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Assistant Prof. Esra Sorgüven
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ABSTRACT

Surfactants are chemical substances that can accumulate on interfaces and lower the

interfacial tension. The accumulation of surfactant at the interface between two fluids may

significantly alter the dynamics of a multiphase flow. Nonuniform distribution of surfac-

tant can cause large variations on the mechanical response of the system and leads to the

nonuniform distribution of capillary (normal) and Marangoni (tangential) stresses which can

significantly affect the deformation of drops and even may result in breakup. In this thesis,

a finite-difference/front tracking method is developed for computations of interfacial flows

with soluble surfactants to understand the effects of surfactants on a strongly deforming

interface. Surfactant transport equations of the bulk and interface surfactant concentrations

are solved together with the incompressible Navier-Stokes equations. A nonlinear equation

of state is used to relate the interfacial tension to surfactant concentration at the interface.

In order to validate the numerical algorithm, several simple test cases are considered and

the numerical results are found to be in a good agreement with the analytical solutions.

The method is then applied to the cleavage of a droplet by surfactant - a problem proposed

by Greenspan (1977,1978) as a model for cytokinesis of biological cells.

Keywords: Soluble surfactant, front-tracking method, droplet cleavage.
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ÖZET

Yüzey aktif maddeler, çok fazlı akışkan sistemlerinin ortak yüzeylerinde birikebilme ve

yüzey gerilimini düşürebilme özelliğine sahip kimyasallardır. Yüzey aktif maddelerin iki

karışmaz sıvının arayüzeyinde birikmesi, çok fazlı akışların dinamiğini önemli ölçüde etk-

iler. Yüzey aktif maddelerin arayüzeyler üzerindeki homojen olmayan dağılımları ise akış

sistemlerinin mekanik tepkileri üzerinde büyük etkilere yol açar. Buna ilave olarak yüzey

aktif maddeler, normal (kapiler) ve teğetsel (Marangoni) yöndeki kuvvetlerin dağılımını

değiştirerek damlaların deformasyonlarını ve bölünmelerini önemli ölçüde etkiler. Bu çalışmada,

yüzey aktif maddelerin deforme olan yüzeyler üzerindeki etkisini anlamak amacı ile, çözünür

yüzey aktif madde içeren çok fazlı akışların hesaplanmasında kullanılmak üzere Sonlu Fark-

lar/Arayüz izleme metodu geliştirildi. Arayüzde ve damlanın dışındaki fazda yüzey aktif

madde taşınım denklemleri, sıkıştırılamaz Navier-Stokes denklemleri ile beraber çözüldü.

Yüzey gerilimini yüzey aktif maddenin fonksiyonu olarak tanımlamak için, lineer olmayan

bir durum denklemi kullanıldı. Nümerik algoritma basit test problemlerine uygulandı ve

nümerik sonuçların analitik sonuçlar ile uyuştuğu gözlendi. Daha sonra, geliştirilen metod

H. P. Greenspan (1977, 1978) tarafından biyolojik hücre bölünmesi modeli olarak önerilen

yüzey aktif madde etkisinde damla bölünmesi problemine başarı ile uygulandı.

Anahtar kelimeler: Çözünür yüzey aktif madde, arayüz izleme metodu,

damla bölünmesi.
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Chapter 1

INTRODUCTION

1.1 Motivations

The term surfactant, which is derived from the words surface active agent, is of fundamen-

tal importance in many industrial and biomedical applications involving multiphase flows.

Throughout the history, surfactants have played an important role in many practical ap-

plications including detergents, emulsifiers, paints and adhesives [3]. In some situations,

their presence can have positive effects on the process, while in other situations they are not

desired but it is difficult to remove them from the system. Surfactants are extensively used

as excipients in drug delivery [4], emulsification [5], ceramic processing [6], petroleum and

oil recovery [7], coating, wetting [8] and in many other processes. As its name indicates,

surfactants are active on interfaces that seperate two immiscible fluids. The tendency to

accumulate at the interfaces, lowering the interfacial tension and solubility in liquids are

the common properties of surfactants.

Structurally, a surfactant molecule consists of a hydrophobic tail which is generally solu-

ble in oil but insoluble in water and hydrophilic (or polar) head which is generally insoluble

in oil and soluble in water. Sodium dodecyl sulfate (CH3(CH2)11OSO3Na), cetrimonium

bromide (C19H42BrN) and cetyl alcohol (CH3(CH2)15OH) are typical examples for the dif-

ferent types of surfactant molecules [3]. Figure 1.1 illustrates a schematic of a typical

surfactant molecule [7]. The adsorption characteristics of a surfactant molecule stem from

the existence of two groups in its structure and depend on the properties of the surfaces that

the surfactant affect. Surfactant molecules at the interface can be positioned in two ways

due to the solubility of the surfactant. As sketched in Fig. 1.2a, when a surfactant is soluble

in phase 1, i.e., in bulk phase, the hydrophilic head is outside the drop. On the contrary,

if phase 1 and phase 2 interchange, the hydrophilic head is inside the drop because of its
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solubility in phase 1 which is illustrated in Fig. 1.2b. In this thesis, the system consists

of two immiscible liquids and surfactant is soluble in bulk phase, so that the surfactant

molecules stick on the surface by the hydrophilic head positioned at the outside the drop.

Hydrophilic

head group
Hydrophobic tail

Figure 1.1: Schematic illustration of a surfactant molecule.

Phase 1

Phase 2

Phase 2

Phase 1

(a) (b)

Figure 1.2: Schematic illustration of the positioning of surfactant molecules on the drop
interface. Surfactant is soluble in phase 1.

The accumulation process at interfaces is provided by the adsorption of surfactant.

Lowering the free energy of the phase boundary, which the surfactant accumulate on, is the

driving force for the adsorption. The interfacial free energy is the amount of work required to

expand the interface and interfacial tension is defined as the interfacial free energy per unit

area. As the interface is covered by the surfactant molecules, interfacial tension decreases

and less work is required to expand the interface.
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Appearently, there is an upper bound for the interfacial tension lowering effect of the

surfactants. When this limit is reached, surfactant is no more soluble in the liquid phase

and micelles start to form in the bulk solution. Table 1.1 illustrates some typical values of

surface and interfacial tension of liquid/liquid and liquid/gas systems. In some specialized

systems, interfacial tension can be lowered drastically, from 1-10 mN/m to the values in

the range of 10−3 mN/m or below. For instance, such systems are of interest for enhanced

oil recovery [1]. The amount of interfacial tension decrease depends on the surfactant

concentration at the interface. Nonuniform distribution of the surfactant at the interface

causes nonuniform distribution of surface tension and surface forces which can affect the

motion and the deformation of drops and bubbles [9, 10, 11, 12]. These basic but vital

properties of surfactants lead to a clear understanding of solubility and transport mechanism

of surfactants in different systems.

To summarize, surfactants are among the most widely used groups of chemicals in the

world not only because they are extremely important in conventional process industry, but

also because they find increasingly useful applications in such diverse fields as microelec-

tronics, microfluidics and biotechnology. In addition, surfactants are also used to model

division of biological cells [10]. Although the surfactants have been studied extensively for

many years, it is still a challenging task to model the effects of surfactants on the interfa-

cial flows due to strongly nonlinear complex interactions between the fluids and deforming

interfaces, finite rate of mass transfer along the interface as well as between the bulk fluids

and the interface.

Air-Water 72 − 73

Air-aqueous surfactant solution 28 − 30

Aliphatic hydrocarbon-water 40 − 50

Aromatic hydrocarbon-water 20 − 30

Hydrocarbon-aqueous surfactant solution 1 − 10

Table 1.1: Typical values of surface and interfacial tensions(mN/m) [1].
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1.2 Literature Review

Deposition of a surface active material on a viscous droplet and the effect of various surface

tension on its shape has been a long term interest of researchers from both biological and

mechanical point of view. In the context of the present study, experimental works for the

deformation of a droplet under the effect of surfactant arise from the fluid mechanical simu-

lation studies of cell cleavage or cytokinesis, i.e., the division of a biological mother cell into

two daughter cells including a series of repetitous shape changes [13]. Many experimental

studies are based on the local surface tension changes of an oil drop, which is a simple model

of a biological cell. McClendon and Spek (1918) showed that an oil droplet can be divided

into two by manipulating its surface tension with the effect of a surfactant - an alkali or

detergent (see review by Rappaport [14]). Greenspan [10] proposed a specific simulation for

cell cleavage by studying the deformation of a droplet under the influence of surfactant. He

repeated Spek’s experiment with updated materials and demonstrated that the oil droplet

passed through a series of large deformations, even it goes into a whole breakup under the

effect of the surfactants. The final shape of the oil droplet was very analogous to the one in

the cytokinesis [14]. The experimental procedure was to apply a symmetric continuous flow

of surfactant by syringes to the poles of the oil droplet neutrally buoyant in the surrounding

solvent. As the surfactant deposited on the interface, surface tension gradients occured and

this caused the droplet contracted from the equator. Moreover, if the surfactant deposition

was in short bursts, droplet deformed at the beginning but recovered its spherical shape

very quickly. Figure 1.3 represents a schematic representation of the experiment which is

going to be explained in detail in Section 4.1.1.

Greenspan’s hydrodynamic theory of cell division was mainly based on the unstable

contractions of surface towards equator stemmed from the equatorial and polar tension

difference. The relative differential of surface tension is due to the chemical activity of the

tension elements, namely the polymerization or depolymerization of microfilaments attached

to the cell membrane. By the change of element concentration, surface tension increases at

the poles or decreases at the equator which causes developing the surface tension gradients

producing a surface flow from poles to equator and contractile forces become dominant which

may lead to cleavage. This unstable mechanical process tends to continue indefinitely after it

starts. Greenspan also conducted some theoritical studies by using perturbation techniques
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Figure 1.3: Schematic illustration of the Greenspan’s oil droplet experiment. (a) no surfac-
tant at the interface at the initial state of the drop. (b) Surfactant applied on the drop poles
simultaneously. (c) Surface tension gradients occur due to the nonuniform distribution of
the surfactant and oil drop contracts towards the equator.

to support the model he proposed [11]. The model assumes that the drop is axisymmetric

with surfactant released from the poles. However, he could only describe the initial stages

of the droplet deformation and the theory was unable to explain the large deformations.

Sapir and Nir [15] tried to explain the entire deformation of the oil droplet in Greenspan’s

experiment. In their treatment, the governing equations was assumed to be Stokes equations

where the boundary condition was described by the balance of viscous forces and surface ten-

sion forces. The moving boundary problem was solved by using boundary integral method.

