

Moreover, resource owners would like to offer a competitive service access price in order to

attract users, and users would have the right to select the resources that best satisfy their

needs. Thus, in the computational grid economies, a user would be in competition with

other users and a resource owner with other resource owners as in all other real markets.

User applications may have various resource demands depending on computations per-

formed and methods used in solving the problems [2]. Some applications can be CPU

intensive while others can be data intensive or a mixture of two. Therefore, in economy

grids, commodities can be a variety of resources such as CPU slots, memory, storage, soft-

ware and network usage. To charge the users for using these resources accounting services

and payment mechanisms have to be deployed into a computational grid economy. Refer-

ences [60, 61, 62] address this subject proposing accounting infrastructures and automatic

payment mechanisms for computational grids.

Unfortunately, market-based real grid economy systems have not been commercialized

yet; however, there are ongoing projects at the academic level. Among them we present

Nimrod/G and CPM systems below.

Nimrod/G [6] is a market-based grid resource management and scheduling system, de-

signed to be established in the real grid environments. It employs the Globus toolkit’s

services for dynamic resource discovery and shipping jobs over the grid, and employs Grid

Architecture for Computational Economy (GRACE) framework [60] for the trading services.

There are five major components in the Nimrod/G architecture (Fig. 2.1). The Client

or User System component operates as a user interface to control and manage jobs; users

can specify time and cost constraints to affect the behavior of the scheduler in resource

selection phase, and they can monitor the status of the jobs. Parametric Engine is the

central component that manages the entire application,i.e. set of jobs. Parameterization

of an application, creation of jobs, maintenance of job status, and interacting with clients,

schedule advisor, and dispatcher are the main responsibilities of this component. Moreover,

it records the states of the entire experiment to restart it in case of failure. The Scheduler

Chapter 2: A Survey On Grid Scheduling 17

component is responsible for resource discovery, resource selection and job assignment. The

resource heuristics [2, 63] employed in the scheduler interact with a grid-information service

directory, identify the list of available and appropriate machines, and keep track of resource

status information. In addition, heuristics are responsible for selecting resources that meet

the deadline and cost constraints. The Dispatcher component starts the Job Wrapper com-

ponent that will initiate the execution of a job on the selected resource.

Figure 2.1: Nimrod/G Architecture [6]

Compute Power Market (CPM) [64] is another market-based resource management and

job scheduling system designed for grid computing. It transforms the distributed computing

environment into a computational market in which users can solve problems by renting

computational power.

The CPM basically composed of markets, resource consumers, resource providers and

their interactions. It provides various economic models such as commodity market model,

contract-net/tender, and auction for resource pricing and scheduling.

The architectural components of the CPM are illustrated in Fig. 2.2. Market is the

point of interaction for both consumers and producers. Consumers and producers have to

register with a market to rent or sell computational power. A market basically provides

Chapter 2: A Survey On Grid Scheduling 18

Provider #1

Market Resource
Agent

Market Resource
Agent

Provider #n

Market #1 Market #n Market #x

Consumer #1 Consumer #m

Market Resource
Broker

Market Resource
Broker

Job Control Agent
Scheduler Advisor

Resource Trader

download/update

Get Seller
Information /
Download

download/update

Figure 2.2: The Components of CPM Architecture [64]

repository of information on providers, agents for consumers and providers, mechanisms for

updating the information and interaction with other markets.

Resource providers get a Market Resource Agent (MRA) from the market that is respon-

sible for updating the market with the most recent information about their resources and

accepting, deploying and launching the job. MRA works on a push-pull mechanism with

the pull unit extracting information such as available memory and number of processes,

whereas the push unit sends this data into the market through communication unit. Cor-

respondingly, resource consumers get a Market Resource Broker (MRB) that is responsible

for locating the proper provider based on the information supplied by the market. MRB

comprises several sub-components such as Job Control Agent, Market Explorer, Resource

Trader, and Scheduler.

Job Control agent is responsible for guiding a job through the system by interacting

with other components of the broker. Economy computations in the CPM grid is managed

by schedule advisor, trade manger and trade server. The schedule advisor uses market ex-

plorer for resource discovery, trade server for negotiating costs and scheduling algorithms

for deciding on mappings between jobs and resources.

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 19

Chapter 3

A JOB SCHEDULING HEURISTIC FOR COMPUTATIONAL

ECONOMY GRIDS

In a computational grid economy system, we need effective schedulers not only to minimize

the makespan but also to minimize the costs that are spent for the execution of the jobs.

To this end, we present the Stage Focused Time-Cost Optimization (SFTCO) heuristic to

be used in a commodity market model in which the prices are determined according to the

supply and demand in the market.

3.1 Characteristics

The SFTCO [65] heuristic is designed to complete all the jobs of a user using one or more

optimization strategies (cost, time or time-cost) according to the deadline and budget con-

straints of the user. It is primarily intended for scheduling workflows [12] each represented as

a sequence of activities or stages as illustrated in Fig. 3.1. Several computation-demanding

applications in the scientific field conform to a sequential workflow pattern such as Bulk

Synchronous Parallel (BSP) programs [66, 67], in which a computation has a number of

supersteps, each including parallel computational processes that synchronizes at the end of

the superstep; or scientific applications [68, 69], in which the output of an activity returned

from a grid service becomes the input for the subsequent activity. Furthermore, treating

the whole job set as a single stage workflow application, the proposed heuristic can also

deal with parameter sweep type of applications that are combination of task and data par-

allel models which contain large number of independent jobs operating on different data

sets [13]. Parameter sweep models can be applied to the methods of drug design, genome

sequence analysis, or protein folding in order to observe the outputs of different scenarios

and parameters.

In computational grid environments, to improve utilization and throughput of the re-

sources such as clusters or supercomputers, and to reduce the communication overhead

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 20

among the grid entities, jobs should be handled at the local and grid level separately [23].

As Fig. 3.2 demonstrates, at the grid level, jobs should be mapped to the resources that

meet QoS constraints, and at the resource level, local policies should be employed in order

to map the received jobs to the processing elements. Correspondingly, the SFTCO is a grid

level scheduling heuristic that permits local policies to be employed.

The availabilities and capabilities of the resources vary frequently in grid environments;

thus, schedulers should be capable of dealing with the dynamic nature of these resources.

The SFTCO is a dynamic scheduling heuristic such that mapping decisions are made during

the execution of a schedule, considering the instant load of the resources along with the cost

and processing speed criteria.

Figure 3.1: A sequential workflow schema

3.2 Assumptions

The assumptions of the SFTCO heuristic are as follows:

- A grid information service is available that can be queried for the availabilities and
capabilities of the grid resources.

- A resource, which may be considered as a cluster or supercomputer, composed of
identical processing elements (i.e. parallel processors).

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 21

Figure 3.2: Interactions among grid components

- Resources are capable of presenting their dynamic state such as load.

- Speed of a processing element is defined in Million Instructions per Second (MIPS)
rating (in accordance with SPEC benchmark [70]).

- Size of a job is known a priori and represented in Million Instructions (MI) rating.
Most research on distributed system scheduling has dealt with the problem when the
jobs and interprocessor communication costs are entirely known [71].

- Jobs are independent; they do not communicate within a stage. Parameter sweep and
BSP applications compose of independent jobs.

3.3 Methods

The SFTCO heuristic, presented in Algorithm 1 (refer to Table 3.1 for the notation), takes

three input parameters: An application, represented as a workflow, a budget that the user

is willing to spend for the application, and a duration in which the results of the application

must be returned.

Initially, the currently running stage is assigned portions from the total budget and

total duration (i.e. the difference between the beginning time of the scheduling and the

deadline) in proportion to its total job size, and the surpluses or debts that are emerged

from the previous stage are added (line 4-5). The motivation behind distributing the budget

and duration among the stages is to optimize the cost and time. Since the demand on the

resources can vary frequently in a grid environment, we may need to change our optimization

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 22

strategy and adapt to the new conditions while proceeding over stages. Then, the maximum

expense that the stage may consume is estimated via multiplying the total job size of the

stage by the Price per Million Instructions (PPMI) value of the most expensive resource

(line 6), and the maximum duration that may elapse to process all the jobs in the stage is

estimated via dividing the total job size by the MIPS rating of the slowest resource (line

7). These estimations indicate how much time and fund is required to process all the jobs

in the worst case. Next, the jobs of the stage are sorted in the decreasing order of job size

(line 8), and one of the three optimization strategies is selected after comparing the alloted

budget and duration with the estimated ones (line 9-15). If the actual budget is sufficient

but the actual duration is insufficient in terms of these comparisons, time optimization

strategy is used in which faster resources are given precedence over slower ones. On the

other hand, in case the actual duration is sufficient but the actual budget is insufficient,

cost optimization strategy is used in which cheaper resources are given precedence over

expensive ones. Finally, in case both of them or none of them are sufficient in terms of the

comparisons, time-cost optimization strategy is used in which relatively faster and cheaper

resources are given precedence. This relativity is determined by the MIPS/PPMI ratio of

the resources.

After sorting the resources according to an optimization strategy, for each resource in

order, jobs are submitted until the corresponding resource reaches to the desired load factor,

DLj (line 16-22). We define the load factor as the ratio of the total number of jobs that

a resource is currently executing, to the total number of processing elements it has. DLj ,

is calculated as it is illustrated in Eq. 3.1. Durationi is the duration alloted to the ith

stage, MIPSj is the MIPS rating of the interacted resource, and maxMIi is the size of the

largest job in that stage. This method is used to execute as many jobs as possible on the

desired resource, without exceeding the duration assigned to the stage; however, with the

assumption of no other user would pull up the load any time further. It is of course not a

guaranteed way but a reasonable approach.

