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ABSTRACT

An optimization model is implemented to obtain the possible pathways for the

folding of the protein chain as the protein folds in the exit tunnel of the ribosome

during and following its synthesis. In this model, the folding problem is formulated

as an optimal control problem in which a particular form of energy is minimized

subject to the dynamic model predictions and physical constraints. It is assumed

that the chain grows and folds at the same time while it is still being synthesized.

The optimization models change according to the length of the partial chain. The

co-translational folding dynamics of a fast-folding protein, chicken villin headpiece

protein, is simulated. The model is implemented using different growth rates for the

protein to fold and the results for the different growth rates are compared. The folding

dynamics is analyzed as a process composed of early stage, intermediate stage and late

stage according to the secondary structure property of chicken villin protein. Also,

the important role of long-range contact pairs is presented and the input variables

are analyzed.
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ÖZETÇE

Bu tezde, protein zincirlerinin ribozom tarafından üretimi sırasında nasıl kat-

landığının anlaşılması için bir optimizasyon modeli kullanılmıştır. Proteinler ribo-

zomda üretilirken, zincirin oluşan kısmı ribozom tünelinde katlanmaya başlamaktadır

ve ayrıca ribozomdan çıkan amino asitler kendi aralarında özelliklerine uygun şekillere

bürünmektedir ve aynı zamanda zincirin geri kalan kısmının üretimi devam etmekte-

dir. Bu optimizasyon modelinde, katlanma problemi fiziksel belirleyicilere ve dinamik

model hesaplamalarına uygun olarak, bir tür enerji şeklini minimize eden bir kontrol

problemi olarak formule edilmiştir. Kullanılan optimizasyon modelinin büyüklüğü

zincirin o anda kaç tane amino asitten oluştuğuna göre değişmektedir. Bu çalışmada,

otuz altı amino asitten oluşan ve hızlı katlandığı bilinen bir protein, chicken villin

headpiece, üzerine çalışılmıştır. Model, proteinin değişik üretim hızlarında nasıl kat-

landığının anlaşılması için her amino asitin değişik hızlarda daha önceden var olan

zincire eklenmesi şeklinde kurgulandırılmıştır. Proteinin katlanma süreci, proteinin

ikincil yapılarına bakılarak ilk aralık, orta aralık ve son aralık olarak sınıflandırılmış

ve bu aralıklar için zincirlerin katlanma mekanizması analiz edilmiştir. Ayrıca, lokal

olmayan etkileşmelerin proteinin katlanması üzerine olan önemli etkisi vurgulanmıştır.
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Chapter 1

INTRODUCTION

One of the most essential units of cells of all organisms is the protein. Water

makes up about 55% of the mass of an average person and proteins make up about

15% of the mass, so it can be understood why proteins play a vital role in our cells

functioning in an enormous variety of different ways.

Proteins are polymers which are composed of different combinations of 20 amino

acids, in other words the monomers of proteins are amino acids. These 20 amino acids

have different chemical properties. The sequence of amino acids in a protein chain is

determined by the gene that encodes the protein. The chemical properties of amino

acids determine the biological function of the protein. Thus, the sequence is the main

key to the three dimensional structure and the function of the protein.

In Figure 1.1, the structure of an amino acid can be seen. An amino acid is

composed of an alpha carbon, a carboxyl group, an amino group, and a side chain.

The amino group and the carboxyl group and the side group are linked to alpha

carbon atom. All amino acids have the same structure except for the side chain

atoms. The side chain varies in different amino acids, so the chemical variety comes

from the side chain atoms.

Amino acids can be classified as hydrophobic and hydrophilic amino acids accord-

ing to the property of side chain atoms. The hydrophobic amino acids tend to form

the interior of proteins as they repel the aqueous environment. The hydrophilic amino

acids generally take place on the exterior surfaces of proteins as they have a tendency

to interact with the aqueous environment.

Amino acids are covalently bonded together by peptide bonds. Peptide bond
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Figure 1.1: Structure of an amino acid

formation, a chemical reaction, is polymerization of amino acids into peptides and

proteins. The peptide bond is formed by the condensation of the carboxyl group of

one amino acid with the amino group of the second amino acid involving loss of a

molecule of water. A dipeptide is the simplest peptide which contains two amino

acids linked by a peptide bond. In Figure 1.2, two amino acids can be seen. Peptides

are small groups of amino acids and contain around 30 amino acids. Longer chains

are called polypeptides and proteins.

Figure 1.2: Structure of two amino acids linked by a peptide bond.

The individual amino acids, which are linked in the polypeptides, are called

residues. The polymer chain has directionality due to the chemical structure of amino

acid atoms. The end of the protein with a carboxyl group is known as the C-terminus,



Chapter 1: Introduction 3

the end with a free amino group is known as the N-terminus.

The proteins are synthesized in the cellular machinery called ribosome. The newly

synthesized protein folds into a 3-dimensional structure. The conformation into which

a protein naturally folds is called the native state of the protein. Structural features of

proteins can be described at four levels of complexity: primary structure, secondary

structure, tertiary structure and quaternary structure. These structures can be seen

in Figure 1.3. The primary structure is the linear arrangement of amino acids in a

protein, in other words, it is just the sequence of the protein. In the secondary struc-

ture, there are areas of folding and coiling within the protein. The main secondary

structures are alpha helix, pleated sheets, and random coil regions. These structures

are stabilized by hydrogen bonding. Secondary structures are usually local, so a

protein can be composed of many different individual secondary structures. Alpha

helices are one-dimensional structures; the hydrogen bonds are aligned with the axis

of the helix and there are 3.6 amino acids per turn. Beta (pleated) sheets are quasi

two-dimensional structures and the hydrogen bonds are perpendicular to the strands.

The tertiary structure is the final 3-dimensional structure of the protein where many

secondary structures are present. A large number of non-covalent interactions take

place between amino acids in the tertiary structure. Most commonly, a hydrophobic

core is formed. The tertiary structure is often the overall shape of the folded protein.

The quaternary structure is the shape or structure which is formed by more than one

protein molecule. These molecules are held together by non-covalent interactions.



Chapter 1: Introduction 4

Figure 1.3: Structures of proteins. Figure is borrowed from [5].

Contribution

In this thesis, a new approach to simulate the birth of a protein is presented.

This approach is based on the energy minimization of the protein while it is being

synthesized in the exit tunnel of the ribosome. The model is implemented step by step

to analyze the folding mechanism of the nascent protein. The numerical analysis is

performed using a coarse-grained topology-based model. The method is implemented

using different folding rates. The results for these different folding rates are analyzed

and compared with the literature. The results are grouped according to the three

stages of folding event: early stage, intermediate stage and late stage. In addition to
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these three stages, a final rearrangement stage was performed to form a more compact

structure.

Outline

In Chapter 2, the related approaches for the protein folding problem are intro-

duced. Chapter 3 illustrates the model to simulate the folding dynamics of the nascent

protein chain. In Chapter 4, the method is implemented using different growth rates

and the results are analyzed and the importance of long-range contact pairs is pre-

sented. Chapter 5 concludes the thesis study.
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Chapter 2

THE PROTEIN FOLDING PROBLEM

Proteins are the basic units of life for all living cells. Understanding their structure

and function is necessary to understand how life works.

