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 Abstract 
 

Proteins are building blocks of life. Structure of these building blocks plays a vital role in their 

function, and consequently in the function of living organisms. Although, increasingly effective 

methods are developed to determine protein structure, it is still easier to determine amino acid 

sequence of a protein than its folded structure and the gap between number of known structures and 

known sequences is increasing in an accelerating manner. Structure prediction algorithms may help 

closing this gap. 

In this study, we have investigated various aspects of structure prediction (both secondary and 

tertiary structure). We have developed an algorithm (Greedy Decision List learner, or GDL) that learns 

a list of pattern based rules for protein structure prediction. The resulting rule lists are short, human 

readable and open to interpretation. The performance of our method in secondary structure predictions 

is verified using seven-fold cross validation on a non-redundant database of 513 protein chains 

(CB513). The overall three-state accuracy in secondary structure predictions is 62.5% for single 

sequence prediction and 69.2% using multiple sequence alignment. We used GDL to predict tertiary 

structure of a protein based on its backbone dihedral angles phi and psi. The effect of angle 

representation granularity to the performance of tertiary structure predictions has been investigated. 

Existing structure prediction approaches build increasingly sophisticated models emphasizing 

accuracy at the cost of interpretability. We believe that the simplicity of the GDL models provides 

scientific insight into the relationship between local sequence and structure in proteins. 
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 Özet 
 

Proteinler hayatın yapıtaşlarıdır. Bu yapıtaşlarının yapıları ise işlevlerinde, dolayısıyla da canlı 

organizmaların işlevlerinde hayati bir rol oynar. Protein yapısının tespiti için her seferinde 

öncekilerden daha etkili yöntemler geliştirilse de, hala bir proteinin amino asit dizisini bulmak 

katlanmış yapısını bulmaktan daha kolaydır ve bilinen protein yapıları ile bilinen dizilerin sayıları 

arasındaki fark ivmelenerek artmaktadır. Yapı tahmin yöntemleri bu farkın kapanmasında yardımcı 

olabilir. 

Bu çalışmada, yapı tahmininin (hem ikincil hem üçüncül yapı) çeşitli yönlerini inceledik. Örüntü 

tabanlı protein yapı tahmini kurallarından oluşan bir liste öğrenen bir işlemsel süreç (Açgözlü Karar 

Listesi öğrenici, veya İngilizce kısaltmasıyla GDL) geliştirdik. Sonuçta oluşan kural listeleri kısa, 

okunaklı ve yoruma açıktır. Yöntemimizin ikincil yapı tahminlerindeki başarımı, 513 protein zinciri 

içeren artıksız bir veri kümesi üzerinde (CB513) 7-kat çapraz doğrulama kullanarak tasdiklendi. 

Yöntemin ikincil yapı tahminindeki genel üç-durumlu doğruluğu, sadece dizi bilgisini kullanarak 

%62.5 ve çoklu dizi hizalaması kullanarak %69.2. GDL’i bir proteinin üçüncül yapısını omurgasının 

iki-düzlemli açıları phi ve psi üzerinden tahmin etmek için kullandık. Açıların gösteriminde kullanılan 

ufalanmanın üçüncül yapı tahminlerinin başarımına etkisi incelendi. 

Mevcut yapı tahmini yaklaşımları, doğruluğu yorumlanabilirliğin önünde tutarak gitgide 

karmaşıklaşan modeller inşa ediyorlar. İnanıyoruz ki, GDL modellerinin sadeliği, proteinlerin yerel 

dizisi ve yapıları arasındaki ilişkiye bilimsel bir sezgi sağlamaktadır. 

 
 
 

 
Anahtar kelimeler: protein yapı tahmini, ikincil, üçüncül, açgözlü karar listesi öğrenici 
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1. Introduction 

1.1 Proteins 
Proteins are complex organic compounds that consist of amino acids joined by peptide bonds. 

Proteins are essential to the structure and function of all living cells and viruses. Many proteins 

function as enzymes or form subunits of enzymes. Some proteins play structural or mechanical roles. 

Some proteins function in immune response and the storage and transport of various ligands. Proteins 

serve as nutrients as well; they provide the organism with the amino acids that are not synthesized by 

that organism. Proteins are amongst the most actively studied molecules in biochemistry and they 

were discovered by the Swedish scientist, Jöns Jakob Berzelius in 1838 [1]. 

An amino acid is any molecule that contains both an amino group and a carboxylic acid group. An 

amino acid residue is the residuals of an amino acid after it forms a peptide bond and loses a water 

molecule. Since we are interested in amino acids that form proteins, it is safe to use the terms residue 

and amino acid interchangeably. There are 20 different amino acids in nature that form proteins. Two 

other nonstandard amino acids are known to occur in proteins (Selenocysteine [2] and Pyrrolysine [3]) 

but these are very rare so only the standard 20 amino acids will be considered throughout this work. 

Proteins are amino acid compounds and the composition of amino acids in a protein defines the 

three dimensional form that the protein folds to. These structures are unique in the sense that a given 

sequence of amino acids always folds into almost the same structure under the same environmental 

conditions (pressure, temperature, pH etc. There are exceptions but that is very rare.). Structures of 

proteins are investigated under four primary groups (Figure 1.1): 

- Primary Structure is the sequence of amino acids in the protein. 

- Secondary Structure is the composition of common patterns in the protein. Some patterns are 

frequently observed in the native states of proteins. This structure class includes regions in the 

protein of these patterns but it does not include the coordinates of residues. 

- Tertiary Structure is the native state, or folded form, of a single protein chain. This form is 

also called the functional form. Tertiary structure of a protein includes the coordinates of its 

residues in three dimensional space. 

- Quaternary Structure is the structure of a protein complex. Some proteins form a large 

assembly to function. This form includes the position of the protein subunits of the assembly 

with respect to each other. 

 

There are a number of methods with varying resolution to determine the structure of proteins. For 

example, the primary structure can be determined by means of mass spectrometry [4], the secondary 

structure content (i.e. percentages of the common motifs) can be determined up to some certainty by 

means of circular dichroism spectroscopy [5] and the tertiary structure can be determined by means of 
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x-ray crystallography or NMR spectroscopy [6]. These methods require more time and effort as the 

expected resolution from the method increases.  

There are also theory based methods in protein structure determination like homology modeling, 

threading or ab initio modeling. These methods are referred to as structure prediction methods. 

Homology modeling can be briefly described as fitting a known sequence to the experimentally 

determined three dimensional structure of a protein that is similar in sequence [6]. Threading is fitting 

a sequence to a database of known structures using a heuristic scoring method and finding the most 

likely structure [7]. Ab initio methods are methods that predict structure from scratch, i.e. they do not 

rely on known structure of the homologous proteins [6].  

 
Figure 1.1: Different representations of protein structure.  

(From http://www.genome.gov/Pages/Hyperion/DIR/VIP/Glossary/Illustration/protein.shtml) 
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1.2 Decision Lists 
This work concentrates on various aspects of protein structure prediction. The machine learning 

algorithm utilized in secondary and tertiary structure predictions is called decision lists. A decision list 

is an ordered list of rules where each rule consists of a pattern and a classification [8]. In this work, a 

classification is either a secondary or a tertiary structure assignment for the residue of interest. A 

pattern is the properties of residues that surround the residue of interest. We will be using the terms 

frame and window interchangeably to refer to the residues that surround a residue of interest. 

One way to interpret a decision list is as a sequence of if-then-else constructs familiar from 

programming languages. Another way is to see the first rule as the default classification, the previous 

rule as specifying a set of exceptions to the default, the rule before that as specifying exceptions to 

those exceptions and so on. Table 1.1 illustrates how decision lists work. 

 
Rule Pattern Classification 

3 Pattern 1 Class 1 
2 Pattern 2 Class 2 
1 Everything Else Default Class 

Table 1.1: Illustration of a decision list with three rules. 

Every rule has a pattern and a classification for that pattern. To classify an instance using this decision list, the 
instance is checked against the rules one by one. For example if an instance matches ‘Pattern 1’, it is assigned 

‘Class 1’ (rule number 1). If an instance does not match ‘Pattern 1’ but it matches ‘Pattern 2’ it is assigned ‘Class 
2’ (rule number 2). All instances that do not match ‘Pattern 1’ and ‘Pattern 2’ are classified as ‘Default Class’ 

(rule number 3 or the default rule).  

In this work, frames of residues and their chemical or physical properties are used as patterns. 

Every position in a frame has a specific set of properties called attributes (or features). For example, 

“identity of the first residue to the left of the residue of interest” is an attribute. Every pattern is 

represented by a conjunction of these attributes. A conjunction (i.e. a logical conjunction) is a logical 

operator that results in true if all of its operands are true. The common name for this operator is ‘and’. 

So a rule in a secondary structure prediction decision list may look like “If the identity of the first 

residue to the left of the residue of interest is Alanine and the identity of the first residue to the right of 

the residue of interest is Arginine, then the secondary structure of this residue is alpha-helix.” In this 

case, the pattern is a conjunction of two attributes (the identities of left and right residues) and the 

class is alpha-helix. Each attribute in a rule defined this way can only have one value from a set of 

twenty residues. It is, however, also possible to have disjunctive attributes. A disjunction (i.e. a logical 

disjunction) is a logical operator that results in true if at least one of its operands is true. The common 

name for this operator is ‘or’. When every attribute is a disjunction of attributes instead of a single 

attribute, a rule in a secondary structure prediction may look like “If the identity of the first residue to 

the left of the residue of interest is Alanine or Asparagine and the identity of the first residue to the 

right of the residue of interest is Arginine or Valine, then the structure of this residue is alpha-helix.” 

In this case, the pattern is a conjunction of two attributes, where each attribute is a disjunction and the 

class is alpha-helix. Table 1.2 illustrates these rules more compactly. 
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Rule Type Pattern Class 

Conjunction Left first 
residue=Alanine and Right first 

residue=Arginine 
α-

helix 

Conjunction of 
disjunctions 

Left first 
residue=Alanine or 

Asparagine 
and

Right first 
residue=Arginine or 

Valine 

α-
helix 

Table 1.2: Rules based on conjunctions and on conjunctions of disjunctions. 

Decision lists based on both a set of rules based on conjunctions of disjunctions and rules based on 

simple conjunctions have been utilized throughout this work. The tertiary structure predictions were 

performed using rules based on conjunctions and the secondary structure predictions were performed 

using rules based on conjunctions of disjunctions. Final version of decision lists adopted in this work 

uses rules based on conjunction of disjunctions. 

There are a number of approaches to the problem of building a decision list given a set of 

instances and their classes. We have developed a novel learning algorithm named Greedy Decision 

List learner (GDL).  A variant of the PREPEND [9] algorithm, GDL works by prepending one rule at 

a time to the front of a growing decision list. At each step, GDL searches for a rule that, when added to 

the decision list, maximizes the number of correctly classified instances in the training set. To cope 

with the large search space (more than  possible rules for a 9 residue frame and 3 classes) a 

heuristic search algorithm had to be developed. The details of GDL algorithm are given in Section 

1802
2.5. 

1.3 Outline 
In the light of the brief introduction we have given in this section on structure of proteins and 

decision lists, Section 2 concentrates on secondary structure prediction methods. We first give a more 

complete definition of secondary structure. Then materials and methods used to assess prediction 

methods are stated. The method of assessment becomes especially important, when one tries to 

compare the available prediction strategies objectively. Afterwards, the common strategies in the state-

of-the-art prediction methods have been summarized, with a following brief introduction on the most 

commonly utilized methods. We describe our method in detail in Section 2.5 and show how we have 

implemented these common strategies. Then we give the results we obtained (i.e. the accuracy of our 

method) and discuss how consistent is the resulting model with the common knowledge and how each 

part in our prediction strategy contributes to the final result. We conclude by arguing that our 

algorithm yields results comparable to the state-of-the-art with a very simple model. 

Section 3 concentrates on tertiary structure prediction based on backbone torsion angles. The data 

and data representation we have utilized in the decision list is given, followed by a description of the 

methods of accuracy measurement. Then we discuss the prediction results of various strategies by 

stating the accuracy of each strategy using common measures. We conclude the prediction studies 

with a brief description of our contributions to this field. 
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In the appendix, we give the results of a work similar to the one that Ramachandran [56] has 

conducted but this time expanding the study to further investigate restrictions on backbone torsion 

angles that stem from steric collisions. 
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2. Secondary Structure Prediction 
In this section, we describe what secondary structure of a protein is and how it can be predicted 

from the proteins primary structure (i.e. from its sequence information). The common strategies in the 

state-of-the-art prediction methods are stated. How we implement these strategies, and how each part 

contributes to the accuracy of predictions follows. We conclude this section giving a possible ceiling 

for secondary structure prediction accuracies based on single sequence information and how 

accuracies can get past this ceiling by introduction of homology information to predictions. 

