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Güven Yücetürk

A Thesis Submitted to the

Graduate School of Sciences & Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Mathematics
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Güven Yücetürk

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Asst. Prof. Selda Küçükçifçi (Advisor)
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ABSTRACT

This thesis is on Group Divisible Designs (GDDs), one of the main structures in

Combinatorial Design Theory. GDDs were first introduced by Hanani in 1975 and

widely used in constructing other combinatorial structures such as pairwise balanced

designs, f rames and balanced incomplete block designs since then.

A GDD is a triple (X,G,B), where X is the point set, which satisfies the following

properties:

(1) G is a partition of X into subsets called groups.

(2) B is a set of subsets of X (called blocks) such that a group and a block contain at

most one common point.

(3) every pair of points from distinct groups occurs in a unique block.

A K − GDD of type gu1
1 gu2

2 . . . g
us
s is a GDD where every block has size from the

set K and there are ui groups of size gi, for i = 1, 2, . . . , s. In our study all blocks

have size k. In this thesis we will present:

(1) 3 − GDDs of type:

(i) gu (uniform 3 − GDDs)

(ii) gum1

(iii) gu1t

(iv) g1v11g

(2) 4 − GDDs of type:

(i) gu (uniform 4 − GDDs)

(ii) gum1.
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ÖZETÇE

Bu tez Gruplara Bölünebilen Tasarımlar (GDD’ler) üzerinedir. GDD’ler Kombina-

toryel Tasarımlar Teorisindeki ana yapılardan birisidir. GDD’ler ilk defa 1975’de

Hanani tarafından tanımlanmış ve o günden bu yana mesala PBD, Frame ve BIBD

gibi kombinatoryel yapıların inşaasında sıkça kullanılmıştır.

Bir GDD (X,G,B) üçlüsü olarak tanımlanır öyle ki, X noktaların oluşturduǧu

küme olmak üzere, aşaǧıdaki özelliklerin saǧlanması gerekir:

(1) G X’in gruplar dediǧimiz parçalarından oluşur.

(2) B X’in alt kümlerini (blokları) içeren bir kümedir öyleki bir grup ve bir blok

en fazla bir noktada kesişebilir.

(3) Farklı gruplardan seçilen her ikili sadece ve sadece bir blokta görünür.

gu1
1 gu2

2 . . . g
us
s çeşitindeki bir K − GDD öyle bir GDD’dir ki her bloǧun uzunluǧu

K kümesinin içindedir ve her i = 1, 2, . . . , s için gi büyüklüǧündeki gruptan ui

tane vardır. Bizim çalışmamızda her bloǧun uzunluǧu sabit bir k’dr. Bu tezde

anlatacaklarımız:

(1) 3 − GDDs çeşitleri:

(i) gu (düzenli 3 − GDDs)

(ii) gum1

(iii) gu1t

(iv) g1v11g

(2) 4 − GDDs çeşitleri:

(i) gu (düzenli 4 − GDDs)

(ii) gum1.
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Bülent Kaya, Turgut Öktem, Tayyar Önal, Ata Akatay, Salih Ertürk, Şener Şengül
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NOMENCLATURE

GDDs Group Divisible Designs

RGDDs Resolvable Group Divisible Designs

DGDDs Double Group Divisible Designs

MGDDs Modified Group Divisible Designs

IGDDs Incomplete Group Divisible Designs

BIBDs Balanced Incomplete Block Designs

TDs Transversal Designs

ITDs Incomplete Transversal Designs

HTDs Holey Transversal Designs

PBDs Pairwise Balanced Designs

IPBDs Incomplete Pairwise Balanced Designs

STS Steiner Triple System

KTS Kirkman Triple System

WFC Wilson’s Fundamental Construction
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INTRODUCTION

Definition: A design is a pair (X,B) such that the following properties are satisfied:

(i) X is set of elements called points, and

(ii) A is a collection (i.e multiset) of nonempty subsets of X called blocks.

Definition: A group divisible design (or GDD) is a triple (X,G,B) where X is set of

points, G is a partition of X into subsets called groups, and B is a collection of subsets

of X called blocks such that any pair of distinct points from X occur together either

in some group or in exactly one block, but not both. A K-GDD of type gu1
1 gu2

2 . . . g
us
s

is a GDD in which every block has size from the set K with ui groups of size gi,

i = 1, 2, . . . , s.

Definition: Let v and k be positive integers such that v > k > 2. A (v, k) −

balanced incomplete block design (which we abbreviate to (v, k)-BIBD or BIBD(k, v)) is

a design (X,B) such that the following properties satisfied:

(i) |X| = v,

(ii) each block contains exactly k points and

(iii) every pair of distinct points is contained exactly in one block.

Definition: A transversal design is a k−GDD of type gk and it is denoted by TD(k, g).

Therefore a TD is a GDD in which all groups has the same size g and the number

of groups is equal to the block size k.

Definition: Let K be a subset of positive integers, a pairwise balanced design (PBD(K, v))

or K−PBD) of order v with block sizes from K is a pair (V,B), where V is a finite set

(the point set) of cardinality v and B is a family of subsets (blocks) which satisfy the

following properties:

(i) if b ∈ B then |b| ∈ K.

(ii) Every pair of distinct element of V occurs in exactly one block of B.



Definition: A GDD, PBD, or BIBD is resolvable if the blocks of the design can be

partitioned into parallel classes. A parallel class is a set of blocks that partitions the

set of points. A resolvable GDD is denoted by RGDD. In the case of resolvable

BIBD(k, v), RBIBD(k, v) or RB(v, k) is used.

Definition: Let be (X,G,B) a GDD. A holey parallel class of the GDD is a set of disjoint

blocks that contain each element of the GDD, except those of a group g j ∈ G once;

no elements of the group g j appear in any block of the set.

Definition: An incomplete group divisible design (IGDD) is a quadruple (X,Y,G,B)

where X is a set of points, Y is a subset of X (called a hole), G is a partition of X into

groups, and B is a collection of subsets of X (blocks) such that

(i) for each block b ∈ B, | b ∩ Y| 6 1, and

(ii) any pair of points from X which are not in Y occur together in some group

or in exactly one block, but not both.

A K-IGDD of type (g1, h1)u1(g2, h2)u2 ...(gs, hs)us is an incomplete group divisible de-

sign in which every block has size from K and in which there are ui groups of size

gi, each of which intersects the hole in hi points for i = 1, 2, ..., s.

Definition: Let K be a set of integers. An incomplete PBD of order v with a hole of

order h ((v,h;K)-IPBD or IPBD(v,h;K)) is a triple (X,H,B) where X is a set of points,

H is a subset of X which contains h elements, and B is a family of subsets (blocks) of

X which satisfy the following properties:

(i) If b ∈ B, then |b| ∈ K;

(ii) Every pair of distinct elements {x, y} ⊆ X\H occurs in exactly one block.

(iii) No pair of distinct elements of H occurs in a block.

Definition: A double group divisible design is a quadruple (X,H,G,B) where X is a

set of points, H and G are partitions of X (into holes and groups, respectively) and

B is a collection of subsets of X (blocks) such that

(i) for each block b ∈ B and each hole Y ∈ H, |b ∩ Y| 6 1 and

(ii) any pair of points from X which are not in the same hole occur together in

some group or in exactly one block, but not both.

2



A K-DGDD of type (g1, hv
1)u1 , (g2, hv

2)u2 , ..., (gs, hv
s )us is a double group divisible design

in which every block has size from the set K and in which there are ui groups of

size gi, each of which intersects each of the v holes in hi points. (Thus gi = hiv for

i = 1, 2, ..., s. Not every DGDD can be expressed in this way, of course, but this the

most general type that we require.)

Definition: A modified group divisible design K−MGDD of type gu is a K−DGDD of

type (g, 1g)u.

Definition: An incomplete transversal design ITD(k, g; hv) is a k−DGDD of type (g, hv)k.

In addition, existence of a ITD(k, g; hv) is equivalent to the existence of a set of k − 2

holey MOLS of type hv (see [5]).

Definition: A Steiner triple system (STS) is a PBD with all blocks of size 3. For

n ≡ 1, 3 (mod 6), STS(n) exists, see [19].

Definition: Kirkman triple system is a resolvable-STS. For n ≡ 3 (mod 6), KTS(n)

exists, see [19].

3
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Chapter 1

PRELIMINARIES

In this chapter we will give some fundamental constructions which we will use

commonly in this thesis.

Theorem 1.0.1. The necessary conditions for the existence of k-GDDs of type gu are

(i) u ≥ k

(ii) (u − 1)g ≡ 0 (mod k − 1)

(iii) u(u − 1)g2
≡ 0 (mod k(k − 1))

Proof: Let (X,G,B) be a k-GDD of type gu

(i) This result directly comes from definition. Number of groups u must be equal

or greater than the block size k.

(ii) Let g be a group in G . If we fix a point x ∈ g and look at the blocks which

contain x, then these blocks partition X\g. Therefore, (k − 1) | (u − 1)g (it is the

replication number of a point).

(iii) We will find the total number of blocks. To find this number we will count the

pairs in blocks. Total number of pairs on the set X with gu elements is
(gu

2

)
and the

number of pairs on u groups of size g is u
(g

2

)
, so the total number of pairs used in

blocks is
(gu

2

)
− u

(g
2

)
. On the other hand the number of pairs used in one block is

(k
2

)
.

Then total number of blocks is

(gu
2

)
− u

(g
2

)(k
2

) . Therefore,
(k

2

)
|
(gu

2

)
−u

(g
2

)
gives the result.�

Now we will give some fundamental constructions to construct GDDs using smaller

GDDs.

Theorem 1.0.2 ( Wilson’s Fundamental Construction (WFC), [8]). Let (X,G,B) be a

GDD and G = {G1, ...,Gm} be the set of groups. Let w(v) be an integer weight for each
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v ∈ X. Suppose that for each block b = {v1, ..., vl} in B, there is a K-GDD with l groups,

having sizes w(v1), ...,w(vl). Then there is a K-GDD whose groups have sizes
∑

v∈Gi w(v)

for each i = 1, 2, ...,m.

Proof: Let (X,G,B) be a GDD. Let b ∈ B be a block of size l. For each point v ∈ b,we

will give the weight w(v). From the assumption, there exists a K-GDD with l groups,

having sizes w(v1), ...,w(vl), so we will put this GDD on the block b. Similarly, we

will put the required GDD to each block in B. Therefore at the end we will obtain

the desired K-GDD with groups of sizes
∑

v∈Gi w(v) for each i = 1, 2, ...,m. �

Remark: Using WFC we could enlarge group sizes while preserving number of

groups. Note that the block sizes may change.

Corollary 1.0.3. If there exists a (K,M)-GDD on v points, blocks have sizes from K and

groups have sizes from M, and for each k ∈ K if there exists a K′-GDD of type mk, then

there exists a K′-GDD on mv points.

Proof: Let (X,G,B) be a (K,M)-GDD on v points. For each point x ∈ X, if we give

the weight m and apply WFC using the given GDDs as fillers, then we will obtain

a K′-GDD on mv points. �

Theorem 1.0.4. If there exists a (K,M)-GDD on v points and for each m ∈M there exists

a (K,M′)-GDD on m points then there exists a (K,M′)-GDD on v points.

Proof: Let (X,G,B) be a (K,M)-GDD on v points. For each group g ∈ G, |g| = m ∈M,

if we put the given proper (K,M′)-GDD with m points on the group g, then we will

obtain the desired (K,M′)-GDD on v points. �

Remark: Using this construction we could obtain GDDs with small group sizes

from GDDs with big group sizes without changing the number of elements.

Theorem 1.0.5. If there exists a (K,M)-GDD on v points and for each g ∈M, there exists

a (K, {m})−GDD on g +m points, then there exists a (K, {m})-GDD on v +m points.

Proof: Let (X,G,B) be a (K,M)-GDD on v points. We will add m new points and

take these m points as a new group. For each group g ∈ G with the new group on
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m points, we put the given (K, {m})-GDD on these g + m points. Then the desired

(K, {m})-GDD on v +m points is obtained. �

Lemma 1.0.6. Let v = (k − 1)u. BIBD(k, v + 1) is equivalent to k−GDD of type (k − 1)u.

Proof: Let (X,B) be a BIBD(k, v + 1) and v = (k − 1)u. Let x be a point in X. If we

delete x, take the blocks containing x as our groups and the rest of the blocks in B

as blocks of the GDD then we will obtain the desired GDD.

On the hand side, to obtain a BIBD from a given GDD, we will add a new point

y and we take each group of GDD together with y as our new blocks. Therefore,

combining with the other blocks of GDD we will get the desired BIBD. �

Lemma 1.0.7. Suppose that a K-GDD of type gtu1 exits, g ≡ 0 (mod s) and a K-GDD of

type (g/s)sw1 exists. Then there exists a K-GDD of type (g/s)st(u + w)1.

Proof: Let (X,G,B) be a K-GDD of type gtu1. We will add w new points to the group

with u points. If we put K-GDD of type (g/s)sw1 on each group g ∈ G together with

the w points, we will obtain the desired K-GDD of type (g/s)st(u + w)1. �

We can also fill in a single group as follows:

Theorem 1.0.8. If K-GDDs of types gtu1 and gsx1 with u = sg + x exist, then there is a

K-GDD of type gt+sx1.

Proof: Let (X,G,B) be a K-GDD of type gtu1 and u = sg + x. If we put the given

K-GDD of type gsx1 on the group with u points we will obtain desired K-GDD of

type gt+sx1. �
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Chapter 2

3-GDDS

2.1 3-GDDs of type gu (uniform 3-GDDs)

Theorem 2.1.1. The necessary and sufficient conditions for the existence of 3−GDDs of

type are: gu are:

(i) u ≥ 3

(ii) (u − 1)g ≡ 0 (mod 2)

(iii) u(u − 1)g2
≡ 0 (mod 6).

We summarize these conditions in the Table 2.1.

Table 2.1: Necessary and sufficient conditions for the existence of uniform 3−GDDs

g necessary and sufficient u constructed by lemmas

1, 5 (mod 6) 1, 3 (mod 6) and u ≥ 3 2.1.3, 2.1.4

2, 4 (mod 6) 0, 1 (mod 3) and u ≥ 3 2.1.3, 2.1.7

3 (mod 6) 1 (mod 2) and u ≥ 3 2.1.3, 2.1.8

0 (mod 6) u ≥ 3 2.1.3, 2.1.9

Before giving the proof of the theorem, we need some preliminary results.

Theorem 2.1.2 (Theorem 3.1, [1] ). For every r > 0, a TD(3, r) exists.

Lemma 2.1.3. If there exists a 3-GDD of type gu and r is a positive integer, then there

exists a 3-GDD of type (gr)u.

Proof: Let (X,G,B) be a 3-GDD of type gu. To construct the desired GDD we will

use WFC. To each point x ∈ X, we will give the weight r, then to each block b ∈ B,
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we will put a TD(3, r), to get a 3-GDD of type (gr)u. (We use a TD(3, r) which is

equivalent to a 3−GDD of type r3 as fillers and it exists by Theorem 2.1.2) �

Therefore to prove the Theorem 2.1.1 we need only 3-GDDs of types 1u, 2u, 3u

and 6u for each admissible values of u, then the result follows by applying Lemma

2.1.3.

Lemma 2.1.4 (Lemma 5.4, [1]). If u ≡ 1 or 3 (mod 6), then there exits a BIBD(3,u).

A 3−GDD of type 1u is equivalent to a BIBD(3,u), so Lemma 2.1.4 covers the case

3−GDD of type 1u.

Lemma 2.1.5 (Lemma 6.2, [1]). If u ≡ 0 or 1 (mod 3), then there exists a PBD({3, 4, 6},u).

Lemma 2.1.6. If there exists a PBD(L,u) and for each l ∈ L there exits a k−GDD of type

gl, then there exists a k−GDD of type gu.

Proof: For each point of the PBD we give the weight g and for each block b of size l

of the PBD we put the given k-GDD of type gl. Then we obtain the desired k−GDD

of type gu. �

Lemma 2.1.7. If u ≡ 0 or 1 (mod 3), then there exists a 3-GDD of type 2u.

Proof: By Lemma 2.1.5 we know that for u ≡ 0 or 1 (mod 3) a PBD({3, 4, 6},u) exists.

If we have 3-GDDs of type 23, 24 and 26, then by Lemma 2.1.6 and giving the weight

2 to each point of the PBD, we have a 3-GDD of type 2u. The required 3−GDDs

exist by [6]. �

Lemma 2.1.8. If u ≡ 1 (mod 2), then there exits a 3-GDD of type 3u.

Proof: We take a KTS(3u) ( 3u ≡ 3 (mod 6) so KTS(3u) exists) and a parallel class of

this KTS as groups of the 3−GDD of type 3u and other blocks as our blocks of the

3−GDD, then we are done.

Lemma 2.1.9. For every u ≥ 3 there exists a 3-GDD of type 6u.
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Proof: For every u ≥ 3, there exists a PBD({3, 4, 5, 6, 8},u) (see [1]). Therefore, if we

have 3−GDDs of types 63, 64, 65, 66 and 68, as previously by Lemma 2.1.6, we cover

the spectrum of 3−GDDs of type 6u. We have all the required 3−GDDs. (see [6]) .�

Now we are ready to give the proof of Theorem 2.1.1:

Proof of Theorem 2.1.1:

Using the results of Lemmas 2.1.3, 2.1.4, 2.1.7, 2.1.8 and 2.1.9, we cover the spectrum

of the 3−GDDs of type gu. �

2.2 3-GDDs of type gum1, m > 0

Theorem 2.2.1. Let g, u and m be nonnegative integers. There exists a 3-GDD of the type

gum1 if and only if the following conditions are all satisfied:

(i) u > 3, or if u = 2 then m = g;

(ii) m 6 g(u − 1);

(iii) g(u − 1) +m ≡ 0 (mod 2);

(iv) gu ≡ 0 (mod 2);

(v)
g2u(u − 1)

2
+ gum ≡ 0 (mod 3).

Proof of Necessity Part:

This part is quite straightforward:

(i) First, any block intersects exactly three different groups so u > 2. If there are

exactly three groups ( 3−GDD of type g2m1), then g = m. To see this, let (X,G,B)

be a 3-GDD with |G| = 3 and let G ∈ G be a group. If we fix an element x in the

groupG, and consider the blocks which contain x, since the block size is 3 and there

are exactly three groups, the blocks intersect with both of the remaining groups.

Therefore their sizes must be equal. But the group we have chosen in the beginning

may vary, so the sizes of all the three groups must be equal.

(ii) Let (X,G,B) be a 3-GDD of type gum1. If we fix an element x of a group of size

g, then we observe that each element in the group of size m (which we refer as the

long group) must appear in a block containing x. Since x appears at most in g(u− 1)
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such blocks, then the inequality m 6 g(u − 1) follows.

