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ABSTRACT 

Microspheres have received increasing attention as optical microcavity resonators due to their 

high quality Morphology Dependent Resonances (MDRs). Numerous applications have been realized 

by using microsphere MDRs in photonics, optoelectronics, and optical communication systems. 

Wavelength selective properties of resonances in microspheres have been used as a building block for 

filtering, multiplexing, switching, and channel dropping applications. Microsphere based biosensors 

has been attracting the attention of the photonics community due to their high sensitivity, selectivity 

and implementation. Adsorption of different biomolecules on the surface of microspheres causes a 

change of effective size and refractive index leading to the shift of resonance wavelengths. A 

photonic biosensor, based on this phenomenon, can detect a single molecule sensitively depending on 

the configuration. 

In this work, rainbow effects on microspheres are studied numerically by using Generalized 

Lorenz Mie Theory (GLMT). GLMT description of Gaussian beam scattering by a microsphere is an 

excellent analytical tool to accurately model the sphere-Gaussian-beam interaction. Angularly 

resolved Gaussian beam scattering spectra are presented to observe the effect of rainbows on MDRs. 

Obtained results show that rainbows give rise to increased scattering intensity around MDRs. Phase 

behavior of the total scattered field is observed in the spectra around rainbow angles. The rainbow-

enhanced MDRs and associated phase characteristics provide an additional enhancement of the 

already sharp MDRs of microspheres for sensing applications. 
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NOMENCLATURE 

 

a  microsphere radius 

an  elastically scattered transverse magnetic field coefficient 

bn  elastically scattered transverse electric field coefficient 

cn  internal  transverse magnetic field coefficient 

dn  internal transverse electric field coefficient 

Δλ  mode spacing in wavelength 

δλ  wavelength shift 

ε  permittivity of the medium 

E  electric field amplitude 

ħ  Plank’s constant divided by 2π 

)(1 xhn   spherical Hankel function of the first kind 

)(2 xhn   spherical Hankel function of the second kind 

jn (x)  spherical Bessel function 

k  wavenumber 

L  spreading length 

l  mode order 

λ  wavelength 

λ1/2  linewidth of an MDR in wavelength 

m  azimuthal mode number 

m  refractive index of the sphere 

s  beam confinement parameter 

μ  Permeability of the medium 

n  Mode number 

ω  Optical angular frequency 
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ωn,l  resonant angular frequency 

p  momentum of the photons 

Pi  power coupled into MDR 

Q  quality factor of a MDR 

Q0  quality factor associated with the internal losses 

Qcoupling  quality factor associated with the coupling losses 

Qabs  quality factor associated with the absorption losses 

Qr  quality factor associated with the diffraction leakage losses 

Qs  quality factor associated with the scattering losses 

σmode  scattering cross section of an MDR 

<σ >  coupling efficiency of a Gaussian beam 

θ  polar angle 

∆θ  spreading angle of rainbow 

θin  angle of incidence 

θc  critical angle 

x  size parameter of microsphere 
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Chapter 1 

 

INTRODUCTION 

 

 

Microspheres are special due to their high quality factor (Q-factor) morphology dependent 

resonances (MDR’s), i.e., whispering gallery modes (WGM’s) [1 ,2] with reported Q-factors as large 

as 2x1010 [3]. A variety of potential applications have been established by using dielectric 

microspheres such as microlasers [4], channel dropping filters [5,6] optical switches [7], ultrafine 

sensors,[8] biomolecular agent detectors [9,10], displacement sensors [11], rotation detectors [12], 

high-resolution spectrometers [13], and Raman lasers [14]. More recently, silicon microspheres have 

been used in elastic light scattering and optical channel dropping [15] 

Additionally, the field of optical biosensors is rapidly evolving due to the need to overcome the 

limitations of the amount of material to be detected [16]. Optical microsphere resonators with high Q-

factor MDR’s can be used as sensitive biodetectors. These extraordinary Q-factors, translate directly 

to high energy density and narrow resonant-wavelength lines [17]. The sharp optical resonance of 

microsphere provides exceptional resolving power, down to submonolayer molecular level. A 

biomolecule such as a protein that resides in the evanescent field of MDR’s can absorb light, thus 

influencing the MDR’s [18]. By affixing the appropriate proteins and DNA molecules to the surface 

of the microsphere, and measuring the Q-factor and observed shift in the resonant peak locations, the 

biomolecules sticking to the surface can be characterized [19]. The shift of MDR’s by protein 

adsorption onto microspheres is demonstrated and modeled as a first order perturbation [4]. Recently, 

the red shift of resonance wavelengths is used for high sensitivity label-free DNA quantification [20]. 

Focused off-axis illumination of a sphere is necessary to increase the coupling strength leading to 

higher power transfer into the microsphere, which is essential for filtering applications in optical-fiber 

communication, optical switching, and cavity QED [21]. Excitation efficiency of MDRs by Gaussian 

beams is higher than that of plane-waves [22].  In addition to the rigorous Lorenz-Mie theory to 

predict the interaction of light with a sphere, the basis of some of the observed effects can be 
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identified from the geometry of rays refracted by the sphere. Plane-wave illumination of spheres 

confirmed the existence of scattering enhancement associated with the rainbows for spheres of 

specific refractive indices at specific angles [23].  

Contrary to MDRs, rainbows are independent of the microsphere size and depend only on 

refractive index and incident angle of the ray. If a ray refracted into the sphere returns to its initial 

position after reflections from the surface, then a finite number of rainbow angles form since the ray 

will follow the same path in the subsequent reflections. For example, with a sphere of refractive index 

m = 2, a ray comes to its initial position after reflections inside the sphere, and only three rainbows 

form in the scattering intensity. Periodic rainbow formation is ideal to understand the effect of 

rainbows on MDRs around rainbow angles. 

Chapter 2 provides a necessary overview on Fabry Perot resonators that gives a basic description 

of optical resonances. The characteristics of the Fabry-Perot resonators can be extended further in the 

analysis of microsphere MDRs. 

Chapter 3 describes the MDRs of microspheres using Lorenz Mie theory of plane-wave and 

Generalized Lorenz Mie Theory description of focused Gaussian beam scattering. Essential features 

of MDRs such as position, mode spacing, and Q-factor, are overviewed. Excitation of resonances 

with plane wave and Gaussian beams and their associated excitation efficiencies are analyzed. 

Chapter 4 is on rainbows, using the ray picture of scattering from spheres. Rainbow effect on 

MDRs are described that rainbows give rise to increased sensitivity of scattering intensity around 

MDRs. 

Chapter 5 explores the applications of microspheres, with emphasis on biomolecular detection. In 

addition, infrared light scattering is studied for optical channel dropping. 

The thesis is concluded with a short summary of the performed study. 
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Chapter 2 

 

OPTICAL RESONATORS 

 

 

2.1. Introduction 

In an optical resonator light circulates (or is repeatedly reflected) within the system, with small loss. 

Optical resonators are used mainly to build up large field intensities with moderate input powers. The 

Fabry-Perot resonator consists of two or more planar or curved surfaces to trap an optical beam by 

multiple reflections [24]. The corresponding wavelength (frequency) of the beam is called the mode 

of the resonator (resonance wavelength). Planar and spherical mirror resonator, ring resonator, and 

optical-fiber resonator are the most typical optical resonators. In addition to the one- and two-

dimensional optical resonators, microsphere resonators confine light in three-dimensions. The general 

condition for all resonators is that phase matching should be satisfied in a round-trip of the resonator, 

such that the phase shift imparted by a single round trip of propagation should be a multiple of 2π, 

i.e., 

 

nπφ 2=Δ ,      (2.1) 

 

for an integer mode number n. The resonances occur when there is an integer mode number (n) of 

half-wavelengths. The waves satisfying the condition of phase matching interferes constructively 

which results in a series of standing electromagnetic waves. The corresponding modes of phase 

matching determine the wavelengths (or frequencies) of the resonator. These modes store radiation 

energy only at the wavelengths of the modes. 

 

2.2. The Fabry-Perot Resonator 

The simplest resonator consists of two parallel planar mirrors, called Fabry-Perot resonator 

[24]. The Fabry-Perot resonator with fixed resonator spacing is called an etalon, and if the plate 
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separation is variable, it is called an interferometer. The Fabry-Perot resonators selectively reflect or 

transmit a particular wavelength of light. To understand the operation principle of a Fabry-Perot 

resonator, let us analyze first a single plate with reflectance R. If a plane-wave is incident on a single 

plate with reflectance R = 99.9 %, almost no light passes through the plate. However, if two of these 

plates are placed parallel to each other, something surprising occurs. The plates become transparent at 

particular wavelengths because of multiple reflections within the resonator. The light bounces back 

and forth between the plates and only a small percentage of light passes through the plates at each 

bounce. The transmitted light from each pass interferes constructively with other passes, for the 

special case of in phase arrival of each wave. Therefore, the total transmitted light through the 

resonator becomes 100% at these particular wavelengths of light, independent of the value of R. 

These wavelengths of the incident light satisfying the resonance condition in eq. (2.1) are called the 

resonance wavelengths.  