A transport equation for surfactant was also included in the model. Although they tested a

large number of surface tension distributions, they were unable to achieve the large defor-

mations observed in Greenspan’s experiment. The largest deformation was attained when

there is no change in the surface tension distribution during the entire deformation and it

was only 20% of the initial neck radius.

Zinemanas and Nir [16] presented a fluid mechanical simulation of cytokinetic cell defor-

mation by combining the equations of motion with concentration and distribution balances

for active contractile microfilaments on the cell surface. The contribution of the latter con-

dition is the same as the activity of surfactant on a viscous droplet where it provides a

dynamical evolution of surface forces and deformation by introducing an anisotropic surface
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tension.

He and Dembo [17] presented numerical computations of Greenspan’s experiment by

using a finite element method, tried to understand the physical reasons for the failure of

Sapir-Nir theory and proposed some modifications. They defined a special case of surface

tension distribution as a function of axial distance and achieved a nonuniform distribution

of pressure. Although they tested the model in a wide range of surfactant distributions,

their theory could not account for the cleavage of a droplet observed by Greenspan. They

concluded that the pure action of surface tension was not sufficient to make a droplet

undergo a complete cleavage or large deformations. In order to explain the deep furrowing

of a droplet under the effect of surfactant, they proposed a traction force, namely phoretic

force, which can be regarded as the integrated result of a tangential traction that acts in a

thin interfacial layer seperating the particle from the bulk phase. They assumed that this

transport effect originated force is proportional to the surface tension gradient and has an

opposite sign. They achieved large deformations by introducing the phoretic force to their

model but they stated that this cannot be an explanation for Greenspan’s theory because

of the high viscosity of the bulk fluid unlike the oil droplet experiment.

More recently, He and Dembo [18] described a continuum model of the sea urchin egg

during the first cleavage division and extended the standart model of Greenspan [10, 11]

and Sapir and Nir [15]. They proposed that the sea urchin egg is mechanically equivalent

to a small droplet of passive watery fluid and its cytoplasmic material consists of two

isotropic materials, i.e., network and solvent phases. They solved the mass and momentum

conservation equations for both phases by using Galarkin finite element method. They

included their model the reaction and hydrodynamic friction between the network and

solvent phases as well as the attractive and repulsive stresses due to the activity of cellular

filaments.

Researches on dynamical effects of interfacial tension gradients caused by surfactants are

not only stemmed from the fluid mechanical simulation of cell division and cell mechanics.

There have been many previous studies concerned with the effect of surfactants on drops

and bubbles in extensional flows. Stone and Leal [12] examined the effects of insoluble

surfactants on drop deformation and breakup in extensional flows at low Reynolds numbers.

They described a numerical procedure based upon the boundary integral method which
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can analyse the time dependent convective/diffusion equation for surfactant transport on

the interface. They showed that the deformation is influenced by the accumulation of

surfactant at the ends of the drop due to the convective effect of the external flow and

dilution of the surfactant concentration due to the expanding surface of the deformed drop.

Milliken et al. [19] extended their work for different drop and suspending fluid viscosities,

unsteady drop motions and nonlinear equation of state. They found that the effect of

surfactant decreases by the increasing viscosity ratio. Moreover, for small viscosity ratios

and convection dominated motion, they observed spindlelike pointed shapes which lead

to tip streaming observed experimentally. Pawar and Stebe [20] examined the effects of

insoluble surfactants on drop deformation in extensional flows. They found that the linear

equation of state, which relates the surface tension with surfactant distribution, is not valid

for moderate surfactant concentrations and took into consideration the surface saturation

and molecular interactions of surfactant. Eggleton and Stebe [21] accounted for surfactant

mass transfer with the bulk in the problem of initially spherical droplet deforming in an

extensional flow. They showed that the drop behaviour is seriously affected by the surfactant

mass transfer rate and the concentration of surfactant at the interface. Eggleton et al. [22]

investigated the effects of surfactant on the tip-streaming occuring in a linear extensional

flow. They found that as the surfactant is swept towards the drop poles, surface tension

approaches to zero at the poles and sharp gradients in surface tension lead to the emission

of a thread where it can result with the seperation of small droplets from the tail part, i.e.,

tip streaming. This results are consistent with the studies of Stone and Leal [12].

Moreover there have been many studies examining the effects of surfactants on the

motion of drops and bubbles in a tube. He et al. [23] studied the influence of surfactants

on the pressure-driven motion of a buoyant drop in a tube. They focused on the adsorption

effect and confirmed the retarding effect of surfactant on the drop motion. Borhan and

Mao [24] studied the drop translation in a straight capillary tube including the effects of

insoluble surfactants. They observed a reentrant cavity at the back of the drop which

extends as the surfactant convection becomes stronger. Same results are confirmed by Tsai

and Miksis [25]. Surfactant concentrations was very low in the studies of Borhan and Mao

and of Tsai and Miksis where they used a linear surface equation of state. Johnson and

Borhan [26] extended their work by using a nonlinear equation of state. They examined the
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drop behaviour at high surfactant concentrations and accounted for the physical chemistry

of the insoluble surfactants. They found that for strong cohesive interactions, drop mobility

increases with the increasing surfactant coverage. More recently, Johnson and Borhan [27]

studied the effects of bulk-soluble surfactans on the dynamics of a drop translating through

a cylindirical capillary tube at low-Reynolds numbers by using boundary integral method.

Computational studies on drop behaviour under the influence of surfactants are not

only restricted with the Stokes flow based on the boundary integral methods, but there are

also several studies using full Navier-Stokes models. Drumright-Clarke and Renardy [28]

considered the effects of insoluble surfactants on the deformation of a three-dimensional

viscous drop, breakup and drop size distribution of daughter droplets in shear flow where

the viscosity and the density of the drop are equal to the suspending fluid. They devel-

oped a volume-of-fluid method by using a linear equation of state. Lee and Pozrikidis [29]

investigated the effects of insoluble surfactants on the deformation of and the structure of

flow around a drop in two dimensional channels. Their methodology combines the Peskin’s

immersed interface method, diffuse-interface approximation and a finite-volume method

for integrating the convection-diffusion equation of surfactant at the interface. Xu and

Zhao [30] presented a level-set method to simulate surfactant transport on a deformable in-

terface without coupling the method to a flow solver. Xu et al. [31] extended their work by

integrating the method to a flow solver. James and Lowengrub [32] proposed a surfactant-

conserving volume-of-fluid method to examine the insoluble surfactant effect on interfacial

flows. Olgac and Muradoglu [33] recently studied the effects of soluble surfactants on the

motion and breakup of viscous drops in straight and constricted capillaries by using a Fi-

nite Volume/Front-Tracking method where the bulk surfactant concentration is assumed to

remain constant throughout the process.

1.3 Contributions Made in this Work

A general computational procedure is developed here based on the finite-difference/front-

tracking (FD/FT) method [34] for simulations of interfacial flows with soluble surfactants.

The governing equations for axisymmetric geometry are solved numerically on a fixed, reg-

ular, staggered grid where the drop interface is represented by a Lagrangian grid with

connected marker points. Convection/diffusion equations for surfactant at the interface
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and in the bulk are solved fully coupled with the flow equations. Nonlinear equation of

state is taken into account to relate the surface tension to surfactant concentration at the

interface. First, the numerical algorithm is validated for some simple test cases where the

analytical solutions are available. Then, in order to understand the effects of surfactant on

the deformation and breakup mechanism of drops and bubbles, the method is applied to the

cleavage of a viscous droplet which is proposed as a cell division model by Greenspan [10, 11].

The main advantage of the present method is that it can describe the large deformations

and breakup of droplets along with the accurate treatment of the surface tension and bulk

solubility. Simulations with a wide range of parameters are presented and the conditions

for drop cleavage are discussed.
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Chapter 2

FORMULATION AND NUMERICAL METHOD

The numerical technique used in this study is based on the finite-difference/front track-

ing method developed by Unverdi and Tryggvason [34]. An axisymmetric version of the

method is used in simulations in order to treat the physical problem accurately while keep-

ing the computation time manageable. This chapter begins with the presentation of the

governing equations that describe the behaviour of a viscous droplet under the influence

of surfactant. The surfactant is assumed to be soluble in bulk phase and transported to

the interface by an adsorption-desorption mechanism. Then the governing equations are

nondimensionalized and the governing nondimensional numbers are identified. After that

the numerical technique is described in detail and then the overall solution procedure is

summarized. Finally treatment of the drop breakup is explained.

2.1 Governing Equations

The computational domain and the physical problem are illustrated in Fig. 2.1. The domain

is axisymmetric with the left boundary being the axis of symmetry. The drop is initially

spherical and has the diameter d. Two phases are seperated by an interface with various

surfactant concentrations. There is a soluble surfactant at the bulk phase that is transported

onto the interface. The radius of the tube is R and the length of the tube is unrestricted but

the computational domain extends 3R in the axial direction for computational convenience.

Arc length is measured in clockwise direction from the top of the drop. The origin of the

cylindirical coordinates is set at the bottom-left corner of the domain and is on the axis of

symmetry. The motion of continuous and dispersed phases is governed by incompressible

Navier-Stokes equations and is solved everywhere, both inside and outside the drop. As

discussed by Unverdi and Tryggvason [34], a single set of conservation equations for the

entire flow field can be written as long as the density, viscosity and molecular diffusion

coefficient jumps across the interface are accounted for and surface tension is included.
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Figure 2.1: A schematic diagram of the computational domain with surfactant at the inter-
face and soluble at the bulk.

In cylindirical coordinates, time dependent Navier-Stokes equations in axisymmetric

geometry can be written in the conservative form as

∂

∂t
(ρrur) +

∂

∂r
(ρrurur) +

∂

∂z
(ρruzur) = −r

∂p

∂r
+ r

∂

∂r
(2µ

∂ur

∂r
) + 2µr

∂ur

∂r
+

∂

∂z
[µr(

∂uz

∂r
+

∂ur

∂z
)] +

∫

A
σ(Γ)κnδ(x − xf ) · irdA, (2.1)

∂

∂t
(ρruz) +

∂

∂r
(ρruruz) +

∂

∂z
(ρruzuz) = −r

∂p

∂z
+

∂

∂r
[µr(

∂uz

∂r
+

∂ur

∂z
)] +

∂

∂z
(2µr

∂uz

∂z
) +

∫

A
σ(Γ)κnδ(x − xf ) · izdA, (2.2)

where ur and uz are the radial and axial velocities, p is the pressure and ρ and µ are the dis-

continuous density and viscosity fields, respectively. In Eq.(2.1) and (2.2), the contribution
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of the surface tension is included as a body force. Here, σ is the surface tension that is the

function of surfactant concentration Γ at the interface, κ is the twice of the mean curvature,

n is the unit normal vector to the interface seperating two phases, ir and iz are the radial

and axial components of a surface normal vector, A is the surface area of the interface and

dA denotes the surface area element of the interface, respectively. δ is the three dimensional

delta function describing that the surface tension is concentrated at the boundary between

two fluids, where x is the location of a point where the function is evaluated and xf is the

location of the front.