(iii) Let x be an element in a group of size g. Since x appears in g(u − 1) +m pairs,

the number of blocks containing x should be
g(u − 1) +m

2
.

(iv) This is similar to (iii), this time we will consider an element in the long group.

(v) Simply this asserts that the total number of pairs is divisible by 3, since each

block contains 3 unique pairs then total number of pairs is g2

(
u
2

)
+ gum. �

We give necessary and sufficient conditions for the existence of 3−GDDs of type

gum1 in Table 2.2. Now we will deal with sufficiency. We recall some preliminary

results that settle parts of our problem. We may assume that m is positive, since

the existence of 3−GDDs of type gu was been completely settled by Theorem 2.1.1.

In the Table 2.2, we give possible congruence classes for m (modulo 6) for each

combination of congruence classes of g and u (modulo 6).

Doyen and Wilson [10] proved the first essential result settling a part of the

sufficiency:

Theorem 2.2.2 (Doyen and Wilsons’s Theorem). Let v ≡ 1, 3 (mod 6), w ≡ 1, 3 (mod 6),

and v > 2w + 1. Then there is a Steiner triple system of order v (say STS(v)) containing a

sub-Steiner triple system of order w.

Corollary 2.2.3. There exists a 3-GDD of type 1um1 for all m 6 u−1, m+u ≡ 1, 3 (mod 6)

and m ≡ 1, 3 (mod 6).

Proof: Using Theorem 2.2.2 we will form a STS(u +m) with sub-STS(m). Then we

will delete the blocks of the subdesign and form a group of size m. Therefore, if we

take each remaining element as a singleton group together with the group of size

m, then we will obtain the required 3-GDD of type 1um1. �

Remark: This corollary covers the spectrum of 3-GDDs of type 1um1 except the

case (u,m)=(0, 5) in modulo 6.

Proof: We will find the spectrum of 3-GDDs of type 1um1 from the necessary

conditions. Taking g = 1 in (ii) we have m 6 u− 1, by (iii) we have 2|(m+ u− 1) and

by (iv) we have 2|u, so this implies u must be even. By combining (ii),(iii) and (iv),
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Table 2.2: Possible values for m (modulo 6).

g (mod 6)

u (mod 6) 0 1 2 3 4 5

0 0, 2, 4 1, 3, 5 0, 2, 4 1, 3, 5 0, 2, 4 1, 3, 5

by by by by by by

2.2.14, 2.2.20 iv 2.2.20 i, ii, 2.2.9, 2.2.20 iii, 2.2.20 v,

2.2.16 2.2.4 2.2.17 2.2.23 2.2.25

1 0, 2, 4 - 0 - 0 -

by by by

2.2.13 2.2.20 i, ii, 2.2.20 iii,

2.2.24 2.2.23

2 0, 2, 4 1 2 1, 3, 5 4 5

by by by by by by

2.2.14 2.2.20 iv 2.2.20 i, ii, 2.2.9, 2.2.20 iii, 2.2.20 v,

2.2.24 2.2.17 2.2.23 2.2.25

3 0, 2, 4 - 0, 2, 4 - 0,2,4 -

by by by

2.2.13 2.2.20 i, ii, 2.2.20 iii,

2.2.24 2.2.23

4 0, 2, 4 3 0 1, 3, 5 0 3

by by by by by by

2.2.14, 2.2.20 iv , 2.2.20 i, ii, 2.2.9, 2.2.20 iii, 2.2.20 v,

2.2.15 2.2.24 2.2.17 2.2.23 2.2.25

5 0, 2, 4 - 2 - 4 -

by by by

2.2.13 2.2.20 i, ii, 2.2.20 iii,

2.2.24 2.2.23
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we get 2|(m−1), so m must be odd. Finally by (v) we get 3|(u(u−1)/2+um) and if we

combine all of them we will have (u,m)∈ {(0, 1),(0, 3),(0, 5),(2, 1),(4, 3)} with respect

to modulo 6. (Also we can find these values directly from the table)

Secondly, we will find which parts of the spectrum of 3-GDDs of type 1um1 is

completed by Corollary 2.2.3. We will use m+ u ≡ 1, 3 (mod 6) and m ≡ 1, 3 (mod 6).

So when m ≡ 1 (mod 6), we have u ≡ 0, 2 (mod 6) and when m ≡ 3 (mod 6) we have

u ≡ 0, 4 (mod 6). Therefore we have (u,m)∈ {(0, 1),(0, 3),(2, 1),(4, 3)} in modulo 6.

What is left only the case (u,m)=(0, 5) in modulo 6. �

Corollary 2.2.4. There exists a 3−GDD of type 2um1 for all m 6 2u − 2, 2u + m ≡

0, 2 (mod 6) and m ≡ 0, 2 (mod 6).

Proof: By Theorem 2.2.2 we will form a STS(2u+m+ 1) with a sub-STS(m+ 1). We

will delete a point of the subdesign to form a 3-GDD of type 2u+(m/2). Finally, if we

delete all the blocks of the subdesign, then we obtain a 3-GDD of type 2um1. �

Remark: This corollary covers the spectrum of 3-GDDs of type 2um1 except the

cases (u,m)∈{(0, 4),(3, 4)} in modulo 6.

Proof: From the table we have

(u,m)∈ {(0, 0),(0, 2),(0, 4),(1, 0),(2, 2),(3, 0),(3, 2),(3, 4),(4, 0),(5, 2)} in modulo 6 as nec-

essary conditions on (u,m).

Secondly, by Corollary 2.2.4 we have m 6 2u − 2, 2u + m ≡ 0, 2 (mod 6) and

m ≡ 0, 2 (mod 6). If m ≡ 0 (mod 6), then u ≡ 0, 1, 3, 4 (mod 6). If m ≡ 2 (mod 6), then

u ≡ 0, 2, 3, 5 (mod 6). Therefore, these cover the spectrum except the cases

(u,m)∈{(0, 4),(3, 4)} in modulo 6. �

Mendelsohn and Rosa [11] established a result for the remaining case:

Lemma 2.2.5. Let v,w ≡ 5 (mod 6) and v > 2w + 1. Then there exits a

(v,w; {3})-IPBD.

Corollary 2.2.6. There exists a 3-GDD of type 16km1 for all m ≡ 5 (mod 6),

m 6 6k − 1.
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Proof: By Lemma 2.2.5 form a (6k + m,m; {3})-IPBD. If we take the hole of size m

as a group and each element not in the hole as a singleton group, then this design

gives the required 3-GDD of type 16km1 for all m ≡ 5 (mod 6). �

Remark: By this corollary we cover the spectrum of 3-GDD of type 1um1.

Corollary 2.2.7. There exists a 3-GDD of type 23km1 for all m ≡ 4 (mod 6),

m 6 6k − 2.

Proof: By Lemma 2.2.5 form a (6k+m+1,m+1; {3})-IPBD. If we delete a point from

the hole of size m + 1, then we form the required 3−GDD of type 23km1. �

Remark: This corollary covers the spectrum of 3−GDDs of type 2um1. Therefore,

up to this point we have established the sufficiency for 3−GDDs of type 1um1 and

2um1.

The case g = 3 is also settled. Rees [12] established the following:

Lemma 2.2.8. Let m > 1 and 0 6 r 6 2m, (m, r) , (1, 2) or (3, 6). There exists a

{2, 3}−GDD of type (2m)3 which is resolvable into r parallel classes of blocks of size 3 and

4m − 2r parallel classes of blocks of size 2.

Corollary 2.2.9. Let u ≡ 0 (mod 2), m ≡ 1 (mod 2), (m,u) , (1, 2), and m 6 3u− 3. Then

there exists a 3−GDD of type 3um1.

Proof: Firstly, we will prove our statement for m > u − 1. So assume that m > u − 1

and also assume that m , u − 1 when u = 6. By Lemma 2.2.8 construct a resolvable

{2, 3}−GDD of type u3 having m − u + 1 parallel classes of blocks of size 2 and

(3u − m − 1)/2 parallel classes of blocks of size 3. Now take one parallel class of

triples as groups of the 3−GDD of type 3um1 being constructed. If we turn back to

our parallel classes of pairs, we add m − u + 1 “ideal” points, one for each parallel

class of pairs. Therefore a collection of triples (our blocks in the 3−GDD) is formed

in this way. Also we use the triples in parallel classes as our new blocks in the

3−GDD of type 3um1. We have taken one parallel class of triples as the groups of

size 3 in constructing 3−GDD of type 3um1, but also we need a long group of size m.
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So take the m−u+1 ideal points in the long group. We need additional u−1 points

to complete our long group to m. So add u − 1 points to the long group. However,

up to here we have all the blocks of 3−GDD except that the blocks on the groups of

{2, 3}−GDD and newly added u − 1 points. So to obtain these blocks, we will put

(2u − 1,u − 1; {3})−IPBD on each group of the {2, 3}−GDD and newly added u − 1

points and align the hole on these u−1 points. ( Required IPBDs exist, see Theorem

2.2.2 and 2.2.5. To get IPBD in Theorem 2.2.2 we delete the blocks of sub-STS) We

only left the case (m,u)=(5, 6). For this case we start with an idempotent quasigroup

of order 6, then we will apply the same process.

Now we have the case 1 6 m < u−1. The same strategy using a smaller hole can

be used to settle most cases, when m is small, except for the case when u ≡ 4 (mod 6)

and m = 1. For this last case, we use the standard construction of a STS(6m + 1)

from a commutative idempotent quasigroup of order 2m + 1 that gives a system

with 2m disjoint blocks for all m > 2. �

Using Lemma 2.2.8 we can give one more useful corollary:

Corollary 2.2.10. Let g ≡ 0 (mod 2), m ≡ 0 (mod 2), u ≡ 3 (mod 6) and m 6 g(u − 1).

Then there exists a 3−GDD of type gum1.

Proof: We start with the case u = 3. That is we will build a 3−GDD of type g3m1.

By Lemma 2.2.8, form a resolvable {2, 3}−GDD of type g3 having m parallel classes

of pairs. For the 3−GDD, we need a long group with m points. We form this group

by adding m ideal points, one to the pairs of each parallel class of pairs. Therefore,

with these new triples and by taking triples of {2, 3}−GDD we form all the blocks

of the 3−GDD of type g3m1.

Next we finish the other cases. Assume that u = 6n + 3 and form a KTS(6n + 3)

on the point set E. So we have 3n+ 1 parallel classes of triples P1,P2, ...,P3n+1. Now

we will form our 3−GDD of type gum1 on elements (Zg × E ) ∪M with |M| = m.

Partition M into sets M1,M2, ...,M3n+1 with |Mi| = mi and we will choose mi’s such

that mi ≡ 0 (mod 2), 0 6 mi 6 2g and m =
3n+1∑
i=1

mi. We will obtain the blocks of
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3−GDD by the following method. Think each group of size g of the 3−GDD as

points of E (since |E| = 6n + 3 = u this is valid), then for each block {x, y, z} in the

parallel class Pi, we will put a 3−GDD of type g3m1
i on the set (Zg × {x, y, z}) ∪Mi.

The case g = 4 was also solved in [13]:

Lemma 2.2.11 (Lemma 1.10, [13]). Let m ≡ 0 (mod 2), m 6 4u− 4 and u(2u+ 1+m) ≡

0 (mod 3). Then there exists a 3−GDD of type 4um1.

We will use these designs with small g and small u as building blocks in the

recursive constructions to be developed. The main recursive constructions is WFC

which is Theorem 1.0.2, and also we will use Lemma 1.0.7 and Theorem1.0.8 to

develop the recursions.

We have one more useful recursive construction:

Lemma 2.2.12. Let (X,G,B) be a 3−GDD with group sizes g1, g2, ..., gn and u > 3. If

there exist 3−GDDs of type gu
i m1 for all i = 1, 2, ...,n, then there exists a 3−GDD of type

(|X|)um1.

Proof: Let (X,G,B) be a 3−GDD with group sizes g1, g2, ..., gn. We will construct a

3−GDD on the set (X ×Zu) ∪M, with |M| = m. So in this set we have u copies of X

and u copies of each Gi where |Gi| = gi and
n⋃

i=1

Gi = X. First obtain the blocks on the

u copies of each Gi with M by placing 3−GDDs of type gu
i m1 on (Gi ×Zt) ∪ M for

each 1 6 i 6 n. Secondly, for each block {x, y, z} ∈ B, place a TD(3,u) on {x, y, z} ×Zu

and align the groups to {x} × Zu , {y} × Zu, {z} × Zu. Here we have obtained the

blocks between the copies of the groups, but we also have blocks in X that we do

not want. To solve this problem we delete one parallel class of the TD(3,u) aligned

on {x, y, z} × {i} for each i ∈ Zu. �

Now we will give the sufficiency for the case g ≡ 0 (mod 3).

Lemma 2.2.13. Let u be odd, x > 1, 0 6 m 6 6x(u − 1), and m ≡ 0 (mod 2). Then there

exits a 3−GDD of type (6x)um1.
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Proof: First, build a resolvable 3−GDD of type 3u. Since u is odd, 3u ≡ 3 (mod 6)

so a KTS(3u) exists. If we take one parallel class of triples as the groups of the

3−GDD, then we obtain a resolvable 3−GDD of type 3u. Since we have (3u − 1)/2

parallel classes in the KTS, and we use one parallel class as the groups of the

3−GDD, we have 3(u − 1)/2 parallel classes of triples in 3−GDD. If we add one

point to each of 3(u − 1)/2 parallel class of the 3 − GDD, then we obtain a 4−GDD

of type 3u(3(u − 1)/2)1. In this 4-GDD if we give even weights between 0 and 4x to

every point in the long group satisfying that the sum of the weights gives m and

the weight 2x to each point not in the long group, and finally apply WFC using

3−GDDs of type (2x)3w1 for all even w satisfying 0 6 w 6 4x as fillers (they exists

by Corollary 2.2.10), then we obtain the required 3−GDD of type (6x)um1. �

Lemma 2.2.14. Let u > 8, u even, m even, x > 1, and 0 6 m 6 6x(u− 1). Then there exits

a 3−GDD of type (6x)um1.

Proof: We start with a resolvable 3−GDD of type 6u/2. (The required resolvable GDD

exists. See [14], [15]) As above we will add 3(u − 2)/2 ideal points to each parallel

class and get a 4−GDD of type 6u/2(3(u − 2)/2)1. Now we will build a {4, 7}−GDD

of type 3u(3(u − 2)/2)1. To obtain this {4, 7}−GDD, we add a point y to the long

group of 4−GDD and connect it with the other groups. So take them as new blocks

of size 7 and delete a different point z in the long group of the 4−GDD, and take

the blocks containing z as the new groups of size 3. This process preserves the size

of the long group. Therefore, the result is a {4, 7}−GDD of type 3u(3(u − 2)/2)1 in

which only y in the long group belongs to blocks of size 7. We give the weight 0 or

10x to y and even weights between 0 and 4x to the other points in the long group.

Then to all points which are not in the long group, we give the weight 2x. Now if

we apply WFC with proper filler GDDs, then we will obtain the required 3−GDD

of type (6x)um1. The first kind of filler GDD that we will put on the blocks of size

3 is a 3−GDD of type g3m1 and it exists by Corollary 2.2.10. The second type that

we will put on the blocks of size 7 is a 3−GDD of type (2x)6(10x)1 (for this GDD see

Lemma 2.2 in [9] ). �
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The cases u = 4 and 6 are handled by methods tailored for these cases:

Lemma 2.2.15. Let x > 1, m even, and 0 6 m 6 18x. Then there exist 3−GDDs of type

(6x)4m1.

Proof: First, we will handle the case u 6 12x. If we remove one point of a BIBD(4, 16)

(see [1]), then we get a 4−GDD of type 35 and we can think it as a 4−GDD of type

3431. We give weights 2x to the points in the first 4 groups and even weights between

0 and 4x to the each point in the last group. If we apply WFC using 3−GDDs of type

(2x)3w1 (these exist by Corollary 2.2.10), then we get the required 3−GDDs of type

(6x)4m1. Secondly, we will handle the remaining case 12x 6 m 6 18x. We take a

PBD with 12 elements with four parallel classes of triples and three parallel classes

of pairs. (see [12]). We will form a {3, 4}−GDD of type 3461 from this PBD. To build

the GDD, we will add six ideal points, one to each parallel class of pairs, and one

to each of the three parallel classes of triples of the PBD. So we take the remaining

parallel class of triples as groups of size 3 of the GDD and take the added 6 points

as the group of size 6 to get a {3, 4}−GDD of type 3461. If we give weight 2x to each

point not in the long group and also three ideal points which we add to the parallel

classes of pairs, and assign even weights between 0 to 4x to the remaining three

ideal points in the long group, we will get the required GDD. Even this gives more

than we want, this satisfies for the cases 6x 6 m 6 18x. �

Lemma 2.2.16. Let x > 1, m even, and 0 6 u 6 30x. Then there exist 3−GDDs of type

(6x)6m1.

Proof: There exists a PBD on 18 elements having eight parallel classes of triples and

one parallel class of pairs (see [15]). If we proceed as Lemma 2.2.15, we complete

the cases 2x 6 m 6 30x. For the next case, we will use a 4−GDD of type 3462 and it

exists by [16]. We will form a {4, 7}−GDD of type 3661 from the 4−GDD, then add

an element to a group of size 6 of the 4−GDD and connect with other groups. Next

we delete one element from the same group and take the blocks containing this

element as groups of the {4, 7}−GDD. Together with the group of size 6, in which
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only one point belongs to the blocks of size 7, we obtain the {4, 7}−GDD of type

3661. Unlike the case in Lemma 2.2.14, this point belongs to blocks of size 4. Hence

when we apply WFC, we will always assign 0 weight to this point. Next we apply

WFC to the {4, 7}−GDD and give weight 2x to the points not in the long group. We

assign even weights between 0 and 4x to the points in the long group (the group

of size 6). Therefore, we complete the case 0 6 m 6 20x that is even more than we

want. �

Now we turn the case for g ≡ 0 (mod 3).

Lemma 2.2.17. Let u > 4, m odd, g ≡ 3 (mod 6), and 1 6 m 6 g(u − 1). Then there exist

3−GDDs of type gum1.

Proof: There exits a KTS(g). So we have (g − 1)/2 parallel class of triples,

P1,P2, ...,P(g−1)/2. Let V be the element set of such a KTS, so |V| = g. Now we will

build a 3−GDD of type gum1 on the point set (V × Zu) ∪M where |M| = m. For

2 6 i 6 (g−1)/2, let 0 6 mi 6 2u−2, mi ≡ 0 (mod 2); let 0 6 m1 6 3u−3, m1 ≡ 1 (mod 2)

so that m =
(g−1)/2∑

i=1

mi. Let M1,M2, ...,M(g−1)/2 be disjoint sets so that |Mi| = mi. Let

M =
(g−1)/2⋃

i=1

Mi. For each parallel class Pi, i = 1, 2, ..., (g − 1)/2, and each block {x, y, z}

of Pi, on {x, y, z} ×Zu we put a 3−GDD of type u3(mi)1 omitting a parallel class on

{x, y, z} × {i} for i ∈ Zu. The groups are aligned on {x} ×Zu, {y} ×Zu, {z} ×Zu and Mi.

