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ABSTRACT

In this thesis, we propose Multiple Objective Optimization (MOO) frameworks for effi-

cient video streaming.

Firstly, we introduce pre-roll delay-distortion optimization (DDO) for uninterrupted

content-adaptive video streaming over low capacity, constant bitrate (CBR) channels using

MOO. Content analysis is used to divide the input video into shots with assigned relevance

levels. The video is adaptively encoded and streamed aiming minimum pre-roll delay and

distortion with the optimal spatial and temporal resolutions and quantization parameters

for each shot. With buffer and distortion constraints, the bitrate of unimportant shots is

reduced to achieve an acceptable quality in important shots.

Secondly, we introduce a cross-layer optimized video rate adaptation and scheduling

scheme to achieve maximum “application layer” Quality-of-Service (QoS), maximum video

throughput (video seconds per transmission slot), and QoS fairness for wireless video stream-

ing. Using the MOO framework, these objectives are jointly optimized such that the user

with i) the least remaining playback time, ii) highest available video throughput and iii) max-

imum video quality is served.

Finally, we propose an adaptive framework for compression and streaming of stereo video

using the existing network infrastructure. We employ content-adaptive stereo video coding

(CA-SC), where additional compression is achieved by spatial and/or temporal downsam-

pling depending on the content. An end-to-end streaming system where the end-users can

view the video in mono or stereo mode depending on their display capabilities is imple-

mented and MOO formulations are proposed.

The improvements achieved are demonstrated with experimental results.
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ÖZETÇE

Bu tez raporunda verimli video akıtımı için Çok Hedef-İşlevli Eniyileme (MOO) şemaları

sunulmaktadır.

İlk olarak, düşük ve sabit kapasiteli ag̃larda kesintisiz içerik uyarlamalı video akımı için

gecikme-bozunum eniyilemesi metodu sunulmaktadır. Giriş videosu içerik analizi yapılarak

çeşitli ilgililik seviyelerine ayrıştırılmaktadır. Video en küçük gecikme ve bozunum hedef-

lenerek uyarlamalı olarak her sahne için en iyi uzaysal ve zamansal çözünürlük ve nicem-

lemeyle kodlanmakta ve akıtılmaktadır. Arabellek ve bozunum sınırlamalarıyla birlikte,

önemsiz sahnelerin bit hızı düşürülmekte ve önemli kısımların kalitesi arttırılmaktadır.

Sonra en yüksek “uygulama katmanı servis kalitesinde”, en yüksek video kapasitesinde

(zaman sekmesi başına video saniyesi) ve servis kalitesinde adil kablosuz video akıtımı için

çapraz-katmanlı eniyilenmiş bir video bit hızı uyarlama ve kullanıcı çizelgeleme şeması sunul-

maktadır. Bu hedefler her zaman sekmesinde i) en küçük oynatma zamanına, ii) en yüksek

video kapasitesine ve iii) en yüksek video kalitesine ulaşan kullanıcı seçilerek MOO ile eniy-

ilenmektedir.

Son olarak, var olan ag̃larda stereo videolarin kodlanması ve akıtımı için uyarlamalı bir

metod önerilmektedir. Fazladan sıkıştırmanın uzaysal ve zamansal ölçeklemeyle sag̃landıg̃ı

içerik uyarlamalı stereo video kodlama uygulanmaktadır. Kullanıcıların gösterim imkanları

dahilinde mono veya stereo video izleyebildikleri uçtan uca bir akıtım sistemi tanıtılmakta,

MOO problem formüllemeleri önerilmektedir.

Ulaşılan kazanımlar deneysel sonuçlarla gösterilmektedir.
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Chapter 1

BACKGROUND AND MOTIVATION

Over the last few decades, the efforts for finding an efficient digital representation for

video and communicating it over a network have gained a lot of interest from the society.

The communication networks such as the Internet have become much faster than they

used to be due to the tremendous developments in the physical backbone, especially in

the developed countries. This progress has made new, more advanced and more interesting

services possible for service providers resulting in higher user satisfaction. Among these new

services, live and on-demand video streaming services such as Internet TV, video conference,

and video databases like YouTube [1] and Google Video [2] are becoming more and more

popular. The quality of video experience achieved by different service providers constitutes

the cutting edge for their market share. The perceived video quality and the service speed

are the determining factors in doing such a comparison between different service providers

for users.

The perceived video quality can be defined as the closeness of the compressed, transmit-

ted and decompressed video content to the original video sequence in terms of their spatial

features (picture quality) and temporal features (fluent and uninterrupted play) visible to

the naked eye. Ideally, the spatial and temporal features that are perceivable by the Human

Visual System (HVS) would be exactly the same for the original and the reproduced video

sequences. However, the video quality may be degraded in two phases in such services,

namely; quality degradation while i) video coding/compression, and ii) video streaming.

The former can be defined as the science of representing videos with the least amount of

information (bits stored) and the maximum visual quality, and it is still a very hot research

topic presently. The latter tries to satisfy the constraints of the communication channel and

the end devices while dealing with packet losses and bit errors that occur in the physical

layer.
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Traditionally, these two issues have been approached somewhat independently from each

other in order to make the system design and upgrade easier, which came at the expense of

suboptimality in the achieved video experience. The video encoding algorithms in the litera-

ture show very little or no awareness to the communication environmental issues in general,

except for one specific case, i.e. when the communication channel has Quality-of-Service

(QoS) guarantees such as constant and sufficient bandwidth support. In this exceptional

case, the encoder at the server side can simulate a replica of the decoder at the receiving

client device and prevent unwanted pauses in the video playback. On the other hand, such

network-layer QoS and bandwidth is very difficult to achieve at the same time in today’s

communication networks especially considering wireless environments and their shared na-

ture. If the network-layer quality of service and/or the high bandwidth requirements of

the video streaming service can not be provided, there is still a higher level trick the service

provider can employ in order to improve the user experience, i.e. optimized adaptive tempo-

ral video rate (quality) allocation. In this thesis, we propose Multiple Objective Optimized

(MOO) video streaming system designs that consider both temporal video rate allocation

and transmission issues simultaneously.

In this chapter, firstly, background information about the state-of-the-art compressed

video representation and temporal rate allocation (control) techniques and the evolution

towards multiview video representations are presented. Secondly, the motivation for con-

tent adaptive video rate adaptation is given. Finally, the streaming issues known to both

monocular and multiview video representation cases in the literature are discussed.

1.1 Video Compression and Temporal Rate Allocation

The video compression techniques in the literature can be divided mainly into two cat-

egories, namely lossless and lossy video compression. In lossless video coding algorithms,

the compressed and recovered video bitstream is the bit-by-bit identical of the original input

video data. This is the ideal case when the video perceptual quality point of view is consid-

ered alone. On the other hand, the compression efficiency of such video coding techniques

is quite low and they are impractical for most applications. Therefore, the application area

of lossless video coding is very limited (e.g. video archiving). On the other hand, the lossy

video encoders intentionally discard data in order to achieve much lower bit rates. As
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a consequence, the video quality drops and there is a trade-off between the video perceptual

quality and the compression efficiency that needs to be optimized, which in general is called

the rate-distortion trade-off. Today, the popular lossy video compression techniques are

able to achieve much higher compression rates than that of lossless encoders with very little

degradation (unnoticeable in some cases) in the overall perceptual video quality, making

them more suitable for streaming purposes. The typical methods to achieve this goal in

lossy video coding are to take advantage of the Human Visual System (HVS) character-

istics, image statistics, spatial correlations within a frame, temporal correlations between

consecutive frames and information theory (entropy coding).

1.1.1 Monocular Video

The state-of-the-art monocular lossy video codecs (encoder-decoder pairs) such as MPEG2,

H.263 and MPEG4 all follow the same philosophy for achieving high compression rates and

they have been quite successful indeed. The recent and the most advanced video coding

standard up-to date is the H.264 MPEG-4 Part 10 or also known as the Advanced Video

Coding (AVC) standard, which was introduced by the Joint Video Team (JVT). The JVT

Group was founded as a partnership of the well known ITU-T Video Coding Experts Group

(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The H.264/AVC is

a more advanced standard than its ancestors MPEG2, H.263 and MPEG4 Part 2 in that, it

uses more sophisticated methods for motion estimation, compensation, block matching etc.,

supporting high perceptual quality at low bit rates. The overall computational complexity

is higher, but this is bearable with modern CPU’s and chips in case of hardware implemen-

tation. Although the H.264/AVC standard codec and its modified versions is widely used

throughout this thesis, we will not dive into the standard specifications in high detail as it

has already been well documented by the standardization bodies.

Although the level of compression rates achieved with today’s encoders is sufficient for

most of the personal storage related applications, extreme caution is still required for com-

mercial and industrial storage purposes, and more importantly streaming services. Having

an effective temporal bitrate allocation (control) algorithm has long been recognized as one

of the main product differentiators between various video encoders. The shared and unsta-

ble nature of communication channels, and the temporal variations in the scene complexity
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(coding difficulty) of videos make proper temporal video bitrate allocation an interesting

research problem. Rate control algorithms consist of group-of-pictures (GoP)-level and

frame-level bit allocation strategies and an encoder buffer fullness control strategy. In this

thesis, we will mostly concentrate the codec parts that are directly related to the video

streaming task, e.g. rate control (buffer management) and adaptivity issues.

The size of the decoder buffer at the receiving side of a video streaming system must be

considered while encoding at the transmitting side as it puts an upper limit on the initial

pre-roll delay. On one hand, if the pre-roll delay is kept too long, the receiving buffer may

overflow, causing the received video packets to be dropped before they are put in the buffer

queue. On the other hand, the receiving buffer may as well get empty during video play

if this delay is kept too short, causing the video playback to pause temporarily. Note that

both of these situations are extremely unwanted as they cause inefficiency in both the video

experience and the network utilization. In order to prevent this, the received buffer is

generally modeled and simulated at the transmitting side while encoding in the state-of-the-

art video codecs [3, 4] assuming a CBR channel behavior with a specified channel capacity.

Hence, if the given assumption is correct, it can be verified that the bitstream generated by

the encoder can be played without interruptions at the receiving side.

Clearly, the larger the decoder buffer, the more the encoder has freedom to allocate bits

across frames and GoPs for better performance at the expense of larger pre-roll delay. On

the extreme case, with no constraint on the buffer size, the entire video can be downloaded

before starting playback, which corresponds to the maximum pre-roll delay. In this thesis,

we present a multiple objective optimization (MOO) framework and a linear programming

based solution for the optimal allocation of bits across semantically defined GoP’s (shots) to

obtain a tradeoff between maximum visual quality and minimum pre-roll delay for a CBR

channel under certain constraints.

State of the art encoders perform operational rate-distortion optimization (RDO) for

mode selection, which can be considered as macro-block (MB)-level bit allocation. For ex-

ample, within the H.264/AVC video coding standard [5, 4], Lagrangian optimization is used

for determining the optimal encoder modes (Intra/Inter/Skip mode decision) and quantiza-

tion levels for different parts of a video for a given rate with minimal overall distortion [6].

In [7], the optimal value of the Lagrange parameter is found by determining an approximate
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rate-distortion (RD) curve and then differentiating the distortion with respect to the coding

rate. A rate control algorithm should consider absorbing instantaneous changes in the en-

coding rate of the source video for transmission over a constant bitrate (CBR) channel using

limited size buffers. Encoder buffer fullness control is achieved by adjusting the quantization

parameter to avoid buffer overflow and underflow, without considering resulting distortion,

e.g., the leaky-bucket method [8, 9].

1.1.2 Multiview Video

It is crucial for visual communication to be realistic as far as the user is concerned. Single

view video technologies have made a lot of progress since the invention of the black-and-

white television as explained above. As the color depth and spatial resolution is increased,

the video is perceived as more and more realistic by the Human Visual System. In order to

improve the level of realism, it is reasonable to add depth information to the video. Depend-

ing on general understanding of object shapes in nature, perspective, occlusion, shading and

more 3D clues, a human being can extract some depth information from monocular videos.

However, this is indeed not enough for getting an exact three-dimensional (3D) feeling. To

extract full depth information, HVS requires that the scene to be observed is simultaneously

viewed from at least two different positions (angles) in three-dimensional coordinates. This

is why a person with one eye shut has difficulty discriminating between depths of different

objects in 3D space.

Three-dimensional video technology, although unfamiliar to most people around the world,

is certainly not a new technology. Its roots go back to almost a century ago. The first 3D

movie called “Power of Love” was first shown at the Ambassador Hotel in Los Angeles

in September 1922. In this movie, the anaglyph technology was used where a couple of

cameras are used in parallel to take slightly shifted versions of the same scene. The frames

from both cameras are printed in two different colors, overlapped and then viewed using

special glasses with different color filters on each eye. In November 1952, “Bwana Devil”

was the first 3D movie of Hollywood to be shown all around the United States. The movie

was a huge economic success for the producers, although it was shown to be one of the worst

theatrical movies ever by many film authorities. Then comes the critical question: What

was the reason that three dimensional movies have not become more popular over the years.
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The answer is that the registration process of the anaglyph frames are not identical to that

done by the human eyes and brain, and it causes headaches and sickness in stomach after

30 minutes on average. Another drawback of stereoscopic video has been the necessity of

using stereo glasses to watch it. However, the recent achievements 3D display technologies

such as lenticular monitors avoid such a requirement and will definitely give an acceleration

to the studies in this field. The details of these issues are beyond the scope of this thesis.

It is enough to state that the 3D technology will become more popular in the coming years

for now.

Knowing that the future of the multiview technology is safe in terms of user satisfac-

tion/demand, the researchers from around the world concentrate on possible applications

and their quality attributes. It is straightforward to see that multiview video streaming is

the next generation of today’s video streaming applications and they will require efficient

compression without sacrificing much from visual quality. Considering that, as the number

of view angles (cameras) are increased for a particular multiview scene, the overall encoding

rate would increase which would make life more difficult for us. On the other hand, this

situation is not unbearable as long as some conditions are satisfied. Note that, all efficient

monocular video compression technologies such as JPEG2000, MPEG2 and H.264/AVC

make use of the high spatial and temporal correlation within the video in order to achieve

high compression without losing much from visual quality [10, 11]. For the case of stereo

video coding, in general, stereo image pairs are taken by two cameras standing close to

each other and facing similar directions, and this causes the stereopairs to include a lot

of common objects. Most of the time, the background is also the same for the left and

right images as shown in Figure 1.1. For this reason, there is a huge amount of correlation

between the left and right images in a stereopair and this correlation should also be used

for further compression and a similar methodology can be applied for higher number of

cameras. Therefore, directly applying monocular video coding methods to a stereo scene

(multi-view in general) is suboptimal. In order to achieve optimality, all view angles should

be considered simultaneously instead of one by one.

A predictive video encoding system contains several stages such as motion estimation

and compensation, disparity estimation and compensation in the case of stereo coding,

transform, quantization and, finally, entropy coding. Therefore, the overall performance of
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Figure 1.1: An example stereo pair (Tsukuba from the Middlebury College Stereo Vision
Page) including many common objects and a common background.

the system can be improved by adjusting a limited number of variables used in the above

mentioned stages. It is observed that, especially in stereo video coding, the better the dis-

placement (disparity) prediction is, the more efficient the overall compression rate becomes.

Furthermore, using bit allocation and quantization strategies that are optimal for stereo

coding instead of applying monocular encoding on left and right images separately would

increase the overall system performance considerably. Coding left and right image sequences

separately by using single-view video coding without considering binocular redundancies is

trivial and suboptimal. Just like the ordinary monocular coding strategies of today, high

compression rates can be achieved for stereo coding by making use of the temporal, spatial

and binocular redundancies in the source video.

As opposed to the general idea, the bit rates of an equivalent quality (using the same

encoding parameters) stereo video and the single-view version of it do not differ drastically,

as all modern coding techniques depend on eliminating redundancy in the video and stereo-

pairs usually possess strong correlation amongst themselves. Typically, two views cost only

1.2 ∼ 1.3 times the number of bits used by only a single view.
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Rate Distortion Optimization Among Stereopairs

Several stereo image/video coding schemes have been introduced in the literature [12, 13,

14, 15, 16, 17, 18]. The schemes proposed in [15] consist of two main parts. The first part

is the efficient estimation and compensation of disparity vectors, and the second part is

an appropriate optimal bit allocation strategy.

Let the rate-distortion optimization problem between stereopairs be as explained in

[15, 18]. There are many techniques to determine the disparity vector field between two

images. One of the well known techniques is the Iterative Lucas-Kanade Optical Flow

Algorithm [19]. The details of a pyramidal implementation of the Lucas-Kanade algorithm

is given in [20] and explained in Appendix D. However, the main purpose of video coding

is to compress the video. Therefore, using very accurate methods for disparity estimation

is not our primary concern.

Block-based disparity estimation and compensation can be done as in Figure 1.2. The blocks

in the target frame are searched for within the reference frame. The disparity estima-

tion/compensation block calculates the disparity vector field (DV) and disparity compen-

sated difference (DCD) frame between the encoded and decoded version of the reference

image and the target image. After that, the resulting disparity vector field and disparity

compensated difference frames are encoded according to the rate-distortion policy used.

Figure 1.2: Encoder block diagram for stereo video.

If the focal rays of the stereo camera pair are parallel and they are orthogonal to
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the stereo baseline, i.e. if they satisfy the epipolar constraint, then all the motion vec-

tors (disparity vector estimates) between left and right images have to be horizontal and

parallel to each other. This is obviously a special case of the motion estimation procedure

and it can lead to more accurate disparity vector estimations.

Simultaneously assigning bits to an image pair from a common bit budget is called

dependent bit allocation. The details of dependent bit allocation are explained in [17].

For finding the optimal bit allocation strategy, the total distortion measure, which can be

defined in a variety of ways, has to be minimized while staying within the overall bit budget

supplied for both left and right images.

Let the left image, FR of the stereopair be the reference image and the right image,

FT be the target image. Of course, the selection of the reference and target frames could

be the other way around as well. Here, the reference frame FR is used to estimate and

compensate the target frame FT . The disparity vector field (DV) between the reference

image and the target image is computed. Afterwards, the computed disparity vector field

is used to find an estimate for the target image from the reference image. The difference of

the original target frame, FT , from the disparity estimated and compensated version, F̂T is

called the disparity compensated difference (DCD) frame. Let the available number of bits

for the whole stereopair be Rtotal. Then the rate-distortion optimization formulation can be

stated as the one which tries to minimize the overall distortion measure (D) under the bit

budget constraint.

min
(DV,QR,QT )

{D} (1.1)

subject to

RR + RT ≤ Rtotal

where QR and QT denote the quantization parameters used in the reference and the target

frames respectively. DV is the resulting disparity vector field, and RR and RT are the

corresponding bit rates of the reference and the target frames, respectively.
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Perceptual Quality of Stereo Video

There are two different theories about the effects of unequal bit allocation between left

and right images, namely fusion theory and suppression theory. In fusion theory, it is

believed that the stereo distribution must be equally made for the best human perception.