DLj =
Durationi ∗MIPSj

maxMIi
1 ≤ i ≤ n, 1 ≤ j ≤ k. (3.1)

If the interacted resource has a space-shared management architecture (in which a

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 23

Table 3.1: Notation for the SFTCO Heuristic

n : Number of stages in the workflow
k : Number of resources
TrB : Transfer budget
TrD : Transfer duration
Budget : Total budget
Budgeti : Budget alloted to the ith stage
Duration : Total duration
Durationi : Duration alloted to the ith stage
ST : Total job size of the workflow
Si : Total job size of the ith stage
maxEEi : Max. estimated fund required for the ith stage
maxEDi : Max. estimated duration required for the ith stage
PPMI : Price Per MI value of the most expensive resource
MIPS : MIPS rating of the slowest resource
DLj : Desired load factor for resourcej

CLj : Current load factor of resourcej

workflowi : Job list of the ith stage
resources : List of available resources
resourcej : The jth resource in the resources list
RealExpensei : The amount spent in the the ith stage
DurationElapsedi : Duration elapsed in the ith stage

processing element can run only a single job contrary to the time-shared architecture),

the DLj is simply set to 1 (neglected in the pseudo code). After that, if there remains any

unassigned jobs, (i.e. all the resources are overloaded), a single job is assigned to a single

resource in order until all the jobs are dispatched (line 23-27).

After completing the job mapping, all the outputs have to be waited for (line 28), since

the next stage in the workflow can be initiated after the completion of the current one. On

receiving all the outputs, the real expense and duration spent in the stage are computed

(line 29), and subsequently, their differences between the alloted ones are calculated (line

30-31), which are going to be reflected to the next stage’s budget and duration as surpluses

or debts. The heuristic runs until all the stages are completed or an interruption occurs due

to a budget or deadline violation. We assume that, the remaining budget and duration is

checked independently, (e.g. via a thread) from the implementation point of view.

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 24

Algorithm 1 The SFTCO Heuristic
1:

2: TrB, TrD ← 0

3: for i : 1 to n do

4: Budgeti ← ((Budget/ST) ∗ Si) + TrB

5: Durationi ← ((Budget/ST) ∗ Si) + TrD

6: maxEEi ← Si ∗ PPMI

7: maxEDi ← Si/MIPS

8: Sort workflowi in the decreasing order of job size.

9: if Budgeti < maxEEi and Durationi > maxEDi then

10: Sort the resources in the increasing order of PPMI value.

11: else if Budgeti > maxEEi and Durationi < maxEDi then

12: Sort the resources in the decreasing order of MIPS value.

13: else

14: Sort the resources in the decreasing order of (MIPS / PPMI) value.

15: end if

16: for j:1 to k do

17: Calculate DLj , Query CLj

18: while CLj < DLj do

19: Assign a single job to resourcej from workflowi in order

20: Query CLj

21: end while

22: end for

23: while there remains unassigned jobs in workflowi do

24: for j:1 to k do

25: Assign a single job, to resourcej from workflowi in order

26: end for

27: end while

28: Wait until all the submitted jobs are received

29: Calculate RealExpensei and DuarationElapsedi

30: TrB ← Budgeti −RealExpensei

31: TrD ← Durationi −DuarationElapsedi

32: end for

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 25

3.4 Simulation Architecture

We have used the GridSim toolkit [14] (see Appendix A for more information about the

toolkit) to simulate a grid economy system in which we can explore the capabilities of the

SFTCO heuristic for sequential workflows and parameter sweep type of applications.

The GridSim entities that we have used or regenerated are mainly, User, Broker, Grid

Resource, and Grid Information Service (GIS) entities. The interactions between these

entities are illustrated in Fig. 3.3.

A Grid Resource entity is a union of machines each having one or more processing

elements (PE). A Resource can be designed either as a time-shared or as a space-shared

system. In time-shared Resources, submitted jobs are scheduled using the Round-Robin

algorithm; however, FCFS heuristic is used in space-shared Resources. Additionally, each

Resource is assigned a cost value that it charges Users per unit time while processing a

job. After a simulation gets started, all the Resource entities register themselves to the GIS

entity (Fig. 3.3: 1).

Figure 3.3: Interactions between the simulation entities

A User entity simulates a user who wants his workflow or parameter sweep application

to be executed in a grid computing environment within the budget and duration limits.

Users pack the application and the requirements and then pass them to the Broker entity

(Fig. 3.3: 2) that will manage the execution of the application on behalf of the User. In

GridSim, a job and all the related information such as its size, defined as million instructions

(MI), I/O operations and the size of input and output files are packed into a Gridlet object.

Thus, an application should be treated as a list of Gridlets. A parameter sweep application is

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 26

represented as a GridletList object; yet, a workflow is represented as an array of GridletLists

that each of its member represents a distinct stage.

In our simulation architecture, each User has a Broker entity that is commissioned to

accomplish an application on behalf of its user. On receiving an application along with

the requirements, Broker queries GIS entity for resource discovery, and subsequently GIS

returns a list of available resources (Fig. 3.3: 3). Afterwards, Broker starts to perform the

scheduling heuristic for allocating appropriate Resources to Gridlets (Fig. 3.3: 4). During

scheduling, Broker can query the Resources to find out their dynamic information such as

cost, capability, availability, load and other configuration parameters. On completion of

each Gridlet, Resources return them to the Broker (Fig. 3.3: 5). The processed Gridlets

hold the information of their execution cost and duration. Finally, when the scheduling is

either completed successfully or interrupted due to a budget shortage or a deadline violation,

all the processed Gridlets are sent back to the User entity (Fig. 3.3: 6).

3.5 Experimental Results

This section presents the results of simulation studies carried out to evaluate the perfor-

mance of the SFTCO heuristic. Initially, we compare our heuristic with cost [2, 63], time,

and cost-time optimization heuristics (see Appendix B for the pseudo codes) of the Nim-

rod/G [6] system, to observe its performance on parameter sweep type of applications, and

next, to observe the heuristic’s performance on sequential workflow type of applications, we

compare it with a random approach since there do not exist any economy driven workflow

scheduling heuristic in the literature.

We simulated a number of time-shared resources running with round-robin local policy.

Table 3.2 presents the attributes of these resources. Prices are assigned rationally consider-

ing both their processing power and the number of processing elements they have. Besides,

we assume that the resource owners apply fixed pricing policy. In the simulation environ-

ment, users are charged per time unit on execution of each job; however, brokers translate

the price-per-unit-time value to a PPMI value, to be able to compare the relative costs of

the resources.

In all of the experiments, users submit applications within a 100 time unit interval,

based on a Poisson arrival process, and we assume a user submits only a single application.

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 27

Table 3.2: Attributes of the simulated resources

Resource Number MIPS Rating Resource Price per PE PPMI
Name of PEs of each PE Management unit time in G$ in G$

R1 32 10 Time-Shared 9 0.9
R2 36 12 Time-Shared 13 1.083
R3 48 13 Time-Shared 20 1.5384
R4 24 15 Time-Shared 21 1.4
R5 36 20 Time-Shared 40 2
R6 16 12 Time-Shared 12 1
R7 24 11 Time-Shared 9 0.818
R8 40 10 Time-Shared 9 0.9
R9 24 10 Time-Shared 8 0.8

Table 3.3: Variation intervals for job parameters

Experiment Number of Number of Jobs Size of a Job Input File Output File
Type Stages within a stage Size Size

Parameter-sweep 1 50-150 1000-10000 MI 250-750 B 2.5-7.5 KB
Wokflow 1-10 10-100 1000-10000 MI 250-750 B 2.5-7.5 KB

We repeat the experiments 10 times for each average arrival rate value, λ, that is varied

from 10−2 to 25.10−2 with a 10−2 step size, afterwards, we take the average of the results.

Moreover, each user has a direct link to each resource with 100 Mb/s connection speed, and

the other parameters such as the number of stages in a workflow and number of Gridlets

within a stage has assigned randomly from a uniform distribution; their variation intervals

are given in the Table 3.3. We assume that parameter sweep and workflow applications

consists of independent coarse-grained jobs. Accordingly, we express Gridlets’ size in such

a way that they are expected to take 500 time-units on the slowest resource and 250 time-

units on the fastest resource, on average. The Gridlet (job) size parameters are chosen

appropriately to make the resources vary from low to high loaded conditions as the average

arrival rate increases. Besides, it is important to note that exactly the same experiments

are performed when comparing the heuristics.

In cost optimization comparison, we keep the budget tight and the deadline relaxed

for the users. Each user is assigned a duration that is 10 times higher than the duration

required to execute all its jobs on resource R1 in sequential order, and a budget is assigned

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 28

such that each user can afford to execute all its jobs on resource R9, which is the cheapest

resource. In time optimization comparison, this time we keep the budget relaxed and the

deadline tight such that durations are assigned to be sufficient to execute all the jobs of a

user on resource R1, which is one of the slowest resources, and a budget is assigned such

that each user can afford to execute all the jobs on resource R5, which is the most expensive

resource. Finally, in cost-time optimization comparison users are assigned tight deadline

and budgets in the same way as explained for the cost, and time optimization comparisons.

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Avg. Arrival Rate

G
rid

le
t C

om
pl

et
io

n
%

cost opt.

SFTCO

Figure 3.4: Cost optimization comparison

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Avg. Arrival Rate

G
rid

le
t C

om
pl

et
io

n
%

time opt.