2.1 Secondary Structure 
Protein chains form frequently observed structural motifs such as helices in their native state [10]. 

Common motifs (or patterns) are identified using various methods. The composition and sequence of 

these motifs in a protein is called the secondary structure. Most frequently observed secondary 

structure elements are α-helices and β-sheets. α-helices (Figure 2.1) are helix like structures and β-

sheets (Figure 2.2) are pleated sheet like structures as their names suggest. Every region remaining in 

the protein after all the α-helix and β-sheet regions (and sometimes some other regions, depending on 

the method of secondary structure definition) are assigned is called a loop region. Loops do not have a 

specific shape like helices or sheets. 

 
Figure 2.1: The α-helical secondary structure of Human Vimentin Coil 2B Fragment (PDB Code 1GK4).  

The amino acid backbone winds in a right-handed spiral. (Created using Protein Explorer [57]) 
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Figure 2.2: β-sheet secondary structure from Pyruvate Kinase (PDB Code 1PKN).  

(Created using Protein Explorer [57]) 

 
 Determination of protein secondary structure is not an exact science. There are both laboratory 

based methods and theory based methods for determination of secondary structure. Laboratory based 

methods can be used to guess the secondary structure content without knowing the tertiary structure of 

the protein [5]. However, these methods are not very accurate. In another method, the scientist first 

determines the tertiary structure of the protein using a method like x-ray crystallography [6] and then 

specifies the regions of different secondary structure by careful inspection of the structure. If the 

tertiary structure of a protein is known, the secondary structure determination is a pattern recognition 

problem [11]. Various algorithms have been developed for determination purposes. There is no exact 

measure to define the secondary structure of a protein from its tertiary structure and different 

algorithms agree only about 71% of the time [12]. Common methods used in defining secondary 

structure of a protein are DSSP [11], STRIDE [13] and DEFINE [14]. 

Theory based methods rely on backbone geometry of the protein (DEFINE), the intermolecular 

hydrogen bonds (DSSP) or both (STRIDE). Backbone geometry based methods make use of the phi 

and psi angles of the residues. Phi and psi angles are dihedral angles defined on the backbone of a 

protein molecule (Figure 2.3). Certain combinations of these angles in consecutive residues result in a 

specific secondary structure motif [15]. These structures are stabilized by intermolecular hydrogen 

bonds (some exceptions to these are pure geometric definitions like bends [11]). DSSP assignment 

method has been the most frequently used method for secondary structure prediction studies. It is also 

the method adopted in this work. 
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Figure 2.3: Definition of the phi (φ ) and psi (ψ ) angles. 

 (From http://www.cryst.bbk.ac.uk/PPS2/course/section3/helix1.html) 

2.2 Evaluation of Prediction Accuracy 
DSSP defines 8 states of secondary structure. These states can be seen in Table 2.1. Since 8 states 

are considered hard to predict, these states are reduced to 3 groups. Structure prediction methods are 

evaluated on the three states, alpha-helix, extended-strand and coil (or loop). The remaining states are 

assigned one of these states. Prediction methods are evaluated on these three states.  

There are different measures used to assess secondary structure prediction methods. The most 

common measures are Q3 [16] and Segment Overlap [17]. Q3 score is defined to be the percentage of 

the number of correctly estimated structures in the overall predictions. This measure depends on only 

the three states (helix/strand/coil), hence the name Q3. Throughout this work three state per-residue 

accuracy definition (Q3) is utilized to measure prediction performance. 

 
Reduction DSSP Code Description 

H H alpha-helix 
H G 3-helix (3/10 helix) 
C I 5-helix (pi helix) 
E B residue in isolated beta-bridge 
E E extended strand, participates in beta ladder 
C T hydrogen bonded turn 
C S Bend 
C (no code) Loop/coil 

Table 2.1: The 8 secondary structure states used by the DSSP method and their reduction to the Q3 states. 

This reduction scheme has been adopted in this work and in JPred [12, 22]. (From 
http://www.cmbi.kun.nl/gv/dssp) 

 
 
 

 

http://www.cryst.bbk.ac.uk/PPS2/course/section3/helix1.html
http://www.cmbi.kun.nl/gv/dssp
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2.2.1 Secondary Structure 
There is a plethora of algorithms that predict protein secondary structure, each with a different 

accuracy. The choice of the data set and the secondary structure determination algorithm seems to 

have a greater effect on the accuracy figures than the particular learning algorithm used [12]. 

Therefore, in order to meaningfully compare the results of different algorithms it is important to test 

those using well known data sets and secondary structure determination conventions from the 

literature. 

2.2.1.1 Non-Redundancy 
Sequence identity is the percentage of identical residues in a pair of aligned protein chains over the 

aligned length. This measure is used to estimate the homology relation between two proteins. There 

are other methods such as SD-Score [12] to measure this relation. In both methods, a pair of sequences 

is aligned globally using a dynamic programming algorithm (such as Needleman-Wunsch [19]) and a 

score is obtained from this alignment. The sequence identity is defined to be the number of exact 

matches in the aligned residue pairs (gaps not included). This measure has a drawback that there is not 

a single threshold for assigning two chains as homologues. This threshold usually changes with 

respect to the length of the proteins (i.e. the number of residues). For example 25% is the cut-off used 

for chains longer than 80 residues [20]. SD-Score, on the other hand, uses statistical techniques to 

normalize the score of the global alignment algorithm for length and compositional bias of the proteins 

[12]. Throughout this work SD-Score has been adopted as the measure of homology between two 

proteins. 

Chothia et al. have shown that homologous proteins with more than 20% sequence identity have 

less than 2 Å r.m.s. deviation (Formula 2.1) of the backbone atoms of their common cores (i.e. regions 

of close or same fold and secondary structure content) [18]. If a protein of an unknown structure has a 

homologue of known structure, techniques based on aligning the two sequences would thus be 

expected to give good results.  For objective comparison of prediction methods it is important to 

remove the test proteins and their homologues from the training set. Kabsch et al. showed that the 

proper selection of the test set could have 7%-56% effect on the reported results [21]. We also have 

found out-of-sample accuracy figures exceeding 80% using GDL before starting to use a test set free 

of homologues.  

In this study the accuracy results were obtained using the CB513 dataset [12] and seven-fold cross 

validation. We added the multiple sequence alignments of each chain based on PSI-BLAST [27] to the 

respective training or test set. The data set contains 513 non-homologous chains and a total of 

1,756,957 residues including the multiple sequence alignments. For training, the alignments are 

assumed to have identical secondary structure and are used as additional training data. For testing, the 

target chain and all its alignments are predicted and the final result at each position is decided by 

majority vote. 
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Formula 2.1: A formula for the root mean square deviation (rmsd) of the backbones of two protein chains. 

α
1,iC and  are the  alpha-carbons of protein chains and respectively and N is the number of residues 

in one chain. This formula can be extended to include other main chain atoms N and C. 

α
2,iC thi 1P 2P

2.2.1.2 Secondary Structure Definition 
As stated in Section 0, even assigning secondary structure to a protein with known tertiary 

structure is not an exact science, and the different definitions (DSSP [11], STRIDE [13], DEFINE 

[14]) only agree with each other around 71% of the time [12]. A further complication is the number of 

states represented by a particular method. DSSP recognizes 8 different secondary structure states, and 

these need to be mapped to the three standard states (alpha-helix, beta-strand, and coil) for Q3 

accuracy evaluation. Application of the different published 8-to-3 state reduction methods shows 

variation of over 3% on apparent prediction accuracy [12]. In this study we use the DSSP definition 

and the reduction recommended by Cuff et al. given in Table 2.1 [12]. 

2.3 Prediction Strategies 
A plethora of machine learning approaches have been used for protein secondary structure 

prediction, including neural networks (e.g. PHD [20], JNet [32]), information theory (e.g. GOR [23]), 

and nearest neighbor algorithms (e.g. NNSSP [24]). All of these algorithms predict secondary 

structure from primary structure (i.e. sequence of residues). During the development of the decision 

list based approach we have found it instructive to consider the contributions of three components 

common to most approaches. Algorithms differ in how these three major components are 

implemented. 

2.3.1 Sequence to Structure Component 
Predicting secondary structure using the local sequence information forms the basis of all methods 

reviewed in this study. Using the sequence-to-structure component alone, earlier methods were able to 

achieve prediction accuracies around 60% [25]. To give some perspective, assigning every residue the 

loop classification gives 43% accuracy. Assigning every residue the most likely classification based on 

its amino acid gives 49% accuracy1. Thus, we can rate the contribution of the local sequence 

information at 10-15% depending on the baseline chosen. 

 

                                                 
1 Based on CB513 data set. 
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2.3.2 Structure to Structure Component 
A common method to improve performance is to filter the output of the sequence-to-structure 

component to correct unlikely structures, e.g. a single residue helix is unrealistic so it is turned into a 

loop.  It is possible to achieve an additional 2-3% improvement over the plain sequence-to-structure 

prediction using manually constructed or machine learned structure-to-structure filters. In some 

approaches (e.g. SSPro [26]) the sequence-to-structure and structure-to-structure components are well 

integrated and their individual contributions are difficult to identify. We use two separate decision lists 

for these two components. 

2.3.3 Multiple Sequence Alignments 
The largest performance boost in prediction accuracy in the last twenty years was achieved by the 

introduction of evolutionary information in the form of multiple sequence alignments. Homologues of 

the target protein (even though their structure may also be unknown) bring in additional information 

that helps the prediction. The well known PHD algorithm exceeded 70% accuracy in 1993 with 

multiple sequence alignments accounting for 6-8% of the performance2 [20]. Larger databases and 

improved search tools for multiple sequence alignment (e.g. PSI-BLAST [27]) are mainly responsible 

for the more recent improvements [28]. In some approaches multiple sequence alignment is an integral 

part of the procedure and its contribution is difficult to identify unless explicitly measured by the 

authors.  For example, most neural network based methods construct their input using the frequency of 

occurrence of each of the 20 amino acids at each position in the alignment. In contrast, our decision 

list approach predicts the structure of each aligned protein separately and uses simple voting to decide 

the final results.  We will use the term single sequence prediction to indicate results achieved without 

using multiple sequence alignments of the test proteins. A sample multiple sequence alignment is 

given in Figure 2.4. 

 

 
Figure 2.4: The multiple sequence alignment of protein 1MCT chain I from the CB513 data set. 

Dots indicate gaps in the alignment. (From http://www.compbio.dundee.ac.uk/~www-jpred/data.) 

                                                 
2 Based on RS126 data set. 

 

http://www.compbio.dundee.ac.uk/%7Ewww-jpred/data
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2.4 Prediction Methods in Literature 
As stated previously, there are different methods of prediction with various accuracies. The 

methods differ in how they implement the three major components. Furthermore, they may have been 

trained with different data sets (i.e. set of proteins) and also different secondary structure assignments 

for that data sets. In this section some of the state-of-the-art secondary structure prediction methods 

will be discussed. 

2.4.1 PHD 
PHD [20] is the first method to break the 70% boundary on Q3 accuracies of secondary structure 

prediction methods. The two-level neural network structure in this work has been adopted by several 

other methods later (such as JNet [32] and PSIPRED [29]).  

In this work, the authors prepared a set of non-homologous proteins and named it the RS126 set 

after the initials of their names (Rost and Sander) and the number of protein chains in it. If two 

proteins are at least 80 residues long and 25% of their sequences are identical, they are considered to 

be homologues and only one of them has been included in the set. For a reasonable measurement of 

the performance of the algorithm, it is necessary to have a non-redundant set of proteins (Section 

2.2.1.1). 

After a non-redundant set of sequences is compiled, the multiple sequence alignments and 

secondary structure assignments of each sequence have been retrieved from a database called HSSP 

[30]. The secondary structure definition algorithm used in this work is DSSP [11] (DSSP is the 

method of secondary structure definition in HSSP). The 8-to-3 state reduction scheme used is given in 

Table 2.2. 

 
 

Reduction DSSP Code Description 
H H alpha-helix 
H G 3-helix (3/10 helix) 
H I 5-helix (pi helix) 
C B residue in isolated beta-bridge 
E E Extended strand, participates in beta ladder 
C T Hydrogen bonded turn 
C S Bend 
C (no code) Loop/coil 

Table 2.2: The 8-to-3 state reduction scheme used in PHD method.  

Also in PHD, minor corrections have been applied to the DSSP assignments (i.e. BC  BB, but BCB  CCC). 

PHD uses a two layered feed-forward neural network [31] for sequence-to-structure prediction. 

