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ABSTRACT

The major goal of Computational Biology and Bioinformatics is to achieve a better un-
derstanding of the principles of biological systems and processes using informatics tools.
Elucidation of the full network of protein-protein interactions is a crucial part of this chal-
lenge. Thus, there is a growing need for fast and reliable in silico methods for predicting
protein-protein interactions. Here, we present a high-performance algorithm for automated
prediction of protein-protein interactions. We adopt a novel bottom-up approach that com-
bines structure and sequence conservation in protein interfaces. Starting with 67 known
structures of protein interfaces and 6170 protein structures, we predicted 62616 distinct in-
teractions. We then checked whether these interactions existed in three different interaction
databases. We also searched literature for some interesting cases. The results displayed a
good balance of verified and unverified predictions. Verified interactions prove the relia-
bility of our algorithm whereas unverified ones may correspond to unobserved interactions
that actually occur in nature or may synthetically be realized in laboratory conditions. We
believe these unverified predictions may have important implications regarding drug design.
We parallelized the algorithms to reduce execution times from the order of months to days:
parallelized prediction algorithm demonstrated a speed up of 29.39 on a 32 node Beowulf

cluster.
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OZETCE

Hesaplamali Biyolojinin ve Biyobiligimin en biiylik hedeflerinden biri biyolojik sistem-
lerin ve siireglerinin daha iyi anlagilabilmesini saglamaktir. Tim proteinlerin olugturdugu
etkilegim aginin aydinliga kavusturulmas: bu hedefe yonelik galigmalarin 6nemli bir parcasidir.
Dolayisiyla, protein-protein etkilegimlerini hizhi ve giivenilir bir gekilde kestirebilecek bil-
gisayar programlarina duyulan gereksinim giin gegtikge artmaktadir. Bu tezde protein-
protein etkilegimlerini yiiksek bagarimli bir gekilde kestirebilmek igin tasarlanan bir algo-
ritma sunulmaktadir. Bu algoritmanin tasariminda protein arayiizeylerindeki yapisal ve
dizilimsel korunma goriingiisiinii birlegtiren yeni bir “agafidan yukariya yaklagim” kul-
lamlmugtir.  Algoritmay1 67 elemanli bir gablon araylizey ve 6170 elemanh bir hedef pro-
tein veritabami {izerinde galigtirarak 62616 farkli protein-protein etkilegimi kestirilmistir.
Bu kestirimlerin daha sonra 3 farkh etkilegim veritabamda hargiliklarinin bulunup bulun-
madig1 denetlenmistir. Ayrica, baz ilging kestirimler yazinda da taranmistir. Sonuclarda
dogrulanan ile dogrulanmayan kestirimler arasinda iyi bir denge oldugu goriilmiigtiir. Dogru-
lanan kestirimler algoritmamzin giivenilirligini g6sterirken dogrulanmayan kestirimler dogada
bulunan ama heniiz gézlenmemis olan veya laboratuar ortamlarinda gerceklestirilebilecek
etkilesimlere igaret ediyor olabilirler. Bu dogrulanmammsg etkilegim kestirimlerinin ilac tasarm
alaninda 6nemli etkilerinin olabilecegini diiglinmekteyiz. Kestirim ve dogrulama siirelerini
haftalar mertebesinden giinler mertebesine indirebilmek igin algoritmalar: paralellegtirilmis,
kestirim algoritmasinin 32lik bir Beowulf bilgisayar yiginiminda 29.39 kat hizlandig1 gézlemlen-

migtir.
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Chapter 1

INTRODUCTION

Proteins rarely act in isolation, different levels of complexity of biological systems arise not
only from the number of the proteins (genes) of the organism, but also from the combinato-
rial interactions among them. In support of this, recent findings mark the facts that human
genome is composed of fewer protein-coding genes than has been previously believed [1, 2].
For example, human genome was shown to display remarkable similarity to that of the worm
Caenorhabditis Elegans (the first animal to have its complete genome sequenced), in terms
of number of genes; and to that of mouse, in terms of sequences [3]. These suggest that any
of the complex properties of an organism is more closely determined by the characteristics
of interactions between its proteins rather than individual characteristics of them.

The molecular bases of cellular operations are largely sustained by different types of
interactions between proteins. These post-translational modifications organize themselves
into specific sequences of interactions, to make up biochemical pathways. These biochemical
pathways, such as signaling and metabolic pathways, are central to structural and functional
organization of the cell in vivo and underlie many biological processes, such as metabolic
control, protease inhibition, DNA replication and transcription, cell adhesion, hormone-
receptor binding, the action of antibody against antigen, intercellular communication, signal
transduction, and regulation of gene expressions in cells. They also relate to allosteric
mechanisms, to turning genes on and off and to drug design.

Collections of interactions among proteins form a complex interaction network (interac-
tome) in the cell. The function of a protein can be viewed as its position within this cellular
interaction network. Therefore to fully understand the role a particular protein within a
cell, we need to identify with which other proteins it interacts, in other words, binds through
non-covalent connections [4].

One of the primary objectives of the post-genomic era is the elucidation of the interac-
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tome in model cellular systems. The detailed knowledge of the full network of protein-protein
interactions, i.e., the distribution and the number of interactions as well as the presence
of key nodes in these networks, is expected to provide new insights into the structures and
properties of biological systems. Such knowledge is crucial for a better understanding of
many biological processes and constitutes the foundations of the new systems biology [5].
Despite the ongoing effort to decipher the complex nature of protein interactions, they are
not still entirely understood [6, 7, 8, 9]. Thus, Bioinformatics and computational approaches
are becoming increasingly important venues as large amount of data become available and
development of predictive methods is the ultimate goal in computational biology that will
lead to protein engineering and drug discovery.

Contribution

In this thesis, we present a novel, automated, high performance and efficient algorithm to
address the problem of predicting protein-protein interactions and novel protein complexes.
Our algorithm principally seeks for pairs of polypeptide chains that may potentially interact
in a dataset of protein structures by comparing them with a template dataset, which is a
structural and evolutionary representative subset of all biological and crystal interactions
present in the Protein Data Bank (PDB) [10]. If, after comparisons, two structures (be
monomeric or complex) are found to structurally and evolutionarily complement each other
as chains of any representative interface do, they qualify as a potentially interacting pair.
Thus, a list of potentially interacting protein pairs is obtained as a final result. Some
of these interacting pairs are verified by the entries from DIP [11], BIND [12] and PDB
itself. The unverified ones may correspond to 1) interactions that are not covered in these
databases but known in literature 2) unknown interactions that actually occur in nature
3) interactions that do not occur naturally but may possibly be realized synthetically in
laboratory conditions. Some unverified but biologically significant cases found in literature

are discussed

Outline

Chapter 2 outlines the general concepts, current challenges and approaches in interactive

proteomics area. The approach and the implementation of the algorithm are elaborated



Chapter 1: Introduction 3

in Chapters 3 and 4. The outline of the main algorithm is illustrated in Chapter 3, in
Algorithm 1. Detailed analysis of prediction and verification results, along with discussions
on various issues including some significance of interesting prediction cases, factors that may
affect the algorithm performance, future directions follow these (Chapter 5). Thesis finalizes
by a chapter for conclusion (Chapter 6) and an Appendix section that contain principles

and utilization details of algorithms used and results in tabular forms.
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Chapter 2

PROTEIN-PROTEIN INTERACTIONS

Proteins are molecules responsible for fulfilling various biological functions in the cells.
Proteins may act alone to fulfill certain biological functions; however, majority of them
associate with other proteins to assume different functions. This association is a physical
binding of proteins structures through weak, non-covalent bonds, which is termed inter-
action. Two protein interact through particular “active” regions on their surfaces, called
binding sites. The region where two protein chains come into contact is termed interface.

The complex variety of biological functions in the cell is a result of large networks of
complex interaction patterns. Elucidation of these complex network interactions is one of
the major goals of Bioinformatics. Achievements will shed light on the insights of biological
systems and have serious implications on drug design. This broad recognition of importance
of characterizing the set of all protein interactions in a cell has rendered itself in development
of various experimental and computational techniques, attempting to detect and predict
interacting protein partners, respectively. These attempts shed light on both the global
features and the specifics of the interactions for some limited types of interactions.

This chapter is organized as follows: Section 2.1 is an overview of recent experimental
methods for detection of protein-protein interactions. Their principles are discussed along
with strengths and weaknesses. Section 2.2 elaborates on current computational methods
for prediction of potential protein-protein interactions. The work presented in this thesis
can be classified under this section. Section 2.3 concludes the chapter by detailed listing of

currently available interaction databases.

2.1 Detection of Protein-Protein Interactions

Various experimental methods have been developed to detect and identify protein-protein

interactions. These methods can be divided into two categories:

1. traditional top-down proteomic approaches where the experiments may be individually
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designed to identify and validate a small number of specifically targeted interactions
[13], or high-throughput experiments where multi-protein complexes are purified and
analyzed by mass spectrometry. These analysis provide a valuable outline of a higher-
order map of the protein networks; however, the question of whether two proteins

within the same complex directly interact requires further investigation [4, 14].

2. bottom-up genomic approach, involving high-throughput experiments where each pro-
tein encoded in the genome of interest is expressed and exhaustively probed for mutual
interactions by in vitro assays such as the yeast two hybrid system (Y2H) [3, 15], pro-
tein chip analysis [16], Phage Display Libraries [17, 18], Synthetic Lethals [19] and
Mutational Data [20].

Mass Spectrometry

Mass Spectrometry is a general method that is utilized in high-throughput, top-down inter-
action detection experiments, for purification and analysis of multi-protein complexes. In
this method, first, the components in an isolated complex of protein masses are identified
through accurate determination of their molecular masses. Then, this Mass Spectrometry
data is used to search sequence databases and identify the proteins present in a sample.
Mass Spectrometry for detection of interacting protein partners is used as follows: an
affinity tag is attached to target “bait” proteins and their DNA encoding is introduced into
yeast cells to allow these modified proteins to be expressed and form physiological complexes
with proteins. Then, using an affinity tag, each bait protein is precipitated on an affinity
column along with any associated protein. Then, proteins extracted with the tagged bait

are identified by Mass Spectrometry [21].

Yeast Two Hybrid System (Y2H)

Y2H system takes advantage of the finding that many eukaryotic transcription factors can
be divided into two functionally distinct domains that mediate DNA binding and transcrip-
tional activation. The yeast two-hybrid system exploits protein interactions to assemble a
functional transcription factor. The transcription factor then activates a test gene, allowing

yeast cells containing interacting proteins to be identified. The principle of the method can
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be summarized as follows: The function of protein X is unknown. A “bait” is constructed by
fusing a protein X to the DNA-binding domain derived from a transcription factor. Then,
all the other genes in the genome are fused to the activation domains of transcription fac-
tors. This forms a library of potential “preys”. In a large-scale cross, the bait yeast strain
is mated to each member of the prey library, so all possible interactions are tested in the
resulting cells. In cells where the bait interacts with the prey, a functional transcription
factor is assembled and the interaction is detected via the activated test gene [3, 15].

The Y2H system has the advantage of being both rapid and easy to use, and is frequently
used in detection of novel protein-protein interactions. A recent publication estimates that
more than 50% of the interactions described in literature have been detected using the Y2H
system [22]. However, it has also been reported that Y2H experiments are strongly affected
by false positive results that influence a sizeable fraction of the interactions detected [23].

Phage display

Like the Y2H system, Phage Display is used for the high-throughput screening of protein
interactions. The principle of this method is summarized as follows: The protein with
unknown function X is used to coat the surface of a small plastic dish. All the other
genes in the genome are expressed as fusions with the coat protein of a virus that infects
bacteria (bacteriophage), so that they are displayed on the surface of the viral particle.
This phage-display library is added to the dish and then the dish is washed. As a result,
phage-displaying proteins that interact with protein X remain attached to the dish, while
all others are washed away. Interacting proteins are identified via DNA extracted from

interacting phage that contains their sequences [17, 18].

Protein Chips

In protein Chip technology, first, proteins are expressed, purified and screened in a high-
throughput fashion. The interactions are detected by introducing these purified proteins to
the surface of a microarray on which these proteins bind to each other. This technology
preserves the folded conformation and the ability of proteins to interact specifically with
others [16].
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Shortcomings of Erperimental Methods

Experimental methods have so far yielded a considerable amount of data on protein-protein
associations and their relative binding strengths. However, even the most comprehensive
experimental efforts may lead to incomplete representations. Protein interactions are of-
ten cooperative and condition dependent, therefore the experimental outcomes are often
negatively affected by factors like post-translational modifications, localizations, misfolding
and steric hinderance. These factors introduce false positive and false negatives to outcomes
(especially in Y2H method) [24]. Added to these, the experimental evidence tend to become
biased towards higher affinity interactions, because lower affinity interactions tend to be less
stable and last for short periods of time, making them difficult to be detected. Experimental
techniques fail to distinguish between direct interactions and those mediated by at least one
intermediate protein, yielding only a subset of interactions occurring in an organism. These
methods are limited to particular set of organisms. Another limitation for high-throughput
experiments is that, these methods cannot reveal the atomic details of binding sites. Ger-
stein and co-workers brings forward these issues [24] and suggest that the high-throughput
protein interaction data be assessed with 3D structures of known complexes.

Still, the binary interaction results of these experiments are invaluable to interpret
protein-protein interactions and construct protein-protein networks [25]. Experimentally
verified interactions have been compiled in various large scale protein-protein interaction

datasets (see section 2.3).

2.2 Prediction Methods

Experimental detection methods have so far yielded a considerable amount of data on
protein-protein interaction and their relative strengths. On the other end of the spectrum,
computational prediction methods can address protein-protein interaction problem at dif-
ferent levels from a different prediction perspective. They may focus on in depth analysis
or carry out a broad scale analysis across large datasets to identify putative interactions.
Various approaches towards prediction of protein-protein interactions adopt two general
viewpoints: protein sequence (amino acid composition and their specific order) and protein
structure (3D spatial orientations of amino acids). Some take into account common psycho-

chemical and geometric characteristics of interfaces of interacting proteins. Both viewpoints
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highly make use of the signatures of various forms evolution is known to leave on interacting

proteins.

Signatures of Evolution

Evolution imposes selective pressure on functional and structural constraints of an inter-
action; hence interfaces often evolve at a slower pace than do other external regions of
the protein. This gives rise to conservation of protein sequences [26] and structure [27] at
binding regions of homologous proteins, also to the phenomenon of co-evolution [28].

Sequence conservation have been widely observed at interfaces within families of proteins
responsible for similar functions [26]. Such conserved sequence patches (a contiguous subset
of the sequence) are usually unravelled by machine learning methods that take into account
the neighbors of interface residues sequence profiles as training sets. Valdar (2002) proposed
a method to score sequence conservation [29)].

It is frequently found that two proteins with sequence identity below the level of statis-
tical significance have similar structure (and function, possibly) at interfaces. This trend is
prevalent in PDB. This suggests that there are a limited number of ways proteins can inter-
act, hence structural conservation along interfaces [30]. Keskin et al. [27] tried to achieve
a structurally non-redundant dataset of all two-chain interfaces that exist in the PDB, and
only a subset of 3799 interfaces out of 21686, was enough to represent all the conformational
space of interactions (see Section 3.1.1 for more information).