Finally, we must treat {x, y, z} ×Zu for {x, y, z} in P1. Here we place a 3−GDD of

type 3u(m1)1 (Corollary 2.2.9) with groups aligned on {x, y, z} × {i} and on M1. All

required choices for the mi are possible by Corollaries 2.2.9 and 2.2.10. �

Lemma 2.2.18 (Lemma 3.3, [9]). Let g be even, u > 3, 0 6 m 6 u− 1 and 0 6 x 6 2u− 2

with x ≡ 0 (mod 2) if u ≡ 0 (mod 3), x ≡ 0 (mod 6) if u ≡ 1 (mod 3), and x ≡ 2 (mod 6) if

u ≡ 2 (mod 3). Then there exists a 3−GDD of type gu((r − 1)(u − 1) + 6m + x)1.

Lemma 2.2.19 (Lemma 3.5, [9]). Let g be odd and u be even. Let 0 6 m 6 u − 1 and

0 6 x 6 u − 1 where x ≡ 1 (mod 2) if u ≡ 0 (mod 6), x ≡ 1 (mod 6) if u ≡ 2 (mod 6),

x ≡ 3 (mod 6) if u ≡ 4 (mod 6). Then there exists a 3−GDD of type gu(r(u− 1)+ 6m+ x)1.
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The consequences of Lemmas 2.2.18 and 2.2.19 are quite surprising:

Lemma 2.2.20 (Lemma 3.6, [9]). Let g, u and m satisfy the necessary conditions of

Theorem 2.2.1. Then a 3−GDD of type gum1 exists whenever

(i) g ≡ 2, 8 (mod 24);

(ii) g ≡ 14, 20 (mod 24) and m > 6u − 6;

(iii) g ≡ 4 (mod 6) and m > 2u − 2;

(iv) g ≡ 1 (mod 6); or

(v) g ≡ 5 (mod 6) and m > 4u − 4 + x, where x = 1 if u ≡ 0, 2 (mod 6), and x = 3 if

u ≡ 4 (mod 6).

Lemma 2.2.21 (Lemma 3.7, [9]). Let g, u and m satisfy the necessary conditions of

Theorem 2.2.1 with g ≡ 2, 4 (mod 6), u ≡ 1, 2 (mod 3), and m > 2g + 2. Then there exists

a 3−GDD of type gum1.

There is a further method for handling some cases when m is large.

Lemma 2.2.22. Let u > 4 be even. If a 3−GDD of type (2g)u/2u1 exists, then there is a

3−GDD of type gu(u + g)1.

Proof: If we apply Lemma 1.0.7 with s = 2, then we obtain the required result. �

Now we deal with large ordinary groups (the groups of size g).

Lemma 2.2.23. Let g ≡ 4 (mod 6) and let g, u and m satisfy the conditions of Theorem

2.2.1. Then there exists a 3−GDD of type gum1.

Proof: By Lemma 2.2.20 (iii) we can restrict our attention to m < 2u − 2. We write

g = 6n + 4 and by Lemma 2.2.11 we can assume n > 0. When n > 3, we apply

Lemma 2.2.12 to a 3−GDD of type 6n41, using 3−GDDs of types 6um1 and 4um1.

This handles m 6 4u − 4 for g > 22, and hence completes these cases.

We apply Lemma 2.2.12 to a 3−GDD of type 23n41 using 3−GDDs with g = 2.

This handles all m 6 2u − 2 when u ≡ 0, 1 (mod 3). For g = 16, we apply Lemma
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2.2.12 to a 3−GDD of type 44 using 3−GDDs of type 4um1 to handle all the remaining

cases. This leaves only the case g = 10 when u ≡ 2 (mod 3).

For this case, if we apply Lemma 2.2.21, we handle all m > 22. In the remaining

cases where u > 17, we fill the long group of a 3−GDD of type 10u−6(60 +m)1 with

a 3−GDD of type 106m1. For u ∈ {11, 14}, we proceed similarly with a 3−GDD of

type 10u−3(30+m)1 and one of type 103m1; this handles when m 6 16. Recalling that

m > 2u − 2 is handled by Lemma 2.2.20, this completes u ∈ {11, 14}.

For the remaining cases, 108101 = 109 is handled in the case when m = 0. Type

10841 is handled by filling a 3−GDD of type 105341 with a 3−GDD of type 10341.

The only remaining case is of type 10541, we refer to Lemma 4.1 of [9]. �

Lemma 2.2.24. Let g ≡ 14, 20 (mod 24) and let g, t and m satisfy the conditions of Theorem

2.2.1. Then there exists a 3−GDD of type gum1.

Proof: By Lemma 2.2.20 (ii) we need only considering m < 6u − 6. We write

g = 6n + 8. For n > 3, we apply 2.2.12 to a 3−GDD of type 6n81 using 3−GDDs of

types 6um1 and 8um1. This handles all cases with g > 26, leaving only g ∈ {14, 20}.

For u even, u , 4, we handle m > g using Lemma 2.2.22. For u > 8, we apply

2.2.12 to a 3−GDD of type 210 or 27. For u ∈ {4, 6} and g = 20, we apply Lemma

2.2.12 to a 3−GDD of type 4381. This completes all the cases when u is even except

for g = 14 when u ∈ {4, 6}.

For u odd, g = 20, Lemma 2.2.21 handles all m > 42 (by Corollary 2.2.10 we may

assume that u ≡ 1, 2 (mod 3)). Then using 3−GDDs of type 20(u−6)(120 + m)1 and

206m1 (Theorem 1.0.8) handles all remaining cases with u > 13. Using 3−GDDs of

type 20(u−3)(60+m)1 and 203m1 handles all remaining cases with u > 7. For u ∈ {5, 7},

it remains to construct 205141 and 207301, see Lemma 2.2.24.

There remains g = 14 to handle. For u even, only u ∈ {4, 6} remains. For u odd,

we proceed as g = 20, leaving only cases with u ∈ {5, 7}. The cases 14521 and 14581

can be obtained from Lemma 2.2.12. Thus for u = 5 we may assume m > 14. For

each u = 4, 5, 6, 7, we take a TD(u + 1, 7) and apply WFC giving every point in the

first u groups weight 2. In the last group, give points weights ≡ 0 (mod 2) when
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u = 6, weights ≡ 0 (mod 6) when u ∈ {4, 7} and weights ≡ 2 (mod 6) when u = 5. �

We handle next all remaining cases for g odd when g > 11.

Lemma 2.2.25. Let g ≡ 5 (mod 24) and let g, u and m satisfy the conditions of Theorem

2.2.1. Then provided that this theorem holds for g = 5 and g = 11, there exists a 3−GDD

of type gum1.

Proof: The proof proceeds inductively, we assume the solutions for g ∈ {5, 11} exist.

By Lemma 2.2.20, we need only considering m < 4u − 1 when u ≡ 4 (mod 6) and

m < 4u − 3 otherwise. If m > g and u > 4, we apply Lemma 2.2.22. In general we

write g = 6n+5, and form a GDD of type n651 when n ≡ 3, 5 (mod 6), (n−1)6111 when

n ≡ 0, 4 (mod 6), (n − 2)6171 when n ≡ 1 (mod 6), or (n − 3)6231 when n ≡ 2 (mod 6),

and apply Lemma 2.2.12. This gives a complete solution when n > 5.

Now for g = 29, use instead a GDD of type 5491 in the application of Lemma

2.2.12. This handles all m 6 5u − 5.

When g = 23, for u > 8 Lemma 2.2.12 with 3651 handles all m 6 21. For u = 6,

Lemma 2.2.12 applied to the GDD of type 3651 handles all m 6 15, leaving 236171

and 236191 to be handled. For 236m1 see Lemma 4.3 in [9].

For g = 23 and u = 4, Lemma 2.2.20 handles m > 15 and Lemma 2.2.12 with 3651

handles m 6 9.

The case g = 17 is treated using a 3−GDD of type 3451 in the application of

Lemma 2.2.12. �

At this point, we have completed the proof of Theorem 2.2.1 when g is even with

no exception. The case for g odd still rests on the completion of g ≡ 5 (mod 6).

Lemma 2.2.26 (Lemma 5.1, [9]). There exist 3−GDDs of types 5431, 5491, 11431, and

11491.

Lemma 2.2.27 (see [22] ). Let g, u be positive integers satisfying u > 3, g > 3, (g−1)(u−

1) ≡ 0 (mod 2) and gt(g − 1)(u − 1) ≡ 0 (mod 3). Then there exists a PBD on v = gt
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points having one parallel class of blocks of size g, one parallel class of blocks of size u, and

all remaining blocks of size 3.

Corollary 2.2.28. Let g, u, m satisfy the conditions of Theorem 2.2.1, with g odd,

u ≡ 0, 1 (mod 3), and m > 1. Then there exists a 3−GDD of type gum1.

Proof: We use Lemma 2.2.27 to form a PBD with one parallel class of g blocks and

one parallel class of u blocks on gt points. We take parallel class of g blocks as

groups and add m points at infinity. On each u block together with these m points,

if we place a 3-GDD of type 1um1, then we obtain the required 3−GDD of type gum1.

�

This completes all cases when u ≡ 0, 1 (mod 3) with g ∈ {5, 11}, with the two

exceptions that we treat next:

Lemma 2.2.29. There exist 3-GDDs of types 11671 and 11691.

Proof: We use a TD(7, 7), apply weight 5 to six elements of one block, and weight

1 or 3 to the seventh point of the block. We apply weight 1 to all other elements. If

we apply the WFC using 3-GDDs of types 17, 1631, 1651, 5611 and 5631, the we obtain

the required 3-GDDs of types 11671 and 11691. �

If we turn the cases when u ≡ 2 (mod 3), we first observe that using the 3−GDDs

of types gu−6(6g + m)1 and g6m1 handles all cases with m < g for u > 14, leaving

only u = 8. In this case, we need only treat to 11851.

Lemma 2.2.30 (Lemma 5.5, [9]). There exists a 3-GDD of type 11851.

This completes the last case for g ∈ {5, 11}, and hence the last case of the proof

of Theorem 2.2.1.
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2.3 3-GDDs of type gu1t

Theorem 2.3.1. Let g, u and t be positive integers. Then there exists a 3−GDD of type

gu1t if and only if the following conditions are satisfied:

(i) g ≡ 1 (mod 2);

(ii) u + t ≡ 1 (mod 2);

(iii) if u = 1, then t > g + 1;

(iv) if u = 2, then t > g;

(v)
(
t
2

)
+ ugt +

(
u
2

)
g2
≡ 0 (mod 3).

Proof: We can establish the necessity as follows. Since t > 1, we consider an

element in a group of size 1. It must appear in
1
2

(ug + t − 1) triples and, hence

ug + t − 1 ≡ 0 (mod 2). Since u > 1, consider an element in a group of size g. It

appears in
1
2

(g(u− 1)+ t) triples and, hence ug+ t− g ≡ 0 (mod 2). For both to hold,

g must be odd. When g is odd since ug + t − 1 ≡ u + t − 1 (mod 2), u + t must also

be odd. For (iii) any element in a singleton group must appear in a triple with each

element of the group of size g. The third elements of such triples are all distinct

and none of them appear in the large group. Thus t > g + 1. For (iv), consider an

element x in one of the groups of size g. Consider the triples in which x appears

with the elements of the other group of size g. The third element of such triples

form g distinct elements, none of which appear in one of the large groups. Thus

t > g. Finally, for (v) the number of pairs occurring in triples must be divisible by

3. �

We summarize these conditions in the Table 2.3.

Corollary 2.3.2. The conditions of the Theorem 2.3.1 are sufficient when u = 1.

Proof: From Theorem 2.2.1, there exists a 3−GDD of type g11t. �

When g ∈ {1, 3} the conditions of the Theorem 2.3.1 are also sufficient. Since

when g = 1, the existence of a 3−GDD of type 1u1t is equivalent to the existence of

a STS(u + t) and when g = 3 we use a resolvable-STS and an almost resolvable-STS

(see [17]). Henceforth, we treat only the cases when g > 5.
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Table 2.3: Possible values for t (mod 6)

g (mod 6)

u (mod 6) 1 3 5

0 1, 3 1, 3 1, 3

by 2.3.11 by 2.3.11 by 2.3.13,

2.3.16

1 0, 2 0, 4 0

by 2.3.11 by 2.3.11 by 2.3.13

2 1, 5 1, 3 -

by 2.3.11 by 2.3.11

3 0, 4 0, 4 0, 4

by 2.3.11 by 2.3.11 by 2.3.13,

2.3.15

4 3, 5 1, 3 3

by 2.3.11 by 2.3.11 by 2.3.13

5 2, 4 0, 4 -

by 2.3.11 by 2.3.11

In general, our strategy in proving the sufficiency for the conditions for GDDs

is to develop recursive constructions providing a finite number of small cases that

can be produced by direct techniques. The required small 3−GDDs exist by [6]

and [18].

Lemma 2.3.3. The conditions of the Theorem 2.3.1 are sufficient when gu + t 6 60 and

also for 3−GDDs of types 9714, 9716, 114139, 114145, 11716, 134111, 174157, 174163, 174169,

and 2371t for t ∈ {6, 12, 18}.

Proof: Sufficiency for gu + t 6 60 follows from the main computational results in

[6]. For the remaining cases refer to Lemma 1.3 in [18]. �
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Now we will develop a construction that is useful for obtaining GDDs with small

number of groups.

Lemma 2.3.4. Suppose that there exists a resolvable 3−GDD of type gu, having p =

g(u−1)/2 parallel classes. Let w be an integer and let A(w) = {x : ∃ 3−GDD o f type w3x1
}.

Suppose further that there is a {2, 3}−GDD of type w3 in which the blocks of size two have

a partition into u− 3+ e parallel classes, and for each of the three groups, one holey parallel

class that misses precisely the one of the three groups of size w. Finally write p = m + l,

suppose that a1, ..., al ∈ A(w) and that a 3−GDD of type mu1em+
∑l

i=1 ai exists. Then a

3−GDD of type (wg +m)u1em+
∑l

i=1 ai exists.

Proof: Let P1, ...,Pp be the parallel classes of a resolvable 3−GDD of type gu. We

give every point of this resolvable 3−GDD, the weight w. For each parallel class

Pi, 1 6 i 6 l, we add ai additional elements. Then for each block of Pi, on the 3w

corresponding points, together with the ai additional points, we place the blocks

of a 3−GDD of type w3a1
i . For the parallel classes Pl+1, ...,Pp we proceed differently.

For each parallel class Pi, l+ 1 6 i 6 p , we add one new point to the u groups and e

extra new points. (So now each group has gw+(p− l) elements) Then for each block

of the parallel class we proceed as follows: we place a {2, 3}−GDD of type w3 on 3w

points arising in this block. The u−3+ e parallel classes of this {2, 3}−GDD are used

to form the triples with each of e extra points and each of u− 3 new points added to

the groups that are not met by the chosen block. Finally, three holey 1-factors (pairs

that misses a specified group) are used to form triples with three new points added

to the groups that are met by the chosen block. Once all parallel classes have been

treated, m = p− l additional elements have been added to each of the u groups. On

these, together with em extra elements and
l∑

i=1

ai additional elements, we place the

blocks of a 3−GDD of type mu1em+
∑l

i=1 ai . Therefore, the result is a 3−GDD of type

(wg +m)u1em+
∑l

i=1 ai . �
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The existence of resolvable 3−GDDs has been settled, see [14] and [20].

Lemma 2.3.5 ([20]). There exists a resolvable 3−GDD of type gu if and only if g(u− 1) ≡

0 (mod 2), gu ≡ 0 (mod 3) and (g,u) < {(2, 3), (2, 6), (6, 3)}.

Now there exists a {2, 3}−GDD of type 23 having three holey 1-factors and two

triples. Specifically, on groups {{0, 1}, {2, 3}, {4, 5}}, form the triples {{0, 2, 4}, {1, 3, 5}}

and the holey parallel classes {{2, 5}, {3, 4}}, {{0, 5}, {1, 4}} and {{0, 3}, {1, 2}}. This

allows the use of w = 2 and u − 3 + e = 0 in Lemma 2.3.4

Corollary 2.3.6. For g ≡ 1 (mod 2), t ≡ 0, 4 (mod 6), and t 6 2g − 6 then there exists a

3−GDD of type g31t.

Proof: If g ∈ {1, 3, 5, 13}, the required 3−GDDs are from Lemma 2.3.3. Otherwise we

will apply Lemma 2.3.4 with g = (u − 1)/2, w = 2, u = 3, m = 1 and e = 0. A resolv-

able 3−GDD of type g3 has g parallel classes. Theorem 2.2.1 gives A(2) = {0, 2, 4}.

Thus t =
l∑

i=1

ai where ai ∈ A(2) if and only if t 6 2u − 6. Furthermore the 3−GDD of

type mu1em+
∑l

i=1 ai required by Lemma 2.3.4 is a STS of order 3+ t, after a substitution,

and it exists since t ≡ 0, 4 (mod 6). So we have all we needed and have obtained the

desired result. �

There exists a {2, 3}-GDD of type 43 having three holey parallel classes of pairs,

two parallel classes of pairs and eight triples. For construction, see [18]. Now using

this GDD and using w = 4, u − 3 + e = 2 in Lemma 2.3.4 we obtain the following.

Corollary 2.3.7. Suppose that Theorem 2.3.1 holds for u = 5 and g ∈ {7, 9}. If the

conditions of the Theorem 2.3.1 are met for g,u, t, r = 5 and t < g then there exists a

3−GDD of type g51t.

Proof: Write m ≡ g (mod 12), 0 < m < 12. If we apply Lemma 2.3.4 with g = (g−m)/4,

w = 4, u = 7 and e = 0, then we get the result. �

There is a {2, 3}-GDD of type 43 having three holey parallel classes and four parallel

classes of pairs, see [18].
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Corollary 2.3.8. Let g,u, t,u = 7 satisfy the conditions of the Theorem 2.3.1 and let t < g.

Let m ≡ g (mod 12), and 0 < m < 12. Suppose that Theorem 2.3.1 holds for m71t. Then

there is a 3−GDD of type g71t.

Proof: If m < 12, the statement holds by assumption in the corollary. If g = 23, the

required 3−GDDs are from Lemma 2.3.3 otherwise if we apply Lemma 2.3.4 with

g = (g −m)/4, w = 4, u = 7 and e = 0, then we get the required 3−GDD. �

Finally we will present a construction for u ∈ {4, 8} using a result of Rees, see

Lemma 2.2.8.