The input to this network is a frame of 13 consecutive residues (See Section 1.2 for definition of 

frame). Each residue is represented by the frequencies of residues in the column of multiple sequence 

alignment which corresponds to that residue. That is to say, the residues in the homologous proteins 

that correspond to the residue in the query protein are selected and frequencies of each type of residue 
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are calculated and input to the network. This means each residue introduces 20 inputs to the neural 

network. Also, one more input is used for each residue in the frame for the cases that the frame 

extends over the N or C terminus of the protein. One final input is added for each residue called the 

conservation weight [20]. This weight represents the quality of a multiple sequence alignment (i.e. the 

number of aligned sequences and the similarity of the residues at that position in the alignment). So 

every residue is represented by 20+1+1=22 inputs, thus the sequence-to-structure network has 13x22 

input nodes. The output of this network is 3 weights, one for each of the helix, strand and loop states. 

The structure-to-structure prediction part of the algorithm is also implemented as a two layered 

feed-forward network. This time the input to the network is a frame of 17 consecutive residues. Each 

residue is represented by the 3 weights from the output of sequence-to-structure part plus one other 

weight for the cases that the frame extends over the N or C terminus of the protein. The conservation 

weights are added here too. This means each residue is represented by 3+1+1=5 nodes and this makes 

a total of 17x5 input nodes to the structure-to-structure network. Output of this step is again 3 weights 

for each of the possible states. 

A number of different networks have been trained to reduce the bias that may stem from the order 

of representation of the inputs to the method and from the different encodings of the input. A third 

level is added for this purpose. This level simply takes the arithmetic average of the weights of each 

state over all trained networks. Then the state with the largest weight is assigned to be the final 

prediction for that position. 

The contribution of each step is clearly stated for the PHD algorithm. Without utilizing the 

multiple sequence alignments (i.e. single sequence prediction), the Q3 accuracy of the sequence-to-

structure part is 61.7%. The structure-to-structure component adds a 0.9% to this performance for a 

total of 62.6% accuracy in single sequence predictions. Multiple sequence alignments add about 4.2% 

to the performance of the sequence-to-structure part for a performance of 65.9%. In presence of 

multiple sequence alignments, the structure-to-structure part adds up to 2.3% for a total of at most 

68.2% accuracy. Different networks trained using different strategies result in somewhat lower 

accuracies. The jury decision adds up to 2% on the structure-to-structure network for a final of 70.2% 

Q3 accuracy. In a separate work, PHD scored an average of 72.3% accuracy on the CB513 set with a 

new multiple sequence alignment procedure [12]. 

2.4.2 JNet 
JNet [32] algorithm uses the same network structure used in PHD method (Section 2.4.1). The 

difference of this algorithm is that it utilizes an expanded set of protein chains, another 8-to-3 state 

reduction scheme and a number of new methods for generating multiple sequence alignments. 

In this work, the authors prepared a set of non-homologous proteins and named it the CB480 set 

after the initials of their names (Cuff and Barton) and the number of protein chains in it. This set is 

obtained from the CB513 data set [12] by removing chains shorter than 30 residues. The homology 
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measure used for preparation of CB513 set was SD-Score [12], which is more stringent than simple 

sequence identity.  

The multiple sequence alignments in this method have been obtained by running PSI-BLAST 

searches on different databases and by aligning the sequences using different techniques (such as 

AMPS [33] and CLUSTALW [34]). The secondary structure definition algorithm used in this work is 

also DSSP [11]. The 8-to-3 state reduction scheme used is given in Table 2.3. 

 
 

Reduction DSSP Code Description 
H H alpha-helix 
C G 3-helix (3/10 helix) 
C I 5-helix (pi helix) 
E B residue in isolated beta-bridge 
E E extended strand, participates in beta ladder 
C T hydrogen bonded turn 
C S Bend 
C (no code) Loop/coil 

Table 2.3: The 8-to-3 state reduction scheme used in JNet method. 

The sequence-to-structure part of this algorithm is, like PHD [20], a neural network. In this case 

the input frame is 17 residues long. At this step the various networks were trained which utilizes 

different representations of the columns of multiple sequence alignments (i.e. the query residue and its 

equivalents in the homologous proteins). These representations are: 

- Frequencies of residues in the column of multiple sequence alignment (Same method with 

PHD). 

- Weighted frequencies, where weights are the BLOSUM62 [35] scores of each residue with 

respect to the query residue in the column. 

- A position specific profile with position specific scores. 

Residues in the frame are represented with one of these values and also for each residue in an 

alignment its conservation weight [20] is added. This level consists of one input, one hidden and one 

output layer. The hidden layer has nine nodes. 

The output of the sequence-to-structure network is fed into a structure-to-structure network. This 

network also uses the conservation weights. The frame size at this part is 19 residues. This level also 

consists of one input, one hidden and one output layer. The hidden layer of this network also has nine 

nodes. 

This algorithm utilizes one more level of neural network like the PHD method (In PHD, this was 

just an arithmetic average). If all the networks, which were trained on different data representations, 

agree on the final prediction than the residue is predicted to be of that structure. For the positions 

where there isn’t a consensus on the final prediction (i.e. when all members of jury do not agree), a 

separately trained neural network is utilized (a network trained on no jury positions only). 
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All three parts of the algorithm combined gives an average Q3 accuracy of 76.9%. The individual 

contributions of the three major components in JNet are not stated, but effect of multiple sequence 

alignment methodology is given. Selection of the homologue search method and the database searched 

can change the prediction accuracy around 1.1%. Different methods for aligning homologues and 

different representations of these multiple sequence alignments can change the accuracy around 7%. 

Finally, the third part (i.e. jury/no jury network) adds a 0.4% for a total of 76.9%.  

2.4.3 PSIPRED 
PSIPRED [29] is a neural network based method, which has three components. The difference of 

this method is that it conducts homology searches on a different database and uses a different set of 

proteins for training and testing. It also represents the multiple sequence alignments only as PSI-

BLAST position specific scoring profiles. This method uses the same 8-to-3 state reduction scheme 

we have adopted (Table 2.1). 

The network structure is simplified with respect to PHD and JNet methods (no jury networks or 

complex representations for multiple sequence alignment etc.). The sequence-to-structure part of the 

method is a back-propagation neural network. The input to this part is a frame of 15 residues. The 

residues are represented by the PSI-BLAST [27] scoring matrices. This neural network has 75 hidden 

nodes and 3 output nodes. 

The output of the sequence-to-structure network is fed to the structure-to-structure network in 

frames of 15 residues. This network has 60 hidden nodes and 3 output nodes for the final prediction. 

The performance of this method is not directly comparable to PHD or JNet since the same data set 

with those methods was not utilized during its development. Its Q3 accuracy is 76.5%. This method 

has, however, proven to be more successful than the others in the third Critical Assessment of 

Techniques for Protein Structure Prediction (CASP) [36, 53] experiment [29].  

2.4.4 GORV 
GORV [23] is a secondary structure prediction method based on information theory and Bayesian 

statistics. Unlike other methods mentioned previously, this method does not use real valued encodings 

(such as frequencies or position specific scoring matrices etc.) of multiple sequence alignments. 

GORV uses the CB513 [12] data set. Secondary structure assignments were taken from DSSP. 

The 8-to-3 state reduction scheme used is given in Table 2.4. This scheme does not take into account 

the 3/10 helices, which are not so rare3 (3%). Thus the published results are not comparable with the 

other methods using CB513 set. We have checked to see that this reduction scheme may add at least 

2.44% to the performance of a prediction using one of the other reduction schemes and exactly the 

same methods other than that (same training algorithm, same multiple sequence alignments etc.). 

 

                                                 
3 Based on CB513 data set. 
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Reduction DSSP Code Description 

H H alpha-helix 
C G 3-helix (3/10 helix) 
C I 5-helix (pi helix) 
C B residue in isolated beta-bridge 
E E Extended strand, participates in beta ladder 
C T hydrogen bonded turn 
C S Bend 
C (no code) Loop/coil 

Table 2.4: The 8-to-3 reduction scheme used in GORV method. 

This method also applies some corrections to the reduced form (very short helices or strands are substituted with 
coils).  

GORV method utilizes the three major parts of secondary structure prediction (mentioned in 

Section 2.3). The sequence-to-structure component depends on information theory, and specifically on 

the information function. Each residue is represented by a frame of 7 to 13 residues (depending on the 

sequence length). The predictions are based on the information function given in Formula 2.2 (details 

in GORV paper [23]). , which is the probability of a residue being of a secondary structure S, 

given the surrounding residues R (i.e. the frame), is approximated by the statistics of single residues, 

pairs of residues and triplets of residues in the frame. This means the frame is represented by the 

residues in specific positions, and residue pairs and triplets in specific positions. The probabilities of 

each secondary structure state (helix, strand or coil) are calculated using this method and each 

probability is normalized to [0, 1] interval. Then the most probable state is selected as the secondary 

structure prediction. Some thresholds for assigning a secondary structure are also applied at this step 

since the algorithm had a bias towards the coil structure (i.e. a considerable number of helix and strand 

states were predicted to be coil). 
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Formula 2.2: Information function utilized in the GORV method.  

R represents the frame of residues and S represents the secondary structure assigned to that frame. is 
the probability of a residue has a secondary structure (one of H, E or C), given the frame of residues R.  

)|( RSP

Multiple sequence alignments are introduced to the predictions at the sequence-to-structure step. 

Basically each residue in the protein chains in the alignment of a query protein is assigned a 

probability for each of the states. Then these probabilities are averaged residue by residue and the 

most probable structure is assigned as the prediction. The thresholds are applied at this step when 

multiple sequence alignments are incorporated. 

The structure-to-structure part of this algorithm is not a learner but simply a filter. At this step, 

only the unlikely estimates are eliminated. Very short helices and one-residue long strands are 

assigned to be loop. This is possible because the reduction scheme does not take into account the 
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isolated beta-bridges, which are assigned to be strands in most of the other works resulting in single 

residue strands. 

The sequence-to-structure part of this method has 66.9% single-sequence Q3 accuracy4. When 

multiple sequence alignments are incorporated to the algorithm, the accuracy rises to 73.4%. The 

individual contribution of the filtering part is not stated. 

2.5 Structure Prediction with GDL 
Different machine learning algorithms have been utilized to predict protein secondary structure. 

The most successful methods share a common core (Section 2.3). They represent the context of a 

residue by a frame of residues that surrounds it, they predict structure from this frame of residues and 

then they add another step of prediction to correct unlikely results by inspecting consecutive structure 

predictions. Finally, they all depend on multiple sequence alignments to represent evolutionary 

information into their prediction algorithms. Algorithms differ in how they implement each of these 

steps.  

Although the algorithms mentioned before have very high accuracies (as high as 76%) their 

resulting models are difficult to interpret. Throughout this work, we have tried to build a method that 

predicts secondary structure with accuracy comparable to the state of the art (Table 2.6) and that yields 

a model interpretable by a researcher. We have selected to work with decision lists for this purpose. 

Table 2.5 shows a sample from one of the decision lists generated by our algorithm. These three rules 

result in 58.86% Q3 accuracy5. 

 
Rule 1 2 3 4 5 6 7 8 9 Class 
3. l al dqe adgp CILFWYV p rqekp lm lm Strand 
2. * * g gp ngps gp p p p Helix 
1. * * * * * * * * * Loop 

Table 2.5: A three rule decision list for secondary structure prediction.  

The columns numbered 1-9 represent nine adjacent residue positions. Each uppercase single letter amino acid 
code indicates a residue that is allowed, and each lowercase code indicates a residue that is not allowed at a 

given position.  A star indicates that all residues are allowed.  For example, the first rule assigns every instance 
the loop classification.  The second rule indicates that if the residues 3 to 6 are not Glycine, and the residues 4 to 
9 are not Proline, and the center residue is not Asparagine or Serine then the conformation of the center residue 
(no. 5) is helix.  The third rule requires, among other things, the center residue to be one of Cysteine, Isoleucine, 

Leucine, etc. for a strand prediction. 

Decision lists have been described generally in Section 1.2. In this section, we will describe our 

novel method, Greedy Decision List learner (GDL) and how we have used this learner in secondary 

structure prediction problem.  

 

                                                 
4 Based on CB513 data set. 
5 Based on CB513 data set. This is the result before structure-to-structure step is applied but including the 
multiple sequence alignments. 

 



Chapter 2: Secondary Structure Prediction  18 

2.5.1 The Greedy Decision List Learner 
To learn a decision list from a given set of training examples the general approach is to start with a 

default rule or an empty decision list and keep adding the best rule to cover the unclassified or 

misclassified examples.  The new rules can be added to the end of the list [38], the front of the list [9], 

or other positions [39]. Other design decisions include the criteria used to select the ‘best rule’ and 

how to search for it.  