On the other hand, in suppression theory, it is believed that the highest quality image in

the stereopair determines the overall perception performance. Therefore, according to this

theory, we can compress the target image as much as possible to save bits for the reference

image, so that the overall distortion is the lowest. If we assume that the overall distortion

measure of a stereopair will be a weighted average of the individual images, we can define

weighting coefficients between right and left image distortion values to take different amount

of contributions from each picture into account.

1.2 Video Content Analysis and Adaptive Rate Allocation

In classical rate control, all GoPs are treated equally, and frame-level bit allocation is based

on the frame type and a complexity measure, sometimes with multiple passes over the video,

but without considering the semantics of picture content. In the H.264/AVC reference

encoder [5], the GoP borders are determined according to a predefined pattern of frames,

and the same target bitrate is used for each GoP given the available channel rate. As a result,

the video quality varies from GoP to GoP depending on the video content. The problem

with this approach is that in some applications, e.g., wireless video, the total bit budget is

not sufficient to encode the entire content at an acceptable quality. Video segments with

high motion and/or small details may become unacceptable when all GoPs are encoded at

the same low rate. Inter-GOP rate control schemes, that is variation of the target bitrate

from GoP-to-GoP, have been proposed to offer uniform video quality over the entire video.

For example, in [21], an optimal solution for the buffer constrained adaptive quantization

problem is formulated. In [22], rate-distortion characteristics of the encoded video are used

to find the frame rate and quantization parameters that provide the minimum distortion

under rate constraints. The minimization operation is done in an iterative manner so that

the measured distortion is smaller than the previous iteration at each step. However, these

methods do not consider the semantics of the video content either in GoP definition or in

GoP target bitrate allocation.
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As the available computing power at the encoders increases, so does the level of sophisti-

cation of the encoders and their associated control techniques. By using appropriate content

analysis, it is now possible to define GoPs according to shot boundaries, and allocate target

bit rates to each GoP based on the shot type considering the “relevance” or “semantics” of

each type of shot. Such a rate control scheme will be called “content-adaptive rate control.”

In content-adaptive rate control, video will be encoded according to a pre-specified or user

defined relevance-distortion policy. In effect, we accept a priori that some losses are going

to occur due to the high compression ratios needed, and we force these losses to occur in

less relevant parts of the video content. We note that “relevance of the content” is highly

context (domain) dependent. For example, in the context of a soccer game, the temporal

video segments showing a goal event and the spatial segments around the ball are definitely

more important than any other part of the video. There are a variety of other domains,

such as other sports videos and broadcast news, where the relevance of the content can

easily be classified. In content adaptive video coding, temporal segmentation policy used

has a major effect on the overall efficiency and rate distribution among temporal segments.

There exist techniques for automatically locating such content [23, 24, 25, 26, 27]. In [28],

a summarization of the available multimedia access technologies that support Universal

Multimedia Access (UMA) is presented. Segmentation and summarization of audio-video

content are discussed in detail and the transcoding techniques for such content are demon-

strated. The details of automatic content analysis is explained in Appendix C.

Content adaptive rate allocation ideas have been introduced in the literature before.

In [29], the input video is segmented and encoded as two streams for different relevance

levels with “predetermined bit rates,” namely, the high target bitrate (highly relevant) and

the low target bitrate (less relevant) streams. The less relevant shots are then encoded

such that they are shown as still images at the receiving side and the more important shots

are encoded at full quality. In this pioneering work, the decision to restrict the number of

the relevance levels to two and the determination of the relative bit allocations are done

in an ad-hoc manner. Quality of Service (QoS) is required for continuous playback to be

guaranteed and low and high rates are determined by the client buffer size and the channel

bandwidth. The server buffer size required is set afterwards, which effectively determines

the pre-roll delay.
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There are also techniques that divide the input video into segments by considering vari-

ous statistics along these segments that affect the ease of coding without taking into account

any relevance issues. For example, in [30] MPEG-7 metadata are used for video transcoding

for home networks. Concepts like “difficulty hints” and “motion hints” are described. Diffi-

culty hints are a kind of metadata that denotes the encoding difficulty of the given content.

The motion hints describe the motion un-compensability metadata, which contains infor-

mation about the GOP structure, frame rate and bitrate control and also the search range

metadata that reduces the complexity of the transcoding process. In this work, boundaries

of the temporal segments of the content are determined by the points where the motion

un-compensability metadata makes a peak and then the video is transcoded using the diffi-

culty hints. Here, GOP size is varied according to the motion un-compensability metadata.

A hybrid scaling algorithm using a quality metric based on the features of the human visual

system is introduced in [31], which tries to make full utilization of the communication chan-

nel by scaling video in either temporal or spatial dimensions. In this work, frame rate of

the encoded video is reduced at scenes where motion jitter is low (high temporal resolution)

and all the frames are kept for scenes with high motion at the expense of reduced spatial

resolution.

1.3 Video Streaming

Although video streaming with entertainment quality over the Internet seemed impossible

only a few years back, nowadays it is a commonly used application for both live and on-

demand video over high-speed networks. Here we make the definition of entertainment

quality video as television quality or higher with no noticeable fluctuations in perceptual

quality within the video duration. The recent advances in coding techniques [5, 4] have also

made it possible to broadcast/simulcast such video content for mobile users over wireless

channels.

The practical applications developed so far in video communication such as streaming

video over the Internet, digital broadcast and teleconferencing are all built for monocular

video technologies and are becoming more and more popular nowadays. For example, video-

conferencing already occupies a huge market share as a technology that offers a wide range

of applications from distance-learning to peer-to-peer video chat over the Internet and is
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available with almost all commonly used Instant Messengers (IM) of today.

The transmission channel bandwidth is one of the most important limitations on the qual-

ity of the video content in a video transmission application. In a download and play scenario,

if videos are not compressed efficiently, the download time for the client could be undesirably

long such that the viewer would lose patience and stop the video downloaded process. From

a client point of view, this is obviously a loss of not only his time but also his client device

resources such as bandwidth, CPU, dynamic memory, storage space etc. for the download

duration. From a service provider’s point of view, this is an extremely unwanted situation

as their primary objective is to distribute their content with maximum client satisfaction.

Compression efficiencies of the recent video codecs are still insufficient for transmis-

sion of entertainment quality video in low-speed wired and wireless environments where

the encoding rate/quality of the video needs to be changed over the course of transmis-

sion for uninterrupted view. Video coding for streaming with such rate control (adaptive

video coding) is called information quality video and is widely studied in the literature for

the monocular case. Information quality video should be employed only when the users are

not able to receive entertainment quality content due to client and network resource limi-

tations. Here, we mainly concentrate on streaming of information quality video sequences

with temporal fluctuations in quality as dictated by the system constraints and the semantic

or statistical content of the scenes.

This thesis report is organized as follows: Firstly, in Chapter 2, the proposed Delay-

Distortion Optimization (DDO) framework for monocular video streaming over low capacity

constant bitrate channels using the MOO scheme is presented. In Chapter 3, a cross-

layer multiple objective optimization framework for wireless monocular video streaming is

introduced. In Chapter 4, a method for efficient compression and real-time streaming of

binocular video using the existing network infrastructure and MOO formulations for stereo

video streaming are presented. Finally, in Chapter 5, conclusions are drawn.

Appendix B discusses the perceptual quality measures, i.e. the distortion measures that

are employed in our DDO framework. Appendix A explains the MOO scheme used in detail.

Appendix C discusses the video content analysis techniques for monocular and multi-view

videos in the literature. Appendix D gives a summary of the Lucas-Kanade optical flow

algorithm.
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Chapter 2

MULTIPLE OBJECTIVE OPTIMIZATION FOR VIDEO STREAMING

OVER IP

In this chapter, a Multiple Objective Optimization (MOO) problem for monocular video

coding/streaming over a constant bit rate (CBR) channel will be formulated and solved. We

propose a new pre-roll delay-distortion optimization (DDO) framework that allows determi-

nation of the minimum pre-roll delay and distortion while ensuring continuous playback for

on-demand content-adaptive video streaming over limited bitrate networks. The input video

is first divided into temporal segments, which are assigned a relevance weight and a maxi-

mum distortion level, called relevance-distortion policy, which may be specified by the user.

The system then encodes the input video according to the specified relevance-distortion

policy, whereby the optimal spatial and temporal resolutions and quantization parameters,

also called encoding parameters, are selected for each temporal segment. The optimal en-

coding parameters are computed using a novel, multiple objective optimization formulation,

where a relevance weighted distortion measure and pre-roll delay are jointly minimized un-

der maximum allowable buffer size, continuous playback, and maximum allowable distortion

constraints. The performance of the system has been demonstrated for on-demand stream-

ing of soccer videos with substantial improvement in the weighted distortion without any

increase in pre-roll delay over a very low-bitrate network using H.264/AVC encoding.

2.1 Introduction

Pre-roll delay is a vital parameter in video streaming since it provides some level of pro-

tection against network throughput variations, as well as allowing flexible rate allocation in

video coding. If it is chosen too small, pauses in video playback due to network throughput

variations and/or unacceptable video quality due to strict rate control in video coding would

result. An unnecessarily large pre-roll delay, which in the limit leads to the download-and-

play solution, requires a very long initial wait, thus eliminating the benefit of streaming,
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and is usually found objectionable by users. Therefore, video streaming applications should

strike the right balance between pre-roll delay and video distortion. This issue becomes

even more significant in content-adaptive video streaming over low-bitrate networks, where

different bit rates (sometimes larger than the network throughput) shall be allocated to

different temporal video segments (shots) according to their importance.

Streaming video over low-bitrate networks, such as 3G and beyond wireless systems,

remains to be a challenging problem even with Quality of Service (QoS) support. Content

adaptive video coding has been introduced as a potential solution to this problem [29],

where the video is parsed into semantic temporal segments. Important temporal segments

are encoded at a high enough bitrate, while the rest is transmitted at a very low bitrate (e.g.,

as key frames and audio). However, in this early work, the low and high bit rates are deter-

mined according to client buffer size and channel bandwidth in an ad-hoc manner. There

also exist a number of content-adaptive transcoding strategies: Content-adaptive multime-

dia access technologies that support Universal Multimedia Access (UMA) are explained in

[28] and [32]. In [28], assuming that each spatial region of interest Ri of a video segment

has an importance hint 0 ≤ Ii ≤ 1, and a spatial resolution hint 0 ≤ Si ≤ 1, the optimiza-

tion problem is formulated as finding a set of regions Ri and a rescaling factor L such that

the overall fidelity score of the rescaled set is maximized and the minimum bounding rectan-

gle surrounding the cropped and rescaled set Ri fits the screen size of the receiving device.

A method, where transcoding policies are determined by the content author is described in

[33]. Depending on the capabilities of the client, versions of content with various resolutions

and modalities are produced off-line, and the version that maximizes a subjective measure

of fidelity is selected.

In [34], new performance measures for semantic adaptation, namely Viewing Quality

Loss and Bitrate Cost Increase, are discussed. Object or event based segments of the input

video are automatically classified into relevance levels. The unequal bit allocation strategy

between important and unimportant temporal segments is determined by the semantic

statistics (size and number of relevant and irrelevant segments) of the input video and

the target bitrate. If a relevant segment is misclassified, a loss of quality occurs and is

denoted by Viewing Quality Loss. Conversely, if an unimportant segment is misclassified,

an unnecessarily high bitrate will be used, referred as Bitrate Cost Increase.
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We recognize that some content adaptive techniques; including the one proposed here,

yield temporal variations in quality, which may be unacceptable for entertainment-quality

video. On the other hand, over very low bandwidth networks, if such techniques are not used,

then almost no valuable visual information may be delivered. For example, when a soccer

video is encoded at low bit rates with uniform quality, there may be severe distortions to

the extent that the ball and the players are not visible and pitch lines are lost in the most

important scenes (e.g., goals). Content adaptive coding facilitates best effort transmission

of such relevant information instead of enforcing an average and low quality for the entire

video segment. This chapter addresses optimal bit allocation between different temporal

segments to minimize distortion and pre-roll delay under pre-set quality-level and continuous

playback constraints. An alternative approach was introduced in [35], where rate-distortion

optimized video summarization and transmission over packet lossy networks with minimum

video distortion has been studied.

The classical approach to ensure continuous video playback for a fixed target encoding

rate relies on the buffer management strategy of the underlying codec system, and deter-

mines the pre-roll delay as a function of the decoder buffer size (a hardware constraint).

For example, the Video Buffer Verifier (VBV) model [3] of MPEG and the Hypothetical

Reference Decoder (HRD) model [4] in H.264/AVC [5, 36] verify that the bitstream gener-

ated by an encoder can be played-back continuously at the decoder given the decoder buffer

size and pre-roll delay for a constant bitrate (CBR) channel with a specified rate. However,

the effects of the pre-roll delay or the decoder buffer size on the overall distortion are not

specified in these models. With software decoders for streaming applications, hardware

constraints become less important while the pre-roll delay becomes a main performance pa-

rameter (which then determines the required buffer size). In [37], an adaptive media playout

(AMP) scheme was proposed as a means to ensure continuous playback, where the client

device can adaptively change playout speed of the content in order to prevent buffer overflow

and underflow. In [38], AMP framework is combined with the well-known rate-distortion

optimized (RDO) [6] streaming. Although AMP addresses continuous playback issue in

an ad-hoc manner, in low-bitrate streaming applications with non-uniform bitrate alloca-

tion among temporal segments, optimum determination of pre-roll delay under continuous

playback constraint remains as an important concern.
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In content-adaptive video coding and transcoding, temporal shot detection and relevance

assignment methods may have significant effect on the overall performance. Most effective

methods are highly context (domain) dependent. For example, in the context of a soccer

game, the temporal video segments showing a goal event and the spatial segments around

the ball are more important than any other part of the video. In a tennis game, breaks given

between sets are not as relevant as the in-game strife. Television news reports can be seg-

mented as anchorperson shots, news footage and commercial breaks. For movies, temporal

shot detection and content analysis may facilitate bitrate assignment as a function of coding

difficulty and existence of special effects. There exist several techniques in the literature

for automatically analyzing such content [23, 24, 25, 26, 27]. Automatic content analysis

is beyond the scope of this thesis, and we assume appropriate content analysis tools are

available.

Another essential part of our framework is the definition of distortion and semantic rele-

vance measures for video content. Although Peak Signal-to-Noise Ratio (PSNR) is the most

commonly accepted distortion metric in the literature, it is not always a good indicator of

perceptual quality when spatial and temporal resolutions are varied in rate allocation; hence

the need for richer quality metrics [39, 40]. Blockiness and flatness measures have been more

closely linked with perceptual quality. Insufficient frame rate due to frame skipping can also

be considered as a source of perceptual disturbance, especially when there is high motion

in the clip. Several other perceptual quality metrics have been proposed in the literature

[41, 42, 43, 44, 45]. It is not the objective of this work to develop new video quality metrics,

but rather to employ recently published such measures in our problem formulation.

This chapter offers the following main contributions: i) A new delay-distortion opti-

mization (DDO) framework for content-adaptive video streaming using multiple-objective

optimization (MOO), which allows studying trade-offs between pre-roll delay and distor-

tion is proposed in Section 2.2. ii) A new off-line content-adaptive streaming solution

for video-on-demand using this framework, where the best trade-off between spatial and

temporal video resolutions (for encoding), and encoder quantization parameters for delay-

distortion optimization is provided in Section 2.3. The method proposed in this chapter is

an off-line procedure for rate allocation to each temporal segment which is applicable to

finite length video clips. The main application is on-demand video streaming over limited
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bandwidth networks with QoS where acceptable video quality must be delivered with min-

imum delay. First, we encode each temporal segment (also referred as GoP) individually

with multiple target bit rates. Rate-distortion optimization (RDO) is used while encoding

each segment [3, 4, 5]. Our proposed solution determines the target rate, and spatial and

temporal resolutions for each GoP to achieve the least overall distortion and pre-roll delay

for the video according to a user specific relevance-distortion policy, given the temporal

segment boundaries. Finally, selected bitstreams for each GoP are pasted together using

a bitstream assembly unit. The proposed framework can be used with any video codec,

including the state of the art H.264/AVC encoder.

The chapter is organized as follows: Section 2.2 discusses the problem formulation for off-

line delay-distortion optimized content-adaptive streaming. Section 2.3 presents a particular

linear programming (LP) solution. Section 2.4 presents experimental results, where we

observe considerable improvements in visual quality and user utility for a variety of bit

rates using our bit allocation approach. In Section 2.5, conclusions are drawn. The main

principle of the MOO approach used in our solution is overviewed in Appendix A.

2.2 Problem Formulation

In this work, we assume that a video clip has already been partitioned into N temporal

segments. Our goal is to send more relevant temporal segments with high perceptual quality

and minimum pre-roll delay over a CBR channel with bitrate Rch given a specific relevance-

distortion policy, and never to send any content under an acceptable perceptual quality level.

Clearly an acceptable quality (lower distortion) can be attained by increasing pre-roll delay

(encoding at a rate higher than Rch). We first introduce the relevance-distortion policy for

content-adaptive video streaming in Section 2.2.1. Section 2.2.2 addresses the relationship

between pre-roll delay and distortion for the case of variable target bit rates for each segment,

under continuous playback constraint. We then formulate selection of the best encoding

parameters for each segment as a multiple objective optimization problem, to minimize

the perceptual coding distortion and pre-roll delay at the receiver in Section 2.2.3, where

maximum buffer size, continuous playback and the maximum perceptual distortion (per

segment) constraints are taken into account.
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2.2.1 Relevance-Distortion Policy

A relevance-distortion policy assigns a relevance level wn and a maximum allowed distortion

Dmax
n for each temporal segment n according to its content. This policy may be universal,

set at the server side, or may be user-specific, provided in a user profile. In applications

where not all temporal segments may be equally interesting to a user, relevance levels can

depend on the semantics of the content; in other contexts, relevance levels may be assigned

according to low level features or coding difficulty. That is, a user’s level of interest in certain

shots (e.g., goals in soccer, touch-downs in football) in a given video context can either be set

to default values derived from general opinions, or it can be signaled by a specific user prior

to streaming session. It is also possible to compute relevance level automatically from audio

and video features [46, 47]. For example, in a sports video, if we assume that audio signal

energy increases whenever an important event occurs since the voice of the commentator

and/or the noise of the audience will increase, then the relevance level of video segment n

may be defined by

wn =
En

Eglobal
(2.1)

where En denotes the average audio energy of segment n, and Eglobal is the average audio

energy for entire video. The relevance factors are normalized between 0 and 1. We note

that our framework does not depend on any specific method of determining the relevance

factors.