Lemma 2.3.9 (Lemma 2.7, [18]). For g ≡ 1 (mod 6), g > 19, t ≡ 5 (mod 6) and t < g,

there exits a 3 − GDD of type gu1t for u = 4 and 8.

Now we will do the cases g ≡ 1, 3 (mod 6). First, we employ Theorem 2.2.1 to

settle the majority of the cases.

Lemma 2.3.10. Let 0 6 s < u. If a 3−GDD of type gu−s(sg + t)1 and a 3−GDD of type

gs1t exists, then a 3−GDD of type gu1t exists.

Proof: If we fill the group of size (sg+ t) with the 3−GDD of type gs1t in the 3−GDD

of type gu−s(sg + t)1, then we get the result. �

Theorem 2.3.11. There exists a 3−GDD of type gu1t whenever g ≡ 1, 3 (mod 6) and the

conditions of the Theorem 2.3.1 are met.

Proof: First we establish that if the necessary conditions in the Theorem 2.3.1 are

sufficient for g ≡ 1, 3 (mod 6) when t < g, they are sufficient for g ≡ 1, 3 (mod 6) and

all t. If t > g, we write s = bt/gc. We form a 3−GDD of type gu+s1t−sg. If we fill s

groups of size g of the 3−GDD of type gu+s1t−sg with the triples of a 3−GDD of type

1g, then we obtain the required 3−GDD of type gu1t. We suppose henceforth that

t < g.

If (u, g, t) (mod 6, 6, 6) is one of (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 3, 3), (2, 1, 1), (2, 3, 1),

(2, 3, 3), (4, 1, 3), (4, 3, 1) or (4, 3, 3) and we apply Lemma 2.3.10 with s = 0, then we

get the required 3−GDDs. (Theorem 2.2.1 produces the required 3−GDDs.)
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If u = 3, we apply Corollary 2.3.6. So we suppose that u > 4. If (u, g, t) (mod 6, 6, 6)

is one of (1, 1, 0), (1, 3, 0), (1, 3, 4), (3, 1, 0), (3, 1, 4), (3, 3, 0), (3, 3, 4), (5, 1, 4), (5, 3, 0)

and (5, 3, 4), and u > 8 we apply Lemma 2.3.10 with s = 3 (The 3−GDD of type

gu−3(3g + t)1 is from the Theorem 2.2.1).

If u = 4, g ≡ 1 (mod 6), g > 13, and t ≡ 5 (mod 6), we apply Lemma 2.3.9, then we

get the result. If instead g ∈ {7, 13}, we apply Lemma 2.3.3, then this completes the

last case when u = 4.

If u = 5, the cases with g ∈ {7, 9} and t < g are from the Lemma 2.3.10. Now if

we apply Corollary 2.3.7, then we settle all the cases with g > 12 and t < g.

If (u, g, t) (mod 6, 6, 6) is (2, 1, 5) or (4, 1, 5) and u > 10, we apply Lemma 2.3.10

with s = 4, using Theorem 2.2.1 to provide the 3−GDD of type gu−4(4g + t)1, then

we get the result.

If (u, g, t) (mod 6, 6, 6) is (1, 1, 2) or (5, 1, 2) and u > 12, we apply Lemma 2.3.10

with s = 5, using Theorem 2.2.1 to provide the 3−GDD of type gu−5(5g + t)1, then

we get the result.

It remain all cases with u = 7, the case when u = 8, (g, t)≡(1, 5) (mod 6, 6) and

the case when u = 11, (g, t)≡(1, 2) (mod 6, 6) (in each case under the restriction that

t < g). For u = 7, all 3−GDDs with g ∈ {7, 9} and t < g can be obtained by Lemma

2.3.3. Now if we apply Corollary 2.3.8, then we settle the remaining cases with

t < g and g > 12. For u = 8, if we apply Lemma 2.3.9, then we get the required

3−GDD. For u = 11, see Theorem 3.2 in [18]. �

We complete the case g ≡ 1, 3 (mod 6). Next we will consider the case g ≡

5 (mod 6) and u ≡ 0 (mod 3). In this case, firstly we will give a construction for u = 3.

Lemma 2.3.12. Let g ≡ 5 (mod 6), t ≡ 0, 4 (mod 6), 2g − 4 6 t < 6g. Then there exists a

3−GDD of type g31t.

Proof: If g ∈ {5, 11} the required 3−GDD exists by Lemma 2.3.3. Otherwise let

x = (g − 2)/3 and form a 5−GDD of type x5 (i.e., a TD(5, x)). Choose one special

block b. In the first three groups of the 5−GDD, we give all points not in the special

block b weight 3; and in the last two groups, give all the points not in b weight 3
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or 9. We give the points of the special block in the first three groups weight 5 and

give the last two points weight 3, and weight 3 and 7. Using 3−GDDs of types 5332,

5134, 513391, 513292, 35, 3491, 3392, 715331, 917133 and 3471 (all from 2.3.3), we obtain a

3−GDD of type g3v1w1 in which v and w are groups whose sizes are 1 or 3 (mod 6).

Filling in the groups of size v and w with STSs constructs the required 3−GDD. �

Theorem 2.3.13. If gu1t meets the conditions of the Theorem 2.3.1, g ≡ 5 (mod 6) and

u ≡ 0 (mod 3) then there exists a 3−GDD of type gu1t.

Proof: If u = 3 and t 6 2g − 6 and we apply Lemma 2.3.6, then we get the desired

result. If u = 3 and 2g − 4 6 t < 3g we apply Lemma 2.3.12, then we obtain the

result. If u = 6 and t < 3g and we apply Lemma 2.3.10 with s = 0, then we get

the required 3−GDD. In all other cases if we form a 3−GDD of type(3g)u/31t by

Theorem 2.3.11 and fill each group with a 3−GDD of type g3, the we obtain the

required 3−GDD so we finish all the cases. �

Now we complete the case u ≡ 0 (mod 3) of the Theorem 2.3.1. The only

remaining case is g ≡ 5 (mod 6) and u ≡ 1 (mod 3) and we will consider this case.

First we will give a construction for u = 4.

Lemma 2.3.14. Let g ≡ 5 (mod 6), g > 23, t ≡ 3 (mod 6) and 3g− 6 6 t < 9u− 18. Then

there exists a 3−GDD of type g41t.

Proof: We write x = (g−2)/3, whence x is odd. A TD(7, x) exists for x except possibly

when x ∈ {1, 3, 5, 15, 21, 33, 35, 39, 45, 51}, see [21] (A TD(7, x) is a 7−GDD of type x7).

First, in one block we apply weights 5, 5, 5, 5, 3, 3 and 3, and give all remaining points

in the first four groups weight 3, and in the remaining last three groups weights

3 or 9. Using 3−GDDs of type 5433, 5136, 513591, 513492, 513393, 37, 3691, 3592 and

3493 (all from Lemma 2.3.3), we obtain the required 3−GDD for the specified values

of t except when g ∈ {47, 65, 101, 107, 119, 147, 155}. If g ∈ {47, 65, 101, 119, 147, 155}

we write x = (g − 8)/3 and proceed as before using weight 11 in place of weight 5,

then we get the required result. This leaves us only the case g = 107. For this case,

we employ a TD(7, 31). We give weights 11 and 3 on the special block, and choose
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one disjoint block with weights 9, 9, 9, 9, 3 or 9, 3 or 9, 3 or 9. In each case obtain

a 3−GDD with four groups of size g and three more groups each having 3 (mod 6)

elements. These three groups can be filled by a 3−GDD having all groups of size 1,

so we obtain the required 3−GDD of type 10741t. �

Theorem 2.3.15. If gu1t meets the conditions of the Theorem 2.3.1, g ≡ 5 (mod 6) and

u ≡ 4 (mod 6), then there exists a 3−GDD of type gu1t.

Proof: If t 6 (u−1)g, we apply Lemma 2.3.10 with s = 0, then we complete this case.

If t > ug + 7, we form a 3−GDD of type (ug + 3)11t−3 (from Theorem 2.2.1) fill the

group of size ug + 3 with a 3−GDD of type gu13, then we get the required 3−GDD.

When u = 4, if we apply Lemma 2.3.14, then we complete the determination when

g > 23 and if we apply Lemma 2.3.3 we complete the case g 6 17. Now for

u > 10, it remains to treat the cases when (u − 1)g < t 6 ug + 1. In these cases,

if we use a result in the following section Lemma 2.4.1 to form a 3−GDD of type

((u− 3)g)1(t− (u− 6)g)11(u−3)g and fill the first group with a 3−GDD of type gu−3 and

the second with a 3−GDD of type g31t−(u−3)g (from Theorem 2.3.13), then we get the

result. �

Theorem 2.3.16. If gu1t meets the conditions of the Theorem 2.3.1, g ≡ 5 (mod 6) and

u ≡ 1 (mod 6), then there exists a 3−GDD of type gu1t.

Proof: If t > ug, then we form a 3−GDD of type (ug)11t, and fill the group of size ug

with a 3−GDD of type gu, so we get the required 3−GDD. If (u− 3)g 6 t 6 ug, when

u = 7, we use Lemma 2.4.1 to form a 3−GDD of type (4g+6m+3)1(3g+6l+4)114g+6m+3,

where m and l satisfy t = 4g + 10 + 12m + 6l, 6m + 3 6 3g, 6l + 4 6 2g, and

6l + 4 6 g + 6m + 3. We fill its two large groups with 3−GDDs of type g416m+3 and

g316l+4 to obtain the desired 3−GDD. For u > 13, we use again Theorem 2.4.1 to

form a 3−GDD of type ((u − 4)g)1(t − (u − 8)g)11(u−4)g and fill the big groups with

3−GDDs of type gu−4 and g41t−(u−4)g.

When g < t 6 (u − 3)g, we apply Lemma 2.3.10 with s = 1. For t < g, if u > 13,

we apply Lemma 2.3.10 with s = 3; for u = 7, first we settle the case g ∈ {5, 11} and
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t < g by Lemma 2.3.10, and then apply Corollary 2.3.8 to get the required 3−GDD.

Therefore we complete all the cases. �

2.4 3-GDDs of type g1v11g

Lemma 2.4.1. A 3−GDD of type g1v11g exists if and only if

(g, v) ≡ (1, 1), (3, 1), (3, 3), (3, 5), (5, 1) (mod 6, 6) and v 6 g.

Proof: First, we will prove the necessary conditions. If we fix a point in the group

of size g and look at the blocks containing this fixed point then 2|(g + v). If we

fix a singleton group and look at the blocks containing the singleton group, then

2|(2g + v − 1) so 2|(v − 1). Also we have 2|(g − 1). Therefore, both g and v are odd

integers. Next, we will count the pairs in the blocks so 3 |
[(2g+v

2

)
−

(g
2

)
−

(v
2

)]
and we

get 6 | g(3g + 4v − 1). Both of them give us the necessary conditions.

Secondly, we will prove the sufficiency. Let g ≡ 3 (mod 6), X = {x1, x2, ..., xg} be

a set of g = 2s + 1 points and let P1,P2, ...,Ps be the parallel classes of a KTS on X.

Let Y = {y1, y2, ..., yg} be the set of g additional elements. For 1 6 i 6 (g − v)/2 we

replace each triple {xa, xb, xc} of Pi by the triples {ya, xb, xc} {xa, yb, xc} and {xa, xb, yc}.

The remaining pairs containing an element of X and an element of Y form a v-

regular bipartite graph. Form a 1−factorization F1,F2, ...,Fv of this graph then add

v new elements {z1, z2, ..., zv}, and for each edge {α, β} of Fi form the triple {zi, α, β}.

The result is a 3−GDD of type g1v11g.

When g ≡ 1, 5 (mod 6), we form instead a partial cyclic STS on X having (v−1)/6

full orbits of triples (using Theorem 2.3.11). Let d1, d2, ..., d(g−v)/2 be the remaining

differences on X. For each such difference d, let f satisfies 2 f ≡ d (mod g) and form

the set of g triples as follows {{xi, xi+d, xi+ f } : 0 6 i < g} subscripts modulo g. Now

on X ∪ Y what remains a v−regular bipartite graph, so we proceed as before. �
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Chapter 3

4-GDDS

3.1 4-GDDs of type gu (uniform 4-GDDs)

For uniform 4-GDDs, by Theorem 1.0.1 we can easily observe that

Theorem 3.1.1. The necessary conditions for the existence of 4−GDDs of type gu are:

(i) u ≥ 4

(ii) (u − 1)g ≡ 0 (mod 3)

(iii) u(u − 1)g2
≡ 0 (mod 6).

We summarize the necessary conditions in the Table 3.1.

Theorem 3.1.2 (Theorem 3.5, [1]). For every v > 6 there exists a TD(4, v).

Lemma 3.1.3. If there exists a 4-GDD of type gu and r is a positive integer, then there

exists a 4-GDD of type (gr)u.

Proof: Let (X,G,B) be a 4-GDD of type gu. To each point in X we will give the

weight r, then apply WFC. To each block b ∈ B, if we put a TD(4, r), then we get a

4−GDD of type (gr)u. (A TD(4, r) is equivalent to a 4−GDD of type r4 and it exists

Table 3.1: Necessary and sufficient conditions for the existence of uniform 4−GDDs

g necessary and sufficient u constructed by lemmas

1, 5 (mod 6) 1, 4 (mod 12) and u ≥ 4 3.1.3 and 3.1.4

2, 4 (mod 6) 1 (mod 3) and u ≥ 4 and (g,u) , (2, 4) 3.1.3, 3.1.9, and 3.1.11

3 (mod 6) 0, 1 (mod 4) and u ≥ 4 3.1.3 and 3.1.10

0 (mod 6) u ≥ 4 and (g,u) , (6, 4) 3.1.3 and 3.1.14
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by Theorem 3.1.2, except TD(4, 2) and TD(4,6)) �

Therefore to prove Theorem 3.1.1 we need only 4−GDDs of type 1u, 2u, 3u, 4u and

6u. Then by applying Lemma 3.1.3 we complete all the cases of the main theorem.

(We cannot build a 4−GDD of type 4u from a 4−GDD of type 2u since a TD(4, 2)

does not exists, so we need to give a different proof for it.) �

Lemma 3.1.4 (Lemma 5.11, [1]). If v ≡ 1 or 4 (mod 12), then a BIBD(4, v) exits.

A BIBD(4, v) is equivalent to a 4−GDD of type 1u. We complete the first case.

Lemma 3.1.5 (Lemma 3.24, [2]). For n > 0 there exists a TD(5, 4n).

Lemma 3.1.6. Let h 6 t, if there exists a TD(5, t) and a 4−GDD of type mu on v points

where v ∈ {3h+m, 3t+m}, then there exists a 4−GDD of type mw on 3(4t+ h)+m points.

Proof: By deleting t−h points from one group of a TD(5,t) (which exists by Lemma

3.1.5), we obtain a {4, 5}−GDD of type t4h1 and by [7] 4−GDDs of type 34 and 35

exist. In the {4, 5}−GDD to the points in each block, we apply the weight 3 and put

4−GDDs of type 34 or 35 on the blocks of the {4, 5}−GDD, so we obtain a 4−GDD of

type (3t)4(3h)1. Then we add m further points and apply Theorem 1.0.5 using the

given 4−GDDs on 3h+m and 3t+m points to get the desired 4-GDD of type mw on

3(4t + h) +m points. �

Lemma 3.1.7. Let v = mu. If there exists a TD(4, v) and a 4−GDD of type mu, then there

exists a 4−GDD of type m4u.

Proof: A TD(4, v) is equivalent to a 4−GDD of type v4. Using 4−GDDs of type mu

as fillers if we apply Theorem 1.0.4, then we will get the desired 4−GDD of type

m4u. �

Lemma 3.1.8 (Lemma 6.10, [1]). If q ≡ 1 (mod 6) is a prime power, then there exists a

4−GDD of type 2q.

Lemma 3.1.9. If u ≡ 1 (mod 3) and u , 4 then there exists a 4−GDD of type 2u.
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Proof: Let 2u = 6s + 2, s , 1. For s = 0 the result is trivial. Considering Lemma

3.1.6 with t ≡ 0 (mod 4), h ≡ 0 (mod 2), m = 2 and applying Lemma 3.1.5 it suffices

to prove our result for s ∈ S = {2, 3, ..., 15, 17, 21, 22, 23, 25, 31, 33, 41}. By Lemma

3.1.7 and Theorem 3.1.2, it is sufficient to prove the result for s . 1 (mod 4) and for

s = 5 and Lemma 3.1.8 proves for s ∈ S all the cases s ≡ 0 (mod 2). Consequently

it remains to prove the result for s ∈ {3, 5, 7, 11, 15, 23, 31} which is done by Lemma

6.11 in [2]. �

Lemma 3.1.10. If u ≡ 0 or 1 (mod 4), then there exists a 4−GDD of type 3u.

Proof: Follows from Lemmas 3.1.4 and 1.0.6. �

Since we do not have a TD(2, 4) we could not build 4−GDDs of type 4u from

4-GDDs of type 2u. Therefore, we need the following construction:

Lemma 3.1.11. If u ≡ 1 (mod 3), then there exists a 4−GDD of type 4u.

Proof: There exists a resolvable− BIBD(4, 4u)(see [3]). Consider one of the parallel

classes in this design as groups of a GDD. �

Lemma 3.1.12 (Lemma 5.18, [1]). For every integer v ≥ 5, there exists a BIBD(K, v),

where K = {5, 6, ..., 20, 22, 23, 24, 27, 28, 29, 32, 33, 34, 39}.

Lemma 3.1.13 (Lemma 6.14, [2]). If q is a power of an odd prime and q , 3, then there

exists a 4−GDD of type 6q.

Lemma 3.1.14. If u > 4, then there exists a 4−GDD of type 6u.

Proof: By Lemmas 2.1.6 and 3.1.12 it suffices to prove our result for

u ∈ {5, 6, ..., 20, 22, 23, 24, 27, 28, 29, 32, 33, 34, 39}. If we use Corollary 1.0.3 and

Lemma 3.1.9, and fill with 4−GDDs of type 34, 35, then we take care of the cases

u ≡ 1 (mod 3), and Lemma 3.1.13 takes care of the cases when u is a prime

power of an odd prime. Further by Lemma 3.1.7 and Theorem 3.1.2 we do not

have to prove the result for u ≡ 0 (mod 4), u ≥ 20. It leaves us with the cases

u ∈ {6, 8, 12, 14, 15, 18, 33, 39}, the proof of which is given by Lemma 6.15 in [2]. �
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Now we are ready to give the proof of 3.1.1:

Proof of Theorem 3.1.1:

By Lemmas 3.1.3, 3.1.4, 3.1.9, 3.1.10, 3.1.11 and 3.1.14, we cover the spectrum for

4−GDDs of type gu. �

3.2 4-GDDs of type gum1

Theorem 3.2.1. The necessary conditions for the existence of 4-GDDs of type gum1 are:

(i) g,m > 0,

(ii) u ≥ 4,

(iii) m ≤ g(u − 1)/2,

(iv) gu ≡ 0 (mod 3),

(v) g(u − 1) +m ≡ 0 (mod 3),

(vi)
(
gu +m

2

)
− u

(
g
2

)
−

(
m
2

)
≡ 0 (mod 6).