The Greedy Decision List learner (GDL) starts with a default rule that matches all instances and 

classifies them using the most common class in the training data. Then it keeps prepending the rule 

with the maximum gain to the front of the growing decision list until no further improvement can be 

made. The gain of a candidate rule is defined as the increase in the number of correctly classified 

instances in the training set as a result of prepending the rule to the existing decision list (Formula 

2.3). The algorithm is briefly described in Section 2.5.1.1. 

GDL is a greedy algorithm since it tries to find the rules with the maximum possible gain at each 

step. It is not feasible to search all possible rules and select the best one since the search space is on 

the order of 2180 for even a 9 residue frame. So our algorithm tries to add rules which classify the 

largest number of misclassified instances correctly, but keeping in mind the previously correct 

classifications. 

tfft drdrdrgain −=)|(  

Formula 2.3: The gain of a candidate rule given a decision list.  

r represents the candidate rule and d represents the decision list that has been built so far. dt and df represent the 
sets of instances that have been correctly classified and misclassified by the decision list respectively. Likewise, 
rt and rf represent the sets of instances that the candidate rule correctly classifies and misclassifies respectively. 

So rtdf is the number of new correct classifications introduced by the candidate rule and rfdt is the number of new 
misclassifications imposed by the candidate rule. 
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2.5.1.1 GDL Algorithm 
1- Find the default rule rdef that matches every possible instance in data set D and assign the most 

common class to this rule. Calculate the gain gdef of this rule assuming every instance in D was 
initially misclassified. 

2- Set gbest to gdef.  
3- While gbest is greater than zero 

a. Create a rule r0 that matches no instances and set its gain g0 to 0. 
b. For each possible class c 

i. Assign class c to rule r0. 
ii. Select a random instance i from D. 

iii. Create a copy r1 of rule r0. 
iv. If r1 matches i but it misclassifies i and i is currently correctly classified, 

modify r1 by removing one of the features that are available in both this rule 
and instance i so that r1 does not match instance i anymore. 

v. Else, if r1 does not match i but it has the same class with i and i is currently 
misclassified, modify r1 by adding the necessary features that are available in 
i but not available in r1 so that r1 matches instance i.  

vi. Calculate gain g1 of r1. 
vii. If g1 is greater than g0 , set r0 to r1  and g0 to g1. 

viii. Continue (b) until gain g0 does not increase and a maximum number of 
consecutive attempts have been made. 

c. Prepend r0 to the decision list and set gbest to g0. 

2.5.2 Secondary Structure Prediction 
In this section we describe the methods used for constructing and testing the decision list model.  

First the data is split into training, validation and test sets.  A sequence-to-structure decision list is 

constructed from the training set.  The decision list construction algorithm, GDL, was described in the 

previous section. Validation is performed by removing some of the rules that do not improve the 

performance on the validation set (i.e. rule pruning). Next, a structure-to-structure decision list is 

constructed using the same training and validation sets taking into account the errors made by the 

sequence-to-structure prediction. Finally, the two decision lists are used to predict the secondary 

structure of the test set proteins. When multiple sequence alignments are used during validation and 

testing, the decision list is applied to each sequence in an alignment separately, resulting in 

independent predictions and a majority vote determines the final decision at each position.  

 

2.5.2.1 Sequence to Structure 
The sequence-to-structure decision list takes a window of nine adjacent residues as input6 and 

classifies the center residue as helix, strand, or coil. For each protein chain in the training set, the 

window is shifted residue by residue generating N instances for an N residue chain.  At the edges, 

special gap symbols are used to represent the positions that fall outside of the chain.  

When multiple sequence alignments are used for training, each sequence (original or aligned) is 

treated as separate training data.  All the aligned sequences are assumed to have identical structure.  If 

                                                 
6 Experiments with window sizes other than nine did not show significant improvement. 
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the alignments contain gaps, the windows with a gap in the center are ignored during training. 

Windows that are not significantly different than the query sequence sequence-wise are ignored too. 

The reason for this strategy will be mentioned in Section 2.7.3

Throughout training and testing, the inputs to the decision lists consist of nine individual residues.  

This is in contrast with neural network based approaches, where the multiple sequence alignment of a 

chain is used to construct a profile of amino acid frequencies at each position. 

2.5.2.2 Validation 
GDL is used on the training set to construct the initial sequence-to-structure decision list.  The 

training is followed by a validation procedure, where independent validation data is used to filter the 

rules that do not generalize well. The accuracy of the first k rules of an n rule decision list is computed 

for k = 1…n on the validation set.  The first kmax rules that maximize the validation set accuracy are 

kept as the final sequence-to-structure decision list.  

2.5.2.3 Structure to Structure 
The structure-to-structure decision list takes a window of 19 adjacent secondary structure 

predictions (helix, strand or loop) as input, and outputs a (possibly) new classification for the center 

residue.  The validated sequence-to-structure decision list described above is applied to the original 

training set to get its predictions. Voting is used with multiple sequence alignments.  These 

predictions, along with the correct classifications are given to GDL to construct the structure-to-

structure decision list.  A similar validation procedure is used to decide the final rule list. 

2.6 Results 
To learn a decision list from a given set of training examples, we developed a novel learning 

algorithm named GDL that works by prepending one rule at a time to the front of a growing decision 

list.  At each step, GDL searches for the rule that, when added to the decision list, maximizes the 

number of correctly classified instances in the training set. To cope with the large search space (more 

than 2180 possible rules) we have developed a heuristic search algorithm.  

For the evaluation of the algorithm and performance comparison with other methods, it is essential 

to avoid some common pitfalls: comparing methods based on different data sets, different secondary 

structure definition methods, too few data points, training and test sets that contain homologues etc. do 

not give meaningful results. Our evaluation is based on the recommendations and the data set 

described in Cuff and Barton, 1999 [12]. To summarize, we ran a seven-fold cross validation test on a 

publicly available database of 513 non-homologous protein chains (CB513) using DSSP as the 
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secondary structure definition method and the 8-to-3 state reduction recommended in that work (Table 

2.1) [12]. Table 2.6 compares the performance7 of GDL with other algorithms using the same data set. 

 
Method: PHD DSC PREDATOR NNSSP GDL

Accuracy: 72.3 69.1 69.0 71.7 69.2

Table 2.6: Performance results for the set of CB513 proteins [12]. 

 
The Q3 accuracy of single sequence predictions of GDL is 60.48% at the sequence-to-structure 

step. The structure-to-structure models add a 2.06% to this result for a total of 62.54% accuracy in 

single sequence predictions. The sequence-to-structure models yield 66.36% accuracy in the sequence-

to-structure step. The structure-to-structure step adds a 2.38% to this result for a total of 69.21% 

accuracy. Clearly, multiple sequence alignments are the source for major improvement in prediction 

accuracy with a contribution about 7% (See Table 2.7). 

 
  Single Sequence Multiple Sequence Improvement 

Sequence-to-structure 60,48 66,36 5,88 
Structure-to-structure 62,54 69,21 6,67 

Improvement 2,06 2,85   

Table 2.7: Contributions of each step to the performance of our algorithm. 

We regard the simplicity of the decision list based models as an asset. We have included a 

complete GDL model in Table 2.12.  This model is sufficient to obtain 69% accuracy8 on the CB513 

data set and could be taken as a baseline for future work. (All models produced throughout this work 

is given under the folder ‘/1 - Secondary Structure Prediction/models’ in the code base).  

2.7 Discussion 
In the context of the results stated in the previous section, this section considers the following 

issues: the interpretation of the rules, the limits of single sequence prediction, and the contribution of 

multiple sequence alignments. 

2.7.1 Classification of Amino Acids Based on Structural 
Preferences 
Table 1.1 shows the first 3 rules of our sequence-to-structure model. These three rules result in 

58.86% accuracy, when multiple sequence alignments are included9. This is a significant result since 

our whole sequence-to-structure model results in 66.36% accuracy. Actually these three rules are in 

accordance with some of the well known biologically inferred rules. 

                                                 
7 We use the Q3 performance measurements throughout this work, i.e. the percentage of residues 
correctly predicted as one of helix, strand, or loop. 
8 69% is reached after the structure-to-structure step is applied to the results of this model. 
9 Based on CB513 data set. This is the result of only the sequence-to-structure step.  

 



Chapter 2: Secondary Structure Prediction  22 

The base rule is "Assign every local frame loop". This is simply due to the fact that the most 

observed secondary structure is loop. If no structure can be assigned to a frame using the other rules, it 

is considered to be loop.  

The second rule (Table 2.8) is "If the residue of interest is not Asparagine, Serine, Glycine or 

Proline, and the surrounding residues are not Glycine or Proline, assign this frame helix." This rule 

emphasizes the well-known fact that Glycine and Proline are helix breakers. Glycine is very flexible 

since it doesn't have a side-group (only a hydrogen atom). Proline causes kinks in the protein 

backbone. Thus, these two residues generally don't allow for a helix to form. Asparagine and Serine 

are polar residues [40, 41] and they have relatively small volume with respect to other residues. These 

may be the reasons these two residues do not prefer to be in helical structures. 

The first rule (Table 2.9) is a little more complicated. We can interpret this rule roughly as "If the 

surrounding residues are hydrophobic, and the center residue is non-polar, assign this frame strand." 

Also a detail left out in this interpretation is, the close neighborhood of the center residue should not 

be Proline. This may, like in the helix case, stem from the kinked structure of Proline disrupting the 

strand structure. Other than that, the allowed residues here form a hydrophobic core for the protein. So 

strands may be more likely to occur in the relatively low solvent accessible areas of the protein. 

 
        HELIX         
1 2 3 4 5 6 7 8 9 
* * !GLY !GLY !ASN !GLY !PRO !PRO !PRO 
      !PRO !GLY !PRO       
        !PRO         
        !SER         

Table 2.8: The second rule in the sequence-to-structure decision list (Table 2.5).  

The exclamation marks indicate that those residues are not allowed at that position. The secondary structure 
assignment belongs to the 5th residue. 

 
        STRAND         
1 2 3 4 5 6 7 8 9 

!LEU !ALA !ASP !ALA CYS !PRO !ARG !LEU !LEU 
  !LEU !GLN  !ASP ILE   !GLN !MET !MET 
    !GLU  !GLY LEU   !GLU     
      !PRO PHE   !LYS     
        TRP   !PRO     
        TYR         
        VAL         

Table 2.9: The third rule in the sequence-to-structure decision list (Table 2.5).  
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Aliphatic Leu, Ala, Gly, Val, Ile, Pro 
Acidic Glu, Asp 
Small Hydroxy Ser, Thr 
Basic Lys, Arg, His 
Aromatic Phe, Tyr, Trp 
Amide Asn, Gln 
Sulfur Met, Cys 

Table 2.10: Amino acid classification based on the Swiss-Prot protein knowledgebase [42] release 47.8 
statistics.  

(From http://www.expasy.org/sprot/relnotes/relstat.html) 

 

 

Our rules re-confirm the fact that the classification of amino acids based on their chemical 

properties [58] does not always correlate with their structural preferences (Figure 2.5, Table 2.10). For 

example the acidic residues Aspartic acid and Glutamic acid, even though close to each other 

chemically, have very different alpha helix propensities (30% vs. 50%).  In the other extreme, the 

aromatic residues Phenylalanine, Tyrosine, and Tryptophan have near identical secondary structure 

preferences (Figure 2.5). 

 

 
Figure 2.5: Frequency of each amino acid's alpha helix and beta strand conformations in the CB513 database. 

For example, Alanine is observed in an alpha-helix conformation 48.82% of the time, beta-strand conformation 
17.13% of the time, and is found in loops the rest of the time. 

 
The amino acid substitution matrices that represent their relative replaceability in an evolutionary 

scenario seem to match most pairs with similar structural preferences. Table 2.11 shows the top 13 

closely matched amino acid pairs with a score of 2 or higher from the BLOSUM50 matrix [35].  Most 

of these pairs are also close in Figure 2.5 except maybe the last column.  

 
 
 

 

http://www.expasy.org/sprot/relnotes/relstat.html
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Pair BL50 Dist Pair BL50 Dist Pair BL50 Dist 
Phe-Tyr 4 0.36 Tyr-Trp 2 2.40 Tyr-His 2 9.06 
Val-Ile 4 5.54 Glu-Gln 2 4.31 Ser-Thr 2 9.23 
Leu-Met 3 2.02 Asp-Asn 2 5.04 Leu-Ile 2 17.34 
Lys-Arg 3 2.78 Lys-Gln 2 5.79 Met-Ile 2 18.26 

            Asp-Glu  2 18.72 

Table 2.11: The closest matched pairs of amino acids in the BLOSUM50 matrix and their distance in the 
ALPHA%-BETA% plane given in Figure 2.5. 