Regions with conserved patterns in a family of protein-protein interactions often relate
to functionally and structurally important binding sites, and their spatial distribution across
different proteins may mediate protein-protein interaction prediction [27, 31, 32, 33, 34, 35].

Co-evolution is a natural result of evolutionary pressure: a mutation in one of the
interacting partners must be compensated by a mutation in the other; otherwise, it is highly
probable that the interaction will be disrupted [36]. Therefore two proteins that interact
will tend to co-evolve in a correlated manner resulting in a higher evolutionary correlation
between their corresponding homologs [28]. Consequently, given two query proteins and
their homologs, one can theoretically predict an interaction if there is an evidence that the
groups coevolve. Traces of co-evolution can be traced by various methods, which include

phylogenetic tree topology comparison [28, 37, 38], gene preservation correlation [39, 40, 41,
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42, 43, 44, 45], and correlated mutation approaches [46, 36, 47].

2.2.1 Ezxamples of Sequence Based Approaches
Phylogenetic Tree Topology Analysis

Phylogenetic tree topology methods compare homologs of interacting proteins (é.e. pro-
tein families): if the phylogenetic trees of two proteins are highly related, then they have
co-evolved and possibly interact (mirror tree method) [28, 37]. Similarity metrics must be
devised to compare these trees. For example, in [28], linear correlation between the distance
matrices (that are used to construct the trees) was used as a similarity metric. The work
in [37] is an extension of [28] to large sets of interacting proteins and protein domains. In
[38], the ordinary mirror tree method is combined with the use of partial correlation coef-
ficient. From distance matrices representing phylogenetic trees based on multiple sequence
alignment across different species, “phylogenetic vectors” are constructed for each protein.
Following this, partial correlation coefficients are computed based on phylogenetic vectors
for all possible combination of proteins and high scoring pairs are identified as candidates
of protein interactions.

Another computational approach focuses on sequence motifs. In [48], the method of
Evolutionary Tracing (ET) was used for detection of conserved residues within a family of
proteins. For this, first a tree was generated through multiple sequence alignment of all
sequences in the family. Next, the tree was delineated into groups approximating functional
classes. For each class, a representative sequence is created, and then these are compared
to form the ET sequence that contain invariant residues within each group. Finally, the
top ranked invariant residues are mapped onto the three-dimensional structure to assess
whether they are spatially clustered. The invariant residues that form clusters in the three-
dimensional structure are likely to constitute active sites, such that the changes in their

amino-acid composition are linked with evolutionary divergence, hence functional specificity.

Gene Preservation Correlation

Gene preservation correlation approaches are very simple: if two proteins interact to perform
a vital biological function, then both proteins will be passed on during speciation [45].

Derived from this rationale are several approaches based on presence or absence of genes,
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conservation of gene neighborhood and gene (domain) fusion events.

The first approach determines in which organisms a particular gene is present, and in
which it is not. The premise of this method is that the correlation in presence of two genes
could be indicative of the functional need for corresponding proteins to be simultaneously
present in order to perform a given function together [39, 40]. However, although this
similarity may suggest a related functional role, a direct physical interaction between the
proteins is not necessarily implied.

In the conservation of gene neighborhood analysis, proteins (sub-domains) whose genes
are physically close in the genomes of various organisms are predicted to interact [41, 42].
This approach builds upon the observation that bacterial genomes tend to organize into
regions that code functionally related proteins.

In gene (domain) fusion approaches, protein-protein interactions are inferred from genome
sequences on the basis of the observation that some pairs of interacting proteins have ho-
mologs in other organism fused into a single protein chain. These fusion events were de-
tected through combination of recursive sequence searches and multiple sequence alignments
[43, 44]. Such fused polypeptide chains that contain information about both partners are
termed as “rosetta stone” proteins, and domain fusion technique is often called “rosetta
stone method” [43]. A recent effort described in [45], a vast analysis of genes over 24
genomes, uncovered 7,224 single-domain or “rosetta” proteins, most of which were identi-
fied for the first time. They were able to predict 39,730 pairwise function associations by
this method.

Correlated Mutations

The co-evolution of interacting proteins can be followed with a localized position specific
approach, in which the degree of co-variation between pairs of residues from interacting
proteins is quantified. The intuition behind co-evolution is that, if one partner in a protein
interaction pair mutates, then its counterpart will have to adapt in order to preserve the
interaction (correlated mutations). Correlated mutations were shown to accumulate in the
proximity of interacting surfaces in [36] and later this algorithm was extended to detect
interacting partners based on the ratio between intraprotein correlations and interprotein

correlations [46]. [47] develops a model that encompasses correlated mutation data along
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with other interaction factors: ionic charge potentials and hydrogen bonding potentials.

Sequence Profiles

Machine learning based prediction of interaction sites on unbound protein structures without
the knowledge of their interacting partners have been addressed in various studies [32, 33,
34, 35]. These methods consider the sequence neighbors of the target residues in prediction
and detect sequence conservation patterns using matrices of position specific variations
[49]. In [35], a neural network system was trained to learn the association rules relating
to exposed residues at the protein surface with the property of being or not being in a
contact patch. A success rate of 73% was achieved. In a very similar study [32], a neural
network based method was devised that predicts interaction sites by “learning” conserved
trends in sequence profiles along interfaces contained in a non-homologous training dataset
of 651 complexes. To account for the fact that residues forming an interface are mostly
exposed to solvent prior to complex formation, solvent exposure is also taken into account,
in the training phase. Interface residues (residues in contact), are considered along with
neighboring residues in sequence profiling, to capture spatially contiguous patch nature of
interfaces. A success of 70% was achieved. The approach in [34] is also a similar one, but
this time a two-stage classifier is used, the first being a support vector machine (SVM)
classifier and the second, a Bayesian network classifier. After residue clusters belonging to
putative interaction sites are detected through the SVM classifier, they are provided to a
Bayesian network classifier to identify the most likely “class labels” (interface/non-interface)
for target residues given the class labels of its neighboring residues. In model used in [33],
it was observed that, along with accessible surface area and neighboring sequence profiles,

inclusion of patch flatness as a feature vector, enhances prediction performance.

2.2.2 Structure Based Methods

Structure based methods take into account common psychochemical and geometrical char-

acteristics of interfaces of interacting proteins.
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Prediction Through Detection of Hotspots

It has been observed that the distribution of energetic contributions of individual residues
across interfaces is highly uneven, with particular residues at particular locations contribut-
ing to a large fraction of the binding free energy of the interaction [50]. The energetic con-
tribution is to an extend that their replacement (with alanine) gives a distinct drop in the
binding constant (typically tenfold or higher) and destabilizes the bound ensemble relative
to the bound one. The alanine scanning mutagenesis method in [6] detects these hotspots
through systematic replacement of protein interface residues by alanine and measurement
of the drop in the resultant binding free energy. A database of hotspots (ASEdDb [51]) has
been compiled as an outgrowth of [6]. An alternative computational technique, termed
“computational alanine mutagenesis” has been introduced [20], that builds upon previous
work in [52]. Anatomy of hotspots have been discussed in [6, 53, 54]. The significance and
origin of hotspots are elaborated in chapter 3 section 3.1.1.2.

Because interfaces are coupled with hotspots (section 3.1.1.3), they are also expected to
be conserved. The work in [53, 54] proves this fact by showing that structurally conserved
residues distinguish between binding sites and the rest of the protein surface. Therefore
their identification can mediate prediction of binding sites. In this thesis, we present an
approach that makes use of these conserved structural architectures and hotspots to predict

potential interactions.

Prediction Through Detection of Common Psychochemical Characteristics

Many investigators have analyzed the characteristics of protein-protein interaction sites to
gain insight into the molecular determinants of protein recognition and to identify charac-
teristics predictive of protein-protein interfaces [8, 9, 27, 55, 56, 57, 58, 59, 60]. In these
studies, different aspects of interaction sites, such as hydrophobicity, residue propensities,
size, shape, solvent accessibility, electrostatics, salt bridges, hydrogen bonds, disulfide bonds
and packing, presence/absence of water molecules at certain sites, total or non-polar buried
surface areas, residue composition, family conservation and residue pairing preferences, have
been examined. Although each of these parameters provides some information indicative of
protein interaction sites, none of them perfectly differentiates interaction sites from the rest

of protein surfaces. Based on different characteristics of known protein-protein interaction
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sites, several methods have been proposed for predicting protein-protein interaction sites
using a combination of protein sequence and structural information. For example, based on
their observation that proline residues occur frequently near interaction sites, [61] predicted
potential protein-protein interaction sites by detecting the presence of “proline brackets”.
Using this strategy they identified the interaction sites between fibrinogen and 9E9, a mon-
oclonal antibody which inhibit fibrin polymerization. In their method, [62, 63] relies on
considerations of the solvent accessible surface area buried upon association. Building on
their systematic patch analysis of interaction sites, [64] successfully predicted interfaces in
a set of 59 structures using a scoring function based on six parameters: solvation potential,
residues interface propensity, hydrophobicity, planarity, protrusion and accessible surface
area. [65] identified interacting residues using an analysis of sequence hydrophobicity based
on a method previously developed by [66] for detecting membrane and surface segments of
proteins. [67] have used a structure-based multimeric threading (aligning of sequence of the
protein of interest to a library of known folds and finding the closest matching structure)
algorithm where they threaded target sequences in a template library of (yeast database of
interacting proteins) representative monomer structures that are known to participate as
part of dimer structures, filtered the structures with similar sequences to opposite chains
of the same complex, aligned them and calculated the energy between interacting residues
to infer interaction. [68] have successfully predicted protein-protein interaction sites using
neural network method based on their observations that the majority of protein-protein
interaction residues are clustered on sequence and protein-protein interface differ from the
rest of protein surface in residue composition. [69] trains a support vector machine system
to recognize interactions based solely on primary structure and associated physicochemical
properties observed in a given database of known protein protein interaction pairs. A suc-
cess rate of 80% was achieved. [70, 71] used scoring functions based on statistical potentials
for prediction while [60] considered electrostatic contributions. [56] adopted an approach
that took into account amino-acid composition to detect putative interfaces. Aloy et al. [31]
considered sequence similarity and shape complementarity of a target dataset to a template
dataset of known interactions to infer potential interactions. This method is by far the

closest to the approach we employ.
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Prediction Through Docking

On the other side of the spectrum, more thorough analysis may be conducted on specifically
targeted pair of proteins through docking algorithms [72, 73]. Given the atomic coordinates
of two molecules, docking involves predicting their “correct” bound association. There are
two parts to the docking problem: developing a scoring function/energy function that can
discriminate correctly or near-correctly docked orientations from incorrectly docked ones,
and developing a search method that will be able to find a near-correctly docked orientation
with reasonable likelihood. Docking is usually a three step process, the first identifying
candidate structures via structural alignment, the second using an energy function that
is better at discriminating near native orientations, the third, dealing with the model in
full atomic detail, allowing movement of side chains and possibly, backbone minimizing
a (possibly yet more complicated) energy function. All these steps are usually computa-
tionally intensive and take long times. Various docking algorithm consider combinations
of different interface parameters like geometric complementarity, hydrogen bonds, contact
area, intramolecular/intermolecular overlap, pairwise amino acid contacts, electrostatic in-
teractions, solvation energy, active site residues and free energy of association. DOT [74],
DARWIN (75], BIGGER [76], GRAMM [77] are some examples of docking algorithms.
Computational and experimental methods concentrate on the protein-protein interac-
tion problem from different aspects, therefore no single method can adequately discover the
interactome fully. Converging towards an ideal solution will involve unification of differ-
ent methods that take up the problem from different, innovative perspectives [24]. This
will provide a more complete picture of living cells, leading to a better understanding of
biological processes. Therefore, development of predictive methods is the ultimate goal in

computational biology that will lead to protein engineering and drug discovery.

2.3 Databases of Protein Interactions

Various protein-protein interaction databases have been compiled. While the source of
most databases are curated interactions (experimentally verified), some contain computa-
tionally predicted interactions and some contain both. Apart from physical associations,
some databases also provide indirect (functional - gene links) associations while some pro-

vide interactions at domain level. A common characteristics of all databases is that, they
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have a rapidly growing nature as the pace of interaction detection experiments and the

number of protein whose structures are solved increase.

DIP

The Database of Interacting Proteins (DIP) is a catalogue of experimentally determined
protein-protein interactions [11]. In DIP, each interaction pair contains fields representing
accession codes linking to other public protein databases, protein name identification and
references to experimental literature underlying the interactions. Alternative fields include
protein interaction domains, superfamily identification, interacting residue ranges, protein-
protein complex dissociation constants. The data stored within the DIP database were
curated, both, manually by expert curators and also automatically using computational
approaches that utilize the the knowledge about the protein-protein interaction networks
extracted from the most reliable, core subset of the DIP data. As of September 4, 2004,
the database contained 44444 interactions, extracted from 49385 distinct experiments. The
interactions span the proteomes of 107 organisms, including: C. elegans, D. melanogaster,

S. cerevisiae, H. pylori, H. saphiens, E. coli, M. musculus and R. norvegicus.

BIND

The Biomolecular Interaction Network Database (BIND) [12], is a collection of records
documenting molecular interactions. Its contents include high-throughput data submissions
and hand-curated information gathered from the scientific literature. BIND records are
created for interactions which have been shown experimentally and published in at least
one peer-reviewed journal. A record also references any papers with experimental evidence
that support or dispute the associated interaction.

There are three classes of entries in BIND: “objects” that associate with each other to
form interactions, molecular complexes that are formed from one or more interaction(s)
and pathways that are defined by a specific sequence of two or more interactions. The
domain of interacting objects is not limited to proteins, they may include DNAs, RNAs,
ligands, molecular complexes, genes, photons or unclassified biological entities. Molecular
complex records are supplemented with additional information such as complex topology

and the number of subunits (BIND objects) involved in the interaction. Pathway records are
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supplemented with additional information such as which stage of the cell cycle the pathway
exists and whether the pathway is associated with a particular disease.
As of September 4, 2004, the database contained 99183 interactions, 1994 molecular

complexes, and 8 pathways, spanning proteomes of 889 organisms.

MINT

The Molecular Interactions Database (MINT) [78] focuses on experimentally verified protein
interactions with special emphasis on proteormes from mammalian organisms. It consists
of entries mined in the scientific literature by curators. As of September 4, 2004, the
database contained 4488 mammalian, 4486 C. elegans, 20408 D. melanogaster, 12579 Yeast

interactions, 42633 in total, spanning 18 organisms.

MIPS

MIPS [79] is a collection of genome and protein sequence databases. It includes a S. cere-
visiae specific protein interaction database containing 15488 interactions (9103 physical,
6385 genetic) as of September 4, 2004, which are annotated from 9 different high through-

put analysis.

The GRID

General Repository for Interaction Datasets (the GRID) [80], is a comprehensive compilation
genetic and physical interactions in C. elegans (4453 interactions), D. melanogaster (26596
interactions) and S. cerevisiae (25915 interactions). Statistics are provided as of September

4, 2004.

Predictome

Predictome [81] is a database of predicted functional associations among genes and pro-
teins in many different organisms. Associations, or gene links, are created using a vari-
ety of techniques, both experimental (yeast two-hybrid, immuno-coprecipitation, correlated
expression) and computational (gene fusion, chromosomal proximity, gene co-evolution).
The database is compiled based on the premise that genes, or their protein products, can

be linked using both experimental and computational techniques. Functional information
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about individual proteins is then assessed in a network context, where characteristics about
a protein can be inferred using the functional traits of neighbors, the neighbors of neighbors,

etc. As of September 4, 2004, it contained 542765 putative interactions.