 

2.2.1. Resonator Modes 

The resonator modes are the wavefunctions and resonance wavelengths (frequencies) of the 

optical waves that exist self-consistently within the resonator. The modes of a resonator are the 

solutions of the Helmhotz equation subject to the appropriate boundary conditions. A mode is a self-

reproducing wave that interferes with itself constructively after a single round-trip between the 

mirrors with spacing d and refractive index m. Therefore, only self-reproducing waves or 

combinations of them can exist within the resonator in the steady state. Standing wave solutions for a 

Fabry Perot resonator restricts the resonance wavelengths to discrete values; therefore the half-

wavelength of the nth order resonance should fit in the spacing between the plates such that  

 

mdn n =
2

λ
,       (2.2) 

 

where md is the effective spacing of the plates. We can define a dimensionless size parameter (x) as 

the ratio of the round-trip path length to the wavelength of the incident light, 

 



 
 
Chapter 2: Optical Resonators  5 

 
 
 

λ
dx 2

= .      (2.3) 

Then, the resonant size parameter of the resonator with mode order n can be written as 

 

nmx = ,   n = 1, 2, 3, …    (2.4) 

 

as a function of size parameter and internal refractive index of the resonator. The waves satisfying the 

phase matching condition of eq. (2.1) interfere constructively, which results in a series of standing 

electromagnetic waves given by eq. (2.4). Any change in refractive index or surface spacing of the 

resonator results in different resonance wavelengths. The shift in a resonance wavelength is given by 

 

⎟
⎠
⎞

⎜
⎝
⎛ +=

m
m

d
d δδλδλ ,     (2.5) 

 

which is a function of thickness d and refractive index m of the resonator. Therefore, any change in m 

or d leads to shifted resonator modes, which makes Fabry-Perot interferometer a sensitive device for 

wavelength selectivity. 

 
Figure 2.1.  The schematic Fabry-Perot resonator. 

Input Light 

Partially reflecting plates 

d

m

Output Light 
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At these resonance wavelengths, the resonator transmits 100% of the input beam regardless of the 

reflectance of the plates. Although R does not effect the peak transmittance, the value of R does effect 

the sharpness of the plates. A measure of this property is the quality factor (Q-factor) of the resonator, 

defined by the relation 

 

cycleperlossenergy
energystoredQ π2= ,    (2.6) 

 

which is identical to the ratio of the wavelength to the half-width of the resonance 

 

2/1λ
λ

Δ
=Q ,      (2.7) 

or 

2/1υ
υ

Δ
=Q ,      (2.8) 

 

in frequency domain. Both eqs. (2.7) and (2.8) defines the sharpness of the resonance and they are 

also called the resolving power of the resonator. The larger the value of R is, the sharper the 

resonance, which makes the Fabry-Perot resonator applicable as a tool for selecting a particular 

wavelength of light. In some applications, such as in a laser cavity or a monochromator, high Q-factor 

peaks are more desirable. 

There is an infinite number of resonator mode satisfying resonance condition, in which the resonance 

wavelengths are separated by a distance called free spectral range (FSR) or mode spacing. In the 

Fabry-Perot interferometer, FSR can be perceived as the maximum width of the spectrum that can be 

determined without ambiguity. The distance between adjacent resonances has consecutive mode 

number such that FSR can be defined as 
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Figure 2.2.  Transmitted light intensity of the resonator modes. 

 

and by using eq. (2.2) and n ≈ n+1 for large mode orders n, 
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around wavelength λ. In terms of frequency, the free spectral range (FSR) is 

 

md
cc

FSRFSR 22 =Δ=Δ λ
λ

υ ,     (2.11) 

 

The approximations in eqs. (2.10) and (2.11) become better as n gets larger. The FSR decreases when 

the distance between the plates increases. Similar to the Q-factor of the resonator defined in eq. (2.7), 

the ratio of the FSR to the resonant linewidth, i.e. 
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Figure 2.3.  The mode spacing for Fabry-Perot resonator with m = 1.5 and m = 3.5. 

 

is called the finesse of the resonator, which is equal to  

 

R
RF

−
=

1
π

      (2.13) 

 

for a Fabry-Perot resonator. The finesse increases with an increase in R. Using the definitions in eq. 

(2.7) for Q-factor and (2.12), (2.13) for finesse with the value of FSR in eq. (2.10), the Q-factor for a 

Fabry-Perot resonator is found to be, 
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,    (2.14) 

 

which is a function of internal refractive index, size parameter of the resonator and reflectance of the 

surfaces. As one of these parameters increases, the Q-factor of the resonator becomes larger, leading 

to sharper resonances. Increasing the resonator size and refractive index requires waves with larger 
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mode numbers (since mx = n); therefore, higher order modes leads to high Q-factor resonances. Also, 

increasing the reflectance (R) of the surfaces results in higher Q-factor resonances. 

 

2.2.2. Phase and Intensity of Resonances 

In a Fabry Perot resonator, multiple beams interfere constructively to form a resonance such that 

the net result is the superposition of an infinite number of waves, separated by equal phase delays δ. 

Phase delay is due to the difference in optical path length between the successive transmitted waves 

that superpose to form a resonance. The difference in optical path length between adjacent waves 

with normal incidence on the plates is given by 

 

π
λ

πδ mxmdmxkkmd ====
2)2( 00 ,    (2.15) 

 

where k0 is the wavenumber of the incident beam. The amplitude of the transmitted field is the sum of 

the amplitudes of all the transmitted components.  

If E0eiωt is the incident wave, the total transmitted field Et is represented by the sum of the 

transmitted waves after reflections and transmissions [25], 

 

 Nttttt EEEEE ++++= K321 , 
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[ ]δδδω )1()1(22
0 Re1 −−−−− ++++= NiNiiti eReRTeE K ,       (2.16) 

 

where r is the reflection and t is the transmission amplitude coefficients of the resonator surfaces. The 

square of transmission and reflection amplitudes are called the transmittance (T) and reflectance (R) 

of the surfaces such that in the case of no absorption T+R=1. For an infinite number of waves the 

transmitted field is given by 
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The distance between resonances corresponds to change in δ of 2π. A general representation of a field 

is written as 

 
φωφω ititi eeEeEE 0

)(
0 == +      (2.18) 

 

including a phase φ  of the amplitude. Comparing eq. (2.17) and (2.18) results in 
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which leads to 
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and the phase factor  of the transmitted field is found to be 
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R
,         (2.21) 

 

which is a function of path difference and reflectance. The resonances occur when the phase delay is 

a multiple of 2π.  

Once the field inside the resonator is known, the corresponding intensity of the transmitted light 

can be found from square modulus E·E*. The output intensity will be a fraction of the input intensity. 

The amount of transmitted light is determined by the reflectance R. A fraction of the incident light (1-

R) will enter the cavity as Iincident, of which part (again 1-R) will leave the cavity as Itransmitted. Thus the 

ratio of transmitted to incident light is given by 
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Figure 2.4.  (a) Transmitted and (b) reflected light intensity for a Fabry-Perot resonator. As the reflectance R 

decreases, the intensity at the minima increases. 

 

 

Increasing  
R 

R = 0.1 

R = 0.5 

R = 0.9 ( a ) 

( b ) 



 
 
Chapter 2: Optical Resonators  12 

 
 
 

)2/(sin
)1(

41

1
2

2
0 δ

R
RI

It

−
+

= .     (2.22) 

 

The transmitted light intensity is maximum at the location corresponding to a phase change of 2π, 

called resonance wavelengths. As shown in fig. 2.4, the higher the reflectance (R), the lower the 

intensity at the minima and the sharper the transmitted intensity at the maxima. The reflected light 

intensity can be found using eq.(2.22) as 
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2.2.3. Superposition of Fields 

Addition of two fields of different phases leads to interesting effect in transmission spectrum of 

Fabry-Perot resonators. Let one of the field has a phase delay of 1/k of the other field. Therefore, the 

interference of two fields will have a transmitted field which is given by eq. 2.17, neglecting the time 

part, as 
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The behavior of such a field does not change the resonance wavelengths but spread the transmission 

of resonances around some k values. Although light should be transmitted thoroughly at resonance 

wavelengths independent from reflectance (R), we observe almost-zero transmission regions for some 

k values. The behavior of adding two fields is shown in fig. 2.5, as a function of k-factor, for R=0.9. 

The phase in the intensity spectrum can be seen clearly in fig. 2.6, around various k values 

The analysis of the Fabry-Perot resonator is a successful model in understanding the working 

principles of other optical resonators. The characteristics of superpositon of fields will be helpful in 

analyzing the rainbow effect on chapter 4. 



 
 
Chapter 2: Optical Resonators  13 

 
 
 

 
Figure 2.5.  Transmission intensity for addition of two fields in a Fabry-Perot resonator. 
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Figure 2.6.  Phase-induced transmission intensity for addition of two fields in a Fabry-Perot resonator. 
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Chapter 3 

 

MICROSPHERE RESONATOR 

 

 

3.1 Microsphere 

The modes of a spherical dielectric particle were first investigated by Gustav Mie at the 

beginning of the 19th century, in the context of light scattering from spherical particles. The 

scattering spectrum exhibited sharp features, which can be attributed to resonant circulation of optical 

energy within the sphere. These optical modes are confined by continuous total internal reflection at 

the dielectric air interface and are often referred to as ’whispering-gallery modes’. This description 

originated from the “problem of the whispering-gallery,” which Lord Rayleigh published in 1912 

[26], describing the phenomenon of acoustical waves he had observed propagating around the interior 

gallery of the Saint Paul’s Cathedral in London, England. 