SFTCO

Figure 3.5: Time optimization comparison

Figs. 3.4, 3.5, and 3.6 show the performance results of cost, time, and cost-time op-

timization comparisons of SFTCO and the heuristics of Nimrod/G, in terms of average

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 29

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Avg. Arrival Rate

G
rid

le
t C

om
pl

et
io

n
%

cost−time opt.

SFTCO

Figure 3.6: Cost-Time optimization comparison

0 0.05 0.1 0.15 0.2 0.25
0

10
20
30
40
50
60
70
80
90

100

Avg. Arrival Rate

G
rid

le
t C

om
pl

et
io

n
%

random

SFTCO

Figure 3.7: Workflow scheduling comparison

Gridlet completion percentages among all users respectively. Average Gridlet completion

percentages illustrate how effective the durations and budgets are managed by the heuristics.

In fact, average-response-time and average-wait-time metrics are used in such comparisons;

however, using these metrics do not make sense for our experiments since the simulated

resources are designed as time-shared (i.e. they immediately start to execute the received

jobs), and execution of an application can be terminated due to a budget shortage or a

deadline violation.

According to the results, it is clear that SFTCO heuristic outperforms the compared

heuristics. Actually, resource selection order is same for the heuristics in the cost and time

optimization; however, the decisions such as how many Gridlets are going to be submitted to

Chapter 3: A Job Scheduling Heuristic for Computational Economy Grids 30

a resource and the way of managing the remaining duration change, hence the performance

differences arise. Besides, the cost-time optimization heuristic creates groups containing

resources that have the same cost, and then sort the resources within these groups such

that faster ones are preferred first. On the other hand, the SFTCO heuristic arranges

resources with respect to their MIPS/PPMI ratio.

In Fig. 3.4, the reason of the sharp fall of the cost optimization heuristic, while the arrival

rate increases, is interestingly due to deadline violations rather than budget shortages. This

heuristic suffers when the demand increases for the resources, since it looses significant

amount of time waiting for appropriate conditions; yet those conditions never occurs.

Fig. 3.5, and Fig. 3.6 demonstrates that the time, cost-time, and SFTCO heuristics

suffer, as expected, from the increase of demand on the resources. Nevertheless, SFTCO

heuristic has completed more Gridlets in the same conditions, which means that it can

perform better than the other heuristics in case the resources are extremely loaded.

To explore SFTCO heuristic’s performance on sequential workflow type of applications

we compared it with a strategy that randomly assigns jobs to the resources. In the ex-

periments, users are randomly assigned budgets and deadlines from a uniform distribution

that ranges between tight and relaxed values. Therefore all the optimization strategies may

have the chance to be performed. As Fig. 3.7 illustrates SFTCO outperforms the random

approach and additionally it does not suffer from the high demand drastically.

Chapter 4: Market Models for a Computational Grid Economy System 31

Chapter 4

MARKET MODELS FOR A COMPUTATIONAL GRID ECONOMY

SYSTEM

In this chapter, we present a commodity market and an auction model that are designed to

meet the requirements of the market participants in the economic respect and ensure efficient

scheduling in a computational grid economy system. Besides, we performed experiments

to evaluate these models in terms of social welfare using the same simulation architecture

mentioned in section 3.4.

In the previous chapter, we present the SFTCO heuristic that is designed to be used in a

commodity market model. The SFTCO essentially represents the user (consumer) behavior

in our commodity market model by making mapping decisions considering the available

budget and duration.

In real-world markets producers and consumers desire to maximize their own utility,

without considering the global good [72]. However, given sufficient information, independent

rational self-interests are believed to achieve optimal resource allocation solutions, both

for the individuals and for the society [11]. Correspondingly, in our models self-interested

resource owners (producers) desire to profit or recover their costs allocating their resources to

the most profitable jobs, and self-interested users (consumers) desire to solve their problems

considering their budget and time constraints.

There is no asymmetric information in our market models which means all participants

(agents) have the same relevant information, and they are rational in their decisions. Models

also motivate participants to reveal their true utility for the commodity; hence the mech-

anisms are incentive compatible [18]. This frees participants from strategic considerations

which is particularly significant in a software-based market system in which the strategies

are preprogrammed rather than interactively done by people. Besides, decision making is

decentralized in the models, since a central mechanism would be a point of failure and a

communication bottleneck in such a distributed environment.

Chapter 4: Market Models for a Computational Grid Economy System 32

We propose these market models for a computational grid system in which resources are

personal computers, clusters or supercomputers that comprises identical processing elements

(CPUs), and jobs are computation-intensive applications such as workflows or parameter

sweep models. In economy grids, commodities can be a variety of resources such as CPU

time, memory, storage, software and network usage; however, the only commodity that we

consider is the CPU time, and therefore, the prices are determined as per unit time.

4.1 The Commodity Market Model

In this market model each resource owner is free to determine a pricing policy for her own

resource, and competitive users take prices as given ignoring any market power they might

have, thus eliminating the need to reason tactically about other agents’ bidding behavior

[73]. Scheduling is done by the invisible hand of economics; or in other words, supply and

demand determines where the jobs are going to be executed [74].

The SFTCO heuristic, basically, determines the users’ preferences in our commodity

market model. The time, cost and time-cost optimization strategies of the heuristic are

realistic enough to be the preferences of a computational grid user. Besides, the heuris-

tic takes prices as given and do not perform any strategic behavior against other users’

operations.

In the real-world commodity markets, there is no any globally accepted method for

price setting or adjustment; each producer or vendor applies an individual pricing policy.

Accordingly, we devised a rational dynamic pricing policy (see section 4.1.1) such that

resource owners can adjust the prices considering the demand on their resource. Moreover,

in [15] a stochastic approximation based pricing policy is proposed to be used in e-commerce

applications in order to determine the price of a commodity automatically, depending on

past prices and sales. We also consider that this policy can be used by the resource owners in

the grid (see section 4.1.2). As another approach, fixed pricing policy may also be preferred

by the resource owners. To find out how these policies work in the computational grid

environment, we performed comparison experiments, and consequently discuss the results

both from users’ and resource owners’ point of views (see section 4.3.1).

For all pricing policies, we assume that each resource owner individually specifies a

minimum price per unit time that she is not willing to execute jobs any price lower than

Chapter 4: Market Models for a Computational Grid Economy System 33

this. The minimum price can be taken as the minimum value required to profit or recover

the fixed and variable costs [52]. Besides, setting minimum prices prevents resource owners

to undercut their prices to zero as the consequence of a price war [51].

4.1.1 A Dynamic Pricing Policy

In this pricing policy, resource owners can enter the market with a price above than or equal

to the minimum price determined in advance, and they adjust the prices over time according

to the demand on their resources. The demand on a resource, at a time instant, is assumed

to be the utilization of the resource, i.e. the fraction of the resource’s total capacity that is

being used.

Algorithm 2 DynamicPrice(Pinit, Pmin, µ, T)
1:

2: Set initial price p = Pinit

3: Set previous utilization rate ExUr = 0

4: for i : 1 to ∞ do

5: Wait for a period of T

6: Ur = getCurrentUtilization()

7: if Ur > µ and Ur > ExUr then

8: ∆p = Ur − µ

9: Update the current price p = p ∗ (1 + ∆p)

10: else if Ur < µ then

11: ∆p = µ− Ur

12: Update the current price p = p ∗ (1−∆p)

13: if p < Pmin then

14: p = Pmin

15: end if

16: end if

17: ExUr = Ur

18: end for

By Algorithm 2 each resource owner calculates a new price-per-unit-time; p. In the

algorithm, Ur (0 < Ur < 1) denotes the utilization and ∆p is the price increment or

decrement percentage. We assume that resource owners interpret a utilization below than

Chapter 4: Market Models for a Computational Grid Economy System 34

a ratio that they consider (i.e. µ, 0 < µ < 1) as a decrease and a higher ratio as an increase

on the demand.

If the utilization is over µ, owners increase the price only when the utilization changes

(line 7-9), i.e. when new jobs are accepted or some running jobs are completed to prevent

continuous price increase; however, they decrease the price at each predetermined time

interval if the utilization is under µ (line 10-12), in order to attract the users. Naturally,

price of a resource do not fall below the minimum price that the owner has specified (line

13-14). Moreover, once a job is accepted, it is charged with the agreed price. Further price

changes do not affect the running or the queued jobs.

Generally speaking, when there is less demand for resources, the price is lowered and

when there is high demand, the price is raised in this policy, which is expected to help in

regulating the supply and demand for access to the resources.

4.1.2 A Pricing Policy based on Stochastic Approximation

This policy, presented in Algorithm 3, is based on a stochastic approximation method, which

is a general methodology for online function optimization that estimates the maximum of a

regression function by testing and obtaining the function values at points of its choice, and

gradually converge to the optimum point [15, 75].

Given a reasonable initial price, the policy simply tries to converge to a local optimal

price, p, that is expected to maximize the revenues [15]. Using a step size, ∆, determined

as a decreasing function of the number of trials so far, I, such as I−1/3 (line 5), the policy

conducts sales at both prices p + ∆ (line 6) and p−∆ (line 8) for a certain period of time,

T , and based on the number of received jobs during these periods (in its original form this

is the number of commodities that has been sold), S(p + ∆) (line 7) and S(p−∆) (line 9),

it calculates the profits (revenues) obtained for the respective prices (line 11-12). Then it

updates the current price as shown in the line 14. Here, A is the update interval that is set

as a decreasing function of the trial number such as 1/I. The given equations for A and

∆ satisfies Eq. 4.1 and Eq. 4.2 that are the necessary conditions to ensure convergence of

the obtained prices to the (local) optimum. Finally, the resulting price is prevented to be

lower than the minimum price, Pmin (line 15-16), and further price changes do not affect

the running or the queued jobs, in this policy as well.