Protein folding is the process by which a protein assumes its functional shape

or native conformation. By folding into a specific three-dimensional shape they are

able to perform their biological function. The amino acid sequence of the protein

determines the structure of the protein and the structure of the protein determines

the function. Also, it can be noted that the function of the protein depends on the

ability of the protein to fold rapidly and reliably to its native structure.

Many proteins fold into their three dimensional structures during their synthe-

sis inside cells. Folding depends on the characteristics of their surrounding solution.

These characteristics are mainly the type of the solvent which the protein is synthe-

sized, the concentration of salts, the temperature and molecular chaperons. Chaper-

ons are proteins whose function is to assist other proteins in achieving proper folding.

Many proteins can fold in the absence of chaperons, but some proteins strictly require

them [3]. The essential fact of folding, however, remains that the amino acid sequence

of each protein contains the information that specifies both the native structure and

the pathway to attain that state: Folding is a spontaneous process. The passage of

the folded state is mainly guided by Van der Waals forces and entropic contributions

to the Gibbs free energy: an increase in entropy is achieved by moving the hydropho-

bic parts of the protein inwards, and the hydrophilic ones outwards. This endows

surrounding water molecules with more degrees of freedom [3].

In certain solutions and under some conditions proteins may not fold. Tempera-

tures above or below the range that cells tend to live in will cause proteins to unfold or
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denature (this is why boiling makes the white of an egg opaque). High concentrations

of solutes and extremes of pH can do the same. A fully denatured protein lacks both

tertiary and secondary structure, and exists as a so-called random coil [3].

Problems may occur in the process of protein folding. Wrongly folded proteins may

cause many diseases. For instance, prion is related to the illnesses such as Creutzfeldt-

Jakob disease and Bovine spongiform encephalopathy (mad cow disease), and amyloid

is related to illnesses such as Alzheimer’s Disease. So, in recent years, protein folding

has become a focus of attention in pharmaceutical research: it is probable that new

approaches to the treatment of diseases such as cancer and Alzheimer’s disease are to

be found within its convoluted pathways [3].

The type of the protein determines the duration of the folding process. Small

proteins, which have one hundred or so amino acids, can typically fold on time scales

of milliseconds. The very fastest known proteins can fold within a few microseconds.

The Levinthal paradox, proposed by Cyrus Levinthal in 1969, says that, if a protein

had folded by searching all possible conformations randomly, it would take an as-

tronomical amount of time to reach the native state, even if the conformations were

generated rapidly. For instance, for a protein with 100 amino acids, when it is assumed

that each amino acid can adopt only 3 possible conformations, the total number of

conformations would be 3100 = 5 ∗ 1047, so it would take 1013s to change each con-

formation, the time required to test all possible conformations would be 5 ∗ 1034s or

1027 years, which is longer than the age of the universe (14 ∗ 109yr). But, the protein

can fold within seconds. Based upon this calculation, it can be stated that proteins

fold much faster in real life. Levinthal then proposed that folding process is not com-

posed of random conformation sampling, and the protein follows a pre-determined

path while folding [4].

Folding and unfolding rates also depend on environment conditions like tempera-

ture, solvent viscosity, pH and more. The folding process can also be slowed down (and

the unfolding sped up) by applying mechanical forces, as revealed by single-molecule

experiments [3].
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2.1 Energy Landscape Theory of Protein Folding

The reversible folding of a single protein means that the protein in the native state is

thermodynamically stable, and therefore that the native state has the global minimum

free energy of all kinetically accessible structures. Furthermore since the folded state

is a small ensemble of conformational structures compared to the conformational

entropy present in the unfolded ensemble, the folded structure must then have the

lowest internal energy of all kinetically accessible conformational structures [4].

2.2 Computational Methods for Protein Folding

De novo or ab initio techniques for computational protein structure prediction employ

simulations of protein folding to determine the protein’s final folded shape. The

methods for studying protein folding can be listed in two groups: Molecular Dynamics

simulations and coarse-grained models.

2.2.1 Molecular Dynamics

The method of molecular dynamics simulations (MD) is one of the most important

tools in the theoretical study of biological molecules. This computational method cal-

culates the time dependent behavior of a molecular system. MD simulations provide

detailed information on the fluctuations and conformational changes of proteins and

nucleic acids. These methods are routinely used to investigate the structure, dynam-

ics and thermodynamics of biological molecules and their complexes. They are also

used in the determination of structures from x-ray crystallography and from NMR

experiments [7].

Molecular dynamics simulations generate information at the microscopic level, in-

cluding atomic positions and velocities. The conversion of this microscopic informa-

tion to macroscopic variables such as pressure, energy, heat capacities, etc., requires

statistical mechanics knowledge. Statistical mechanics is fundamental to the study of

biological systems by molecular dynamics simulation [8].



Chapter 2: The Protein Folding Problem 9

In a molecular dynamics simulation, the macroscopic characteristics of a system

can be analyzed through microscopic simulations, for instance, the changes in the

binding free energy of a particular drug candidate can be calculated, or the energetics

and mechanisms of conformational change can be observed. The connection between

microscopic simulations and macroscopic properties is made via statistical mechanics

which provides the rigorous mathematical expressions that relate macroscopic proper-

ties to the distribution and motion of the atoms and molecules of the N-body system;

molecular dynamics simulations provide the means to solve the equation of motion

of the particles and evaluate these mathematical formulas. With molecular dynamics

simulations, both thermodynamic properties and/or time dependent phenomenon can

be studied [30].

The molecular dynamics simulation method is based on Newton’s second law or

the equation of motion, F = ma, where F is the force applied on the particle, m is its

mass and a is its acceleration. From the force on each atom, it is possible to determine

the acceleration of each atom in the system. Integration of the equations of motion

then yields a trajectory that describes the positions, velocities and accelerations of

the particles as they change with time. From this trajectory, the average values of

properties can be calculated. The method is deterministic; once the positions and

velocities of each atom are known, the state of the system can be predicted at any

time in the future or the past. Molecular dynamics simulations can be time consuming

and computationally expensive. However, nowadays computers are getting faster and

cheaper. Simulations of solvated proteins can be calculated up to the nanosecond

time scale [31].

2.2.2 Monte Carlo Simulations

MC is distinguished from other simulation methods (such as molecular dynamics)

by being stochastic, that is nondeterministic in some manner, usually by using ran-

dom numbers (or more often pseudo-random numbers), as opposed to deterministic

algorithms [6].
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The use of MC methods to model physical problems allows us to examine more

complex systems than we otherwise can. Solving equations which describe the inter-

actions between two atoms is fairly simple; solving the same equations for hundreds or

thousands of atoms is impossible. With MC methods, a large system can be sampled

in a number of random configurations, and that data can be used to describe the

system as a whole [6].

2.3 Coarse-Grained Models

Lattice proteins are simplified computer models of proteins which are used to investi-

gate protein folding. Because proteins are such large molecules, containing hundreds

or thousands of atoms, it is not possible with current technology to simulate more

than a few microseconds of their behaviour in all-atom detail. Lattice proteins, how-

ever, are simplified in two ways: the amino acids are modeled as single beads rather

than modeling every atom, and the beads are restricted to a rigid (usually cubic)

lattice. This simplification means that they can fold to their energy minima in a time

quick enough to be simulated [9].