In [7], Kreher and Stinson have determined almost all group types for 4−GDDs

on at most 30 points, leaving possible exceptions 3562, 2354, and 2255. In addition,

following types have been constructed.

Lemma 3.2.2. There exist 4−GDDs of types 6531, 6591, 6631, 6691, 66121, 6731, 6791,

9461, 9561, 3692, 3792, 3862, 3894, 31592, 64122, 3861121, 3961121, 31161151, 6491121, and

65121151.

Theorem 3.2.3. There exists 4−GDDs of types 1um1 or 3um1 if and only if necessary

conditions are satisfied.

Proof: If we delete a point of the hole of (v,w; 4)-IPBD, we obtain a 4−GDD of type

3(v−w)/3(w − 1)1. If we just take the hole as a group, then we produce a 4−GDD of

type 1v−ww1.

Corollary 3.2.4. There exists a 4−GDD of type gu(g(u − 1)/2)1 if and only if necessary

conditions are satisfied, with exceptions of types 24, 64 and 2651, for which 4−GDDs do not

exist.
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Table 3.2: Necessary and sufficient conditions for the existence of 4−GDDs of
type gum1

Necessary Existence Criteria for a 4−GDD of Type gum1

g u m by Theorems

0 (mod 6) no cond. 0 (mod 3) 3.2.29 and 3.2.30 (partially completed)

0 (mod 12) 1 (mod 3) 3.2.30 (partially completed)

1 (mod 6) 3 (mod 12) 1 (mod 6) not completed

9 (mod 12) 4 (mod 6) not completed

2 (mod 6) 0 (mod 3) 2 (mod 3) 3.2.29 and 3.2.30 (partially completed)

0 (mod 4) 0 (mod 3) 3.2.30 (partially completed)

3 (mod 6) 1 (mod 4) 0 (mod 6) not completed

3 (mod 4) 3 (mod 6) not completed

4 (mod 6) 0 (mod 3) 1 (mod 3) 3.2.29 and 3.2.30 (partially completed)

0 (mod 12) 2 (mod 3) 3.2.30 (partially completed)

5 (mod 6) 3 (mod 12) 5 (mod 6) not completed

9 (mod 12) 2 (mod 6) not completed

Proof: There exists a resolvable 3−GDD of type gu if and only if the necessary

conditions g(u − 1) is even, gu ≡ 0 (mod 3), and u > 3 are satisfied, with the three

exceptions (g,u)=(2, 3), (6, 3), and (2, 6), see [7]. To obtain the required 4−GDD, we

add a new point to each parallel class of triples in the resolvable 3−GDD.

Theorem 3.2.5 (Theorem 1.5, [23]). The necessary and sufficient conditions for the

existence of 4-GDDs of type g4m1 are:

(i) Let g ≡ 0 (mod 6) and m > 0. There exists a 4−GDD of type g4m1 if and only if

m ≡ 0 (mod 3) and 0 < m 6 3g/2, except possibly when (g,m) = (18, 6).

(ii) Let g ≡ 3 (mod 6) and m > 0. There exists a 4−GDD of type g4m1 if and only if

m ≡ 0 (mod 3) and 0 < m 6 (3g − 3)/2, except possibly when (g,m) = (9, 3).
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Remark:

4−GDDs of types 9431 and 18461 have also been constructed later, see Remark 1.12

in [24].

3.2.1 4−GDDs of type gum1 with m as large or as small as possible

We will need double group divisible designs (DGDDs) for new constructions. From

definition, a modified group divisible design (K−MGDD) of type gu is a K−DGDD

of type (g, 1g)u. A k−DGDD of type (g, hv)k is an incomplete transversal design

ITD(k, g; hv) and is equivalent to a set of k − 2 holey MOLS of type hv. First, we will

make use of the following existence results of Theorem 1.7 in [24].

Theorem 3.2.6 (Theorem 1.7, [24]). (i) An ITD(4, g; hv) exists if and only if h > 1 and

v > 4, except when (h, v) = (1, 6).

(ii) A 4−MGDD of type gu exists if and only if (g − 1)(u − 1) ≡ 0 (mod 3) and g,u > 4,

except for (g,u) = (6, 4) and except possibly for (g,u) ∈ {(6, 16), (6, 22), (10, 15), (10, 18)}.

We will make use of the following construction in [24] for DGDDs.

Construction 3.2.7. Suppose that there is a K−GDD of type gu1
1 , g

u2
2 , ..., g

us
s and that for

each k ∈ K there exits a 4−DGDD of type (hv, hv)k. Then there exists a 4−DGDD of type

(hvg1, (hg1)v)u1 , (hvg2, (hg2)v)u2 , ..., (hvgs, (hgs)v)us .

Proof: If we apply weight hv to each point in the K−GDD, replace each block of

size k by a 4−DGDD of type (hv, hv)k, then we get the required 4−DGDD. �

By Theorem 3.2.6 there exist 4−DGDDs of type (g, 1v)u and (g, hv)4. Together

with the above construction we get the following:

Corollary 3.2.8. Suppose that there is a 4−GDD of type gu1
1 , g

u2
2 , ..., g

us
s and that h > 1,

v > 4 and (h, v) , (1, 6). Then there exists a 4−DGDD of type

(hvg1, (hg1)v)u1 , (hvg2, (hg2)v)u2 , ..., (hvgs, (hgs)v)us .

One way of constructing our 4−GDDs will be to “fill the groups” in DGDDs.

Therefore we will get a new way of constructing GDDs. First we get DGDDs from
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GDDs, then from DGDDs we will get GDDs. For the second part, we will use the

Construction 1.10 in [24].

Construction 3.2.9. Suppose that there is a 4−DGDD of type (g1, hv
1)u1 , (g2, hv

2)u2 , ...,

(gs, hv
s )us and for each i = 1, 2, ..., s there is a 4−GDD of type hv

i a1 where a is a fixed

nonnegative integer. Then there is a 4−GDD of type hva1 where h =
s∑

i=1

uihi.

Proof: We adjoin a ideal points to the DGDD, and for each i = 1, 2, ..., s, then we

construct on each group of size gi together with a ideal points a 4−GDD of type

hv
i a1, aligning the groups on the hole of the DGDD and a ideal points. A 4−GDD of

type hva1 results. Note that the groups in this GDD correspond to the holes of the

original DGDD, together with the a ideal points. �

Theorem 3.2.10. For each g ≡ 3 (mod 6) and u ≡ 0 (mod 4) there exists a 4−GDD of type

gu((g(u − 1) − 3)/2)1.

Proof: From Theorem 3.2.3 and Theorem 3.2.5, we may assume that g > 9 and

u > 8. We will first suppose that u > 12. Let u = 4t and t > 3. From Theorem 3.2.4,

there is a 4−GDD of type (4g)t(2g(t−1))1. We adjoin (3g−3)/2 ideal points and fill in

4−GDDs of type g4((3g−3)/2)1 to yield a 4−GDD of type g4t(2g(t−1)+ (3g−3)/2)1
≡

gu((g(u − 1) − 3)/2)1. We have completed the case u > 12. There remains the case

u = 8. For this case see Theorem 1.13 in [24]. �

Theorem 3.2.11. For each g ≡ 1 or 5 (mod 6) and each u ≡ 0 (mod 12) there exists a

4−GDD of type gu((g(u − 1) − 3)/2)1.

Proof: Let u = 12t. By Theorem 3.2.10 there is a 4−GDD of type (3g)4t((3g(4t − 1) −

3)/2)1. We adjoin g ideal points and fill in 4−GDDs of type g4 to obtain a 4−GDD

of type g12t((3g(4t − 1) − 3)/2 + g)1
≡ gu((g(u − 1) − 3)/2)1. �

Now we have completed all the maximum cases. As the next case we will do

the small cases of m. In this part we work toward analogues of Corollary 3.2.4 and

Theorems 3.2.10, 3.2.11 where m is as small as possible. The theoretical minimums
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Table 3.3: The maximum and minimum values of m in a 4−GDD of type gum1

Necessary existence criteria for a 4−GDD of type gum1

g u m mmin mmax

a. (g,u) satisfy hypothesis of Corollary 3.2.4

≡ 0 (mod 6) no condition ≡ 0 (mod 3) 0 g(u − 1)/2

≡ 3 (mod 6) ≡ 1 (mod 4) ≡ 0 (mod 6) 0 g(u − 1)/2

≡ 3 (mod 4) ≡ 3 (mod 6) 3 g(u − 1)/2

≡ 2 (mod 6) ≡ 0 (mod 3) ≡ 2 (mod 3) 2 g(u − 1)/2

≡ 4 (mod 6) ≡ 0 (mod 3) ≡ 1 (mod 3) 1 g(u − 1)/2

≡ 1 (mod 6) ≡ 3 (mod 12) ≡ 1 (mod 6) 1 g(u − 1)/2

≡ 9 (mod 12) ≡ 4 (mod 6) 4 g(u − 1)/2

≡ 5 (mod 6) ≡ 3 (mod 12) ≡ 5 (mod 6) 5 g(u − 1)/2

≡ 9 (mod 12) ≡ 2 (mod 6) 2 g(u − 1)/2

b. (g,u) do not satisfy hypothesis of Corollary 3.2.4

≡ 3 (mod 6) ≡ 0 (mod 4) ≡ 0 (mod 3) 0 (g(u − 1) − 3)/2

≡ 1 (mod 6) ≡ 0 (mod 12) ≡ 1 (mod 3) 1 (g(u − 1) − 3)/2

≡ 5 (mod 6) ≡ 0 (mod 12) ≡ 2 (mod 3) 2 (g(u − 1) − 3)/2
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are given in Table 3.3. Now when g ≡ 0 (mod 6), or g ≡ 3 (mod 6) and u ≡ 0 or

1 (mod 4), Table 3.3 gives mmin = 0; that is, these GDDs are uniform and so their

existence is determined in the previous section.

Theorem 3.2.12. Let g ≡ 3 (mod 6), g > 9 and u ≡ 3 (mod 4), u > 7. Then there exists a

4−GDD of type gu31.

Proof: Suppose first that g > 15. Write g = 6k + 3, k > 2. If k is even, then apply

Corollary 3.2.8 to a 4−GDD of type 32k+1, taking h = 1 and v = u, to obtain a 4−DGDD

of type (3u, 3u)2k+1. Now, apply Construction 3.2.9 to this DGDD, taking a = 3 to

yield a 4−GDD of type (6k + 3)u31
≡ gu31. If k is odd, then apply Construction 3.2.7

to a {4, 7}−GDD of type 32k+1 (from Theorem 3.2.3 a 4−GDD of type 16k−371 exists;

delete a point not in the group of size 7), by taking h = 1 and v = u. We require

a 4−DGDD of type (u, 1u)4 and a 4−DGDD of type (u, 1u)7 (both exist by Theorem

3.2.6). The result is a 4−DGDD of type (3u, 3u)2k+1. Now proceed as in the case k is

even. There remains the case g = 9. For this case refer to Theorem 2.2 in [24]. �

Theorem 3.2.13. Let g ≡ 2 (mod 6) and t > 2. Then there exists a 4−GDD of type g3t21.

Proof: The case g = 2 is settled in the previous section and for g = 8, we apply

Construction 3.2.9 to an ITD(4, 6t, 23t) (≡ 4−DGDD of type (6, 23t)4) which exists by

Theorem 3.2.6, by taking a = 2. We may henceforth assume that g > 14.

We write g = 6k + 2, k > 2. If t > 3, then we apply Corollary 3.2.8 to a 4−GDD

of type 23k+1, by taking h = 1 and v = 3t, to yield a 4−DGDD of type (6t, 23t)3k+1.

Now apply Construction 3.2.9 to this DGDD, by taking a = 2, to obtain a 4−GDD

of type (6k + 2)3t21
≡ g3t21. There remains t = 2 to deal with. For this case, we refer

to Theorem 2.3 in [24]. �

We now consider 4−GDDs of type g3t11 where g ≡ 4 (mod 6).

Theorem 3.2.14 (Theorem 1.15, [24]). (i) There exists a 4−GDD of type 2u51 for every

u ≡ 0 (mod 3) with u > 9.

(ii) There exists a resolvable 4−GDD of type 3u if and only if u ≡ 0 (mod 4) and u > 8,

except possibly when u ∈ {88, 124}.
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Lemma 3.2.15. There exits a 4−GDD of type 43t11 for all t > 2.

Proof: For t , 22 or 31, there is a resolvable 4−GDD of type 34t (see Theorem 3.2.14);

we adjoin one point to complete the groups, and take this point together one of

the parallel classes of quadruples in the resolvable GDD as the the groups of the

resulting GDD. For t = 22, we take a 4−GDD of type 15461 (Theorem 3.2.5); we

apply weight 4 to each point, adjoin one ideal point and fill in 4−GDDs of types

41511 and 4611. Similarly for t = 31, we take a 4−GDD of type 21491 (Theorem 3.2.5);

apply weight 4 to each point, adjoin one ideal point, and fill in 4−GDDs of types

42111 and 4911. �

Theorem 3.2.16. Let g ≡ 4 (mod 12) and t > 2. Then there exists a 4−GDD of type g3t11.

Proof: For g = 4 see Lemma 3.2.15. For g = 16, we apply Construction 3.2.9 to an

ITD(4, 12t; 43t) (≡ 4−DGDD of type (12t, 43t)4), which exists by Theorem 3.2.6, by

taking a = 1 and filling in 4−GDDs of type 43t11, we get a 4−GDD of type 163t11.

We may henceforth assume that g > 28.

We write g = 12k + 4, k > 2. We apply Corollary 3.2.8 to a 4−GDD of type 23k+1,

by taking h = 2 and v = 3t, we get a 4−DGDD of type (12t, 43t)3k+1. Now we apply

Construction 3.2.9 to this DGDD, by taking a = 1 and fill in 4−GDDs of type 43t11,

we obtain a 4−GDD of type (12k + 4)3t11
≡ g3t11, as desired. �

Before proceeding to the case g ≡ 10 (mod 12), we will require the following

preliminary result.

Lemma 3.2.17. Let u > 4, u < {10, 12, 12, 13, 14, 15, 17, 18, 19, 23}. Then there exists a

4−GDD of type 6u91.

Proof: For u = 4, we refer to Corollary 3.2.4; for u = 5, 6 or 7, see Lemma 3.2.2, and

for u = 8,9 or 11, see Appendix in [24]. For u = 16, we adjoin nine ideal points to

a 4−GDD of type 244 and fill in 4−GDDs of type 6491 to get the desired GDD. For

u = 20, 21 or 22, we take a 4−GDD of type 244241, 244301 or 244361 (from Theorem

3.2.5); then we adjoin nine ideal points and fill in 4−GDDs of types 6491, 6591, 6691
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or 6791. Finally, for u = 4k, u = 4k + 1, u = 4k + 2, u = 4k + 3 where k > 7, we

take 4−GDD of type (6k − 4)4(6(u− 4k + 4)+ 9)1 (from Theorem 3.2.5) and fill in the

groups with 4−GDDs of types 6k−1 and 6u−4k+491. �

Theorem 3.2.18 (Lemma 2.7, [24]). (i) There exists a 4−GDD of type 103t11 and for all

t > 2, except possibly for t = 7.

(ii) There exists a 4−GDD of type 223t11 for all t > 2, except possibly for t = 7.

Theorem 3.2.19. Let g ≡ 10 (mod 12) and t > 2, t , 7. Then there exists a 4−GDD of

type g3t11.

Proof: For g = 10 or 22, see Lemma 3.2.18. For g = 34 and t > 3, take a 4−GDD

of type 46101 (Corollary 3.2.4) and apply Corollary 3.2.8 with h = 1 and v = 3t to

obtain a 4−DGDD of type (12, 43t)6 (30t, 103t)1. Now we apply Construction 3.2.9

to this DGDD, by taking a = 1 and filling in with 4−GDDs of type 43t11 (Lemma

3.2.15) and 103t11, we obtain a 4−GDD of type 343t11. For a 4−GDD of type 34611,

we refer to Theorem 2.8 of [24].

Now let g > 46, that is g = 12k + 10, k > 3. We take a 4−GDD of type 23k51

(see Theorem 3.2.14) and apply Corollary 3.2.8 with h = 2 and v = 3t to obtain a

4−DGDD of type (12t, 43t)3k(30t, 103t)1. We apply Construction 3.2.9 to this DGDD,

by taking a = 1 and filling in 4−GDDs of type 43t11 and 103t11, as above, we yield a

4−GDD of type (12k + 10)3t11
≡ g3t11, as desired. �

By combining Theorems 3.2.16 and 3.2.19 we get the following result.

Theorem 3.2.20. Let g ≡ 4 (mod 6) and t > 2. Then there exists a 4−GDD of type g3t11

except possibly when g ≡ 10 (mod 12) and t = 7.

Remark: By considering the proof of Theorem 3.2.19, we see that the possible

exceptions in Theorem 3.2.20 can be eliminated by constructing 4−GDDs of types

102111 and 222111. Now by Theorem 3.2.6, there exist 4−DGDDs of types (21, 121)10

and (21, 121)22. By adjoining four ideal points and filling in (25, 4)−BIBDs (in which

the ideal points form a block in one BIBD and a hole in each remaining BIBD) we
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obtain 4−GDDs of types 102141 and 222141. Since there is a 4−GDD of type 42141

(≡ 4−GDD of type 422), we obtain (via the proof of the Theorem 3.2.19) a 4−GDD

of type g2141 for every g ≡ 10 (mod 12).

Finally, we consider g ≡ 1 or 5 (mod 6).

Theorem 3.2.21. Let g ≡ 1 (mod 6) and g > 7.

(i) For every u ≡ 0, 3 (mod 12) with u > 12, there exists a 4−GDD of type gu11.

(ii) For every u ≡ 9 (mod 12) with u > 9, there exists a 4−GDD of type gu41.

Proof: From Theorem 3.2.6, there exist 4−DGDDs of types (u, 1u)g for all indicated

parameters g,u. For u ≡ 0 or 3 (mod 12), we adjoin one ideal point and fill in

(u + 1, 4)−BIBDs, we obtain a 4−GDD of type gu11; for u ≡ 9 (mod 12) we adjoin

four ideal points and fill in (u + 4, 4)−BIBDs ( ≡ 4−GDDs of type 1u41) to obtain a

4−GDD of type gu41, as desired. �

Remark: The case g = 1 and u ≡ 0, 3, or 9 (mod 12), u > 3, is covered by Theorem

3.2.3.