It is important to specify a suitable distortion measure for video. This measure can

be PSNR, perceptual quality measures, or a combination of both. We specify maximum

allowed distortion levels Dmax
n for each video segment, as a function of the relevance of

each segment, such that we would not transmit a video segment at a quality less than this

specified level for an acceptable video experience.

2.2.2 Delay-Distortion Optimization with Continuous Playback Constraint

In this section, we consider how to ensure continuous playback in content-adaptive video

encoding/streaming, where different target bit rates, R1, . . . , RN will be assigned to different

temporal segments of the video. Assume that the duration of video, TD seconds, has been

divided into N temporal segments, and that the target bitrate Rn for each segment n is
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fixed. The minimum buffer size Bn to account for within-segment bitrate variations is

an input to the reference decoder buffer verifier model of the particular codec that we use

to code the corresponding segment. Hence, for continuous playback, the pre-roll delay must

be chosen to guarantee that the receiver buffer must have at least Bn bits at the start of

each segment n for the entire duration. Therefore, a necessary condition for Tpre is to satisfy

Rch · Tpre + Rch ·
∑n

i=1 TDi ≥
∑n

i=1 Ri · TDi + Bn+1 for all 0 ≤ n ≤ N

where TDi denotes the duration of segment i and BN+1 = 0 1.The first term on the left

hand side is the number of bits accumulated in the decoder buffer during the pre-roll period,

the second term is the total bits received until playback of segment n is complete, the first

term on the right hand side is the total bits drawn from the decoder buffer for playback of

first n segments, and the second term is the number of bits that must be present in the buffer

before the start of segment n+1 to make sure continuous playback during segment n+1

according to the reference decoder buffer verifier model of the particular codec. Therefore,

a necessary condition for continuous playback for the whole video can be stated as:

Tpre ≥ max
0≤n≤N

{
(
∑n

i=1 Ri · TDi + Bn+1)− (Rch ·
∑n

i=1 TDi)
Rch

}
(2.2)

= max
0≤n≤N

{
n∑

i=1

[
TDi

(
Ri

Rch
− 1

)]
+

Bn+1

Rch

}
(2.3)

Observe that the value of Tpre to ensure continuous playback depends on how target bit

rates are assigned to different temporal segments, hence the given relevance-distortion policy,

although the average bitrate and duration of the clip are the same. This is demonstrated

by a simple example below.

Example: A video clip, with duration TD and N=2 segments, shall be encoded in two

different ways:

a) First segment, with duration TD1 = 2
3TD is encoded at R1 = 96 kbps and second

segment TD2 = 1
3TD at R2 = 32 kbps; b) First segment, with duration TD1 = 1

3TD is

encoded at R1 = 32 kbps and second segment TD2 = 2
3TD at R2 = 96 kbps, as depicted

in Figure 2.1. The average bitrate for both cases is the same (74.67 kbps). Assuming

the channel bitrate is Rch = 64 kbps, let us now calculate Tpre required for continuous

playback for each case.

1Summations are assumed to be zero when the lower index is larger than the upper index.
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Case a) The minimum pre-roll delay is given by

Tpre ≥ max
{

B1
64 , 2

3TD
(

96
64 − 1

)
+ B2

64 , 2
3TD

(
96
64 − 1

)
+ 1

3TD
(

32
64 − 1

)}

= max
{

B1
64 , 1

3 TD + B2
64 , 1

6 TD
}

= max
{

B1
64 , 1

3 TD + B2
64

}

Case b) The minimum pre-roll delay is given by

Tpre ≥ max
{

B′1
64 , 1

3TD
(

32
64 − 1

)
+ B′2

64 , 1
3TD

(
32
64 − 1

)
+ 2

3TD
(

96
64 − 1

)}

= max
{

B′1
64 ,−1

6 TD + B′2
64 , 1

6 TD
}

(a) (b)

Figure 2.1: A video clip with N=2 segments is encoded in two different ways.

We observe that the required minimum pre-roll delay can differ depending on how rate

is allocated to each segment even though the average encoding rates and channel conditions

are the same. In this setup, the pre-roll delay for case (a) could be more than twice the

pre-roll delay for case (b) depending on the values of B0, B′
0, B1, and B′

1. We note that

these values will depend on the coding pattern (IBBBPBBBP. . . ) and encoding parameters

used for the temporal segments.

Hence, in content-adaptive (variable target bit rates for segments) video streaming sys-

tems, there exists a trade-off between pre-roll delay and relevance-distortion policy used,

similar to the well-known rate-distortion trade-off in fixed target bitrate encoding/streaming

systems. In streaming applications with segment-based content-dependent target bit rates;

however, applying classical RDO solution to each segment with different target bit rates does
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not necessarily guarantee the best overall visual experience and minimum pre-roll delay for

continuous playback. It is well known that larger values of Tpre provide more flexibility

in assigning higher rates to particular segments, as well as more latitude in the allocation

of rates R1, . . . , RN to each segment, hence a better visual experience at the expense of

a larger buffer requirement and initial wait time. Therefore, we propose a delay-distortion

optimization (DDO) formulation in the following to strike a compromise between pre-roll

delay and overall distortion to obtain the best pre-roll delay vs. distortion performance.

2.2.3 Multiple Objective Optimization Formulation

Given a relevance-distortion policy, we propose a multiple objective optimization formu-

lation for delay-distortion optimization, where the optimal encoding parameters, hence

the rates R1, . . . , RN for each segment are determined to minimize the pre-roll delay and

weighted overall distortion, D, at the receiver subject to maximum acceptable average dis-

tortion Dmax
n for each segment n and a maximum buffer size constraint. That is,

min
{R1,R2,...,RN}

{Tpre} = min
{R1,R2,...,RN}

{
max

0≤n≤N

{
n∑

i=1

TDi

(
Ri

Rch
− 1

)
+

Bn+1

Rch

}}
(2.4)

min
{R1,R2,...,RN}

(D) = min
{R1,R2,...,RN}

{
N∑

n=1

wn ·Dn · TDn

}
(2.5)

jointly subject to

Dn ≤ Dmax
n , n = 1, . . . , N (2.6)

and

Bn+1 ≤ Rch · Tpre + Rch ·
n∑

i=1

TDi −
n∑

i=1

Ri · TDi ≤ Bmax for all n = 0, . . . , N (2.7)

where Dn and wn denote the average distortion and relevance measure for temporal segment

n respectively, and Bmax is the maximum buffer size at the decoder. Minimization is

performed over values of Rn for each temporal segment n.

The objective function in Eqn. 2.4 is derived from the continuous playback constraint in

variable target bitrate scenario explained in Section 2.2.2 and aims to minimize the initial
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wait time. The constraint given by Eqn. 2.7 denotes the necessary condition to guarantee

continuous playout, and it imposes that there is no buffer overflow or underflow at shot

boundaries. We make the following observations and note that the proposed formulation

includes some well-known solutions as special cases.

1. Dmax
n constraints (Eqn. 2.6) are not used, then distortion of a particular segment can

be unacceptable. For example, the ball or field lines may be distorted in low-bitrate

sports streaming.

2. If buffer size constraint (Eqn. 2.7) is not used, arbitrary Dmax
n constraints can be

satisfied at the expense of increased pre-roll delay Tpre by encoding at a rate higher

than the channel rate Rch.

3. If objective Tpre (Eqn. 2.4) is not minimized, then the optimal solution approaches

the download and play solution.

4. If objective D (Eqn. 2.5) is not minimized, then it may result in under-utilization

of the channel bandwidth when the minimum value of Tpre is zero, with the trivial

solution such that Dn = Dmax
n , for all n where each segment is encoded with the worst

allowable distortion. The multiple objective optimization solution allows allocation

of the excess rate in certain segments to achieve a smaller distortion in the future

segments.

5. It is not possible to simply minimize the average rate subject to distortion constraints

(Eqn. 2.7) and achieve the minimum pre-roll delay. See the example in Section 2.2.2.

6. If no feasible solution exists, because the conflicting maximum distortion Dn=Dmax
n

(Eqn. 2.6) and maximum buffer size Bmax (Eqn. 2.7) constraints cannot be satisfied

simultaneously, then we try discarding the segment with the least relevance value

and/or shortest duration, and try again.

2.3 An Off-Line Delay-Distortion Optimization Solution

In this section, we provide a particular off-line solution to the delay-distortion optimization

problem formulated in Section 2.2 using the H.264/AVC video codec.
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2.3.1 Linear Programming Solution

In our solution, the rates {R1, . . . , RN} will be indirectly determined as a function of a set of

encoding parameters, the frame rate (temporal resolution), picture size (spatial resolution),

and quantization parameter (SNR resolution), which are the independent optimization vari-

ables for each segment.

We assume that the frame rate, picture size and quantization parameter for each segment

is quantized to certain pre-determined levels for a total of K possible combinations. Each of

the N segments, with semantic relevance factors {w1, w2, . . . , wN}, has been coded off-line

using these K combinations of spatial resolutions, frame rates, and quantization parameters.

In our study, the PSNR and blockiness measures are computed in comparison to the origi-

nal video at the highest spatial resolution after spatial interpolation of the encoded-decoded

video as needed. The average perceptual distortion measures for each segment are given

by {D1
1, D

2
1, . . . , D

K
1 , D1

2, D
2
2, . . . , D

K
2 , . . . , D1

N , D2
N , . . . , DK

N }, where the subscript denotes

the segment count and the superscript denotes a particular combination of coding param-

eters. Each Dk
n has been calculated as a weighted sum of PSNR and blockiness measures

(increasing PSNR has a negative effect on distortion) given by

Dk
n =

Blkk
n −Blkmin

Blkmax −Blkmin
− PSNRk

n − PSNRmin

PSNRmax − PSNRmin
(2.8)

where Blkmin, Blkmax, PSNRmin and PSNRmax denote the minimum and the maximum of

blockiness and PSNR measures [41], achieved respectively, computed over all shots. A mo-

tion jitter measure to account for insufficient frame rate, if included, can be computed as

the difference of average motion vector lengths between full frame rate and the current

frame rate. Bitrates corresponding to the above distortions;

{R1
1, R

2
1, . . . , R

K
1 , R1

2, R
2
2, . . . , R

K
2 , . . . , R1

N , R2
N , . . . , RK

N}

are also computed for each combination of these encoding parameters. The quantization

step sizes for both the intra and inter coded frames are determined as in [4]. The resulting

(Rk
n, Dk

n) pairs for each coding parameter set k and segment n are depicted in Figure 2.2.

If the original video is pre-processed to change its spatial and temporal resolution,

the distortion measures outlined above become functions of spatial and temporal resolu-

tions selected for the video segment to be encoded as well as the quantization parameters.
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Hence, selection of the optimal distortion implicitly selects the best spatial and tempo-

ral resolution to be used, in addition to the optimal quantization parameter. Therefore,

the problem of finding the optimal set of encoding parameters for each segment is then

equivalent to finding a particular path on the coding parameter set index versus segment

index graph shown in Figure 2.2, such that Eqn. 2.4 and Eqn. 2.5 are minimized sub-

ject to Eqn. 2.6 and Eqn. 2.7. Each feasible path in Figure 2.2 yields a pre-roll delay

and overall distortion pair (Tpre, D), which corresponds to a point on the two-dimensional

delay-distortion graph depicted in Figure 2.3.

To find the optimal path, we first determine the utopia point (see Appendix A), which

is defined as the delay-distortion point obtained by optimizing each objective function in-

dividually while ignoring the other. More specifically, we first ignore the delay objective

function (Eqn. 2.4) and find the solution that gives the minimum distortion. This returns

the encoding parameter set that yields the point Opt1 = (Tmax, Du) in Figure 2.3. Next,

we ignore the distortion objective function (Eqn. 2.5) and find the encoding parameter set

that gives the minimum pre-roll delay, hence the point Opt2 = (Tu, Dmax) shown in Figure

2.3. The point U = (Tu, Du) is called the utopia point.

Next, we determine the set of Pareto-optimal solution points. A delay-distortion pair

(Tpre, D) is called a Pareto-optimal solution if the value of the distortion can not be decreased

without increasing the value of pre-roll delay, and vice versa. The set of Pareto-optimal

points is shown by the curve in Figure 2.3. In order to find a set of Pareto-optimal solution

points, the horizontal axis is uniformly quantized in the interval [Tu, Tmax] using Q levels,

and minimum distortion values for the quantized pre-roll delay values are determined using

linear programming, where each quantized pre-roll delay is used as an upper bound con-

straint, disregarding the delay objective function (Eqn. 2.4). The best compromise solution

can only be determined after finding all such constrained solutions and forming the Pareto-

optimal curve. Similarly, it is possible to do the quantization on the distortion axis and find

the minimum pre-roll delays for Q distortion constrained optimization problems. Software

packages exist for solving such linear programming problems. In our study, we used General

Algebraic Modeling System (GAMS) Integrated Development Environment2 software.

Finally, the best compromise (optimal) path, hence the set of encoding parameters for

2GAMS Development Corporation, http://www.gams.com
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Figure 2.2: Optimal path along coding parameter set vs. the segment index plane.

Figure 2.3: Sample points on the delay-distortion plane corresponding to paths and
the Pareto-optimal curve.
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each segment, is chosen as the path that corresponds to the closest solution to the utopia

point, U = (Tu, Du), among all Pareto-optimal solutions using a suitable distance measure.

An example MOO problem and its solution have been demonstrated in Appendix A.

It is well-known that an LP problem can be solved in polynomial time using optimization

methods in the literature such as the projective method [48]. In order to find the Pareto-

optimal curve, we need to apply the LP procedure Q times (the number of quantization

levels on the delay-axis). Therefore, the computational complexity of the optimization

process is Q times that of the LP procedure, which is polynomial time in the number of

temporal segments N. For example; this computation takes approximately 30 minutes when

N=1080 and Q=6 for a soccer game of 90 minutes.

2.3.2 Overall System Summary

The operation of the proposed encoder and decoder is shown in Figure 2.4. The content

analysis and shot classification module performs shot boundary detection and classification

of each shot into certain pre-defined semantic content types. The output of the module is

N temporal segments each with a relevance measure, wn, n = 1, . . . , N . The pre-processor

converts each segment into pre-selected spatial and temporal resolution format choices.

The standard encoder encodes each input segment In with all possible encoding parameter

sets (K spatial/temporal resolution and quantization parameter choices) resulting in K×N

output segments. The output of the standard encoder for the ith segment and jth encoding

parameter set is a bitstream with rate-distortion pair (Rj
i , D

j
i ). After this stage, all rate-

distortion pairs for each temporal segment along with user-defined relevancy levels and

available channel bandwidth information are fed to the MOO module. The optimal encoding

strategy is then decided to minimize both pre-roll delay and overall perceptual distortion

of the transmitted video. This solution requires K different coding results for each of the

N shots. For example, we can select 2 frame rates, 2 spatial resolutions and 3 quantization

parameters in a typical application, which results in K=12. Then the storage requirement

is 12 times the size of the whole compressed video stream, which is 791 MBytes for a 90

minutes soccer video (N = 1080) when the average encoding bitrate is 100 kbps over all

K encoding schemes. Although quantization parameter is embedded in the encoded bit

stream, spatial resolution and frames per second may need to be sent as side information
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Figure 2.4: Block diagrams of the proposed encoder/streamer and decoder.

so as to synchronize when they are changed.

The operation of the decoder is straightforward. If the coding standard used supports

spatio-temporal resolution changes, the resulting compressed bitstreams will be standards

compliant. However, we may need a specialized display module to display all pictures at

a standard spatial resolution. The display module may use the side information, consisting

of the spatial and temporal resolution of each GoP to display the entire video using a single

spatial and temporal resolution.

In the H.264/AVC reference encoder, the HRD model assumes that the video will be

drained by a CBR channel with a rate equal to the video encoding rate. Since in our

proposed system, the target bit rates assigned to each segment varies, and for some segments

the target encoding bitrate can be more than the channel rate, additional logical encoder

buffer will be needed to store the excess bits produced. Because bits transmitted during

the pre-roll time need to be stored at the decoder side, an identical additional logical buffer

will be required at the decoder as well to ensure the proper operation of the proposed variable

target rate system. The required additional logical buffers at the encoder and decoder are
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Figure 2.5: Additional “logical” buffers are used to provide continuous playback with vari-
able GoP-target-bit rates.

illustrated in Figure 2.5. Here, the “logical” buffers demonstrate the necessary increase in

the size of the codec buffers to realize DDO rate allocation. In an actual implementation,

the “logical” buffers can be realized by simply increasing the codec buffer sizes accordingly.

2.4 Experimental Results

In our experiments, we used H.264/AVC codec software JM 7.4 provided by the Joint Video

Team (JVT) to encode each video segment using a number of fixed quantization parameters.

We selected a 20 seconds soccer video clip, which is 352 × 288 and 25 fps. The video is

segmented into N = 4 shots using the content analysis technique of [24]. The first shot is a

goal event that is of great interest to most users, the second shot is a scene where the players

cuddle to celebrate the goal. The audience is shown on the third shot and finally the team

coach is seen on the last shot. We encoded each segment using spatial resolutions of 176×144

and 96×80, temporal resolutions of 25 fps, 12.5 fps and 6.25 fps and quantization parameters

(QP) that vary between 17 and 36 for a total of K=232 combinations. Here, K is chosen
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Figure 2.6: Audio energy distribution of the whole video.

large to better study the trade-off along the convex Pareto-optimal curve on a fine scale.

However, K can be reduced significantly by limiting the choice of quantization parameters

to 2-3 values without noticeable performance degradation as shown in Figure 2.11. We

computed the total bits (rates) and distortion values (as a linear combination of the PSNR

and blockiness measures given by Eqn.2.8) for each combination.

User-specified relevance values for the four shots used in our experiments and refined

(final) weights scaled using audio information (audio energy distribution function given in

Figure 2.6) are shown in Table 2.1. Note that, in our formulation, ratios of weights (to each

other) rather than the weights themselves are important. The relevance values can vary

between different users. For example, if a user doesn’t want to see parts of video where

only the audience is shown, the weight of that shot should be set to zero. In this case,

the optimal encoding result may not include this irrelevant shot at all.

Figure 2.7 shows a comparison of QCIF resolution key frames from different types of

shots encoded by the proposed DDO rate allocation technique (each GoP coded utilizing

RDO) and the standard RDO codec (JM 7.4 from the JVT group) at the same rate. The

encoding rate is 37.57 kbps, the channel rate and the available physical receiving buffer size

are assumed to be 25 kbps and 50 kBytes, respectively; resulting in an average encoding

rate of 37.57 kbps and an overall delay of 10.06 seconds for the content adaptive codec at

the receiving side. While the ball and lines of the field are quite noticeable in the content

adaptive DDO rate-allocated clip, we can’t see the ball and certain parts of the pitch lines
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Figure 2.7: Sample frames from each of the 4 shots: left column are DDO coded and right
column are RDO coded.
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Shot Relevance Average Audio Energy Scaled Weight

1 1 0.2689 0.759

2 0.25 0.2238 0.158

3 0.125 0.1582 0.056

4 0.125 0.0745 0.026

Table 2.1: Weights given by the user and refined (scaled) by audio information.