Lattice proteins are made to resemble real proteins by introducing an energy func-

tion, a set of conditions which specify the energy of interaction between neighbouring

beads, usually taken to be those occupying adjacent lattice sites. The energy function

mimics the interactions between amino acids in real proteins, which include steric,

hydrophobic and hydrogen bonding effects. The beads are divided into types, and the

energy function specifies the interactions depending on the bead type, just as different

types of amino acid interact differently. One of the most popular lattice models, the

HP model, features just two bead types - hydrophobic (H) and polar (P) - and mimics

the hydrophobic effect by specifying a negative interaction between H beads [9].

For any sequence in any particular structure, an energy can be easily calculated

from the energy function. For the simple HP model, this is simply the sum of all the

contacts between H residues that are in contact in the structure, but not adjacent

atoms in the chain. Most researchers consider a lattice protein sequence protein-like
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Figure 2.1: A minimum energy conformation in the 2D HP model with 6 nonlocal H-H
contacts. Hydrophobic ones are in black color.

only if it can be found in a single structure with an energetic state lower than in any

other structure. In Figure 2.1, a lattice protein which has six non-local interactions

can be seen. This is called as energetic ground state, or native state. The relative

positions of the beads in the native state constitute the lattice protein’s tertiary

structure. Lattice proteins do not have genuine secondary structure, although some

researchers have claimed that they can be extrapolated to real protein structures

which do include secondary structure, by appealing to the same law by which the

phase diagrams of different substances can be scaled onto one another [9].

By varying the energy function and the bead sequence of the chain (the primary

structure), effects on the native state structure and the kinetics (rate) of folding can be

explored, and this may provide insights into the folding of real proteins. In particular,

lattice models have been used to investigate the energy landscapes of proteins, i.e.

the variation of their internal free energy as a function of conformation [9].

Another popular coarse-grained model of protein folding is the Go-type model. In

the Go-type model, the native configuration of the protein is assumed known. It is

assumed that the beads of the chain are subject to a Go-type potential energy. In

this potential function, the interactions between pairs of residues that are in known
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positions in the native state are assumed known in advance, thus the use of a go-type

model essentially tells the beads of a protein where to go at the end of trajectory,

but not how to go [19]. Erman developed Langevin dynamics of protein molecule

with Go-type potentials. Long time-scale events in the folding of cytochrome c were

analyzed [25].

Extensive studies have been performed using Go-type models. A coarse-grained

model was introduced by Hoang and Cieplak, where the Langevin equation is solved

for a protein chain whose beads are subject to a Go-type potential [26]. Pande and

Rokshar studied a protein-like heteropolymer by using direct simulation of a lattice

model using Go Model [27]. In this model, the energy of each polymer conformation is

taken to be proportional to the number of nearest neighbor native contacts it possesses

[27].

2.4 Folding Dynamics of Nascent Protein

A ribosome is an organelle composed of ribosomal proteins and ribosomal RNA. It

translates messenger RNA into a protein. As discussed in the previous chapter, the

nascent protein chain must fold into its native conformation so that it can perform

its function.

The geometry of the polypeptide exit tunnel is widely analyzed using the crystal

structure of the ribosome. The tunnel is a component of a much larger, interconnected

system of channels accessible to solvent that permeates the subunit and is connected

to the exterior at many points [34]. The structure referred to as the tunnel is the

only passage in the solvent channel system that is both large enough to accommodate

nascent peptides, and that traverses the particle. At no point is the tunnel big

enough to accommodate folded polypeptides larger than alpha-helices [34]. Recent

studies have investigated the mechanism of peptide bond formation catalyzed by the

large ribosomal subunit, the interaction of nascent polypeptides with the ribosomal

exit tunnel, and the role of ribosomal proteins in the recruitment of accessory factors

that assist protein folding and targeting [33].
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Recent studies focus on the determinants of compact structure formation inside

the tunnel. Using an extended nascent peptide as a molecular tape measure of the

ribosomal tunnel, helix formation inside the tunnel is presented by Lu et. al. [12, 35].

They monitored the formation of compact structure in the nascent peptide. They

showed that there are zones of secondary structure formation inside the ribosomal

exit tunnel. It can be suggested that these zones have an active role in nascent-chain

compaction [35].

Studies by Woodland et al. and Gilbert et al. provide experimental evidence

for the folding problem in the exit tunnel of ribosome [21] [22]. They used stalled

ribosome to monitor how a newly translated polypeptide chain travels through the

tunnel of the ribosome. Their studies show that the compaction of chain segments

and burial of some hydrophobic amino acids take place before the chain leaves the

ribosome, provided that this compaction is not reversed as the chain moves down the

ribosomal tunnel. In Figure 2.2, these observations can be seen in simple terms [23].

Figure 2.2: The nascent protein begins to fold as it moves out of the ribosomal tunnel
[23].

The problem of how proteins fold into their native conformations is an appealing

study field in computational biology. Most previous research has focused on how

proteins fold from denatured conformations in vitro. However, Fedorov et. al. pre-

sented that the fully unfolded form of a complete polypeptide does not exist within

the living cell [37]. As discussed in the previous section, it is essential to understand

the protein folding as it occurs in vivo. Recently, many experimental studies present

that proteins begin to fold while being synthesized. Thus, more realistic methods are

performed to simulate the protein folding problem [36, 11]. Elcock et. al. analyzed
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the folding problem as the chains synthesized by the ribosome. They performed their

method on three proteins: chymotrypsin inhibitor 2 (CI2), barnase, and semliki forest

virus protein (SFVP), and compared the folding during ribosome-mediated synthesis

with their refolding from random, denatured conformations as performed in many

computational methods [36]. This kind of folding is named as co-translational folding

[2, 10]. Elcock et. al. proposed that multi-domain proteins fold co-translationally

[36]. Fedorov et. al. also suggested that that co-translational folding contributes to

the rapid formation of the native structure in the cell [37].
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Chapter 3

THE OPTIMIZATION MODEL

In this chapter, the mathematical formulation of the optimization problem of

protein folding is introduced. The optimization model developed by Guner et. al. is

implemented [13].

3.1 Theory of the Model

In this model, a coarse grained model, Cα representation for proteins is used. The

position of the ith residue is denoted by the vector ri according to the position of the

alpha carbon atom of the residue.

