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ABSTRACT

This thesis focuses on two well-known areas in operations research: queueing and in-

ventory management. The objective in both of these problems is to compensate the losses

caused by the mismatches that arise between supply (service) and demand processes. The

class of problems we concentrate on comprises controlled queueing systems and production/

inventory systems modeled by make-to-stock queues. In particular this thesis focuses on

three dynamic control policies: pricing control, admission control and stock rationing. As

the aim of sensitivity analysis is to understand the effects of changes in system parameters

on the optimal solution of a problem, we can understand how systems respond to these

changes by sensitivity analysis. Moreover, the insight about the system obtained by the

result of sensitivity analysis can be used in the decision procedure. Since there are only a

few studies on the effects of the system parameters on the optimal policies and the results of

sensitivity analysis are crucial to understand the behavior of the system when parameters

change, we aim to establish a general framework to perform sensitivity analysis on the opti-

mal policies of queueing and inventory control problems. Our framework generalizes several

existing results on specific models in the literature, and provides a structural methodology

to perform sensitivity analysis for any control problem considered here.
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ÖZETÇE

Bu tezde, yöneylem araştırmasının önemli konularından kuyruk ve envanter yönetimi

üzerinde çalıştık. Her iki problemde de amaç; talep ve arz süreçleri arasında ortaya çıkan

uyumsuzluǧun neden olduǧu kayıpları gidermektir. Üzerinde çalıştıǧımız problemler kuyruk

ve üretim sistemleri denetimini kapsamaktadır. Bu problemlerden özellikle fiyatlama, giriş

denetimi ve stok paylama problemleri üzerinde durduk. Duyarlılık analizinin amacı sis-

tem parametrelerinde meydana gelen deǧişikliklerin en iyi kararlar üzerindeki etkilerini

araştırmak olduǧu için bir sistemin bu tür deǧişikliklere verdiǧi tepkiyi duyarlılık analizi

sayesinde anlayabiliriz. Ayrıca, sistem hakkında kazanılan bu öngörü çeşitli karar destek

süreçlerinde de kullanılabilir. Duyarlılık analizinin sonuçlarının öneminden ve üzerinde

yapılan çalışma sayısı çok az olduǧundan, bu tezde kuyruk ve envanter denetimi prob-

lemlerinde duyarlılık analizi yapabilmek için genel bir yapı oluşturmayı hedefledik. Bu yapı

hali hazırda bulunan sonuçları genellediǧi gibi üzerinde durduǧumuz denetim problemlerinde

duyarlılık analizi yapabilmek için yapısal bir metodoloji sunmaktadır.
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Chapter 1

INTRODUCTION

This thesis focuses on two well-known areas in operations research: queueing and in-

ventory management. The objective in both of these problems is to compensate the losses

caused by the mismatches that arise between supply (service) and demand processes. To

achieve this aim, it may be desirable to employ a control on the production (service) or the

demand arrivals. As a result of the rapid evolution of information technologies, applicability

of control policies in practical problems increases, and thus control problems in queueing

and inventory systems have attracted very much attention in the past few decades. The

possibility of collecting valuable information about the demand, inventory level, etc. and

processing it in real time allows the decision makers to adjust any variable under control

dynamically. Therefore, dynamic control policies which depend on time are mostly em-

ployed in queueing and inventory problems rather than static policies which do not depend

on time.

The class of problems we concentrate on comprises controlled queueing systems and

production/inventory systems modeled by make-to-stock queues. In particular this thesis

focuses on three dynamic control policies: pricing control, admission control and stock

rationing. We view these policies as basic mechanisms for arrival and service control. In

the pricing problem, the decision maker changes the prices according to the number of the

customers or the amount of inventory in the system to adjust the load of the system for

maximizing his profit. On the other hand, he achieves the same objective by admitting or

rejecting the demand in admission control and stock rationing problems. There is a lot of

research considering different aspects of these policies including structural results.

In general, the system parameters such as service and arrival rates in production and

service systems can not be calculated exactly, and frequently these parameters are either

represented by estimators or considered as random variables. In both cases, parameters
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may change over time. As the aim of sensitivity analysis is to understand the effects of

changes in system parameters on the optimal solution of a problem, we can understand how

systems respond to these changes by sensitivity analysis. Moreover, the insight about the

system obtained by the result of sensitivity analysis can be used in the decision procedure.

Sensitivity analysis can of course be performed numerically by solving the underlying con-

trol problem several times. However, this is time consuming and requires a lot of effort.