STRING

STRING [82] is a database of known and predicted protein-protein interactions. The
interactions include direct (physical) and indirect (functional) associations and they are
derived from four sources: Genomic context, high-throughput experiments, (conserved)
co-expression (as observed in microarray studies) and other interaction databases. The
predictions are made using conserved gene neighborhoods, co-occurrence observations (re-
flects similarities in phylogenetic trees), gene fusion; experimental data are integrated from
high-throughput experiments, public databases, and through text mining of pubMed [83]
journals. The database holds interaction data derived from 444238 genes in 110 species, as
of September 5, 2004.

InterDOM

InterDom [84] is a database of putative interacting protein domains derived from multiple
sources, ranging from domain fusions (Rosetta Stone), protein interactions (DIP and BIND),
protein complexes (PDB).

‘The database focuses on providing supporting evidence for validating and annotating
detected protein interactions and complexes based on putative protein domain interactions.
InterDom enhances the quality of in silico derivations by adopting an integrative strategy,
assigning higher confidence to domain interactions that are independently derived from
different data sources and methods.

As of September 5, 2004, the database contained 30037 domain-domain interactions
inferred from 7316 PFAM domains. Inferences were made from protein complexes in PDB,

protein interactions in BIND and DIP and domain fusion hypothesis (rosetta stone).
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Chapter 3

THE ALGORITHM FOR AUTOMATED PREDICTION OF
PROTEIN-PROTEIN INTERACTIONS

The rationale of our protein-protein prediction algorithm is that, if any two structures
contain particular regions on their surfaces that resemble the complementary partners of a
known interface, they “possibly interact”, through these regions. This resemblance indicates
the ability of these structures to structurally and evolutionarily complement each other along
an interface, as chains of any representative interface do. This necessitates a defined method
to measure the similarity between a target surface and a representative interface partner.

To accomplish this task, the proposed prediction algorithm structurally (tertiary struc-
ture) aligns target protein surfaces with a set of template interface partners successively, in
an all-against-all fashion. It then analyzes the aligned substructures. During the analysis,
it calculates the evolutionary similarities and structural complementarities and unifies them
under a similarity score. The relative importance of these terms are reflected by dedicated
coefficients in calculation of this scoring function. Target structures whose similarity scores
exceed a particular threshold qualify as “similar” structures and the algorithm flags them
for prediction. As previously stated, any two target structures whose surfaces were found to
have at least one site “similar” to complementary partners of a known interface, “possibly
interact”. In other words, if X is known to interact with Y, z shares similarity with the
binding site of X, y shares similarity with the binding site of Y, then we predict that z in-
teracts with y. If the similarity lists of corresponding partners of a representative interface
contain N and M target structure names, respectively, we obtain N x M predictions. These
predicted interactions will be through the substructures that yielded maximum similarity
score during structural alignment. The extent of favorableness of the predicted interaction
is quantified by the sum of the similarity scores of the interacting pairs.

After the prediction algorithm terminates, a verification algorithm checks whether the

predicted interactions actually exist in two publicly available interaction databases [11, 12],
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and the Protein Data Bank (PDB) [10] itself. Before this check can be performed, the
corresponding identifiers (cross references) of target structures in these interaction databases
must be determined. This is accomplished by finding the homologs of target sequences in
corresponding databases, through multiple sequence alignment using FASTA [85].

Prediction algorithm requires two datasets to accomplish the task. The first dataset,
namely the template interface dataset, provides a defined and objective set of protein-
protein interfaces, structurally and evolutionarily characterizing the entirety of protein-
protein interactions in the PDB. The second dataset, namely the target dataset, provides
a non-redundant dataset of known protein structures. We seek for every potential binary
interaction between members of this dataset.

Section 3.1 gives details on relevance and generation of datasets used by the prediction
algorithm. Section 3.2 elaborates on the heart of this study: the prediction algorithm. The
algorithm is composed of modules each of which are separately described. A subsection of
this section is dedicated (Section 3.2.2.1) for measurement of similarity between a target
surface and a representative interface partner. Following these, Section 3.3 discusses an
extension of the prediction algorithm for prediction of binding partners of a given structure.
The final section of this chapter (Section 3.4) elaborates on the verification algorithm that
seeks predicted interaction pairs that may have cross references in some major interaction

databases (namely DIP and BIND) and PDB.

3.1 Datasets

3.1.1 Template Dataset

The template dataset, upon which our algorithm is based, represents the entirety of struc-
turally available protein-protein interactions and serves as a template to predict other po-
tentially interacting protein pairs. What physical properties should such a representative
set include? Firstly, it should encompass the two major factors governing formation of an
interaction between two proteins: namely structural and evolutionary factors. The struc-
tural factor; i.e. the shape complementarity, facilitates recognition between the binding
sites of two complimentary chains, enabling them to physically dock [59] (Figure 3.1). The
evolutionary factor corresponds both to structurally and residue-type conserved (generally

polar and aromatic [6, 86]) residues across structurally similar interfaces, through evolu-
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tion. Conservation is usually indicative of the importance of a residue for maintaining the
structure and function of a protein [26], by playing critical roles in affinity and specificity of
protein-protein associations by contributing to the bulk of the binding free energy. Added
to these, the set should be non-redundant, in other words, every member of it must be
unique in the sense that it is structurally and sequentially dissimilar to other members.
This eliminates biases and provides an efficient set to work on. The list of interfaces in the

template dataset is available in Appendix, in Table B.1.

Figure 3.1: Shape complementarities observed between complementary partners of an in-
teraction

Two datasets have recently been extracted that satisfy the two physical considerations
mentioned above [27, 54]. We combine these two datasets to obtain a non-redundant,
structural and evolutionary representative set of protein-protein interactions, consisting of

67 representative interfaces, which we refer to as the template dataset.

8.1.1.1 Non-Redundant Dataset of Representative Interfaces

The first constituent dataset, corresponding to the structural factor, is a non-redundant
representative dataset of all two-chain biological and crystal interactions present in the
PDB [27]. Interactions were represented by interfaces, which are defined as the structural
architectures of fragments of polypeptide chains that represent binding sites (Figure 3.2).
The dataset is available at http://gordion.hpc.ku.edu.tr/ppi
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Generation

In creation of this dataset [27], first, all existing interfaces formed between two protein chains
in dimers, trimers or higher complexes of proteins were extracted from the PDB. Interfaces
were defined as the set of residues representing a region through which two polypeptide
chains bind to each other through non-covalent interactions. This set consisted of contacting
residues between the chains (interacting residues), and those that are in their vicinity with
a certain distance threshold (neighboring residues), representing the scaffold of the interface

(Figure 3.2).

interacting residues

Figure 3.2: Definition of interfaces: An illustration of a protein-protein interface as defined
in this study. Interacting residues, along with their neighboring residues, make up the
scaffold of the interface

Two residues from the opposite chains were marked as interacting, if there was at least
a pair of atoms, one from each residue, at a distance smaller than the sum of their van
der Waals radii plus a threshold of 0.5 A. If the C-a of a non-interacting residue lied at a
distance of at most 6.0 A from a C-a of an already assigned interface residue in the same
chain, it was flagged as neighboring. Interacting residues, together with neighboring residues
formed the interfaces in protein complexes (Figure 3.2). This procedure resulted in 21686
two-chain interfaces from nearly 18000 PDB entries (as of July 18, 2002). These interfaces
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were checked for recurring substructural motifs (compared structurally) with a sequence
and order independent multiple structure alignment algorithm, MULTIPROT [87]. This
algorithm was used to find the best spatially matched subsets of C-a atoms, representing
the best substructural matches between given non-contiguous polypeptide chains forming
the interface. After an iterative structural alignment and redundancy removal process,
interfaces sharing similar architectures were grouped into clusters. Eventually, 3799 interface
clusters were obtained. The drop in the number shows that as the total number of proteins
in the database increases, total number of different structures at interfaces approach a
finite number which is much less than the total number of proteins (see Chapter 2, Section
2.2). This signals structural conservation at protein interfaces, which makes generation of
a template interface dataset feasible. These structurally similar interface clusters contained
some sequence homologous members, therefore they were undertaken a filtering process
which eliminated the redundant sequences from the clusters. A cluster was defined to be
non-redundant if it contained at least five non-homologous sequences. Finally for each
cluster, the structure which is structurally most similar to all other member structures
was selected as the cluster representative. These filtering decreased the number of clusters
from 3799 to 103. The dataset is available at http://gordion.hpc.ku.edu.tr/ppi. These final

clusters are subject to a final filtering during hotspot extraction process (Subsection 3.1.1.3).

3.1.1.2 Dataset of Computational Hotspots

The second constituent dataset, corresponding to the evolutionary factor, is the dataset
of computational hotspots. This dataset enhances the dataset of representative interfaces
by highlighting critical residues on representative interfaces, bearing greater importance
than others in characterizing an interface. These residues, called hotspots, are believed to
be structurally conserved through evolution due to their vital roles in keeping the partner

proteins intact [54].

Significance of Hotspots

Alanine scanning mutagenesis is a very powerful method to analyze the contributions of
individual amino acids to protein-protein binding by systematic replacement of protein

interface residues by alanine and by measuring the drop in the resultant binding free energy.
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These experiments show that each residue at protein-protein interfaces does not contribute
to the binding free energy equally. Rather, there are only small sets of hotspot residues
at interfaces that contribute significantly to binding free energy of the interaction [50], and
many subsequent studies suggest that the presence of a few hotspots may be a general
characteristic of most protein-protein interfaces [6]. These generally polar residues are
found to be highly correlated with the structurally conserved residues through evolution to
optimize function, structure and stability of the protein complexes and enhance feasibility

of protein-protein associations [54].

Origin of Hotspots

Many of the residues on interfaces that are critical for binding (hence having functional
roles) are likely to be evolutionarily conserved. This is because the pace of evolution at
interfaces is slower than the rest of the protein [26, 88, 89, 90]. The cause of this slower
pace of evolution at interfaces can be explained the phenomena of co-evolution, in which
substitutions in one protein result in selection pressure for reciprocal changes in interacting
partners [36, 91, 90, 37]. If mutations accumulated during the evolution of an interacting
partner is not compensated by correlated mutations in the other partner, the interface,
consequently the interaction, is likely to be disrupted. This is actually the principle ala-
nine scanning mutagenesis method is based upon. Supportive arguments for co-evolution at
protein-protein interfaces have been documented in two different studies. In the first one,
corresponding phylogenetic trees of interacting proteins were argued to display, in certain
cases, a greater degree of similarity than do non-interacting proteins, due to co-evolution
[92, 93]. In the second one, evolutionarily convergent binding sites were found to correspond
to the energetically most favorable states [7, 94]. Through time, differences in paces of evo-
lution result in accumulation of similar interfaces across different complexes, accomplishing
different functions. In a way, evolution has re-used “good” favorable interface structural

scaffolds and adapted them to different functions [54].

Generation

The work of Ma et al. [86] describes a method to find structurally conserved residues in bind-

ing sites of structurally related interfaces and shows that these conserved residues actuslly
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correlate to polar residue hotspots. The conservation is to an extent that suffices distin-
guishing between binding sites and exposed protein surfaces. The recent work presented by
Keskin et al. [54] adopts a similar approach to extract hotspots from the non-redundant set
of representative interface clusters (103 of them) found previously. In this study, a residue
was defined to be conserved if it existed at a particular spot among interfaces of similar ar-
chitectures, with a statistically significant frequency. To find these frequencies, members of
a given non-redundant interface cluster were then aligned structurally along their spatially
recurring substructural motifs. Alignment was done by MULTIPROT. Notice that the clus-
ters had been arranged such that the common motif is maximized. Then, the frequencies
of identically matched residues along the multiply aligned substructures were considered.
If a residue matched identically on more than 50% of the multiply aligned structures, it
qualified as a hotspot.

This procedure further filters the dataset of interface clusters down to 67 clusters that
contains at least one hotspot. The final set of clusters contains members as diverse as
enzymes, antibodies, viral capsids, etc. These clusters are called interface clusters and their
representatives are called representative interfaces in the template dataset. The complete

list of these 67 complexes is given in Appendix B.

3.1.2 Target Dataset

This dataset is a sequentially non-redundant subset (with a sequence identity upper limit
of 50%) of all the polypeptide chains and complexes existing in the PDB. Every pair of
member structures in this dataset is checked for potential interactions. This task, which
is elaborated in Subsection 3.2, is accomplished by measuring the similarities of target
members with representative interfaces in the template dataset. The member polypeptide
chains may be in the form of monomers or in the form of isolated constituent chains of

multimeric complexes. As of January 27, 2004; the target dataset contains 6170 structures.

Generation

The generation of this dataset is a two step process. The first is a preprocessing step

that involves downloading of the set of proteins obtained by applying a sequence identity
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Figure 3.3: Summary of template dataset generation process

filter of 50% to all existing protein structures in the PDB (online service is available at
http://www.pdb.org [95]). The list contained 5427 proteins, as of January 27, 2004.

However, the list is not 100% sequentially non-redundant, homologies within partner
multimer chains have not been eliminated, because these proteins were considered in their
native, complex forms during initial filtering. We handle the case of unhandled homologies
to some extend in the second step of the prediction algorithm, elaborated in Subsection 3.2.1.
This step effectively expands the preprocessed dataset by splitting multimeric proteins into
their constituent chains. But to avoid disturbing non-redundant nature of the dataset, before
splitting, it carries out pairwise sequence alignments (by invoking FASTA) and removes
the homologies between partner chains of complexes (i.e. homodimers, homotrimers...).
This procedure is not only expected to remove sequence redundancies, but also structural
redundancies to a significant extent, because it is a known fact that a sequence similarity
greater than 35% imposes perfect structural similarity [96].

After these processes, we still cannot achieve perfect non-redundancy, because two chains
from different complexes may also be homologous, which we do not check for efficiency

considerations. After these steps, the target dataset becomes a subset of all the polypeptide
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chains and complexes existing in the PDB. The polypeptide chains may be in the form
of monomers or in the form of isolated constituent chains of multimeric complexes. As
of January 27, 2004; the target dataset consists of 6,170 structures. 1,981 of these are
multimeric and 4,189 are monomeric. Of the monomeric structures, 2,483 are derived from

complexes. Figure 3.4 summarizes the target dataset generation process.

Figure 8.4: Summary of target dataset generation process

3.2 Prediction Algorithm

To find every possible binary interaction between pairs of structures in the target dataset,
we need to devise a method to measure the extend of their resemblance to partner template
interface chains. There are two parts to this problem. The first one is developing of a scoring

function that can discriminate between similar and dissimilar structures and developing a
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search method that will be able to find a similar region on the target surface. A simple,
yet powerful scoring function is shape complementarity. However, it is by itself usually
insufficient to describe the stability of the association. From a thermodynamic point of view,
the free energy decrease upon association must be considered, the greater the free energy
decrease, the more stable the complex. To encompass this energetic factor, we enhance the
function with the inclusion of evolutionary data, namely the hotspots elaborated in Section
3.1.1.2. To use the similarity function, it is necessary to describe the surface of the target
protein, because the functionally important sites of proteins that participate in interactions
reside mostly on their biological surface (see Section 3.2.1).