Shot Scaled Weight Resolution FPS Bitrate Duration

1 0.759 176 × 144 6.25 68.25kbps 4.97 sec.

2 0.158 96 × 80 6.25 28.58kbps 9.61 sec.

3 0.056 96 × 80 6.25 27.4kbps 2.86 sec.

4 0.026 176 × 144 6.25 23.25kbps 2.56 sec.

Table 2.2: Optimal set of parameters for the video segments.

in the standard RDO encoded version at 37.57 kbps. Also, for the 2nd shot, the blocking

artifacts are very disturbing in the standard encoded version. For the last two shots, both

coding schemes show similar performances. Figure 2.8 and Figure 2.9 show the quantization

parameters and corresponding distortion measures, respectively, at each frame for both

coding schemes.

Buffer Requirements: The proposed content-adaptive (DDO) results are compared with

the variable bitrate (VBR) coded (using constant picture resolution and quantization factor

for the whole video) and constant bitrate (CBR) coded (using H.264/AVC rate control [5])

versions of 120 seconds long video obtained by cascading six identical replicas of the original

video. We illustrate the instantaneous decoder buffer occupancies of DDO, and regular VBR

and CBR solutions with equal average bitrate in Figure 2.10, where we assure that the pre-

roll delays are sufficient to guarantee continuous playback for each case for a fair comparison.

The horizontal axis in Figure 2.10 denotes the time elapsed after the encoder side starts

streaming. For our content adaptive DDO solution, the changes in the buffer level can be
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Figure 2.8: Quantization parameter values used in each frame.

Figure 2.9: PSNR and weighted distortion of individual frames.
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Figure 2.10: Buffer occupancy graph for the 120 seconds video after pre-roll time.

either steep or slow depending on whether a high relevance or a low relevance segment is

displayed. In our solution, the maximum physical client buffer size is set to 300 kBytes;

although the maximum buffer level observed (necessary and sufficient client buffer size) is

found to be 125 kBytes with a pre-roll delay of 40 seconds. The resulting average encoding

bitrate throughout the video is 33.33 kbps. For this example, at the same bitrate, VBR

and CBR solutions require approximately the same buffer size as our solution; hence, our

solution provides higher video quality in important temporal segments without incurring

additional pre-roll delay and buffer requirements over the standard CBR solution with RDO.

If the buffer constraint is kept too small, it may not always be possible to come up with

a feasible solution, unless concessions are made on one or more of the constraints/objective

functions. Note that the DDO solution can not be dominated by either CBR or VBR solu-

tions both in pre-roll delay and distortion, since the optimal DDO solution would approach

the better one of these solutions in a worst case scenario. In cases where there exist feasible

solutions, our framework would find the optimal solution.

Delay-Distortion Trade-off: For a 25 kbps constant bitrate channel, the delay-distortion



Chapter 2: Multiple Objective Optimization for Video Streaming over IP 35

curves for the 120 seconds video with no buffer constraints imposed are shown in Figure

2.11. For equal pre-roll delays, the proposed solution shows better weighted distortion

performance on average, especially at the important temporal segments, for which the video

PSNR gain is around 4.5 dB compared to the VBR solution. Note that, as the pre-roll delay

increases, the required buffer size at the client size also has to increase. As a result, the larger

the receiver buffer is, the more flexibility the encoder side has on GoP level bit allocation,

increasing the overall video quality, as seen in Figure 2.11.

(a) (b)

Figure 2.11: Comparison of VBR encoding and the proposed method for delay-distortion
performances (a) over all segments and (b) over important segments for the 120 seconds
long video.

In order to illustrate how the minimum required decoder buffer size is affected by the in-

dividual shot durations, we now construct a 1200 seconds (20 minutes) long video where
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the duration of each shot in the 120 seconds long video is made ten times larger (shot dura-

tions up to 96.1 seconds). For the same target bitrate (33.33 kbps), if the same bit allocation

strategy among shots is applied as for the 120 seconds video, the required buffer size would

be 1250 kBytes. On the other hand, if we re-run our optimization algorithm for the 1200

seconds video under the same conditions with a maximum physical buffer size constraint

of 1000 kBytes., this results in an average video encoding bitrate of 30.03 kbps, a pre-roll

delay of 243.9 seconds, and a minimum required buffer size of 762.2 kBytes. For the same

average-bitrate video, the download-play approach would result in 1443.8 seconds of delay

and 4512 kBytes of storage space. Hence, the pre-roll delay and buffer requirements of our

method do not grow linearly with overall video or individual shot durations. On the con-

trary, the maximum physical buffer size constraint in the optimization formulation causes

the average encoding bitrate to drop when necessary.

The results for 120 seconds and 1200 seconds videos, shown in Table 2.3 indicate that

the required buffer sizes are well within the capabilities of today’s clients. With the con-

tinuous playback guarantee, the pre-roll delay and buffer size requirements of the standard

RDO solution is very close to ours. However, the video quality is much higher in the impor-

tant temporal segments in our solution. Hence, our solution provides higher video quality

in important temporal segments without incurring additional pre-roll delay and buffer re-

quirements (penalty) over the standard RDO solution.

The results presented here are provided as a proof of concept. Improvements in weighted

PSNR and pre-roll delay may vary with the video content and specific relevance-distortion

policy adopted.

2.5 Conclusions

This chapter introduces a new MOO framework for delay-distortion optimization (DDO) in

content-based adaptive GoP-level rate allocation for video streaming over resource-limited

networks using linear programming. Semantic relevancy of shots has been taken into account

in determination of encoding parameters for each shot. Clearly, video with unacceptable

quality is by definition of no use for anyone. On the other hand, there are users who will

wait to watch video at an acceptable quality as manifested by the streaming applications

on the Internet. What we accomplished in this chapter is that, we developed a technique
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Download-Play

Solution

Proposed Solution

Channel

Throughput

Average

Bitrate

Video

Duration

Delay Req.

Buffer

Size

Delay Req.

Buffer

Size

25 kbps 33.33

kbps

120 sec 160 sec 500

kBytes

40 sec 125

kBytes

25 kbps 30.08

kbps

1200 sec 1443.8

sec

4512

kBytes

243.9

sec

762.2

kBytes

Table 2.3: Buffer requirements.

to reduce this waiting time to levels much lower than that of download and play, keeping

the relevant quality at an acceptable level over low bandwidth channels. The proposed

method not only maximizes perceptual quality of relevant parts in the video, but also

minimizes the pre-roll (initial playback) delay at the receiving side. It outperforms the

performance of regular bit allocation schemes in the relevant shots (4.5 dB gain), while still

providing an acceptable quality for other shots with quite affordable buffer requirements.

The proposed framework does not depend on a particular video coding technology.
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Chapter 3

MULTIPLE OBJECTIVE OPTIMIZATION FOR CROSS-LAYER

WIRELESS VIDEO STREAMING

In this chapter, we present a cross-layer optimized video rate adaptation and user

scheduling scheme for multi-user wireless video streaming aiming for maximum quality of

service (QoS) for each user, maximum system video throughput, and QoS fairness among

users. These objectives are jointly optimized using a multiple objective optimization (MOO)

framework that aims to serve the user with the least remaining playback time, highest de-

livered video seconds per transmission slot and maximum video quality. Experiments with

the IS-856 (1xEV-DO) standard numerology and ITU Pedestrian A and Vehicular B en-

vironments show significant improvements over the state-of-the-art wireless schedulers in

terms of user QoS, QoS fairness, and the system throughput.

3.1 Introduction

A wireless system that enables on-demand video streaming has unique design challenges

compared to its wired counterpart, due to the time-varying nature of the wireless channel

and scarcity of the system resources which makes it impossible to guarantee any video

specific Quality-of-Service (QoS). In a cellular network with multiple users streaming various

videos, achieving optimal sharing of system resources and allocating optimal video rate to

each user simultaneously so that the highest possible application layer QoS is provided to

each user in a fair manner while maximizing spectral efficiency of the overall system is

a current research problem.

In the past, the cellular network used to deliver only voice data over a circuit-switched

network. On the other hand, in general, voice data is bursty, while circuit-switched networks

are dedicated to a user in the whole duration of use. This leads to under-utilization of

the available bandwidth when users are not effectively using the communication channel.

A better way of utilizing the channel capacity is to spare some of the bandwidth for data
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other than voice and to let the users share this bandwidth in a systematic and adaptive

manner. In the simplest case, a Time Division Multiple Access (TDMA) scheme where

each user is allocated a time-slot periodically (round robin mechanism) can be applied [49].

The TDMA scheme is also suboptimal and results in under-utilization of the communication

channel bandwidth. Presently, in the modern wireless telecommunication systems such as

the High Data Rate (HDR) protocol, the base station constantly probes the instantaneous

channel conditions of all the users in the network and tries to schedule the users with the best

instantaneous conditions. These new systems are merely based on building intelligent time-

division multiplex scheduling algorithm overlays on the existing physical layer based on

instantaneous user demands and capabilities.

Standardized 2.5 and 3G systems (e.g., cdma2000, UTRAN, and EGPRS) try to provide

video services by building on the air interface of the old 2G systems, such that existing 2G

resource allocation basics are inherited and further improved. However, these improvements

over the voice-centric 2G systems are not enough to provide support for high data rate and

less delay intolerant services such as video streaming since resource requirements for packet

data are significantly different from that of voice. For this reason, there is need for adaptive

and efficient system resource sharing schemes unique to high-speed packet data access over

wireless channels. Among such techniques, the opportunistic multiple access scheme in

which all system resources are allocated (scheduled) to only one user at a given pre-defined

time slot is shown to be optimal in terms of average system throughput in frequency flat

fading channels [50]. In this scheme, adaptive coding and modulation need to be employed

for each scheduled user such that optimal spectral efficiency is achieved. The main focus of

this chapter is on wireless systems that employ opportunistic multiple access with adaptive

coding and modulation. Examples of such systems are 3G extensions, such as 1xEV-DO for

cdma2000 and HSDPA for WCDMA.

The essential target of cross-layer optimization is to provide a vertically optimized video

communication system, in which, resources such as power, spectrum, time and code space

are optimally and dynamically shared by system subscribers.

The scheduling algorithm has a major impact on the system performance in opportunistic

multiple access systems. For delay tolerant data, it is possible to increase the system

throughput significantly by making use of the time-varying characteristics of the wireless



Chapter 3: Multiple Objective Optimization for Cross-Layer Wireless Video Streaming 40

system, provided that the channel characteristics are continuously tracked and accurately

and quickly fed back to the transmitter. On the other hand, such capability may become

very limited when the data is less tolerant to delay, as in video streaming. Well known

scheduling algorithms for opportunistic multiple access systems are maximum C/I (carrier-

to-interference ratio), first in first out (FIFO), proportionally fair (PF) [51] and exponential

[52] schedulers. The maximum C/I scheduler, also called the maximum rate scheduler,

assigns the user with the best channel condition to maximize the overall system throughput.

The downside is the lack of fairness among subscribers, since users who are relatively further

away from the base station (BS) will always suffer from lack of service, while users that are

closer to it will almost always utilize all of the system resources. The FIFO scheduler

selects the user who has waited the longest to receive data in the network. Apparently,

this algorithm behaves optimally in terms of fairness in the number of time slots assigned

per user. However, it may suffer from low throughput performance. Furthermore, fairness

in slot assignment does not necessarily mean equal average data throughput for all users.

The PF scheduler assigns the user with the best channel condition improvement relative to

its own mean. This algorithm keeps track of every user’s average available channel data

rate over a given time window. At every time slot, the ratio of each user’s available channel

throughput to its average over that time window is calculated. The user whose ratio is

the maximum is assigned for that time slot. The exponential scheduler attempts to add

a certain level of fairness in terms of service latency to the PF scheduler, so that no user is

left without service for long periods of time.

Existing 2G-3G wireless systems employ the Open Systems Interconnect (OSI) layered

design, where the interfaces between layers are fixed; hence, design of an individual layer does

not consider constraints of other layers. For example, in video streaming, resource allocation

at the Medium Access Control (MAC) layer and video source coding at the Application

Layer are handled independently. This makes the design of individual layers easier at

the expense of suboptimal system performance. Indeed, the general purpose scheduling

algorithms discussed above for the opportunistic multiple access system pay no regards

to the application layer. Similarly, recent video coding technologies such as H.264/AVC

[53] and scalable coding (SVC) [54] perform rate allocation without any regards to other

OSI layers. Wireless systems provide users with rapidly varying data rates due to fast
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channel signal-to-interference plus noise ratio (SINR) variations, which can best be exploited

using an application-layer fair opportunistic multiple access scheme. At the same time,

the wireless link also suffers from relatively slower oscillations in its average throughput

due to shadowing effects, which can be exploited by adapting the video source coding rate

accordingly. Hence, further improvements are possible for wireless systems by considering

the interplay between different OSI layers with a cross-layer design.

There have been several works addressing cross-layer design of video streaming systems

in the literature, which propose to adapt the source coding rate and/or system resource

allocation among users in response to feedback from multiple layers. They have all been

aimed to maximize either the system resource utilization or the perceived video quality, but

not both of them jointly. In [55] an adaptive video rate control scheme for real-time video

streaming using scalable video coding is introduced. Using the statistics of packets flowing

through the network (packet drop percentage, round-trip-time, etc.) the current channel

state is estimated and additional video enhancement layers are sent through the channel

if conditions get better, resulting in better video quality. In [56], a joint source coding

and rate adaptation scheme to achieve energy efficient video streaming is presented, where

the number of macro-blocks (MB) in each packet, coding parameters of MB, transmission

rate and scheduling of the packets are determined according to distortion-constrained min-

imization of energy required to successfully send the packet. In [57], a packet scheduling

framework for wireless video streaming using an error-prone feedback is introduced. By ob-

serving the packet losses using the ACK/NACK messages and channel statistics, an optimal

transmission strategy for the upcoming packets is determined. In [58], several abstracted

parameters from different OSI protocol layers are used as decision variables in the opti-

mization of a single objective function whose parameters depend on system design targets.

Here, the results obtained for different objective function parameters may be different. Since

only one objective function is considered in the optimization formulation, this scheme suf-

fers from either service fairness or average system performance. Recently, we introduced

a cross-layer scheduling framework for video streaming over the 1xEV-DO system, where

not only the current system throughput capabilities but also the receiver buffer levels of

individual users are optimized simultaneously [59]. However, source coding rate adaptation

was not addressed in that work.
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A possible approach for video rate adaptation is to store several versions of the same

content, each encoded at a different rate, and switch among them as necessitated by the net-

work conditions [60]. This is particularly suitable for video on-demand, where encoding is

off-line and there is sufficient space to store multiple encodings. Another well-known ap-

proach is layered video coding, also called scalable video coding [54]. This method provides

a base layer coded at a lower rate, as well as one or more enhancement layers. The base

layer can be decoded independently, and enhancement layers, which can only be decoded if

the base layer decoding is successful, refine the video quality. Rate adaptation is achieved

by changing the number of enhancement layers transmitted [61]. A variation called fine

grain scalability allows rate/quality tradeoffs at much finer granularity. Both approaches

have been demonstrated to be useful in achieving good network utilization and high video

quality [62, 63]. Several papers that overview these concepts, and extend them with tech-

niques, such as frame skipping or coefficient dropping [64, 65] can be found in the literature.

Alternatively, it is possible to employ advanced rate control to vary the video rate arbitrarily

on the fly while real-time encoding.

In this chapter, we present a new cross-layer, multiple-objective optimization (MOO)

framework for joint video rate adaptation and system resource allocation (user scheduling)

for multi-user wireless video streaming systems. The MOO framework jointly considers

“application-layer QoS” of the individual users, “application-layer QoS fairness” among

all users, as well as the overall “video throughput” towards a best compromise solution.

The video throughput is defined as the delivered video seconds per transmission second,

which depends on both the channel data throughput and video encoding rate. In constant

bitrate video encoding, video throughput is linearly related to the channel throughput. In

Section 3.2, we introduce the application and physical layer related objective functions,

including application-layer QoS fairness, and the problem formulation. In Section 3.3, we

provide experimental results for the wireless opportunistic multiple access scheme for the 3G

1xEV-DO system [66]. Finally, in Section 3.4, we draw conclusions.

3.2 Optimization Criteria and Problem Formulation

The optimization criteria used in the MOO framework are modeled in Sections 3.2.1-3.2.3,

and formulation of the optimization problem is presented in Section 3.2.4, where we seek
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to find a best compromise operating point such that any one of the objectives cannot be

further improved without worsening the others by a bigger margin. This solution will

provide a means to decide which user to schedule at a given time slot and what video source

coding rate to use for that user.

3.2.1 Application-Layer QoS for Each User

The quality of encoded video is generally measured in terms of the Peak-Signal-to Noise-

Ratio (PSNR). In the proposed framework, we consider a system where the modulation and

coding parameters are set so that the physical layer operates at the conventional 1 percent

packet error rate. However, even this 1 percent packet error rate can cause a significant

degradation in the PSNR of the received video stream. To ensure correct reception of all

physical layer packets, we also employ Automatic Repeat reQuest (ARQ) at the physical

layer so that every erroneous physical layer packet is retransmitted until it is received

correctly. This clearly comes at the expense of buffer underflows and consequently, pauses

in the playback. We assume a video-on-demand scenario, where pauses will not cause any

loss of content; in other words, the playback will resume at the same position where the pause

occurred. Therefore, the PSNR of received video will be identical to that of the transmitted

video, and we will assess the perceived received video quality in terms of both the PSNR

and the number of pauses. Alternatively, we could limit the number of retransmissions and

deal with lost packets using error concealment methods [67] at the receiver, which would

reduce the total wait time at the expense of a decrease in the received video PSNR.

The PSNR for user i is directly related to the mean video encoding bitrate, µi(k), for

that user. Adaptation of this mean video encoding rate may be beneficial especially when

transmission is over a time-varying channel. This is because: i) continuous playback may

be maintained, if the channel characteristics worsen for a particular user, at the expense

of a lowered perceptual quality; ii) video quality may be increased at times when a user

experiences a better than average channel condition. In this chapter, we focus on stream-

switching method for video rate adaptation [60], where we switch between various streams

of the same video, each encoded with a different µi,l(k), which denotes the encoding rate for

the l ’th video stream for user i at the k ’th time slot. We employ H.264/AVC [53] encoding

with a GoP size of 12 frames. Therefore, the mean encoding rate may be switched once in
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every 12th frame.

One of the objectives of our framework is maximization of the video encoding rate for

each user, thereby maximizing the user PSNR. The transmitter is allowed to vary the mean

video encoding rate in response to the feedback received from the users’ on their observed

channel characteristics as well as buffer fullness levels, which indicates whether the users’ will

experience pauses in their playbacks. Therefore, in order to maximize µi,l(k), the scheduler

needs to select the user i and its l ’th video stream that results in µ∗(k) = max
i,l

µi,l(k) , at

all times.