Chapter 4: Market Models for a Computational Grid Economy System 35

∞∑

I=1

A(I) =∞ (4.1)

∞∑

I=1

A(I)2

∆(I)2
<∞ (4.2)

Algorithm 3 StochPrice(Pinit, Pmin, T)
1:

2: Set initial price p = Pinit

3: Set trial number I = 1

4: for I : 1 to ∞ do

5: Set step size ∆ = I−1/3

6: For a period of T, set the price to p + ∆

7: Let S(p + ∆) be the amount of jobs received during this time

8: For a period of T, set the price to p−∆

9: Let S(p−∆) be the amount of jobs received during this time

10: Calculate the obtained profit as follows:

11: P (p + ∆) = S(p + ∆) ∗ (p + ∆)

12: P (p−∆) = S(p−∆) ∗ (p−∆)

13: Set the update interval A = 1/I

14: Update the current price p = p + A
∆ ∗

P (p+∆)−P (p−∆)
2T

15: if p < Pmin then

16: p = Pmin

17: end if

18: end for

4.2 Auction Models

An auction is a market tradition with an explicit set of rules determining resource alloca-

tion and prices based on the bids of market participants [56]. Auctions can be classified

in different ways: In one-sided auctions an auctioneer accepts bids from multiple buyers

(bidders) on behalf of a single seller, on the other hand, in two-sided auctions an auction-

eer accept bids from multiple sellers and buyers to sell commodities of the same type. In

open auctions all bids can be seen by the buyers, whereas, in sealed-bid auctions bids are

Chapter 4: Market Models for a Computational Grid Economy System 36

kept secret. Moreover, in first-price auctions the winner pays the amount she offers, yet, in

second-price auctions the winner pays the amount of the second-highest bid.

There are five major auction types in the economics literature [76]: English, First-price

sealed-bid, Vickrey, Dutch, and Double. In an English (first-price open cry) auction the

auctioneer begins with the lowest acceptable price and proceeds to ask for successively

higher bids from the buyers until no one increases the bid. At the end, the commodity is

sold to the highest bidder. In a First-price sealed-bid auction each bidder submits only one

bid without knowing the others’ bids. The highest bidder wins and pays the amount she

bid. The Vickrey (second-price sealed-bid) auction differs from the First-price sealed-bid

auction in the way that the winner pays the amount of the second-highest bid. In a Dutch

auction the bidding starts with an extremely high price and it is continuously lowered until

a buyer takes the commodity at the current price. In a Double auction both sellers and

buyers submit bids which are subsequently ranked from highest to lowest to create demand

and supply profiles by the auctioneer. From the profiles, the maximum quantity exchanged

can be determined by matching selling offers (starting with the lowest price and going up)

with demand bids (starting with the highest price and moving down).

In a computational grid environment, users need multiple processing elements (com-

modities) simultaneously for their workflow, parallel or parameter-sweep type of applica-

tions. Many of the mentioned auction models are not directly applicable to computational

grids, since they allocate a single commodity at once [57]. Thus, a combinatorial auction

mechanism is necessary in which users submit bids for a combination of resources. Besides,

since the grid is a type of distributed system we intuitively do not want to place a central

auctioneer. Instead, each resource owner can perform auctioning on its own. Also, to reduce

the number of communication messages sealed-bid auction models should be preferred in

which only a single round of communication takes place. In the next subsection, we present

a double auction model considering these limitations.

4.2.1 A Combinatorial Double Auction Model

First of all, an auction mechanism can only be used if the resources are space-shared ma-

chines. Since several jobs can be run on a time-shared processing element we could not

consider it as a discrete commodity to be auctioned.

Chapter 4: Market Models for a Computational Grid Economy System 37

In this market model, resource owners declare a minimum price that the users have

to bid more, to participate in an auction. We modified our simulation architecture that

each resource owner has an individual auctioneer that performs double auctions on behalf

of its owner. When the resource has any free processing elements, the auctioneer accepts

sealed-bids from users during a predetermined time interval. Each job that belongs to an

application is represented by a single bid that includes the information of the length of the

job (in MI), the bid price-per-MI (i.e. the offered price), and the multiplication of both, that

is the total amount the user is willing to pay for the job. We assume that each processing

element of the resource submits identical bids that offer the same price (i.e. the minimum

price that the owner has specified) to qualify the model as double auction.

When auctioning multiple commodities, all winning bidders should pay for the items

at the same price [76]; therefore, at the end of a bidding interval auctioneers determine a

market-clearing price for the winners. To illustrate this phase, let’s consider an example

in which an auctioneer receives the bids illustrated in Fig. 4.1, and assume that there are

three free processing elements at that time. At first, the bids are sorted in the decreasing

order of payment amount. Here the winners are the first three bids since there are three free

processing elements (bids of User-1 and User-2). Then, the market clears at the minimum

price-per-MI (PPMI), through the winner biddings. In this case, the market-clearing price

is 0.2 G$. This means that both User-1 and User-2 are going to pay 0.2 G$ per MI for the

respective jobs. Resources sort the bids according to their payment amount rather than the

PPMI, since we assume that they consider short-term profits.

USER−2 USER−1USER−1 USER−3

Job Length: 500 MI
PPMI: 0.25 G$
Payment: 125 G$

Job Length: 400 MI
PPMI: 0.20 G$
Payment: 80 G$

Job Length: 200 MI
PPMI: 0.25 G$
Payment: 50 G$

Job Length: 100 MI
PPMI: 0.25 G$
Payment: 25 G$

Figure 4.1: Bids submitted to an auctioneer

In this auction model, users have to bid their true price since the bids are sealed. They

know that they can only win if they bid higher than that of everyone else. Therefore, the

model is incentive compatible. Essentially, we assume that they do not cheat on the length

Chapter 4: Market Models for a Computational Grid Economy System 38

of their jobs to bid a lower PPMI with the same payment amount, or we assume that the

resources verify the lengths.

From the users’ view, initially the budget is shared among the jobs of the application

in proportion to the lengths. Actually, the ratio of total (remaining) budget to the total

(remaining) job length is the bid price-per-MI value of the user at a particular moment.

Next, the resources are sorted in the decreasing order of processing speeds. Since they reveal

their true valuations for the resources, they naturally prefer faster resources to execute

their jobs. A user submits bids only if there are free processing elements and she meets

the minimum price condition of the corresponding resource. If there are no free processing

elements, or the minimum price condition could not be met for the corresponding resource,

the user considers the next resource in the list. As an important fact, if the minimum price

condition could not be met for none of the resources, then the user may start to remove

some of the jobs from the job-list until the bid PPMI becomes sufficient to be participated

in one of the auctions. If the user has managed to submit bids to any auctioneer, she waits

until the auction session ends, and receives a reply from the auctioneer that informs about

the jobs that has been accepted or denied.

4.3 Experimental Results

In this section, we present the results of the experiments that compare the pricing policies

of the commodity market model, and the experiments that compare the auction model with

the commodity market model.

Some of the experimental properties and parameters are same for all of the experiments.

The attributes of the simulated resources are given in Table 4.1. As an exception, in the

pricing comparison experiments resources are simulated as time-shared and in the market

model comparison experiments resources are simulated as space-shared machines. Users

submit only parameter sweep type of applications within a 10000 time interval, based on a

Poisson arrival process. The experiments were repeated 10 times for each average arrival

rate value, λ, that were varied from 5.10−4 to 5.10−3 with a 5.10−4 step size. The variation

of the parameters related to Gridlets (jobs) are given in Table 4.2.

Chapter 4: Market Models for a Computational Grid Economy System 39

Table 4.1: Attributes of the simulated resources

Resource Number MIPS Rating Min. Price per PE Min. PPMI
Name of PEs of each PE unit time in G$ in G$

R1 32 10 3.5 0.35
R2 36 12 4.7 0.391
R3 48 13 5.2 0.4
R4 24 15 6.3 0.42
R5 36 20 9 0.45
R6 16 12 4.6 0.383
R7 24 11 4.1 0.372
R8 40 10 3.6 0.36
R9 24 10 3.4 0.34

Table 4.2: Variation intervals for job parameters

Number of Jobs Size of a Job Input File Output File
in an Application Size Size

50-150 1000-10000 MI 250-750 B 2.5-7.5 KB

4.3.1 Comparison of the Pricing Policies

For deadline and budget of each user, a relaxed and a tight (limited) value are computed

considering the size of the application, and the minimum prices of the resources, in the way

we did in section 3.5. Subsequently, from the tight-relaxed distributions a random budget

and a random duration are assigned to the user. Resource owners enter the market with

the minimum prices. The sale period of the stochastic approximation based pricing policy,

T , and the price update interval of the dynamic pricing policy is set to 5 time units, and

the desired utilization rate parameter, µ, is set to 0.5.

Fig. 4.2 demonstrates the average income distribution of resource owners. The average

total gain under the fixed, dynamic and stochastic approximation (SA) based pricing policies

are 2,654,830 G$, 4,489,723 G$, and 2,677,156 G$ respectively. Under the fixed pricing

policy R5 holds the 74% of the total market gain, leaving only small shares to the other

resources. This is becasue R5 is the most suitable (preferable) resource in terms of time (it

is the fastest resource) and time-cost (it has the highest MIPS/PPMI ratio) optimization.