The second one is using a search method that will be able to “find” the binding region
with a reasonable likelihood. The alignment algorithm we employ, which will be mentioned
shortly, handles this requirement.

The automated interaction prediction algorithm mainly involves extraction of target pro-
tein surfaces and successive alignment of these surfaces with the partner chains of template
interfaces, in an all-against-all manner. It consists of two main phases: dataset expansion
and comparison. The first phase performs the required manipulations on the target protein
and prepares it to be processed in prediction phase. Prediction phase is responsible for cal-
culating similarities of the target structures with representative interfaces in the template
dataset. Refer to Algorithm 1 for the pseudo code of the prediction algorithm. Figures 3.5
and 3.6 gives schematic and flowchart representations of the prediction algorithm, respec-

tively.

3.2.1 Target Dataset Expansion Phase

The major steps of the target dataset generation phase are,
1. splitting of multimeric target structures into monomeric compartments
2. extraction of target surfaces.

The first step effectively expands the target dataset, but care is taken to avoid disturbing
the non-redundant nature of it. This is accomplished by eliminating possibly identical
constituent chains, like in cases of homodimers. Identities are detected through sequence

alignment (using FASTA). The second step focuses on residues with solvent accessibility,
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Algorithm 1 Protein-protein interaction prediction algorithm
1: for all proteins in target dataset do

2:  if protein structure determined by NMR then
3: protein «— take first NMR structure

4: end if

5:  target structures « protein

6: if protein is multimeric then

T: monomers < split protein into its constituent chains
8: monomers < eliminate homologies between monomers
9 target structures «— target structures + monomers
10: end if

11:  target surfaces « extract surface of target structures

12:  for all surfaces in target surfaces do

13: for all inter faces in template dataset do

14: for all pariners in inter face do

15: if (size of surface) > 0.7 x (size of partner) then

16: alignments <+ structurally align surface with partner

17: best alignment < calculate similarity scores (alignments)
18: if similarity score(best alignment) > threshold then

19: similarity listpariner < flag corresponding target structure for prediction
20: end if

21: end if

22: end for

23: end for

24: end for
25: end for

26: proceed to verification step<— similarity lists

based on the observation that interface residues are exposed to solvent when the partner
chain is removed [97]. Residues whose relative accessibility (see Appendix A) are greater

than 5% qualify as surface residues, in the process [57]. Surfaces are extracted, based on
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the fact that residues forming an interface are mostly exposed to solvent prior to complex

formation and buried after. Below is a line-by-line description of the algorithm.

Algorithm

For each protein picked from the target database, preparation phase (lines 2-11) first checks
for the experimental technique used for determination of its structure. If the technique was
Nuclear Magnetic Resonance (NMR), it is highly probable that its structure file contains
many alternative models. This is an inappropriate format for the algorithm to be provided
as input. Line 3 extracts the first model out of its structure file, converting it into an
appropriate format.

Lines 6-10 effectively expand the target dataset by splitting each picked protein into its
partner chains, provided it is multimeric. However, for the sake of redundancy avoidance,
probable homologies between these partner chains (i.e. homodimers) are eliminated by
performing an all-against-all sequence alignment between them. Sequence alignment is
accomplished by invoking FASTA. Two chains are considered homolog if their sequences
match with 100% identity. Homolog chains are grouped into sets and a representative is
chosen among each set (line 8).

Then follows the surface extraction process. Here we assume that proteins interact
through their surface. In support of this, it has been observed that most of the protein
interfaces are exposed to the solvent when the partner chain is removed [97]. Line 11 extracts
the surfaces of the resulting target structures by invoking NACCESS [98]. This algorithm
calculates the atomic accessible surface defined by rolling a probe of size 1.4 A (imitating
a water molecule) around a van der Waals surface (see Appendix A for details). Residues,
whose relative surface accessibility (percent accessibility compared to the accessibility of
that residue type in an extended ALA-X-ALA tripeptide) are greater than 5% qualify as
surface residues [57].

This ends the dataset generation phase. Notice that, thanks to this expansion, the algo-
rithm predicts interactions on both complex and chain basis (complex-complex, complex-

monomer, monomer-monomer interactions).
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3.2.2 Prediction Phase

Following the dataset generation phase, algorithm proceeds to prediction phase (lines 12-
26). Here, in the light of our rationale, the algorithm checks whether particular regions
on target surfaces resemble complementary partners of representative interfaces in the tem-
plate dataset. This necessitates a defined way to measure the structural and evolutionary
similarities between a target surface and a representative interface partner. But before the

similarities can be measured, the structures need to be structurally aligned.

Algorithm

First, each representative interface picked from the template dataset is split into its con-
stituent partners (line 14). Because template dataset comprises of two-chain interfaces
only, this process always results in two partners per interface. Not to impede performance,
a conditional statement ensures that interfaces are split only once.

These individual partners are then structurally aligned with the target surface in line
16, by invoking MULTIPROT [87]. This is an algorithm for detecting common geometrical
cores between given protein structures in a sequence-order-independent fashion. This feature
makes MULTIPROT a favorable selection for the task, since protein surfaces and protein-
protein interfaces have a discontinuous nature. MULTIPROT returns 10 best substructural
matches resulting from every possible alignment. Each substructure corresponds to different
regions on the surface, bearing different levels of structural complementarity to the interface
partner. Among these alignments, line 17 seeks the most favorable alignment that maximizes
our similarity scoring function. This scoring function enables us to discriminate correctly or
near-correctly aligned orientations from incorrectly aligned ones. Section 3.2.2.1 elaborates

on this function.

The condition at line 15 restrains that interface partner size be at least 7/10th of the
target surface size. (Size of a structure is defined as the number of residues it contains,

determined by counting number of C-a atoms). This condition keeps relatively small inter-
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Figure 3.5: Schematic summary of the prediction algorithm

faces out of computations. Such relatively small interfaces are likely to align perfectly with
target surfaces and yield high similarity scores, causing biased and unselective results.
After the completion of successive structural alignments, the target structures yielding
a similarity score > 0.95 are selected and a similarity list for each interface partner is
obtained. This cutoff value was optimized after a trial-and-error procedure for achieving
the most homogeneous distribution of similarity lists among template interfaces. These lists
contain the names of target structures whose surfaces were found to contain at least one
region that resembles the corresponding representative interface partner, during successive
structural alignments. As discussed previously, any two target structures from similarity
lists of complementary representative interface partners “possibly interact”. This means if
the similarity lists of corresponding partners of a representative interface contain N and M
target structure names, respectively, we obtain N x M predictions (see Figure 3.5). These
predicted interactions will be through the substructures that yielded maximum similarity

score during structural alignment. A prediction is uniquely represented by (a,b,c) triplets,
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Figure 3.6: Flowchart summary of the prediction algorithm

where a and b are predicted targets and c is the template interface via which the interaction
was predicted. The extent of favorableness of the predicted interaction is quantified by the
sum of the similarity scores of the target pairs. The reader is referred to Appendix C, Table
C.1 for the list of some prediction results.

These predicted interactions are finally supplied as input to the verification step (line
26), and the protein-protein interaction prediction algorithm terminates. Reader is referred

to Section 4.1 for implementation details of this algorithm, and C, Table C.2

3.2.2.1 Scoring Similarity

Several methods already exist for judging the quality of a protein-protein interface, in-
cluding measurement of the electrostatic complementarity [99] and measurement of surface
complementarity [100]. However, both of these methods are computing-time intensive, and,
depending on the fine details of the parameters of calculation, can take hours to complete
for a single protein interface. Here we present a new metric which can simply and quickly
judge the quality of a protein-protein interaction prediction.

The similarity scoring function is made up of two sub-functions that correlate with the

defining features of the template dataset. These are evolutionary similarity and structural
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complementarity scoring functions.

The similarity scoring function is defined as
a1 (evolutionary similarity score) + (1 — au) (structural complementarity score) (3.1)

The evolutionary similarity scoring function reflects the number of identically matched
residues with hotspots along the aligned target substructure. On the other hand, structural
complementarity scoring function quantifies the quality of geometrical complementarity.

o1 represents the relative importance of evolutionary similarity to structural comple-
mentarity. Hotspots have conserved through evolution due to their vital roles in keeping
the partner proteins intact, therefore our premise is that hotspots bear greater importance
in defining an interface than geometrical complementarity. For this reason, we select to
be greater than 0.5 (actually it is 0.6). There might be cases where a partner of an rep-
resentative interface contains no hotspots (remember that the template dataset consists of
representative interfaces containing at least one hotspot). In this case, we choose o to be

0.

Measuring Evolutionary Similarity

The evolutionary similarity along the structurally aligned interface and target surface pair

is measured by,

() o

where hy, is the number of residues on the target surface that match identically with the
hotspots on the template interface, along the aligned substructure; 4; is the total number
of hotspot residues on the template interface; o1, o2 and By are heuristically fixed terms,
that were observed to model the phenomenon most appropriately.

The first term, (%’}) 01, reflects the ratio of successfully matched hotspots, out of all
hotspots available. Greater the ratio, greater the similarity; however, this relation is not a
linear one. The score rises sharply for smaller, but settles down for higher ratios. This is
because multiple occurrences of target residues matched with template hotspots not only
require that the residues are of the same type, but also that their spatial distribution

is identical. For smaller number of matched residues, the probability increase is more
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significant with increasing ratio, but the similarity becomes more and more obvious as the
ratio approaches 1, so the increase is less significant. Such a trend can be appropriately
represented by root square function, therefore o1 was set to 1/2.

The ratio of identically matched target residues is not solely adequate for measuring the
similarity, a second term must be introduced that captures the absolute number of matched
hotspots. For example, the first term would yield the same score for both 4 target matches
out of 5 template hotspots and 40 target matches out of 50 template hotspots. However,
it is obvious that the extent of similarity in the second case is much stronger. To handle
this phenomenon, the second term (8; b, °2) introduces a “bonus” term, that increases with
the number of matches. However, again, this is not a linear relationship. The similarity
becomes more and more obvious with increasing number of matches, for this reason oo was
set to 1.1, displaying a power law behavior (notice that hy, > 1). £ coefficient, which was

set to 0.05 after a trial-and-error procedure, adjusts the range of the power law function.

Measuring Structural Complementarity

The structural complementarity along the structurally aligned interface and target surface

pair is measured by

RMSD )

Tm

Im — §
012(?_5 +ﬂ2rm)+(1—a2) (1—7 (3.3)
where 7, is the number of structurally matched residue pairs along the aligned sub-
structure; r; is the number of residues on the template interface; § is the minimum allowed
structural match ratio; ay is the relative importance of the alignment size to alignment qual-
ity; RMSD is the root square mean deviation of the alignment (see Appendix A); B2, v, are

heuristically fixed terms, that were observed to model the phenomenon most appropriately

after a trial-and-error procedure.

Im,

5
The first term, (—"1*:3— + Bs rm), reflects the number of residue pairs along the alignment,
namely, the alignment size.
Here, as in the case of finding the evolutionary similarity, the ratio of structurally

matched pairs to total number of residues in the interface (fr’fa) is considered. But this

m. ..

5
time, a threshold, 4, is introduced (%—) and the ratios from [4, 1] interval are mapped to

[0,1] interval. We set & to be 0.5. This is because we only concentrate on alignments with
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along which at least half of the template interface residues are matched. The alignments that
do not satisfy this condition are considered too weak to define meaningful complementarity
for our concerns (and consequently yield negative scores).

For the reasons argued in the discussion of evolutionary similarity formula, an additional
term must be introduced to handle the absolute number of matched residue pairs (827p,).
Similar to Bi, B2, which is heuristically set to 1/150, to adjust the range of the function.
However, this time, no power term is introduced.

The second term, (1 -~ 7%52), reflects the quality of geometrical complementarity,
through the root mean square (RMSD) of the alignment. RMSD is a measure of the
quality of the alignment, the lower the better (see Appendix A for detailed description).
The quality of the alignment is generally correlated with the size of the smallest structure.
However, RMSD by itself may be misleading, i.e. smaller structures tend to align easily
with a number of regions on the larger one, yielding low RM SD values. In other words, an
alignment of size 10 and an alignment of size 100 may yield same RMSD values, although
it is obvious that the alignment of size 100 is much more significant in terms of geometrical
complementarity. To this effect, we introduce an “RMSD per residue” heuristic (%Q)
to account for the size factor. This heuristic is inversely proportional to the quality of the
geometrical complementarity, therefore we subtract it from 1, to make it obey the convention
(increasing with similarity) adopted throughout the scoring functions. The coefficient «
adjusts the range of the “RMSD per residue” heuristic, after a trial-and-error procedure,
was set to 5.

ay reflects the relative importance of alignment size to quality of geometrical comple-

mentarity. It was set to 0.7.

8.2.2.2 Scoring Predictions

Once the similarities are scored, it is an easy task to derive a function for scoring the
likeliness of a prediction. Basically, the prediction score is defined as the sum of similarity
scores of predicted interaction partners (equation 3.4). However, because we cannot define
the similarity of a template chain to itself, we have to use a different function for predictions
that involve a template chain. In this case (equation 3.5), we multiply the similarity score
of the non-template partner by two.
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prediction score = similarity scorees + similarity scorengn (3.4)

prediction score = 2 z (similarity scorenon—template) (3.5)

The reader is reminded that target structures with similarity scores > 0.95 qualify as
“similar structures” (see Section 3.2.2); consequently, the lower threshold for considering a

prediction as “significant” becomes 2 x 0.95 = 1.90.

3.3 Prediction of Binding Partners of a Given Protein

Once all the possible predictions within the target dataset are found, it is an easy task to
find the binding partners of structures in question. This necessitates slight modifications to
the target dataset and to the prediction algorithm.

First, we replace the target dataset with the structures in question. Then the dataset
is expanded and run the algorithm in the same way as before, to get the similarity lists.
Remember that these similarity lists tell us the target structures whose surfaces contain
regions structurally similar to each template partner. In the case of finding binding partners,
we think the opposite way: we find the template interface partners that are structurally
similar to surfaces of structures in question. The question then remains to find the original
target structures similar to the complementary partner of the template interface.

We describe this in an example. Consider that we would like to know to which structures
in our “original” target dataset, molecules with PDB codes lycr, 1rvl and lycq can bind.
We allocate a new target dataset and include these molecules as its members. Then we
run the algorithm as usual. In the dataset expansion phase, the constituent chains of these
molecules are included to the target dataset, after homologies are removed. Target dataset
now contains lycr (complex), lycrA (A chain), lycrB (B chain), 1yeq (complex), lycqA
(A chain), 1ycqB (B chain), 1rvl and 1rvl1ABC (A, B and C are identical, A is taken
as representative). After the prediction phase, we get the similarity lists which contain
information on the template partners that have structural similarities with surfaces of new
target structures. As an example, take lycrA. After the prediction phase, it is found that
the surface of 1ycrA has similarity with the template interface partner, 1azeB. We can then

say that the “original” target structures, that were found to be similar to complementing
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partner of lazeB, (namely, lazeA) are potential binding partners of 1ycrA (through the
region that aligned with lazeB, yielding maximum similarity score).

This case was actually performed and the reader is referred to Section 5.6 for the results.