Our algorithm is successful in grouping amino acids of same structural preferences. For example, 

Alanine, Glutamic Acid and Glutamine have a high preference for alpha helices (Figure 2.5) and in all 

seven models generated by GDL in the cross-validation process, this preference can be observed in the 

first rule that assigns a helix (Table 2.8). Likewise Valine and Isoleucine prefers more to be in the 

strand structure and in all seven models they are grouped together in the first rules that assign strand to 

a residue (Table 2.9). (This is an expected result since every rule prepended to the list is less general 

than the previous ones, and the first three rules are the most general ones, and they reflect the most 

general preferences of the amino acids.) Phenylalanine and Tyrosine have similar structural 

preferences and this pair has a high score in the BLOSUM50 matrix (Table 2.11). These two residues 

are grouped together around 51% of the time in our models. Aspartic acid and Glutamic acid, which 

have different structural preferences and low match scores in BLOSUM50, are grouped together only 

44% of the time. These statistics show that our algorithm is successful in capturing the nature of the 

data. 

 

2.7.2 How Much We Can Get From Local Sequences? 
Before the introduction of multiple sequence alignments into protein secondary structure 

prediction methods, the prediction accuracy peaked at around 60%10 [28]. Our results obtained with 

simple rule sets also confirm this ceiling.  Could we get past this limit using better algorithms or more 

data?  Or is there a fundamental limit imposed by the data itself? To answer these questions we will 

propose a simple algorithm, look at its asymptotic behavior, and argue that the limits that apply to this 

algorithm apply to any learning algorithm based on local sequence information. 

Consider a simple decision list model that takes a fixed length window centered at the target 

residue, tries to find exact matches to this window in the training set, and assigns the target residue the 

structure that is most frequently seen in these matches. Using smaller window sizes will increase the 

number of exact matches in the training set, but will also increase the variance of the target residue's 

structure. Using larger window sizes will provide more accurate estimates of the target residue's 

structure if exact matches are found, but the probability of finding such matches decreases 

exponentially with window size.  

                                                 
10 In 1990s.  
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Figure 2.6 illustrates the decrease in the probability of finding a match and the increase in the 

accuracy of prediction as a function of the window size for two different data sets.  The first data set 

contains homologues between the training and testing instances.  Correlated proteins were eliminated 

in the second data set.  In both cases we can see the expected decrease in the match probability as the 

window size is increased (more so in the non-homologous data set).  More striking, however, is the 

difference in prediction accuracy between the two data sets when exact matches are found.  In the first 

plot the accuracy increases with window size as expected, however in the second plot the accuracy 

peaks around 75%.  In other words, even when we find an exact match for a 9 residue segment in a 

non-homologous protein with known structure, the center residue takes the same conformation only 

75% of the time. 

75% is not a limit that comes from data size limitations or algorithm choice, but is a fundamental 

limit reflecting the uncertainty in the data.  It shows us that a significant part of the structure prediction 

puzzle must be solved by bringing in information not contained in the local sequence. 

 

 
Figure 2.6: Probability of finding an exact match in the training set and probability of making a correct 

prediction when an exact match is found as a function of window size for two different data sets.   

The first plot was obtained using 700,000 training instances and 60,000 testing instances from the union of PDB-
Select [43] and WHAT-IF [44] databases.  The second plot was obtained using 23,000 instances from the RS126 
data set for testing.  The training set consisted of 750,000 instances from WHAT-IF and PDB-Select databases 

after filtering for homologues to RS126 using the SD-Score cut-off 5 [12]. 

 

2.7.3 How does Multiple Sequence Alignment Help? 
The most significant improvement in prediction accuracy has been due to the introduction of 

multiple sequence alignments [20]. Cuff et al. have shown that the method of generating multiple 

sequence alignments and the method of representing them has a significant effect on the accuracy of 

the prediction [12, 32]. In the previous section, we argued that there might be a ceiling for predictions 
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based on local sequence around 75%11 in absence of homologous proteins. In this section we will try 

to explain how multiple sequence alignments help prediction methods.  

Protein functional regions are expected to be more conserved than their sequence [18, 23]. 

Assume we are trying to predict the structure of a residue in a conserved region of a query protein and 

we have found n homologues of this protein. At every chain in the multiple sequence alignment, we 

expect almost all residues that correspond to the query residue to be in the same secondary structure. 

Assume the probability of a decision list assigning the correct structure to a single sequence is p. We 

assign a prediction to each of the n residues using the decision list. Assume that the decision list 

predictions, when they are not correct, are wrong for some different reason at each alignment (i.e. 

errors of sequences are independent). The probability of a correct prediction after a majority vote 

amongst the predictions of multiple sequence alignments is given in Formula 2.4. 
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Formula 2.4: The probability of a correct prediction after a majority vote.  

t is the number of correct predictions. n is the number of sequences in the alignment. At least n/2 of the 
predictions should be correct for the majority vote to assign the correct prediction. (Actually there are other 

combinations with t < n/2 that can result in a correct majority vote, but we discard them to simplify the formula 
for the sake of interpretability). The number of correct predictions is binomially distributed since we assume the 

errors of predictions are independent. Z is the normal approximation to the binomial distribution. 

If an alignment of 10 sequences has been generated for a query sequence and the single sequence 

prediction accuracy is 70%, the probability of a correct prediction would be 95% from Formula 2.4. 

Likewise, if we can find 20 sequences, with again 70% prediction accuracy, the probability of a 

correct prediction would be 98%. In practice, this result is more like a ceiling since the residues in the 

multiple sequence alignment that correspond to the query residue will not be all of the same secondary 

structure with the query residue. Furthermore, the errors of different frames will not be independent all 

the time. We select only frames of low sequence identity with the query frame in the majority voting 

process to make this independence assumption more realistic. For example, a frame of residues may 

join the voting process if it has at least one residue that is not the same as the query frame. Other 

works have tried discarding chains in the alignment that have very high sequence identity to the entire 

query chain [12]. We, on the other hand have discarded frames with high sequence identity, not the 

entire sequence. Regions with low sequence identity but the same structures with the query protein are 

more likely to have independent errors, and we preserve this information by not discarding the entire 

sequence. (The results of this local frame discarding process can be seen in the code base under ‘/1 – 

Secondary Structure Prediction/models/results-q3.xls’). 

                                                 
11 This is a ceiling for local frames of 9 residues. Actually, the probability of finding a matching frame in 
absence of homologues is very low, thus the accuracies will be much lower than this. 
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Most common method to search for homologues from sequence is PSI-BLAST [27]. The most 

common algorithms to create multiple sequence alignments are PSI-BLAST (as in PSIPRED) and 

CLUSTAL [34] (as in GORV and in this work). There is still room for improvement in methods that 

search for homologous sequences in a database and methods that estimate homology from sequence. 

Thus, there is still room for improvement in secondary structure prediction. 

2.7.4 Conclusion 
We have developed a discrete and simple algorithm, GDL, for secondary structure prediction. The 

models GDL has generated are comparable to state of the art in secondary structure prediction in terms 

of accuracy (See Section 2.6). To emphasize the simplicity of the models, we present a human 

readable sequence-to-structure prediction model in Table 2.12. All of the models are also given in 

appendix (in code base, under ‘/1 – Secondary Structure Prediction/models’) . 

Unlike other methods, our models are human readable, and we believe this is the most important 

aspect of this algorithm. There are well known biological rules in literature on secondary structure 

prediction but these are very few. One commonly known rule is that Proline and Glycine are α-helix 

breakers. Glycine does not appear in alpha-helices frequently due to its flexible nature and Proline 

does not appear in α-helices frequently due its kinked structure. (We assign π-helices to be loops in 

the 8-to-3 state reduction scheme we utilize. Thus, Proline, which forms the π-helices, does not appear 

in helices). This property of α-helices is clearly reflected in the model (The 19th rule in Table 2.12). 

We tried to interpret the most general three rules (the rules go from specific to general in decision 

lists) of the decision list biologically (Section 2.7.1). It may be possible for a biologist to interpret the 

rest of the rules and discover a new restriction on the secondary structure preferences of amino acids. 

Furthermore, it is still possible to improve the accuracy of these models by modifying the rule 

searching methods. Although it is clear that most of the improvement in secondary structure prediction 

comes from the multiple sequence alignments, decision lists may be modified by introducing different 

aspects of the protein (some global properties of the protein) as an input. Amino acid composition (i.e. 

frequencies of the amino acids) in the chain is a good candidate for this purpose (We have tried 

incorporating amino acid compositions as an input to tertiary structure predictions and obtained a 

0.2% improvement.).  

One possible method for improvement at structure-to-structure step is to introduce the amino acid 

identities with the predictions from the sequence-to-structure step. While predicting the secondary 

structure of a chain from its sequence, every predicted structure may be used as an input for the next 

predictions in the same chain. Equivalently, using residue names as well as their structure predictions 

from the sequence-to-structure step as input to the structure-to-structure step may simulate this 

behavior. At the training phase, one can try both using the original secondary structures of residues, or 

try using the predicted secondary structures by the validated sequence-to-structure model. 
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There has to be a measure for confidence in the accuracy of a prediction. A reliability index has 

been developed in various works [32]. This is an index that is used to estimate how reliable a 

prediction is without knowing the real structure of the protein. Some similar measure may be 

investigated in GDL based predictions. A candidate measure that can be utilized is the difference 

between the numbers of votes in the multiple sequence alignment (i.e. If 5 out of 10 alignments are 

predicted to be helix and 3 of them are predicted to be strand, the reliability using this measure would 

be 5-3 = 2 for this specific prediction). Building a reliability scoring scheme is important to estimate 

how accurate a structure prediction of the protein would be in absence of the proteins tertiary 

structure. 
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Rule 1 2 3 4 5 6 7 8 9 Class 
20  cpxo   ACILMFWYVX   cpvx   cilfwv   AILMFWYV   rndghkpstxo   cpwvx   ghp   dgpxo   Helix  
19  qhx   mx   ailmtwvx   Xo   NDGP   fpxo   ilmwvx   rqmx   aqekmx   Loop  
18  ifx   cmwx   clmswx   aelmxo   IFYV   pxo   CILFV   lmpx   rhkx   Strand  
17  x   ilwvx   aqehiwvx   ailmwvxo   gixo   NDGSTY   cilmfvx   ilmfx   ailmx   Loop  
16  delx   alfwx   qlo   delx   andcqgpxo   ILFWV   acgpwxo   CGILMFWYV  almwvx   Strand  
15  ngpxo   ARNDQEKPS   ncgpvxo   ACHILMFWV  dghpxo   chilmfpwvx   degpxo   rdcegpswxo   cifwvx   Helix  
14  aclmxo   CILFWVO   dpx   CILMV   ndgpxo   rqelkpxo   cgxo   celmxo   rcilmyv   Strand  
13  rnghkpstxo  cgpxo   cgifptwvxo   ndghpstvxo   ARCILKMFWV   dgifpwvo   ifpv   *   cst   Helix  
12  cwx   px   kpxo   wvxo   fwvxo   ndgpsto   AQILMFWYV  ARQELKMX   dcgilfptvxo  Helix  
11  x   x   ailmfwvx   NDCGHKPST  gilfpwvxo   aqeilmpvxo   arqekmyx   ax   kx   Loop  
10  elm   e   ILMFYV   ndgpwo   CILMFWYVX   acilmfpxo   hlo   aclf   ifx   Strand  
9  cghifyvxo   cgpvx   ACILMFWYV  dcghpsxo   ARNDQEHKST  dgpxo   ndepstwxo   *   cfx   Helix  
8  ckpxo   x   ciwvxo   cpxo   AEILMFWYV   dchpxo   cifpwvx   ndcegpstvxo   ndeghpstw  Helix  
7  cmfx   mwx   acmx   qewxo   CILMFTWYV   CILFTYV   rndqehkpsxo   arqepxo   rlmxo   Strand  
6  ex   qex   exo   gmxo   RNDCHKST   RNDQEGHKST  ailmfwxo   ilmx   px   Loop  
5  gxo   ghpx   px   nghtxo   dghifptvxo   ndcgpstvo   dcpstxo   dcgpst   cvx   Helix  
4  cl   e   am   CILFWYV   gpo   CILMFWYVX   lmo   q   *   Strand  
3  w   acl   dqeo   adgpo   CILFWYV   pxo   arqekpxo   lmxo   lx   Strand  
2  *   o   go   gpo   ngpso   gpo   gpo   pxo   p   Helix  
1  *   *   *   *   *   *   *   *   *   Loop  

 Table 2.12: A 20 rule decision list for secondary structure prediction.  