The intuitive picture describing morphology dependent resonances (MDRs) is based on geometric 

optics picture. MDRs can be viewed as propagation of rays around the internal surface of a 

microsphere such that, once within the spherical particle, they are confined by total internal reflection 

(TIR) and repeatedly intersect beyond the critical angle. In the wave optics picture, MDRs can be 

considered as internal standing waves with an integer number of wavelengths circulating near the 

microsphere surface. The quantum mechanical interpretation is based on analysis of MDRs as shape 

resonance [27], in which the electromagnetic energy is temporarily trapped near the surface of the 

sphere in a potential well. The energy of a MDR enters and leaves the well by tunneling through the 

centrifugal barrier that forms the outer wall of the potential well.  

The ray and wave optics description of light interaction with a microsphere has several 

limitations: it cannot explain escape of light from a MDR for perfect spheres. Furthermore, ray and 

wave optics provides no possibility for incident light to couple into a MDR, and the polarization of 

light is not taken into account. Finally, the radial character of the optical modes cannot be determined. 
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All of these issues are explained by the Maxwell wave equations with appropriate boundary 

conditions. 

 

3.2. Lorenz Mie Theory 

A complete description of the interaction of light with a dielectric is given by the electromagnetic 

theory. The spherical geometry suggests expanding the fields in terms of vector spherical harmonics. 

Characteristic equations for the MDRs are derived by requiring continuity of the tangential 

components of both the electric and magnetic fields at the boundary of the dielectric sphere and the 

surrounding medium. Internal intensity distributions are determined by expanding the incident wave 

(plane-wave or focused beam), internal field, and external field, all in terms of vector spherical 

harmonics and again imposing appropriate boundary conditions. 

 

 
Figure 3.1.  The microsphere of radius a and refractive index m. 

 

MDRs occur at discrete wavelengths that depend sensitively on relative refractive index m and 

radius a of the sphere. Each MDR is labeled [28] by an azimuthal mode number (m), polar mode 

number (n), and a radial mode order (l) summarized in table 3.1, in which we prefer to use that is 

most common in electromagnetic-wave community rather than the notation used in quantum 

mechanics. The angular mode number (n) gives the number of azimuthal maxima in the internal 

intensity distribution between 0o to 180o. The radial mode order (l) indicates the number of maxima in  

 

a

m
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Parameter Our notation (EE) QM Notation 

Refractive index m(ω) n(ω) 

Azimuthal mode number m m 

Polar (angular) mode number n l 

Radial mode order l ν 

 
Table 3.1.  Summary of Notation 

 
 
the internal intensity distribution in the radial direction. For each polar mode number n, the allowed 

azimuthal mode numbers are in the range of −n < m < n, leading to a 2n+1degeneracy of the 

azimuthal modes [29]. 

For a perfect sphere, all of the m modes are degenerate (with 2n+1 degeneracy). The degeneracy 

is lifted when the cavity is axisymmetrically (along the z-axis) deformed from sphericity, shown in 

fig 3.1. For such distortions the integer values for m are ±n, ± (n − 1),...0, where the degeneracy 

remains, because the MDR’s are independent of the circulation direction, i.e., clockwise or 

counterclockwise. Highly accurate measurements of the clockwise and counterclockwise circulating 

m-mode frequencies reveal a splitting due to internal backscattering, that couples the two counter-

propagating modes. 

 

 
Figure 3.2.  Internal-intensity distribution in the equatorial plane for a TE MDR with n = 12, ℓ = 2. 
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In addition to n and l, the resonances are characterized by their transverse magnetic (TM) and 

transverse electric (TE) polarization. In the standard Mie scattering formalism [30] the expansion 

coefficients for the scattered TM field are found by 

 

])()[(])()[(
])()[(])()[(

)2(2)2(

2

′−′
′−′

=
xxhmxjmmxmxjxh
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nnnn

nnnn
n    (3.1) 

 

and the coefficients for the scattered TE field are found by 

z

m = 0

m < n

m = n 

λ 

m = 0

m < n

m = n 

(a) Oblate spheroid (re > rp) 

(b) Prolate spheroid (re < rp)

Figure 3.3.  The effect of shape deformation on the emission from the various regions of 
sphere rim. 
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where jn is the spherical Bessel function, hn
(2) is the Henkel function of the second kind, and  the 

prime indicates a derivative with respect to the argument [31]. The expansion coefficients of the 

internal fields of the TM (cn) and TE (dn) modes have the same denominators as an and bn, 

respectively. The zeros of denominators of an (cn) give the TM and bn (dn) correspond to TE modes of 

a MDR labeled by n and l, which quantizes the polar angle and radial directions [32]. 

 

3.3. Properties of MDRs 

The basic properties of MDRs defining the characteristics of resonance structure are Q-factor of a 

MDR, mode spacing between resonances (Δλ), and MDR position. Q-factor describes the sharpness 

of a MDR, mode spacing give the distance between consecutive modes, and finally providing the 

position of the modes presents the full picture of a scattering intensity spectrum. For spheres with 

large x, several expressions are derived to determine the spectral location, separation, and width of 

MDRs. 

 

3.3.1. Q-factor 

The quality (Q) factor determines how long a photon can be stored inside a MDR. The Q-factor of 

the MDR is proportional to the ratio of the energy stored and the energy lost because of the radiation 

leakage during one round-trip within the microsphere. Q-factor is also defined as Q = ωτ where ω is 

the optical angular frequency and τ is the radiation lifetime in the microsphere [33]. 

For frequencies near an MDR, the electric field inside the cavity varies as 
 

)
2

exp()( 00 t
Q

tiEtE oωω −−=      (3.3) 

 

The decay term leads to a broadening of the resonance linewidth, giving a Lorentzian lineshape for 

the energy distribution 
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Alternatively, the sharpness of any resonance is commonly described by the quality factor Q. The 

quality Q-factor of a MDR, ( Q = λ/Δλ1/2 ), gives information about the lifetime(τ) and linewidth 

(Δλ1/2) of the resonance [34]. Q-factor and wavelengths of MDRs of microspheres are highly 

sensitive functions of the sphere size and refractive index. For a definite MDR mode order l, the Q-

factor of the MDR increases with increasing sphere radius; however, for a given radius a, the Q-factor 

of the MDR decreases with increasing mode order. The highest Q-factor MDRs are obtained with 

lower mode orders ( l ) and higher mode numbers ( n ), in which the electric field is concentrated 

close to the inner surface. Higher Q-factor MDRs are more sensitive to perturbations than lower Q 

MDRs. 

 

3.3.2. Mode Spacing 

A MDR satisfies resonance condition for specific values of the size parameter x = 2πa/λ, where λ 

is the wavelength of the incident light and a is the radius of the sphere. The mode spacing is defined 

as the wavelength difference between two consecutive mode numbers n in the same mode order l, and 

given by [35] 
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for x ≈ n » 1. The mode spacing is defined for TE or TM polarization and approximately same for 

both TE and TM modes. Comparing with the mode spacing of Fabry-Perot resonators in eq. (2.10) 

and that of microsphere resonators in eq. (3.5), the effective refractive index of a microsphere 

resonator can be defined as 
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which shows that as the refractive indices of the resonator approaches unity, the mode spacing of 

Fabry-Perot and microsphere resonators become closer as depicted in fig. 3.2. 

 
Figure 3.4. The MDRs and mode spacing Δλ between consecutive modes 

 

 
Figure 3.5.  The mode spacing for Fabry-Perot and microsphere resonator with m = 1.5 and m = 3.5. 
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3.3.3. Mode Position 

The field distribution and the resonance locations are determined by matching the solutions interior 

and exterior to the sphere at the dielectric-air boundary [36], leading to a characteristic equation. For 

a microsphere this requires matching the Bessel function jl(ka) and the outgoing Henkel functions 

hl(ka) at the dielectric boundary. The positions of MDR’s are approximated by [37, 38] 

  

)(2)3/2()2
10
3(2 13/23/1

3

22
3/13/223/13/1

,
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υαυ OPmPPmx lllln ,    (3.7) 

 

where P= m for TE modes, P=1/m for TM modes, υ = l+1/2, ρ2 = m2−1 and αl  are the roots of the 

Airy function. 

 

3.4. Excitation of MDRs 

Applications of microspheres require coupling of light into the MDRs from an external light 

source. There are basically two methods for exciting MDRs: plane-wave and Gaussian beam 

illumination.  

 
Figure 3.6.  Paths of MDRs and focused spots for a plane wave illumination of microspheres. 
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The theoretical and experimental understanding of MDRs was extensively investigated in the case 

of a plane wave excitation of homogenous spherical particles [39]. In plane-wave illumination, the 

internal intensity is focused mostly on near the front and back surfaces of the microsphere and there is 

a uniform intensity distribution when the plane wave is in resonance with an MDR. However, a more 

efficient way to excite an MDR is to use a focused Gaussian beam aimed at the edge of a sphere [40]. 

The efficiency of MDR excitation for Gaussian beam illumination depends on the degree of beam 

focusing and the position of the beam-waist with respect to the sphere [41]. This dependence of the 

MDR excitation efficiency on the properties of the beam is intuitively sensible, since a large 

percentage of the corresponding rays in a focused beam incident somewhat beyond the particle’s edge 

have the correct impact parameter for MDR excitation, whereas most of the rays in a loosely focused 

beam or a plane wave do not. 