Both fluids are incompressible and the density remains constant following a fluid particle.

Moreover fluids are immiscible so the viscosities of both fluids remain constant as well.

Under these conditions, the denstiy and viscosity evolve by

Dρ

Dt
= 0,

Dµ

Dt
= 0, (2.3)

where the material derivative is defined as D()
Dt = ∂

∂t + u · ∇(). Equation (2.3) is not solved

directly and the material properties are set based on the indicator function as described

in detail in Section 2.3. Using Eq. (2.3), the mass conservation equation reduces to the

incompressibility condition given by

∂

∂r
(rur) +

∂

∂z
(ruz) = 0. (2.4)

For a viscous droplet, surfactant effects are important. In order to examine the drop be-

haviour under the effect of surfactant, momentum equations are coupled with the surfactant

transport equation at the interface and bulk surfactant evolution equation assuming that

the surfactant is soluble at the bulk phase. Mass transfer between the bulk and interface is

represented by a dynamic adsorption-desorption mechanism. Concentration of surfactant

at the interface is defined as

Γ =
Ms

A
, (2.5)

where Ms is the total mass of surfactant and A is the surface area of the drop.

The coupling of the momentum equations and surfactant transport equations is achieved

through the surface tension term, i.e., the fifth term on the right hand side of Eq. (2.1) and

the fourth term on the right hand side of Eq. (2.2). Surface tension is directly related to the

surfactant concentration which lowers the surface tension nonlinearly. Their relationship is
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determined by an equation of state derived from Langmuir adsorption [27], and must be

specified before the convection/diffusion equation for surfactant is solved. In this model,

surface tension is related to the surfactant concentration at the interface as

σ = σs + RTΓ∞[ln(1 − Γ

Γ∞
)], (2.6)

where σs corresponds to the surface tension of a clean interface, R is the ideal gas constant,

T is the absolute temperature and Γ∞ is the maximum surface concentration for mono-

layer adsorption. In particular, Γ∞ is a theoritical limit which cannot be reached because

surfactants have a limited area per molecule [21].

More complicated equations of state such as Frumkin equation state have also been

used [20]. A major disadvantage of all equations of state used in the literature is that they

predict physically unrealistic negative values for the surface tension when the surfactant

concentration at the interface Γ approaches its maximum limit Γ∞. As it can be seen in

Eq. (2.6), surfactant concentration dependent surface tension is limited from above by the

surface tension of a clean interface σs. In order to avoid the unphysical negative surface

tension values, surface tension is limited below by a constant value as

σ = max

(

σmin, σs + RTΓ∞[ln(1 − Γ

Γ∞
)]

)

, (2.7)

where σmin is the minimum surface tension and is given by σmin = ǫσs with ǫ being an

arbitrary constant taken as 0.05 in the present computations.

Along the interface, surfactant concentration is governed by a convection/diffusion equa-

tion [35] given by
∂Γ

∂t
+ ∇s · (ΓUs) = Ds∇2

sΓ + ṠΓ, (2.8)

where ∇s denotes the surface gradient, Us is the tangential velocity on the interface, Ds is

the surface diffusivity and ṠΓ is the source term. Note that the surface gradient operator is

defined as

∇s = ∇−∇n, ∇n = n(n · ∇). (2.9)

The flux from bulk to interface is both diffusion and adsorption-desorption controlled.

Surfactant accumulated on a monolayer at the interface and source term in Eq. (2.8) is

defined as

ṠΓ = βCs(Γ∞ − Γ) − αΓ, (2.10)
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where β and α are the kinetic constants for adsorption and desorption, respectively. Cs

denotes the concentration of surfactant in the fluid immediately adjacent to the interface.

The bulk surfactant concentration C is governed by the convection/diffusion equation, i.e.,

∂C

∂t
+ ∇ · (CU) = ∇ · (Dco∇C), (2.11)

where Dco is a coefficient related to the bulk diffusion coefficient by scaling with indicator

function I as

Dco = Dc(1 − I(r, z, t)). (2.12)

The source term in Eq. (2.8) is related to the bulk concentration as [21]

ṠΓ = Dco(n · ∇C |s), (2.13)

where the concentration gradient is evaluated at the interface. In the present method, the

boundary condition at the interface given by Eq. (2.13) is first converted into a source term

in a conservative manner by using a methodology that is consistent with the immersed

boundary method [36]. We assume that there is a thin adsorption layer adjacent to the

interface where all the mass transfer between the bulk and interface occurs. Figure 2.2

illustrates the schematic of the adsorption layer. By defining this transitional area, total

amount of surfactant adsorped onto the interface is conserved. First, surfactant is adsor-

ped onto the interface, then distributed over the adsorption layer and added to the bulk

concentration evolution equation as a source term. Thus, Eq. (2.11) becomes

∂C

∂t
+ ∇ · (CU) = ∇ · (Dco∇C) + ṠC , (2.14)

where the source term for bulk concentration is defined as

ṠC = −
∫

interface ṠΓdA
∫

adsorptionlayer dV
. (2.15)

In Eq. (2.15), A and V are the interfacial surface area and the volume of the adsorption layer,

respectively. By treating the problem in this manner, all the surfactant to be transferred to

the interface is first consumed by the adsorption layer before the interface so the boundary

condition at the interface simplifies to be n · ∇C |s= 0, which is automatically imposed by

Eq. (2.12).
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Figure 2.2: Schematic illustration of the adsorption layer.

2.2 Nondimensionalization of the Governing Equations

The governing equations are written in a nondimensional form to reduce the number of

parameters and to render the problem in a compact form to analyse. The scaling parameters

are defined as follows [19],

L = a, V =
σs

µ
, T =

µa

σs
, (2.16)

where L, V and T are the length, velocity and time scales, respectively. Then the continuity

and momentum equations in a nondimensional form can be written as

∇∗ · u∗ = 0, (2.17)

∂u∗

∂t∗
+ ∇∗ · (u∗u∗) = −∇∗p∗ +

1

Re
∇∗2u∗ + f∗

s , (2.18)
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where u∗ is the nondimensional velocity given by u∗ = {u∗
r , u

∗
z}T , f∗

s is the nondimensional

body force and Re represents the Reynolds number defined as

Re =
ρoVL
µo

. (2.19)

Surfactant concentration at the interface Γ and bulk surfactant concentration C are

nondimensionalized by the maximum surfactant concentration at the interface Γ∞ and the

surfactant concentration in the bulk fluid far from the interface C∞, respectively.

Evolution equation for surfactant at the interface can be written in the nondimensional

form as follows

∂Γ∗

∂t∗
+ ∇∗

s · (Γ∗U∗
s) =

1

Pes
∇∗2

s Γ∗ + Bi[C∗
s (k − kΓ∗) − Γ∗], (2.20)

where Pes, Bi and k are the surface Peclet number, the Biot number and the adsorption

number, respectively, defined as

Pes =
VL
Ds

, Bi =
αL
V , k =

βC∞

α
. (2.21)

Similarly, bulk surfactant equation becomes

∂C∗

∂t∗
+ ∇∗ · (C∗U∗) =

1

Pec
∇∗ · (D∗

c∇∗C∗) − DaBi[C∗
s (k − kΓ∗) − Γ∗], (2.22)

where D∗
c is the nondimensional diffusion coefficient for the bulk surfactant defined as D∗

c =

Dco/Dc. Pec and Da are the bulk Peclet number and the Damkohler number, respectively,

defined as

Pec =
VL
Dc

, Da =
Γ∞

LC∞
. (2.23)

Finally, equation of state in the nondimensional form is

σ∗ = max (σ∗
min, 1 + E[ln(1 − Γ∗)]) , (2.24)

where σmin and E are the nondimensional surface tension and elasticity number, respec-

tively, defined as

σ∗
min =

σmin

σs
, E =

RTΓ∞

σs
. (2.25)
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2.3 Numerical Method

Treatment of the surface tension, unknown distribution of the surfactant at the interface

and at the bulk phase and the moving boundary of the drop render the simulation of

interfacial flows in a complex way. In order to solve the problem, the finite difference/front

tracking technique developed by Unverdi and Tryggvason [34] is used to solve the flow

equations coupled with the interface and bulk surfactant concentration evolution equations.

The Navier-Stokes equations, i.e., Eqs. (2.1, 2.2 and 2.4) are solved on a fixed, staggered,

Eulerian grid. The spatial derivatives are discretized by using a second order central finite-

difference scheme and an explicit, second order projection scheme is used for the time

integration.

2.3.1 Staggered Grid System

An accurate approximation of the solution of the partial differential equations requires

the splitting of the space and time domains into many small discrete intervals. Instead

of obtaining a functional solution to the unknowns, the discrete locations at which the

variables are to be calculated are defined by the numerical grid and the unknown values of

the variables are obtained by using various numerical techniques. Essentially, this numerical

grid is a discrete representation of the geometric domain on which the problem is to be

solved. The data structures used to store the information about the grid, the shape of the

grid cells and the arrangement of the variables in the grid system are the different options for

generating grids. In the contex of this thesis, structured, staggered, Eulerian grid system,

which is illustrated in Fig. 2.3, is used. The radial (ur) and axial (uz) components of the

velocity are stored on the boundaries of the grid cells while the pressure (p) and the rest of

the field variables such as denstiy (ρ), viscosity (µ) and bulk surfactant concentration (C)

are stored at the cell centroids. Although staggered grid systems developed by Harlow and

Welch [37] lead to more complex coding because of the seperate locations of variables, it has

an important advantage to couple the pressure to the velocity field, which avoids pressure

oscillations and lack of convergence.
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Figure 2.3: Schematic representation of staggered grid system.

2.3.2 Integration of the Flow Equations

Equations (2.1 and 2.2) can be written in a vector form as

∂

∂t
(ρu) = A −∇p, (2.26)

where A is

A = −∇ · (ρuu) + ∇ · µ(∇u + ∇uT) +

∫

A
σ(Γ)κnδ(x − xf ) · dA. (2.27)

Continuity equation can be written in the form

∇ · u = 0, (2.28)

where u and ∇ are defined as

u = {ur, uz}T , ∇ = { ∂

∂r
,

∂

∂z
}T . (2.29)

Then the time discretization of the momentum and continuity equations become

ρn+1un+1 − ρnun

∆t
= An

h −∇hp, (2.30)

∇h · un+1 = 0, (2.31)
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where n, n + 1 and h denote the current time level, new time level and the finite-difference

approximation to the operator, respectively. As the projection method for the time dis-

cretization requires, discretized momentum equation (Eq. (2.30)) is seperated into two parts

as follows

ρn+1u∗ − ρnun

∆t
= −An

h, (2.32)

ρn+1un+1 − ρn+1u∗

∆t
= −∇hp. (2.33)

Note that u∗ is the unprojected velocity field computed ignoring the effects of pressure field.