Since prices are constant in the fixed pricing policy, resources are not able to adjust their

Chapter 4: Market Models for a Computational Grid Economy System 40

Figure 4.2: Average income distribution under the fixed (the chart on the left), the dynamic
(the chart on the middle), and stochastic approximation based (the chart on the right)
pricing policies

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4 R5 R6 R7 R8 R9

P
ric

e
P

er
 M

I

Dynamic

Stochastic

Fixed

Figure 4.3: Average price-per MI of the resources under the pricing policies

prices to attract the users. However, all of the resources have been able to earn money

under the dynamic and SA based policies, breaking the monopoly of R5.

Resources (commodities) are not identical, and tastes and preferences differs among

users (buyers) in this market; they have different requirements such as optimizing time,

cost or both of them. In such a market, attaining a fair income share is a though issue,

since resources have different values to the users. As another consequence, there cannot be

an equilibrium point for the prices in this market. As Fig. 4.3 illustrates price-per MI values

varies among the resources. However, identical or comparable resources in terms of speed,

have similar prices under the dynamic and SA based policies. Therefore, we can claim that

Chapter 4: Market Models for a Computational Grid Economy System 41

0

0.2

0.4

0.6

0.8

R1 R2 R3 R4 R5 R6 R7 R8 R9

U
til

iz
at

io
n

Dynamic

Stochastic

Fixed

Figure 4.4: Average utilization of the resources under the pricing policies

0 1 2 3 4 5

x 10
−3

0 %

20%

40%

60%

80%

Avg. Arrival Rate

A
pp

lic
at

io
n

C
om

pl
et

io
n

% Fixed

Dynamic

Stochastic

Figure 4.5: Average application completion percentages under the pricing policies

these policies achieve a partial equilibrium in the market.

The SA based policy, in fact, quickly converges to a local optimum price; however, after

a certain amount of time (as A/∆ ratio increases) it behaves like the fixed price policy.

Therefore, it is not versatile as the dynamic policy in adapting to the demand variations.

This is clearly the reason for the income difference.

Average utilization of a system gives clear indications of overall system performance.

The average utilization of all resources under the fixed, dynamic, and SA based policies are

28%, 35%, and 34% respectively. As Fig. 4.4 shows, the average utilization of the resources

are more balanced under the SA based and dynamic policies than that of the resources

under the fixed policy.

Fig. 4.5 shows the average percentage of the applications completed without a budget

Chapter 4: Market Models for a Computational Grid Economy System 42

0 1 2 3 4 5

x 10
−3

20%

40%

60%

80%

100%

Avg. Arrival Rate

G
rid

le
t C

om
pl

et
io

n
% Fixed

Dynamic

Stochastic

Figure 4.6: Average Gridlet completion percentages under the pricing policies

0 1 2 3 4 5

x 10
−3

60%

70%

80%

90%

100%

Avg. Arrival Rate

D
ur

at
io

n
U

sa
ge

 %

Fixed

Stochastic

Dynamic

Figure 4.7: Average duration usage percentages under the pricing policies

shortage or a deadline violation, and Fig. 4.6 shows the average Gridlet completion per-

centages under the pricing policies. It can be seen that more Gridlets and therefore more

applications are completed under the proposed dynamic pricing policy. This is because

dynamic policy makes users, rapidly, tend to less loaded and cheaper resources when the

formerly suitable resources became loaded and consequently their prices are increased. As

Fig. 4.7 demonstrates, under the fixed and SA based policies, users’ deadlines expire as the

demand on the resources increases; hence, Gridlet and application completion percentages

decreases.

To sum up, considering the experimental results we can assert that the dynamic pricing

in which prices are adjusted with respect to the real-world market dynamics yields better

social outcomes than the other pricing policies.

Chapter 4: Market Models for a Computational Grid Economy System 43

0 1 2 3 4 5

x 10
−3

70%

80%

90%

100%

Avg. Arrival Rate

Relaxed−Tight Budget

G
rid

le
t C

om
pl

et
io

n
%

0 1 2 3 4 5

x 10
−3

60%

70%

80%

90%

Avg. Arrival Rate

Tight Budget

G
rid

le
t C

om
pl

et
io

n
%

0 1 2 3 4 5

x 10
−3

60%

70%

80%

90%

100%

Avg. Arrival Rate

Relaxed Budget
G

rid
le

t C
om

pl
et

io
n

% Auction

Commodity

Figure 4.8: Average Gridlet completion percentages under the market models

4.3.2 Comparison of the Market Models

In the auction model, users do not have the chance to trade off between cost and time

optimization strategies explicitly, since the prices are undefined. However, the optimiza-

tion strategies are realized implicitly. First, the users start to bid on the resources in the

decreasing order of their processing speeds, which means that they start with time opti-

mization strategy. However, if their budgets are not enough for bidding on the resources,

they tend to less expensive and probably less capable resources, which can be considered as

time-cost optimization strategy. Finally, if their budgets became so insufficient that they

had to remove some of their jobs, they stuck on the cheapest resources, which is certainly

the cost optimization strategy.

We performed three sets of experiments to observe the outcomes of the market models.

First, users are randomly assigned budgets from the tight-relaxed normal distribution, sec-

ond, users are assigned only tight budgets, and last, they are all assigned relaxed budgets. In

the experiments, we remove the deadline constraints to observe the true time performances

of the market models.

Chapter 4: Market Models for a Computational Grid Economy System 44

0

0.2

0.4

0.6

0.8

R1 R2 R3 R4 R5 R6 R7 R8 R9

P
ric

e
P

er
 M

I

Relaxed−Tight Budget

R1 R2 R3 R4 R5 R6 R7 R8 R9

R1 R2 R3 R4 R5 R6 R7 R8 R9
0

0.2

0.4

0.6

0.8

P
ric

e
P

er
 M

I

Tight Budget

0

0.5

1

R1 R2 R3 R4 R5 R6 R7 R8 R9

P
ric

e
P

er
 M

I
Relaxed Budget

Min. Prices

Auction

Commodity

Figure 4.9: Average price-per MI of the resources under market models, when there is high
demand in the market (i.e. λ > 35.10−4)

For the commodity market model, resource owners use the dynamic pricing policy with

µ = 0.5. In addition, a guaranteed approach is adopted such that the heuristic waits instead

of submitting jobs to a fully loaded resource; which is needed for a fair comparison with the

auction model. Since we remove the deadline constraints, we have to modify our heuristic

such that an optimization strategy is chosen by comparing the randomly alloted budget

with the mean of random distribution.

The parameter T that represents the price update time interval for the dynamic pricing

policy and bid acceptance time interval for the double auction model is set to 5 time units.

Actually, we performed experiments with reasonable T values such as T = 5, 10, 20, 40, and

received almost the same results for each case. This indicates that any small T value, in

comparison to the average execution time of a job, can easily be chosen.

Actually, the main difference between the market models is the way the prices are deter-

mined. In the auction model prices are determined by the users; however, in the commodity

market model prices are determined by the resource owners. Fig. 4.8 illustrates the average

percentage of the completed Gridlets under the market models. Up to a specific arrival rate,

Chapter 4: Market Models for a Computational Grid Economy System 45

i.e 2.10−3, similar Gridlet completion percentages are revealed for all type of budget assign-

ments. But after this point Gridlet completion percentages fall down under the commodity

market model. This is due to the high price increase on the resources as the consequence of

the demand increase in the market. Figure 4.9 illustrates this situation. As it can be seen

the average price-per MI values revealed higher under the commodity market model when

there is a high demand in the market. As Fig. 4.10 demonstrates, less money is spent in the

commodity market model compared to the auction model. Since users bid their true values

in the auction model, high budget consumption is in fact an expected result. Consequently,

we can claim that commodity market model is more advantageous when the demand is low

or normal in the market, and vice versa when the demand is high.

As Fig. 4.11 illustrates, considerable amount of time elapsed to complete the execution

of jobs under the auction model with tight budget assignment. All the users with limited

budgets, under the auction model, only stuck on the R9 (see Fig. 4.13) waiting for the

completion of the jobs to get free processing elements.

Fig. 4.12 demonstrates the average income distribution and average total incomes of

resource owners. All of the resources are able to earn money under the market models;

however, resource owners are managed to earn more money under the auction model. And,

Fig. 4.13 shows that no resource has left idle, and average utilization of the resources are

balanced in general, except R9.

To sum up, the superiorities of the market models are relative. Here, we do not consider

the deadline constraints; in such a case, the users may suffer under the auction model since

their applications may not be completed. Regarding the performed set of experiments, we

can conclude that resource owners are happier under the auction model. But if we consider

deadlines again, this situation may change as well.