 

3.4.1. Gaussian Beam Excitation 

The study of the fiber microsphere system depicted in Fig. 3.3 requires an extension of Lorenz-

Mie theory of plane wave illumination and referred to as generalized Lorenz-Mie theory (GLMT) 

[42]. Gaussian beam scattering of tight beam localization was constructed and implemented a decade 

ago by the GLMT [43,44].  The model suitably predicts the large coupling efficiency of MDR’s, 

when the spherical particle is illuminated near its edge by an off-axis Gaussian beam [45]. 

The coupling of laser light into a microsphere is crucial in efficient power transfer. Light can be 

coupled into the microsphere using different types of coupling devices: side-polished optical fibers 

[46], prisms [47], and tapered optical fibers [48]. These coupling geometries provide efficient energy 

transfer to the MDR through the evanescent field of the coupling device. A microsphere coupled to a 

fiber is depicted in Fig. 3.3. The microsphere is placed a vertical distance b (impact parameter), 

which should satisfy b/a ≤ n for the excitation of an MDR. Efficient coupling can be expected, if two 

main conditions are satisfied: phase synchronism and significant overlap of the MDR mode and the 

coupler mode. The coupling is based on the fact that coupler mode extends beyond the core-cladding 

interface [49]. 
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Figure 3.7.  Gaussian beam excitation geometry of microspheres. 

 

In our coupling geometry, there are four factors that influence the coupling efficiency: the fiber 

diameter (~2ω0), the sphere size (a), the fiber-sphere gap, and the ambient refractive index [50]. 

Larger spheres (a > 200 μm) are more suitable to attain high Q-factor MDRs but small coupling 

efficiencies; therefore, decreasing the microsphere size decrease Q-factor but improves the coupling 

efficiency and leads to larger mode spacing. Stronger coupling can be achieved by adjusting the 

diameter of the fiber and microsphere so that the fiber mode matches the sphere mode [51]. 

Immersing the microsphere in an liquid that is index matched to fiber cladding makes the optical 

modes less strongly confined and increases the coupling efficiency. Critical coupling is possible with 

proper design of the microsphere-OFHC system by optimizing sphere size, fiber diameter, the OFHC-

microsphere gap. 
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3.4.2. Generalized Lorenz Mie Theory 

The scattering theory for a spherical, isotropic, homogeneous, nonmagnetic particle illuminated 

by a plane wave was described by the Lorenz-Mie theory. However, it was experimentally observed 

that focused Gaussian beam excites the MDRs of microspheres more efficiently than plane wave. 

Generalized Lorenz-Mie theory (GLMT), which is a direct extension of the methodology of plane-

wave Lorenz-Mie theory, describes the electromagnetic scattering of an arbitrary light beam by a 

spherical microparticle [52]. 

There are difficulties with the usual treatment of laser beams as paraxial Gaussian beams, referred 

to as zeroth-order Gaussian beam. First, the solution is based on a paraxial approximation to the 

scalar wave equation. Secondly, the distribution which approximately satisfies the wave equation is 

the transverse component of the electric field, but the other two components are not worked out. 

Therefore, higher-order corrections for the electric field of a Gaussian beam should be of use in 

applications where there is a need to obtain accurate solutions for the electromagnetic field of a 

strongly focused laser beam. The description of zeroth- and higher-order approximations to a 

Gaussian beam is given in appendix A. 

Davis [53] presents a procedure for developing a higher-order corrected Gaussian beam 

description and provides expressions for the electric field components in orders of beam confinement 

parameter s, which is equal to the beam waist radius ω0 divided by the diffraction length (kω0
2), i.e., 
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and diffraction length is given by 
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where k and λ are the wave-number and wavelength of the incident beam, respectively. 
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Afterwards, for the scattering coefficients of spherical particle irradiated by a fifth-order Gaussian 

beam are presented [54] for the special case of the particle center located on the propagation axis of 

the beam. This description provides a significantly improved solution to Maxwell’s equation as 

compared to first-order description, however, adds computational complexity. Also, fifth-order 

Gaussian beam described in this work are presented for the special case on-axis illumination of a 

spherical particle. 

The accuracy of GLMT for an off-axis beam depends on the beam confinement parameter s, and 

it is known that first order approximation accurately describes a Gaussian beam and satisfies 

Maxwell’s equations with a maximum error less than 1.5% for s ≤ 0.08 [55]. The procedure we 

followed is based on GLMT, in which the electromagnetic fields describing the incident beam is a 

first order approximation to an off-axis Gaussian beam [56]. The accuracy of different-order 

approximations is given in table A.1 of appendix A. 

To mu knowledge, no work is done for the description of scattering particle irradiated by a 

higher-order Gaussian beam for the general case of off-axis illumination. The electric and magnetic 

fields of the first-order off-axis Gaussian beam propagating in medium of refractive index n, parallel 

to z-axis with center of the beam waist at (xf, yf, zf) are given by 
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in rectangular coordinates. Eq 3.10 and 3.11 includes an explicit information that most efficient 

excitation of TE- and TM-polarized resonances depends on the beam position [57] such that eq. 3.10 

is a function of x and eq. 3.11 is a function of y. TE-polarized and TM-polarized resonances are most 

efficiently excited when the sphere is illuminated with a beam on the x-axis and on the y-axis, 

respectively. 

 

3.4.3. Excitation Efficiency of MDRs 

The excitation efficiencies for the TE-polarized and TM polarized scattering, for a given partial 

wave (mode number) n, can be defined as the ratio of the elastically scattered power by the MDR 

mode divided by the incident power: 

 

i
TE

scattTE PP=σ ,      (3.14) 
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Excitation efficiency of MDRs depends on the beam waist of the Gaussian beam and the power 

coupled into a mode [58], which can be expressed as 

 

τ
εσε

−= ie P
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d

mod ,             (3.16) 

 

where ε is energy stored in the mode with time constant τ, totalee σσσ /modmod =  denotes the power 

coupling efficiency (ratio of partial-wave scattering cross section to the total cross-section), and Pi is 

the incident beam power. Scattering (coupling) efficiency of a Gaussian beam can be estimated by 
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using an intuitive ray theory. Based on Lorenz-Mie Theory, the MDR excitation efficiencies can be 

evaluated [59] using the relations in Appendix A. The highest-efficiency beam position is 
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and at the highest-efficiency beam position, the excitation efficiency is 
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which shows that the maximum MDR efficiency is independent of the partial-wave number n or 

whether the resonance is TE or TM polarized. Eq. 3.19 concludes that when the beam waist diameter 

is on the order of wavelength, most of the incident beam can be coupled to MDRs of microspheres. 

Coupling efficiency of 99.97% is also experimentally observed with a beam waist diameter almost 

equal to the wavelength in a fiber-taper-coupled microsphere system [60]. 
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Chapter 4 

 

RAINBOW EFFECT ON RESONANCES 

 

 

Rainbows have been the object of fruitful scientific research for centuries, apart from being one of the 

most beautiful of atmospheric phenomena [61]. The first satisfactory explanation for the existence 

and shape of the rainbow was given by Descartes in 1637 without a satisfactory explanation for the 

color formation. Thirty years later, Newton was able to account for the colors [61]. Descartes used a 

combination of experiment and theory to deduce that both the primary and secondary bow are caused 

by refraction and reflection in spherical raindrops. The light in a rainbow is often much brighter than 

light from nearby regions of the sky, and the physical origin of the enhancement is well understood. 

The scattering enhancement associated with the rainbow glory is partly caused by the spherical 

symmetry of the droplets, since a spherical particle exhibits a focusing effect that may occur in the 

forward direction [62]. 

 

4.1  Geometrical Optics 

Geometrical optics contributes to the scattering from microsphere after reflections and 

transmissions after undergoing one or more internal reflections. Contrary to MDRs, rainbows are 

independent of the microsphere size and depend only on refractive index and incident angle of the 

ray. Ray picture of MDRs and rainbows is depicted in Fig. 4.1 showing the scattering of resonances 

and rainbows. A beam may be imagined as rays. A ray incident on a sphere at an angle θi splitted into 

externally reflected (p=0), and internally transmitted rays. After refraction into the sphere, the 

transmitted ray encounters another surface boundary and therefore is partially transmitted (p=1) and 

reflected, where p denotes the number of transmission on boundaries.  
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Figure 4.1. Ray representation of three periodic internal reflections. 

 

A ray incident upon a sphere at an angle θi refracts to an angle θt satisfying Snell’s law, 

 

ti m θθ sinsin = .         (4.1) 

 

After p-1 internal reflection of the geometrical ray before leaving the sphere, the scattering angle 

corresponding to the deflection can be found by as the remainder of the rotation angle of the ray 

divided by 2π, 

 

{ }πθθπθ 2],22)1[(mod ti pp −+−= ,    (4.2) 

 

which restricts the scattering angle of the ray in −π ≤ θ ≤ +π, after defining θ > π as 2π−θ. 