3.4 Verification of Predicted Interactions

The resulting similarity lists from the prediction algorithm, containing the identifiers of
target structures that qualified similar to corresponding representative interface partners,
are then passed to an automated protein-protein interaction verification algorithm (Algo-
rithm 2). This algorithm checks whether the predicted interactions actually exist in two
publicly available interaction databases and the PDB itself. These two interaction databases
are BIND and DIP; and interactions in PDB are from the redundant set of 21686 two-chain

interfaces - see Section 3.1.1.1).

Algorithm

Before this check can be performed, the corresponding identifiers (cross references) of target
structures in these interaction databases must be determined. Structures in our target
dataset are referenced by PDB codes. However, entries in the interaction databases have
their own referencing nomenclature; therefore there is a need to identify cross references of
targets in respective interaction databases. This is accomplished by finding the homologs of
target sequences in corresponding databases, through multiple sequence alignment between
target sequence and entire sequences of the corresponding database, using FASTA. The
reader is referred to Algorithm 2 for the pseudocode. Alignments yielding expectation
values > 10® upon are considered homologous to target sequence (line 4). By this way,
“translated” similarity lists were obtained, containing corresponding identifiers of target
structures in databases of question (line 6). Notice that due limitations imposed by sequence
alignment process, only monomeric targets can be checked for cross references. Small chains
are likely to align easily with many of the proteins and therefore yield low expectation values,
therefore they are hardly cross-referenced. One final remark is that, due to nature of the
translation method, a target may have more than one representations (homologs) in the

interaction database.
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Algorithm 2 Algorithm for verifying predicted interactions
1: for all listsipterface in similarity lists do

2:  for all databases in {DIP, BIND, PDB} do

3 for all targets in listinierface dO

4 homologsiarge: +— find homologs of target in database
5t end for

6: listinter face < replace targets with their homologs

7 for all left targets in left partner sublist do

8: for all right targets in right partner sublist do

9: for all Ayep; in homologsiess target dO
10: for all hyigns in homologsrigns targer Ao
11: check whether hi.p; and hrign: interacts in database
12: end for
13: end for

14: end for

15: end for

16: end for
17: end for

18: record all verified target pairs along with corresponding frequencies and homologs

Once the translation is done, for BIND, DIP or PDB, predicted interactions are checked
for existence in the domains of interaction databases. In the case of PDB, we check whether
the prediction exists in the entire list of two-chain interfaces existing in the PDB [27]. Be-
cause a target may have multiple representations per interaction database, a prediction
may require multiple checks for verification. For example, if target structures A and B were
predicted to interact, having 3 and 5 representations in DIP, respectively, 3 x 5 = 15 inter-
actions can be represented in DIP. Notice that each and every one these interactions have
to be checked for existence in interaction DIP, instead of 1. For 62,616 distinct interaction
predictions (see Chapter 5 for numerical details on results), the algorithm is prone to take

a long time to completion (see Section 4.2 for implementation details).
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Chapter 4

IMPLEMENTATION

Both prediction and verification algorithms were implemented in Python Language, due
to its powerful attributes regarding Bioinformatics related tasks. Both algorithms take fairly
long times to completion, 7.e. on a Linux machine with 2.4 GHz Pentium processor and 1GB
memory, the prediction algorithm needs around a week and the verification algorithm needs
around a month. This limitation necessitates parallelization for more reasonable response
times. Parallelized version of the both algorithms have proven to achieve almost linear
speed ups, prediction algorithm was observed to perform 29.39 times faster at a 32 node
Beowulf cluster. Prediction and verification algorithms were observed to take around 1 day
and 4 days at a 8 node Beowulf cluster, respectively.

Section 4.1 elaborates on parallelization of the prediction algorithm, providing details
on its implementation, performance statistics like timing and speed up data. The following
section contains details on parallelization of the verification algorithm. Both sections include

top level pseudocodes of the parallellized algorithms.

4.1 Parallelization of the Prediction Algorithm

The two computationally exhaustive tasks in the prediction algorithm are 1) extraction
of surfaces of target proteins and 2) structural alignment of target surfaces with template
interfaces (lines 11,16 in Algorithm 1 of Chapter 3, respectively). The number of surface
extraction tasks is equal to the sum of number of structures in the target dataset (3687)
and the monomers derived from complexes (2483), which is 6170. The number of structural
alignment tasks, on the other hand, is equal to the product of number of target surfaces
(6170) and template interface partners (67 x 2), which is 826780. The original (serial)
algorithm was observed to take around a week on & single processor node (2.4 GHz Pentium
processor with 1GB RAM).

For a medium size Beowulf cluster of 100 nodes, it reasonable parallelize the algorithm.
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To this effect, we distribute the target structures to computation nodes and do the surface
extraction and structural alignment locally. This corresponds to partitioning target data,
but replication of the template data at each computation node.

To achieve efficient parallelization, we would like to distribute the computational load
to nodes as evenly as possible. This partitioning suggests a target dataset centric approach
where work for one target structure is considered as one “unit load”. At first sight, the
solution might look equivalent to even distribution of these “unit load”s, in other words,
target structures. However, this assumption lacks one observation: these “unit load”s are
highly variable. The computational load depends on the number of residues, number of
component chains and the shape of the molecule.

In our sample runs, we experiment with three possible ways of parallelizing the algorithm.
The way we partition the target data determines the parallelization scheme. After running
the algorithm with sample datasets, we evaluate the relative performances these schemes.

These three parallelization schemes are:

1. Partitioning the target dataset into sets with equal number of elements. Each node

gets roughly equal number of target structures to work on. (Partition Method 1)

2. Partitioning the target dataset into partitions such that the cumulative number of

residues in each partition are as even as possible. (Partition Method 2)

3. Partitioning the target dataset dynamically. We implement a master-worker model
where a worker asks a small set of target structures from the master to work on.
When finished, the worker requests more work until all PDB entries are processed.

(Partition Method 3)

Parallelization Scheme 1 The first parallelization scheme disregards all the factors that
may cause variances in “unit load”s. In this scheme, the list of target structures (in
alphabetical order of 4 character PDB identifiers for convenience) is traced and the
corresponding structures are copied to computation nodes in a round-robin fashion,
until the end of the list is reached. For this reason, our expectation is that work
imbalance would be the greatest among all three, which is in accordance with the

performance results 4.2.
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Parallelization Scheme 2 The second parallelization scheme takes into account the fac-
tors that may cause variance to some extent. The number of residues is very likely to
affect the number of computations and impact performance. In this scheme, again, a
list is traced and corresponding target structures are copied in a round-robin fashion,
but here the list is in the order of decreasing number of constituent residues (could
have been increasing, the result would not have changed). Because performance af-
fecting factors are regarded to some extend, we see that this partitioning scheme
outperforms the first scheme 4.3. However, how target residues are partitioned into
individual chains and in what shape they render themselves are not taken into ac-
count. Moreover, at line:15 in Algorithm 1 of Chapter 3, the innermost loop might
skip structural alignment of some protein/interface pairs at run time. These factors

are all prone to cause work imbalance.

In both of these schemes, a preprocessing stage decides in which way to partition the
target structures (by sorting the list respectively) and the dataset is distributed to compu-
tation nodes. In this regard, these partitioning schemes are static, i.e. no partition is done
during runtime. An alternative way is to partition the target structures during runtime,

hence employ a dynamic approach.

Parallelization Scheme 3 In the third partitioning scheme, a master-worker model is
implemented where one of the computational nodes is chosen as master and others,
as workers. In this model, a worker request a small set of target structures from the
master to work on. When computation is done, each worker requests more work until
all target structures at the master side are processed. The number of structures passed
on to a worker at a time is controlled by a variable called window size. This parameter
controls the tradeoff between the work balance and communication overhead: smaller
the window size, more balanced the work but more communication overhead. This
particular algorithm is very coarse grain in nature, i.e. the time lost during inter-
process communication is negligible compared to the time it takes for a unit load to
be processed. Therefore window size can be kept small for more balanced load without
significant communication overhead. After a trial-and-error procedure, window size

was set to 2.
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4.1.1 Implementation Details of Parallelization Schemes

Parallelization calls for the transfer of data and acknowledgement of status between nodes,
requires some type of a communication protocol. Pypar [101], an efficient, easy-to-use mod-
ule that provides an interface for message passing between processors, was used to realize
this purpose. Pypar acts as an interface for Python environment, enabling utilization of
an important subset of the message passing interface standard, MPI. As the name implies,
inter-node communication is done through dedicated messages over standard TCP/IP com-
munication channel.

Four types of messages have been observed to be adequate for all three of the paral-
lelization schemes. Pypar identifies message types via their unique “tag”s, hence, there are

four of them (table 4.1):

tag | message definition direction

0 | no more targets left | MASTER — WORKER
1 | more targets to come | MASTER — WORKER
2 idle message WORKER — MASTER
3 results message WORKER — MASTER

Table 4.1: Different types of Pypar messages and their meanings

Structure of Pypar Messages

The system calls for sending and receiving messages are as follows:

pypar.send(data, targetnodel D, tag)

data = pypar.receive(sourcenodel D, tag)

Any node can send and receive Pypar messages. A message contains payload (data),
the ID of the node it is destined to (targetnodelD), and a message type identifier (tag). A
message may be destined for a single node, or may be broadcast to all nodes. A receiving
node is able to identify by which node the is sent and what it is intended for, through

sourcenodelD and tag, respectively. It may decide to accept or reject the messages by
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imposing conditions on these variables. If the expression “pypar.any.source” is inserted for
sourcenodel D, the receiver accepts messages no matter what the source node is. Similarly,
if tag is replaced with “pypar.any_tag”, no condition is imposed on the message definition
for acceptance.

When the interpreter reads a pypar.send() call, it immediately creates the TCP packet
and sends the message. On the other hand, pypar.receive() is a blocking call, the pro-
gram halts upon its execution until the message that satisfies the fag and sourcenodelD

conditions.

Parallelization Schemes 1 and 2

In the first and second parallelization schemes (Algorithm 3), master generates a list L,
for each node, therefore there are n of them, where n is the number of worker nodes.
Master traces the list T' of structures in the target dataset, and appends their file names
to these lists, in a round robin fashion (line: 9). The order of T imposes no trend in terms
of computational load in scheme 1 (line: 3), whereas it is decreasing in order of number
of constituent residues in scheme 2 (line: 6). In the end, each sublist gets roughly equal
number of structures (lines: 8-10).

After sublist assignments are done, master sends each worker node its share of structures,
i.e. Afi] (lines: 11-13). Worker nodes, upon receiving the target structure file names (line:
21), copy the files from master to their local drives and run the prediction algorithm to
generate the respective (similarity lists, process times) (lines: 21-23). process times, are

fed back to master for assessment of parallel processing performance (line: 18).

Parallelization Scheme 3

In schemes 1 and 2, the target dataset was partitioned in a preprocessing stage and results
were sent back in a postprocessing stage, i.e. no pypar messages were in transit during main
prediction phase. In this scheme, the communication between the master and the workers
continues during the processing phase.

When the algorithm starts up, the master generates a window W; for each worker.
Tracing the list T of target structures (order is irrevelant), master appends each window (file

names of) w target structures and sends them to workers. Variable w is the window size.
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Algorithm 3 Parallelization algorithm for schemes 1 and 2

1: if node is MASTER then

2:  if parallelization scheme = 1 then
3: T « sort target structures in any order
4 endif
5. if parallelization scheme = 2 then
6: T « sort target structures with respect # of constituent residues
7. end if
8  prepare a list L; for each worker
9: for i =0 to # of target structures do
10: o =i mod (# of workers)
11: L,.append(Ti))
12:  end for
18:  for ¢ = 0 to # of workers do
14: pypar.send(ZL;, i, 0)
15:  end for
16: for ¢ = 0 to # of workers do
17: (similarity lists;, process times;) = pypar.receive(pypar.any_source, 3)
18:  end for
19:  join similarity lists
20: compute parallelization performance
21:  proceed to verification step «— similarity lists
22: else
23:  target_subset = pypar.receive(MASTER, 0) {node is WORKER}
24:  (similarity lists, process times) « run prediction algorithm(target_subset)
25:  pypar.send((similarity lists, process times), MASTER, 3)
26: end if

This variable determines the number of target structures master sends to a worker at a

time. For the reasons described above, it is set to 2. After broadcasting, master enters a

loop, where it blocks, listening to messages from workers (lines: 11-18). As in the previous
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parallelization schemes, upon receiving windows, workers copy the target structure files to
their local drives and start working on them. When a worker is done with its share of targets,
it sends a idle message (tagged 2) to master, telling that it is finished with the previous
window and ready to work on another one (line: 30). Upon receiving an idle message,
master empties the window, assigns it the next set of targets and send it back to the idle
worker node, with tag 1, meaning that there are remaining unprocessed targets (lines: 12-
18). To keep track of the progress, master updates a target pointer that points to the most
recently sent target in 7" (lines: 7 and 16). When this pointer reaches to the bottom of T
master replies to workers sending idle messages with no more targets left message (tag
0), (with dummy payload). Worker, upon receiving this message prepares and sends master
results message (tag 3), that carries its own (similarity lists, process times) pair. When
master ensures that it has received results from all workers, it exists the loop, compiles the

results, and proceeds to verification phase.

4.1.2  Assessment of Parallel Performance

We measure the respective performances of partitioning schemes via ezecution time, work
imbalance and speed up. ezecution time is the time it takes for the algorithm from start to

termination. The latter two are defined in equations 4.1 and 4.2,

. max runtime — average runitime
work imbalance = 29 (4.1)
average runtime

execution timegeriql
execution timepgraliel

speed up (4.2)

In equation 4.1, maz runtime is the execution time of slowest node and average runtime
is the average of execution times of nodes. Assuming the algorithm is run to completion,
execution timeseria) and execution timeparqle; in equation 4.2, are the execution single node
and multiple node (indicated) execution times, respectively.

We conducted performance tests on two Beowulf clusters, one with 8 nodes (cluster 1),
the other with 32 nodes (cluster 2). Each node is a Linux machine with 2.4GHz processor
and 1GB memory. We ran the algorithm on cluster 1 on a 534 entry sample subset of
our target dataset, for all three partition methods we proposed. Below are statistics for

execution times, work imbalances and corresponding speed ups (Tables 4.2 to 4.4).
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# workers | exec. time (sec) | work imbalance | speed up
1 19760 0% 1.0
2 10120 3.35% 1.95
4 5318 7.94% 3.7
8 2921 17.64% 6.76

Table 4.2: Performance statistics for Cluster 1, Parallelization Scheme 1

# workers | exec. time (sec) | work imbalance | speed up
1 19760 0% 1.0
2 10278 4.52% 1.92
4 5766 16.63% 3.42
8 3049 22.50% 6.48

Table 4.3: Performance statistics for Cluster 1 for Parallelization Scheme 2

These results show that performance statistics are worst for Parallelization Scheme 1,
and best for Parallelization Scheme 3, as expected. The last scheme clearly outperforms the
others, linear speed ups have been achieved (7.53 for 8 processors). In the light of this fact,
we repeated the experiment with an extended target dataset, now with 2072 structures.

The results show that we still get speed ups close to linear (Table 4.5).

Process Times

process times are timing data for in~depth assessment of parallelization performance. Work-
ers feed back their process times to worker, and the worker compiles them to get a broad
picture. Worker calculates keeps timings for its processing performance as well. Below is
the list of descriptions of various timing terms.