Chapter 4: Market Models for a Computational Grid Economy System 46

0 1 2 3 4 5

x 10
−3

80%

85%

90%

95%

100%

Avg. Arrival Rate

Relaxed−Tight Budget
B

ud
ge

t C
on

su
m

pt
io

n
%

0 1 2 3 4 5

x 10
−3

80%

85%

90%

95%

100%

Avg. Arrival Rate

Tight Budget

B
ud

ge
t C

on
su

m
pt

io
n

%

0 1 2 3 4 5

x 10
−3

70%

80%

90%

100%

Avg. Arrival Rate

Relaxed Budget

B
ud

ge
t C

on
su

m
pt

io
n

%

Auction

Commodity

Figure 4.10: Average budget consumption percentages under market models

0 1 2 3 4 5

x 10
−3

0

2000

4000

6000

Avg. Arrival Rate

Relaxed−Tight Budget

R
es

po
ns

e
T

im
e

0 1 2 3 4 5

x 10
−3

0

0.5

1

1.5

2
x 10

4

Avg. Arrival Rate

Tight Budget

R
es

po
ns

e
T

im
e

0 1 2 3 4 5

x 10
−3

500

1000

1500

Avg. Arrival Rate

Relaxed Budget

R
es

po
ns

e
T

im
e Auction

Commodity

Figure 4.11: Average response time

Chapter 4: Market Models for a Computational Grid Economy System 47

Figure 4.12: Average income distribution under the auction (the left column), and the
commodity market (the right column) models

Chapter 4: Market Models for a Computational Grid Economy System 48

0

0.2

0.4

0.6

0.8

R1 R2 R3 R4 R5 R6 R7 R8 R9

U
til

iz
at

io
n

Relaxed−Tight Budget

R1 R2 R3 R4 R5 R6 R7 R8 R9

R1 R2 R3 R4 R5 R6 R7 R8 R9
0

0.2

0.4

0.6

0.8

U
til

iz
at

io
n

Tight Budget

0

0.2

0.4

0.6

0.8

U
til

iz
at

io
n

Relaxed Budget

Auction

Commodity

Figure 4.13: Average utilization of the resources under the market models

Chapter 5: Conclusions 49

Chapter 5

CONCLUSIONS

5.1 State of the Art

Over the last decade, there has been much interest in computational grids which provide

transparent access to large-scale distributed computational resources [58]. The main issue

in such environments is the efficient allocation of these resources. Several scheduling and

resource allocation systems have been developed to solve this problem. It has been also

considered that constructing computational grid economy (market) systems may bring out

several advantages, compared to these studies. Such a system would motivate people and

companies to share their processing and data resources in order to gain money, which would

consequently yield a great computing power for the scientific or private-sector community. It

would also motivate scientific associations to share their resources, since they would be able

to recover their costs. In addition, pricing the resources would restrict excessive resource

usage (i.e. “Tragedy of the Commons” phenomenon [77]) since pricing is considered as a

natural way of setting priorities to the users. Finally, scheduling would be a natural outcome

in such a market where both resource owners and users can make their own decisions to

maximize their utility and profit.

Nevertheless, the idea of constructing computational grid markets is rather new. There

are no such real systems currently. However, some companies such as IBM [78], Parabon

[79] and United Devices [80] give significant attention to this topic, and there are ongoing

projects in the academic world [6, 60, 64]. We believe that grid economy systems will gain

more attention as these studies progress and they will be the main computing infrastructures

of the future.

5.2 Summary

The work presented in this thesis has an interdisciplinary nature; we have considered both

economical and computational aspects of the grid systems in all phases of the study. This

Chapter 5: Conclusions 50

helped us to develop models and strategies that could satisfy both resource owners and

users of a computational grid economy system in many respects.

First, we have investigated the problem of job scheduling in a computational grid econ-

omy system with the goal of minimizing both the makespan and the cost which is spent for

the use of processing elements. Towards this goal, we have devised the SFTCO heuristic

that is designed to complete all the jobs of a user within the budget and deadline con-

straints. The heuristic is capable of dealing both the sequential workflow and parameter

sweep type of applications. We performed simulation studies to test the performance of our

heuristic. In terms of job completion percentages, our heuristic outperformed the heuristics

of Nimrod/G system for parameter sweep type of applications, and outperformed a random

scheduling strategy for sequential workflow type of applications.

We have also presented two market models; commodity market and combinatorial dou-

ble auction, for computational economy grids in which both users and resource owners can

ensure their self-interests. In the commodity market model, the user preferences are rep-

resented by the optimization strategies of the SFTCO heuristic. And for resource owners

we have considered a fixed, a dynamic and a stochastic approximation based [15] policy.

The comparison experiments revealed that our dynamic pricing policy is more successful as

a means for achieving social welfare that is the utility of all market agents considered in

aggregate. In other words, users have managed to complete more jobs, and resource owners

have managed to earn more money. In the combinatorial double auction model, resource

owners can auction their own processing elements, and users can get multiple commodi-

ties concurrently, which differentiates the model from the typical auction studies in the grid

computing field. Finally, we have compared the commodity market model in which resource

owners use the dynamic pricing policy, with the double auction model. The experimental re-

sults showed that the models have both advantages and disadvantages in terms of achieving

social welfare.

Considering the distributed nature of the resources, the decision making is decentralized

in the models. There do not exist any central mechanism that adjusts the prices; each

agent tries to maximize its own utility and profit. Moreover, models require relatively

small communication overhead compared to negotiation based models such as tatonnement

process, bargaining and open-bid auctions. In the commodity market model, agents interact

Chapter 5: Conclusions 51

with each other indirectly through the price mechanism; hence no communication takes place

to determine the price. And the auction model is a type of sealed-bid that a single round

of communication takes place between a user and the auctioneer in an auction session.

5.3 Future Directions

In SFTCO heuristic, when deciding whether to perform time optimization, we compare the

duration alloted to the stage with the worst-case estimation of completion time. In fact,

several studies in the literature such as [81] and [82] propose better duration estimation

techniques for a set of independent parallel tasks. These techniques can be easily applied

to the SFTCO heuristic.

The presented commodity market model is a spot market in which the resources are

traded for immediate delivery and payment. As a future work, an advance reservation

system (i.e. futures market [77]) can be applied to the commodity market model to reduce

price volatility and ensure reliance among the market agents. Moreover, in the auction

model, the minimum bidding prices that the resource owners determine, can be adaptive

according to the demand (i.e. utilization) on the resource. It would be an interesting

contribution since it associates the commodity market model with the auction model. Also,

in this work, we only consider the processing elements as commodities; a computational

grid economy system, in fact, should address pricing of many other requirements such as

memory, data or bandwidth.

Appendix A: The GridSim Toolkit 52

Appendix A

THE GRIDSIM TOOLKIT

GridSim [2, 14] is a Java based, open source, and discrete event based simulation toolkit

developed for modeling and simulation of application scheduling on a range of classes of

parallel and distributed computing systems such as clusters, grids, and P2P networks. The

GridSim toolkit provides facilities for the modeling and simulation of resources and network

connectivity with different capabilities, configurations, and domains. It supports primitives

for application composition, information services for resource discovery, and interfaces for

assigning application tasks to resources and managing their execution.

It is possible to simulate both conventional and economic-based distributed systems with

this toolkit. Besides, developers can implement their own schedulers, resource management

policies, pricing policies and different application models such as parameter sweep, process

parallelism, workflow, and divide&conquer.

Some of the important features of the toolkit are as follows:

• It allows modeling of heterogeneous types of resources.

• Resources can be modeled operating under space-shared or time-shared policies.

• Resource capability can be defined in the form of MIPS (Million Instructions Per
Second) in accordance with SPEC (Standard Performance Evaluation Corporation)
benchmark.

• Resources can be located in any time zone.

• Weekends and holidays can be mapped depending on resources local time to model
non-Grid (local) workload.

• Resources can be booked for advance reservation.

• Applications with different parallel application models can be simulated.

• Application tasks can be heterogeneous and they can be CPU or I/O intensive.

• There is no limit on the number of application jobs that can be submitted to a resource.

• Multiple user entities can submit tasks for execution simultaneously in the same re-
source, which may be time-shared or space-shared.

Appendix A: The GridSim Toolkit 53

• Network speed between resources can be specified.

• It supports simulation of both static and dynamic schedulers.

• Statistics of all or selected operations can be recorded and they can be analyzed using
GridSim statistics analysis methods.

In the GridSim toolkit, Processing Elements (PEs) can be created with identical or dif-

ferent speeds. Besides, one or more PEs can be put together to create a machine. Similarly,

one or more machines can be put together to create a grid resource. Thus, the resulting

grid resource can be a single processor, shared memory multiprocessors (SMP), or a dis-

tributed memory cluster of computers. These grid resources can simulate time-shared or

space-shared scheduling depending on the allocation policy.

A.1 Simulation of Scheduling in Time-Shared Resources

When jobs arrive, time-shared resources start their execution immediately and share re-

sources among all jobs [14]. Whenever a new job arrives, the processing time of existing

jobs are updated and then this newly arrived job is added to the execution set. Depending

on the number of jobs in execution and the number of PEs in a resource, GridSim allocates

appropriate amount of PE share to all jobs using the Round Robin algorithm. It should be

noted that jobs that are sharing the same PE would get an equal amount of PE share. At

the completion of a job, it is sent back to its originator and removed from the execution set.

A.2 Simulation of Scheduling in Space-Shared Resources

When jobs arrive, space-shared resources start jobs’ execution immediately if there is a free

PE available, otherwise, it is queued [14]. During the job assignment, job-processing time

is determined and event is scheduled for delivery at the end of execution time. Whenever

the job finishes and the internal event is delivered to signify the completion of scheduled

job, the resource simulator frees the PE alloted to it and then checks whether there are any

other jobs waiting in the queue. If there are, then it selects a suitable job depending on the

policy (i.e. FCFS) and assigns to the PE, which is free. The completed jobs are sent back

to its originator and removed from the execution set.