In the first step of the projection method, the unprojected velocity field u∗ is seperated

from Eq. (2.32), and is computed as

u∗ =
1

ρn+1
(ρnun + ∆tAn

h). (2.34)

In the second step, Eq. (2.33) is rearranged as follows

un+1 − u∗ = − 1

ρn+1
∆t∇hp. (2.35)

Then the pressure field is found by taking the divergence of Eq. (2.35) and using the incom-

pressiblity condition given by Eq. (2.31). This leads to

∇h · ( 1

ρn+1
∇hp) =

1

∆t
∇h · u∗. (2.36)

Equation (2.36) is an elliptic Poisson equation and is solved for the pressure by using a

multigrid method described by Tryggvason et al. [38].

In the last step, the velocity field is corrected using the pressure field computed in the

second step as

un+1 = u∗ − 1

ρn+1
∆t∇hp, (2.37)

which now satisfies the continuity equation.

2.3.3 Front Tracking Method

Simulation of multiphase flows brings considerable difficulties due to the moving and de-

forming interface between the two immiscible fluids. The front tracking method used in this
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thesis is originally developed by Unverdi and Tryggvason [34]. In this method, the interface

between two phases is represented by seperate computational points, i.e., Lagrangian grid,

that are moved with the local flow velocity interpolated from the stationary grid. These

computational points are called the marker points and a piece of interface between two

marker points is called a front element. Figure 2.4 shows a schematic of the computational

grids.

Stationary Eulerian Grid

Front

Marker

Point

Lagrangi

Grid

Fluid

Fluid

an

Front

Element

Figure 2.4: Sketch for the computational grids used in the computations of multiphase flows.
The governing equations are solved on a stationary Eulerian grid but the interface between
the two phases is represented by a Lagrangian grid consisting of connected marker points.

The communication between the marker points and the front elements is provided by

linked lists that contain pointers to previous object and the next object in the list. Arbitrary

ordering of the data in the list makes the restructuring of the interface easy by allowing the

addition and deletion of the elements in some cases.

The restructuring of the front is one of the crucial parts of the front tracking method.

Since the drop goes considerable deformation under the effect of the surfactant, there would

be a resolution problem for some parts of the front. When the distance between two marker

points become too large compared to other points, new elements must be added to maintain
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the resolution of the front as sketched in Fig. 2.5. Also, if some parts of the front contains

too much front elements, it is possible to delete them by controlling the distance between

two neighbouring points or the angle between the two neighbouring front elements. Deletion

of these elements reduces the total number of elements used to represent the front as well

as prevents the formation of wiggles which are much smaller than the grid size. Figure 2.6

illustrates a schematic for a possible element deletion where m, mp and mn represent the

deleted element, previous element and the next element, respectively.

m mNew

element

Figure 2.5: Sketch for the element addition while reconstructing the front.

mn
mp

m

Figure 2.6: Sketch for the element deletion while reconstructing the front.

In addition, in the front tracking method, the density and viscosity fields are not obtained

from the direct solution of the equation of state for density and viscosity, i.e., Eq. (2.3).

Across the interface, these variables are not continuous and this leads excessive numerical

diffusion or some oscillations around the jump. In order to overcome these difficulties, at

each time step, position of the interface is used to construct an indicator function defined
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as

I(r, z, t) =







1 in drop fluid

0 in bulk fluid.

Since ρ and µ are constant in each phase, proper values of these variables at each grid can

be evaluated by using the indicator function such that

ρ = ρo + (ρd − ρo)I(r, z, t),

µ = µo + (µd − µo)I(r, z, t), (2.38)

where the subscripts o and d denotes the bulk and the drop fluids, respectively.

While determining the fluid properties on every grid point, some disturbances may occur

due to the length scale equal to the mesh size. In order to avoid this problem around the

jump, the interface is given a small thickness of the order of the mesh size, instead of keeping

it sharp. The fluid properties change smoothly in this transition zone from the value on

one side of the interface to the value on the other side. Since the thickness of the this

artificial area is only the function of the mesh size, it stays constant during the calculations

and prevents numerical diffusion. Furthermore, by introducing the interface with a finite

thickness larger than the mesh size used, it is possible to specify its location exactly. If the

indicator function would have taken only the limit values 0 and 1, then it is only possible to

state the location of the interface somewhere between the grid points with different values.

The indicator function is computed on the Eulerian grid using the same technique de-

veloped by Unverdi and Tryggvason [34]. The method can be outlined briefly in three

steps.

In the first step, the discontinuity in the indicator function carried by the interface is

distributed onto the grid points adjacent to the interface resulting a gradient field with a

finite thickness and is zero except near the interface, i.e.,

G(x) =

∫

A
nδ(x − xf )dA. (2.39)

In the second step, divergence of the Eq. (2.39), i.e., (∇h ·G), is computed using second

order central diferences.

Finally in the third step, the indicator function is evaluated by solving the seperable

Poisson equation

∇2I = ∇h · G. (2.40)
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Figure 2.7: Schematic representation of the front elements.

Equation (2.40) is solved efficiently using a fast Poisson solver [39]. The delta function in

Eq. (2.39) is approximated by using Peskin’s cosine distribution function [36] given by

F (x − xf ) =







1
(2w)d

∏d
i=1[1 + cos π

w (xi − (xf )i)] if |xi − (xf )i| < w, i = 1, d

0 otherwise,

(2.41)

where w is the thickness of the transition zone and d is the dimension, i.e., d = 2 for

two-dimensional (planar or axisymmetric) problems. The same distribution function is

also used to interpolate the velocity field onto the marker points, to distribute the surface

tension forces onto the neighbouring grid points and to distribute the surfactant source term

computed at the centroids of the front elements. In this thesis, w is taken as 2∆x for the

velocity interpolation and the distribution of surface tension forces onto the neighboring

grid points, and as 3∆x for the distribution of surfactant concentration source term over

the adsorption layer.

Surface tension forces at the interface are also computed by using the Lagrangian grid.

In order to understand the calculation principle for the surface tension forces, structure of

the Lagrangian grid must be understood. Figure 2.7 shows a sketch of the front elements.

Connection of the front elements, the node numbers at both ends of an element and the

coordinates of all nodes are tracked explicitly in this methodology. For example, element j
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Figure 2.8: (a) A sketch of a boundary element in axisymmetric geometry used for surface
tension calculation. (b) Schematic representation of a portion of a surface element.

has two end points, i.e., nodes B and C, along with two neighbouring elements, i.e., elements

i and k. The coordinates of all nodes are updated at each time step as the front is advected.

The centroid of the element j and the tangent vectors at nodes B and C are computed by

fitting a cubic Lagrange polynomial. The force acting on a surface can be written as

∆FST = −
∫

σκndS (2.42)

where σ is the surface tension that depends on the surfactant concentration, i.e., σ = σ(Γ),

κ is the curvature, n is the normal vector of the surface element, respectively, as shown in

Fig. 2.8a. Also, a typical surface element can be seen in Fig. 2.8b. In an axisymmetric geom-

etry, by using above formula, the surface tension force per unit volume can be approximated

by
∆FST

∆V
∼= ∆(rσt)∆θ∆σ − σ∆θ∆sir

r∆r∆z∆θ
=

∆(rσt) − σ∆sir
r∆r∆z

(2.43)

where r is the radial distance, ∆s is the length of the segment (∆s2 = ∆r2 + ∆z2) and

ir is the radial component of the unit normal vector. Then, as sketched in Fig. 2.9, this

force is distributed over the neighbouring Eulerian grid cells as body forces in a conservative
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Figure 2.9: Schematic representation of the distribution of surface tension force and velocity
interpolation schemes, involving 16 grid points.

manner using Peskin’s distribution function. Surface tension force FST is involved in the

computation of velocity field and the velocity is interpolated onto the location of mth marker

point from 16 neighbouring Eulerian grid nodes as well as the the surface tension forces

computed at front element centroids (not shown on the sketch above) are distributed onto

16 neighbouring Eulerian grid nodes.

2.3.4 Integration of the Surfactant Evolution Equation at the Interface

The convection/diffusion equation for surfactant at the interface is solved in dimensional

form on a Lagrangian grid. From Eq. (2.8) and Eq. (2.9), we obtain

∂Γ

∂t
+ ∇ · (ΓUs) − Γn · ∇Us · n = Ds∇2

sΓ + ṠΓ. (2.44)

On the other hand, an area element of the interface evolves by [32]

DA

Dt
=

∂A

∂t
+ Us · ∇A = −A(n · ∇Us · n). (2.45)

Combining Eq. (2.44) and Eq. (2.45), we get

dΓA

dt
= ADs∇2

sΓ + AṠΓ. (2.46)
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In an axisymmetric problem, Eq. (2.46) becomes

dΓA

dt
= A[Ds

1

r

∂

∂s
(r

∂Γ

∂s
) + ṠΓ]. (2.47)

Equation (2.47) can be expressed as

dΓA

dt
= Af(Γ, t), (2.48)

where function f is defined as

f(Γ, t) = A[Ds
1

r

∂

∂s
(r

∂Γ

∂s
) + ṠΓ]. (2.49)

A central difference scheme is used to approximate Eq. (2.49) as

[Af ]k ∼= Ak

rk
Ds[

rk+ 1

2

Γk+1−Γk

sk+1−sk
− rk− 1

2

Γk−Γk−1

sk−sk−1

sk+ 1

2

− sk− 1

2

] + Ak
˙SΓk

, (2.50)

where k denotes the kth front element. Figure 2.10 shows the details of the elements used in

the spatial discretization of the surfactant concentration evolution equation. Surface area

of an element can be approximated as

Ak
∼= 1

2
(rk+ 1

2

+ rk− 1

2

)∆sk
∼= rk∆sk, (2.51)

where ∆sk = sk+ 1

2

− sk− 1

2

. Then Eq. (2.50) becomes

[Af ]k ∼= Ds[

rk+ 1

2

Γk+1−Γk

∆s
k+1

2

− rk− 1

2

Γk−Γk−1

∆s
k− 1

2

2rk
](rk+ 1

2

+ rk− 1

2

) + Ak
˙SΓk

. (2.52)

Time integration is performed using an explicit Euler scheme as

Γn+1 =
1

An+1
[ΓnAn + ∆tAnf(Γn, tn)]. (2.53)

The second order time accuracy is recovered using the methodology as explained in Sec-

tion 2.3.6, which corresponds to a trepozoidal rule.