The position of the rainbows depends on the refractive index of the sphere and angle of incidence, 

and they are observed theoretically [63] and experimentally [64] in droplets. The analysis of rainbows 

in scattering of off-axis Gaussian beam illumination of a spherical particle is handled previously [65] 

by GLMT. 
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p=2 

p=1 
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4.1.1. Gaussian Beam Excitation Geometry 

Due to the structure of Gaussian beams, the tail of the Gaussian beam strikes the sphere with 

decreasing intensity and smaller angle with the normal of the sphere. A Gaussian beam incident on a 

sphere can be considered in ray optics as a collection of rays with maximum intensity at the center 

and decreasing towards its tail. The ray picture of a Gaussian beam is shown in fig. 4.1 with two 

representative rays incident at different angles. By using eq. (4.2), scattering angle of the tangential 

ray which refracts first into the sphere with θi = π/2 is 

 

)2( 11 tR p θπθ −= ,        (4.3) 

 

and scattering angle of the tail of Gaussian beam with θi2 = π/2−φ is 

 

22 22 tR pp θϕπθ −−=      (4.4) 

 

It follows from Snell’s law (4.1) that the transmission angles determined by m and angle of ray with 

the surface normal as 

 

)/1(sin 1
1 mt

−=θ ,            (4.5) 
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Eq. (4.3) and (4.4) together with (4.5) and (4.6) can be written as a function of the angular spreading 

φ of the incident rays as 
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therefore, after considering that first ray is incident on the sphere with an angle of φ behind second 

ray, the angular spread ∆θR = |θR1 − θR2| is read as 

 

)(22 21 ttR p θθϕθ −−=Δ ,     (4.9) 
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as a function of incident spreading of the rays, refractive index of the sphere and order p of the 

rainbow. Eq. (4.10) shows the scattering angles between θR1 and θR1−∆θR in the plane shown in fig. 

4.2. Considering a Gaussian beam incidence on a sphere, effective angle of incidence φ of the tail of 

Gaussian beam determines the distribution of scattering pattern together with the refractive index m 

of the sphere. 

 
Figure 4.2. Geometrical optics picture of the incident and scattered rays. 
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4.1.2 Rainbow-enhanced Scattering 

Scattering angle θR is solely determined by m for a tangentially incident ray, which generally 

results in infinite number of rainbow angles for every p. However, specific values of m can be 

determined easily to restrict the number of rainbow angles to a finite number. If a ray refracted into 

the sphere returns to its initial position after reflections from the surface, then a finite number of 

rainbows form since the ray will follow the same path in the subsequent reflections. Therefore, a 

finite number of rainbows will appear if reflections have a periodicity. For this type of development 

to be realized, at least three reflections should be included in the process, in which the number of 

reflections may be interpreted as the frequency (nR) of the rainbow. The frequency of rainbows nR=2 

is physically impossible, because refraction of a tangential ray parallel to the normal of the surface 

requires the refractive index to be infinite. The minimum possible value for rainbow frequency 

(number of rainbow angles) is nR = 3. The first four promising rainbow geometries are depicted in fig. 

3 for nR = 3, 4, 5, and 6. For a tangentially incident ray, it follows from eq. (4.5) that the periodic 

rainbows form when the integer multiple of refraction angle is equal to 2π. By using eq. (4.5), the 

scattering angle of the tangential ray can be found as 

 

R
R

R np
n
p

≤= ,2
1

πθ ,     (4.11)  

 
for a periodic rainbow picture of the pth order rainbow with frequency nR ≥ 3. The periodic rainbow 

structure restricts the refractive index of the sphere to discrete values 
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which gives m as a function of rainbow frequency. Increasing the period of the rainbows leads to a 

lower refractive index m as shown in fig 4. Minimum frequency of nR = 3 gives the maximum 

possible value of refractive index m = 2. 
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Figure 4.3. Periodic rainbow formation geometries for nR = 3, 4, 5, and 6 for edge excitation. 

 

The next order refractive indices are m = 2 and 1.236 for nR = 4 and 5, respectively. As the rainbow 

frequency increases, the corresponding refractive index decreases almost exponentially and 

approaches its limit of m = 1 for frequent rainbows. As the frequency of the rainbows increases or 

refractive index decreases, the scattering angle of the tangential ray becomes smaller and rainbows 

become closer. However, because of the spreading of rainbow found in eq. (4.10), rainbow angles 

may not be distinguished clearly, depending on the incidence angle of the incoming beam. 

m = 2 m = √2

m = 1.24 m = 1.15
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Figure 4.4.  Refractive index (m) of a sphere as a function of periodic rainbow reflections (nR). 

 

 

4.2.     Scattered Field Intensity 

The internal field intensity of a microsphere at a particular location or angle in xz plane of fig. 4.2 

is given by E·E*, where E is the electric field amplitude. Electric field amplitude at a given angle can 

be decomposed into electric field amplitude of a MDR (M) and background (B). They can be written 

at a given polar angle (θ) as  

 

( )trkiEE MMM ωθ −⋅=
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where kM and kB represent the wave number of MDR and background electric field, respectively. Fig. 

4.5 shows the constant background electric field amplitude and MDR fields with Lorentzian line 

shapes around resonance wavelengths.  

By the superposition of fields, scattered electric field amplitude is given by  

 

( ) ( ) ( )θθθ BMs EEE += ,     (4.15) 

 

which leads to a total scattered electric field intensity, 
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+= .     (4.17) 

           

Therefore, scattering intensity is found to be, 
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Figure 4.5. Electric field of the background (rainbow) field (EB) and MDR field (EM). 

EB EM 

0 
λn, ℓ λn+1, ℓ λ λ

0



 
 
Chapter 4: Rainbow in Microspheres  36 
 

 
 
 

or in a more compact form 

 

)exp(2 *
00
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⋅Δ++= ,          (4.19) 

 

where its k-vector is 

 

BM kkk
rrr

−=Δ ,         (4.20) 

 

and phase of the intensity can be defined as  

 

rk rr
⋅Δ=φ       (4.21) 

 

where Mk
r

 is uniform and Bk
r

 depends on rainbow angles which give rise to phase dependence of the 

total intensity in eq. (4.19). Therefore, we expect to observe in phase and out-of-phase crossings at 

MDRs around rainbow angles as depicted in fig. 4.6.  

Although background field does not contribute to an MDR, they are active as a ray and contribute 

to the rainbow formation by refraction. Therefore, rainbow angles are expected to reveal phase-

dependent behavior in scattering. Therefore, there will be three possible intensity behaviors in the 

scattering intensity around rainbow angles, shown in fig. 4.6. 
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Figure 4.6.  Superposition of rainbow (EB) and MDR field (EM) results in three possible phase-induced 

scattering intensity. 
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4.2.1. Rainbow Enhanced Scattering 

In this section, calculations based on GLMT are presented assuming focused-beam illumination, 

instead of plane-wave, illumination of a microsphere to explore the effects of superposition of 

rainbows and MDRs in the scattering intensity spectra. A fundamental Gaussian beam propagating in 

the z axis direction with a beam-waist radius of w0 is modeled with a first-order corrected Gaussian-

beam to determine the electromagnetic field components of the incident beam. The model used in the 

calculations is accurate for s ≤ 0.1 so that λ/ω0 ≤ 0.63. 

The model used in the calculations is based on the geometry shown in fig. 3.3. The Gaussian 

beam is guided through a silica fiber to excite the MDRs of the microsphere. As an example, we 

studied the angularly resolved scattering intensity of a microsphere of a = 10 μm and refractive index 

m = 2.0 excited with a Gaussian beam. Illuminating beam has a beam waist of ω0 = 1.75 μm in the 

wavelength region λ = 1300 - 1330 nm and is propagating at an impact parameter b = 11.75 μm from 

a microsphere. The size parameter of the microsphere is x = 70 and the beam has a beam confinement 

factor of s = 0.08. The scattered intensity is calculated in the whole x-z plane.  

The expected spectrum of the angularly resolved scattering intensity is illustrated in fig. 4.7, for a 

sphere of refractive index m = 2. The special refractive index m = 2 lets only three rainbows to appear 

in the scattering spectrum as studied in section 3. The corresponding angle of rainbows is found from 

eq. 4.12 that they occur around 120o, -120o, and 0o with a finite angular spreading. The rainbow 

angles are represented by three horizontal rows in fig. 4.7. The resonance wavelengths are determined 

by the radius and refractive index of the sphere; however, the rainbow angles are determined only by 

the refractive index of the sphere. Three vertical lines in the spectrum arise at the MDR positions and 

they are sharper than the rainbows; therefore, the superposition of rainbows and MDRs leads to bright 

patterns directed along the MDRs. The intensity of rainbow-enhanced resonances is distinguishably 

high around rainbow angles. High Q-factor resonances lead to wavelength-dominated scattering 

intensity. However, as the Q-factor of resonances decreases, the scattered field intensity becomes 

angle-dominated and spreads in rainbow angles. 
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Figure 4.7.  Expected spectra for the superposition of rainbows and MDRs for a sphere with m = 2 (three 

horizontal bars show the three possible rainbow angles around θ = ±120o and 0o). 

 

In the analysis of rainbow-enhanced resonances, we studied TE and TM scattering intensity 

spectra in the wavelength region of 1300-1330 nm. Fig. 4.8 shows the angularly resolved scattering 

intensity pattern for the TE component of the scattered field and TM component of the scattered field 

is shown in fig. 4.10. The calculations are performed using sampling resolution of λres = 5 pm and θres 

= 1o. The zoomed images, 4.9 (a-b) and 4.11 (a-b), of a small part of the scattered field reveals greater 

detail about the rainbow enhanced MDRs. The sampling resolution for the zoomed images are λres = 1 

pm and θres = 0.2o. The highest observable MDR has Q-factor of 106. The rainbow in the forward 

direction is mostly masked by uncoupled part of the incident beam as observed in fig. 4.8 and 4.10. 