Lemma 3.2.22. Let g ≡ 5 (mod 6) and u ≡ 0 (mod 12). Then there exists a 4−GDD of

type gu21, except possibly when (g,u) = (11, 12) or (17, 12).

Proof: If u > 24, then we write u = 12t, t > 2. From Theorem 3.2.13, there is a

4−GDD of type (4g)3t21. We construct a 4−GDD of type g4 on each group of size 4g

to obtain a 4−GDD of type g12t21
≡ gu21.

There remains the case u = 12 to deal with. For construction of a 4−GDD of type

51221 refer to Lemma 2.12 in [24]. Now let g > 23 and write g = 6k + 5, k > 3. We

apply Corollary 3.2.8 to a 4−GDD of type 23k51 (which exists by Theorem 3.2.14),

by taking h = 1 and v = 12, we obtain a 4−DGDD of type (24, 212)3k(60, 512)1. Now

we apply Construction 3.2.9 with a = 2, by filling in 4−GDDs of types 213 and 51221,

we obtain a 4−GDD of type (6k + 5)u51
≡ g1221, as desired. �

Lemma 3.2.23. Let g ≡ 5 (mod 6), g , 11 or 17, and u ≡ 3 (mod 12), u > 15. Then there

exists a 4−GDD of type gu51.
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Proof: For g = 5, the GDD becomes a uniform 4−GDD so the result follows from

previous section. For g > 23 we write g = 6k+5, k > 3, and proceed as with the case

u = 12 in Lemma 3.2.22, replacing “v = 12” by “v = u′′ and setting a = 5, noting

that there exist 4−GDDs of types 2u51 (see Theorem 3.2.14 (i)) and 5u51. The result

is a 4−GDD of type (6k + 5)u51
≡ gu51. �

Before proceeding to the case u ≡ 9 (mod 12), we will require the following

result.

Lemma 3.2.24 (Lemma 2.14, [24]). There exists a 4−GDD of type 5u21 for every u ≡

9 (mod 12), except possibly for u = 33.

Lemma 3.2.25. Let g ≡ 5 (mod 6), g , 11 or 17, and u ≡ 9 (mod 12). Then there exists a

4−GDD of type gu21, except possibly for u = 33.

Proof: For g = 5, the result follows from Lemma 3.2.24. For g > 23, we write

g = 6k + 5, k > 3, and proceed exactly as the case u = 12 in Lemma 3.2.22. We

replace “v = 12” by “v = u” and set a = 2. We fill in groups with 4−GDDs of type

2u+1 and 5u21 (Lemma 3.2.24). Thus, we obtain a 4−GDD of type (6k + 5)u21
≡ gu21,

as desired. �

Remark: The possible exception u = 33 in Lemma 3.2.25 can be eliminated by

constructing a 4−GDD of type 53321. For this construction see Remark 2.16 in [24].

If we combine Lemmas 3.2.22, 3.2.23, and 3.2.25, then we get the following result

for g ≡ 5 (mod 6).

Theorem 3.2.26. Let g ≡ 5 (mod 6), g > 5.

(i) For every u ≡ 0 or 9 (mod 12), there exists a 4−GDD of type gu21 except possibly when

g = 11 or 17 and u ≡ 9 (mod 12), or when (g,u) ∈ {(11, 12), (17, 12)}, or when u = 33.

(ii) For every u ≡ 3 (mod 12), u > 15, there exists a 4−GDD of type gu51 except possibly

when g = 11 or 17.

The following theorem also completes some holes.
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Theorem 3.2.27 (Theorem 2.17, [33]). (i) Let g ≡ 4 (mod 6) and u ≡ 0 (mod 3), u > 6.

Then there exist 4−GDDs of type gu11.

(ii) Let g ≡ 5 (mod 6) and u ≡ 0 (mod 3), u > 9 and u . 6 mod (mod 12). If u ≡ 0 (mod 12)

then there exists 4−GDDs of type gu21, except possibly for type g1221 when g ∈ {11, 17}; if

u ≡ 3 (mod 12) then there exists 4−GDDs of type gu51, except possibly for type 112751; if

u ≡ 9 (mod 12) then there exists 4−GDDs of type gu21, except possibly for type 112121.

The main result of this section is the combination of 3.2.4, 3.2.10, 3.2.11, 3.2.12,

3.2.13, 3.2.20, 3.2.21, 3.2.26, the remarks following to Theorem 3.2.20 and Lemma

3.2.25, and Theorem 3.2.27. Therefore, we get the following theorem:

Theorem 3.2.28. (i) Let g ≡ 0 (mod 6) and u > 4. Then there exist 4−GDDs of types gu

and gu(g(u − 1)/2)1, except that there is no 4−GDD of type 64. There is a 4−GDD of type

6431.

(ii) Let g ≡ 3 (mod 6) and u > 4, u . 2 (mod 4). If u ≡ 0 (mod 4) then there exist

4−GDDs of types gu and gu((g(u− 1)− 3)/2)1; if u ≡ 1 (mod 4) then there exist 4−GDDs

of types gu and gu(g(u − 1)/2)1; if u ≡ 3 (mod 4) then there exist 4−GDDs of types gu31

and gu(g(u − 1)/2)1.

(iii) Let g ≡ 1 (mod 6) and u ≡ 0 (mod 3), u > 9 and u . 6 (mod 12) . If u ≡ 0 (mod 12)

then there exist 4−GDDs of types gu11 and gu((g(u − 1) − 3)/2)1; if u ≡ 3 (mod 12) then

there exist 4−GDDs of types gu11 and gu(g(u − 1)/2)1; if u ≡ 9 (mod 12) then there exist

4−GDDs of types gu41 and gu(g(u − 1)/2)1.

(iv) Let g ≡ 4 (mod 6) and u ≡ 0 (mod 3), u > 6. Then there exist 4−GDDs of types gu11

and gu(g(u − 1)/2)1.

(v) Let g ≡ 2 (mod 6) and u ≡ 0 (mod 3), u > 6. Then there exist 4−GDDs of types gu21

and gu(g(u − 1)/2)1, except that there is no 4−GDD of type 2651.

(vi) Let g ≡ 5 (mod 6), u ≡ 0 (mod 3), u > 9 and u . 6 (mod 12). If u ≡ 0 (mod 12)

then there exist 4−GDDs of types gu21 and gu((g(u − 1) − 3)/2)1, except possibly for type

g1221 when g ∈ {11, 17}; if u ≡ 3 (mod 12) then there exist 4−GDDs of types gu51 and

gu(g(u−1)/2)1, except possibly for type 112751 ; if u ≡ 9 (mod 12) then there exist 4−GDDs

of types gu21 and gu(g(u − 1)/2)1, except possibly for type 112121.



Chapter 3: 4-GDDs 46

Therefore, we completed all the cases of 4−GDDs of type gum1 where m is as

large or as small as possible.

3.2.2 Establishing a part of the spectrum of 4−GDDs of type gum1

In this subsection we will cover a part of spectrum of 4−GDDs. We will determine

for each even g, all values of m, for which a 4−GDD of type gum1 exists, for every

u ≡ 0 (mod 4). Similarly, we will determine for each odd g , 11 or 17, all values

of m for which a 4−GDD of type gum1 exists, for every u ≡ 0 (mod 3). Finally, we

will establish, up to a finite number of values of u, the spectrum for 4−GDD of type

gum1 where gu is even and g < {11, 17} (for the conditions see Table 3.2). The main

results will be the following two theorems in [25].

Theorem 3.2.29. (i) Let g ≡ 0 (mod 6) and u ≡ 0 (mod 4), where u = 4 or u > 12. Then

there exists a 4−GDD of type gum1 for every m ≡ 0 (mod 3) with 0 < m 6 g(u − 1)/2,

except possibly when u = 12 and either g = 6 or 0 < m < g.

(ii) Let g ≡ 2 or 4 (mod 6) and u ≡ 0 (mod 12). Then there exists a 4−GDD of type gum1

for every m ≡ g (mod 3) with 0 < m 6 g(u − 1)/2, except possibly u = 12 and 0 < m < g.

Theorem 3.2.30. (i) Let g ≡ 0 (mod 6) and u ∈ {n : n > 79}\{93, 94, 95, 97, 98, 117, 118}.

Then there exists a 4−GDD of type gum1 for every m ≡ 0 (mod 3) with 0 6 m 6 g(u−1)/2.

(ii) Let g ≡ 3 (mod 6) and u ≡ 0 (mod 4), u , 8. Then there exists a 4−GDD of type gum1

for every m ≡ 0 (mod 3) with 0 6 m 6 (g(u − 1) − 3)/2, except possibly when u = 12 and

0 < m < g.

(iii) Let g ≡ 1 or 5 (mod 6), g < {11, 17}, u ≡ 0 (mod 12), u , 24. Then there exits a

4−GDD of type gum1 for every m ≡ g (mod 3) with 0 6 m 6 (g(u − 1) − 3)/2, except

possibly when u ∈ {12, 72, 120, 168} and 0 < m < g.

(iv) Let g ≡ 2 or 4 (mod 6) and u ∈ {n : n ≡ 0 (mod 3), n > 192}\{231, 234, 237}. Then

there exits a 4−GDD of type gum1 for every m ≡ g (mod 3) with 0 6 m 6 g(u−1)/2, except

possibly when g = 2 and u ∈ {291, 294, 297, 303, 306, 309, 315, 318, 321, 327, 330, 333}.

To obtain these results we will use the 4−GDDs of type gum1, where m is as
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small as or as large as possible, that we obtained in the previous section. Secondly,

we will give another construction to obtain GDDs but this time we will use IGDDs.

The following construction is modified version of WFC to use on IGDDs.

Construction 3.2.31. Let (X,Y,G,B) be a K−IGDD of type (g1, h1)u1 , (g2, h2)u2 , ..., (gs, hs)us ,

and let w : X → Z and d : X → Z be functions with w(x) > d(x) > 0 for all x ∈ X.

Suppose that for each block b ∈ B there is a 4−IGDD of type {(w(x), d(x)) : x ∈ b} and there

is a 4−IGDD of type {(
∑

x∈Gi∩Y w(x),
∑

x∈Gi∩Y d(x)) : Gi ∈ G}. Then there is a 4−IGDD of

type {(
∑

x∈Gi
w(x),

∑
x∈Gi

d(x)) : Gi ∈ G}.

Remark: By setting Y = ∅ and d(x) = 0 for all x ∈ X, we obtain the WFC for GDDs.

As a first step, we will establish, up to finite number of values of u, the spectrum

for 4−GDDs of type gum1 where gu is even, g < {11, 17}. Now from the table

of necessary conditions, we see that where g is odd, either g ≡ 3 (mod 6) and

u ≡ 0 (mod 4), with 0 6 m 6 (g(u − 1) − 3)/2 and m ≡ 0 (mod 3); or g ≡ 1 or 5 (mod 6)

and u ≡ 0 (mod 12), with 0 6 m 6 (g(u − 1) − 3)/2 and m ≡ g (mod 3).

Now we will deal with Theorem 3.2.29. We will use Theorem 3.2.5 and 3.2.28

to establish one quarter of the spectrum for 4−GDDs of type gum1. We begin with

g ≡ 0 (mod 3).

Theorem 3.2.32. Let g ≡ 0 (mod 3) and u ≡ 0 (mod 4), u > 16, where u . 8 (mod 16)

when g ≡ 3 (mod 6). Then there exists a 4−GDD of type gum1 for every m ≡ 0 (mod 3)

with 0 6 m 6 g(u − 1)/2.

Proof: For g ≡ 0 (mod 6), we write u = 4t, t > 4, and write m = x + y where x = 0

or g(t − 1)/2 and 0 6 y 6 3gt/2, y ≡ 0 (mod 3). (When g = 6 and t = 4, we write

x = 3 or 9.) Now a 4−GDD of type 616 exists by previous section; otherwise we

take a 4−GDD of type (gt)4y1 (Theorem 3.2.5) and adjoin x ideal points, then finally

fill in 4−GDDs of type gtx1 (see Theorem 3.2.28 (i)). The result is a 4−GDD of type

g4t(x+ y)1
≡ gum1. For g ≡ 3 (mod 6), we proceed similarly (see Theorem 2.1 in [25]).

�
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Theorem 3.2.33. (i) Let g ≡ 2 (mod 6) and u ≡ 0 (mod 12), u > 24. Then there exists a

4−GDD of type gum1 for every m ≡ 2 (mod 3) with 2 6 m 6 g(u − 1)/2.

(ii) Let g ≡ 4 (mod 3) and u ≡ 0 (mod 12), u > 24. Then there exists a 4−GDD of type

gum1 for every m ≡ 1 (mod 3) with 1 6 m 6 g(u − 1)/2.

Proof: (i) We write u = 12t, t > 2 and write m = x + y where x = 2 or g(3t − 1)/2

and 0 6 y 6 9gt/2, y ≡ 0 (mod 3). (When g = t = 2, we take x = 2.) Now a 4−GDD

of type 224231 exits by Theorem 3.2.28 (v); otherwise we take a 4−GDD of type

4−GDD of type (3gt)4y1 (Theorem 3.2.5) and adjoin x ideal points, then finally fill

in 4−GDDs of type g3tx1 (see Theorem 3.2.28 (v)). The result is a 4−GDD of type

g12t(x + y)1
≡ gum1.

(ii) This case is similar to the previous case, for the proof, we refer to Theorem 2.2

(ii) in [25]. �

Now we move on the case g ≡ 1 or 5 (mod 6).

Theorem 3.2.34. Let g ≡ 1 (mod 6) and u ≡ 0 (mod 12), u > 36, where u . 24 (mod 48)

when g ≡ 3 (mod 6). Then there exists a 4−GDD of type gum1 for every m ≡ 1 (mod 3)

with 1 6 m 6 (g(u − 1) − 3)/2.

Proof: We write u = 12t, t > 3 and t . 2 (mod 4), and m = x + y where

(i) x = 1 or (g(3t − 1) − 3)/2 and 0 6 y 6 9gt/2, y ≡ 0 (mod 3), if t ≡ 0 (mod 4);

(ii) x = 1 or g(3t − 1)/2 and 0 6 y 6 (9gt − 3)/2, y ≡ 0 (mod 3), if t ≡ 1 (mod 4);

(iii) x = 4 or g(3t − 1)/2 and 0 6 y 6 (9gt − 3)/2, y ≡ 0 (mod 3), if t ≡ 3 (mod 4).

Now a 4−GDD of type g12t11 exists by Theorem 3.2.28 (iii); otherwise we take a

4−GDD of type (3gt)4y1 (Theorem 3.2.5) and adjoin x ideal points, then finally fill

in with 4−GDDs of type g3tx1 (see Theorem 3.2.28 (iii)). The result is a 4−GDD of

type g12t(x + y)1
≡ gum1, as we desire. �

Theorem 3.2.35. Let g ≡ 5 (mod 6), g , 11 or 17, and u ≡ 0 (mod 12), u > 36, where

u . 24 (mod 48). Then there exists a 4−GDD of type gum1 for every m ≡ 2 (mod 3) with

2 6 m 6 (g(u − 1) − 3)/2.
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Proof: We write u = 12t, t > 3 and t . 2 (mod 4), and m = x + y where

(i) x = 2 or (g(3t − 1) − 3)/2 and 0 6 y 6 9gt/2, y ≡ 0 (mod 3), if t ≡ 0 (mod 4);

(ii) x = 5 or g(3t − 1)/2 and 0 6 y 6 (9gt − 3)/2, y ≡ 0 (mod 3), if t ≡ 1 (mod 4);

(iii) x = 4 or g(3t − 1)/2 and 0 6 y 6 (9gt − 3)/2, y ≡ 0 (mod 3), if t ≡ 3 (mod 4).

Now a 4−GDD of type g12t21 exists by Theorem 3.2.28 (vi). Otherwise, if t , 11

we take a 4−GDD of type (3gt)4y1 (Theorem 3.2.5) and adjoin x ideal points, then

finally fill in with 4−GDDs of type g3tx1 (see Theorem 3.2.28 (vi)). The result is a

4−GDD of type g12t(x + y)1
≡ gum1, as we desire.

Now let t = 11. By Theorem 3.2.28 (vi), there is a 4−GDD of type g3381. Thus,

for m > 8 we write m = x + y, as above, except that x = 8 or g(3t − 1)/2. For m = 5,

we take a 4−GDD of type (12g)11 (uniform 4−GDD, we did in previous section) and

adjoin m ideal points, fill in 4−GDDs of type g12m1 (see Lemma 3.2.22, note that as

there exists 4−GDDs of types 212 and 516
≡ 51551, the construction for u = 12 works

for a = 5). �

Theorem 3.2.36. Let g > 0, g , 6. Then there exists a 4−GDD of type g12m1 for every

g 6 m 6 11g/2 with m ≡ g (mod 3).

Proof: We assume first that g , 2. We proceed as follows, we set m = x + y

where x = g and 0 6 9g/2, y ≡ 0 (mod 3). We take, a 4−GDD of type (3g)4y1

(by Theorem 3.2.5), adjoin g ideal points and fill in 4−GDDS of type g4 to obtain a

4−GDD of type g12m1, as we desire. For the case g = 2, refer to Theorem 2.5 in [25].�

If we combine Theorems 3.2.5, 3.2.32, 3.2.33 and 3.2.36, we obtain Theorem 3.2.29.

Therefore, we evaluate our first result.

Next we will obtain Theorem 3.2.30. The following Theorem in [25] stronger

than combinations of Theorems 3.2.32, 3.2.34 and 3.2.35.

Theorem 3.2.37 (Theorem 3.6, [25]). (i) Let g ≡ 3 (mod 6) and u ≡ 0 (mod 4), u > 16.

Then there exists a 4−GDD of type gum1 for every m ≡ 0 (mod 3) with

0 6 m 6 (g(u − 1) − 3)/2.
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(ii) Let g ≡ 1 or 5 (mod 6), g , 11 or 17, and u ≡ 0 (mod 12), u > 24. Then there

exists a 4−GDD of type gum1 for every m ≡ g (mod 3) with 0 6 m 6 (g(u − 1) − 3)/2,

except possibly when u ∈ {24, 72, 120, 168} and 0 < m < g or when u = 24 and either

g ∈ {35, 55, 77, 85, 95, 119, 175, 295, 335} or g > 11 and 10g < m < (23g − 21)/2.

The following existence result is then an immediate consequence of Theorems

3.2.5, 3.2.36, and 3.2.37.

Theorem 3.2.38. (i) Let g ≡ 3 (mod 6) and u ≡ 0 (mod 4), u < {8}. Then there exists

a 4−GDD of type gum1 for every m ≡ 0 (mod 3) with 0 6 m 6 (g(u − 1) − 3)/2, except

possibly when u = 12 and 0 < m < g.