2.3.5 Integration of the Bulk Surfactant Concentration Evolution Equation

The bulk surfactant concentration equation, i.e., Eq. (2.11), is solved on the staggered

Eulerian grid where the bulk surfactant concentration is stored at the cell centroids. The

spatial derivative for the diffusive flux is approximated by using second order central dif-

ferences. An ENO (essentially nonoscillatory) algorithm [40, 41] is used for the convective
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Figure 2.10: Sketch for the spatial discretization of the surfactant evolution equation. The
circles corresponds to the Lagrangian marker points while the squares represents the front
element centroids.

terms in order to avoid oscillations near the interface due to large gradients. Let Ci,j and

ui,j be the discrete values of bulk concentration and the velocity at r = ri and z = zj , then,

Eq. (2.11) is rewritten in axisymmetric geometry to yield

∂C

∂t
+ ur

∂C

∂r
+ uz

∂C

∂z
=

1

r

∂

∂r
(rDco

∂C

∂r
) +

∂

∂z
(Dco

∂C

∂z
) + ṠC . (2.54)

The semi-discrete version of Eq. (2.54) is

(

dC

dt

)

ij

= RCi,j + RDi,j + RSi,j = Resi,j , (2.55)
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where RC , RD, RS denote the convective, diffusive and source terms, respectively, and are

given by

RCi,j = −
(

ur
∂C

∂r
+ uz

∂C

∂z

)

i,j

,

RDi,j =

(

1

r

∂

∂r
(rDco

∂C

∂r
) +

∂

∂z
(Dco

∂C

∂z
)

)

i,j

,

RSi,j =
(

ṠC

)

i,j
. (2.56)

Discretization of the Convective Terms

The convective terms are discretized using an essentially nonoscillatory (ENO) scheme [40,

41] as follows

RCi,j = −(uri,j + uri−1,j )
Ci+1/2,j − Ci−1/2,j

∆r
− (uzi,j + uzi,j−1

)
Ci,j+1/2 − Ci,j−1/2

∆z
. (2.57)

The values of C at the cell boundaries are computed as

Ci+1/2,j =







Ci,j + 1
2F (D+

x Ci,j , D
−
x Ci,j) if ui,j > 0

Ci+1,j − 1
2F (D+

x Ci+1,j , D
−
x Ci+1,j) if ui,j < 0

, (2.58)

where the differences are found by D+
x Ci,j = Ci+1,j −Ci,j and D−

x Ci,j = Ci,j −Ci−1,j . Also,

F is a function defined by

F (a, b) =







a, |a| < |b|
b, |b| 6 |a|

(2.59)

Discretization of the Diffusive Terms

Diffusive terms are approximated using central differences as

(

1

r

∂

∂r
(rDco

∂C

∂r
)

)

i,j

=
(rDco)i+1/2,j(

∂C
∂r )i+1/2,j − (rDco)i−1/2,j(

∂C
∂r )i−1/2,j

ri,j∆r

=
(rDco)i+1/2,j

Ci+1,j−Ci,j

∆r − (rDco)i−1/2,j
Ci,j−Ci−1,j

∆r

ri,j∆r

= [
(rDco)i+1,j + (rDco)i,j

2ri,j
](

Ci+1,j − Ci,j

∆r2
)

−[
(rDco)i,j + (rDco)i−1,j

2ri,j
](

Ci,j − Ci−1,j

∆r2
). (2.60)
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(

∂

∂z
(Dco

∂C

∂z
)

)

i,j

=
Dcoi,j+1/2

(∂C
∂z )i,j+1/2 − Dcoi,j−1/2

(∂C
∂z )i,j−1/2

∆z

=
Dcoi,j+1/2

Ci,j+1−Ci,j

∆z − Dcoi,j−1/2

Ci,j−Ci,j−1

∆z

∆z

= [
Dcoi,j+1

+ Dcoi,j

2
](

Ci,j+1 − Ci,j

∆z2
)

−[
Dcoi,j + Dcoi,j−1

2
](

Ci,j − Ci,j−1

∆z2
). (2.61)

Treatment of the Source Term

The source term is first computed at the centroids of front elements and then distributed

over the adsorption layer using a modified version of Peskin’s distribution function given by

Fc(x−xf ) =







∏d
i=1[1 + cos π

w (xi − (xf )i)] if |xi − (xf )i| < w, I 6 0.5, i = 1, d

0 otherwise,

(2.62)

Figure 2.11 shows the schematic illustration of the interpolation scheme for the bulk sur-

factant concentration. The bulk surfactant concentration is interpolated onto the kth front

element from the Eulerian grid nodes outside the drop, i.e., the nodes circled in the sketch.

Furthermore, the source term computed on the front element is distributed onto the same

Eulerian grid nodes.

The time integration is performed using either a first order or second order explicit

schemes. First order scheme is the explicit Euler method given by

Cn+1
i,j = Cn

i,j + ∆tResn
i,j . (2.63)

The second order time integration is explained in the following section.

2.3.6 Overall Solution Procedure

A two-stage algorithm is used to combine the finite difference and front tracking methods.

The first stage yields first order accurate integration in time and the combination of first

and second stages yields a second order accuracy in time in advancing solutions from phys-

ical time level n (tn =
∑n

i=1 ∆ti) to level n + 1. The overall solution procedure can be

summarized as follows:
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Figure 2.11: Sketch for the interpolation scheme for the bulk surfactant concentration.

• The positions of the marker points are advanced using first order Euler method, i.e.,

Xn+1
p = Xn

p + ∆tVn
p , (2.64)

where Vn
p is the velocity vector interpolated on the marker point p.

• The bulk and interface surfactant concentrations are advanced for a single time step

as explained in previous sections.

• The material properties and surface tension are computed based on the new front

locations as

ρn+1 = ρ(Xn+1
p ), µn+1 = µ(Xn+1

p ), σn+1 = σ(Γn+1). (2.65)

• The pressure field and the velocity field are computed from Eq. (2.36 and 2.37),

respectively.

• In order to obtain second order accuracy in time, the procedure above is repeated

once again and the solutions are computed at time level n + 2. Then the quantities
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are updated using simple avarages as follows:

Xp
n+1 =

1

2

(

Xp
n + Xp

n+2
)

,

Vn+1 =
1

2

(

Vn + Vn+2
)

,

Γn+1 =
1

2

(

Γn + Γn+2
)

,

Cn+1 =
1

2

(

Cn + Cn+2
)

,

ρn+1 =
1

2

(

ρn + ρn+2
)

,

µn+1 =
1

2

(

µn + µn+2
)

,

σn+1 =
1

2

(

σn + σn+2
)

. (2.66)

2.4 Drop Breakup Mechanism

A liquid droplet can cleave with the help of the surface tension forces. In order to simulate

the behaviour of the viscous droplets under the influence of the soluble surfactants, a drop

breakup mechanism developed by Olgac et al. [2] is used. In this methodology, during

the evolution of the drop necking process, the radius of the neck is monitored and when

it becomes smaller than a threshold value Rbreak, the neighbouring marker points of the

front element that is closest to the centerline are projected onto the centerline as shown

in Fig. 2.12. As can be seen in this figure, these newly found marker points are the new

boundary points for the daughter droplets. After that, the front element is deleted and the

volume of the droplets are updated. The threshold value for the critical neck radius is taken

to be 0.75∆y where ∆y is the grid size in z- direction in cylindirical coordinates.
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Figure 2.12: Sketch for the drop breakup mechanism. The marker points at both ends of
the kth element are projected onto the centerline when Rb is smaller than the critical neck
radius Rbreak, front element k is deleted and new boundary elements are created [2].
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Chapter 3

VALIDATION OF THE NUMERICAL ALGORITHM

A number of test cases are performed to validate the numerical solution algorithm. The

flow solver and the FD/FT method have been validated many times before for surfactant-free

cases [38], so tests are performed here only for the cases with surfactant. For this purpose,

each term in Eq. (2.11) and Eq. (2.46) is tested individually and results are compared with

the analytical solutions for the simple test cases.

3.1 Surfactant Convection Test

First a simple test case is considered to validate the numerical approximation to the con-

vective terms in Eq. (2.46). As sketched in Fig. 3.1, the interface is initialized as a sphere

and located at the center of the computational domain on the axis of symmetry with a

uniform initial surfactant distribution. The spherical interface continuously expands in the

normal direction with a constant radial velocity. Both the diffusion and the source terms

are neglected so the surfactant concentration evolution only depends on the change in the

surface area of the drop. Thus Eq. (2.46) reduces to

dΓA

dt
= 0, (3.1)

which can be integrated in time to yield

Γ∗(t) =
Ao

A(t)
Γ∗

o, (3.2)

where Γ∗ is the dimensionless time dependent surfactant concentration given by Γ∗ = Γ/Γ∞.

Ao, A(t) and Γ∗
o are the initial surface area of the drop, the surface area of the drop at time

t and the dimensionless initial surfactant concentration, respectively. The numerical and

analytical solutions for the evolution of the surfactant concentration at the drop interface is

plotted in Fig. 3.2. As it is seen in this figure, the numerical results are in excellent agreement

with the analytical solution indicating the accurate discretization of the convective terms

in surfactant evolution equation.
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Figure 3.1: Schematic representation of the computational domain used to test the convec-
tive terms in surfactant evolution equation.
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Figure 3.2: Evolution of the surfactant concentration for a continuously expanding spherical
interface when the diffusion and the source terms are neglected.
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3.2 Surfactant Diffusion Test at the Interface

In this test case, a spherical interface of radius a is kept stationary, velocity is fixed zero

and the source term ṠΓ is switched off. The nonuniform initial surfactant concentration is

specified as

Γ =
1

2
(1 − cosθ), (3.3)

where θ is the angle measured in clockwise direction. Figure 3.3 shows the initial surfactant

distribution over the interface. In this figure, the solid line shows the drop interface while

the dotted line is the initial surfactant concentration. As can be seen in the figure, the drop

is placed at the center of the axis of symmetry represented by the dashed dot line. In this

case, Eq. (2.46) reduces to
∂Γ

∂t
=

Ds

r

∂

∂s
(r

∂Γ

∂r
). (3.4)
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Figure 3.3: Initial surfactant distribution on the drop interface for diffusion test. The solid
line denotes the interface while the dotted line denotes the initial surfactamt distribution.
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Since the drop is stationary, i.e., r = constant, Eq. (3.4) simplifies to be

∂Γ

∂t
= Ds

∂2Γ

∂θ2
, (3.5)

which can be solved analytically to yield

Γ(θ, t) =
1

2

(

1 − e−
2t∗

Pes cos θ

)

. (3.6)

In Eq. (3.5), Pes is the surface Peclet number defined as Pes = Va/Ds, t∗ is the dimension-

less time defined as t∗ = tV/a and V is a velocity scale. The numerical results are compared

with the analytical solutions for two cases. First Pes is kept constant and the evolution of

the surfactant concentration at various nondimensional time frames is taken into account.