 

4.2.2. TE component 

There are three observable modes in the wavelength region with mode spacing Δλ ≈ 11.5 nm. The 

twin and wider MDRs are closer to each other and located at (1301.72 nm, 1301.95 nm), (1313.12 

nm, 1313.51 nm), and (1324.49 nm, 1324.81 nm) with Q-factors about 104.  The sharper MDRs are at 
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1303.87, 1314.86, and 1326.04 nm with Q-factors about 5x105. The observable spreading for the first 

order rainbow is between 75o and 125o, skewed towards lower angles, with the highest intensity 

around 105o which deviates from 120o since rainbow forms as a cooperative effect of incident rays 

components of the Gaussian beam. The second order rainbow appears between −100o and −150o, 

skewed towards lower angles.  

Fig. 4.9 (a, b) show higher resolution image of the portions framed in fig. 4.8. There two modes 

in the wavelength region of 1302.5 – 1304.5 nm, with Q-factor = 104. The MDR wavelengths are 

1313.12 nm and 1313.51 nm. The Q-factor of MDR at 1313.12 nm is 10 times lower than that of the 

MDR at 1313.51 nm; therefore, while lower Q-factor MDR is skewed along the rainbow angle, 

higher Q-factor MDR is directed along the resonance wavelength. The scattering intensity is 

concentrated on the rainbow and there is no observable intensity carried on the MDR relative to the 

rainbow part.  For a higher Q-factor MDR shown in fig 4.9 b, the MDR wavelength is at 1314.86 nm. 

The Q-factor = 5x105 causes the intensity to be directed along the resonance wavelength.  

 

 
Figure 4.8.  Low resolution color image of the intensity of transverse electric (TE) elastic light scattering from a 

microsphere with a radius of 10.00 μm and refractive index of m=2. 
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Figure 4.9. High resolution color image of the TE light scattering intensity with wavelength resolution 

of 0.001 nm and angle resolution of 0.2o. The spectra shows (a) Angle-oriented scattering intensity for 

a low Q-factor MDR (b) Wavelength-oriented scattering intensity for a high Q-factor MDR. 
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4.2.3. TM component 

There are two observable modes in the wavelength region with mode spacing Δλ ≈ 11.5 nm. The 

twin and wider MDRs are closer to each other and located at (1308.15 nm, 1308.4 nm) and (1319.53 

nm, 1319.60 nm) with Q-factors about 104.  The sharper MDRs are at 1310.26 and 1321.30, and with 

Q-factors about 5x105. The observable spreading for the first order rainbow is between 85o and 125o, 

skewed towards lower angles, with the highest intensity around 120o which deviates from 120o since 

rainbow forms as a cooperative effect of incident rays components of the Gaussian beam. The second 

order rainbow appears between −100o and −150o, skewed towards lower angles.  

Fig. 4.11 (a, b) show higher resolution image of the portions framed in fig. 4.10. There are two 

modes in fig. 4.11(a) in the wavelength region of 1318.5 – 1320.5 nm, with Q-factor = 104. The MDR 

wavelengths are 1319.53 nm and 1319.60 nm. The Q-factor of MDR at 1319.53 nm is 10 times lower 

than that of the MDR at 1319.61 nm; therefore, while lower Q-factor MDR is skewed along the 

rainbow angle, higher Q-factor MDR is directed along the resonance wavelength. The scattering 

intensity is concentrated on the rainbow and there is no observable intensity carried on the MDR 

relative to the rainbow part.  For a higher Q-factor MDR shown in fig 4.11(b), the MDR wavelength 

is at 1321.30 nm. The Q-factor = 5x105 causes the intensity to be directed along the resonance 

wavelength.  

 
Figure 4.10.  Low resolution color image of the intensity of transverse magnetic (TM) elastic light scattering 

from a microsphere with a radius of 10.00 μm and refractive index of m=2. 
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Figure 4.11. High resolution color image of the TM light scattering intensity with wavelength 

resolution of 0.001 nm and angle resolution of 0.2o (a) Angle-oriented scattering intensity for a low Q-

factor MDR (b) Wavelength-oriented scattering intensity for a high Q-factor MDR. 
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4.2.4. Phase Effect on MDRs 

As studied in the beginning of the section, Mk
r

 is uniform and Bk
r

 depends on rainbow angles which 

give rise to sensitivity around rainbow angles due to phase dependence of the total intensity in eq. 

(5.7). Therefore, we expect to observe in phase and out-of-phase crossings at MDRs around rainbow 

angles as depicted in fig. 4.6. 

The TE scattering intensity for the intersection of MDR wavelength and 1st order rainbow is 

shown in fig. 4.12, for m = 2 in the polar angle between 60-150o. The mesh curve shows the 

scattering intensity with a wavelength resolution of λres = 2 pm and angle step of θres = 5o. The 

effective region of rainbow spreading is in the scattering angle region of 105±15o. The phase-induced 

scattering depicted in fig. 4.6 is realized in the angularly resolved scattering intensity spectra. 

Rainbow-enhanced scattering is observed with maximum intensity in the vicinity of 105o (depicted in 

fig. 4.6b). Before observing maximum intensity, phase-induced intensity of fig. 4.6a is observed in 

the region of 90-100o. After the maximum intensity, phase-induced intensity depicted in fig. 4.6c is 

observed in the region of 110-120o. 
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Figure 4.12. Phase-induced TE scattering intensity for a MDR around 1st order rainbow. 
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The TM scattering intensity for the intersection of MDR wavelength and 1st order rainbow is shown 

in fig. 4.13, for m = 2 in the polar angle between 60-180o. The mesh curve shows the scattering 

intensity with a wavelength resolution of Δλ = 3pm and angle step of Δθ = 5o. The effective region of 

rainbow spreading is in the scattering angle region of 105±20o. The phase-induced scattering depicted 

in fig. 4.6 is realized in the angularly resolved scattering intensity spectra. Rainbow-enhanced 

scattering is observed with maximum intensity in the vicinity of 120o (depicted in fig. 4.6b). Before 

observing maximum intensity, phase-induced intensity of fig. 4.6a is observed in the region of 95-

110o. After the maximum intensity, phase-induced intensity depicted in fig. 4.6c is observed in the 

region of 115-125o. 
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Figure 4.13. Phase-induced TM scattering intensity for a MDR around 1st order rainbow. 
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Chapter 5 

 

APPLICATIONS OF MICROSPHERES 

 

 

5.1. Biomolecular Detection Applications 

The field of optical biosensors is rapidly evolving due to the need to overcome the limitations of 

the amount of material to be detected [66]. An optical biosensor detects interactions between target 

biomolecules in solution and probe molecules immobilized to a surface. The Fabry-Perot resonator 

can be used in biodetection applications [67], as shown in fig 5.1. The biomolecules attached to the 

surface of a plate leads to a decrease in the distance between the plates; therefore, a smaller 

wavelength will satisfy the resonance condition and the intensity maxima will shift to a different 

resonance wavelength. 

 

 
Figure. 5.1.  Biomolecular  detection by Fabry-Perot resonator [67]. 
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Optical microsphere resonators with high Q-factor MDR’s can be used as sensitive biodetectors. 

These extraordinary Q-factors, reported as large as 2x1010, translate directly to high energy density 

and narrow resonant-wavelength lines [68]. The sharp optical resonance of microsphere provides 

exceptional resolving power, down to submonolayer molecular adsorbate level. By affixing the 

appropriate proteins and DNA molecules to the surface of the microsphere, and measuring the Q-

factor and observed shift in the resonant peak locations, the biomolecules sticking to the surface can 

be characterized [69]. A biomolecule such as a protein that resides in the evanescent field of MDR’s 

can absorb light, thus influencing the MDR’s [70]. The shift of MDR’s by protein adsorption onto 

microspheres is demonstrated and modeled as a first order perturbation [71]. Recently, red shift of 

resonance wavelengths is used for high sensitivity label-free DNA quantification [72]. 

 

 
Figure 5.2. Scheme of the molecular adsorption on microsphere surface [70]. 

 

5.1.1. Perturbation Approach 

A perturbation approach is applied to resonance modes in a spherical microcavity with reflective 

interior surface. Formulas were obtained for the frequency shift caused by a spatial change in the 

refractive index within the cavity [73]. A more rigorous perturbation theory was presented by Lai et. 

al. [70] to treat the effect of isotropic and anisotropic deformations of the microsphere surface on the 

resonance frequency shift without changing the refractive index in the exterior or in the interior of the 

microsphere.  
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The aforementioned formulations, however, do not allow one to evaluate the frequency shift that 

is due to changes in the medium surrounding the microsphere. Arnold et. al. [74] derived formulas for 

frequency shifts that are due to these changes.  The change can be either within the sphere or in the 

surrounding medium. They applied these formulas to uniform refractive-index changes in the 

surround, to the adsorption layer, and to the refractive index profile near the surface.  