Below are the descriptions of timing data computed and fed back to master by workers.

target copy time time taken by a worker to copy target structures to local folder.

target size extraction time time lost while calculating sizes of chains of the target struc-

ture.
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# workers | exec. time (sec) | work imbalance | speed up
1 19760 0% 1.0
2 9844 0.26% 2.00
4 5009 2.00% 3.94
8 2623 6.20% 7.53

Table 4.4: Performance statistics for Cluster 1 for Parallelization Scheme 3

# workers | exec. time (sec) | work imbalance | speed up
1 75275 0% 1.0
4 18542 0.49% 4.05
12 6325 3.29% 11.90
16 4801 4.32% 15.67
24 3278 6.58% 22.96
32 2561 10.84% 29.39

Table 4.5: Performance statistics for cluster 2 for partition method 3

interface split time time lost during detection and splitting of individual chains of inter-

faces (local copies)

# of structures handled all structures handled. This number is the sum of target struc-

tures and all substructures derived from them

# of alignments performed how many times MULTIPROT was invoked to do a struc-
tural alignment.

useful working time total duration of worker doing useful work for prediction.
“listening” time time lost while worker waits for messages from master

overall running time overall time taken by process. This includes organization and send-

ing of results to master.

Below are the descriptions of timing data computed by master.
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target list preparation time total time taken by master in reading of the target dataset

and its initialization for partitioning.

partition generation time time taken by master in partitioning of the target dataset

into windows (Scheme 3) or lists (Schemes 1 and 2).

partition sending time time spent during creation of the TCP packet and sending of it

to a requesting worker. (applicable to parallelization Scheme 3 only)

similarity list generation time time taken by master to compile results gathered from

workers to form similarity lists.
useful running time this is the sum of running times above

overall running time overall time taken by master process. This is the sum of running

time of the slowest worker and the time spent in generation of the similarity list.

The reader is referred to tables 4.6 and 4.7 for timing statistics of a sample run of the

prediction algorithm on the original target dataset, that employs the third partitioning

scheme.
description average | standard deviation
target copy time 0.00 msec 0.0 msec
target size extraction time | 2818.6 msec 346.1 msec
interface split time 0.5 msec 0.0 msec
# of structures handled 1267.9 418.7
# of alignments performed 154480.4 50358.2
useful working time 62684.1 sec 160.4
“listening” time 829.8 msec 252.3 msec
overall running time 62770.0 sec 180.4 sec

Table 4.6: Timing data for workers, Partition Method 3

In the table displaying the performance statistics for workers (table 4.6) are represented
by averages and standard variations. The standard deviations give an idea about the vari-

ations in running times and number of target structures handled; smaller the standard
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description value

target list preparation time 96.0 msec
partition sending time 121.8 msec
partition generation time 17.45 msec

similarity list generation time | 244.5 msec

useful running time 479.75 msec

overall running time 63143.9 sec

Table 4.7: Timing data for master, Partition Method 3

deviations in running times signal better load balances. Notice the high deviation in the
number of structures handled (and consequently in the number of structures aligned) as
opposed to relatively lower deviation in running times. This demonstrates how well this
partitioning method compensates the differences in computational load per target structure,
hence, yielding much better load balancing statistics with respect to others.

In the table displaying the performance statistics for master, we see that master is idle
majority of the time. Time taken for tasks like generation and sending target structure
partitions (lists for Schemes 1 and 2, windows for Scheme 3) and generation of similarity
lists (which involve compiling and sorting results from workers) take time on the order of
milliseconds. Worker being idle most of the time ensures that responses to worker requests

are given promptly, ensuring best effort for most efficient parallelization.

4.2 Parallelization of the Verification Algorithm

"This algorithm involves exhaustive checks of whether predicted interactions also take place
in the interaction databases. Remember that targets may have multiple cross references
per interaction database; this means most of the predictions interactions will have multiple
cross references. As far as the verification algorithm is concerned, each and every one
these interactions have to be checked for existence in interaction databases and PDB, which
increases the load of this algorithm dramatically. (For example if target structure A and B
are predicted to interact, and if A and B have 3 and 5 representations in DIP, respectively,

3 x 5 = 15 interactions must be verified). This phenomenon necessitates parallelization of
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the algorithm.

We approach the verification algorithm the same way for its parallelization: it has a
similar nature to the prediction algorithm. However, this time similarity lists are partitioned
among worker nodes and work per similarity list is considered “unit load”. In the light of
performance results of the parallel prediction algorithm (Section 4.1.2), we adopt the same
“window based” dynamic approach of Parallelization Scheme 3 (Section 4.1.1).

In parallelization of this algorithm, sequence and interaction databases of BIND, DIP
and PDB are replicated in each worker node, to avoid network congestion during FASTA
runs (the files are read each time FASTA is invoked in the loop). The Pypar message
structure is identical to that of prediction algorithm, except for the types of data payloads.
The window size is chosen to be 2, again, due to the similar coarse grain nature of the
algorithm.

After receiving results from every node, master compiles these verification results and
outputs them in a list arranged with respect to template interfaces predictions are derived
from.

The pseudocode of the algorithm is principally the same with that of prediction algorithm
(Algorithm 4), except this time the elements of T are similarity lists (line 2), the message
in line 17 contains verification results and line 21 joins verification results instead. line 22 is
invalid in this case and the phrase “target_subset” is replaced with “similarity_list_subset”
in lines 25 and 26. Finally, line 29 sends verification results to master.
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Algorithm 4 Parallelization algorithm for scheme 3

1: if node is MASTER then

2:

3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:

T « sort target structures in any order
prepare a window W; for each worker
for ¢ = 0 to # of workers do
pypar.send(W;, i, 0)
end for
repeat
message = pypar.receive(pypar.any_source, pypar.any_tag) {tag is 2 or 3}
if tag = 2 then
prepare window Wpyree
if end of T not reached then
pypar.send(Woyrce, i, 1)
else
pypar.send(Wsource, i, 0)
end if
else
(similarity lists, process times)soyrce — Mmessage
# of results messages «— # of results messages + 1
end if
until # of results messages = # of workers
joln similarity lists, calculate performance statistics « process times

proceed to verification step « similarity lists

else

repeat
target_subset = pypar.receive(MASTER, pypar.any_tag) {WORKER}
run prediction algorithm(target_subset)
pypar.send(null, MASTER, 2) {send idle message}

until tag =0

pypar.send((similarity lists, process times), MASTER, 3)

30: end if
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Chapter 5

RESULTS AND DISCUSSION

This chapter contains details on results of protein-protein interaction prediction and
verification algorithms, along with relative explanations, discussions and future directions.
The following results are obtained after running the algorithms on datasets described in
Chapter 3.

In Section 5.1, the reader can find tables displaying statistical figures on the results of
the interaction prediction algorithm, along with their explanations and related discussions.
Similarly, Section 5.2 discusses results of the verification algorithm supported by relevant
statistics. Sections 5.3 and 5.4 include tables of high scoring predictions and verifications
that might be of interest. The section that follows elaborates on predictions of particular
biological significance. Following these, Section 5.6 elaborates on results of a case study
to find the binding partners of two biologically important proteins: P53 and MDM2. The

remaining chapter contains discussions on results, along with proposed future directions.

5.1 Prediction Statistics

As of January 27, 2004, the target dataset contains 6170 structures. 1981 of these struc-
tures are multimeric (in complex form), the remaining 4189 are monomeric. 2483 of these
monomeric structures are derived from complexes, through splitting of the constituent
chains of complex structures. During splitting homologous chains are grouped and a sin-
gle representative is chosen to eliminate redundancy. However, notice that this process
only partially removes redundancy because two chains from different complexes may also
be homologous, which we do not check, we only check homologies in the native states of
complexes. Nevertheless, we assume these possible homologies were greatly reduced, during
the filtering of the PDB entries with respect to sequence identity, during generation of the
target datset (see Section 3.1.2).

Table 5.1 displays the number of predicted interactions and their distributions with
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interaction type all | distinct | unigue
monomer-monomer | 42208 | 31980 28531
monomer-complex | 33399 { 25448 22403
complex-complex | 6715 5188 4491
TOTAL 82322 | 62616 55425

Table 5.1: Distribution of predicted interactions

respect to monomeric or multimeric (complex) natures of partners. The distribution of pre-
dictions are in accordance with the distribution of target dataset, 4.e. monomeric structures

dominate both the target dataset, consequently the predictions.

Three Ways of Counting Predictions

Notice that there are three different ways of counting predictions: all, distinct and unique.
all category includes every (targetl, target2, template) prediction triplets, disregarding re-
dundancies (template is the interface on which targets were structurally aligned for pre-
diction). distinct is the number of non-redundant triplets. The source of redundancies
responsible for the difference between all and distinct are cases when two proteins (A and
B) appear in the similarity list of both sides of the template. In this case, an interaction
between A and B will be counted twice. The binding sites may be identical but is not
likely unless the left and right partners of the template are identical (for templates with
identical partners, see entries indicated with (*) in Table B.1 in Appendix). unique is the
non-redundant list of predicted target pairs, (targetl, target2). The templates through
which the predictions were made are disregarded in this case. The difference between dis-
tinct and unique stems from the fact that a prediction between two particular proteins may
be detected via more than one template. In these cases, we expect these predictions to have
different binding sites, because the template dataset is structurally non-redundant.
Monomer-monomer predictions contain significant subsets of inner complex predictions,
these are listed in Table 5.2. Inner complex predictions occur when two derived monomers
belong to the same complex (i.e. the same PDB code). We expect most of these predictions

to be verified in PDB (redundant set of 21686 two-chain interfaces of Keskin et al. (2004)
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interaction type | all | distinct | unique

homolog 284 284 242
non-homolog 184 137 119
TOTAL 468 421 361

Table 5.2: Distribution of predicted inner complex interactions

- see section 3.1.1.1) during the verification phase; unverified ones may reflect newly intro-
duced PDB structures that were missing at the time template dataset was generated, or
interesting interaction possibilities within chains of complexes that do not exist naturally.
Some of the monomeric interaction pairs may have 100% sequence identity (these identities
were discovered in prediction phase, see Section 3.2.1). Such predictions are termed as ho-
molog predictions. Notice that these predictions are a subset of inner complez predictions.
The remaining predictions within inner complex predictions are non-homolog predictions.
Notice that for the reason described above, we cannot detect homolog pairs in the partially

redundant set of derived monomers.

5.2 Verification Statistics

interaction database | interactions | as of date
DIP 43892 25/01/2004
BIND 31243 25/01,/2004
PDB 21686 18/07/2002

Table 5.3: Sizes of interaction databases

Table 5.3 shows the sizes of the interaction databases of concern, along with the dates
these values were calculated. We have opted for redundant, complete lists of interactions
DIP BIND and PDB for the sake of completeness. This is because the verification phase has
to cover every naturally occurring interaction, in order to eliminate the risk of missing any
biologically significant verifications (i.e. if an interaction occurs in both homo saphiens and

mus musculus organisms, we would like to verify both of them, no matter the homology).
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intr. database | X-ref’d structures | prac. max. ther. max.
DIP 2603 of 4189 4107 of 28531 | 10137 of 28531
BIND 2193 of 4189 1739 of 28531 | 6736 of 28531
PDB 4182 of 4189 1497 of 28531 | 27837 of 28531

Table 5.4: Projections of predictions on interaction databases

The first and second columns in Table 5.4 show the name of the interaction database
and the number of cross referenced target structured in them (out of only monomeric target
structures - see following paragraph for explanation). The numbers in third and fourth
columns show the practical and theoretical maximum values unigue verification values can
assume. The practical maximum values (column 3 - prac. maz) give us the upper bound on
the number of predictions that can be verified in the corresponding database. These values
are determined in the following way: in the interaction database of question, every cross-
referenced target structures are detected (if available). Then the interactions (edges) that
exist between these cross-referenced nodes are counted. Naturally, the number of verifica-
tions can never exceed this value. However, there may be some predictions whose partners
are cross referenced (corresponding nodes exist) but no interaction is reported between them
(no edge exists between nodes). This phenomenon suggests that one may define another
upper limit for number of verifications assuming that an interaction is reported between
every cross referenced target structure (there exists edges between every cross referenced
node in the interaction database). Although this condition is impossible in practice, the
number gives us an idea about the coverage of the interaction database in question (column
4 - ther. maz.). The two values in columns 3 and 4 are given out of the number of unique
monomer-monomer predictions. This value reveals the size of the domain of predictions
we work on. We consider unique predictions, because interaction data in databases are in
pairs, they do not contain a third intermediate data, number of distinct predictions does

not have a meaning in this sense.
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Limaitation in Finding Cross References

Because finding cross references involves sequence alignments (see section 3.4) and because
sequence alignments are performed between protein chains, only monomer-monomer pre-
dictions can be considered for verification.

Notice that almost all of the (monomeric) targets are cross referenced in PDB interaction
dataset (4182 out of 4189 target structures). This is an expected outcome, because the PDB
interaction dataset contains a redundant list of all complex structures in the PDB and we
expect the majority of the target structures to share similar sequences with structures in
this dataset. The small discrepancies are most probably due to the missing representations
of the newly introduced complex structures introduced during the period between their
generation (template dataset was generated on July 18, 2002; target dataset was generated
on January 27, 2004). The almost complete coverage is also reflected in theoretical and
practical maximum values. The theoretical maximum number predictions (27837) is very
close to the number of unique monomer-monomer predictions (28531). However, this trend is
absent in the actual verifications numbers (1187 distinct, 1094 unique), because evolutionary
data (structurally conserved hotspot residues - see section 3.1.1.2) has a dominant effect in
evaluation of similarity and PDB interaction database exhibits no clustering with respect

to hotspots.

intr. database all distinct unique
DIP 2074 651 597 of 4107
BIND 1116 460 431 of 1739
PDB 145517 | 1187 | 1094 of 1497

Table 5.5: Numbers of verified predictions

Table 5.5 displays the number of verified pairs in DIP and BIND interaction databases,
as well as PDB (redundant set of 21686 two-chain interfaces of Keskin et al. (2004) - see
section 3.1.1.1).
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Three Ways of Counting Verifications

Similar to the case in counting predictions, there are three ways of counting verifications.
Verifications in all column include every verified instance of (targetl, iarget2, template)
prediction triplets. There are redundancies in these numbers, as a prediction may have
been verified many times. In distinct, redundancies caused by multiple verifications of
(target1, target?, template) are removed. Unique is the non-redundant list of (targetl,
target?) verifications, disregarding the templates through which predictions were made.
The practical maximum values (see Table 5.4) are indicated in unique column, to show
the maximum number of interactions that could have been verified in respective database.

The reader is referred to Section 3.4 for details on the verification algorithm.

5.3 High Scoring Predictions

For a list of selected high scoring predictions, refer to Table C.1 in appendix. In this table,
the first 4 letters in columns 1, 2 and 5 are PDB representations of proteins, the following
letters are PDB chain identifiers. In columns 1 and 2, multiple chains are enclosed in
curly brackets, to indicate that the chains are identical and the prediction applies to all of
them. Sequence of chain identifiers with length greater than 4 are indicated by two dots
(i.e. 1ggh{A..L}), provided they appear in alphabetical order. In column 5, the last two
letters indicate between which chains of the structures template interface exists. Notice
that the order of these two letters has a significance, the left partner of prediction was
picked from the similarity list of the first template chain, the right partner was picked from
the similarity list of the second template chain. Column 3 displays in which interaction
databases prediction was verified, D stands for DIP, B stands for BIND and P stands for
PDB (redundant dataset of interfaces in PDB, see Section 3.1.1.1). Columns 6 and 7 are
respective functions of target partners, as they appear in cross referenced SWISSPROT
entries, queried via SWISSPROT Sequence Retrieval System (SRS) [102].