As can be seen in Fig. 3.4, surface diffusion process acts to distribute the surfactant uni-

formly onto the surface and the numerical results are in good agreement with the analytical

solutions in all time frames. Second surfactant concentration profiles for various Pes are

examined at a constant time. As Pes reduces, surface diffusion becomes dominant and the

surfactant concentration tends to distribute uniformly. As shown in Fig. 3.5, the numerical

results also match very well with the analytical solution for this case indicating the accurate

discretization of the diffusive terms.

Grid convergence analysis is also performed for the interface diffusion scheme for surfac-

tant. The surfactant concentration at the interface at a constant time is plotted in Fig. 3.6

and compared with the analytical solution. The computations are performed for various

grid resolutions ranging between 16 × 48 and 256 × 768. As can be seen in this figure,

the computational results converge to the analytical solution as the computational grid is

refined. Moreover surfactant concentrations of two locations corresponding to s = 0.35 and

s = 0.65 are plotted against the square of the grid size, i.e., ∆x2, in order to determine the

degree of accuracy. As it is clearly seen in Fig. 3.7, the diffusion scheme is second order

accurate in space. In this figure, symbols represents the computational results for various

grids and the solid lines are the least square fits to the computational data.

3.3 Surface Adsorption/Desorption Test

In order to test the adsorption-desorption scheme for the source term, interface is kept

stationary by setting the velocity field to zero and diffusion term is switched off. In addition,
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Figure 3.4: Surfactant concentration Γ evolution on the drop surface for Pes=10. Solid
lines are the numerical solutions and the filled circles denotes the analytical solutions.
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Figure 3.5: Surfactant concentration Γ as a function of normalized arc length s for various
Pes numbers at t∗ = 8. Solid lines are the numerical solutions and the filled circles denotes
the analytical solutions.
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Figure 3.6: Surfactant concentration Γ as a function of normalized arc length s for various
grid resolutions at t∗ = 2.90 at Pes = 1000.
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Figure 3.7: Surfactant concentration versus ∆x2 at the front locations corresponding to
s = 0.35 and s = 0.65.
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the bulk surfactant concentration C is kept constant at unity. In this case, Eq. (2.46) reduces

to
dΓ

dt
= β(Γ∞ − Γ) − αΓ, (3.7)

which can be integrated in time to obtain the analytical solution given by

Γ∗ =
β/α

1 + β/α
[1 − e−(1+β/α)Bit∗ ]. (3.8)

Initially, there is no surfactant at the drop interface and since the diffusive and convective

terms are neglected, the interface surfactant concentration Γ only depends on the source

term. As it can be seen in Fig. 3.8, numerical and analytical solutions for different Biot

numbers are considered. At high Biot numbers, mass transfer rate is higher and surfactant

is deposited onto the surface faster. As the Biot number increases, numerical and analytical

solutions start to differ due to the large time-stepping error. However, when the Biot number

decreases, numerical results match much better with the analytical solution as can be seen

in Fig. 3.8. Also, for high Biot numbers, when the time step is reduced, numerical results

approaches to the analytical solution as shown in Fig. 3.9. The ratio of adsorption and

desorption coefficients, i.e., β/α, is taken 4.0 in both cases.
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Figure 3.8: Evolution of the surfactant concentration at the interface when the diffusive
and convective terms are neglected. (∆t∗ = 0.15, β/α = 4.0)
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Figure 3.9: Evolution of the surfactant concentration at the interface for different time steps
when the diffusive and convective terms are neglected. (Bi = 1.0, β/α = 4.0)

3.4 Bulk Surfactant Diffusion and Mass Transfer Test

In this section, bulk surfactant diffusion and the mass transfer between the bulk and the

drop interface is tested. A stationary spherical droplet with radius a is placed at the center

of a cylindirical tube on the axis of symmetry as sketched in Fig. 3.10. Initially, there is no

surfactant at the drop interface, i.e., Γo = 0, and the initial bulk surfactant concentration

is uniform, i.e., C = C∞. Mass transfer is only due to the moleculer diffusion. In addition,

desorption coefficient is taken zero, i.e., α = 0, so mass transfer is always from the bulk

fluid to the drop interface. Under these conditions, the source term is simply given by

ṠΓ = βCs. (3.9)

And the bulk surfactant evolution equation becomes

∂C

∂t
=

Dc

r2

∂

∂
(r2 ∂C

∂r
), (3.10)

which can be solved analytically for short times or in infinite domain to yield

C = C∞[1 − β
√

πDct/Dc

1 +
√

πDct
a (1 + βa

Ds
)

r

a
erfc

(

r − a

2
√

Dct

)

], (3.11)
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where erfc(x) is the complementary error function. The surfactant concentration equation

at the interface becomes
dΓ

dt
= βCs|r=a. (3.12)

Using Eq. (3.11), Eq. (3.12) can be solved for the surfactant concentration at the interface

and it is given by

Γ = Γo + βC∞[t − wh

η3
(η2t − 2η

√
t + 2 ln(1 + η

√
t))], (3.13)

where Γo is the initial surfactant concentration at the interface, w = β
Dc

, h =
√

πDc and η =

h
a (1 + wa). In this test case, computational domain is resolved by a uniform Cartesian grid

r

a

o

C

adsorption
8a

desorption

z

4a

Figure 3.10: Schematic representation of the computational domain used in testing the bulk
surfactant diffusion and mass transfer rate.

containing 128×256 grid cells. Bulk surfactant Peclet number is taken as Pec = 1000 and the

diffusion of the surfactant at the interface is neglected. So the accumulation of the surfactant

is only due to the adsorption-desorption process. All variables are nondimensionalized by

using the length scale L = a and the time scale T = a2/Dc.

Time evolution of the bulk surfactant concentration is shown in Fig. 3.11. In these

figures, the contour plots of the bulk surfactant concentration are plotted at various time
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frames. As can be seen in these figures, the spherical symmetry of the bulk surfactant

concentration contours are almost perfect and they continue until the propogation of the

diffusive effect of the bulk surfactant arrives at the solid boundary of the cylindirical tube.

This spherical symmetry indicates the accuracy of the computational results.

Bulk surfactant concentration profiles along the horizontal plane passing through the

center of the computational domain are plotted in Fig. 3.12 and compared with the analytical

solution. As can be seen in this figure, computational results match very well with the

analytical solution except for the regions very close to the drop tip and the east boundary

of the domain. In the region near the drop interface, bulk surfactant concentration gradient

variations are very severe leading to large numerical errors, and in the regions very close to

the east solid boundary of the domain, analytical solution is not valid so that it differs from

the numerical solution at this region.

Furthermore surfactant concentration profiles on the drop interface at various time

frames are compared with the analytical solution in Fig. 3.13. Although some oscilla-

tions are observed as the time increases at the computationally found interface surfactant

concentrations, numerical solutions are very close to the analytical solutions.

Finally a grid convergence test is carried out for the surface concentration with adsorp-

tion. As shown in Fig. 3.14, as the grid is refined from 16× 32 to 128× 256, the solution for

the surfactant concentration at the interface Γ is seen to converge to the analytical solution

given by Eq. (3.13).
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Figure 3.11: Diffusion test for the bulk surfactant concentration. Bulk surfactant concen-
tration contours at t∗ = 0.0037, t∗ = 0.4875, t∗ = 1.3312 and t∗ = 3.1125. Time progress
from left to right and top to bottom.
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Figure 3.12: Diffusion test for the bulk surfactant concentration. Bulk surfactant concen-
tration profiles at t∗ = 0.0037, 0.0637, 0.4875, 1.3312 and 3.1125 .
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Figure 3.13: Diffusion test for the bulk surfactant concentration. Drop interface surfactant
concentration profiles at t∗ = 0.4875, 1.3312 and 3.1125 .
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Figure 3.14: Convergence test for surface concentration with adsorption for a stationary
drop in a tube. Drop interface surfactant concentration profiles for various grid resolutions
at t∗ = 0.4875.

3.5 Marangoni Effect Test

In order to investigate the Marangoni effect, a simple test case proposed by by Zhang et

al. [42], is performed. In this test case, an initially spherical drop is considered with a

nonuniformly distributed surfactant concentration Γ given by

Γ = Γo

(

1 + tanh(4(
θ

π
− 0.5))

)

. (3.14)

Due to the nonuniform distribution of surfactant over the interface, surface tension σ is also

distributed nonuniformly and depending on the surfactant concentration by the nonlinear

equation of state, i.e., Langmuir equation of state given by

σ = max

(

σmin, σs[1 + E(ln(1 − Γ

Γ∞
)]

)

, (3.15)

where σmin is the minimum surface tension value, σs is the surface tension for the clean

interface, E is the elasticity number given by E = RTΓ∞

σs
and Γ∞ is the maximum surfactant

concentration for the surfactant, respectively. The first term at the right hand side of
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Eq. (3.15) represents the contribution of the initial surface tension and the second term

represents the contribution of the variation of surfactant concentration.

Initially, bubble and the bulk phase are quiescent. There is no surfactant transfer from

bulk fluid to the bubble surface, i.e., source term is turned off, and all diffusive terms

are neglected. Because of the variation of the surface tension along the interface, there

is a Marangoni effect which causes a flow away from regions of low surface tension. In

computations, parameters are chosen same as those of Zhang et al. [42] used, i.e., R = 0.01

m, L = 0.03 m, a = 0.005 m, ρ1 = 1000 kg/m3, ρ2 = 100 kg/m3, µ1 = 0.01 Ns/m2

and µ2 = 0.001 Ns/m2 where the indices 1 and 2 represents the bulk fluid and the drop,

respectively. Also, we let σs = 2.5 × 10−6 N/m and E = 0.1, which are not stated exactly

in the study of Zhang et al. [42]. Computational domain is resolved by a uniform Cartesian

grid containing 16 × 48 grid cells.

Initially, surface concentration is maximum at the bottom of the drop, (s = 0), and zero

at the top of the drop, (s = 1) where s is the dimensionless arc length. Due to this fact,

a gradient is created which causes a Marangoni flow along the interface. As can be seen in

Fig. 3.15, this Marangoni flow sweeps the surfactant towards the upper part of the drop and

surfactant concentration at the bottom part dilutes as the time evolves. The velocity field

of the drop and the surrounding fluid is shown in Fig. 3.16. Moreover, Marangoni effect

initiates the propulsion of the drop which causes the drop to move from its initial position

as shown in Fig. 3.17.
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Figure 3.15: Evolution of the surfactant concentration over a bubble surface having an
initial nonuniform surfactant distribution at t = 0, 5, 10, 15 and 20.