The total energy of the protein is composed of energy which results from the

bonded and non-bonded interactions within the protein, these energies are denoted

by EB and ENB, respectively. Both of the energies have an attractive and a repulsive

component. Thus, the energy formula for a system with N beads can be written as:

E =
N−1∑
i=1

(
EB

i,i+1;A + EB
i,i+1;R

)
+

N∑
i>j+1

(
ENB

i,j;A + ENB
i,j;R

)
(3.1)

Here, the residue indices are represented by the subscripts i and j, A and R

stands for the attractive and repulsive parts of the energy, and the superscripts B

and NB represent the bonded and non-bonded parts, respectively. The force vector

fi operating on the ith bead can be calculated from the total energy which is denoted

by E.

fi = −∇ri
E , for i = 1, 2, . . . N (3.2)

In addition to this force it is proposed that each bead a friction force along the
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direction opposite to the velocity. According to the Newton´s second law, the equation

of motion of a residue becomes

m
∂2(ri)

∂2t
= −γ

∂(ri)

∂t
+ fi for i = 1, 2, . . . N (3.3)

Where m denotes the mass of the residue; γ denotes the friction coefficient with

dimension of (force)(time)/(distance); fi is the total force operating on the ith bead.

Using Equation (3.2), the force can be calculated in terms of repulsive and attrac-

tive parts:

fi = fB
i,A + fB

i,R + fNB
i,A + fNB

i,R (3.4)

Attractive forces between bonded beads fB
i,A are considered as linear spring forces.

The attractive forces can be obtained from the potential energy function [28]:

EB
A = −1

2

∑
i,j

aij

rm
ij

(3.5)

where aij’s and m are constants and rij = ||ri − rj|| is the distance between the ith

and jth bead. Guner et. al. assumed the energy as a Hookean spring with m = −2

and for all i and j, Equation(3.5) can be written as:

EB
A = −1

2

N−1∑
i=1

a ||ri+1 − ri||2 (3.6)

Here, a is a constant which changes according to the adopted empirical energy

function. So, assuming a = 1, Equation(3.6) can be rewritten as:

EB
A =

1

2
rT ΓB

Ar (3.7)

Where r = [r1 r2 . . . rN ]T is the position vector set of the beads. ΓB
A is the linear

connectivity matrix [14]. It is a symmetric Toeplitz matrix whose first off-diagonal

elements are equal to −1 and the diagonal elements are equal to the negative sum of

the corresponding row without its diagonal element.

The attractive bonded forces for all beads can be shown by fB
A :
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fB
A =




fB
1,A

fB
2,A

.

.

fB
N,A




(3.8)

From Equation(3.2) and Equation(3.7), the attractive force between bonded pairs can

be derived:

fB
A =




fB
1,A

fB
2,A

.

.

fB
N,A




=




−∇r1E
B
A

−∇r2E
B
A

.

.

−∇rN
EB

A




= −∇rE
B
A = ΓB

Ar (3.9)

The sum of all remaining forces in Equation (3.2) (i.e. bonded repulsive, non-

bonded attractive and non-bonded repulsive forces) is denoted by ui :

ui = fB
i,R + fNB

i,A + fNB
i,R (3.10)

These forces for all the beads can be written in one term:

u =




u1

u2

.

.

uN




(3.11)

The left hand side of Equation(3.3) can be equated to zero as it is a very small

term compared to the other terms and also the friction coefficient can be taken equal

to unity as an assumption.

Taking into account these definitions, the equation of motion for the protein model

can be described by:
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dr

dt
= ΓB

Ar + u (3.12)

3.2 The Optimization Formulation

The optimization model focuses on the native contact pairs. Using the energy between

these pairs as the main force which drives the protein into its native state, the problem

is stated as a minimization problem. The native contact pairs are the pairs which are

two or more residues apart and separated by less than 7Å in the native state.

The attractive energy of non-bonded native contact pairs is represented as:

ENB
A =

1

2

∑
i>j+1

bij ||ri − rj||2 (3.13)

where bij are constants and rij = ||ri− rj|| is the distance between the native contact

pair which results from ith and jth beads. Assuming bij’s are equal to unity without

any loss of generality, Equation(3.13) can be written in quadratic form in (3.14),

where Q is the matrix which relates the state vectors to the sum of the distances

between native contact pairs.

ENB
A =

1

2
rT Qr (3.14)

The optimization problem can be expressed as a constrained optimal control prob-

lem to solve the equations of the state-space model stated above. In this state-space

model, state variables are the positions of the beads of the chain, input variables are

the forces that act on each bead in x, y, z dimensions. These forces drive the protein

into its native state starting from an initial condition. Throughout this pathway, there

are path constraints to be satisfied. Optimization tries to find the most appropriate

structure using the information about the distances of native contact pairs, thus the

protein folds. The minimization problem is solved for the time period between initial

time t = 0 and final time tfinal. tfinal is chosen as long enough to let the chain settle
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to the most native-like structure. For an N bead chain, the minimization problem

and the necessary constraints are written below.

min
u(t)

[∫ tf

0

ENB
A (t) dt =

1

2

∫ tf

0

rT (t)Qr(t) dt

]
(3.15)

Subject to:

ṙ = −ΓB
Ar + u(t) (3.16)

r(t = 0) = r0 (Initial condition) (3.17)

Constraints:

l − ε ≤ rT Hir ≤ l + ε Bond length constraints (i = 2, 3, · · ·N)

rT Lir ≥ dij Excluded volume constraints (i = 1, 2, ..., N)

u∗ ≤ u(t) ≤ u∗ Forcemagnitude constraints

Where:

Hi : Matrix that relates the state r to the bond lengths

Li : Matrix that relates the state r to the excluded volumes

l : Bond length distance

dij : Minimumexcluded volume distance between ith and jth bead

u∗ : Lower and upper limits on the forces acting on the beads

p : Number of bond length constraints

q : Number of excluded volume constraints

tf : Final time

Here, rT Hi r means the square of the distances between two adjacent atoms, so

they indicate the bond lengths between adjacent atoms. The bond constraints are

inserted with a 10% tolerance, thus the constraints are inserted as:

0.9 l2b ≤ rT Hir ≤ 1.1 l2b (3.18)
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Here, lb is the virtual bond length which is 3.8 Å.

rT Li r means the distances between non-adjacent beads. The excluded volume

constraints are inserted for the pairs which are 2 or more beads apart from each other

on the chain. dij is the excluded volume limit value for that pair, which means that

these 2 beads can not come closer than this value during folding process. The limit

value for the native contact pairs is the distance values calculated from the native

state of the protein, the limit values for the other pairs are all 5.1Å, which is the

approximate hydrogen bond length [15].

The input variables are limited to be between 2 and −2, because for the smaller

input limit values, the optimization can not find a feasible solution. For the bigger

limit values on the input variables, the changes in the states are very unexpected due

to the bigger input variables in the state equations. Smooth state trajectories are

obtained when the limit is taken as 2 and more realistic folding patterns with good

resolution are obtained. Thus, the input constraints become −2 ≤ u(t) ≤ 2 [13].

The optimization problem is solved using the AMPL environment and PENNON

solver is used via AMPL environment [18]. PENNON solver is designed to solve

optimization problems with non-linear objectives subject to non-linear inequalities

and equalities as constraints such as:

min
xεRN

F (x) (3.19)

Subject to : gi(x) ≤ 0, i = 1, ..., mg (3.20)

hi(x) = 0, i = 1, ...,mk (3.21)

Where f, gi and hi are the functions from RN to R. F (x) is the energy function of

the optimization problem.