This model performs predictions with 69% accuracy (after the structure-to-structure model is applied to the results of this model. The full model can be found in the code base 
under ‘/1 – Secondary Structure Prediction/models/cb513-not1.seq2str.model). The columns numbered 1-9 represent nine adjacent residue positions. Each uppercase single 

letter amino acid code indicates a residue that is allowed, and each lowercase code indicates a residue that is not allowed at a given position.  A star indicates that all residues 
are allowed.  For example, the 1st rule assigns every instance the loop classification.  The 2nd rule indicates that if the residues 3 to 6 are not Glycine, and the residues 4 to 9 
are not Proline, and the center residue is not Asparagine or Serine then the conformation of the center residue (no. 5) is helix. x represents unknown or non-standard amino 

acids and o represents the cases where the frame extends over the N or C terminus of the protein. 
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3. Tertiary Structure Prediction 
Tertiary Structure is the native state, or folded form, of a single protein chain. This form is also 

called the functional form. Tertiary structure of a protein includes the coordinates of its residues in 

three dimensional space. Protein structure determination in laboratory conditions is a time and money 

consuming process. NMR and x-ray crystallography are the most commonly used methods to 

determine protein structure. There are also less frequently utilized techniques like electron microscopy 

[6]. There are certain drawbacks for each method. For example, during X-ray crystallography, the 

protein is crystallized, and on rare occasions this distorts portions of a structure [6]. Also, different 

laboratories using different methods may publish different structures for the same protein. This may 

stem from the laboratory conditions, the method and the resolution used during the determination 

process, the response of the protein to different media or simply by misinterpretation of the results by 

the researcher.  

Despite their drawbacks, there is still no acceptable alternative to the laboratory based methods. 

The next best method for protein structure determination is molecular simulation. Molecular 

simulation programs try to generate the life-like conditions in a computer environment so as to 

simulate the folding process of the protein. These simulations require memory, CPU power and time. 

Although the first two conditions can be met to some extent, the last one, time, prevents the usage of 

this method from being practical. It has been shown that it is possible to fold a protein using molecular 

simulations to a reasonable deviation from its native structure. Recently a 36 residue long protein 

(Thermostable subdomain from chicken villin headpiece, PDB Code 1VII [45]) was folded to 4.5 Å 

rmsd (See Formula 2.1) from its native state. It took 4 months using a 256-CPU parallel computer to 

simulate 1 microsecond of molecular dynamics and the actual folding time of this protein is estimated 

to be 10 to 100 microseconds [46]. The running time of these simulations increase with the protein 

size. This CPU intensive nature of the problem stems from the fact that during the folding process 

thousands of atoms interact and most of these interactions have to be simulated. 

The primary structure (i.e. amino acid sequence) of a protein is much easier to determine than its 

tertiary structure. The gap between the number of proteins of known sequence and the number of 

proteins of known tertiary structure is increasing in an accelerating manner (Figure 3.1). This stems 

from the limitations of laboratory based methods mentioned above, and in order to help close this gap, 

there has been many researches on how to determine the tertiary structure of a protein from its 

sequence. Tertiary structure prediction methods come into picture at this point. 
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Figure 3.1: The number of known protein sequences (triangles) versus the number of known structures 

(rectangles). 

(From http://www.expasy.org/sprot/relnotes/ and http://www.rcsb.org/pdb/holdings_table.html)  

 
Given the same environmental conditions, two proteins of the same sequence fold into the 

same structure. There are, however, cases where same sequence may lead to different structures, like 

in the prion protein case. PrPc (PDB Code 1AG2 or 1BWY [45]) and PrPSc (which causes scrapie 

disease in sheep. PDB Code 1B10.) are two different versions of the same protein with same sequence 

and different three dimensional structures [47] (10% of the residues do not match in these pairs of 

PDB entries but this is a negligible amount). These cases are rare as a consequence of evolution and 

all structure prediction methods somehow incorporate sequence information of proteins in the 

prediction process. 

Unfortunately, there is still no method that predicts tertiary structure accurately enough (Although 

some methods predict structures very close to the native state of the predicted protein, this is not the 

case for all proteins. The same methods predict some structures with very low accuracy for some 

proteins). The CASP (Critical Assessment of Methods of Protein Structure Prediction) experiment is 

an international platform where researchers try to blindly predict tertiary structures of proteins whose 

structures are not available to them before they submit their final predictions [53]. The best submitted 

models for different proteins have backbone rmsd values ranging from 0.66 to 22.63 Å, with a 5.65 Å 

mean and a 4.55 Å standard deviation (from the native states of the targets) [48]. Although there are 

very accurate predictions for specific targets, on the average the predictions are not very accurate and 

there is no way to know for sure whether a prediction is an accurate one or not before the real structure 

of a target is experimentally determined.  

In this work we have concentrated on a number of ways to simplify the prediction problem. There 

are different ways to define tertiary structure. The obvious way to define tertiary structure is as a set of 

coordinates in the three dimensional space. Another way to define the tertiary structure is as a 

sequence of backbone torsion angles phi (φ) and psi (ψ) (See Figure 2.3). The combination of φ and 

ψ angles fully determine the backbone configuration of a protein [49]. Throughout this work we have 

 

http://www.expasy.org/sprot/relnotes/
http://www.rcsb.org/pdb/holdings_table.html
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chosen to represent the tertiary structure of a protein by its backbone torsion angles, and the tertiary 

structure predictions are based on these angles.  

3.1 Method 
We have based our tertiary structure predictions on phi and psi angles of the residues in a protein. 

As mentioned before, predicting these angles is equivalent to predicting tertiary structure. We utilized 

decision lists as the machine learning method for prediction (Section 2.5). The main advantages of 

using decision lists are that they are simple to implement and they yield human readable models. We 

have shown also that decision lists yield models that predict secondary structure within a reasonable 

accuracy compared to other methods in literature. The results we obtained in secondary structure 

predictions show that decision list, in particular GDL, is an appropriate method for use in protein 

structure prediction problems.  

One important obstacle before utilizing decision lists in tertiary structure prediction is that a 

decision list requires both its inputs and outputs to be discrete since inputs should be a series of 

conjunctions and outputs should be classes assigned to these conjunctions (Section 1.2). In the tertiary 

structure prediction case, we tried to predict φ and ψ angles from both residue names in the frame and 

the previously predicted angles of that frame. We utilized different methods to discretize these angles. 

3.1.1 Data Discretization 
Discretization is the process of mapping continuous data onto a discrete representation. In our 

case, we had to discretize φ and ψ angles. There are several methods in literature to discretize 

continuous data [50]. In our case, a straightforward definition of the distance of two angles is simply 

the difference of the angles. In tertiary structure prediction case, the input is already discrete when the 

predicted angles are not used as input. Residue names are already discrete. However, the output (i.e. 

the predicted angles) is always a real value within [-180,180]. So some discretization schema must be 

used for output. Also some discretization schema must be used for input when predicted angles are 

used as input. 

Discretization of the angles results in loss of information up to some extent. For example, assume 

we are splitting the range [-180, 180] into buckets of 10 degrees long. Each φ angle would be 

represented by the center of the bucket it is in. The average distance of the center of a bucket to the 

data points in it would be ½*(½*10) = 2.5 degrees. This means each φ angle would be represented 

with an error of 2.5 degrees on the average (if phi angles are equally distributed in the bucket), and 

with a maximum error of 5 degrees. If the predictions are accurate enough, the final tertiary structure 

of the protein may be found in a reasonable time and acceptable accuracy using methods like 

molecular dynamics simulation. For example, one of the structures predicted by ROSETTA server, 

which was the most successful tertiary structure prediction method in fourth CASP experiment [52], 

had a 0.26 Å backbone rmsd from the native state, and Fan et al. were able to improve this result to 
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0.17 Å rmsd and improvements in the predictions for other targets were also achieved by means of 

molecular dynamics [51]. 

Two different discretization methods have been utilized throughout this work. Initially, the [-180, 

180] region was split into buckets of equal length. The bucket lengths were one of 15, 30, 60, 90 or 

120 degrees. This way, either φ or ψ angles are discretized for prediction. The second method is to 

discretize these two angles together. The frequencies of different angle pairs have been subject to a 

number of previous studies. Ramachandran [54] has chosen to represent the distribution of angle pairs 

in a single chain or multiple chains with a scatter plot, which is today called Ramachandran plot. A 

sample Ramachandran plot is given in (Figure 3.2). 

 

 
Figure 3.2: A sample Ramachandran plot. The x-axis shows the phi angles and the y-axis shows the psi angles. 

The left bottom vertex of the graph shows the φ and ψ angle combination (-180, -180) degrees. Grid lines are 
placed at every 30 degrees. The shades show the density of the angle combination at that point. Darker shades 

indicate that there are more pairs than others. This figure also shows a sample discretization with 30 degree long 
square buckets, i.e. 30 degrees for φ and 30 degrees for ψ angles (From http://home.ku.edu.tr/~dyuret/bio). 

 
All φ and ψ angle configurations are not observed in protein chains (white regions in Figure 3.2). 

Some of the regions are more populated than others and some of these regions are observed in 

secondary structure elements like α-helices or β-sheets. Actually, backbone angle configurations are 

the basis of secondary structure definition methods (See Section 0). Figure 3.3 illustrates some of 

these regions that correspond to specific secondary structures. 

 

http://home.ku.edu.tr/%7Edyuret/bio
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Figure 3.3: Most frequently occupied regions in a Ramachandran plot [15].  

In the first discretization schema, all of the shaded regions were used. In the second discretization based on this 
plot, only the most common secondary structure regions were selected. These regions are αR for α-helices (right-
handed), βs for beta-sheets, γ and γ' for tight turns. The white regions are referred to as “strained” regions, since 
they are not occupied frequently, and mostly they are occupied only because the long range (global) interactions 

in the protein cause amino acids to prefer a different conformation than it would have if no long range 
interactions were present. 

In this work, two different discretization schemes based on Ramachandran plots are utilized, first 

the most common regions are used as buckets and then the regions that correspond to the most 

common secondary structures (α-helices and β-sheets) are used (Figure 3.3).  

3.1.2 Input to the Decision List 
To predict the tertiary structure of a protein from its primary sequence, it is a common method to 

use amino acid names as input to that algorithm (See Section 2.4). Residues can be also grouped 

according to their physical and chemical properties (e.g. large amino acids, polar amino acids etc.) 

[55]. It is possible to feed this grouping information of the amino acids to the learning algorithm as 

well as their identities. This may be a good way of representing the amino acids, since their physical 

and chemical properties are factors in forming of the tertiary structure (by means of Van der Waals 

interactions, ionic interactions, hydrogen bond formation, etc.). This information has been 

incorporated into our tertiary structure predictions. However, later tests have shown that, this 

information does not improve the accuracy of predictions significantly. A comparison of results is 

given in Table 3.5.  

We also used as an input the previously predicted angles. We have conducted tests, where the 

already predicted phi and psi angles in the local frame were used to predict the next angle. When 

predicting the structures of the residues in a protein chain, it is possible to go over the residues 

randomly or in an orderly fashion starting from the n-terminus to c-terminus of the chain (i.e. left to 

right) or vice versa. As the predictions are conducted, we obtain more information on the sequence we 
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have, the guessed structures of the surrounding residues. This information can be incorporated into the 

algorithm for a possible boost in prediction accuracy (Table 3.1).  

 
Order of Prediction 1 2 3 4 5 6 7 8 9 10                 
Sequence R I C P R I W M E C . . . .          
φ-Angle Prediction φ1 φ2 φ3 φ4                            

Table 3.1: Incorporating previous predictions in a sequence to the current prediction.  

The table shows an intermediate stage of a left to right (N terminus to C terminus) prediction. In the left to right 
prediction, structures of the residues indexed with 1, 2, 3 and 4 are already predicted. To predict the structure of 
the 4th residue, besides the identities of residues, the predicted structures of residues 1 to 4 are available as input. 

 
To sum up, the input to our algorithm contains the amino acid identities in the local frame and 

their phi and psi angles if they are already predicted as well as their physical and chemical properties. 

These predicted angles are also discretized (since output is discretized). A frame size of 9 residues was 

chosen as a basis12. If a local frame extends over one of the termini, a special class (e.g. NAN) was 

used to represent those types of residues and angles. All tests in this section use data from a widely 

used set of proteins called PDB-Select [43] and the tertiary structures of these proteins have been 

taken from the PDB database [45]. 