0 0.5 1
0

0.5

1

1.5

2

2.5

3

r*

z*

Figure 3.16: Marangoni effect for an initially nonuniform surfactant covered bubble in a
tube. Velocity field for the bubble at t = 20.
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Figure 3.17: Marangoni effect for an initially nonuniform surfactant covered bubble in a
tube. Bubble locations at t = 0 (dotted line) and t = 20 (solid line).

Although a qualitative correspondence is found when compared with the study of Zhang

et al. [42], there is a slight difference between the surfactant concentration profiles at the

midway between the top and the bottom of the drop. This difference may arise from

the estimation of some parameter values, such as elasticity number or Reynolds number.

However our results are qualitatively in good agreement with their conclusions.
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Chapter 4

CLEAVAGE OF A VISCOUS DROP BY SURFACTANT

After validating the numerical solution algorithm for simple test cases in the previous

chapter, the method is now applied to study the cleavage of a viscous drop by surfactant

- a problem studied by Greenspan [10, 11] experimentally as a model for cytokinesis. The

problem was recently studied computationally by He and Dembo [17, 18]. This problem is

studied here using the present FD/FT method. This chapter begins with the description

of the problem including the overview of Greenspan’s oil droplet experiment and the com-

putational setup of the problem. Finally, in Section 4.2, grid convergence of the method

is examined and the results including the numerical simulations of the deformation of a

viscous droplet under the influence of a surface tension gradient generated by the release of

surfactant at the poles are presented and discussed.

4.1 Description of the Problem

4.1.1 Experimental Setup

As discussed in the Introduction, Greenspan [10, 11] proposed a model for the cytokinesis of

biological cells and showed that an oil droplet under the action of a surfactant can undergo

a considerable deformation leading, in the extreme case, to entire cleavage. There is a very

noticeable similarity in the images of droplets during the final stages of cleavage and images

of cytokinesis [14].

In the Greenspan’s experiment, as sketched in Fig. 4.1, controlled amount of the surface

active material NaOH (sodium hydroxide), was released symmetrically at the opposite poles

of an oil droplet which is neutrally buoyant in the surrounding solvent, i.e. weakly stratified

salt water solution. A wide range of oil blends were tested, however, large deformations by

the effect of surfactant were achieved in only two blends. These blends were the 2:1 mixture

of cod liver/olive and the 2:1 mixture of Gulf SAE90 (gear case lubricant)/rapeseed. The

nonuniform distribution of the surfactant causes saponification of fatty acid asters and the
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diffusion and the convection of the reaction products results in a nonuniform surface tension

distribution; high at the equator and low at the poles.

oil drop

NaOH

NaOH

salt water

Figure 4.1: A schematic representation of the Greenspan’s oil droplet experiment.

When the surfactant was released as a short burst, droplet deformed quickly in the

axial direction within one or two seconds, where the relaxation back to the original shape

was slow. In the case of the first blend, the reduction in the equatorial diameter was

approximately %50 and the droplet recovers its spherical shape when the supply of the

surfactant was removed. In the case of the second blend, deformations were larger and

very deep furrowing was observed ending with a narrow bridge connecting the two daughter

droplets which are almost spherical. This final bridge appeared to have some stability but

it was fragile and can be ruptured by external effects or in some cases, it ruptured itself

leading to a complete division. Also, the last stage of cytokinesis involves a similar narrow

bridge between daughter cells which persists for a long time [13].
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4.1.2 Computational Setup

In order to simulate the Greenspan’s oil droplet experiment, as sketched in Fig. 4.2, an

initially clean droplet of radius a is placed at the center of a cylindirical tube and on the

axis of symmetry represented by black dashed dot line extending three drop radius in the

radial direction, L = 3a, and nine drop radius in the axial direction, H = 9a. Bulk surfactant

is introduced continuously at the north and south poles of the droplet uniformly in a band

extending Ωa in the radial direction where Ω is taken 0.95 in the present computations unless

specified otherwise. The results are presented in terms of nondimensional quantitites. For

this purpose, L = a, T = µa
σs

and V = σs
µ are used as the length, time and velocity scales,

respectively. The computations are performed using a 128 × 384 uniform grid.

z
r

a H

a

L

Figure 4.2: A schematic representation of the computational setup used in the simulation
of Greenspan’s oil droplet experiment.
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4.2 Results and Discussion

In order to determine the reference case for the whole computations, a case which leads

to a clean breakup is investigated. For this purpose, a wide range of parameters including

the surface Peclet number (Pes), the bulk Peclet number (Pec), the Damkohler number

(Da), the Biot number (Bi), the elasticity number (E) and the adsorption number (k) are

considered and a clean breakup is achieved for the parameters Pes = 2000, Pec = 500,

Da = 0.0001, Bi = 15.0, E = 0.95 and k = 5.0. For this case, the drop cleavage process

is illustrated in Fig. 4.3 where the snapshots of the drop interface and the bulk surfactant

concentration contours are plotted at various time frames. The density and viscosity ratios

are set to unity and two, respectively. Also, the surfactant concentration profiles at the

drop interface is shown in Fig. 4.4 where the arc length is defined in the clockwise direction

starting from the top and is normalized by the initial perimeter of the drop. As can be

seen in Figs. 4.3 and 4.4, the surfactant concentration increases at the interface near the

north and south poles of the drop initially, then is kept on a constant value at these regions

because of the continuous supply of the surfactant at both ends of the drop. Accumulation of

surfactant at the drop poles and the surface diffusion reduces the surface tension at the poles

and causes the drop elongate in the axial direction leading the breakup of the drop into two

large and one small (satallite) droplets. However small droplets are deleted in order to avoid

the resolution problem in the current implementation. The symmetry and smoothness of

the bulk surfactant contours in Fig. 4.3 may be considered as an indication for the accuracy

of computations. These drop shapes qualitatively compare well with the oil droplet shapes

observed by Greenpsan [10]. The drop interface along with the velocity field in the vicinity

of the drop is plotted in Fig. 4.5. Note that the velocity vectors are shown on every three grid

points to obtain a better view. As can be seen in this figure, there are two stagnation points

located very close to the north and south poles of the drop. Because the surface flow advects

the surfactant towards the stagnation points, the maximum surfactant concentration at the

interface is expected to locate at these points corresponding to s = 0.17 and s = 1.55 which

can be obtained from Fig. 4.4 for t∗ = 237.5. However this claim is not quantified here.

Also, the case where the bulk surfactant concentration is applied instantaneously at the

north and south poles of the drop is simulated. As it is seen in Fig. 4.6, breakup mechanism

of the drop differs significantly from the case with the continuous supply of surfactant. Here,
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necking occurs in two regions where the daughter droplets do not preserve their spherical

shape. Surfactant concentration profiles at the interface is shown in Fig. 4.7 for this case.

As can be seen in this figure, surfactant concentration reduces at the poles of the drop as

time progresses and tends to distribute uniformly. Finally, in Fig. 4.8, the grid convergence

of the method is shown for the case where the bulk surfactant is supplied continuously to

the poles of the drop. Here, deformation is plotted for various grid resolutions between

32 × 96 and 128 × 384. The deformation is defined as

DL =
L − a

a
, (4.1)

where L is the half-length of the drop at the axial direction and a is the initial radius of

the drop. The deformation of the drop increases up to a limiting value at which the drop

breaks up. As can be seen in Fig. 4.8, the differences between deformations computed on

successive grids reduce as the grid is refined indicating the grid convergence of the method.

Note that, the case where the bulk surfactant is supplied continuously at the poles of the

drop is considered for the grid convergence test.

4.2.1 The Influence of the Surface Peclet Number

In this section, the results from a systematic investigation varying the surface Peclet number

Pes for fixed values of the rest of the parameters are presented. All numerical simulations

were started with a clean interface, i.e., no surfactant at the drop interface initially (Γ(0, s) =

0). With the onset of the surfactant supply from the north and south poles of the viscous

drop, surfactant molecules diffuse on the interface and set up a nonuniform concentration

distribution along the interface. In general, we expect that the evolution of surfactant

concentration and drop shape will be different for different surface diffusivity. Deformation

is plotted as a function of time for various surface Peclet numbers between Pes = 1.0 and

Pes = 10.0 in Fig. 4.9, continued until the breakup of the drop. The rest of the parameters

are the same as before. Unlike in the former case, deformation is defined here via the

evolution of the surface area of the drop in time in order to show the entire deformation

and given by

DA =
A − A0

A0
, (4.2)
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Figure 4.3: Cleavage of a viscous drop by surfactant. The drop interface is plotted together
with the bulk surfactant concentration contours at time frames t∗ = 0, 19.8, 74.9, 150.1,
187.5, 237.5, 287.5, 450 and 500. Time progress from left to right and top to bottom. The
bulk concentration is kept constant at the poles to simulate continuous supply of surfactant.
Grid: 128 × 384.
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Figure 4.4: Cleavage of a viscous drop by surfactant. The surfactant concentration at the
drop interface is plotted against normalized arc length. The bulk concentration is kept
constant at the poles to simulate continuous supply of surfactant.
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Figure 4.5: Velocity vectors in the vicinity of the drop. Grid : 128 × 384, t∗ = 237.5.
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Figure 4.6: Cleavage of a viscous drop by surfactant. The drop interface is plotted together
with the bulk surfactant concentration contours at time frames t∗ = 0, 19.8, 74.9, 150.1,
187.5, 237.5, 287.5, 450 and 500. Time progress from left to right and top to bottom. The
bulk concentration is applied instantaneously at the poles of the drop. Grid: 128 × 384.
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Figure 4.7: Cleavage of a viscous drop by surfactant. The surfactant concentration at the
drop interface is plotted against normalized arc length. The bulk concentration is applied
instantaneously at the poles of the drop.
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Figure 4.8: Deformation versus nondimensional time using various grid resolutions.
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where A and A0 are the surface area of the drop at the current and initial time frames,

respectively. As can be seen in this figure, drop cleavage occurs for Pes ≥ 3.0 but not for the

values below where the drop oscillates and eventually relaxes to its initial spherical shape.

For small values of Pes, surface convection of surfactant is weak compared to the surface

diffusion, so that the surface diffusivity quickly homogenizes the surfactant concentration

at the drop interface before the drop breaks up. In Fig. 4.10, snapshots of drops taken at

various times for Pes = 1.0 and Pes = 4.0. As can be seen in these snapshots, the drop

deforms in a damped oscillatory motion and eventually relaxes back to a spherical shape in

the case of Pes = 1.0, while the drop tends to go into a complete cleavage for Pes = 4.0.