The minimization problem is represented as a non-linear program (NLP) [17]. The

state variables x(t) and input variables u(t) are expressed in terms of finite elements

by using Lagrange polynomials. The discretization method presented by Biegler et

al. is used [19]. The problem is solved in the time interval (0, tf ), the time interval is
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divided into ne intervals, such that (t0 < t1 < t2... < tne = tf ).

The state-space model equations are stated using orthogonal collocation on finite

elements as written in Equation 3.22. This collocation method is efficient and robust

in order to solve optimization problems while handling non-linear path constraints.

ri,k = r(i−1),k + h(i−1)

l=NCOL∑

l=1

˙r(i−1),l,k Ωl,j (3.22)

where, i = 1, ..., NE, k = 1, ..., N , l = 1, ..., NCOL

Here, the index of the time step is denoted by i. k is the index of the position

vector. NCOL represents the number of collocation points used on the finite element

i. NE is the total number of time steps. N is the number of state variables. ri,k is

the kth state variable representing the state of kth bead in the ith time step. hi is the

length of the finite element i. ṙ(i−1),l,k is the derivative of kth state variable in the

ith time step at the collocation point l. Ωl,j is the order of the polynomial of order

NCOL. Inside each finite element, differential state equations are satisfied at the

collocation points. tf is the final time.

The model equation in Equation 3.17 is written as:

ṙi,l,k = tf

k=N∑

k=1

(
ΓB

A,m,k ri,k + uk
i

)
(3.23)

The objective function in Equation 3.15 can be discretized as:

min
u(t)

∫ tf

0

ENB
A (t) dt =

1

2

∫ tf

0

rT (t)Qr(t) dt = tf

NE∑
i=1

j=NCOL∑
j=1

EB
A,i hi Ωj,NCOL

Here, EB
A,i is the energy value of the ith time step. The sum of the energy values

forms the objective function for the minimization problem. The excluded volume

constraints and bond constraints are also inserted into the minimization.

In this optimization problem, the optimization uses the input variables u(t)’s to

drive the protein into its native state. The dynamic model given by 3.17 governs the
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motion of the beads under the optimal force field. The optimal force values and the

trajectories are computed over the time interval (0, tf ). The bond length constraints

and excluded volume constraints are satisfied during folding, thus optimal folding

trajectories are obtained for the protein starting from different initial conditions.

3.3 The Optimization Model for Nascent Protein

As discussed in the previous chapter, the nascent protein chain begins to fold as it

leaves the exit tunnel of the ribosome. The protein tries to reach its native state

as the following residues leave the ribosome one by one. Based on this experimental

fact, the optimization model is implemented to monitor the birth of the protein as the

chain grows step by step. We define the folding time of a partial chain as the length

of time horizon in the optimization formulation. The growth rate is the number of

beads exiting the ribosome per unit time.

First, we assume that as the first residues leave the ribosome, they fold into a

compact structure according to their folding dynamics and determined by the possible

native contact pairs among them. These native pairs are determined as explained in

the previous section. Then, the following bead leaves the ribosome, and the previous

partial chain and this lastly-added bead endeavor to reach a state which is close to the

native state. This process continues until the whole protein chain leaves the ribosome.

The optimization model described in the previous section is implemented for our

time-varying system. The folding of a partial chain of a particular length can be

thought as a subsystem. So, our system consists of successive subsystems which

simulate the whole folding altogether. Equation 3.12 is the equation of motion for

the discrete events of the folding process for a particular subsystem i.e. partial chain.

The optimization statements and the dimensions of the system for these events are

defined according to the length of the structure at that folding period. r is the state

vector, its dimension is 3 ∗N for an N -bead chain. Also, u, which implies the input

vector, has 3 ∗N elements. As the length of the chain changes, the dimensions of the

state vectors change. These dimensions vary in the range starting from 6 ∗ 3 = 18 to
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36 ∗ 3 = 108 as our system starts from the 6-bead chain and finishes at the 36-bead

chain of chicken villin headpiece protein. Also, the dimensions of the connectivity

matrix in Equation 3.12 vary in this range.

The energy term described in Equation 3.13 consists of native contact pairs. As

the chain grows, the number of native contact pairs increases. Figure 3.1 shows the

number of native contact pairs as a function of the number of beads of the growing

chain. There are 89 native contact pairs for the 36-bead chicken villin protein, 8 of

these are long range contact pairs.

At any time instance (discrete sample time) optimization computes and imple-

ments M control actions. This defines M folding steps that the partially grown chain

goes through before the next bead is added and optimization is repeated to compute

the next M folding steps.
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Figure 3.1: Numbers of native contact pairs for discrete subsystems, also numbers of
long-range pairs and short-range pairs.
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Chapter 4

RESULTS AND DISCUSSION

In this study, the optimization technique is implemented to analyze the folding

dynamics of the 36-residue protein, chicken villin headpiece whose protein data bank

keyword is 1VII. Chicken villin headpiece protein is the smallest protein that can fold

autonomously. This protein is extensively studied in the literature because it is the

smallest polypeptide that has all of the properties of a single domain protein [32].

Our technique relies on the fact that one bead is added per M time steps. In other

words, growth rate of the protein is one bead per M time steps. In this chapter,

the technique is implemented for M = 1, 10 and 15 folding steps and the results are

presented.

The secondary structure elements of the chicken villin headpiece protein are listed

in Table 4. The protein has three helices which are held together by a loop and a

turn. These helices contain residues 4-8, 15-18, 23-30 respectively. The loop is formed

by residues 9-14 and the turn is formed by residues 19-22.

Table 4.1: Secondary structures and their corresponding residue numbers.

Residue Number Secondary Structures

4-8 Helix1

9-14 Loop

15-18 Helix2

19-22 Turn

23-30 Helix3

Throughout this study, for simplicity of analysis, the folding process is divided
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into 3 stages according to the folding of the secondary structures of the chicken villin

headpiece protein: early stage, intermediate stage and late stage. The early stage is

composed of the folding state of first 14 beads. These beads form the first helix and

the loop. The folding of the first 30 beads starting from the folding of first 15 beads

is called intermediate stage. In this stage, the helix 2 and turn and helix 3 form.

From the 30th bead optimization to 36th bead optimization, it is called late stage.

The results are analyzed for all these stages. In addition to these three stages, there

is rearrangement stage where the protein folds to form a more compact structure.

The native configuration of the chicken villin headpiece protein can be seen in

Figure 4.1.

Figure 4.1: 3-D Structure of chicken villin headpiece protein in tube representation ( N
denotes the N-terminus of the protein, C denotes the C-terminus of the protein).

The native contact pairs defined in Chapter 3 can be classified into 2 main groups:

long range contact pairs and short range contact pairs. Long range contact pairs are

the pairs which are 5 or more residues apart on the chain of the protein. According

to this definition, the whole chain of chicken villin headpiece protein has 89 native

contact pairs, 8 of these pairs are long-range contact pairs.

Throughout the study, RMSD value between vectors x and y is calculated accord-

ing to the Equation 4.1. Here, x and y are vectors of the same size N .
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RMSD(x, y) =

√√√√ 1

N

N∑
i=1

(xi − yi)(xi − yi)T (4.1)

Here y and x are sequences of position vector coordinates representing the pair of

structures. Each column in y (or x) contains the (x, y, z) coordinates of an atom or

point in the structure.