3.1.3 Measuring Prediction Accuracy 
The accuracies of predictions have been assessed using two different measures. The first measure 

is percentage of the number of correct predictions over all predictions. The other measure is the root 

mean square deviation (rmsd) of angles from their original position. The first measure is easy to 

calculate but it alone does not give enough insight into the quality of predictions. The percentage score 

does not give information on how tolerable the errors are. The ultimate goal of structure prediction is 

to find the final tertiary structure of a protein without using experimental methods if possible. Using 

molecular dynamics simulations the predicted models can be improved towards the native structure of 

the protein (See Section 3.1.1). However, improvements are not always possible on predicted models 

[51]. If the final predictions are very distant from the native state of the protein, or have some 

unnatural, strained conformation, molecular dynamics simulations may not help improve the model. In 

our case, for example, if an angle that corresponds to the middle of a chain is predicted with a 100 

degree error, the structure of the protein would not be near the native state. Furthermore, if the false 

predictions are off their native state by a large distance, the resulting model may not be used for 

constructing the final tertiary structure, since atoms may be clashing with each other. 

Root mean square deviation (shortly rmsd, See also Section 2.2.1.1) is a commonly used measure 

to assess accuracy of tertiary structure prediction problems. It simply gives information on how distant 

the atoms of the predicted model are to its native state. In tertiary prediction studies, this value is 

calculated from the difference of coordinates of backbone atoms in the native state and the predicted 

                                                 
12 Increasing frame size didn’t provide significant improvement. 
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form of the protein. In this study, since we are interested in the local frame, the rmsd values have been 

calculated by measuring the difference between the predicted angles and their values in the native 

state. When discretization methods have been used, the centers of the buckets (or regions) have been 

used to measure the distance from the original angle. Formula 3.1 shows how rmsd values have been 

calculated throughout our tertiary structure prediction studies. 
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Formula 3.1: Rmsd calculations of phi (φ) and psi (ψ) angle predictions. 

Formula a shows how to calculate backbone rmsd of a prediction based on only φ angles. If both φ and ψ angles 
are predicted, i.e. discretization based on Ramachandran plots, formula b is utilized. 

3.1.4 Discussion 
A number of decision lists have been trained for this prediction with different discretization 

schemes and input features. Each trained model is than tested to check which method yields the best 

performance in terms of percentage accuracy (Table 3.2) and rmsd (Table 3.3). 

 
  Phi Psi Combined 

    15 30 60 90 120 15 30 60 90 120 Region Secondary
All 37.27 51.22 64.87 77.15 80.51 32.79 52.06 68.81 76.04 80.44 58.75 71.82 
Same 31.90 44.52 61.44 68.44 78.26 30.47 49.05 64.97 71.99 77.42 58.04 73.05 
Identical 31.56 43.89 61.37 66.81 78.12 29.84 48.39 64.72 72.00 76.64 56.40 71.40 A

ll 

None 29.40 42.58 61.23 59.92 78.11 22.83 35.69 49.85 53.90 60.77 39.38 53.18 
All 36.64 50.36 63.57 76.84 79.51 31.08 48.29 65.22 71.74 75.58 57.20 69.60 
Same 31.64 43.81 61.66 67.24 78.19 29.89 47.41 63.74 70.16 74.81 56.47 69.51 

R
ig

ht
 

Identical 31.49 43.82 61.39 66.44 78.10 29.47 47.35 63.57 69.56 74.56 56.60 69.42 
All 32.33 46.78 62.27 68.14 79.05 31.60 49.87 67.67 75.57 79.78 54.96 69.21 
Same 31.23 44.29 61.48 66.72 78.16 28.47 45.96 63.34 70.83 76.26 54.60 68.66 L

ef
t 

Identical 31.03 43.32 61.32 66.61 78.12 28.64 45.80 63.35 70.22 74.94 55.07 68.59 

Table 3.2: The percentage of correct estimates for different input sets obtained from the proteins in PDB-Select.  

These results are obtained using 120,000 residues for training, 9,000 residues for validation and 45,000 residues 
for testing. 

The columns in Table 3.2 show the results of different discretization methods. For example the 

third column shows results when the predicted φ angles are discretized using 15 degree buckets. The 

last two columns are results for combined discretization methods based on the frequently occupied 

regions in Ramachandran (See Section 3.1.1). “Region” column shows the results for discretization 

using most frequently observed regions in the Ramachandran plot. “Secondary” column shows results 

for the reduced version of the “Region” discretization, i.e. only the regions contributing to the 

formation of the most common secondary structure motifs like helices, sheets and turns are included 

(Figure 3.4). 
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Figure 3.4: “Region” and “Secondary” discretization schemes.  

In region based partitioning, the shaded areas in the plot has been used as buckets (βS, βP, ζ, γ', ε, ε', ε'', αR, αL, δR 
and δL). All other regions (the white, unshaded parts) are labeled strained. In the secondary structure portioning 

scheme, only those angle pairs that occur in the most frequent secondary structure elements (helix, sheet and 
tight turns) are taken. These regions are marked by arrows in the figure. All other combinations, in this case are 

taken to be loop/coil. 

 
The rows in Table 3.2 show different input schema after discretization methods are selected. The 

first column shows if a prediction from left to right or right to left is conducted (See Section 3.1.2). 

“All” means all angles other than the angle of interest are assumed to be known beforehand. “Right” 

means the angles are predicted starting from right end of (C terminus) the protein to the left end. And 

“Left” means the angles are predicted starting from left end of the protein to the right end. The second 

column shows which angles (φ, ψ or both) are used and in which discretization schema. “All” means 

all possible angles and all possible discretization methods are used as an input.  “Same” means only 

the predicted type of angles are used but with any possible discretization schema (i.e. if φ is predicted 

only φ angles are used as input) “Identical” means only the predicted type of angles discretized with 

the predicted type of discretization are used. “None” means prediction based on just sequence 

information (i.e. No angle information is used). “None” overrides the first column. For example, the 

performance (61.66%) at the intersection of the row “right”, “same” and the column “phi”, “60” is the 

result for a prediction of φ angles discretized at 60 degree buckets. The inputs to this prediction are the 

amino acid identities and the φ angles that remain at the right of the angle of interest (i.e. right to left 

prediction.). Not only the 60 degree buckets but also the different bucket sizes (15, 30, 90, and 120) 

are input to this test. The performance (70.22%) at the intersection of the row “left”, “identical” and 

the column “phi”, “90” is the result for ψ angles discretized at 90 degree buckets. The inputs to this 
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prediction are the amino acid identities and ψ angles that remain at the left of the angle of interest (i.e. 

left to right prediction). Only the 90 degree discretization of the psi angles is used for this test. 

In Table 3.2, all of the results have been obtained by using already known angles as input in the 

prediction stage (not the predicted angles). These results are obtained only to have a loose estimate on 

the upper bound of backbone angle predictions. The “Secondary” column is especially important in 

this graph since it shows significant correspondence with the results obtained in our secondary 

structure prediction studies (See Section 2.6). The average three state (helix/sheet/coil) accuracy in 

secondary structure prediction using single sequence information is around 62%. The closest analogue 

of secondary structure prediction in tertiary structure predictions is the ones based on the discretization 

scheme “Secondary” (Figure 3.4). As mentioned before, secondary structure definition algorithms 

depend on backbone angle configurations to assign a secondary structure to a residue [14]. 

Consecutive occurrence of a specific φ-ψ combination results in a specific secondary structure. So the 

tertiary structure predictions using secondary structure based discretization schemes resemble the 

secondary structure predictions closely. The backbone angle predictions that do not use the previously 

predicted angles in the local frame are analogous to the sequence-to-structure step in the secondary 

structure predictions. The ones that incorporate the predicted angles in the local frame as input to the 

predictions are analogous to the combination of sequence-to-structure and structure-to-structure 

predictions. The best result in the latter type of tertiary structure prediction is 69.42% (the 

“Secondary” column intersected with the “right, identical” row in Table 3.2). Although in this case we 

predict four states, the accuracy is close to the 62% three state accuracy in the single sequence 

predictions. A better accuracy in this type of tertiary structure prediction is not unexpected since 

secondary structure is defined when consecutive angle pairs lie in specific angle combinations. One 

has to predict the regions of consecutive residues correctly to assign a secondary structure to a residue 

in that region. The probability of predicting two consecutive regions correctly is lower than predicting 

one region correctly. Also, in the tertiary case, the stated results are obtained using real angle values 

surrounding the residue of interest. So the actual results will be lower. One important fact is that the 

data set used in secondary structure predictions is different from the one used in tertiary structure 

predictions, which may lead to incomparable accuracies. 
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    Phi Psi Combined 
    15 30 60 90 120 15 30 60 90 120 Region Secondary

All 42.95 44.37 46.67 51.13 52.98 66.38 66.01 71.23 70.84 53.07 56.93 48.11 
Same 47.68 46.90 50.95 57.37 55.95 71.30 69.56 75.38 75.21 57.02 57.56 47.09 

Identical 47.70 47.42 51.19 58.07 56.13 72.25 70.15 75.80 75.19 57.99 60.64 48.60 A
ll 

None 49.24 48.45 51.60 61.11 56.15 99.69 101.12 103.49 106.83 75.16 79.98 65.34 
All 43.41 44.95 47.71 51.49 54.31 73.97 72.02 75.54 75.64 59.30 59.31 50.37 

Same 48.17 47.06 50.24 58.33 56.04 74.24 74.37 78.21 78.64 60.23 58.96 50.50 

R
ig

ht
 

Identical 48.26 47.72 51.08 58.73 56.16 74.13 73.57 78.58 80.03 60.52 58.94 50.61 
All 45.41 45.48 49.19 56.92 54.92 69.45 67.86 73.14 71.45 53.96 59.59 50.62 

Same 47.27 47.06 50.80 58.94 56.08 73.92 72.82 77.88 77.72 58.47 60.26 51.24 L
ef

t 

Identical 47.37 48.56 51.39 59.01 56.13 73.15 72.47 78.00 78.72 60.07 59.73 51.32 

Table 3.3: Rmsd values (in degrees) for the tests whose performances are given in Table 3.2. 

The notation is the same. Rmsd values are calculated using Formula 3.1. 

 
As mentioned before, the percentage of correct estimates is not sufficient to fully assess the 

quality of a prediction method in terms of three dimensional distance estimates. For example, in Table 

3.2 it is clear that, as the bucket size increases the percent of correct estimates increase. This is due to 

the fact that as the bucket size increases the number of classes decrease, and the probability of the 

algorithm to randomly select a correct class increases. For the 120 degree case, for example, the 

algorithm has only three choices, and a random predictor would have 33% accuracy on the average. So 

the learning algorithm results in 45% accuracy gain (for a total of 78%). However, in the 15 degree 

case, there are 24 buckets for the algorithm to choose from. A random predictor would have 4% 

accuracy in this case, and the gain of the algorithm is 27% (for a total of 31%).  

Rmsd is more suitable for assessing the quality of a prediction than percentage accuracy. In the 

“region” based discretization scheme, the “strained” region is a relatively large region with respect to 

all of the other regions. A representative point is necessary for each class to make an rmsd calculation 

and in the strained case this representative is hard to select since the angle pairs are scattered among 

the relatively large strained region. So instead of selecting a representative, we have used 90 degree 

average distance for every misclassified instance. In the region [0, 360], the average distance between 

two randomly selected points is 90 degrees.  

The best rmsd value (43.41 degrees) for phi angles are from the predictions that use all angles to 

the right of the phi angle of interest with all possible discretizations of those angles (right to left 

prediction using both real phi and psi angles in the input). For psi angles, the best value (53.96 

degrees) is obtained by using all angles with all their discretizations, however, this time with a left to 

right prediction. As one can see the psi angles are harder to predict, most probably because they are 

more flexible than phi angles, hence the higher rmsd values. These results are loose upper bound 

estimates since they are obtained by using the real values of angles in the prediction stage. 
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Test Average 
Accuracy 

Average 
RMSD 

(Degree)

Percent of 
chains 

with less 
than 10Å 

RMSD 

Test Info 

Phi 15 All All, Psi 120 All All 58.85 48.01 9.18 Best RMSD (Degree) 
Phi 90 All None, Psi 90 All None 56.91 83.97 6.46 Worst RMSD (Degree) 
Phi 120 All All, Psi 120 All All 80.47 53.02 2.72 Best Accuracy 

Phi 15 All None, Psi 15 All None 26.11 74.46 6.12 Worst Accuracy 

Table 3.4: The percentage of chains with backbone RMSD values less than 10 Å for the given set of tests (See 
Table 3.2 and Table 3.3) [59]. 

Table 3.4 shows the percentage of chains whose predicted structures have less than 10Å backbone 

rmsd to their native structures. The values are calculated from the coordinates of backbone atom Cα 

for the given test runs. This table clearly shows that high percentage accuracy does not necessarily 

mean low angstrom rmsd. The best performing models in terms of accuracy are selected (Phi 120 All 

All, Psi 120 All All) which perform with 80% on the average. But the percent of predictions less than 

10Å rmsd are less than the models with worst accuracy (Phi 15 All None, Psi 15 All None). This may 

be due to the fact that by representing a 120 degree interval with its midpoint, even when the 

prediction is correct we represent the real angles with a 30 degree error on the average.  