3.2.2 Average Video Throughput for All Users

We define the duration of video content delivered to the scheduled user per transmission

second as the video throughput, which is an important service quality parameter that needs

to be maximized. Note that, in a generic wireless data communication system that does

not consider application QoS specifically, it is desirable to maximize the average chan-

nel capacity to achieve spectral efficiency. In case of variable bitrate (VBR) video coding,

the maximization of channel capacity is not equivalent to the maximization of video through-

put. However, they would be equivalent in case of constant bitrate (CBR) video streaming,

since the user with the highest data throughput would also be able to receive the longest

video segment into its buffer at any given time slot. The maximization of the downlink

video throughput is possible via available achievable data rate feedback from all users at

each time slot, given that the video encoding rates are known at the server side. Hence

the downlink video throughput improvement can be achieved at the expense of increased

uplink channel overhead.

Assume that there are M users with streaming video requests in the wireless system.

Let k (1 ≤ k ≤ ∞) denote the discrete time slot index for scheduling. Let λi(k) be the

transmission bitrate supported by the wireless channel for user i if scheduled at time slot

k and ai(k) be a binary variable that takes the value “1” if the user i is scheduled at time

slot k, and “0” otherwise. Note that, the video encoding rate µi,l(k) is allowed to vary from

GOP to GOP in order to achieve a tradeoff between increasing video PSNR and decreasing

the number of pauses. Also note that µi,l(k) can be varied only at the scheduling slot indices

k that correspond to the beginning of a new GOP for user i.
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Let the video throughput of the i ’th user for the k ’th time slot be denoted by ti,l(k) if

the l ’th video stream is selected for transmission. Then,

ti,l(k) =
ai(k) · λi(k)

µi,l(k)
(3.1)

Now, let the average system video throughput up to the n’th time slot be denoted by

t(n) . We can calculate the average video throughput in a recursive manner in terms of its

previous value as follows:

t(n) =
1
n

(
(n− 1) · t(n− 1) +

M∑

i=1

ai(n) · λi(n)
µi,l(n)

)
=

(n− 1) · t(n− 1)
n

+
1
n
·

M∑

i=1

ai(n) · ti,l(n)

(3.2)

For large values of n, the first term on the right hand side becomes approximately equal

to t(n−1). Then, the video throughput enhancement due to scheduling the ith user at time

slot n to transmit the lth video stream, ∆ti(n), can be approximated as:

∆ti(n) = t(n)− t(n− 1) ∼= 1
n
· λi(n)
µi,l(n)

=
1
n
· ti,l(n) (3.3)

where the only differentiating factor amongst users is the instantaneous video throughput,

ti,l(n) at time n. Therefore, in order to maximize the value of t(n), the scheduler needs

to select the user i and associated lth video stream with the highest instantaneous video

throughput, t∗(n) = max
i,l

ti,l(n), at all times.

3.2.3 Application-Layer QoS Fairness

In the literature, equating the system access time, equating the received average data rate,

and equating the observed average delay across users have all been used as fairness measures.

We classify such fairness criteria as link-layer fairness. It is apparent that link-layer fairness

pay no regards to the specific QoS requirements of the application. Ultimately, a system

should aim to provide service that satisfies its QoS requirements for all users, regardless

of their current channel conditions. We define such a measure of fairness as application-

layer QoS fairness. Hence, an application-layer QoS fair wireless video streaming system

should aim to provide high PSNR video with minimum number of pauses for all of its users.

While maximization of PSNR requires increasing the encoding rate µi,l(k), minimization
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of number of pauses requires decreasing µi,l(k), which sets up an interesting optimization

problem.

Video streaming applications employ a finite buffer at the receiver, and playback begins

when the buffer reaches a pre-defined fullness level, resulting in a pre-roll delay. Hence,

minimization of number of pauses is also related to the pre-roll delay. We define the “total

wait time” as the sum of the pre-roll delay and duration of all pauses. Let θi(k) be the total

remaining video playback time in seconds for user i at time slot k, in case it is never scheduled

again. We assume that the application cannot vary the video display rate, i.e., adaptive

playout methods are beyond the scope of this chapter. Then, θi(k) may be computed by

the user by counting the number of frames in its buffer at the kth time slot, fi(k). This is

done by parsing the received stream, and locating the startcodes for each frame. Once fi(k)

is determined, the remaining playback time θi(k) can easily be computed as

θi(k) =
fi(k)

Ω
(3.4)

when a constant frame rate of Hz (frames per second) is used. Then, application layer

fairness, i.e., minimizing the number of pauses observed during playback for each user,

can be achieved by scheduling user i that has the smallest remaining video playback time,

θ∗(k) = min
i

θi(k).

3.2.4 Problem Formulation

We have three objectives for the desired system operation, namely, at time slot n, the pro-

posed system should schedule user i and video stream l such that all active users experience

high video PSNR with minimum number of playback interruptions, while the system enjoys

a high average video throughput. Then, the optimization formulation for scheduling a user

at time slot n and deciding on its source data rate is given by,

1. Select the user i and the associated video stream l that provides the highest video

encoding data rate, µi,l(n):

max
i,l

(µi,l(n)) (3.5)
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2. Select the user i and the associated video stream l that provides the maximum avail-

able average system video throughput:

max
i,l

(ti,l(n)) (3.6)

3. Select the user i whose remaining video playback time is the smallest:

min
i

(θi(n)) (3.7)

jointly subject to buffer constraints,

0 ≤ Bi(n) ≤ BufferSize (3.8)

for all i where Bi(n) is the number of bits in the ith user’s buffer at the nth time slot and

BufferSize is the buffer size of the users.

If we assume that these three objectives are equally important to the user, their values

can be scaled to an equal range (e.g., the range [0,1]). In case of unequal importance among

the objectives, values of µi,l(n), ti,l(n) and θi(n) can be scaled to ranges [0,w1], [0,w2] and

[0,w3], respectively, where wp is the importance weight of the pth objective.

In the proposed framework, we assume that quantized information on channel quality

and remaining playback times for each user are available at the base station for each time slot

by means of a physical and application layer feedback. The remaining playback times can

be computed at the server side via an infrequent 1-bit application layer feedback from each

user as explained in Section 3.3.1. Buffer overflows can be detected similarly. Availability

of this information is useful for not only scheduling, but also intelligent video source code

adaptation. The details of the uplink overhead caused by the physical and application layers

feedback are discussed and demonstrated by experimental results in Section 3.3.

The three objectives stated in (3.5)-(3.7) may be conflicting with each other. For exam-

ple, it is possible to have a user that provides the highest video throughput while having a

large remaining playback time in its buffer, contradicting objectives (3.6) and (3.7). Simi-

larly, the objectives of maximum remaining time in the buffer and high video data rate are
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contradictory. For this reason, the optimization should attempt to find the best compro-

mise solution in the Pareto-optimal sense. Such optimization is called multiple-objective

optimization and is described in Appendix A.

3.3 Experimental Results

Extensive simulations have been conducted to assess the performance of the proposed cross-

layer multiple objective optimization for joint scheduling and video rate adaptation. We

use IS-856 (1xEV-DO rev. 0) numerology [66] in the simulations to provide realistic results.

Details of the simulation platform are given in Section 3.3.1. Results are presented to com-

pare the proposed framework (when there is no video rate adaptation) with the traditional

schedulers from the literature in Section 3.3.2. Results with video rate adaptation are shown

in Section 3.3.3. Sensitivity of the system performance when the operating point deviates

from the optimal one is discussed in Section 3.3.4.

3.3.1 Simulation Platform

The simulations are composed of three stages: i) System level simulations, ii) physical layer

simulations, and iii) joint scheduling and video rate adaptation simulations.

System level simulations model a 3-tier cellular layout with a cell radius of 1 km. Here,

the first three tiers have 6, 12 and 18 cells centered around the cell of interest, respectively.

Different videos of 183 seconds total duration are assumed to be demanded by a maximum of

32 users in the center cell. These users are repeatedly and randomly dropped into the center

cell uniformly over a period of 1 second, which corresponds to 600 slots for the IS-856 system.

The simulation sampling rate is set at 600Hz, which corresponds to one sample per time-

slot. For each time-slot, the ITU Pedestrian A and Vehicular B wireless channel models

[68] have been used to calculate the received signal-to-noise ratio for each user. Interference

level is determined assuming that all base stations in the 3-tier layout always transmit at

full power. The ITU models take path-loss, shadowing, multipath fading, and mobility into

account. Gudmundson’s model has been used to model the autocorrelation of the shadow

fading [69].

The physical layer simulations have been conducted using Agilent’s Advanced Design

System (ADS 2004A) program. Here the IS-856 system is simulated to calculate the nec-
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essary signal-to-noise ratio for each supported transmission rate so that a maximum of 1%

packet error rate is achieved. IS-856 is originally designed to provide packet switched data

to multiple users over a bandwidth of 1.25 MHz by providing service to only a single user

at a given time. A time slot of 1.67 ms is defined for this operation. The active user is

chosen according to a desired scheduler. The data rate of the scheduled user is selected

according to its observed channel conditions. According to Shannon’s capacity formula,

the channel capacity increases logarithmically with signal power, i.e. signal-to-noise ratio

(SNR). The probability of symbol error in transmission changes with respect to the SNR

as shown in Figure 3.1.

Figure 3.1: Changes in probability of symbol error in transmission with respect to the SNR.

Therefore, given the base station power and packet error rate constraints, the instanta-

neous signal-to-noise ratios (SNR) of each user can be converted into maximum available

user data rates. An example case with 3 users is shown in Figure 3.3.1 where t denotes

the time slot index.

The data channel rate for a single user can take on values in the range from 38.4 to 2457.6

kbps. To enable this variability, the system uses 1/3 and 1/5 rate Turbo codes and QPSK, 8-

PSK and 16-QAM modulation schemes adaptively. Also repetition and puncturing provide

finer grain coding. After scrambling, modulation and repetition, the transmission packet is

de-multiplexed into 16 blocks. Each of these blocks is spread using one of the orthogonal

16 Walsh codes. The final transmission packet is the sum of these 16 blocks. Four distinct
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Figure 3.2: An example 3-user scenario and the maximum deliverable data rates due to
error rate constraints and channel (SNR) conditions. The selected user for each time-slot is
shown with gray color.

transmission packet sizes are described and each supported data rate maps onto one of

these packet sizes. The transmission packets may span multiple time slots depending on

the data rate. The data rates, the corresponding transmission packet sizes, modulation and

coding parameters as well as the required signal-to-noise ratios obtained by the physical

layer simulations are tabulated in Table 3.1 for the IS-856 system.

Once all user signal-to-noise ratio levels are determined for each time-slot, joint schedul-

ing and video rate adaptation simulations are conducted. Here, the multiple-objective opti-

mization is performed for the objectives of (3.5)-(3.7) to find the best compromise operating

point for each time-slot.

To aid the IS-856 system in scheduling, all users need to report their achievable data rate

levels every 1.667 ms. Users transmit a 4-bit feedback to describe one of the 13 available

data rates as shown in Figure 3.3. In the proposed cross-layer framework, an additional

feedback is necessary from each user to aid the base station calculate the remaining video

playout time in the buffer of each user. An infrequent 1-bit flag that is transmitted when

a user experiences a pause in the playback and then again when the playback is resumed.

Since the system is designed to maximize the remaining playback time in the buffer of each

user the probability of a pause in the playback is small and thus, for practical purposes,

the amount of additional feedback necessary is very small. This statement is confirmed with

the simulation results that are presented in the next section.
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Rate

(kbps)

Slots Transmission

Packet Size

(bits)

ModulationCoding

Rate

SNR

(dB)

(Ec/Io)

38.4 16 1024 QPSK 1/5 -11.68

76.8 8 1024 QPSK 1/5 -9.31

153.6 4 1024 QPSK 1/5 -6.14

307.2 2 1024 QPSK 1/5 -2.96

614.4 1 1024 QPSK 1/3 -0.77

307.2 4 2048 QPSK 1/3 -3.94

614.4 2 2048 QPSK 1/3 -0.88

1228.8 1 2048 QPSK 1/3 3.55

921.6 2 3072 8-PSK 1/3 1.58

1843.2 1 3072 8-PSK 1/3 7.73

1228.8 2 4096 16-QAM 1/3 3.62

2457.6 1 4096 16-QAM 1/3 11.19

Table 3.1: Required SNR values for the IS-856 system.

3.3.2 System Performance with No Video Rate Adaptation

We first consider a system with no video rate adaptation. In this scenario, each user may

view a different video, where playback starts after an initial pre-roll delay, i.e., after a user

receives 6 seconds of video. We assume all videos are encoded at a constant average bitrate.

We simulate the average and worst case number of pauses per playback second, PN, as well

as the average and worst case total wait-times, Tw, for 32 active users, each with a buffer

size of 1000 kbits.

Results, obtained for the proposed system as well as the state of the art schedulers for

various average video coding rates are shown in Figures 3.4 and 3.5, for the ITU Pedestrian

A and Vehicular B channels, respectively. The buffer size constraint of (3.8) is applied to

all schedulers such that a scheduled user is not served if its buffer is already full. The

schedulers select the second ranked user in this case. In both channel scenarios, the pro-
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Figure 3.3: All users provide feedback (channel status) to the base station.

posed multiple-objective optimized scheduler outperforms all others in both the number of

pauses and the total wait-time significantly. In fact, for video transmissions of up to 60

kbps, the average number of pauses observed using the proposed scheduler is nearly zero.

The number of pauses for the worst behaving user in this case is only 2 over the course of

a 183 second video. For video rates of 80 kbps, the average number of pauses is 44% and 72%

of that of the second-best scheduling algorithm for the pedestrian and vehicular channels,

respectively. Similarly, the average total wait-time for the same average video rate is 52%

and 78% of that of the second-best scheduling algorithm for the pedestrian and vehicular

channels, respectively. More importantly, the proposed framework provides streaming video

specific QoS enhancements without sacrificing the overall system throughput, where we ob-

tain an 11% improvement for both vehicular and pedestrian channels when compared to

the second-best scheduling algorithm. Table 3.2 provides values also for the system goodput

which is defined as the net data rate used for video transmission. The goodput excludes

the headers and frame-fill inefficiencies from the system throughput.

3.3.3 System Performance with Video Rate Adaptation

We assume that rate adaptation for videos is achieved by switching amongst 12.5 frames-

per-second (fps) pre-encoded bit streams at mean rates of 50, 60, 70 and 80 kbps. Switching

among different bit streams is possible every 12th frame, i.e., in 0.96 second periods. In this
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Figure 3.4: Average and worst case total wait time and number of pauses per play-second
(PN) computed over all 32 users vs. constant video rate for ITU Pedestrian A environment.
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scenario, we repeat the simulations described in the previous section to compute the average

and worst-case number of pauses and total wait-time. The results are tabulated in Table

3.2 comparing the performances of the proposed framework with and without video rate

adaptation to those of the traditional schedulers from the literature.

We observe that video rate adaptation further improves the performance of the proposed

framework over the case with no rate adaptation. For example, for average video rates of

60 kbps and 50 kbps, video rate adaptation results in an average number of pauses that is

50% and 89% of that of the non-adaptive scheme, for the pedestrian and vehicular channels,

respectively. Similarly, the average total wait-time figures for the same average video rates

are 75% and 99% of that of the non-adaptive scheme for the pedestrian and vehicular

channels, respectively. Rate adaptation also results in a further 10% increase of the system

throughput over the non-adaptive system for the pedestrian channel. For the vehicular

channel, no further gain is observed.

The PSNR levels of the received videos by the 32 users have a mathematical average of

31.12 dB with a standard deviation of 0.065, for the Pedestrian A environment. The received

video PSNR for the best and the worst users are 31.24 dB and 30.99 dB, respectively.

Thus, one can conclude that the proposed framework succeeds in providing application-

level fairness for the streaming video service among all users.

3.3.4 Sensitivity Analysis

The optimum operating point in a MOO problem with two objective functions (described

as s0 in Appendix A) is a pair (i,j ) where i denotes the user index and j denotes the as-

sociated video coding rate. Associated with the operating point is a triplet of values for

the objectives, namely, the video coding rate, the remaining playback time and the video

throughput. To assess the sensitivity of these values to departures from the optimum op-

erating point we first rank all operating points with increasing distances from the utopia

point. If the sensitivity analysis is to be conducted for the video coding rate objective, then

we define the operating points that are nearest ranked to the optimal point and having

a larger or smaller video coding rate as s1 and s−1, respectively. Obviously if one of these

points were to be employed instead of the optimum point, the overall system performance

will change. The results, tabulated in Table 3.3, are obtained for the ITU Pedestrian A
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Environment:

ITU Pedestrian A

Avg. video rate: 60 kbps, Initial buffer: 6

video seconds, Buffer size: 1000 kbits

Scheduler Avg.

Tw

(sec)

Max.

Tw

(sec)

Avg.

PN

Max.

PN

Capacity

(kbps)

Goodput

(kbps)

MOO with rate

adaptation

5.3024 13.8067 0.0010 0.0055 2183.2 1939.1

MOO with CBR

video

7.0929 14.0800 0.0020 0.0109 2145.2 1901.7

Proportionally

Fair

29.1139 41.3967 0.0188 0.0273 1902.5 1662.7

Exponential 32.2392 40.6050 0.0213 0.0273 1876.7 1639.6

Maximum Rate

(C/I)

68.5008 214.500 0.0264 0.0546 1736.4 1507.1

Environment:

ITU Vehicular B

Avg. video rate: 50 kbps, Initial buffer: 6

video seconds, Buffer size: 1000 kbits

Scheduler Avg.

Tw

(sec)

Max.

Tw

(sec)

Avg.

PN

Max.

PN

Capacity

(kbps)

Goodput

(kbps)

MOO with rate

adaptation

24.6716 39.3533 0.0177 0.0327 1632.1 1428.1

MOO with CBR

video

24.7248 39.4583 0.0199 0.0327 1632.9 1429.1

Proportionally

Fair

48.2845 53.2200 0.0319 0.0327 1501.7 1280.6

Exponential 50.0746 54.2767 0.0326 0.0382 1489.8 1270.1

Maximum Rate

(C/I)

73.5168 149.500 0.0331 0.0491 1416.4 1204.3

Table 3.2: Performances of various schedulers.
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Figure 3.5: Average and worst case total wait time and number of pauses per play-second
(PN) computed over all users vs. constant video rate for ITU Vehicular B environment.
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Sensitivity

Item

Decision

Point

Avg.

video

rate

(kbps)

Avg.

video

PSNR

(dB)

Avg.

Tw

(sec)

Avg.