(ii) Let g ≡ 1 or 5 (mod 6), g < {11, 17}, and u ≡ 0 (mod 12), u < {24}. Then there exists

a 4−GDD of type gum1 for every m ≡ g (mod 3) with 0 6 m 6 (g(u − 1) − 3)/2, except

possibly when u ∈ {12, 72, 120, 168} and 0 < m < g.

Now, we will prove Theorem 3.2.30. We henceforth assume that g is even.

We will use the full force of Construction 3.2.31 to provide us 4−IGDDs with the

following rich source of 4−IGDDs.

Theorem 3.2.39. Let (X,G,B) be a {5, 6}−GDD with G = {G1,G2, ...,Gs}. Then for every

sequence n1,n2, ...,ns of integers with 0 6 ni 6 |Gi|, i = 1, 2, ..., s, there is a 4−IGDD of

type {(6|Gi| + 3ni, 3ni) : i = 1, 2, ..., s}.

Proof: From [26] and [27] the result is true for GDDs of types 15 and 16; that is

the authors construct 4−IGDDs of type (9, 3)k165−k1 and (9, 3)k266−k2 for all 0 6 k1 6 5

and 0 6 k2 6 6. Now we apply Construction 3.2.31 to (X,G,B) (Y = ∅ here),

as follows. We write X = X′ ∪ X′′, where for each i = 1, 2, ..., s, |X′ ∩ Gi| = ni

(and so |X′′ ∩ Gi| = Gi − ni). For x ∈ X′, we take w(x) = 9 and d(x) = 3, while

for x ∈ X′′, we take w(x) = 6 and d(x) = 0. For each block b ∈ B the requisite

4−IGDD exists by the foregoing, since |b| = 5 or 6. The result is a 4−IGDD of type

{(9ni + (6|Gi| − ni), 3ni) : i = 1, 2, ..., s} ≡ {(6|Gi| + 3ni, 3ni) : i = 1, 2, ..., s} as desired. �

We will be applying Theorem 3.2.39 predominantly to {5, 6}−GDDs obtained

from transversal designs TD(6,n). It is well-known that a TD(6,n) exists if and only
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if n > 5, except for n = 6 and possibly for n ∈ {10, 14, 18, 22}. Now again from Table

3.2 we see that where g is even we must have either g ≡ 0 (mod 6) and u > 4, with

0 6 m 6 g(u − 1)/2 and m ≡ 0 (mod 3), (g,u,m) , (6, 4, 0) or g ≡ 2 or 4 (mod 6) and

u ≡ 0 (mod 3), u > 6, with 0 6 m 6 g(u − 1)/2 and m ≡ g (mod 3), (g,u,m) , (2, 6, 5).

We begin with g ≡ 0 (mod 6), using the following construction for “filling the holes”

in [27].

Construction 3.2.40. Let (X,Y,G,B) be a 4−IGDD of type (g1, h1)u1 , (g2, h2)u2 , ..., (gs, hs)us

and let a > 0. Suppose that for each i = 1, 2, ..., s there is a 4−GDD of type with a + gi

points having a group of size a and a group of size hi. Then there is a 4−GDD of type with

a +
∑

i uigi points having a group of size
∑

i uigi.

Proof: We adjoin a set I of a ideal points to (X,Y,G,B). For each G j ∈ G construct

on G j ∪ I a copy of the relevant 4−GDD, by aligning groups on I and G j ∩ Y. The

resulting 4−GDD will have groups aligned on I and Y. �

Theorem 3.2.41. Let g ≡ 0 (mod 6), n ≡ −g/6 (mod 2g/3), n > 15g/6, and w ≡

0 (mod g/6), g/2 6 w 6 n. Then for every m ≡ 0 (mod 3) with 0 6 m 6 g(u − 1)/2 there

exists a 4−GDD of type gum1, where u = 1 + 6(5n + w)/g.

Proof: From previous section since a uniform 4−GDD of type gu exists, we may

assume that m > 0. We take a transversal design TD(6,n) and truncate on of its

groups to w points. We write m = 3(n1 + n2 + n3 + n4 + n5 +w′), where 0 6 ni 6 n for

i = 1, 2, . . . , 5 and w′ = w or 0, unless g = 6 and w = 3 in this case we take w = 1 or

3. By Theorem 3.2.39 there is a 4−IGDD of type (
∏

i(6n + 3ni, 3ni)1)(6w + 3w′, 3w′)1.

Now we adjoin a set I of g points to this 4−IGDD and apply Construction 3.2.40, fill

in 4−GDDs of type g1+(6n/g)(3ni)1, i = 1, 2, . . . , 5 and a 4−GDD of type g1+(6w/g)(3w′)1.

Note that 1 + (6n/g) ≡ 0 (mod 4), 1 + (6n/g) > 16, and 1 + (6w/g) ≡ 0 (mod 4),

1+ (6w/g) > 16 and so these GDDs exist by Theorem 2.1 in [25] and Theorem 3.2.28.

The result is a 4−GDD of type g1+(20n+6w)/g(3w′ +
∑

i 3ni)1
≡ gum1, as desired. �

Corollary 3.2.42. Let g ≡ 0 (mod 6) and u ∈ {n : n > 79}\{93, 94, 95, 97, 98, 117, 118}.
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Then there exists a 4−GDD of type gum1 for every m ≡ 0 (mod 3) with

0 6 m 6 g(u − 1)/2.

Proof: By Theorem 3.2.41 the admissible values of u are those in the set

{1+6(5n+w)/g : n ≡ −g/6 (mod 2g/3), n > 15g/6, and w ≡ 0 (mod g/6), g/2 6 w 6 n}.

Now 6g/n = 4t − 1 and n > 15g/6 implies 6n/g > 15, which in turn implies t > 4.

On the other hand, 6w/g = t′ where the condition g/2 6 w 6 n translates to

3 6 t′ 6 4t−1. That is, the admissible values of u are those in the set {20t−4+t′ : t > 4

and 3 6 t′ 6 4t − 1} = {n : n > 79}\{92, 93, 94, 95, 96, 97, 98, 116, 117, 118}. Now by

Theorem 2.1 in [25] we can remove n = 92, 96 and 116 from the foregoing set of

excluded values. The result follows. �

In particular in the case g = 6, we can get a better result:

Theorem 3.2.43. There exists a 4−GDD of type 6um1 for every u > 68 and every m ≡

0 (mod 3) with 0 6 m 6 3(u − 1).

Proof: By Corollary 3.2.42 we need to consider only 68 6 u 6 78, 93 6 u 6 98

and 117 6 u 6 118. First, u = 68 is covered by Theorem 2.1. For 69 6 u 6 78

we start with a resolvable (65, 5)−BIBD and adjoin u − 66 infinite points to obtain

a {5, 6}−GDD of type 513(u − 66)1. We write m = 3(n1 + n2 + ... + n13 + w′) where

0 6 ni 6 5 for each i = 1, 2, ..., 13, and w′ = 1 or u − 66, unless u = 69 in which case

we take w′ = 1 or 3 (since we know that a uniform 4−GDD of type gu exists by

previous section we may assume that m > 0). By Theorem 3.2.39 there is a 4−IGDD

of type (
∏

i

(30 + 3ni, 3ni)1)(6(u − 66) + 3w′, 3w′)1. We adjoin 6 ideal points to this

IGDD and apply Construction 3.2.40, fill in 4−GDDs of types 66(3ni)1, i = 1, 2, . . . , 13

and a 4−GDD of type 6u−65(3w′)1 (these 4−GDDs exist by Lemma 3.2.2, Theorem

3.2.28 and uniform 4−GDDs in the previous section ). The result is a 4−GDD of

type 6um1, as desired. For 93 6 u 6 98 and 117 6 u 6 118 we proceed similarly,

starting instead with resolvable (v, 5)−BIBDs for v = 85 and v = 105 respectively.

The result follows. �
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Construction 3.2.44. Let (X,Y,G,B) be a 4−IGDD of type (g1, h1)u1(g2, h2)u2 , ..., (gs, hs)us

and let a > b > 0. Suppose that for each i = 1, 2, ..., s − 1 (and also i = s if us > 2 ) there is

a 4−IGDD (Xi,Yi,Gi,Bi) on a+ gi points with a group Mi of size b+ hi and a group of Ni of

size a − b in which Yi = Ni ∪ (Yi ∩Mi), |Yi| = a. Suppose further that there is a 4−GDD

on a + gs points with a group of size b + hs. Then there is a 4−GDD on a +
∑

i

uigi points

with a group of size b +
∑

i

uihi.

Proof: Let (X,Y,G,B) be a 4−IGDD of type (g1, h1)u1(g2, h2)u2 , ..., (gs, hs)us . We adjoin a

set I = {1, 2, . . . , a} of a ideal points to this IGDD. For each group G j ∈ G with |G j| = gi

and |G j∩Y| = hi, i = 1, 2, . . . , s−1, we construct a copy of (Xi,Yi,Gi,Bi) on G j∪I, align

the group Mi on (Gi ∩ Y) ∪ {1, 2, . . . , b} and the group Ni on I\{1, 2, . . . , b}, and align

the hole Yi on I. Then we do the same for all but one of the groups of type (gs, hs)

in (X,Y,G,B). Finally on the last group G′ (gs, hs) together with I, we construct a

copy of indicated 4−GDD and align the group of size b+ hs on (G′∩Y)∪{1, 2, . . . , b}.

The resulting 4−GDD on a+
∑

i

uigi points has group of size b+
∑

i

uihi aligned on

Y ∪ {1, 2, . . . , b}, as desired. �

We will employ the following class of 4−IGDDs as ‘fillers’ in Construction 3.2.44.

Lemma 3.2.45. (i) Let g ≡ 2 (mod 6) and t > 2, and let x = 2 or g(3t − 1)/2, (g, t, x) ,

(2, 2, 5). Then for every y ≡ 0 (mod 3) with 0 6 y 6 9gt/2 there exits a 4−IGDD of type

g9t(3tg, 3tg)1(x + y, x)1.

(ii) Let g ≡ 4 (mod 6) and t > 2, and let x = 1 or g(3t − 1)/2 where (t, x) , (7, 1) when

g ≡ 10 (mod 12). Then for every y ≡ 0 (mod 3) with 0 6 y 6 9gt/2 there exists a 4−IGDD

of type g9t(3tg, 3tg)1(x + y, x)1.

Proof: If we consider the constructions in Theorem 2.2 in [25], then all cases

satisfying the foregoing hypothesis give a 4−GDD of type g12t(x + y)1 which has a

sub-GDD of type g3tx1. Simply if remove the blocks (but not the points) from this

sub-GDD then we obtain the required 4−IGDD. �

Theorem 3.2.46 (Theorem 4.9, [25]). Let g ≡ 2 or 4 (mod 6). Let n ≡ 0 (mod 3g/2),

n > 6g and w ≡ 0 (mod g/2), 0 < w 6 n, where (g,n) , (2, 18). Let u = (32n + 6w)/g.
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Then for every m ≡ g (mod 3) with 0 < m 6 g(u − 1)/2 there exists a 4−GDD of type

gum1, except possibly when g ≡ 10 (mod 12), n = 21g/2 and 0 < m < 83g/2.

Corollary 3.2.47 (Corollary 4.10, [25]). Let g ≡ 2 or 4 (mod 6) and u ∈ {n ≡ 0 (mod 3) :

n > 192}\{231, 234, 237}. Then there exists a 4−GDD of type gum1 for every m ≡ g (mod 3)

with 0 < n 6 g(u − 1)/2, except possibly when g = 2 and

u ∈ {291, 294, 297, 303, 306, 309, 315, 318, 321, 327, 330, 333}, or when g ≡ 10 (mod 12)

and 0 < m < 83g/2, where u ∈ {345, 351, 354, 357, 363, 366, 369, 375, 378, 381}.

We now work to remove most of the possible exceptional cases with u > 240

from Corollary 3.2.47. To do this we will use the following special case of the

Construction 3.2.44 obtained by setting a = b.

Construction 3.2.48. Let (X,Y,G,B) be a 4−IGDD of type (g1, h1)u1 , (g2, h2)u2 , ..., (gs, hs)us

and let b > 0. Suppose that for each i = 1, 2, ..., s there is a 4−GDD with b + gi points

having a group of size b + hi. Then there is a 4−GDD with b +
∑

i

uigi points having a

group of size b +
∑

i

uihi.

Theorem 3.2.49 (Theorem 4.12, [25]). Let g ≡ 2 or 4 (mod 6). Let n ≡ 0 (mod 2g),

n > 4g and w ≡ 0 (mod g/2), g 6 w 6 n. Then for every m ≡ g (mod 3) with 0 < m 6

g(u − 1)/2 − 15dg/6e − 3x there exists a 4−GDD of type gum1, where u = 6(5n + w)/g

and x = 1 if g = w = 2 while x = 0 otherwise.

Corollary 3.2.50 (Corollary 4.13, [25]). ] Let g ≡ 2 or 4 (mod 6) and u ∈ {n ≡ 0 (mod 3) :

n > 126}\{147, 150, 153, 159, 162, 165, 171, 174, 177, 183, 219, 222, 225, 231, 234, 237,

243, 291, 297, 300, 303, 363} . Then there exists a 4−GDD of type gum1 for every m ≡

g (mod 3) with 0 < m 6 g(u − 1)/2 − 15dg/6e, except possibly for g = 2 and m = u − 16

when u ≡ 6 (mod 60).

If we combine Corollaries 3.2.47 and 3.2.50 we get the following result.

Corollary 3.2.51 (Corollary 4.14, [25]). Let g ≡ 2 or 4 (mod 6) and u ∈ {n ≡ 0 (mod 3) :

n > 192}\{231, 234, 237}. Then there exists a 4−GDD of type gum1 for every m ≡ g (mod 3)
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with 0 < m 6 g(u − 1)/2, except possibly either

(i) g = 2 and u ∈ {291, 294, 297, 303}, or

(ii) g = 2 and m = u − 16 where u = 306, or g = 2, u − 13 6 m 6 u − 4, where

u ∈ {306, 309, 315, 318, 321, 327, 330, 333}, or

(iii) g ≡ 10 (mod 12) and 0 < m 6 83g/2, where u = 363.

Finally, we can eliminate the possible exceptions of type (iii) in Corollary 3.2.51.

Lemma 3.2.52 (Lemma4.15, [25]). There exists a 4−GDD of type type g363m1 for every

g ≡ 10 (mod 12) and every m ≡ 1 (mod 3) with 1 6 n 6 181g.

Collecting Corollaries 3.2.42, 3.2.51 and Lemma 3.2.52 gives the following ana-

logue to Theorem 3.2.38 for even g.

Theorem 3.2.53. (i) Let g ≡ 0 (mod 6) and u ∈ {n : n > 79}\{93, 94, 95, 97, 117, 118}.

Then there exists a 4−GDD of type gum1 for every m ≡ 0 (mod 3) with 0 6 m 6 g(u−1)/2.

(ii) Let g ≡ 2 or 4 (mod 6) and u ∈ {n ≡ 0 (mod 3) : n > 192}\{231, 234, 237}. Then there

exists a 4−GDD of type gum1 for every m ≡ g (mod 3) with 0 < m 6 g(u − 1)/2, except

possibly when g = 2 and u ∈ {291, 294, 297, 303, 306, 309, 315, 318, 321, 327, 330, 333}.

Remark: As we say in Corollary 3.2.51 (ii), we can get all but at most five values of

m, when g = 2 and 306 6 u 6 333.

Conclusion: If we combine Theorems 3.2.38 and 3.2.53, we get Theorem 3.2.30.

Therefore we obtained our second result.

3.2.3 4−GDDs of type 6um1

In this section we will construct 4−GDDs of type 6um1 up to 13 possible exceptions

so we will prove the following theorem. It is easy to see that the necessary conditions

for the existence of a 4−GDD of type 6um1 are that u > 4, m ≡ 0 (mod 3), and

0 6 m 6 3m − 3, (u,m) , (4, 0).

Theorem 3.2.54. There exists a 4−GDD of type 6um1 for every u > 4 and m ≡ 0 (mod 3)

with 0 6 m 6 3u − 3 except for (u,m) = (4, 0) and except possibly for
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(u,m) ∈ {(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33), (17, 39), (17, 42), (19, 45),

(19, 48), (19, 51), (23, 60), (23, 63)}.

We will give some previous results that we did in previous sections.

Theorem 3.2.55 (Theorem 3.2.28 (i)). Let u > 4. There exist 4−GDDs of type 6u and

6u(3u − 3)1, except that there is no 4−GDD of type 64. There is a 4−GDD of type 6431.

Theorem 3.2.56 (Lemma 3.5, [29]). There exists a 4−GDD of type 6u31 for every u > 4,

except possibly for u ∈ {10, 11, 12, 13, 14, 15, 17, 18, 19, 23}.

Theorem 3.2.57 (See Lemma 3.2.17). There exists a 4−GDD of type 6u91 for every u > 4,

except possibly for u ∈ {10, 12, 13, 14, 15, 17, 18, 19, 23}

Theorem 3.2.58 (See Theorem 2.1, [25]). Let u ≡ 0 (mod 4), u > 16. Then there exists a

4−GDD of type 6um1 for every m ≡ 0 (mod 3) with 0 6 m 6 3u − 3.

Theorem 3.2.59 (See Theorem 3.2.43). There exits a 4−GDD of type 6um1 for every

u > 68 and every m ≡ 0 (mod 3) with 0 6 m 6 3u − 3.

Lemma 3.2.60 (See Lemma 2.1, [28]). There exists a 4−GDD of type 6um1 for

(u,m) ∈ {(8, 12), (8, 15), (9, 12), (10, 3), (10, 9), (10, 12), (10, 15), (10, 18), (10, 21), (10, 24),

(11, 3), (11, 12), (11, 15), (11, 18), (12, 3), (12, 9), (12, 12), (12, 18), (12, 21)}.

Lemma 3.2.61 (Lemma 2.2, [28]). Let 4 6 u 6 12. There exists a 4−GDD of type 6um1

for all m ≡ 0 (mod 3) with 0 6 m 6 3u − 3, except for (u,m) = (4, 0) and except possibly

for (u,m) ∈ {(7, 15), (11, 21), (11, 24), (11, 27)}.

Now we will give a result using Theorem 3.2.39 and Construction 3.2.40 that

we proved in previous section.