While picking predictions for this table, for the sake of preserving variety in protein
functions, we excluded homodimers, inner complexes and picked representatives among

predictions between proteins of the same or similar function.
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Binding Sites

Notice that the prediction partners may be multimeric. In the target dataset expansion
phase 3.2.1, non-homolog subset of constituent chains of these multimeric structures are
introduced to target dataset. This phenomenon brings forward two different possibilities
for predicted binding sites on the complex and its isolated monomeric forms, provided we
keep the opposite prediction partner the same. 1) if the predicted binding site the monomeric
form is not buried (in other words, on the surface) in the parent complex structure, then our
prediction algorithm is most likely to find same binding sites in both forms. 2) if the binding
site is buried, then the algorithm may assign a different region on the chain in complex form,
or a combination of multiple chains. For more information on predicted binding sites, the

reader is referred to the URL http://gordion.hpe.ku.edu.tr/ppi.

5.4 High Scoring Verified Predictions

For a list of selected high scoring verified predictions, refer to appendix C, Table C.2.
Relevant details on representations and columns can be found in Section 5.3.

For more information on verifications (i.e. how many times the prediction was veri-
fied, through which nodes and edges in the dataset), the reader is referred to the URL
http://gordion.hpe.ku.edu.tr/ppi.

5.5 Some Biologically Significant Interaction Predictions

In this section, we discuss two examples in detail. Both cases are verified neither in
DIP/BIND nor in PDB, but the literature search strongly suggests that such interactions

exists (first case) or quite likely to exist (second case).
BRCA1 - RAD50 ATPASE

e 118dB«1miuA, via 1aq5AC, prediction score: 1.989

e 118d«1miuA, via 1ag5AC, prediction score: 1.989

In this case, the residues 2846-2882 in BRCA1 (PDB reference: A chain of 1miu, SWIS-
SPROT reference: BRC2.MOUSE) are observed to bind to the residues 395-434 in RAD50
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ATPASE (PDB reference: A or B chain of 118d, SWISSPROT reference: RA50_PYRFU).
We find the identical binding sites in both 118dB (monomeric) and 118d (complex) cases,
which means that the predicted binding site preserves its solvent accessibility in both
monomeric and complex forms.

BRCAL1 protein, as a tumor suppressor, plays an important role in maintaining genomic
stability. Through several functional domains it contains, BRCA1 has the ability to interact
with numerous proteins and to form complexes. There exists direct evidence in literature
that BRCA1 interacts with RADS0: it has been reported that disruption of the potential
of BRCAL1 to interact with RAD50 (via inherited mutations or epigenetic mechanisms in
sporadic cancers) leads to loss of DNA repair ability. This is because among binding partners
are some proteins responsible from recognizing and repairing of DNA, such as the DNA
damage repair protein RAD50. RADS50 repairs DNA double-strand breaks by end joining
(non-homologous recombination) and meiosis specific double strand break formation. It is
an essential protein for cell growth and viability [103, 104].

Surface and wire (C-a only) illustrations of the binding site of the prediction is in Figure
5.1

Vitamin D binding protein - Parathyroid hormone

o let1{AB}«<1kxpD, via 1cosAC, prediction score: 2.011

e letl—1kxpD, via 1cosAC, prediction score: 2.011

In this case, the residues 383-411 in Vitamin D binding protein (PDB reference: D chain
of 1kxp, SWISSPROT reference: VIDB_.HUMAN) are observed to bind to the residues 1-
27 of Parathyroid hormone (PDB reference: A or B chain of letl, SWISSPROT reference:
PTHY HUMAN). We find the identical binding sites in both let1{AB} (monomeric) and
letl (complex) cases, which means that the predicted binding site preserves its solvent
accessibility in both monomeric and complex forms.

Vitamin D binding protein and Parathyroid hormone act together to regulate levels of

calcium and phosphorus in blood. Although there is no direct evidence in literature of their
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Figure 5.1: Left: surface illustration of the binding site between BRCA1 (cyan) and RAD50
(purple). Right: Wire (C-av only) illustration of the binding site between BRCA1 (orange)
and RAD50 (red). The template interface 1aqd5AC (yellow) is included to highlight the
quality of alignments.

interaction, it is very likely that they take parts in similar pathways, which enables us to
bring forward the proposition that they interact.

Parathyroid hormone (PTH) regulates calcium and phosphorus levels in blood by in-
ducing transport of an inactive form of vitamin D (calcidiol) from liver to kidney and its
conversion into active form (calcitriol) in proximal tubules. Calcitriol, in turn, is trans-
ported to small intestine, where it acts to raise calcium level through increased intestinal
absorbtion of calcium. Like all forms of Vitamin D, calcidiol binds to vitamin D bind-
ing protein (DBP) prior to being transported in blood to kidney. The cellular uptake of
DBP-calcidiol complex and PTH into kidney via proximal tubules are both mediated by
an endocytic receptor protein termed megalin. Proximal tubules are also where calcitriol
is synthesized under regulation of PTH [105, 106]. Although an interaction has not been
reported in literature, during megalin mediated uptake, PTH may be interacting with the
DBP-calcidiol complex through DBP, while exerting its regulatory action on calcitriol syn-

thesis. We believe that this prediction may provide new insights into vitamin D metabolism
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studies.
Surface and wire (C-cv only) illustrations of the binding site of the prediction is in Figure

5.2

Figure 5.2: Left: surface illustration of the binding site between Parathyroid Hormone
(cyan) and Vitamin D Binding Protein (purple). Right: Wire (C-a only) illustration of the
binding site between Parathyroid Hormone (orange) and Vitamin D Binding Protein (red).
The template interface 1cosAC (yellow) is included to highlight the quality of alignments.

5.6 Interaction Partner Analysis: A Case Study with P53-MDM2

The P53 tumor suppressor plays a pivotal role in the normal functioning of the cell by
regulating progression through the cell cycle, and responding to DNA damage by initiating
repair or programmed cell death. Inactivation of P53 through mutation is common in
many tumors. The MDM2 protein regulates the activity of P53 by binding to the P53
transactivation domain resulting in inactivation and targeting of the complex for destruction
by the ubiquitylation.

In normal cells the balance between active P53 and inactive MDM2-bound P53 main-

tained in a negative feedback loop. In some tumor cells overexpression of MDM2 results



Chapter 5: Results and Discussion 62

in the loss of functional P53, allowing transformation and uncontrolled tumor growth. In-
hibitors of the MDM2-p53 binding interaction would be expected to restore normal P53
activity in MDM2 overexpressing cells and thus exert an anti-tumor effect. A current
challenge in anti-cancer drug design is to identify proteins that can possibly inhibit this
interaction. To this effect, we have conducted binding partner analysis on MDM2 (PDB
references: residues 17-125 in A chain of lycr, complete A chain of and lycq and residues
25-109 in A,B and C chains of 1rvl - SWISSPROT references: MDM2 XENLA) and P53
(PDB reference: residues 15-29 in B chain of lycr and residues 13-29 in B chain of lycq)
proteins to predict potential anti-tumor agents.

For a list of selected high scoring binding partner predictions, the reader is referred to
Tables D.1 - D.4 in appendix. In these tables, the first 4 letters in columns 1 and 2 are PDB
representations of proteins, the following letters are PDB chain identifiers. In column 1,
multiple chains are enclosed in curly brackets, to indicate that the chains are identical and
the prediction applies to all of them. Sequence of chain identifiers with length greater than
4 are indicated by two dots (i.e. 1lqgh{A..L}), provided they appear in alphabetical order.
In column 2, the last two letters indicate between which chains of the structures template
interface exists. Column 3 displays whether the prediction was verified in literature and/or
in any of the prediction databases we use. “D” stands for DIP, “B” stands for BIND,
“P” stands for PDB (redundant dataset of interfaces in PDB, see Section 3.1.1.1) and “L”
stands for “literature”. Column 5 shows the functions of target partners, as they appear in
cross referenced SWISSPROT entries, queried via SWISSPROT Sequence Retrieval System
(SRS).

In picking predictions for this table, to preserve variety in protein functions we excluded

predictions between proteins of the same or similar function.

5.6.1 DBiological Significance of Some Binding Partner Predictions
Insulin-like Growth Factor (IGF-I) - MDM2

o 1mso{BD}«-1rv1{ABC}, via 6rlxAB, prediction score: 1.418

Heron-Milhavet and LeRoith (2002) [107] demonstrated the effect of IGF-I in function-
ally opposing apoptosis through regulation of MDM2/P53/P21 signaling pathways, during
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DNA damage. Upon introduction of a DNA damaging agent into the cell, IGF-I was
observed to induce degradation of p52 and increase in MDM2 in the cytoplasm. These
outcomes support the possibility of an IGF-I/MDM2 association. Analyzing the results, we
see similar predictions involving growth factor related proteins, we indicate them with “L”

in third columns of Tables D.1 - D.4 in appendix.

Ferritin - MDM?2

o liesF—lycqA, via 1liesBF, prediction score: 1.587

Hakobyan et al. have discovered that iron induced the expression of mdm2 by normal
human synovial cells approximately 8-fold, which support our finding that MDM to may
interact with the iron carrying protein, ferritin. Analyzing the results, we see similar predic-
tions involving iron transport related proteins, we indicate them with “L” in third columns

of Tables D.1 - D.4 in appendix.

5.7 Discussions

5.7.1 Conformational Changes

Some interactions involve conformational changes in at least one of the partners. Depending
on the extent of discrepancy, this phenomenon may induce negative effect on the prediction
algorithm; because our approach essentially assumes that partner structures retain their
complementary shape after complexation. However, as the following study argues, large
deviations in shape is fairly uncommon. Moreover, our investigations on bounded and
unbounded states of proteins known to undergo structural changes during interaction show
that our algorithm is able to compensate these deviations to a significant extent.

Betts and Sternberg (1999) [108] have investigated conformational changes on complex
formation for 39 pairs of complexed proteins and their unbound equivalents. They evalu-
ated their significance by comparison with the differences seen in 12 pairs of independently
solved structures of identical proteins, which stand for the “control” structures reflecting
the amount of structural change that can be expected from experimental differences in the
determination of crystal structures. Conformational changes were quantified through cal-

culation of root mean square deviations (RMSD) of all atoms concerned after superposition
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by the least squares fitting of C-a atoms. We focus on conformational changes at binding
sites.

In studying structural discrepancies expected from experimental differences in the deter-
mination of the structures, they imposed a cut-off on RMSD of C-a atom coordinates such
that 95% of all the control pairs have values below it. The result was 0.6 A for binding site
(interface) residues. Therefore, only structural differences between bindings sites of bound-
unbound structure pairs yielding > 0.6 A C-a RMSD were considered significant during the
comparisons. Out of 39 interaction partner chains, conformational changes in 24 of them
were below the cut-off; 5 of them were at the limit, and the remaining 10 had C-a RMSD
values above the cut-off, max deviation being 2.5 A. This distribution reveals that although
some complexations may exhibit significant conformations at interfaces, majority of them
are accompanied by small or no changes. Moreover, the writers argue that these results are
biased on enzyme-inhibitor systems and many systems involve less conformational changes
if not none. Thus, majority of complexes are formed without substantial conformational
change.

To investigate to what extent MULTIPROT is able to compensate the structural de-
viations between bound and unbound forms of proteins, we pick 9 bounded-unbounded
structure pairs, with C-o RMSDs ranging from 0.3 A to 2.5 A at binding sites. We then
align the interface in bounded form with the entire protein in unbounded form to see whether
MULTIPROT can identify the interface on the unbounded structure. In all 9 of the cases,
MULTIPROT was able to identify some or all of the binding site residues of the bounded
structure on the unbounded structure.

The results of alignments can be found in Table 5.6. First and second columns show the
PDB identifiers of bounded and unbounded forms of proteins, respectively. Third column
displays conformational change in terms of C-a RMSD values (Angstroms), as reported by
Betts and Sternberg. Fourth, fifth and sixth columns are related to MULTIPROT alignment
performance, the first of three shows the ratio of identically matched residues out of the
number of residues at the interface, next one displays the C-« RMSD of the alignment
reported by MULTIPROT and the last one is the similarity score, calculated with respect
to the formula described in Section 3.2.2.1.

The results show that in 8 out of 9 cases, spanning a conformational change RMSD
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range between 0.3 A - 2.1 A MULTIPROT is able to identify the binding site successfully,
with significantly low RMSDs and high similarity scores that are beyond 0.95 threshold
imposed during prediction. In one case, which happens to be the structure with highest
rate of conformational change in the 39 pair structure dataset of Betts and Sternberg (1cgiE
- 1chg, 2.5 A C-a RMSD), 41% of the residues were identically matched, with a similarity
score below the 0.95 threshold. These results show that MULTIPROT is highly successful
in compensating conformational changes. The discrepancies between reported RMSDs and
those calculated by MULTIPROT may be due to differences in alignment methods and
differences in definitions of interfaces. Nevertheless, the MULTIPROT RMSDs tend to

increase with increasing conformational change, despite some deviations.

bounded unbounded | reported | match ratio | Multiprot | similarity
form form RMSD RMSD score
2sniE 1sup 0.3 76/76 0.26 1.35
1vibA 1vfaA 0.5 21/21 0.16 1.09
1mlcE 1lza 0.8 19/19 0.76 1.03
2snil 2ci2 1.0 33/33 0.50 1.13
1mlcA 1mlb 1.2 18/18 0.35 1.056
1lmdaA laan 1.5 26/27 0.92 1.01
1vibC 1lza 2.1 24/24 0.41 1.09
lcgil 1hpt 21 34/35 1.00 1.07
legiE 1chg 2.5 27/65 1.58 0.21

Table 5.6: Alignment results between interfaces in bounded state and proteins in unbounded
state

5.7.2 Validity of Template Datasetl in Future

PDB is likely to expand at an ever increasing rate in the future. Although this may trigger
the concern that template dataset to be obsolete soon, the space of interface structures is
expected to rise at an ever slowing rate, because the interfaces will assume limited number

of conformations. This is due to structural conservation at protein interfaces, as observed
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by Keskin et al. (2004) [27].

5.7.8 Different Possibilities in Selection of the Template Dataset

The template dataset we use, for the sake of representing the interfaces with both their
structural and evolutionary aspects, is rather restrained to the interfaces that have struc-
turally conserved residues along their interfaces. Despite being the most comprehensive
way we could generate a template interface dataset, the compromise is that the whole
range of protein interactions is not covered. One could choose between comprehensiveness
and coverage in selecting the target dataset. The alternatives are, from greatest coverage
to comprehensiveness: the structurally redundant dataset of interfaces (21686 entries), the
structurally non-redundant dataset of interfaces (8799 entries), the structurally and sequen-
tially non-redundant dataset of interfaces (103 entries) and the structurally and sequentially
non-redundant dataset of interfaces along with structurally conserved hotspots (67 entries).

The reader is referred to Section 3.1.1 for an elaborated description of these datasets.