4.1 The Optimization Technique

In order to analyze the effect of different growth rates, the optimization technique

defined in Chapter 3 is implemented for M = 1, 10 and 15 folding steps.

4.1.1 The Case with 1 Bead per 10 Time Steps

This case considers that after the new bead leaves the ribosome the partial chain folds

for 10 time units (takes 10 folding steps) and the system forms a compact structure.

A new residue joins the present chain at the 11th time step. The process continues

until the 36th bead of the protein is added to the newly-folded 35-bead chain.

Starting from the first five residues which has formed a compact structure, beads

begin to join the chain one by one. State variables and input variables are calculated

for the whole 10-time-step horizon. The calculated input variables are implemented

to fold the protein. At the 10-th time step, the next bead joins the folding process.

The configuration obtained for the 36-bead chain after folding of all beads can be

seen in Figure 4.2. The RMSD value between the last configuration obtained in this

technique and the native state of the chicken villin protein is 3.39 Å.
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(a) Native structure (b) Configuration obtained

Figure 4.2: Native configuration of villin protein and the obtained configuration in the
case with the growth rate one bead per 10 time units.

Figure 4.3, 4.4 and 4.5 show the RMSD change in the early stage, intermediate

stage and late stage respectively. The configuration obtained in the early stage and

the native state of first 14 beads can be seen in Figure 4.6. The configuration obtained

in the intermediate stage and the native state of first 30 beads can be seen in Figure

4.7.

As seen in the RMSD figure of the early stage, each partial chain reduces its RMSD

to a base value less than 0.2 Å until the 15th bead is added. When the 15th bead is

added, the RMSD value jumps to around 1.2 Å. The first 14-bead part of the protein

is composed of one helix and one loop. The 15-th bead is the first bead of helix 2,

so when this 15-th bead is out of the ribosome, a native-like structure can not be

reached due to the inconsistency of the loop and the first bead of the following helix.

When the 17-th bead and the 18-th beads join the chain, RMSD values significantly

decrease to lower values than the values of the beginning of that optimization run.

The results are not appreciable until the optimization program is run for the 33rd

bead. This fact points out the importance of the long range contacts which was stated

for the folding of the chain at once [13]. There are 8 long range native contact pairs

for the whole protein chain. These pairs are 2-34, 7-14, 7-34, 10-33, 10-34, 11-33,

11-34, 19-26. 2 of these pairs take place in the 33rd bead optimization run, while 4

of them play in the 34th bead optimization run. So, in the last 4 optimization runs,
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RMSD value decreases significantly to desirable values.
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Figure 4.3: RMSD in the early stage of the case with 10 time units per bead. This stage
starts with the 6-th bead and ends when the 14-th bead leaves the ribosome.
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Figure 4.4: RMSD in the intermediate stage of the case with 10 time units per bead.

However, the RMSD value 3.39 Å is a large value. This large value indicates the

lack of folding time for the chain to fold into a more compact form. So, in the final

rearrangement stage, it is assumed that the protein folds for 20 time steps. This

stage is called as final rearrangement stage. Starting from the obtained configuration

with the first 35-bead structure, the optimization is run for 20 time units. In this

case, RMSD value is lower than the previous one, it is 2.92 Å. The RMSD figure

regarding this extra optimization run can be seen in Figure 4.8. As can be seen from

the figure, the chain visits the local minimum in the 6-th time step. The reason for

this decrease is that the chain endeavors to reach a more native-like state changing

the conformation of the first four residues and the last residues.

In order to see how the protein will behave in case it is given some more time

to form a more compact structure, the whole chain (36 beads of villin protein) is
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Figure 4.5: RMSD in the late stage of the case with 10 time units per bead.

assumed to fold for 40 time steps. In this case, the obtained RMSD value is 0.26 Å

which is a much better result. The RMSD change for this 41-time step optimization

can be seen in Figure 4.9. As can be seen from the figure, the RMSD value increases

between the 10-th time step and 30-th time step after a decrease in the first 10 time

steps, and then after the chain collapses into a more compact structure, it decreases.

The obtained configuration can be seen in Figure 4.10.

The RMSD values are calculated for the present chain and they are plotted for

the 3 stages. The first stage is the one where RMSD can be maintained after the new

bead is added. In the second stage, which is the intermediate stage of the folding

process, the RMSD can not be decreased to a lower value because of the the absence

of the long range-contacts. In the late stage, RMSD values begin to decrease because

of the presence of long range contacts. Figures 4.3, 4.4, 4.5 show the RMSD changes

in the early stage, intermediate stage and late stage respectively.

As can be seen from the RMSD change figure of the early stage, the chain can
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(a) Native structure (b) Configuration obtained

Figure 4.6: Native configuration of villin protein and the obtained configuration in the
early stage of the case with the growth rate one bead per 10 time units.

(a) Native structure (b) Configuration obtained

Figure 4.7: Native configuration of villin protein and the obtained configuration in the
intermediate stage of the case with the growth rate one bead per 10 time units.
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Figure 4.8: Rmsd change when the whole protein is assumed to fold for 20 time units
during the rearrangement stage.

conserve the appropriate RMSD value until 15-th bead is added to the chain. The

first 14-bead part of the protein is composed of one helix and one loop. The 15-th

bead is the first bead of the helix 2, so when this 15-th bead is out of the ribosome, a

native-like structure can not be reached due to the inconsistency of the first secondary

structures and the first bead of the following bead. When the 17-th bead and the 18-

th beads join the chain, RMSD values significantly decrease to lower values than the

values of the beginning of the optimization. The results are not appreciable until the

optimization program is run for the 33rd bead. This fact points out the importance

of the long range contacts which was stated for the folding of the chain at once [13].

There are 8 long range native contact pairs for the whole protein chain as stated above.

When 33-rd bead joins the chain contributing to the folding process with an amount

of 25% of the total long range contacts through its 2 long range contact pairs, RMSD

values decrease considerably. 4 of them take place in the 34th bead optimization run.

So, in the last 4 optimization runs, RMSD value decreases significantly to a desirable

value.
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Figure 4.9: Rmsd change when the 36-bead chain is assumed to fold for 40 time units
during the rearrangement stage.

Figure 4.11 shows the RMSD change for helix 1 which is the chain starting from

the 4-th residue to the 6-th residue. As can be seen from the figure, the conforma-

tion of helix 1 does not change much during time after settling to a desirable value

starting from a high value in the beginning of the folding process. However, when

the interactions of the 34-th bead come into effect, RMSD value increases a bit. The

reason for this RMSD change is that it is difficult for the protein to maintain the

present RMSD value as helix 3 ends at the 30-th residue and the residues between

30-th bead and the 36-th bead have a turn-like secondary structure. So, RMSD value

increases a bit then decreases again in the last stages of the folding.

The RMSD change for loop 1 which is composed of the residues between 9-th and

14-th can be seen in Figure 4.12. After the helix 3 is out of the ribosome completely,

the protein can not maintain the RMSD for loop 1, so RMSD increases significantly up

to 2.5 A because of the complication of the secondary structures of the last residues.
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(a) Native structure (b) Configuration obtained

Figure 4.10: Native configuration of villin protein and the obtained configuration in the
case with the growth rate 10 time units per bead followed by a 40 time step rearrangement
period.