To evaluate the shift δω in angular frequency ω of a single protein molecule, it is useful to 

consider the energy interaction as a first order perturbation to a single photon resonant state, with a 

semiclassical  field E0(r) e(iωt). The evanescent tail of the field induces dipole moment in the protein in 

excess of the displaced water, δp e(iωt), causing a shift in the photon energy of the resonant state, ħδω  

= −δp ⋅ *
0E (ri)/2. The excess dipole moment can be represented in terms of the real part of an excess 

polarizability αex, i.e., δp =  αexE0(ri). The excess polarizability αex  of a molecule forming the layer is 

its polarizability in excess of the polarizability of an equal amount of water. The fractional frequency 

shift for a protein positioned at ri is given by the result of dividing the perturbation by the energy of 

the mode (i.e., ħω),  as represented by integrating over the energy density in the interior [73]: 
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      (5.1) 

 

where εs is the homogeneous permittivity of the microsphere. It should be noted that for protein 

molecules, which are composed of variety of aminoacids, αex is roughly proportional to the mass of 

the molecule [75], and the shift in frequency in accordance with eq. (5.1) should behave in the same 

way [76]. Eq. (5.1) represents the shift that is due to an individual molecule at an arbitrary position on 

the microsphere. For a large number of protein molecules distributed over random locations on the 

sphere surface, singular contribution in eq. (5.1) is summed up over randomly located molecules into 

a continuous sum. As a result the fractional frequency shift is given by [73]: 
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where a is the radius of the microsphere, σp is the protein surface density, ms  and  mm are the refractive 

indices of the microsphere, and the aqueous medium, respectively. Protein surface density σp  is the 

number of molecules per surface area, which is calculated as layer thickness divided by molecular 

volume. The frequency in the Eq. (5.2) can be replaced by the wavelength (λ) and have the form : 

 

( )amm ms

pex
22

0 −
=

ε
σα

λ
δλ

       (5.3) 

 

This equation predicts the wavelength shift for a compact molecular monolayer surface density 

σp. The equation is exact if the layer is considerably thinner than the evanescent field depth [73]. The 

conservation of optical size predicts a MDR wavelength shift δλ as a function of the change of 

effective sphere radius δa as : 

 

a
aδ

λ
δλ

= .          (5.4) 

 

5.1.2. Numerical Results 

The work on this section is published in [9]. Elastic light scattering calculations are based on 

the geometry shown in Fig. 5.3. A silica microsphere (with refractive index of 1.5) surrounded with 

water (with refractive index of 1.33) is placed on an optical fiber half coupler (OFHC), and the 90° 

scattered and transmitted signals can be detected. A tunable laser can be used to excite the MDR’s of 

the silica microsphere [77]. 

For the calculations, the beam in the OFHC is simulated by a Gaussian beam (with an infinite 

skirt length and a beam waist with a half-width of 1.5 μm) propagating just at the edge of a silica 

microsphere. The calculation is performed for a scattering angles of 90o and 0o (forward scattering or 

transmission). Fig. 5.3. shows the expected spectra in the scattering calculations. 
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Fig. 5.3.  Elastic light scattering geometry from a microsphere for biomolecular detection. 

 

 
Fig. 5.4.  Expected elastic light scattering in the 0° (transmission) and the 90° spectra for the configuration in 

fig. 5.2. 
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The TE and TM polarized elastic scattering spectra calculations are performed for a silica 

microsphere with a refractive index of 1.5, in the wavelength range of 1530 – 1560 nm and with a 

resolution of 0.01 nm.  The radius of the microsphere is taken as 20.00 μm (coated only with the 

capture layer) and 20.01 μm (coated with the capture layer and the biomolecule of interest) to 

investigate the influence of size change in the elastic scattering spectrum. The increase in the size 

represents affixing of the biomolecule of interest, e.g., protein or DNA molecules. From a geometric 

optics point of view, enlarging the radius of microsphere will result in increasing the optical path of 

waves inside the microsphere; therefore, resonance condition will be satisfied at longer wavelengths, 

which will cause a red shift of the elastic scattering spectrum. 

Fig. 5.5(a) shows the transverse electric (TE) elastic scattering spectra in the wavelength region 

between 1530 nm and 1560 nm for the 20.00 μm and 20.01 μm silica microspheres. The upper curves 

show the elastic scattering calculated for the 0° (forward scattering or transmission) angle. The lower 

curves show the elastic scattering calculated for the 90° angle. The mode spacing 9.5 nm correlates 

well with the size of the 20.00 μm silica microsphere.  

Fig. 5.5(b) shows the high resolution TE elastic scattering spectra in the wavelength range of 

1548.4 – 1549.6 nm with a resolution of 0.001 nm. The linewidth of resonances is around 0.01 nm 

leading to a quality factor (Q = λ/∆λ1/2) of 105. The increase of 10 nm in the radius of microsphere 

causes a shift of 0.775 nm in the scattering spectra. The mode shift of 0.775 nm (0.05%) correlates 

well with the size shift of the 0.01 μm (0.05%) of the silica microsphere. The observed shift is around 

hundred times the resonance linewidth showing promise in identification of biomolecules. If there is 

less coverage of the biomolecule of interest (e.g., a typical 10% coverage), the relative shift will be 

10% of the expected shift, which is still one order of magnitude bigger than the resonance linewidth. 

Fig. 5.6(a) shows the transverse magnetic (TM) elastic scattering spectra in the wavelength region 

between 1530 nm and 1560 nm for the same 20.00 μm and the 20.01 μm silica microspheres. The 

upper curves show the elastic scattering calculated for the 0° (forward scattering or transmission) 

angle. The lower curves show the elastic scattering calculated for the 90° angle. The mode spacing 

9.5 nm correlates well with the size of the 20.00 μm silica microsphere.  

Fig. 5.6(b) shows the high resolution TM elastic scattering spectra in the wavelength range of 

1544.0 – 1545.5 nm with a resolution of 0.001 nm. The linewidth of resonances is around 0.01 nm  
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Figure 5.5.  (a) Transverse electric (TE) elastic light scattering spectra from a silica microsphere with a radius of 

20.00 μm and 20.01 μm. (b) High resolution TE elastic light scattering spectra from a silica microsphere with a 

radius of 20.00 μm and 20.01 μm. 
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Figure 5.6.  (a) Transverse magnetic (TM) elastic light scattering spectra from a silica microsphere 

with a radius of 20.00 μm and 20.01 μm.  (b) High resolution TM elastic light scattering spectra from a 

silica microsphere with a radius of 20.00 μm and 20.01 μm. 

(b) 
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leading to a quality factor (Q = λ/∆λ1/2) of 105. The increase of 10 nm in the radius of microsphere 

causes a shift of 0.775 nm in the scattering spectra. The mode shift of 0.775 nm (0.05%) correlates 

well with the size shift of the 0.01 μm (0.05%) of the silica microsphere. The observed shift is around 

hundred times the resonance linewidth showing promise in identification of biomolecules. If there is 

less coverage of the biomolecule of interest (e.g., a typical 10% coverage), the relative shift will be 

10% of the expected shift, which is still one order of magnitude bigger than the resonance linewidth. 

In order to consider the concise effect of non-uniformities in the microsphere structure, the theory 

should be reformulated in terms of Green’s functions and their renormalizations [78]. In the presence 

of a random perturbation, one sees that narrow resonances broaden, split, and disappear; however, 

wider ones are less affected and only broaden. 

Furthermore, the sensitivity of MDRs to refractive index and size changes can be extended further by 

an accurate determination of the refractive index variation associated with phase changes around 

rainbow resonances. Any effect as a result of attaching a biomolecular agent can be enhanced further 

around rainbow angles. Therefore, the rainbow-enhanced MDRs and associated phase effects, studied 

in chapter 4, provide an additional tool for realization of refractive index changes and its effects on 

sharp MDRs of microspheres in sensing applications. 

 

5.2. Infrared Light Scattering 

In this section, the scattering of light in infra-red region of the spectrum from the microspheres 

will be studied. The excitation geometry is the same given in fig. 5.3 and 5.4. 

In the calculations, the input light is a CO2 laser beam with a beam waist radius of 25 μm and 

wavelength around 10.6 μm. An ordinary CO2 laser has its peak power in this wavelength region used 

in the calculations. The laser is incident on a micrsphere of radius 250 μm with impact parameter of 

280 μm. There are two observable modes in the calculations both for TE- and TM-polarized scattered 

light. The mode spacing between the modes is around 7 μm. 
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Figure 5.7. Transverse electric (TE) elastic light scattering spectra of CO2 laser beam from a silicon 

microsphere with a radius of 250 μm. 
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Figure 5.8. Transverse magnetic (TM) elastic light scattering spectra of CO2 laser beam from a silicon 

microsphere with a radius of 250 μm. 
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The TE and TM polarized elastic scattering spectra calculations are performed for a silicon 

microsphere with a refractive index of 3.42, in the wavelength range of 10590 – 10605 nm and with a 

resolution of 0.01 nm. The radius of the microsphere is taken as 250 μm to investigate the scattering 

in the far infra-red region.  

Fig. 5.7 shows the transverse electric (TE) elastic scattering spectra in the wavelength region 

between 10590 nm and 10605 nm for the 250 μm silicon microspheres. The upper curves show the 

elastic scattering calculated for the 0° (forward scattering or transmission) angle. The lower curves 

show the elastic scattering calculated for the 90° angle. The mode spacing 7 nm correlates well with 

the size of the 250 μm silicon microsphere. The linewidth of highest Q-factor resonances is around 

0.01 nm leading to a quality factor (Q = λ/∆λ1/2) of 105. 