Corollary 3.2.62. Suppose that there exists a {5, 6}−GDD (X,G,B) on v points with group

sizes from the set {4, 5, 7, 8, 9, 11}. Then for each m ≡ 0 (mod 3) with 0 6 m 6 3v there

exists a 4−GDD of type 6v+1m1.
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Proof: Let G = {G1,G2, . . . ,Gs} and we write m = 3(n1 + n2 + . . . + ns) where

0 6 ni 6 |Gi| for each i = 1, 2, . . . , s. By Theorem 3.2.39 there is a 4−IGDD of

type {(6gi + 3ni, 3ni) : i = 1, 2, . . . , s}. Now we adjoin 6 ideal points to this IGDD

and apply Construction 3.2.40, then we construct on the ith group together with

the ideal points a 4−GDD of type 6|Gi|+1(3ni)1 which exists by Lemma 3.2.61. The

result is a 4−GDD of type 6v+1m1. �

Remark: Under the hypothesis of Corollary 3.2.62 we can allow one further group

G′ ∈ G with size from the set {3, 6, 10, 12} and get the same conclusion, as follows.

We write m = 3(n1 + n2 + . . . + ns + n) as above, where n = 0 or |G′| (unless |G′| = 3,

in which case we take n = 1 or 3). On the group in the IGDD corresponding to

G′ together with the ideal points we construct a 4−GDD of type 6|G′|+1(3n)1 (see

Theorem 3.2.55). This works because n <
s∑

i=1

ni.

Table 3.4: Source of {5, 6}−GDDs

u {5, 6}−GDD of type Source

25,26 46, 55 (25, 5)-BIBD

29,30,31 5531, 5541, 56 TD(6, 5)

37 4781 Resolvable (28, 4)-BIBD

39,41,42,43 7531, 7551, 7561, 76 TD(6, 7)

45,46,47,49 8541, 8551, 8561, 86 TD(6, 8)

50,51,53,54,55 9541, 9551, 9571, 9581, 96 TD(6, 9)

57 41281 PBD({5, 9∗}, 57), see [31]

59,61,62,63,65 11531, 11551, 11561, 11571, 11591 TD(6, 11)

66,67 115101, 116

Lemma 3.2.63. Let U = {n : n ≡ 1, 2 or 3 (mod 4) and 25 6 n 6 67}\{27, 33, 34, 35, 38, 58}.
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Then for each u ∈ U there exists a 4−GDD of type 6um1 for every m ≡ 0 (mod 3) with

0 6 m 6 3u − 3.

Proof: We apply Corollary 3.2.62 and the remark following it, exhibiting for each

u ∈ U a {5, 6}−GDD on v = u − 1 points with group sizes from the set {3, 4, ..., 12}

having at most one group with size from the set {3, 6, 10, 12} (see Table 3.4). �

There remain the values u ∈ {27, 33, 34, 35, 38, 58} to deal with.

Lemma 3.2.64. Let u ∈ {35, 38, 58}. Then for each m ≡ 0 (mod 3) with 0 6 m 6 3u − 3

there exists a 4−GDD of type 6um1.

Proof: For u = 38 we take TD(6, 7) and remove five points from a block to obtain

a {5, 6}−GDD of type 6571. It is not difficult to see that we can write m = 3(n1 +

n2 + n3 + n4 + n5 + n6) where ni ∈ {0, 1, 2, . . . , 6}\{5} for i = 1, 2, ..., 5 and 0 6 n6 6 7.

Now by Theorem 3.2.39 there is a 4−IGDD of type {(36 + 3ni, 3ni) : i = 1, 2, ..., 5} ∪

{(42 + 3n6, 3n6)}. If we adjoin 6 ideal points to this IGDD and apply Construction

3.2.40 and fill in 4−GDDS of type 67(3ni)1 (by Lemma 3.2.61), we obtain the result

we want.

The other cases of u similar to this case, for these refer to Lemma 3.5 in [28]. �

Lemma 3.2.65 (Lemm 3.6, [28]). Let u ∈ {27, 33, 34}. Then for each m ≡ 0 (mod 3) with

0 6 m 6 3u − 3 there exists a 4−GDD of type 6um1.

If we collect the Lemmas 3.2.63 - 3.2.65, we get the following result:

Theorem 3.2.66. For each u > 24 and each m ≡ 0 (mod 3), 0 6 m 6 3u − 3 there exists a

4−GDD of type 6um1.

Now, we will complete our existence result for 4−GDDs of type 6um1. The vast

majority of the designs in the range 13 6 u 6 23 are obtained by direct constructions

in [28].

Theorem 3.2.67 (Theorem 4.1, [28]). Let 13 6 u 6 23. There exists a 4−GDD of type

6um1 for every m ≡ 0 (mod 3) with 0 6 m 6 3u − 3, except possibly for

(u,m) ∈ {(13, 27), (13, 33), (17, 39), (17, 42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63)}.
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The main result of this section (Theorem 3.2.54) follows from Lemma 3.2.61,

Theorem 3.2.66 and Theorem 3.2.67.

3.2.4 4−GDDs of type gum1 for small g

In this section we will continue to investigate the spectrum for 4−GDDs of type gum1

with small g. We will show that, for each g ∈ {2, 4, 5, 12, 15} and each admissible pair

(u,m), a 4−GDD of type gum1 exists with definite exception for (g,u,m) = (2, 6, 5)

and five possible exceptions when g = 2.

First we will prove that the necessary conditions for the existence of 4−GDDs

of type gum1 for g = 4, 12 are also sufficient. We begin with the case g = 12.

Theorem 3.2.68. There exists a 4−GDD of type 12um1 for each u > 4 and

u ≡ 0, 1, 3 (mod 4) with m ∈ {3, 6, 9}.

Proof: We start with a TD(5,u) and adjoin an infinite point ∞ to the groups, then

we delete a finite point to form {5,u+1}−GDD of type 4uu1. Note that each block of

size u+ 1 intersects the group of size u in the infinite point∞ and each block of size

5 intersects the group of size u, but certainly not in ∞. In the group of size u, we

give to ∞, the weight 0 (when u ≡ 0, 1 (mod 4)) or 3 (when u ≡ 3 (mod 4)) and give

the remaining points weight 0 or 3. We give all other points in the {5,u + 1}−GDD

the weight 3. Finally, we replace the blocks of {5,u + 1}−GDD by 4−GDDs of type

3u, 3u+1, 34, or 35 to obtain the 4−GDDs as desired. �

For the following result, we need a new construction on HTDs (Holey transver-

sal designs). A k−DGDD of type (g, hv)k is a holey transversal design k−HTD of

type hv and is equivalent to a set of k − 2 holey MOLS of type hv(see [5]). The

following construction is a slight modification of Theorem 3.5 in [23].

Construction 3.2.69. Suppose that k = 4 or 5 and there exists a k−HTD of type hnu1

whose block set contains t disjoint holey parallel classes with the hole of size u. Then for

each 0 6 a 6 t, there exists a {k, k−1}−DGDD of type (hn(k−1), (h(k−1)n))k whose blocks

of size k − 1 can be partitioned into u(k − 1)2 + a(k − 1) parallel classes.
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In order to apply Construction 3.2.69, we need the following Lemmas on

4−HTDs.

Lemma 3.2.70 (Lemma 2.12, [32]). There exists an FMOLS(1nu1) if and only if n > 2u+1

except for (n,u) = (5, 1).

Lemma 3.2.71 (Lemma 2.13, [32]). For each k > 2, there exists an ISOLS(12k+3k1)

containing two disjoint transversals with the hole of size k.

Lemma 3.2.72 (Lemma 2.14, [32]). For each k > 2, there exists an

FMOLS(12k(k − 1)1) containing two disjoint holey transversals with the hole of size k.

Now we are ready to give our lemma on 4−GDD of type 12um1.

Lemma 3.2.73. There exists a 4−GDD of type 12nm1 for each n > 8 and n ≡ 0, 1, 3 (mod 4)

with m ≡ 0 (mod 3) and 12 6 m 6 6(n − 1) − 6.

Proof: For any given n > 8 and n ≡ 0, 1, 3 (mod 4), by Lemma 3.2.70 we have a

4−HTD of type 1nu1 with n > 2u + 1. If we apply Construction 3.2.69, we obtain

{3, 4}−DGDD of type (3n, 3n)4, where all the blocks of size 3 can be partitioned into

9u parallel classes. We adjoin 9u infinite points to complete the parallel classes and

then adjoin further k ideal points. Next we fill in a 4−GDDs of type 3nk1 coming

from Theorem 3.2.3, then we obtain a 4−GDD of type 12n(9u + k)1
≡ 12nm1, as we

desire. �

Lemma 3.2.74. There exists a 4−GDD of type 12n(6n − 9)1 for each n > 7 and

n ≡ 0, 1, 3 (mod 4).

Proof: For any given n > 7 and n ≡ 1, 3 (mod 4), by Lemma 3.2.71, we have a

4−HTD of type 1n((n − 3)/2)1 containing two disjoint parallel classes with the hole

of size (n − 3)/2. If we apply Construction 3.2.69 with ‘a = t = 2’, we obtain a

{3, 4}−DGDD of type (3n, 3n)4, where all the blocks of size 3 can be partitioned into

((n − 3)/2) · 9 + 2 · 3 = (9n − 15)/2 parallel classes. We adjoin (9n − 15)/2 infinite

points to complete the parallel classes and then we adjoin further 3(n− 1)/2 points.



Chapter 3: 4-GDDs 61

Finally, if we fill in 4−GDDs of type 3n(3(n − 1)/2)1 coming from Theorem 3.2.3,

then we obtain a 4−GDD of type 12n(((9n − 15)/2) + (3(n − 1)/2))1
≡ 12n(6n − 9)1, as

we desired.

Similarly, for any given n > 8, n ≡ 0 (mod 4), by Lemma 3.2.72 we have a 4−HTD

of type 1n((n/2) − 1)1 containing a disjoint holey parallel class with a hole of size

(n/2) − 1. If we apply again Construction 3.2.69 with “a = t = 1′′, we obtain a

4−GDD of type 12n((n/2) − 1) · 9 + 3 + ((3(n − 1) − 3)/2))1
≡ 12n(6n − 9)1. �

If we combine Theorem 1.2 in [32] and Lemmas 3.2.68-3.2.74, we have the

following result.

Lemma 3.2.75. There exists a 4−GDD of type 12um1 for each u > 8 and

u ≡ 0, 1, 3 (mod 4) with m ≡ 0 (mod 3) and 12 6 m 6 6(u − 1).

Since u = 4 has been solved by Theorem 3.2.5, we have only the cases for u = 5, 7

and u ≡ 2 (mod 4) to be considered.

Lemma 3.2.76. There exists a 4−GDD of type 12um1 for each u ∈ {5, 7, 10, 14, 18, 22}

with m ≡ 0 (mod 3) and 0 6 m 6 6(u − 1).

Proof: For these GDDs refer to Lemmas from 3.5 to 3.11 in [32]. �

Lemma 3.2.77. There exists a 4−GDD of type 12um1 for each u > 30, u ≡ 2 (mod 4) and

u , 34, 38, 46 and 0 6 m 6 6(u − 1).

Proof: For 0 6 m 6 9, suppose that u = 4s + 2 and s > 7. We take a 4−GDD of type

(12s − 12)4(72 + m)1 coming from Theorem 3.2.5 and fill in 4−GDDs of type 12s−1

and 4−GDDs of type 126m1 to obtain the 4−GDDs as desired. For other values of

m, we refer to Lemma 3.12 in [32]. �

This leaves u = 26, 34, 38, 46 to be considered. With the following Lemma 3.15

in [32] we will complete this case.

Lemma 3.2.78. There exists a 4−GDD of type 12um1 for each u ∈ {26, 34, 38, 46} with

0 6 m 6 6(u − 1).
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If we combine Theorem 3.2.5 and Lemmas 3.2.75-3.2.77 and 3.2.78, we have the

following result:

Theorem 3.2.79. There exists a 4−GDD of type 12um1 for each u > 4 and

m ≡ 0 (mod 3) with 0 6 m 6 6(u − 1).

With this theorem we complete the case g = 12. In the next case we will do

g = 4.

Lemma 3.2.80 (Lemma 3.17, [32]). There exist 4−GDDs of types 46m1 and 49n1 for all

admissible m ≡ n ≡ 1 (mod 3).

Lemma 3.2.81. There exists a 4−GDD of type 4um1 for each u > 6, u ≡ 0 (mod 3) and

m ≡ 1 (mod 3) with 1 6 m 6 2(u − 1).

Proof: For any given u > 12, u ≡ 0 (mod 3) and m ≡ 1 (mod 3) with 4 6 m 6 2(u − 1)

we take a 4−GDD of type 12u/3(m − 4)1 coming from Theorem 3.2.79. We adjoin 4

infinite points and fill the holes with a 4−GDD of type 44 to obtain a 4−GDD of type

4um1. If we combine Theorem 3.2.28 and Lemma 3.2.80, then we get the conclusion.

�

With this lemma we complete the case g = 4. In the next case we will do g = 5

and g = 15. First we will prove the case when g = 15.

Theorem 3.2.82. A 4−GDD of type 15um1 exists if and only if either u ≡ 0 (mod 4)

and m ≡ 0 (mod 3), 0 < m 6 (15u − 18)/2; or u ≡ 1 (mod 4) and m ≡ 0 (mod 6),

0 < m 6 (15u − 15)/2; or u ≡ 3 (mod 4) and m ≡ 3 (mod 6), 0 < m 6 (15u − 15)/2.

Proof: For u = 4, the designs come from Theorem 3.2.5. For other values of u,

we start with a TD(6,u) and adjoin an infinite point ∞ to the groups, then we

delete a finite point so as to form a {6,u + 1}−GDD of type 5uu1. Note that each

block of size u + 1 intersects the group of size u in the infinite point ∞ and each

block of size 6 intersects the group of size u, but certainly not in ∞. Now, in the

group of size u, we give∞weight a, where a ∈ {0, 3, ..., (3u− 6, theorem3.1)/2} (when

u ≡ 0 (mod 4)), a ∈ {0, 6, ..., (3u − 3)/2} (when u ≡ 1 (mod 4)) or a ∈ {3, 9, ..., (3u − 3)/2}
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(when u ≡ 3 (mod 4)) and give to remaining points weight 0 or 6. We give to

all the other points in the {6,u + 1}−GDD weight 3. We replace the blocks in the

{6,u + 1}−GDD by 4−GDDs of type 3ua1, 35, or 3561 to obtain 4−GDD as desired. �

Theorem 3.2.83. A 4−GDD of type 5um1 exists if and only if either u ≡ 3 (mod 12)

and m ≡ 5 (mod 6), 5 6 m 6 (5u − 5)/2; or u ≡ 9 (mod 12) and m ≡ 2 (mod 6),

2 6 m 6 (5u − 5)/2; or u ≡ 0 (mod 12) and m ≡ 2 (mod 3), 2 6 m 6 (5u − 8)/2.

Proof: For u = 9, m = 2 and m = 20, the designs come from Theorem 3.2.28. For

u = 9, m = 14 and for u = 9, m = 8 refer to Theorem 4.2 in [32].

For any given u > 12, u ≡ 0, 3, 9 (mod 12) and all admissible m > 5. We take a

4−GDD of type 15u/3(m − 5)1 coming from Theorem 3.2.82. We adjoin five infinite

points and fill the groups with a 4−GDD of type 54 to obtain a 4−GDD of type 5um1

as we want. �

Now we will deal with the case g = 2 and prove that necessary conditions for

the existence of 4−GDDs of type 2um1 are also sufficient with at most five possible

exceptions.

Lemma 3.2.84. Let u ∈ {6, 9, 12, 15, 18}. There exists a 4−GDD of type 2um1 for all

m ≡ 2 (mod 3) with 2 6 m 6 u − 1, except (u,m) = (6, 5).

Proof: From Theorem 1.2 in [32] and Theorem 3.2.14, it suffices to consider (u,m) ∈

{(12, 8), (15, 8), (15, 11), (18, 8), (18, 11), (18, 14)}. For 4−GDD of types 21581 and 21881

refer to Theorem 3.2.67. For 4−GDD of type 21281 refer to Theorem 2.5 in [33]. Next,

we get a 4−GDD of type 218141 by starting with a 4−GDD of type 124 and adjoining

two ideal points, and then filling in 4−GDDs of type 27 on three of the four groups

of size 12 together with the ideal points. Finally for 4−GDDs of types 215111 and

21881 refer to Lemma 5.6 in [32]. �

Lemma 3.2.85. There exists a 4−GDD of type 221m1 for all m ≡ 2 (mod 3) with 2 6 m 6 20,

except possibly for m = 17.

Proof: From Theorem 1.2 in [32] and Theorem 3.2.14, it suffices to consider

m ∈ {8, 11, 14}. For these designs we refer to Lemma 5.7 in [32]. �
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Lemma 3.2.86. Let u > 24 and u ≡ 0 (mod 6). There exists a 4−GDD of type 2um1 for all

m ≡ 2 (mod 3) with 2 6 m 6 u − 1.

Proof: For any given u > 24 and u ≡ 0 (mod 6) and all admissible m > 2, we take

a 4−GDD of type 12u/6(m − 2)1 coming from Theorem 3.2.79. We adjoin two points

and fill in the groups with a 4−GDD of type 27 to obtain a 4−GDD of type 2um1 as

desired. �

After this lemma, we need only to consider the case for u ≡ 3 (mod 6) and u > 27.

Lemma 3.2.87. There exists a 4−GDD of type 2um1 for each u ∈ {27, 33, 39, 45, 51, 57, 63, 69,

81, 99, 105} with all m ≡ 2 (mod 3) and 2 6 m 6 u − 1, except possibly for

(u,m) ∈ {(33, 23), (33, 29), (33, 35)}.

Lemma 3.2.88 (Lemma 5.10, [32]). There exists a 4−GDD of type 2um1 for

(u,m) ∈ {(33, 11), (33, 14), (33, 17), (33, 26), (39, 8), (39, 11), (39, 14), (39, 17), (39, 29),

(39, 32), (51, 8), (51, 11), (51, 14), (51, 20), (51, 23), (57, 8), (57, 11), (57, 23)}.

Now, by Theorem 3.2.30 (iv), we only have u ∈ U = {75, 87, 93, 111, 117, 123, 129,

135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 231, 237, 291, 297, 303, 309, 315, 321, 327,

333} to be considered.

Lemma 3.2.89 (Lemma 2.20, [32]). Let u ∈ U then there exists a 4−GDD of type 2um1

for all m ≡ 2 (mod 3) with 2 6 m 6 u − 1.

If we combine Theorem 3.2.30, Lemmas 3.2.84-3.2.89, we have the following

result.

Theorem 3.2.90. There exists a 4−GDD of type 2um1 for each u > 6, u ≡ 0 (mod 3)

and m ≡ 2 (mod 3) with 2 6 m 6 u − 1, except for (u,m) = (6, 5) and possibly except

(u,m) = {(21, 17), (33, 23), (33, 29), (39, 35), (57, 44)}.

In this subsection, we have shown that the necessary conditions for the existence

of a 4−GDD of type gum1 are also sufficient for the small g = 2, 4, 5, 12, 15 with 5

possible exceptions when g = 2.
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