The RMSD of loop increases in the last 4 optimization steps of folding process, the

residues following helix 3 do not have a proper secondary structure, so it is difficult

to form compact structures with these residues.

The RMSD change for helix 2 can be seen in Figure 4.13. The conformation of

helix 2 does not change much according to the native state of this part, because it is

a small alpha helix with 4 beads, thus it is a helix with one helical turn on its own.

In addition to being a small helix, for this helix, there are 3 possible contact pairs

between its beads and they are all native contact pairs. These pairs are 15-17, 15-18

and 16-18. So, the RMSD value does not change much until the last 4 beads are

added to the chain. In the last step, it decreases to 0.15 A.

Figure 4.14 shows the RMSD change for the turn with the residues between the

19-th and 22-th residues. At most stages of the folding process, the RMSD value for

turn is larger than the values of the helices, because the protein can not find enough

time to reach a native-like turn before the next bead is out of the ribosome. Also,

the RMSD value changes rapidly from the beginning of the folding process. Its final

value is 0.4 Å.

Figure 4.15 demonstrates the RMSD change for helix 3, which is the longest helix

of the protein. RMSD value does not change a lot once it decreases after the 30-th
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Figure 4.11: Rmsd change of helix 1 (beads 4-8) during folding in the case with 10 time
units per bead.

bead is added to the chain.

The change of the energy value for early stages, intermediate stages and late stages

can be seen in Figures 4.16, 4.17, 4.18. For the case with 1 bead per 10 time steps,

energy values per number of native contact pairs does not change much during time.

4.1.2 The Case with 1 Bead per 15 Time Steps

When the method is conducted with 15 time steps, the RMSD change figures for the

3 stages of folding event are shown in Figures 4.19, 4.20, 4.21 respectively. The early

stages are composed of the runs till the 14th bead optimization. The intermediate

stages are the ones until the 32th bead leaves the ribosome. The late stages are the

ones where 33th bead leaves the ribosome till the whole chain folding.

As can be seen from Figure 4.19, in the early stages of folding, RMSD values

are lower than the values for the case with 10 time units, this reveals the fact that
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Figure 4.12: Rmsd change of loop (beads 9-14) during folding in the case with 10 time
units per bead.

the chain can fold into a native-like structure whenever a new bead joins the present

chain.

In the intermediate stages of folding, RMSD increases significantly, because the

chain can not maintain the RMSD value because of the lack of proper native contact

pairs.

Figure 4.22 shows the native structure of the protein and the conformation ob-

tained in the case with growth rate 15 time units per bead.

The RMSD values of the individual secondary structures from helix 1 to the last

helix can be seen in Figures 4.23, 4.24, 4.25, 4.26, 4.27, respectively. As can be seen

from Figure 4.23, the RMSD value for the first helix decreases to a desirable value

starting from a high value, then it does not change much. However, the RMSD change

of loop fluctuates during all folding process. Unlike helix 1, helix 2 has an unstable

RMSD property during folding, its RMSD value fluctuates. The second helix is a
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Figure 4.13: Rmsd change of helix 2 (beads 15-18) during folding in the case with 10 time
units per bead.

short helix, so it is easy for the optimization model to change the helix 2 whenever

necessary [13]. The turn has a large RMSD value overall, because the structure turn

is a link between helix 2 and helix 3, so it fluctuates as new native contact pairs are

added to the model.
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Figure 4.14: Rmsd change of turn (beads 19-22) during folding in the case with 10 time
units per bead.
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Figure 4.15: Rmsd change of helix 3 (beads 23-30) during folding in the case with 10 time
units per bead.
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Figure 4.16: Change in minimized energy during folding in the early stage of the case
with 10 sample time per bead.
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Figure 4.17: Change in minimized energy during folding in the intermediate stage of the
case with 10 sample time per bead.
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Figure 4.18: Change in minimized energy during folding in the late stage of the case with
10 sample time per bead.
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Figure 4.19: Change in rmsd value during folding in the early stage of the case with 15
sample time per bead.
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Figure 4.20: Change in rmsd value during folding in the intermediate stage of the case
with 15 sample time per bead.
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Figure 4.21: Change in rmsd value during folding in the late stage of the case with 15
sample time per bead.

(a) Native structure (b) Configuration obtained

Figure 4.22: Native configuration of villin protein and obtained configuration in the case
with the growth rate 15 time units per bead.
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Figure 4.23: Rmsd change of helix 1 during folding in the case with 15 time units per
bead.
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Figure 4.24: Rmsd change of loop during folding in the case with 15 time units per bead.
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Figure 4.25: Rmsd change of helix 2 during folding in the case with 15 time units per
bead.
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Figure 4.26: Rmsd change of turn during folding in the case with 15 time units per bead.
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Figure 4.27: Rmsd change of helix 3 during folding in the case with 15 time units per
bead.
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4.1.3 The Case with 1 Bead per 1 Time Step

In order to see how the protein will fold given less time step per bead, the growth

rate of the chain is taken as 1 bead per one time step. A bead joins the chain, then

the present chain folds for 1 time step, then another bead is out of the ribosome.

The RMSD change figure for the folding process can be seen in Figure 4.28.
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Figure 4.28: Rmsd change in the whole folding process with the growth rate 1 sample
units per bead.

This figure reveals the fact that the protein can not fold into a compact structure

because of the lack of folding time for the partial chain between the addition of the

beads.

In Figure 4.29, the native configuration and the obtained conformation in the case

with 1 time unit can be seen.

As can be seen from Figure 4.29, the chain has a 30.33Å, which is a big value. In

the rearrangement stage, the obtained configuration is assumed to fold for another

300 time steps. The RMSD value for the rearrangement stage can be seen in Figure
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(a) Native structure (b) Obtained configuration

Figure 4.29: Obtained configuration of villin protein and obtained configuration in the
case with the growth rate 1 time unit per bead.

4.30. The chain can reach a compact structure in this stage.
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Figure 4.30: Rmsd change in the rearrangement stage of the case with the growth rate 1
sample units per bead.

(a) Native structure (b) Obtained configuration

Figure 4.31: Obtained configuration of villin protein and obtained configuration in the
rearrangement stage of the case with the growth rate 1 time unit per bead.
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4.2 Effects of Long Range Contact Pairs

In order to see the importance of long range native contacts in folding dynamics,

the optimization method with 10 time steps is conducted by omitting the long range

contact pairs.

According to the secondary structures, the RMSD figures are again grouped as

early stages, intermediate stages and late stages again. The RMSD changes for these

stages can be seen in Figures 4.32, 4.33, 4.34.

1 11 22 33 44 55 66 77 88 99
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time step

R
M

S
D

 o
f p

re
se

nt
 c

ha
in

6th bead 

14th bead 

Figure 4.32: Rmsd change in the early stage of the case with 10 time units per bead in
the absence of long range contact pairs.