Figure 4.11 shows the surfactant concentration profiles for different Pes at a fixed time.

As Pes increases, surface diffusivity weakens and the surfactant distribution on the drop

interface is controlled by the surface convection producing large variations in surfactant

distribution leading to large deformations. Also, drop shape profiles are shown in Fig. 4.12.

As can be seen in this figure, drop with less diffusivity elongates more in the axial direction

demonstrating large surface tension gradients which tend to deform the drop more. Note

that we have performed simulations for various surface Peclet numbers ranging between

Pes = 0.1 and Pes = 8000, however, only the current results are shown due to space

considerations. For high Pes, deformations and surfactant concentration profiles are very

close to each other so they are not shown here. For low Pes, the drop continues to deform

in a damped oscillatory motion, however, the amplitude of the oscillations decreases as Pes

decreases. The latter condition arises from the quick homogenization of the surfactant at

the drop interface due to diffusion.
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breakup.
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Figure 4.10: Cleavage of a viscous drop by surfactant. The drop interface is plotted for
Pes = 1.0 and Pes = 4.0 at various time frames. On the left, the drop oscillates and
relaxes back to its initial spherical shape for Pes = 1.0 while, on the right, it breaks up for
Pes = 4.0.
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Figure 4.11: Surfactant concentration profiles at the drop interface for Pes = 1.0, Pes = 2.0,
Pes = 3.0 and Pes = 4.0 at t∗ = 247.5.
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Figure 4.12: Drop interface profiles for Pes = 1.0, Pes = 2.0, Pes = 3.0 and Pes = 4.0 at
t∗ = 247.5.
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4.2.2 The Influence of the Damkohler Number

The dimensionless parameter that governs the transport of surfactant at the bulk phase is

the Damkohler number Da, i.e., the ratio of the adsorptive and bulk diffusive fluxes. In

general, as the Damkohler number is increased, adsorption-desorption process is enhanced

relative to the bulk diffusion and the mass transfer from bulk to the interface is controlled

by diffusion. The influence of the Damkohler number on drop deformation is examined in

Fig. 4.13. As can be seen in this figure, when Da = 10−3, drop acts to restore its initial

spherical shape and does not break up. On the other hand, for Da = 10−4 and Da = 10−5,

deformations are much larger and drop eventually breaks up. Although not shown here,

drop deformations for the values of Da > 10−3 preserves its oscillatory character, while for

the values of Da < 10−3, drop deformation profiles are very close to each other and break up

occurs for all cases in this range. Also, bulk surfactant concentration profiles for Da = 10−3

and Da = 10−4 in Fig. 4.14, where the dominant character of the diffusion process at the

bulk can be clearly seen for the higher value of the Damkohler number, i.e., Da = 10−3.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t*

D
A

Da = 10−3

Da = 10−4

Da = 10−5

OO

Figure 4.13: Deformation versus nondimensional time for Da = 10−3, Da = 10−4 and
Da = 10−5. The drop breaks up for Da = 10−4 and Da = 10−5, while it acts to preserve
its initial spherical shape for Da = 10−3. © denotes drop breakup.
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Figure 4.14: Cleavage of a viscous drop by surfactant. The drop interface is plotted together
with the bulk surfactant concentration contours at time frames t∗ = 0, 237.5 abd 850. Time
progress from top to bottom. (a) Da = 10−3, (b) Da = 10−4.
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4.2.3 The Influence of the Adsorption Number

The adsorption number k is the ratio of characteristic adsorption and desorption rates. As

discussed in Section 3.4, mass transfer from bulk phase to the drop interface is achieved by

an adsorption-desorption mechanism where the surfactant is soluble in the bulk phase. In

general, as the adsorption number increases, more surfactant is expected to be transferred

onto the interface resulting in more severe surface tension gradients along the interface

which may cause the drop breaks up eventually. This behaviour can be clearly seen in

Fig. 4.15 where the drop deformation is plotted against the nondimensional time for various

adsorption numbers. For the lower values of k, i.e., k = 0.1, k = 0.5 and k = 0.7, the general

trend of the drop deformation looks like damped oscillatory motion, while for the values

of the adsorption number, k > 0.7, drop breakup is observed. The oscillatory character

of the drop deformation for k = 0.5 and the cleavage of the drop for k = 5.0 are shown

in Fig. 4.16 where the drop interface is plotted at various time frames. As it is seen in

Fig. 4.16a, for k = 0.5 drop tends to recover its initial spherical shape, while for k = 5.0

drop tends to go into a breakup. Also, surfactant concentration profiles at the drop interface

is shown in Fig. 4.17. As can be seen in this figure, as the adsorption number is increased,

surfactant concentrations become higher as well as the surfactant distribution profiles at the

drop interface is more nonuniform causing large surface tension gradients. This difference in

the surfactant concentration distribution affects the drop breakup mechanisms significantly.

Figure 4.18 shows the evolution of the drop shapes until the breakup is observed for k = 0.8,

i.e., drop A, and k = 5.0, i.e., drop B. For drop A, surfactant is distributed more uniformly

compared to drop B causing drop A to elongate more in the axial direction just before the

breakup. It is interesting to note that the necking occurs in both upper and lower sides of

drop A and the breakup is achieved from these points to give three daughter droplets. In

the current simulations, all parameters except the adsorption number are taken the same

as before.
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Figure 4.15: Deformation versus nondimensional time for various adsorption numbers. The
drop breaks up for k = 0.8, k = 1.0 and k = 5.0, while it acts to preserve its initial spherical
shape for k = 0.1, k = 0.5 and k = 0.7. © denotes drop breakup.
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Figure 4.16: Cleavage of a viscous drop by surfactant. The drop interface is plotted for
k = 0.5 and k = 5.0 at various time frames. On the left, the drop oscillates and relaxes
back to its initial spherical shape for k = 0.5 while, on the right, it breaks up for k = 5.0.
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Figure 4.18: Drop breakup mechanisms at different adsorption numbers. The drop interface
is plotted for k = 0.8, i.e., drop A, and k = 5.0, i.e., drop B at various time frames.
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4.2.4 The Influence of the Biot Number

The dimensionless parameter that governs the interfacial adsorption-desorption of surfactant

is the Biot number Bi, i.e., the ratio of the characteristic sorption rate to the interfacial

convection of surfactant. In general, as the Biot number increases, the adsorption rate

relative to the surface convection becomes faster than the ratio of desorption rate to the

surface convection. In other words, surfactant supply to the poles of the drop is faster

than the removal of the surfactant from the drop interface. Therefore, large deformations

are expected for the high Biot numbers relative to low Biot numbers. In Fig. 4.19, drop

deformations are shown for different Biot numbers. As can be seen in this figure, for the

relatively small Biot numbers, drop deformations are very small and breakup is not observed.

At relatively high Biot numbers, deformation increases, even results in a breakup. Although

a wide range of parameter values for Bi is considered, only the results for Bi = 0.01,

Bi = 0.1, Bi = 1.0 and Bi = 10.0 are presented here.
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Figure 4.19: Deformation versus time for Bi = 0.01, Bi = 0.1, Bi = 1.0 and Bi = 10.0.
The drop breaks up for Bi = 1.0 and above while it oscillates and relaxes back to its initial
spherical shape for Bi = 0.1 and below. © denotes drop breakup.
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Chapter 5

CONCLUSIONS

A general computational procedure is developed here based on the finite-difference/front-

tracking (FD/FT) method [34] for simulations of interfacial flows with soluble surfactants.

The governing equations for axisymmetric geometry are solved numerically on a fixed, reg-

ular, staggered grid while the drop interface is represented by a Lagrangian grid with con-

nected marker points. Convection/diffusion equations for surfactant at the interface and in

the bulk fluid are solved fully coupled with the flow equations. The method can employ

virtually any nonlinear equation of state that relates interfacial tension to the surfactant

concentration at the interface.

The numerical algorithm is validated using several simple test cases for which analytical

solutions are available. First, a simple test case of a continuosly expanding drop interface

without the effects of the surface diffusion and source terms is considered to validate the

numerical approximation to the convective terms in the surfactant transport equation at

the interface. The numerical results are found in an excellent agreement with the analytical

solution indicating the accurate discretization of the convective terms in surfactant evolution

equation. Secondly, diffusive terms in the surfactant transport equation at the interface

are tested. For this purpose, the flow field and the source terms are turned off and let

the surfactant evolution be only due to the diffusion on the interface initially covered by

a nonuniformly distributed surfactant. The solutions for the various surface diffusivities

match very well with the analytical solutions for this test case. Thirdly, source term is

tested by considering the mass transfer from bulk to interface solely due to the adsorption-

desorption process. In this test case, the diffusive and convective terms are neglected and the

bulk surfactant is considered insoluble. Numerical and analytical solutions are compared for

different Biot numbers, i.e., different mass transfer rates. The numerical solutions converge

to the analytical solutions for relatively low Biot numbers where the time-stepping error

is small. Then, bulk surfactant diffusion and the mass transfer between the bulk and the
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drop interface is tested by considering a soluble surfactant in the bulk phase. Numerical

solutions also match very well with the analytical solutions for the evolution of surfactant

concentration in both bulk phase and the drop interface. The final test case deals with the

Marangoni effect which is proposed by Zhang et al. [42]. Although it is not possible to make

a quantitative comparison between the results because of the estimation of some parameter

values, the results are found to be qualitatively in a good agreement with their conclusions.

Then the method is applied to study the cleavage of a viscous drop by surfactant - a

problem studied by Greenspan [10, 11] experimentally as a model for cytokinesis. First a

wide range of parameters including the surface Peclet number (Pes), the bulk Peclet number

(Pec), the Damkohler number (Da), the Biot number (Bi), the elasticity number (E) and

the adsorption number (k) are considered to achieve a clean breakup. After determining

the reference case where the bulk surfactant is applied continuously from the drop poles,

it is compared with the case where the bulk surfactant is applied instantaneously from the

drop poles. It is found that the evolution of the drop shapes in the first case compare well

with the oil droplet shapes observed by Greenpsan [10]. Then the effects of the surface

Peclet number, the Damkohler number, the adsorption number and the Biot number are

investigated on the deformation and breakup of the drop individually. It is found that for the

different surface diffusivities, bulk diffusivities and mass transfer regimes, drop undergoes

large deformations even resulted with breakup or it relaxes back to its initial spherical

shape after a series of damped oscillatory deformations. Also, drop breakup mechanisms

significantly differs in different mass transfer rates. Hence, based on the present results, it is

found that the present method can describe the large deformations and breakup of droplets

along with the accurate treatment of the surface tension and bulk solubility.
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