Fig. 5.8 shows the transverse magnetic (TM) elastic scattering spectra in the wavelength region 

between 10590 nm and 10605 nm for the 250 μm silicon microspheres. The upper curves show the 

elastic scattering calculated for the 0° (forward scattering or transmission) angle. The lower curves 

show the elastic scattering calculated for the 90° angle. The mode spacing 7 nm correlates well with 

the size of the 250 μm silicon microsphere. The linewidth of highest Q-factor resonances is around 

0.01 nm leading to a quality factor (Q = λ/∆λ1/2) of 105. 
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Chapter 6 

 

CONCLUSION 

 

 

In this work, the Fabry-Perot resonator is analyzed to recognize various effects that are observed 

in the elastic scattering intensity spectrum of a microsphere resonator. The rainbow formation and its 

consequences on MDRs of microspheres are understood based on the analysis of addition of fields in 

a Fabry-Perot resonator. The results showed that the Fabry-Perot resonator is a helpful model in 

identifying the behavior of the interference of rainbows and MDRs. The rainbow-enhanced MDRs 

and associated phase effects can be used in sensing as an additional tool to the refractive index and 

size of the microsphere that are used in traditional detection applications. 

Also, elastic scattering calculations from microspheres are carried out for a silica microsphere. 

Silica with a refractive index of 1.5, which is very close to that of bimolecular agents, is a suitable 

photonic material to use for biosensing applications. The calculations showed that microsphere is a 

suitable candidate to be used in biomolecular detection applications. 

Elastic light scattering calculations from a silicon microsphere with refractive index 3.42 were 

performed for optoelectronic channel dropping applications in the far infrared. 

As future work, the rainbow enhanced MDRs can be examined to understand the consequences of 

refractive index and size changes of microspheres. In addition, the phase-induced intensities is 

promising for channel dropping applications since the intensity around rainbow angles fades away 

entirely in the spectrum at certain angles. 
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APPENDIX A 

 

Gaussian Beam Description 

Gaussian beam descriptions use electromagnetic field components satisfying Maxwell’s equations. In 

geometrical optics, a straight line represents the propagation direction of the wavefront. If the 

lightwave is indeed a plane wave, both the E and H fields have to extend to infinity, or if the 

lightwave is a spherical wave, its wavefront diverges in all directions. These mathematical 

expressions, although adequate approximations in many situations, are not physically realizable. The 

Gaussian beam is a more realistic approximation from the viewpoints of both wave and ray optics. 

The energy of the Gaussian beam is confined within the vicinity of a straight line. The wavefront of 

the Gaussian beam is unique in that it behaves like a plane wave in the vicinity of the beam waist, but 

it gradually converts into a spherical wave as the distance from the waist increases. The beam energy, 

however, is always confined within a finite divergence angle. Description of Gaussian beams in 

paraxial (zeroth-order) limit is a well established theory [79]. Let the vector potential for a Gaussian 

beam be  

 
ikzezyxu ),,(ψ=      (A. 1) 

 

The amplitude function ),,( zyxψ can be a complex function. The Gaussian beam has to satisfy the 

wave equation 

 

022 =+∇ uku .     (A.2) 

 

By inserting Eq. (A.1) into (A.2), ),,( zyxψ has to satisfy 
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where the variation of the amplitude function ψ  with respect to z was assumed to be slow, and 
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Then ψ can be obtained by solving Eq. (A.3). The function 

 

[ ]{ })(2/)()(exp 22 zqyxkzPiA ++=ψ     (A.5) 

 

can be tried as a solution of eq. (A.3). The factor A is assumed to be constant. This solution is called 

the fundamental mode. The solutions, where A is a function of x and y, are called higher order modes. 

The quantity q(z) is a complex number referred to as the q-parameter. The q-parameter controls both 

the phase and the amplitude distribution in the transversal plane, and it plays an important role in 

describing the type of field. Insertion of Eq. (A.5) into (A.3) gives 
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an then u is obtained as 
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After some manipulations, the expression for the amplitude of the Gaussian beam is rewritten as 
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where 

 
222 yxr +=            (A.9) 

 

identify the transverse amplitude distribution. 
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is known as the Rayleigh range. 
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is a measure of the beam, where ω0 is the beam waist radius. 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

2
01)(
z
z

zzR       (A.12) 

 

measure the wavefront radius of curvature. 
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is a correction factor to R(z). 
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The first factor in eq. (A.8) is the amplitude and the second factor is the change in amplitude due 

to the change in the radius of the beam. The third factor is the phasefront, which approaches that of a 

plane wave at the waist as well as in the far field. For intermediate distances, the phasefront 

approaches a spherical wavefront with radius of curvature R(z), but with a correction factor of φ . The 

last factor represents a bell-shaped transverse field distribution. From eq. (A.8), we see that only three 

parameters are needed to specify the Gaussian beam: the size of the beam waist, the distance from the 

beam waist, and the wavelength of the light. 

The intensity distribution I(r, z) is given by uu* and from Eq. (A.8) it is 
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The transverse distribution at a particular value of z is Gaussian. The longitudinal distribution I(0, z) 

along the beam axis has its maximum at the waist and decays monotonically as [ω0/ω(z)]2. The 

intensity distribution of the Gaussian beam is symmetric with respect to the waist. As soon as the 

distribution of I(r, z) on one side of the waist is known, that on the other side is obtained by the mirror 

image.  

Equation (A.11) can be rewritten as 
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     (A.15) 

 

Thus, the beam radius of the Gaussian beam is a hyperbolic function of z. The beam expansion at a 

far distance is 

 

0

2tanlim
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=      (A.16) 

 

The spread is inversely proportional to the size of the waist ωo. This is similar to the spread of the far-

field diffraction pattern of a plane wave through an aperture with radius ω0. 
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Higher-order Approximations to Gaussian Beam 

Similar to the well-established paraxial (zeroth-order) Gaussian beam solution, the spatial 

coordinates transverse to the direction of propagation are normalized relative to the beam waist 

radius, 
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=   and  
0ω

η y
=       (A.17) 

 

and the spatial coordinate in the direction of propagation is normalized relative to the diffraction 

length 
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With this change of spatial variables, the expression for the vector potential becomes 
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and Helmholtz equation, in terms of ψ , can be rearranged as 
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If the beam confinement parameter s, defined in eq. (A.15), is assumed small (ω0 ≥ λ), then from eq. 

(A.20), ψ  can be expanded as a sum of even powers of s so that, 
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Using  
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with Maxwell’s equations, will give expressions for electromagnetic field components to fifth order 

in the parameter s.  

 

Accuracy of Gaussian Beam Approximations 

The accuracy of the approximation to an incident beam depends on a dimensionless beam 

confinement parameter. Higher order approximations for the electromagnetic field components of a 

Gaussian beam should be applied when large beam confinement parameters are used [80].  

 

s=  0.02 0.05 0.10 0.20 0.30 0.40 

s0 avg% 
max% 

0.817 
3.07 

2.10 
7.94 

4.37 
16.8 

9.47 
37.0 

15.3 
60.8 

21.8 
88.0 

s1 avg% 
max% 

1.73 x 10-2 

9.28 x 10-2 
0.111 
0.603 

0.457 
2.51 

1.90 
10.3 

4.33 
22.6 

7.74 
38.4 

s2 avg% 
max% 

6.43 x 10-4 

8.23 x 10-3 
1.05x10-2 

0.133 
8.85x10-2 
1.14 

0.757 
10.7 

2.56 
31.9 

5.89 
49.3 

s3 avg% 
max% 

2.36 x 10-5 

1.97 x 10-4 
9.58x10-4 
8.26x10-3 

1.61x10-2 
0.144 

0.2777 
2.51 

1.44 
19.1 

4.25 
36.0 

s4 avg% 
max% 

1.15 x 10-6 

2.46 x 10-5 
1.19x10-4 
2.52x10-3 

4.10x10-3 
8.85x10-2 

0.148 
3.99 

1.13 
38.2 

3.85 
54.0 

s5 avg% 
max% 

5.13 x 10-8 

7.58x10-7 
1.27x10-5 
1.99x10-4 

8.69x10-4 
1.40x10-2 

6.19x10-2 

1.19 
0.725 
22.2 

3.34 
3.36 

 

Table A.1.  Average and maximum percent error of the Maxwell’s equations for zeroth- to fifth-order Gaussian 

beam description. 

 

Table A.1 provides a comparison of the percent error for s=0.02, 0.05, 0.10, 0.20, 0.30 and 0.40 

for zeroth- to fifth-order Gaussian beam descriptions.  
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Generalized Lorenz-Mie Theory 

Based on Lorenz-Mie Theory, the MDR excitation efficiencies can be evaluated [81] using the 

relations: 

 

[ ],)2(2cos)2(
2
12exp)

2
1(8 ..20..0

2
2

2
0

2
2

coco
TE
n QIQInsbsn φ

ω
σ −×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++−+=  (A.23) 

 

[ ],)2(2cos)2(
2
12exp)

2
1(8 ..20..0

2
2

2
0

2
2

coco
TM
n QIQILsbsn φ

ω
σ −×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++−+=  (A.24) 

 

for both arbitrary ω0 and arbitrary transverse positioning of the beam waist center (x0, y0, 0). I0 and I2 

are the modified Bessel functions. The arguments in eq. (A.23, A.24) are 
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where Qo.c. is called the off-centeredness of the beam with a partial wave n. If the beam strikes the 

spherical particle far off-axis with b ≈ a, then Qo.c is large and the excitation efficiencies can be 

approximated by 
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and 
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Eq A.27 and A.28 includes an explicit information that most efficient excitation of TE- and 

TM-polarized resonances depends on the beam position such that TE-polarized resonances are most 

efficiently excited when the sphere is illuminated with a beam on the x-axis ( 0φ = 90o, 270o) and TM-

polarized resonances are most efficiently excited when the sphere is illuminated with a beam on the 

y-axis ( 0φ = 0o, 180o). 
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