PN

Channel

Capac-

ity

(kbps)

Goodput

(kbps)

Optimal So-

lution

s0 59.4354 30.99 5.3024 0.0010 2183.2 1939.1

Video

Throughput

s−1 59.6684 30.95 77.2666 0.0164 1483.3 1290.3

s1 61.2491 30.92 15.1865 0.0060 2162.0 1917.8

Remaining

Play Time

s−1 62.9041 31.18 10.5974 0.0065 2240.7 1995.3

s1 50.2418 30.35 32.3995 0.0232 1565.4 1357.4

Video Rate s−1 57.1756 30.82 4.7188 0 2147.3 1903.3

s1 69.2657 31.56 982.9725 0.0039 1110.2 963.97

Table 3.3: Sensitivity analysis.

environment when the sensitivity to changes of the video coding rate is investigated. It is

observed that if the provider is more interested in reducing the number of pauses rather

than providing a very high PSNR, it may choose s−1 as the operating point which results

in a 0.26 dB per user video quality loss on average. In return, a zero average number of

pauses is achieved.

3.4 Conclusions

In this chapter we present a cross-layer optimized video adaptation and user scheduling

scheme for wireless video streaming over packetized networks aiming for maximum video

throughput, maximum user QoS, as well as video QoS fairness. We optimize the application

and physical layer objectives jointly using a Multiple Objective Optimization framework that

aims to serve the user with the least remaining playback time, highest video quality and

the highest video throughput. The proposed framework may be used with or without video
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coding rate adaptation.

Simulations conducted using the IS-856 numerology over ITU Pedestrian A and Ve-

hicular B channels show that the proposed system without video rate adaptation achieves

significant improvements over the state-of-the-art wireless schedulers in terms of user QoS

and application-layer QoS fairness. These gains are achieved without sacrificing the overall

system throughput; on the contrary, the proposed framework provides gains on the through-

put as well when compared to the schedulers that are considered.

When the system is allowed to use video coding rate adaptation, we observe further gains

in the overall system performance. The proposed video adaptation algorithm is able to track

long term changes in the pedestrian environment well and gains in all three objectives are

observed. However, these changes are very fast in the vehicular environment and thus

the gains achieved by video adaptation are less pronounced.

The proposed framework runs in real-time and requires a modest increase in the size of

the feedback that is regularly sent by each user. However, this increase is negligibly small

for the video data rates considered in this paper.
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Chapter 4

MULTIPLE OBJECTIVE OPTIMIZATION FOR STEREO VIDEO

STREAMING

This chapter addresses efficient compression and real-time streaming of stereoscopic video

over the current Internet. We first propose content-adaptive stereo video coding (CA-

SC), where additional coding gain, over that can be achieved by exploiting only inter-

view correlations, is targeted by down-sampling one of the views spatially or temporally

depending on the content, based on the well-known theory that the human visual system can

perceive high frequencies in 3D from the higher quality view. We also developed stereoscopic

3D video streaming server and clients by modifying available open source platforms, where

each client can view the video in mono or stereo mode depending on its display capabilities.

The performance of the end-to-end stereoscopic streaming system is demonstrated using

subjective quality tests.

4.1 Introduction

The average Internet connection has become much faster than it used to be over the last few

years due to the tremendous developments in the physical backbone, especially in the devel-

oped countries. This progress has made new, more advanced and more interesting services

possible for the Internet service providers resulting in higher user satisfaction. Among these

new services, live and on-demand web based video streaming services such as Internet TV,

video conference, and video databases like YouTube [1] and Google Video [2] are becoming

more and more popular these days. The recent advances in video coding techniques [5, 4]

provide higher compression efficiency and increased bandwidth provided by Internet Service

Providers (ISP’s) make this kind of service easier to distribute, which attracts even more

interest from the users. The brutal competition among different streaming video providers

leads to increased quality of such service.

Scientists from all over the world are currently trying to evolve the video streaming



Chapter 4: Multiple Objective Optimization for Stereo Video Streaming 60

technology into the most realistic and the most popular remote user experience ever by in-

troducing the third dimension (3D) into it [70] where the depth feeling is added to the con-

ventional 2D video. This obviously means increased data rates for high quality compressed

content, which comes at the expense of further bandwidth and delay requirements. There-

fore, network bandwidth and delay are still important constraints for today’s and future’s

video streaming applications.

The simplest kind of multiview video, i.e. the stereoscopic video, consists of two video

sequences captured by closely located (similar to the distance between two eyes) cameras,

i.e. the bandwidth requirements of a stereoscopic video is much higher than the mono-

scopic video. However, the close distance between the cameras results in high redundancy

between the two views. Thus an efficient coding scheme can be developed by exploiting

the redundancies between these two views.

There are many research and standardization activities for stereoscopic video com-

pression based on exploiting inter-view redundancy. Early work in this area resulted in

the MPEG-2 multi-view profile [16]. Later [71] propose modifications to MPEG-2 multi-

view profile for improving the compression efficiency again based on the correlation be-

tween two views. Recently, new stereoscopic video codecs based on H.264 are introduced in

[72, 73, 74]. A new standard for multi-view video coding (MVC) is currently under devel-

opment under the auspices of Joint Video Team (JVT) [75]. This paper proposes making

use of the psycho-visual redundancy depending on the characteristics of the video content

in order to achieve additional compression efficiency.

In monoscopic video compression, it is a common practice to sub-sample the chrominance

channels, since the HVS is less sensitive to variations in chrominance values. Similarly, in

the theory of stereo perception, it is reported that the HVS can perceive high frequency in-

formation in 3D from one of the views even if the other view is low pass filtered [76]. Hence,

spatial and temporal subsampling can be performed to reduce the bandwidth requirements.

To this effect, we propose a content adaptive approach for temporal and spatial downsam-

pling of one of the views to achieve better compression with higher perceptual quality in

our H.264/AVC based multi-view codec.

We also propose an end-to-end stereoscopic 3D video streaming architecture using the pro-

posed content-adaptive multi-view coding and modifications to available open source monoc-
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ular streaming platforms. There are several open source monocular video streaming plat-

forms, including the Darwin Streaming Server [77], GPAC [78] and VideoLAN Client/Server

[79]. Apple QuickTime Streaming Server (QSS) and its open source version Darwin Stream-

ing Server (DSS) supports streaming of H.264 [80] coded video wrapped inside MPEG-4 [81]

or 3GPP file format across the Internet using RTSP and RTP protocols [82]. In order to

stream media over RTP, these systems need special information about the media files, which

is carried in a hint track. Another project called GPAC, which is developed as a multime-

dia framework based on MPEG-4 standard, also supports streaming H.264 coded media

files inside MPEG-4 file format [78]. In addition to these two platforms, VideoLAN Client

(VLC) also provides streaming capabilities. VLC supports H.264 video in local playback

and streaming when encapsulated in MPEG-TS file format over RTP. Recently, a 3DTV

prototype system, similar to our system, with real-time acquisition, transmission and auto-

stereoscopic display of dynamic scenes has been offered by MERL. Multiple video streams

are encoded and sent over a broadband network. The 3D display shows high-resolution

stereoscopic color images for multiple viewpoints without special glasses. This system uses

light-field rendering to synthesize views at the correct virtual camera positions [83].

The rest of the chapter is organized as follows: In Section 4.2, we present the proposed

content-adaptive multi-view video encoding. Section 4.3 describes the overall streaming

system in detail. Results are given in Section 4.4, and stereo multiple-objective optimization

formulations are proposed in Section 4.5. Finally, Section 4.6 provides our concluding

remarks.

4.2 Content-Adaptive Stereo Video Coding

There are different theories about the effects of unequal bit allocation between left and

right video sequences, such as the fusion theory and suppression theory [84, 85, 18]. Ac-

cording to fusion theory, the stereo bitrate (hence distortion) needs to be equally allocated

between the views for the best human perception. Contrarily, according to suppression

theory, the highest quality view in a stereo-video determines the overall perception perfor-

mance. Therefore, the target (right) sequence can be compressed as much as possible to

save bits for the reference (left) sequence, so that the overall perceived distortion is the low-

est. The proposed content-adaptive stereo codec (CA-SC) is motivated by the suppression
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Figure 4.1: Stereoscopic encoder

theory and reduces the frame (temporal) rate and spatial resolution of the target (right)

sequence adaptively according to its content-based features.

The principle behind content adaptive video coding is to parse video into temporal seg-

ments. Each temporal segment can be encoded at different spatial, temporal and SNR res-

olution (hence at a different target bitrate) depending on its low and/or high-level content-

based features. Even though this approach has been used for monoscopic video encoding

[86, 29, 28, 33], there are no such studies in the literature for content-adaptive stereoscopic

coding. The proposed CA-SC is an extension of the stereo codec (SC) in [74] which is based

on AVC/H.264. We note that CA-SC can also be developed as an extension of the recently

standardized MVC codec [75]. The codec structure is shown in Figure 4.1.

In stereoscopic coding, in the compatible mode, any standard H.264/AVC decoder can

decode the sequence as a monoscopic sequence since left channel is coded independent of

the right channel. In order to improve the coding efficiency without significant perceptual

quality loss, we added three modes to the encoder for down-sampling the right-view only:
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They are the spatial, temporal, and content-adaptive scaling modes.

4.2.1 Spatial Scaling

The spatial scaling mode corresponds to downsampling the right view by a predefined scale

prior to encoding. The implementation of downsampling consists of both decimation and

low-pass filtering in order to prevent aliasing. For spatial scaling the following filters are

used:

13-tap downsampling filter:

{ 0,2,0,-4,-3,5,19,26,19,5,-3,-4,0,2,0 } /64

11-tap upsampling filter:

{ 1, 0,-5, 0, 20, 32, 20, 0,-5, 0, 1 } /64

Filters are applied to all Y, U, and V channels and in both horizontal and vertical direc-

tions. The picture boundaries are padded by repeating the edge samples. These filters are

currently used in Scalable Video Coding extension of H.264/AVC [87] and explained in [88].

In order to keep filtering process simpler in both encoder and decoder, we have implemented

downscaling by factors of 2 (dyadic sampling) in both dimensions. Although the spatial scal-

ing is applied to the right view only in our stereoscopic codec, during the motion estimation

left frames are also scaled the same amount for proper estimation.

4.2.2 Temporal Scaling

Temporal scaling mode corresponds to the decimation of the right view in time, i.e. frame

dropping in the right sequence. The implementation of temporal downsampling is done by

sending all the macro-blocks of dropped frame as skipped mode of the H.264 standard. In

our codec notation, temporal scaling of n denotes encoding 1 frame out of n frames and

dropping the remaining n-1 frames.

4.2.3 Content Adaptive Scaling

In content adaptive video scaling, we first divide the right video into temporal segments

(shots or sub-shots) using well-known temporal segmentation methods [89]. We then classify

the temporal segments (shots) into 4 categories as determined by their low-level attributes

such as the amount of motion and spatial detail within the segment. Shots with high
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temporal activity (high motion) need to be encoded at full temporal resolution for a smooth

viewing experience. On the other hand, if a somewhat stationary shot is being encoded,

the temporal sampling rate can be reduced to a lower value without any loss of perceptual

quality. Likewise, shots with high spatial detail should not be reduced to lower spatial

resolutions for the sake of perceptual quality, while it is harmless to do such downsampling

in case of low spatial detail.

There have been several studies on temporal content adaptation and classification in

the literature over the past years [90, 89], which can be used to determine which temporal

region belongs to what spatial and temporal class in any given video segment. The spatio-

temporal attributes may vary even from GoP to GoP within a shot. In the following, we

define Spatial Scene Complexity and Temporal Activity measures for the classification of

temporal segments.

The Spatial Scene Complexity Measure is calculated as the pixel variance across the tem-

poral segment.

Assume that the number of frames (either left or right sequence) in a specific stereoscopic

video temporal segment is N. Let the pixel resolution of each frame be HW where the symbol

H denotes the height and the symbol W denotes the width of the frames in the number of

pixels. In order to calculate the spatial complexity measure of a single frame i, we first find

the mean of horizontal and vertical squared pixel value differences as follows:

E
[
d2

i

]
=

∑H−2
h=0

∑W−1
w=0

{
(pi(h + 1, w)− pi(h,w))2

}
+

∑H−1
h=0

∑W−2
w=0

{
(pi(h,w + 1)− pi(h,w))2

}

W (H − 1) + H(W − 1)

where h represents the vertical pixel coordinates and w represents the horizontal pixel

coordinates in within the frame. We then calculate the square of the mean pixel difference

as indicated by:

E [di]
2 =

(∑H−2
h=0

∑W−1
w=0 (pi(h + 1, w)− pi(h,w)) +

∑H−1
h=0

∑W−2
w=0 (pi(h,w + 1)− pi(h,w))

W (H − 1) + H(W − 1)

)2

Therefore, the pixel variance within the frame can be calculated as follows:

σ2
i = E

[
d2

i

]
− E [di]

2

Hence the scene complexity, σ, of the temporal segment can be calculated as the average

pixel variance across its frames:
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σ =
1
N

N−1∑

i=0

σ2
i

A segment is classified as having low spatial scene complexity if this measure is below

some threshold, and as having high spatial scene complexity otherwise. The Temporal

Activity Measure is calculated for each frame by taking the average absolute motion vector

length (encoder output) in a temporal segment. The intra block codings within inter-coded

frames (P or B frames) are considered to have the maximum motion vector length within

the allowable search range. The intra coded I-frames are left out of this temporal activity

measure computation. After this, the results found are scaled by their respective spatial

resolutions in order to be consistent across different stereoscopic videos.. A shot is classified

as having low temporal activity, if this measure is below a threshold; and classified as

high temporal activity if it exceeds the threshold. Therefore, one can classify temporal

video segments into four categories with specific low-level temporal and spatial attributes

as shown in Figure 4.2.

Figure 4.2: Temporal and spatial formats appropriate for the right view according to low-
level features.

Here the appropriate spatial and temporal formats for the right view only belonging to

each class are as follows:

• Type 1: High Spatial and Temporal Activity: Do not scale the spatial and temporal

formats



Chapter 4: Multiple Objective Optimization for Stereo Video Streaming 66

Figure 4.3: End-To-end system overview

• Type 2: Low Spatial and High Temporal Activity: Apply spatial scaling but not

temporal scaling

• Type 3: High Spatial and Low Temporal Activity: Apply temporal scaling but not

spatial scaling

• Type 4: Low Spatial and Temporal Activity: Apply both temporal and spatial scaling

4.3 End-to-End Stereo Video Streaming System Overview

An overview of the proposed system architecture is shown in Figure 4.3. Stereo video is

encoded off-line by using the proposed content-adaptive SC, which has been described in

Section 4.2. The server, which is detailed in Section 4.3.1, streams the encoded bitstream

over the Internet. The end users can view either monoscopic or stereo streams based on

their display capabilities using the client, as described in Section 4.3.2.

4.3.1 Server

The server employs the protocol stack RTP/UDP/IP, and can serve multiple clients, de-

scribed in Section 4.3.2, simultaneously. Session description protocol (SDP) is used to ensure

interoperability with the clients.
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Since the proposed CS-SC encoder is a modification of the H.264/MPEG-4 AVC design,

it supports a Video Coding Layer (VCL), which efficiently represents the video content,

and a Network Abstraction Layer (NAL), which provides header information for particular

transport layers (such as Real Time Transport Protocol) or storage media. All data are

contained in NAL units, each of which contains an integer number of bytes. The format of

NAL units is the same for both packet-oriented transport and bitstream delivery. The only

difference is each NAL unit can be preceded by a start code prefix in a bitstream-oriented

transport layer [80].

The encoded stereo bitstream contains NAL units of both left and right views. These

NAL units are packetized for independent streaming over two separate channels using Real-

time Transport Protocol (RTP) [82]. The sender side packet format is implemented based

on the RTP payload format for H.264 video [91]. Three packetization modes are defined in

this payload format. We implemented Single NAL Unit mode and Non-Interleaved mode

which are intended for low-delay applications. We used FU-As (Fragmentation Unit without

Decoding Order Number) packetization structure to transfer NALUs the sizes of which are

exceeding the network MTU. We fragmented the NALUs on the application layer instead

of relying on the IP layer fragmentation. Other packets with smaller sizes are sent in Single

NAL unit packets.

In both of these packetization modes, the transmission order of the RTP packets shown

by the sequence numbers is taken as the decoding order of the NAL units. Since our encoder

does not support B frames, packet structures, which do not contain decoding order numbers

are usable in our application. Timestamps carried in the RTP header are used to determine

the decoding order of the frames. The RTP timestamps are used to synchronize the frames.

The display application arranges the play-out time by using the relative order of the frames

positioned by the RTP timestamps. Since we stream two video files, we set related frames

to the same timestamp supposing same sampling rate for videos with a 90 kHz clock. In

addition, the H.264 parameter sets are fundamental parts for video coding. A more reliable

transfer is required for their transmission and receiver must receive them before the decoding

process. So we transfer them out-of-band to the receiver side reliably prior to the actual

RTP sessions.

For the interoperability of the stereo video server and the client on the receiver side,
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we used session description protocol (SDP) [92]. For indicating stereo view, an additional

session attribute is used in order to specify stereo data and which channel is the left and

which one is the right. Moreover, for future extension of stereo streaming to multi-view

streaming, the session descriptor also can be used. Currently, we define a new attribute

“view” which gives the address and the port information of the other sessions broadcasting

extra views of the video.

a=view : mono

a=view : stereo < address-Left > < port-Left >

< address-Right > < port-Right >

a=view : multi < address > < port > < address > < port > ,

< address > < port > < address > < port > ,

< address > < port > < address > < port > , . . .

where “mono” for monoscopic, “stereo” for stereoscopic and “multi” for multi-view gives

the view type and “ < address > < port > < address > < port > ” pair gives the access

information of two corresponding views of the multi-view video.

4.3.2 Clients

We have implemented three clients for different types of display systems: i) Client-1 sup-

ports an in-house polarized 3D projection display system; ii) Client-2 supports the auto-

stereoscopic Sharp 3D laptop, iii) Client-3 supports a monocular display to demonstrate

backwards compatibility. For all client implementations, we modified the open source soft-

ware VideoLAN Client (VLC). VLC is a highly portable multimedia player for various audio

and video formats and streaming protocols [79]. We modified its stream receiver to support

raw H.264 streaming over RTP and used it as a player. The modified VLC handles packets

of left and right views using two separate threads. Then, corresponding decoder for H.264

coded data is opened by the player. We send NALU units received in RTP packet payload

directly to the decoder after de-packetization.

As the decoder, open source H.264 decoder implementation in the FFmpeg library [93] is

used with MVC modifications. Before sending to the decoder, the data is buffered in order

to synchronize related left and right frames. The decoder decodes and sends the decoded

picture to the video output modules. The video output units visualize the left and right
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frames in a synchronized manner by using the time information in the RTP timestamps.