 
  Accuracy RMSD (Degree) 
Only residue names 50.88 44.66 
Residue names and composition 50.90 44.63 
All 50.97 44.45 

Table 3.5: The effect of input feature set on the accuracy.  

These values are obtained from variations of the ‘Phi 30 All All’ test (See Table 3.2, Table 3.3). 

Table 3.5 shows the effect of input representation on the performance. Using chemical and 

physical properties of residues (in the frame that represents the query residue) as well as their names 

and angles, the accuracy was 51.22% (Table 3.2). When the chemical properties were discarded as 

attributes, the accuracy decreased by 0.34% to 50.88%. This shows that representing residues by their 

names are enough, since the gain obtained by using their chemical properties is relatively low. Using 

both residue names and amino acid compositions the results increase by a 0.2% to 50.90%. So 

introducing residue composition to the predictions doesn’t improve the results. 

 

Test Average 
Accuracy 

Average RMSD 
(Degree) 

Accuracy 
using Real 

Angles 
RMSD using 
Real Angles 

Phi 15 left same, Psi 15 
left same 24.63 82.93 29.85 60.59 

Table 3.6: Prediction accuracy for a real prediction. 

Table 3.6 shows the performance of a real prediction. This time the predicted angles are 

incorporated as input to the next predictions instead of their real values. As mentioned before, using 
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real values for the surrounding angles give a ceiling for the prediction performance. Real predictions 

in this case are about 5% lower than the corresponding performance ceiling. The method performed 

much worse in terms of rmsd in the real predictions.  

3.1.5 Future Work 
The data set, test results and the scripts used to replicate these results are given in the appendix. 

The results are not very accurate considering that an even 10 degree error on the average may cause 

models that don’t resemble the native state of the protein. But the prediction method is open to 

improvement, by changing discretization methods and/or learning algorithm. At the very beginning of 

this project, we have been utilizing rules including only a conjunction in the decision list to make the 

rule searching time feasible. This allowed for a complete search over all possible rules in a reasonable 

time. Afterwards, the algorithm has been modified to search for rules that are conjunction of 

disjunctions. This meant now the decision lists could include the logical not of the attributes (e.g. not 

Alanine, not Valine). For this search would take 2n time for n binary attributes, it wasn’t possible to 

conduct a full search over the rule space. We have altered the algorithm to conduct the searches using 

a heuristic function rather than searching the complete rule space (See Section 2.5.1). Although simple 

conjunction rules are the best possible ones within the rule space that explains the training data, the 

restrictions imposed by the lack of negative attributes (logical nots) tends to be more effective in the 

performance of the algorithm. The new algorithm may be applied to the tertiary structure problem to 

see if one could get better results. 

The physical and chemical properties of amino acids have been incorporated into the input to the 

algorithm as well as the amino acid identities and the angle information. However, later in the 

secondary structure prediction studies, we did not incorporate this data as input. Instead, we tried to 

induce biological rules such as secondary structure preferences of amino acid groups. Any further 

studies in tertiary structure prediction should also consider rebuilding models using only amino acid 

identities and angles as input to the learning method. 

A common method in secondary structure prediction is to incorporate multiple sequence 

alignment information to the prediction algorithm. The same approach may be applied to the tertiary 

structure prediction. The two stage method we have utilized in the secondary structure predictions i.e. 

a sequence-to-structure and a structure-to-structure step, can also be utilized in the tertiary structure 

prediction studies. 

Last but not least, one has to check the output of the prediction algorithm to assess the 

performance of the final tertiary structure. The final results may be fed to a molecular dynamics tool to 

see if the prediction leads to a feasible structure. It may be the case that the final predicted structure is 

at least partially acceptable. For example, there may be regions, which are correctly classified and 

possibly those estimates may be used in function determination or determination of other function 

related information.  
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4. Contributions 
There have been numerous attempts to predict protein structure from its sequence. We have 

developed another method that is simple and modular. The methods in literature yield models that 

predict structure fairly well. But the models they yield are hard to interpret. For example, in the 

secondary structure prediction case, the contribution of sequence-to-structure and structure-to-

structure steps are not clearly stated in some of the prediction methods we have mentioned. In our 

case, each step of the algorithm is clearly distinguished. The structure-to-structure model may even be 

used in filtering the predictions of other algorithms. 

Structure prediction is only a step in protein structure determination and finally in function 

determination. The current prediction algorithms may be used to predict structure but most of them 

give little insight into the nature of the prediction problem. Decision lists, on the other hand, yield 

human readable models. What is more is, as we have shown in Section 2.7.1, the models are in 

correspondence with some biological rules. We have only evaluated three rules in a secondary 

structure decision list. There are more rules in that list that may yield invaluable knowledge in the 

structure prediction domain. 

We have studied predictions that depend on local information, and have shown that local 

information is not enough to predict structure with complete accuracy (Section 2.7.2). Evolutionary 

data comes into picture at this point. Multiple sequence alignments increase the accuracy of 

predictions, even without knowing the three dimensional structure of the proteins in the alignment. We 

have incorporated multiple sequence alignments only to the secondary structure predictions. They may 

also help in predicting the tertiary structure. The outline of our prediction model is then: 

- An initial prediction from sequence information 

- Incorporating multiple sequence data 

- A final step to relate or filter predicted structures. 

In literature, this is a commonly utilized scheme and we have utilized the same scheme with a 

different algorithm, Greedy Decision List learner, which we think may help biologists find out 

information on the nature of prediction problems.  

Currently, there are various methods that predict secondary and tertiary structure. Each type of 

prediction has associated difficulties. For example, even the assignment of secondary structure from 

known tertiary structure is not an exact science. For the tertiary structure case, there may be cases 

where the same sequence leads to completely different structures [47]. There is still more to discover 

in the nature of proteins and we have tried to help in this discovery by means of introducing a new 

algorithm in the domain to simplify the structure prediction process. We have also introduced a model 

to predict secondary structure, which researchers can even use for a quick back-of-the-envelope 

prediction. There is still room for improvement in our method and in all available prediction methods.  

 



Chapter 5: Appendix  43 

5. Appendix 

5.1 Steric Collisions 

5.1.1 Introduction 
Ramachandran has shown that all combinations of phi and psi angles cannot exist in nature, 

simply because of steric collisions of residue atoms [56]. Ramachandran has taken into account only 

φ−ψ angles of Alanine dipeptides and has shown that there are certain conformations an Alanine 

dipeptide cannot conform to [15]. These restrictions stem from the collision of two atoms in the 

disallowed conformations.  

We have extended the study of Ramachandran to a set of Alanine chains ranging from 1 to 9 

residues long. Every residue added to a protein chain introduces new restrictions on the backbone 

conformation space. 

We have searched which atoms can collide when a short protein chain is randomly perturbed. The 

bond lengths within a protein are taken to be constant and the search is conducted by simply altering 

the φ and ψ angles (and side chain angles when possible). The outcome of this search is a set of simple 

rules like “the oxygen atom of the second residue in a four residue long chain can only collide with the 

oxygen atom of the third residue.” We have only tried to find out possible collisions on alanine chains 

two to nine residues long. This way we had very flexible chains, since Alanine has a small side chain. 

We call altering the φ and ψ angles of residues in a protein to arbitrary values “steering” the molecule 

and the collisions detected this way “steric collisions”. 

5.1.2 Method 
There are a number of ways to detect possible steric collisions in a protein chain. The complete 

search would be achieved by assigning every possible angle combination to the φ and ψ angles. 

However, this is not possible since not only the angles are continuous but also the number of possible 

conformations increases exponentially with the number of residues in the chain. So there are two 

major problems in this search that needs attention: the how to select the amount of perturbation of an 

angle at each step, and how, i.e. in what order, these perturbations are applied to the angles. 

We have performed different tests using two different search strategies. First, we have selected a 

discretization of angles and tried to check the proteins for collisions at all possible combinations of 

these angles. One possible discretization scheme is to divide the (-180, 180) degree interval into 

segments and represent angles by the segment in which it resides (See also Section 3.1.1). Different 

segment lengths are possible and this choice also effects the running time of the algorithm. For 

example, a segment length of 30 degrees means each angle has 360/30=12 possible values and each 

perturbation of an angle would mean a change of 30 degrees at least. A chain with 4 residues will have 

3 φ and 3 ψ angles to work with. This means the search would take 2126 ≈  million steps. Although 
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the application of this method is possible for very short protein chains, it is not feasible with longer 

chains. One more restriction is that, the algorithm we use does not check the path the atoms traverse as 

the angles are modified. That is to say, we have the initial and final positions of the atoms after a 

modification, not the path that results in that position. Thus, the amount of perturbation of an angle 

should be selected in such a way that the path that there should not be another atom in the path that 

any atom traverses. If a path contains another atom, which we do not check in our method, the protein 

may assume unnatural conformations, since in nature that atom will prevent the protein to assume that 

conformation. Also throughout the search, if any two atoms collide in their final position, the method 

goes back one step and continues with a different direction. 

A better solution, which is the solution we adopted, is to search the space with random 

perturbations for a reasonable number of steps. This way, the time for search is reduced and most of 

the possible collisions can still be detected. This method still needs the perturbation amounts selected 

such that the path of any moving atom does not contain another atom. 

Consider a 9 residue long protein chain. Assume all angles are planar initially. The maximum 

displacement of a residue at one step is achieved by rotating the φ or ψ angle of the middle residue in 

the chain. The most significant displacement would be in the left-most atom of the left-end residue or 

the right-most atom of the right-end residue. Thus, the perturbation amount must be selected such that 

this residue cannot move past another atom (Figure 5.1). The displacement with respect to perturbation 

of an angle is illustrated in Figure 5.2. The maximum allowed perturbation angle can be calculated 

using Formula 5.1.  

 
Figure 5.1: To move an atom past another one without detecting a collision, at least 4 times the radius of the 

atom should be traversed. 
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Figure 5.2: The displacement, δ, with respect to an angle change of θ degrees.   

r is the distance of the atom from the residue in the middle of the chain. The formula shows the relation between 
the displacement and the perturbation angle for small θ. 

( )
δ

θ
θ min

max
4sinsin r×

=  

Formula 5.1: Calculation of maximum allowed perturbation angle in a protein chain.   

When one of the angles in the middle of a protein is perturbed θ degrees, the atoms in one end of the protein 
moves δ angstroms. Assuming that the other residues in the chain are rigid, the distance of the atom (r in Figure 
5.2) to the middle residue does not change. And since the maximum allowed displacement is 4rmin (Figure 5.1), 

where rmin is the radius of a Hydrogen atom (0.79 Å) in our case, the formula follows.  

 
Once the maximum allowed perturbation angle, θmax, is calculated, each angle is perturbed with an 

angle chosen randomly from the range (-θmax, θmax). During each pass through all of the angles in the 

protein, at each perturbation of an angle, every collision that occurs is recorded. When this process is 

repeated for a reasonably large number of times, possible atom pairs that can collide will be found. 

During this part of the work, the Protein Molecule Library, libmol, by Deniz Yuret has been used 

to simulate protein behavior (in the code base, under ‘/3 – Steric Collisions’). Libmol is a C library 

that is used to represent a protein chain and to perturb it in various physical ways to observe how it 

behaves. The collision detection codes, as well as a sample set of these possible collisions for a 

number of different lengths of Alanine chains are given in appendix (in the code base, under ‘/3 – 

Steric Collisions’). 
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5.1.3 Results 
The possible atom pairs that can collide are detected. The detailed results are given in the 

appendix. Other than the possible atom pairs, we have checked the possible angle pairs. A 

Ramachandran plot for three cases is given in Figure 5.3. It can be clearly seen that as the chain size 

increases the flexibility of the angle decreases. This may stem from the spatial exclusion restrictions 

each residue adds to the chain. (Results are given in the code base, under ‘/3 – Steric Collisions’). 

 

 
Figure 5.3: Ramachandran plots of short Alanine chains.  

As the chain length increases the flexibility of the middle residues decreases (The plots show 2nd residue in a 2-
residue chain, the 3rd residue in a 5-residue chain and the 5th residue in a 9-residue chain.) The shaded regions 

show the allowed conformations at 20 million steps of random perturbation of phi and psi angles. There are more 
allowed regions than Ramachandran most probably since the radii of residue atoms we have chosen for the 

model are smaller than Ramachandran has chosen which results in increased flexibility. 

 

5.2 Code Base 
Every piece of code that has been used to generate the results stated throughout this work is 

present in the code base. Each folder and file has ample description in plain text format, allowing the 

replication of each of these results. Also some sample data (if not all) is presented in the code base so 

that immediate use of the code library is possible.  

See the attached CD for the code base. 
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