These results show that the long range contact pairs play important roles in protein

folding. The RMSD changes in the presence of all long-range contact pairs were

analyzed in Figures 4.3, 4.4 and 4.5. As can be seen in the early phase plots, the

chain can attain desirable RMSD values until the 14-th bead is added. The first long

range contact pair beads are the 7-th bead and the 14-th bead. So, the first difference

can be seen when 14-th bead leaves the ribosome. In the intermediate stage, RMSD
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Figure 4.33: Rmsd change in the intermediate stage of the case with 10 time units per
bead in the absence of long range contact pairs.

values increase more than the values in the presence of all contact pairs. In the late

stage, RMSD again increases. Similar analysis about the long range contact pairs

were presented in the Section 4.1.1. 6 of 8 long-range contact pairs are taken into

account in this late stage. The final RMSD value is 11.7 Å.

In Figure 4.35, the native configuration and the obtained conformation can be

seen.

4.3 Comparison of Different Growth Rates

In summary, the RMSD values for these 4 cases are plotted in Figure 4.36. The RMSD

values of the last time steps of that particular subsystems are plotted. It can be seen

that the chain can not reach a compact structure in case it leaves the ribosome too

fast. Also, the figure reveals that long range contact pairs are the main determinants

of forming a compact structure.
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Figure 4.34: Rmsd change in the late stage of the case with 10 time units per bead in the
absence of long range contact pairs.

(a) Native structure (b) Configuration obtained

Figure 4.35: Native configuration of villin protein and obtained configuration in the ab-
sence of long range contact pairs.



Chapter 4: Results and Discussion 54

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

15

20

25

30

35

Bead Number

R
M

S
D

M = 1
M = 10 in the absence of long−range pairs 

M = 15 

M = 10 

Figure 4.36: Rmsd values for 4 cases analyzed. M is the growth rate of the chain.

Table 4.2: Final RMSD values of substructures and the whole chain for 4 cases analyzed:
case with 1 bead per 1 time step, case with 1 bead per 10 time steps, case with 1 bead per
15 time steps, case with 1 bead per 10 time steps in the absence of long-range contact pairs.

Structure Final RMSD value (Å)

1 step 10 steps 15 steps No long-range contacts

Helix1 2.6264 0.0780 0.0078 0.0069

Loop 3.2956 2.3061 0.0098 2.0084

Helix2 2.5123 0.1088 0.0038 0.0119

Turn 2.1460 0.4105 0.0070 1.0244

Helix3 5.2489 0.1125 0.0031 0.0069

The chain 30.3316 3.3916 0.9477 11.7023

Folding time 62 341 496 341
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4.4 Analysis of Input Variables

As discussed in Chapter 3, in the optimization model, the input variables determine

the state variables.

In Figure 4.37, the norms of the input variables for beads 5, 13, 17, 22 and 30

are plotted respectively from left to right. These beads can be thought as the rep-

resentative beads for the five secondary structures of chicken villin headpiece protein

respectively, for instance bead 17 is in helix 2, bead 30 is placed in helix 3. To com-

pare these force values with the case in the absence of long-range contact pairs, the

norms of the input variables for the case in the absence of long-range contact pairs

can be seen in Figure 4.38. These figures confirm the fact that the optimization op-

timally adjusts state and input variables adjusting input variables whenever a new

bead is added to the chain. The last sub-figures of Figures 4.37 and 4.38 represent the

change of input variables for bead 30. The other sub-figures are not much different

from each other. However, the force values for bead 30 has a different behaviour. In

the absence of long-range contact pairs, the chain can not form a compact structure,

so the input variables do not change much because the number of the contact pairs

are not sufficient to adjust the states properly.

The force change figures for the same beads for the cases with 1 bead per 1 time

step and with 1 bead per 15 time step can be seen in Figures 4.39 and 4.40. For

the case with 1 bead per 1 time step, similar results about the change in the RMSD

value can be presented for input variables. The chain can not fold due to the lack

of necessary time step, so the input variables simply fluctuate from one value to the

next value when the lastly-added bead joins the folding process.
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Figure 4.37: Norms of the input variables for beads 5, 13, 17, 22 and 30 for the case with
1 bead per 10 time units are plotted respectively.
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Figure 4.38: Norm of the input variables for beads 5, 13, 17, 22 and 30 for the case with
1 bead per 10 time units in the absence of long-range contact pairs are plotted respectively.
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Figure 4.39: Norms of the input variables for beads 5, 13, 17, 22 and 30 for the case with
1 bead per 1 time units are plotted respectively.
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Figure 4.40: Norms of the input variables for beads 5, 13, 17, 22 and 30 for the case with
1 bead per 15 time units are plotted respectively.
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Chapter 5

CONCLUSION

Protein folding is an important issue in computational biology, so there are nu-

merous experimental and theoretical studies about understanding the properties of

protein folding problem.

Recently, experimental studies have been performed to understand the real phe-

nomena which underlie the folding mechanism. These studies propose that the nascent

protein chain begins to fold in the ribosomal exit tunnel [37]. Thus, more realistic

methods are performed to simulate the folding of the protein chain [36, 11].

In our study, we used an optimization model to obtain the possible pathway for

the folding of the protein chain as if the protein folds in the exit tunnel of the ribosome

while it is still being synthesized. In this optimization model, the native configuration

of the protein is assumed known and the covalently bonded beads are modeled as

linear springs. The other interactions are defined as a force component that drives

the protein into its most native-like structure without violating the excluded volume

and bond constraints. In the model, the energy function of the present chain is

taken as the objective function of the minimization problem. The energy function is

composed of the non-local interactions between native contact pairs. Starting from

the initial configuration, the possible pathway for that particular chain is obtained

[13]. The optimization model calculates the force variables which drive the chain

into the obtained configuration which is a feasible and optimal way according the

constraints and the objective function.

In our approach, we simulated the nascent folding dynamics of a fast-folding pro-

tein, chicken villin headpiece protein which is composed of 3 helices, one loop and

one turn. We set the conformation of the first five beads to the native conformation
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and assumed that the protein begins to fold while being synthesized after first five

beads are out of the ribosome and that the folding process of the protein is composed

of sub-systems which change according to the length of that particular chain. We

also assumed that the growth rate of the protein depends on the present properties of

the cell and the characteristics of the protein chain. So, we defined different growth

rates for the protein to fold and compared the results for these different growth rates.

We concluded that the chain can not form a compact structure in case it leaves the

ribosome too fast. We defined three stages of the folding process: early stage, inter-

mediate stage and late stage. In addition to these three stages, a final rearrangement

stage was performed in case the chain is not compact. We also analyzed the important

effect of long-range contact pairs during folding process. We observed that the chain

can not form a compact structure in the presence of only short-range contact pairs as

it can reach a more compact form in the presence of all long-range and short-range

contact pairs. This important characteristic of long-range contact pairs were also

emphasized by Duan et. al. [24]. We also analyzed the force field obtained in the

optimization model.

The optimization model implemented in this study uses the simplified model for

protein representation, so the molecular details which can be easily obtained in Mole-

cular Dynamics simulations can not be obtained in this model.

As future work, the model can be changed so that it can be implemented us-

ing all atom representation of proteins, thus more realistic results can be obtained.

Furthermore, the model can be implemented for larger proteins.
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