Finally, the in-house 3D projection display system uses a pair of Sharp MB-70X pro-

jectors as shown in Figure 4.4. Light from one of the projectors is polarized in clockwise

direction and light from the other projector in counter-clockwise direction using circular po-

larization filters. Both projectors are aligned to project onto a special silver screen covered

with a neutral grey reflective dielectric material to preserve the polarization of light during

reflection. The users wear glasses which have matching filters with the projectors to ensure

that light from one projector is only seen with one eye. This enables us to feed left and

right images to left and right eye of the subject to create the illusion of 3D. The projectors

were driven by a single high-end PC with two display outputs using the extended desktop

feature. This setup results in a virtual desktop of 2048x768 pixels, each projector displaying

only one half of the extended desktop at 1024x768 native resolution. Using this setup, left

and right videos can be easily shown on the left and right halves of the extended desktop,

such that they exactly overlap with each other on the silver screen.

Figure 4.4: The stereoscopic display system
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4.4 Experimental Results

4.4.1 Subjective Quality Tests

In order to investigate the effects of spatial, temporal and content adaptive scaling in stereo-

scopic videos, we employ the DSCQS (Double Stimulus Continuous Quality Scale) Method

[94]. In this test method, assessors which are chosen among non-experts and inexperienced

assessors should be used. The evaluation should be on a continuous scale ranging from 0 to

100. The method can be applied in two variants:

Variant1: Each assessor is let to switch between two conditions, A and B (two stereo-

scopic images or videos), one of which is always the source and the other is the tested

condition applied on the source. The identity of the images, whether it is the source or

the test condition, should be known by the experimenter but not by the assessors. After

evaluating the conditions the assessor moves to the next pair of images or videos.

Variant2: Multiple assessors are shown two conditions, A and B (two stereoscopic im-

ages), consecutively one of which is always the source and the other is the tested condition

applied on the source. The identity of the images, whether it is the source or the test

condition, should be known by the experimenter but not by the assessors. The next pair of

conditions is shown after the assessors establish an opinion.

Analysis Method: For the analysis of the test results, each evaluation is graded between 0-

100 and the difference between the scores of source image and the test condition is calculated

to find the score of that test condition on that image by the assessor. After all these scores

are calculated, the values are normalized to fit in 0-100. And as a final step, to find the scores

of each algorithm (test condition) the average of all the scores over the assessors and images

are taken. Scores of the algorithms can be compared with their closeness to the number to

which zero score is mapped during the normalization process.

4.4.2 Experiments

In the experiments, we investigated effects of spatial, temporal and content adaptive scaling

in stereoscopic videos. In order to meet time requirements of assessment test, we use only

4 video sets with 8 algorithms.

Assessors: 21 assessors (13 female, 8 male with average age 24) with ages ranging from
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19 to 36, volunteered to participate in the experiment. The participants were non-experts

in the area of picture quality and were screened for color vision, stereo depth perception

and visual acuity.

Each assessor is well informed on the test process and test materials (possible quality

defects) before the test and they are assisted during the whole test procedure. DSQCS test

method with the second variant mentioned above is used as the test methodology. At each

step two video sequences, original left and right videos and processed left and right videos

are used. We will call those 4 videos an evaluation pair. In the experiments, original videos

are also repeated as a processed video in order to test the performance of the test.

At the beginning of the test, 5 random evaluation pairs are shown to the assessors and

these 5 evaluation pairs are not evaluated since they provide stabilization of the perception of

assessors. The test material is shown in a random order for each assessor. The randomization

is done both among evaluation pairs and among the set of video sequences in the pair.

Test Material: As the test material, four different stereoscopic video pairs are used:

balloons (720x480, 25 fps, 10 seconds), botanical (960x540, 15 fps, 5 seconds), flowerpot

(720x480, 25 fps, 10 seconds), train tunnel (720x576, 25 fps, 10 seconds). The temporal

activity values for each frame of the tested videos can be seen in figures 4.5, 4.6, 4.7 and

4.8 whereas the spatial scene complexity values are illustrated in Figure 4.9. Eight different

algorithms are applied on these videos as shown in Table 4.1.

SIMUL Simulcast coding

S1T1 Stereo coding, no spatial, no temporal scaling

S1T2 Stereo coding, no spatial, temporal scaling 2 for right frames

S1T2L Stereo coding, no spatial, temporal scaling 2 for left and right frames

S1T3 Stereo coding, no spatial, temporal scaling 3 for right frames

S2T1 Stereo coding, spatial scaling 2, no temporal scaling

S4T1 Stereo coding, spatial scaling 4, no temporal scaling

S4T3 Stereo coding, spatial scaling 4, temporal scaling 3 for right frames

Table 4.1: Algorithms applied to test videos.
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Figure 4.5: The Temporal Activity values for Balloons sequence.

Figure 4.6: The Temporal Activity values for Train Tunnel sequence.
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Figure 4.7: The Temporal Activity values for Flowerpot sequence.

Figure 4.8: The Temporal Activity values for Botanical sequence.
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Figure 4.9: Pixel variance (spatial scene complexity) values of each frame of the test videos.

The algorithm ADAP is tested only on the Balloons sequence since its motion vs pixel

variance values of GOPs are the most scattered among the other test sequences as in Figure

4.13. As a result, a total of 42 evaluation pairs, including first 5 stabilizing pairs, are shown

to the assessors and it is assured that each test does not take more than 30 minutes.

4.4.3 Results

All the test videos are encoded with the modes explained in Table 4.1. Intra period of 25

and Quantization Parameter (QP) of 28 are used while encoding. Total bitrate for simulcast

coding is interpreted as twice the data required compared to single view coding and the bit

rates of all other algorithms are normalized accordingly and can be found in Table 4.2.

The resulting average PSNR values of the sequences for different algorithms can be seen

in Figure 4.10. PSNR values are all in dB and calculated according to the following formulas

where Dl and Dr represent the distortions in right and left images [95]:

PSNRl = 10 log10

2552

Dl/2
, PSNRr = 10 log10

2552

Dr/2
, PSNRall = 10 log10

2552

(Dl + Dr)/2

By only spatial subsampling of right video with 2 in both dimensions we have approx-

imately matched 1.2 times the single view bitrate. By applying both spatial and temporal
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BALN FLOW BOTA TRAIN Average

SIMUL 2.000 2.000 2.000 2.000 2.000

S1T1 1.901 1.927 1.452 1.881 1.790

S1T2 1.606 1.692 1.289 1.601 1.547

S1T2L 1.324 1.450 0.923 1.336 1.258

S1T3 1.489 1.586 1.228 1.492 1.449

S2T1 1.242 1.267 1.065 1.252 1.207

S4T1 1.091 1.095 1.012 1.085 1.071

S4T3 1.053 1.069 1.006 1.049 1.044

Table 4.2: Normalized bit rates of the algorithms.

scaling on right frames, we can nearly code the stereoscopic video at single view bit rates.

After all the assessors finish the test, the scores are evaluated and normalized according

to [94]. Average MOS for each algorithm and confidence intervals are shown in Figure 4.11.

Due to the normalization, 0 (best quality) is mapped to 38, and the success of the algorithms

can be measured by closeness of their mean to 38. This mapping is due to wrong evaluations

of the assessors giving better scores to the distorted sequences than the original and expected

in general. Simulcast (SIMUL) coding and stereo coding without scaling (S1T1) have similar

or better performances over original video. Since QP is low, reconstructed video quality

is visually lossless (with average PSNR of 36 dB) and misjudgment is expected for these

algorithms as well. Also DCT based coded images are reported [96] to be preferred by

assessors comparing to original.

We can see that scaling with 3 or 4 in both spatial and temporal domain, results are not

acceptable. According to the bitrate and MOS (Mean Opinion Score), only spatial scaling

looks like the optimum solution. Spatial scaling by 4 corresponds to 16:1 reduction in image

size; therefore its performance is not acceptable. Spatial scaling with non-dyadic factors

and better filters for upsampling might keep the visual quality at desired levels with bitrate

similar to single view coding bit rates.

According to the video characteristics (slow motion video), temporal scaling in either
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Figure 4.10: PSNR values of the algorithms.

right channel or both channels gives better results (see Figure 4.11).

By analyzing the characteristics of the video in each GOP, appropriate scaling can be

applied to decrease bitrate without visual quality degradation. The temporal (motion) and

spatial (pixel variance) features of the GOPs of the test sequences can be seen in Figure

4.13.

4.4.4 Streaming System Performance

For transmission and display process, we have implemented all the modules and run the sys-

tem with already encoded files. In order to cope with packet losses, frequent intra frames

are inserted and frames are coded in slice mode. Although the system is tested by encoding

each frame as a single slice, number of slices can be increased or fixed size slices can be used

according to the network state. The system is initially tried on local area network with zero

packet losses. H.264 packet loss resilience techniques and loss concealment techniques will

be added to the system for real Internet use.

The H.264/AVC coded video increased the efficiency of bandwidth usage and this also

affects the quality of the views. We coded videos as 25 fps and we inserted one intra frame

per 12 frame. Two different quantization values were used, one has Y channel limit value
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Figure 4.11: Mean Opinion Scores and confidence intervals of the algorithms.

Figure 4.12: Mean Opinion Scores and Confidence intervals of the algorithms including
the content adaptive scaling algorithm for Balloons sequence.
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Figure 4.13: Motion vs. pixel variance averages of each GOP for each test sequence.

of 38.27 dB and other one has 33.47 dB. For 320x240 video, their bandwidth usage were

744.665 and 415.335 kbits/sec respectively.

The system scalability was also another factor for the system design. The data can be

multicasted from anywhere and the users can view as mono or stereo depending on their

connection capacity and display system. Moreover the player functionality and integrity

also increases the usage of system with the future improvements on different file formats

and codec standards.

4.5 Multiple Objective Optimization Formulations for Stereo

As discussed in Appendix A, multiple objective optimization theme can help us avoid trivial

and suboptimal encoding strategies. The gains achieved by spatial and temporal scaling

of one view (left or right) in stereo videos demonstrated in this chapter can be further

improved by multiple-objective optimization as proposed here.

In a multiple objective optimization problem, it is typical to have multiple variables that

determine the nature of the optimization problem. Some of these variables can be used to

define the objective functions and the others can be used to define the constraining set. For

this reason, we usually have the freedom to come up with various optimization formulations
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for the same problem or similar problems. In this section, we list possible content-adaptive

rate control optimization formulations for stereo videos.

The basic logic presented in Chapter 2 can be applied to the stereoscopic video, with

the difference that it is now also possible to change coding parameters between the two

views.

It is a desirable future of a video streaming system to be adaptable in the sense that

the video encoding (bitrate allocation) is done according to the coding complexity (difficulty)

and/or the content relevance (importance). Assigning a general target bitrate to all parts of

a video results in worse user utility in video streaming. This is not only due to the fact that

the coding difficulty and complexity vary continuously in the duration of the video, but also

because the user’s level of interest in each possible type of shots may differ dramatically.

The more important and/or complex shots need to be encoded using more number of bits

for the sake of visual quality. Therefore, in order to increase the overall user utility, shot

classification should also take part at the encoder side, which in return increases the number

of optimization variables to be used considerably.

Formulation 1:

In the simplest case, where the left and right images are treated equally in terms of their

contribution to the overall distortion measure, the following formulation can be used:

min
(RR1

,RT1
,...,RRN

,RTN
)
{R} = min

(RR1
,RT1

,...,RRN
,RTN

)

n∑

i=1

{RRi + RTi} (4.1)

min
(RR1

,RT1
,...,RRN

,RTN
)
{D} = min

(RR1
,RT1

,...,RRN
,RTN

)

N∑

i=1

wi · TDi · {DRi + DTi} (4.2)

jointly subject to

Di = DRi + DTi ≤ Dmax
i for all n = 0, . . . , N

where RRi , RTi and DRi , DTi pairs are the corresponding bitrate and distortion pairs for

the reference and the target frame sequences for the i’th shot respectively. The time duration

of shot i is denoted by TDi. This problem formulation aims at finding the best encoding

rate sequence (hence the encoding parameters as in Chapter 2 for single view) among shots

1 ≤ i ≤ N for a stereo video with N pre-defined temporal segments. The distortion of

the stereo shot number i is constrained by Di = DRi + DTi ≤ Dmax
i .
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Formulation 2:

When the left and right images are treated unequally in terms of distortion, as described

by the suppression theory [84, 85, 18], the above formulation can be modified as follows:

min
(RR1

,RT1
,...,RRN

,RTN
)
{R} = min

(RR1
,RT1

,...,RRN
,RTN

)

n∑

i=1

{RRi + RTi} (4.3)

min
(RR1

,RT1
,...,RRN

,RTN
)
{D} = min

(RR1
,RT1

,...,RRN
,RTN

)

N∑

i=1

wi · TDi · {DRi + α ·DTi} (4.4)

jointly subject to

Di = DRi + α ·DTi ≤ Dmax
i for all n = 0, . . . , N

where α is a weighting coefficient between right and left image distortion values to take

different amount of contributions to distortion from each image into account.

Formulation 3:

We can also make the first minimization over the pre-roll delay with buffer limitations as

in Chapter 2 instead of the average bitrate, as shown below:

min
(RR1

,RT1
,...,RRN

,RTN
)
{Tpre} = min

(RR1
,RT1

,...,RRN
,RTN

)
max

1≤n≤N

{
n∑

i=1

TDi(
RRi + RTi

Rch
− 1) +

Bn+1

Rch

}

(4.5)

min
(RR1

,RT1
,...,RRN

,RTN
)
{D} = min

(RR1
,RT1

,...,RRN
,RTN

)

N∑

i=1

wi · TDi · {DRi + α ·DTi} (4.6)

jointly subject to

Di = DRi + α ·DTi ≤ Dmax
i for all n = 0, . . . , N

Bn+1 ≤ Rch · Tpre + Rch ·
n∑

i=1

TDi −
n∑

i=1

(RRi + RTi) · TDi ≤ Bmax for all n = 0, . . . , N

where Tpre denotes the initial pre-roll delay needed for uninterrupted stereo video playback.

4.6 Conclusions

In this chapter, we have described our implementation of an end-to-end stereoscopic video

streaming system using content-adaptive multi-view coding and modifications to available
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open source monocular streaming platforms. Our proposed content adaptive approach for

temporal and spatial downsampling of one of the views yields better compression with higher

perceptual quality. The performance of the proposed approach is tested on several stereo

sequences using subjective quality tests. The system is initially tried on local area network

with zero packet losses. Finally, we have proposed several multiple-objective formulations

that can be exploited for optimize the streaming experience for stereo video.
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Chapter 5

CONCLUSIONS AND DISCUSSION

In this thesis, we proposed novel multiple-objective optimization (MOO) frameworks for

monocular and binocular video streaming to determine the best bitrate allocation in a video

sequence. For the monocular video representation, this bitrate allocation is considered to

be only in the temporal direction. On the other hand, the bitrate allocation between left

and right images is also taken into account for the binocular video case.

Firstly, the DDO framework where an optimal spatial and temporal resolution for each

semantically defined GoP is selected to achieve the least overall distortion and pre-roll (ini-

tial) delay according to a user specific relevance/distortion policy was presented. The DDO

method interfaces with a standard encoder by specifying the target bit rates and the spatial

and/or temporal resolutions for each GoP, allowing a study of trade-offs between pre-roll

delay and perceptual distortion. The proposed scheme outperforms the regular bit allo-

cation schemes in the most relevant shots (4.5 dB gain) and provides reasonable quality

for the others. The buffer requirements are found to be easily affordable by today’s hard-

ware technology. If the coding standard used supports spatio-temporal resolution changes,

the resulting compressed bitstreams will be standards compliant. However, we may need

a specialized display module to display all pictures at a standard spatial resolution. This

is an off-line video encoding framework that can be used for video-on-demand services over

low capacity networks.

Secondly, a cross-layer optimized video adaptation and user scheduling scheme for wire-

less video streaming was introduced for packet-networks. The MOO objectives of this

scheme were to select the user-video bitrate pair at each time slot such that the maximum

video throughput, maximum user QoS, and video QoS fairness are achieved. This is possi-

ble by selecting the pair with the least remaining playback time, highest video quality and

the highest video throughput within the MOO framework. The experiments carried out in

the IS-856 standard and ITU Pedestrian A and Vehicular B environments with no video
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adaptation show significant gains of the proposed system over the state-of-the-art wireless

schedulers in terms of application-layer QoS and QoS fairness with higher overall system

throughput. The gain achieved is further improved by video rate adaptation, especially

in the Pedestrian A environment. The proposed framework runs in real-time and requires

a modest increase in the size of the feedback that is regularly sent by each user. However,

this increase is negligibly small for the video data rates considered in this scheme.

Finally, an end-to-end stereoscopic video streaming system was implemented using open

source components with minor modifications. We were able to show that the encoding

bitrate of a stereo video can be much lower than double the encoding bitrate of an equivalent

quality monoscopic video encoded with the same encoding parameters and that this bitrate

can be as low as 1.2 times that of the monoscopic video using the Human Visual System

properties. This is mainly due to the redundancy elimination strategy of the modern video

codecs and the strong correlation existing between stereo-pairs.



Appendix A: Overview of Multiple-Objective Optimization (MOO) 84

Appendix A

OVERVIEW OF MULTIPLE-OBJECTIVE OPTIMIZATION (MOO)

A.1 Multiple-Objective Optimization (MOO)

The MOO concept was introduced by Pareto where the solution of an optimization problem

with the objective/cost function set F = {f1, f2, . . . , fP }, s*, is called globally Pareto-

optimal (also non-dominated/non-inferior) if any one of the objective function values cannot

be improved without degrading other objective values. Let us assume that the optimization

problem in hand consists of P distinct and possibly conflicting objective functions. Without

any loss of generality, let us assume that the problem in hand requires all the objective

functions to be minimized. Then, a Pareto-optimal solution s* exists if there exists no

other feasible solution s that satisfies

fp(s) ≤ fp(s∗),∀p ∈ {1, . . . , P} (A.1)

with at least one strict inequality. This means, there cannot exist a feasible solution that is

at least as good as a Pareto-optimal solution in all objective functions and strictly better

in one or more objective functions, i.e., a Pareto-optimal solution cannot be dominated by

any other feasible solution. In our delay-distortion optimization formulation (see Section

2.2.3), P = 2 and the objectives are given by (2.4)-(2.5). In our cross-layer optimization

formulation, (see Section 3.2), P = 3 and the objectives are given by (3.5)-(3.7).

It is possible to have multiple Pareto-optimal solutions in multiple-objective optimiza-

tion problems (P ≥ 2). However, unlike the single objective problems, the multiple Pareto-

optimal solutions do not necessarily result in a unique functional value. In many cases, as

different objective functions represent different system aspects on a specific scale, variance

and units of measurement, it is difficult to discriminate between these Pareto-optimal points

and determine which one is better than the other. However, using the relative importance

weights for all of the objective functions, wp’s, a so called best compromise solution can be

determined. For example, in the proposed cross-layer framework, the aim is to schedule
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the user and the associated video source data rate such that the user provides the maxi-

mum instantaneous video throughput, and has the minimum remaining time before possible

buffer underflow. Note that, the scales, the measurement units and the variances of video

throughput, quality and remaining playback time all differ from each other.