Appendix B: Heuristics of the Nimrod/G System 54

Appendix B

HEURISTICS OF THE NIMROD/G SYSTEM

B.1 Deadline and budget constrained scheduling with cost optimization

DBC Scheduling with Cost Optimization()

1. Identify cost of each resource in terms of CPU cost per second and capability to be
delivered per cost-unit.

2. SORT resources by increasing order of cost.

3. SCHEDULING: Repeat while there exist unprocessed jobs in application job list
with a delay of scheduling event period or occurrence of an event AND the time and
process expenses are within deadline and budget limits:

(a) For each resource perform load profiling to establish the job consumption rate or
the available resource share through measure and extrapolation.

(b) For each resource based on its job consumption rate or available resource share,
predict and establish the number of jobs a resource can process by the deadline.

(c) For each resource in order:

i. If the number of jobs currently assigned to a resource is less than the pre-
dicted number of jobs that a resource can consume, assign more jobs from
unassigned job queue or from the most expensive machines based on job
state and feasibility. Assign job to a resource only when there is enough
budget available.

ii. Alternatively, if a resource has more jobs than it can complete by the dead-
line, move those extra jobs to unassigned job queue.

4. Repeat the following steps for each resource if it has jobs to be dispatched:

(a) Identify the number of jobs that can be submitted without overloading the re-
source. The default policy is to dispatch jobs as long as the number of user jobs
deployed (active or in queue) is less than the number of PEs in the resource.

Appendix B: Heuristics of the Nimrod/G System 55

B.2 Deadline and budget constrained scheduling with time optimization

DBC Scheduling with Time Optimization()

1. Identify cost of each resource in terms of CPU cost per second and capability to be
delivered per cost-unit.

2. SCHEDULING: Repeat while there exist unprocessed jobs in application job list
with a delay of scheduling event period or occurrence of an event AND the time and
process expenses are within deadline and budget limits:

(a) For each resource, predict and establish the job consumption rate or the avail-
able resource share through the measure and extrapolation strategy taking into
account the time taken to process previous jobs.

(b) If any of the resource has jobs assigned to it in the previous scheduling event, but
not dispatched to the resource for execution and there is variation in resource
availability, then move appropriate number of jobs to the Unassigned-Jobs-List.
This helps in updating the whole schedule based on the latest resource availability
information.

(c) Repeat the following steps for each job in the Unassigned-Jobs-List:

i. Select a job from the Unassigned-Jobs-List.

ii. Create a resource group containing affordable resources (i.e., whose process-
ing price is less than or equal to the remaining budget per job).

iii. For each resource in the resource group, calculate/predict the job completion
time taking into account previously assigned jobs and the job completion rate
and resource share availability.

iv. Sort resources in the resource group by the increasing order of job completion
time.

v. Assign the job to the first resource in the resource group and remove it from
the Unassigned-Jobs-List if the predicted job completion time is less than
the deadline.

3. Repeat the following steps for each resource if it has jobs to be dispatched:

(a) Identify the number of jobs that can be submitted without overloading the re-
source. The default policy is to dispatch jobs as long as the number of user jobs
deployed (active or in queue) is less than the number of PEs in the resource.

Appendix B: Heuristics of the Nimrod/G System 56

B.3 Deadline and budget constrained scheduling with cost-time optimization

DBC Scheduling with Cost-Time Optimization()

1. Identify cost of each resource in terms of CPU cost per second and capability to be
delivered per cost-unit.

2. SCHEDULING: Repeat while there exist unprocessed jobs in application job list
with a delay of scheduling event period or occurrence of an event AND the time and
process expenses are within deadline and budget limits:

(a) For each resource, predict and establish the job consumption rate or the avail-
able resource share through the measure and extrapolation strategy taking into
account the time taken to process previous jobs.

(b) SORT the resources by increasing order of cost. If two or more resources have
the same cost, order them such that powerful ones are preferred first.

(c) Create resource groups containing resources with the same cost.

(d) SORT the resource groups with the increasing order of cost.

(e) If any of the resource has jobs assigned to it in the previous scheduling event, but
not dispatched to the resource for execution and there is variation in resource
availability, then move appropriate number of jobs to the Unassigned-Jobs-List.
This helps in updating the whole schedule based on the latest resource availability
information.

(f) Repeat the following steps for each resource group as long as there exists unas-
signed jobs: (Use time optimization strategy)

i. Select a job from the Unassigned-Jobs-List.

ii. Create a resource group containing affordable resources (i.e., whose process-
ing price is less than or equal to the remaining budget per job).

iii. For each resource in the resource group, calculate/predict the job completion
time taking into account previously assigned jobs and the job completion rate
and resource share availability.

iv. Sort resources in the resource group by the increasing order of job completion
time.

v. Assign the job to the first resource in the resource group and remove it from
the Unassigned-Jobs-List if the predicted job completion time is less than
the deadline.

3. Repeat the following steps for each resource if it has jobs to be dispatched:

(a) Identify the number of jobs that can be submitted without overloading the re-
source. The default policy is to dispatch jobs as long as the number of user jobs
deployed (active or in queue) is less than the number of PEs in the resource.

Bibliography 57

BIBLIOGRAPHY

[1] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

[2] R. Buyya. Economic-based distributed resource management and scheduling for grid
computing. PhD thesis, Monash University, 2002.

[3] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Journal
of Supercomputer Applications, 11:115–128, 1997. (http://globus.org).

[4] I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous dis-
tributed computing systems. In Proceedings of SC’98, pages 1–11, San Jose, California,
USA, 1998.

[5] G. Allen, T. Dramlitsch, and I. Foster. Supporting efficient execution in heterogeneous
distributed computing environments with Cactus and Globus. In Proceedings of the
2001 ACM/IEEE conference on Supercomputing, page 52, Denver, Colorado, USA,
2001.

[6] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture of a resource
management and scheduling system in a global computational grid. In Proceedings of
the High-Performance Computing, pages 283–289, 2000.

[7] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A computation
management agent for multi-institutional grids. Journal of Cluster Computing, 5:237–
246, 2002.

[8] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. Anderson. A
new major SETI project based on project serendip data and 100,000 personal com-
puters. In Proceedings of the 5th International Conference on Bioastronomy, 1997.
(http://setiathome.ssl.berkeley.edu/).

[9] S.Shetty, P. Padala, and M. P. Frank. A survey of market-based approaches to distrib-
uted computing. Technical Report TR03-013, University of Florida, 2003.

[10] M. P. Wellman. A market-oriented programming environment and its application to
distributed multicommodity flow problems. Journal of Artificial Intelligence Research,
1:1–23, 1993.

[11] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for resource
management and scheduling in grid computing. Journal of Concurrency and Compu-
tation: Practice and Experience, pages 1507–1542, 2002.

Bibliography 58

[12] H. P. Bivens. Grid workflow, 2004. http://zuni.cs.vt.edu/grid-computing/papers/draft-
bivens-grid-workflow.pdf.

[13] R. Buyya, J. Giddy, and D. Abramson. An evaluation of economy-based resource
trading and scheduling on computational power grids for parameter sweep applications.
In Proceedings of the 2nd International Workshop on Active Middleware, Pittsburgh,
Pennsylvania, USA, 2000.

[14] M. Murshed, R. Buyya, and D. Abramson. Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid computing.
Journal of Concurrency and Computation: Practice and Experience, pages 1–32, 2002.
(http://www.buyya.com/gridsim/).

[15] N. Abe and T. Kamba. A Web marketing system with automatic pricing. The Inter-
national Journal of Computer and Telecommunications Networking, 33:775–788, 2000.

[16] B. Chun and D. E. Culler. Market-based proportional resource sharing for clusters.
Technical Report CSD-00-1092, University of California at Berkeley, 2000.

[17] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta.
Spawn: A distributed computational economy. IEEE Trans. on Software Engineering,
18(2):103–117, 1992.

[18] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed computation over
the internet - the POPCORN project. In ICDCS ’98: Proceedings of the The 18th
International Conference on Distributed Computing Systems, page 592, Washington,
DC, USA, 1998.

[19] J. Bredin, D. Kotz, and D. Rus. Market-based resource control for mobile agents.
In AGENTS ’98: Proceedings of the second international conference on Autonomous
agents, pages 197–204, New York, NY, USA, 1998.

[20] Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour. Economic scheduling in
grid computing. In JSSPP ’02: Revised Papers from the 8th International Workshop
on Job Scheduling Strategies for Parallel Processing, pages 128–152, London, UK, 2002.

[21] Yan Liu. Grid scheduling, 2002. http://www.cs.uiowa.edu/ yanliu/QE/QEreview.pdf.

[22] Chaitanya Kandagatla University. Survey and taxonomy of grid resource management
systems. http://citeseer.ist.psu.edu/647028.html.

[23] K. Ranganathan and I. T. Foster. Simulation studies of computation and data schedul-
ing algorithms for data grids. Journal of Grid Computing, 1(1):53–62, 2003.

[24] J. M. Schopf. A general architecture for scheduling on the grid, 2002. Special issue of
JPDC on Grid Computing.

Bibliography 59

[25] Ramin Yahyapour. Grid scheduling architecture, 2002. http://www-ds.e-technik.uni-
dortmund.de/.

[26] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid resource
management systems for distributed computing. Software Practice and Experience,
32(2):135–164, 2002.

[27] D. Fernandez-Baca. Allocating modules to processors in a distributed system. IEEE
Transactions on Software Engineering, 15(11):1427–1436, 1989.

[28] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks on
nonidentical processors. Journal of the ACM, 24(2):280–289, 1977.

[29] X. He, X. Sun, and G. von Laszewski. Qos guided min-min heuristic for grid task
scheduling. Journal of Computer Science and Technology, 18(4):442–451, 2003.