5.7.4 Verified versus Unverified Predictions

The interactions that are verified in interaction databases and the PDB favor the reliability
of our approach whereas the unverified ones may indicate unobserved interactions that
actually occur in pature; or interactions that do not occur naturally but may possibly be

realized synthetically in laboratory conditions; signaling a new era in drug design.

5.7.5 Energy Considerations

The stability of interactions are strictly governed by their binding free energy. There is
strong evidence that the “important” residues on interfaces that contribute to majority of
the binding free energy tend to be structurally conserved along interfaces through evolution
to optimize function, structure and stability of the protein complexes and enhance feasibility
of protein-protein associations. This suggests that although we do not handle energy con-
straints explicitly through mathematical models, we take them into consideration indirectly
through seeking for conserved residues along potential binding partners. Nonetheless, the
stability of the predictions can be confirmed in simulation programs like NAMD [109].
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5.7.6 Subcellular Locations

Prediction data can be enhanced through inclusion of subcellular location data, partners
residing in the same or neighboring locations of the same organism (i.e. cytoplasm, nucleus),
are more likely to interact than those residing in unrelated compartments. Unfortunately,
there is no complete database that contains subcellular locations for all of its members,
therefore our prediction results do not contain this data. The reader is advised to refer to
SWISSPROT [102] and/or GO [110] databases for subcellular data while analyzing specific

interactions.

5.8 Future Directions

5.8.1 A New Level of Abstraction: Domain-Domain Interactions

Many molecular signal transduction processes are regulated by the intermediary character-
istics of discrete protein recognition ”domains”, evolutionarily-conserved modules of amino-
acid sequence found in catalytic proteins as well as on scaffold, anchoring or adaptor proteins
(Pawson and Scott, 1997). Protein interactions are frequently mediated by these domains,
each of which bind to specific peptides. Such interactions form the basis for structural and
functional organization within cells (Pawson 1995).

The biological meaning of the predicted interactions can be enhanced to a newer level of
abstraction through the determination of mapping of binding sites to functional domains.
By this way, a list of domain-domain interaction predictions can be achieved, that provides
a different perspective to interaction patterns. Deng et. al [111] describe a method to
infer domain-domain interactions from protein-protein interactions. For generation of the
template dataset, interDOM [84], a database of putative interacting protein domains derived
from multiple sources, ranging from domain fusions (Rosetta Stone [43]), protein interactions
(DIP and BIND), protein complexes (PDB), is a good candidate as a starting point. For
generation of the target dataset, ASTRAL SCOP [112], a representative genetic domain
sequence subsets, with less than 40% identity to each other, is a favorable candidate as a

starting point.
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5.8.2 Suitability to Grid Computing

Grid computing is a distributed approach to parallelize the tasks, that signals a new era
in Bioinformatics computing. The approach we employ in this thesis is suitable for grid
computing; the algorithms developed in this thesis can be modified to run in a grid frame-
work where computations such as surface extraction, structural alignment computations
can be thought as services provided by grid nodes. In addition, the datasets that algorithm
uses (target and template datasets) need not be located locally, they can be accessed from

dedicated servers.

5.8.8 Towards Finer Granularity Parallelizotion

Using pre-compiled serial programs for surface extraction and structural alignment gives
the prediction and verification algorithms a coarse grain nature, i.e. these core sub-
computations can further be parallelized. Futamura et ol. (2002) [113] have developed
efficient parallel algorithms for solvent accessible surface area of proteins, integration of
such algorithms will decrease the granularity of sub-computations, consequently effecting

the overall algorithm.
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Chapter 6

CONCLUSION

The molecular basis of biological processes are governed by the complex networks of bio-
chemical and signaling pathways formed by interactions between various proteins. These
interactions involve binding of two structures through particular sites on their surfaces. An
ability to predict possible protein-protein interactions can provide an idea about distribu-
tion of interaction networks. For example, this can aid researchers in identifying nodes in
biochemical or signaling pathways of immunity system that cause disorders. Such knowledge
may have strong implications in design and development of improved drug compounds that
exert their therapeutic action by rationally altering and interfering with specific protein-
protein interactions. This approach of targeting specific molecules represents a new era in
drug design, as opposed to the conventional approach in which drugs interrupt or modulate
the complete set of functions of a given protein, causing unwanted “side effects” [32, 5].

As large amount of protein structure data become available, predictive methods to detect
and characterize protein-protein interactions are becoming increasingly important venues
towards defining new foundations of systems biology. In the light of this trend, we have
developed a novel algorithm for automated prediction of protein-protein interactions. Our
algorithm employs a novel bottom-up approach that combines structure and sequence con-
servation in protein interfaces.

Our starting point involves combination of two previously generated datasets; the struc-
turally non-redundant dataset of protein-protein interfaces extracted from the PDB of Ke-
skin, Tsai et al. [27], and the set of conserved residues on these interfaces (computational
hotspots) of Keskin, Ma et al. [54], to achieve a structural and evolutionary (through
hotspots) representative dataset of “known” interfaces in the PDB. We then extract a se-
quentially non-redundant dataset of all protein complexes and chains in the PDB, between
the members of which we seek for potential interactions. This requires a method to measure

the similarity between partners of these representative interfaces and surfaces of target pro-
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teins. To do this, we extract surfaces of target proteins and perform successive structural
alignments between these surfaces and the partner chains of interfaces in template interface
dataset, in an all-against-all manner. This enables us to measure the “similarity” of target
structure to a template interface partner. If surfaces of two target proteins (A and B) con-
tain regions ”similar” to complementary partner chains of a template interface, we say A
and B may interact through these ”similar” regions. The algorithm resulted in some 60000
predictions, some of which were verified in interaction databases and redundant dataset of
interface dataset of Keskin et al. [27]. These verified interactions favor the reliability of our
approach whereas unverified ones may point to exciting undiscovered interactions that are
likely to shed light on the unknowns of biological processes. These undiscovered predictions
may actually be occurring in nature, or may be synthesized favorably in laboratory condi-
tions. We were also able to verify some predictions in literature that were absent in DIP
and BIND. This suggests that outputs of this study may act as a complementary resource
for interaction datasets, suggesting new directions for researchers for assessing reliability
during experimental curation.

The algorithm was implemented in a coarse-grain parallel manner, that scales almost
linearly on a 32 node Beowulf cluster. It is beneficial to parallelize the algorithm, pre-
cious time and effort will be saved since the algorithm may be required to be executed the
algorithm again with different parameters and updated datasets. Execution times were de-
creased from the order of months to days after parallelization, on a 8 node Beowulf cluster.
During implementation, we have observed suitability of high level scripting languages such
as Python for Bioinformatics problems. We believe that many Bioinformatics solutions will
involve use of computational kernels (other precompiled programs) and combine these ker-
nels with some text processing/data mining tasks. In our implementation, combination of
Python/MPI has proved itself quite suitable.

The work presented in this thesis has had a strong interdisciplinary nature. We have
considered both computational and biological aspects at every stage of the study, during
implementation or while deciding on the biological approach. This viewpoint has helped
us develop a fairly flexible algorithm that is open to improvements, in terms of both com-
putational and biological disciplines. In terms of computer science, the algorithm can be

transformed into a web service, in which a user will submit a set of structures and get
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the possible interactions between the submitted structures or possible interaction partners
within a target dataset of his/her selection. In terms of biological science, a researcher
may wish to conduct predictions with different template dataset to get a better picture of
fundamentals of protein-protein association or work on a particular set of proteins to gain
insights on pathways they take part within.

We leave the final and most exciting part of this study, the analysis of the predictions
in the context of systems biclogy, to the expertise of biologists. We strongly believe that

our results contain exciting interaction predictions waiting to be discovered.
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Appendix A

APPENDIX

A.1 Protein Surface Extraction by NACCESS

The Naccess program [98] calculates the atomic accessible surfaces of macromolecules
defined by rolling a probe (solvent molecule) of given size around a van der Waals surface.
This program is an implementation of the method of Lee and Richards [114]. In this method,
a probe of given radius is rolled around the surface of the molecule, and the path traced
out by its center is the accessible surface. This is done by locating a sphere at each atomic
position in the co-ordinate list (in the respective protein structure file in PDB format) and
assigning a radius equal to the sum of that of the atom and that of the probe. The surface
computed will be the locus of the center of a probe as it rolls along the protein making the
maximum permitted contact. If any part of an arc around a given protein atom is “drawn”,
then the atom is accessible. The length of the arc will be a measure of accessibility in that
plane. The total accessibility will be proportional to the summed length of all arcs drawn
for that atom.

Hence, accessible surface area (ASA) of an atom is defined as the area on the surface
of a sphere of radius R, on each point of which the center of a the probe can be placed in
contact with this atom without penetrating any other atoms of the molecule. The radius R
is given by the sum of the van der Waals radius of the atom and the chosen radius of the
solvent molecule. Typically, the solvent molecule has the same radius as water (1.4 A) and
hence the surface described is often referred to as the solvent accessible surface.

The calculation makes successive thin slices (z-slices) through the 3D molecular volume
to calculate the accessible surface of individual atoms. The intersection of the solvent sphere
with a given z-slice appear as arcs. The exposed regions are sum of these arc lengths over all
z-slices. The overlapping arcs representing the atoms of the same molecule are eliminated.

The drawing in any slice thus becomes the trace of the envelope of the van der Waals surface
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of the molecule (Fig. A.1).

Salvent accessible surface

Figure A.1: Envelope of solvent accessible surface per slice

The accessible surface area (ASA) per slice is approximated by,

ASA=R/\JR2 - 22 x D x L; (A1)

D=AZ/2+AZ (A.2)

where L; is the length of the arc drawn in slice ¢, Z; is the perpendicular distance from
the center of the sphere to the section 4, AZ is the spacing between the slices, and A'Z is
AZ/2 or A'Z, whichever is smaller. Equation A.1 is iterated over all slices, and all of the
arcs drawn for the given atom summed.

The ASA can be calculated for each individual residue. The solvent accessibility of each
individual residue can be quantified with a biologically more meaningful measure, called its

relative accessibility. Relative accessibility of a residue is defined as the percent accessibility
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compared to the accessibility of that residue in an extended ALA-X-ALA tripeptide (pre-
determined values stored in a look-up table). Naccess is able to calculate this value; we

impose a lower threshold (5%) on this value to define surface residues of a protein.

Usage of NACCESS and its Parameters

The program was called without any options:

/naccess2.1.1/naccess filename

The probe radius was set to its default value, 1.40
A, which is the assumed value of a water molecule. filename is the name of the file which
contains the 3D structure data of the protein in PDB format.

We use the default residue library of Naccess for van der Waals radii of atoms. These
radil were taken from [115].

The width of the z-slices were chosen as 0.05

A, a value providing good balance over accuracy and speed of calculation.

A.2 Structural Alignment of Protein Structures by MULTIPROT

Multiprot [87] is a fully automated software that simultaneously detects the multiple
structural alignments of protein structures. The software finds the common geometrical
cores among the input molecules in all possible ways, by a method based on Geomeiric
Hashing technique (REF). The alignment method is based solely on positions of carbon-«
atoms, and it disregards residue-sequence order and directionality. After the alignment is
done, its quality is scored either according to a sequence order, like in sequence alignment,
or according to a sequence order independent scheme, if one seeks geometric patterns which
do not follow the sequence order.

The algorithm does not require all input molecules to participate in the alignment; in-
stead, it detects high scoring partial multiple alignments for all possible number of molecules
from the input. This capability has a special meaning in generation of the template dataset
of interfaces (section 3.1.1): the algorithm can detect structurally conserved cores between
a non-predefined subset of input molecules. Added to this, the alignment method being
independent of residue-sequence order and directionality makes it applicable to protein in-

terfaces.
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At the core of the multiple structural alignment problem lies the pairwise geometrical
pattern detection problem. This can be stated as finding two subsets of points, one from
each input set (molecule), such that these two subsets are congruent. There are two major
aspects to this problem. The first is the correspondence task, i.e. detection of corresponding
point (carbon-a) pairs. The second is computation of an optimal 3-D rigid transformation
that superimposes one set onto the other. Given these, the problem becomes finding the
transformation that minimizes a distance metric. This can be done in linear time [116].
To measure distance, MultiProt uses Root Mean Square Deviation (RMSD) and the [117]
bottleneck [118] metrics. As its name implies, RMSD (Equation A.3) is the square root of
sum of squares of cartesian distances of matched point pairs (d;), divided by the number
of matched points (N). Bottleneck metric simply puts an upper limit on maximal distance
between the corresponding points. When the distance between the matching subsets is less

than some threshold e alignments is said to be e-congruent.

RMSD = %Edg (A.3)

For multiple structural alignment, multiprot chooses a pivot molecule that has to partic-
ipate in all alignments. In other words, the rest of the molecules are aligned with respect to
the pivot molecule. However, to eliminate dependency on the choice of the pivot, the algo-
rithm iteratively chooses every molecule to be the pivot one. During alignment, Multiprot
first establishes an initial, local correspondence between point subsets of the pivot and the
target molecules, and calculates the 3-D transformation that minimizes the RMSD between
these subsets. Then, when the transformation is established, the algorithm calculates the
global similarity based on the bottleneck distance and select those yielding high scoring
global similarity. Global similarity is based on the following criterion

Given m molecules, a parameter & and a threshold value €, for each r (2 <r <m), find
the & largest e-congruent multiple alignments conteining exactly r molecules.

After sets of common geometrical cores are detected, they are ranked by their multiple
RMSDs (mRMSD), computed as an average of RMSD values between the geometrical core
of the pivot molecule with the corresponding geometric core of each molecule from multiple
alignment. Thus, solutions are grouped according to the number of aligned molecules and

each group is sorted according to the size of the alignment and according to mRMSD, giving
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priority to the alignment size.
Although the multiple structural alignment capability is highly exploited in creation
of the template dataset (section 3.1.1), only binary alignments are performed during the

prediction stage (section 3.2.2).

Usage of MULTIPROT and its Parameters

The program was called without any options:

multiprotvl.6/multiprot.Linux filenamel! filename?2

filenamel and filename2 are the names of the files which contain the 3D structure data
of the proteins in PDB format.

Below are the parameters MULTIPROT parameters we used. These parameters exists

in params.txt file under the working folder, along with relevant descriptions.

SeqBlockRMSDthr 3.0
SeqBlockMinSize 5
OnlyRefMol 1
SeqOrder 0

1Jshift 1000
ResNum 10
PointType 0
Scoring 0

BioCore 3
BioCoreRadius 3
ChainEq 0

FullSet 1

SegBlockOverlapRatio 0.8
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A.3 Querying Protein Functions from SWISSPROT SRS

Sequence Retrieval Service (SRS) in SWISSPROT website is an advanced search service
providing multitude of searching options to users. The functions of predicted target partner
in result tables are found via their cross referenced SWISSPROT representations. The cross
references are queried from the following URL:

http:/ /us.expasy.org/srs5bin/cgi-bin/wgetz? [swiss_prot-dbname:pdb]

&[swiss_prot-dbxref: X XXX]

where XXXX stands for the PDB code. This is a best effort service, it is not guaranteed

that a cross reference is returned for every query.
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B.1 Representative Interfaces

Appendix B
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Appendix C

C.1 A selected Set of High Scoring Predictions
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C.2 A selected Set of High Scoring Verifications
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Appendix D

D.1 A selected Set of High Scoring Interaction Partners of P53 and MDM2

Proteins
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