There exist several solution techniques to this problem in the literature. Minimizing the

weighted sum of functions [97] is one of the most popular solution methods. However, this

method needs accurate selection of the scalar weights which is a very difficult task in most

cases [98]. The equality constraint method that minimizes objective functions one by one by

simultaneously specifying equality constraints on the other objective functions was presented

in [99]. In the goal programming technique [100], only one objective is minimized while

constraining the other objectives to be less than their target values. This technique cannot

be used to generate the Pareto-optimal set of solutions effectively since the suitable selection

of the objective target values can be quite difficult. The normal-boundary intersection (NBI)

method [101] tries to enumerate an even distribution of Pareto-optimal points on the Pareto-

optimal curve even for the case of objectives with very different scales. NBI may generate

points that do not actually belong to the Pareto-set if the feasible region is non-convex. In

multi-level programming, objective functions are first ordered due to their importance and

then single objective optimization methods are applied in this order recursively, reducing

the sample set at each step. Here, the optimal solutions for the most important objective

function are found, forming the new sample set for the next important objective function

and so on. Although this is a very useful method when there is a certain hierarchy among

objectives, the continuous tradeoff between objective functions is disregarded, lowering the

overall performance.

In order to determine the best compromise solution among the objective functions, fp’s,

we first rescale their values to an interval [0,wp], where wp is the importance weight of the

pth objective function using the following equation:

fp,scaled(n) = wp
fp(n)− fmin(n)

fmax(n)− fmin(n)
(A.2)

Hence, the video throughput, user remaining playback time, and video rate values are

all normalized to form a three-dimensional solution space. Note that, ideally the optimizer

would select higher video bit-rates when the user remaining playback times are high and
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lower the bit-rates when they are low. For this purpose, the weight of the 3rd objective

function for maximizing the video rate, w3, can be dynamically changed at each time slot

according to the average remaining playback time for all users in the system, θ(n), i.e.

w3 = θ(n)/θmax where θmax is the maximum possible remaining playback time which is

equal to the ratio of the buffer size to the slowest available video coding rate.

In MOO problems, an infeasible point that optimizes all of the objective functions indi-

vidually is called the utopia point. Hence, the utopia point, U(n), for the three-dimensional

scaled video throughput, remaining playback time, and video rate solution space is as fol-

lows:

U(n) = (max (ti,l,scaled(n)) , min (θi,scaled(n)) , max (µi,l,scaled(n))) (A.3)

Figure A.1 shows an example of a scaled feasible solution set for P=2 objective functions,

where both objectives are being minimized and the feasible solutions are depicted by dots.

The best compromise solution is found as the feasible point that is closest to the utopia

point in the Euclidian-distance sense.

Figure A.1: The solution whose objective values are closest to the utopia point is chosen.
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In the proposed framework, an exhaustive search proves to be computationally feasible to

determine the utopia point, since for a system with M active users we only need 3×(M−1)

comparisons resulting in a complexity of order M.

It is also possible to generate a solution that is better than the actual best compromise

solution for one objective function, but worse for the others. This actually corresponds

to fine-tuning the optimization decisions in favor of a selected optimization criterion along

the Pareto-surface. For example, we can come up with a solution that has lower video

quality with better continuous playback performance and vice versa. Knowing the client

preferences, the server side may prefer to skip the original optimal solution and offer different

solutions by utilizing this property as shown in Figure A.2. This decision depends on the

answers to the following two questions:

1. How much of performance degradation can be tolerated by a client in each objective

function for the sake of performance improvement in another objective function?

2. What is the sensitivity of this tradeoff?

A thorough treatment of multiple-objective optimization (MOO) techniques can be

found in [102, 103].

A.2 Example: A Simple MOO Problem and Its Solution

This section presents a simple example to demonstrate the optimal solution generated by a

MOO formulation. Suppose that we would like to solve the following MOO problem:

min
x,y

f(x, y) = min
x,y
{x · y} (A.4)

min
x,y

g(x, y) = min
x,y

{
200
x

+
200
y

}
(A.5)

jointly subject to

x ∈ [1, 20] and y ∈ [1, 20]

The sketch of the functions f(x,y) and g(x,y) for the region of interest is shown in Figure

A.3.
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Figure A.2: Fine-tuning of the optimization decisions along the Pareto-optimal surface.

The point (x, y) = (1, 1) minimizes f with a minimum value of fmin = 1 while g attains

its maximum value, gmax = 400 at this point. The other endpoint (x, y) = (20, 20) minimizes

g with a minimum value of gmin = 20, while f attains its maximum value fmax = 400 at

this point.

A solution is called Pareto-optimal if any one of the objective values cannot be improved

without degrading other objective values. In other words, a Pareto-optimal solution cannot

be dominated (outperformed in all the objective functions) by any other feasible solution. In

order to draw the Pareto-optimal curve for our example, we take Q equally spaced samples

in the interval [fmin, fmax]. For every sample, we find the minimum value that the other

cost function g can achieve, and plot the Pareto-optimality trade-off curve shown in Figure

A.4.

An infeasible point that minimizes both of the objective functions individually, the point

(fmin = 1, gmin = 20) for the example presented here, is called the utopia point. The best

compromise solution is defined as the point on this curve that is closest to the utopia point

(f = 1, g = 20) in the Euclidian-distance sense after proper scaling (subtracting the mean
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and dividing by the standard deviation) of all feasible points. In our example, the closest

point to the utopia point on this curve can be found as (f = 38.21, g = 64.71). The

corresponding x and y values are determined as x = y = 6.181.

Figure A.3: Sketch of the two functions f and g in the region of interest.

Figure A.4: Minimum values that the cost function g can take for possible values of f in
the interval [fmin, fmax].
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Appendix B

PERCEPTUAL QUALITY MEASURES

In this appendix, we define our particular selection of distortion measures to use in

the proposed Delay-Distortion Optimization (DDO) framework. In particular, we relate

distortion to perceptual quality measures. We note that the proposed MOO scheme is not

coupled with the specific distortion measure selection, and can be used with other distortion

measures as well.

In the DDO framework, we employ a weighted combination of PSNR and a blockiness or

flatness measure to quantify distortion. Perceptual video quality measures are determined

at the encoder (server) side, which has access to uncompressed video or a very high-quality

compressed version. Therefore, we use referenced measures, which needs to employ the orig-

inal version of the video sequence in hand.

Figure B.1: Organization of blocks.

Our blockiness and flatness measures are modified versions of those proposed in [45],

which compares pixel intensity variations across boundaries of blocks and within blocks. For

M × N blocks, a horizontal blockiness measure, BMh, between blocks A and B (depicted

in Figure B.1) for both the original and the encoded versions are computed as follows:

BMh =





BD1h
BD3h

if BD3h 6= 0

0 if BD3h = 0

where BD1h and BD3h refer to one-pixel inter-block difference and cumulative difference

over ±3 columns across the block boundary, respectively, which are defined by:
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BD1h = γ1 ·
N∑

i=1

|ai1 − biM | (B.1)

BD3h = γ2 ·
N∑

i=1




M−1∑

j=M−3

|bi(j+1) − bij |+
3∑

j=1

|ai(j+1) − aij |

 (B.2)

Here aij and bij denote values ofF pixels in blocks A and B, respectively, γ1 and γ2 are

normalization factors. The effective horizontal blockiness of a certain block BM eff
h caused

by lossy compression is:

BM eff
h = max

{
(BM enc

h −BMorg
h ), 0

}
(B.3)

where BM enc
h and BMorg

h are the horizontal blockiness measures of the same block in

the encoded and the original clips, respectively. The effective vertical blockiness measure,

BM eff
v , between blocks A and C is defined similarly. Then, the effective blockiness measure

for block A is computed as the average of the horizontal and vertical effective blockiness

measures between blocks A and B, and A and C; and an overall effective blockiness measure

for a frame is defined as the average of the effective blockiness measures of all blocks within

that frame. Similarly, a horizontal flatness measure, Fh, between blocks A and B is defined

as:

Fh = γ3 ·
N∑

i=1




M−1∑

j=M−3

z(bi(j+1), bij) +
3∑

j=1

z(ai(j+1), aij)


 + γ3 ·

N∑

i=1

z(ai1, biM ) (B.4)

where

z(α, β) =





1 if α = β

0 if α 6= β

and γ3 is a normalization factor. A vertical flatness measure, Fv, is computed likewise.

The effective flatness measure of a block can be computed by the same procedure used in

effective blockiness. Finally, the perceptual measure of a block is given by the maximum of

the effective blockiness and flatness measures that are appropriately scaled, and the overall

perceptual measure of a frame is the average of these measures for all blocks that fall within

that frame.

Hence, the overall distortion measure for the ith shot Di is a weighted combination of

PSNR and perceptual measures Blki (blockiness) for that shot and is given by

Di =
Blki − µBlk

σBlk
− PSNRi − µPSNR

σPSNR
(B.5)
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where µBlk, µPSNR and σBlk, σPSNR denote the mean and the standard deviation of PSNR

and blockiness measures, respectively, computed over all shots.

We note that the correlation between adjacent frames gets smaller for lower frame rates,

which causes the encoded video to have a lower PSNR and higher blockiness measures when

compared to a version encoded at a higher frame rate with the same quantization parameter.

Therefore, we do not employ an extra motion jitter measure to take frame rate into account

while computing our overall quality measure.
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Appendix C

VIDEO CONTENT ANALYSIS

The tremendous increase in the number of available multimedia applications in the last

few years has emerged video analysis techniques for efficient summarization, search and

browsing of video content. Especially, applications like finding similar shots/pictures in a

given video content, video summarization and searching for the videos of a specific event or

person has been attracting great amount of attention recently. We define a “camera shot”

to be a sequence of images with similar content in a video segment.

C.1 Analysis of Temporally/Spatially Structured Videos such as Sports and

News Reports

In general, it is a challenging task to teach a computer to semantically analyze a video

with random structure. In order to make this task easier, video analysis usually has been

tried on video contents that have a certain predefined temporal and spatial structure, such

as sports and news report videos. One can think of a soccer game as consisting of three

major events. The first shot type is the so called long shots, in which many players and

the ball interacting on a big portion of the soccer field is shown. The second one is the

close-up shots, in which players, referee or team coach is zoomed in and finally, the third

one is the audience shots, where the audience is shown. Detecting only these three events

according to some scene attributes is much more convenient than trying to detect events

that that have been neither predefined, nor temporally/spatially structured, in terms of

system performance and computational efficiency.

Automatically indexing an input video can be done in two main steps. The first step

is determining the shot boundaries. The second step is identifying shots with semantically

distinct meanings and classifying the shots with similar content into the same category. To

do this, image properties has to be extracted from each shot to come up with semantic

descriptions. However, it is not always easy to carry out such a task for all types of video
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contents. For instance, it is very difficult to semantically analyze some contents such as

movies and documentary films, even manually. On the other hand, the shot types for

some contents like sports and news report videos are relatively easier to be categorized

automatically, because certain shot types repeatedly appear in the duration of the overall

video and one can actually predetermine the types of shots that are likely to occur. Efficient

automatic or semi-automatic content analysis and temporal segmentation methods for sports

and news report videos have been intensively studied in the literature [23]-[26].

C.2 Movie Content Analysis

Content-based movie analysis and indexing approach has been attracting a lot of interest

recently and there are great amounts of investments being made in multimedia-information.

A single shot can no longer be a valid retrieval unit for movies. Therefore, in order for

us to have good understanding of content-based movie description and for better content

browsing, an event based segmentation algorithm as in [104] is needed instead of shot based

segmentation. The content-based movie analysis and indexing scheme of [105] tries to

extract semantically meaningful events in movies and to identify target speakers in movie

dialogs. [105] proposes to extract movie events and speaker identity at the semantic level

depending on fusion of audio information with visual information. In this work, three types

of events are assumed to exist in a movie. These event types, which are considered to be the

most informative parts of the movie, are 2-speaker dialogs, multiple-speaker conversations,

and hybrid events, that is scenes with less dialog and more action. The information bearing

audiovisual event attributes extracted are then used to make browsing, abstraction and

indexing of the movie possible. Visually and temporally close shots are grouped together

into a shot sink. Afterwards, these sinks are classified as periodic, partly-periodic or non-

periodic using unsupervised K-means algorithm. At the end, one of the three event types

is assigned to each shot group.

C.3 Semantic Relevance Measure

In some video domains, not all the shots are equally interesting to a user, hence bit rate

allocation may be done according to semantic relevance of the content; in other video

domains, video analysis can be employed to determine bit rate allocation according to
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coding difficulty of the content. For example, in a soccer game, shots in the vicinity of goals

may be more interesting than others. In a tennis game, breaks given between sets are not

as relevant as the in-game strife. Television news reports can be segmented as anchorperson

shots, news footage and commercial breaks. For movies, temporal segmentation and content

analysis may facilitate bit rate assignment as a function of coding difficulty, existence of

special effects, etc.

Given the shot boundaries and shot types, the relevance factor wi,v of each shot i can

be determined according to a pre-specified or user defined relevance-distortion policy, where

more relevant shots will be encoded with less distortion. That is, a user’s level of interest in

certain types of shots (goals, breaks, commercials etc.) can either be set to default values

by our system, or can be signaled by the user prior to the video transmission. Given that a

finite evaluation scale will be sufficient for our purposes, the semantic relevance factors are

specified between 0 and 1.

Generally, the audio information can also be used in assessing the relevancy of a video

segment [46]-[47]. In sports video, we can assume that the audio signal energy will increase

whenever an important event occurs since the voice of the commentator and the noise that

the audience makes are going to increase.

The overall relevance factor wi of the video segment i can be adjusted by

wi = wi,v · (Ei,avg/Eglobal) (C.1)

where wi,v is the relevance factor determined by the video content only, Ei,avg is the average

audio energy of the ith segment, and Eglobal is the average energy for the entire video.

C.4 Monocular Video Analysis

Two of the most important applications of video analysis are video browsing and retrieval.

It is a very challenging task to index and organize video databases since the overall database

size and complexity is generally huge. There has been important studies on automatic/semi-

automatic temporal segmentation of video into shots [106]. Generally, the summary of each

shot is given by a key frame as shown in Figure C.1 and some global features associated

with it such as the color histogram [107, 108, 109, 110]. Therefore, the more attributes

we can extract out of a video and the shots it includes, the better such summarization
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algorithms will work. There are also interactive summarization methods such as Scene

Transition Graphs (STG), in which both the temporal flow of the video and the image

content are illustrated as explained in [111]. However, the way human beings observe and

interpret a moving scene or a video is more complex than just temporal activities and

events within that scene. The objects included and their interactions with each other are

also very important for our understanding of the scene/shot. Therefore, an object-based

video analysis and summary method would be of much better use for us. On the other

hand, it is very difficult to develop a common object-based description method for all video

domains since each video domain may include different types of objects and various types

of interactions between them. Therefore the video analysis techniques used in this thesis

will be applied to some specific video domains such as soccer and news report videos.

Figure C.1: An example set of key frames representing different types of shots in a soccer
game.

As explained in [24], firstly, crucial objects in the shot have to be identified in object-

based video indexing. For example, these crucial objects may be the ball, the players and

the soccer field in a soccer game. Afterwards, other lower level attributes and information

such as color, texture and semantics of each object are added. It is important to account for

the time-varying attributes of the objects such as their shapes and movement. Therefore,

only a few key frames from an entire shot are not descriptive enough, since those key frames

do not necessarily reflect average values of the time varying attributes.
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C.5 3-D Video Analysis

Multi-view video technology can provide more efficient handling and control of video objects

since it enables extra image attributes related to the depth information as explained in [90].

In [90], a general scene complexity free framework for non-linear representation of three

dimensional videos is introduced. In this work, color segments that belong to close depth

levels are merged to obtain precise contours of the scene objects. This approach is valid

as long as the parts of each video object have similar depth values. The first step in the

algorithm is to compute the disparity field, which leads to the depth information. However,

the depth information alone is not enough for accurate video object segmentation. For

this reason, color and depth information are fused together to determine object boundaries

(contours) more accurately, so that a better content-based segmentation is achieved.

The size of feature vectors extracted this way would be different for each frame obviously.

In order to prevent this, color levels are also quantized along with depth levels in to pre-

determined color-depth classes to form a multidimensional histogram. After applying a

shot boundary detection method [89] to the whole stereoscopic video sequence, the most

representative frame for each shot is chosen as the one that has the minimum correlation

measure (as defined in [90]) among all frames within that shot.

In [112], a combination of active contours and retrainable neural networks is used. By

examining the depth information extracted out of disparity knowledge, an active contour

is initialized on the boundary of each segment (on the same depth level) to detect the

surrounded object. The detected video objects form the retraining set and the neural

network weights are adapted accordingly. Afterwards, the trained network is applied to the

rest of the frames in the same shot to fully detect the positions of the initially found video

objects.
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Appendix D

LUCAS-KANADE OPTICAL FLOW ESTIMATION

The essential steps of the algorithm are the following:

• Let u and v be two corresponding points in the left image I and the right image J ,

respectively. First we need to build the pyramid representations of both images.

• Let the initial guess of the displacement vector at the top level (level m) be given by:

gLm = [gx
Lm gy

Lm ] = [0 0]T

• In a for loop, starting from level m to level 0:

– Find the location of the tracked point on the Lth level, uL = u/2L.

– Find the gradient in the x and y directions as follows:

Ix(x, y) =
IL(x + 1, y)− IL(x− 1, y)

2

Iy(x, y) =
IL(x, y + 1)− IL(x, y − 1)

2

– Then the spatial gradient matrix G is computed as given by:

– Here the K iterations of Lucas-Kanade method can be initialized. Initial dis-

placement guess for the kth iteration is a zero vector:

V
0 = [0 0]T

– Compensated image difference is computed as:
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– When the image mismatch vector is defined as below, the optical flow ηk at the

kth iteration step and the initial guess for the next iteration can be found easily.

– Resulting optical flow for the level L is given by dL = νK and the initial guess

for the next lower level is computed as:

• The overall flow vector d is found as:

d = g0 + d0

For the Lucas-Kanade method to work fine, the flow vectors have to be small since the

algorithm uses the first order Taylor expansion.

The resulting optical flow is perfect when we use only 2 levels and is given in Figure D.2

and the optical flow vectors for the Tsukuba image pair is also shown on Figure D.3.
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Figure D.1: An example stereo image pair.

Figure D.2: Resulting optical flow of the stereopair.
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Figure D.3: Optical flow vectors of the Tsukuba stereopair.
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