[30] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous computing systems.
In HCW ’99: Proceedings of the Eighth Heterogeneous Computing Workshop, page 30,
Washington, DC, USA, 1999. IEEE Computer Society.

[31] M. Maheswaran, T. Braun, and H. Siegel. Heterogeneous distributed computing, 1999.
(citeseer.ist.psu.edu/maheswaran99heterogeneous.html).

[32] T. D. Braun et. al. A comparison of eleven static heuristics for mapping a class of inde-
pendent tasks onto heterogeneous distributed computing systems. Journal of Parallel
Distributed Computing, 61(6):810–837, 2001.

[33] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, editors. Scheduling and Load Balancing
in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1995.

[34] R. F. Freund and H. J. Siegel. Guest editor’s introduction: Heterogeneous processing.
Computer, 26(6):13–17, 1993.

[35] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for scheduling
parameter sweep applications in grid environments. In HCW ’00: Proceedings of the
9th Heterogeneous Computing Workshop, page 349, Washington, DC, USA, 2000.

[36] E. Srisan and P. Uthayopas. Heuristic scheduling with partial knowledge under gird
environment. Presented at the Second International Symposium on Communications
and Information Technology, 2002.

[37] T. G. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63–
68, 2003.

Bibliography 60

[38] D. Yu and T. G. Robertazzi. Divisible load scheduling for grid computing. Presented at
the Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Systems Technology, 2003.

[39] M. Moges, D. Yu, and T. G. Robertazzi. Grid scheduling divisible loads from multiple
sources via linear programming. In 16th IASTED International Conference on Parallel
and Distributed Computing and Systems, pages 423–428, 2004.

[40] J T. Hung and T. G. Robertazzi. Scalable scheduling for clusters and grids using
cut through switching. International Journal of Computers and their Applications,
26(3):147–156, 2004.

[41] W. H. Min, B. Veeravalli, D. Yu, and T. G. Robertazzi. Data intensive grid scheduling:
Multiple sources with capacity constraints. Presented at 15th Int. Conf. Parallel and
Distributed Computing and Systems, 2001.

[42] H. Zhao and R. Sakellariou. A low-cost rescheduling policy for dependent tasks on grid
computing systems. In Proceedings of the 2nd AcrossGrids, 2004.

[43] H. Chen and M. Maheswaran. Distributed dynamic scheduling of composite tasks on
grid computing systems. In IPDPS ’02: Proceedings of the 16th International Parallel
and Distributed Processing Symposium, page 119, Washington, DC, USA, 2002.

[44] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter sweep
template: user-level middleware for the grid. In Supercomputing ’00: Proceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROM), pages 75–76, Washington,
DC, USA, 2000.

[45] The data grid project, 2005. http://eu-datagrid.web.cern.ch/eu-datagrid/.

[46] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In
Proceedings of the International Conference of Distributed Computing Systems, pages
104–111, San Jose, Ca., 1988.

[47] Network weather servise, 2005. http://nws.cs.ucsb.edu/.

[48] S. J. Chapin, D. Katramatos, J. F. Karpovich, and A. S. Grimshaw. The Legion re-
source management system. In JSSPP ’99: Proceedings of the Job Scheduling Strategies
for Parallel Processing, pages 162–178, London, UK, 1999.

[49] H. Casanova and J. Dongarra. Netsolve: A network server for solving computational
science problems. Technical Report UT-CS-95-313, 1995.

[50] Condor project homepage, 2005. www.cs.wisc.edu/condor/.

[51] J. Nakai. Reading between the lines and beyond. Technical Report NAS-01-010, NASA
Ames Research Center, 2002.

Bibliography 61

[52] Glossary of terms, 2005. www.investopedia.com/terms/.

[53] T. Malone, R. Fikes, K. Grant, and M. Howard. Enterprise: A market-like task sched-
uler for distributed computing environments, pages 177–205. North-Holland, 1988.

[54] M. P. Wellman. A market-oriented programming environment and its application to
distributed multicommodity flow problems. Journal of Artificial Intelligence Research,
1:1–23, 1993.

[55] S. Smale. Convergent process of price adjustment and global newton methods. Journal
of Mathematical Economics, 3:107–120, 1976.

[56] M. Wellman, W. Walsh, P. Wurman, and J. Mackie-Mason. Auction protocols for
decentralized scheduling. Games and Economic Behavior, 35:271–303, 2001.

[57] C.Chien, P. Chang, and V. Soo. Market-oriented multiple resource scheduling in grid
computing environments. In AINA, pages 867–872, 2005.

[58] J. Gomoluch and M. Schroeder. Performance evaluation of market-based resource
allocation for grid computing. Concurrency - Practice and Experience, 16(5):469–475,
2004.

[59] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. G-commerce: Market formulations
controlling resource allocation on the computational grid. In IPDPS ’01: Proceedings
of the 15th International Parallel and Distributed Processing Symposium, page 10046.2,
Washington, DC, USA, 2001.

[60] R. Buyya, D. Abramson, and J. Giddy. A case for economy grid architecture for service
oriented grid computing. Presented at 10th Heteregeneous Computing Workshop, 2001.

[61] L. He and T. R. Ioerger. Task-oriented computational economic-based distributed
resource allocation mechanisms for computational grids. The 2004 International Mul-
tiConference in Computer Science, 2004.

[62] B. Stiller, J. Gerke, P. Flury, P. Reichl, and Hasan. Charging distributed services of a
computational grid architecture. In CCGRID, pages 596–601, 2001.

[63] R. Buyya and D. Abramson ans S. Venugopal. The grid economy. In Special Issue of
the Proceedings of the IEEE on Grid Computing, 2004.

[64] R. Buyya and S. Vazhkudai. Compute power market: Towards a market-oriented grid.
In CCGRID ’01: Proceedings of the 1st International Symposium on Cluster Computing
and the Grid, page 574, Washington, DC, USA, 2001.

[65] O. Sonmez and A. Gursoy. A novel economic-based scheduling heuristic for computa-
tional grids. Presented at the 2nd International Conference on Computational Science
and Engineering, 2005.

Bibliography 62

[66] T. Cheatham, A. Fahmy, D. C. Stefanescu, and L. G. Valiant. Bulk synchronous parallel
computing-a paradigm for transportable software. In HICSS ’95: Proceedings of the
28th Hawaii International Conference on System Sciences, page 268, Washington, DC,
USA, 1995. IEEE Computer Society.

[67] D. B. Skillicorn, J. M. Hill, and W. F. McColl. Questions and answers about BSP.
Scientific Programming, 6(3):249–274, 1997.

[68] S. Aytuna. Automated prediction of protein-protein interactions. Master’s thesis, Koc
University, 2005.

[69] P. V. Jithesh, N. Kelly, P. Donachy, J. Harmer, R. Perrott, M. McCurley, M. Towns-
ley, J. Johnston, and S. McKee. Genegrid: Grid based solution for bioinformatics
application integration and experiment execution. In CBMS, pages 523–528, 2005.

[70] The Standard Performance Evaluation Corporation, 2005. http://www.spec.org/.

[71] A. Y. Zomaya, M. Clements, and S. Olariu. A framework for reinforcement-based
scheduling in parallel processor systems. IEEE Transactions on Parallel and Distributed
Systems, 9(3):249–260, 1998.

[72] L. He and T. R. Ioerger. Forming resource-sharing coalitions: a distributed resource
allocation mechanism for self-interested agents in computational grids. In SAC ’05:
Proceedings of the 2005 ACM symposium on Applied computing, pages 84–91, New
York, NY, USA, 2005.

[73] T. Mullen and J. Breese. Experiments in designing computational economies for mobile
users. In ICE ’98: Proceedings of the first international conference on Information and
computation economies, pages 19–27, New York, NY, USA, 1998.

[74] D. W. Walker. Free-market computing and the integration of computers into the global
economic infrastructure. International Journal of Computers and their Applications,
1(2):60–62, 1993.

[75] M. T. Wasan. Stochastic Approximation. Cambridge University Press, 1969.

[76] Inc. Agorics. Auctions, 2005. http://www.agorics.com/Library/auctions.html.

[77] G. Cheliotis, C. Kenyon, and R. Buyya. Grid economics: 10 lessons from finance.
Technical Report GRIDS-TR-2003-3, IBM Research Zurich and Grid Computing and
Distributed Systems Laboratory, University of Melbourne, 2003.

[78] Kathleen McGraw. IBM launches economic development grid initiative; greater
Cleveland first region to benefit, 2005. http://www-1.ibm.com/grid/grid-press/pr-
051805.shtml.

[79] Parabon, 2005. www.parabon.com.

Bibliography 63

[80] United Devices, 2005. http://www.ud.com/home.htm.

[81] Keqin Li. Analysis of an approximation algorithm for scheduling independent parallel
tasks. Discrete Mathematics and Theoretical Computer Science, 3(4):155–166, 1999.

[82] Keqin Li. Average-case performance analysis and validation of online scheduling of
independent parallel tasks. In IPDPS, 2004.

Vita 64

VITA

Ö. Ozan Sönmez was born in Istanbul, Turkey on September 06, 1980. He received

his B.Sc. degree in Computer Engineering from Istanbul Technical University, Istanbul, in

2003. From September 2003 to August 2005, he worked as a teaching and research assistant

in Koç University, Istanbul, Turkey and studied to develop “Scheduling in a Computational

Grid Economy System” project. He has attended ICCSE2005 (Istanbul, Turkey) conference

where he presented a paper about the project. At the time of press, he had an Ph.D.

admission from the Technical University of Delft, Delft, Netherlands.