Using our results, decision makers can directly find out the impact of changes in problem

parameters without resorting to numerical experiments. At the same time, to our knowl-

edge there are only a few and specific studies which concentrate on sensitivity analysis in

spite of its importance and value.

Since there are only a few studies on the effects of the system parameters on the optimal

policies and the results of sensitivity analysis are crucial to understand the behavior of

the system when parameters change, we aim to establish a general framework to perform

sensitivity analysis on the optimal policies of queueing and inventory control problems in

this thesis.

In order to observe the effects of the parameters on the optimal decisions, the models

that we consider have to possess some structural properties (e.g. monotonicity, concavity).

In other words, we need to show the structure of the models before performing sensitivity on

the optimal policies of these models. Puterman [42], Smith and McCradle [44], Veatch and

Wein [50], Koole [26] provide frameworks that can be used to determine the structure of op-

timal stochastic dynamic policies. We use the event-based dynamic programming technique

introduced by Koole [26] within these frameworks. In this technique, Koole establishes that

if certain event operators have some structural properties (monotonicity, concavity, convex-

ity) under given assumptions, then the value function of the system constructed by using

these operators also has the same structural properties. Our main contribution is to extend

this approach to observe the effects of the parameters on the optimal decisions. Since one

have to study the structure of a model before its sensitivity analysis, our investigation not

only introduces a general framework to perform sensitivity analysis but also examines the

structure of the models and the optimal policies.

Even though our modeling approach is fairly general, there are certain limitations. For

instance, the state space of the underlying control problem has to be one dimensional and
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the approach only extend to multi-dimensional structures under restrictive conditions. To

gain a better understanding of these limitations we also present a multi-dimensional example

in detail and explain the challenges.

The rest of the thesis is organized as follows. In Chapter 2, we provide the necessary

background and literature review on the queueing and inventory control problems.

In Chapter 3, we introduce the basic definitions of Markov Decision Processes and present

the methods used to obtain the analytical results in this thesis, e.g. event-based dynamic

programming technique, on a simplified stock rationing and replenishment problem.

In Chapter 4, we first define certain event operators which represent the events occurred

in Markovian stochastic control problems. Then, we work on whether these operators

preserve some structural properties of a function on which they are applied or not in Chapter

5. By this way, we also show that the models constructed by our operators keep the same

structural properties that the operators preserve. After that, we observe the behavior of the

operators when the system parameters change in order to use the results while investigating

the effects of system parameters on the optimal decisions.

In Chapter 6, we illustrate our framework by performing sensitivity analysis on the

existing and structurally characterized queuing and inventory control problems: dynamic

pricing, admission control and stock rationing problems. As a pricing problem, we perform

sensitivity analysis on the joint dynamic pricing and replenishment problem studied by

Gayon et. al. [20]. Then, we study the admission control problem introduced by Örmeci and

Burnetas [37]. The last problem that we work on is the stock rationing and replenishment

problem presented by Ha [22]. We not only perform sensitivity analysis on the model but

also extend it by considering batch arrivals. By these examples, we also show that our results

can be used in many real-life applications where stochastic control policies are employed.

Rental businesses, call centers, job-shop manufacturing systems, make-to-stock production

systems, airlines, hotels, tolls in high-ways are some of the example systems in which our

results can be used.

In Chapter 7, we consider a two-dimensional model as a natural extension of our study.

We determine the structure of the optimal policy of the model but due to the limitations

of our approach, we can not perform a sensitivity analysis by using our framework. This

highlights some of the difficulties that may be encountered to extend our results to general
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multi-dimensional state spaces.

In the last chapter, we shortly summarize the performed study, and mention the future

research perspectives.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

As we mentioned in the previous chapter, determining the structure of the optimal policy

is necessary before performing sensitivity analysis. Therefore, we first focus on the paper

providing general framework to establish the structure of the corresponding value functions

and optimal policies. Puterman [42] considers a general methodology to prove certain struc-

tural properties of the optimal policy of an infinite horizon Markov Decision Process. In his

methodology, he provides some conditions which ensure the optimality of monotone policies.

Smith and McCardle [44] work on stochastic dynamic programs and presents several funda-

mental results to prove the existence of monotonicity and concavity of the value functions of

the models considered. They show that the value functions satisfy property P if the reward

function satisfy the property P and the transition probabilities satisfies the probabilistic

version of this property. Veatch and Wein [50] considers a general queueing control prob-

lem. They present some monotonicity theorems, and then by using these theorems they

show the optimality of transition-monotone policies. In a similar paper, Koole [26] not only

provides a general framework to prove the structural properties of value functions and opti-

mal policies but also proposes to define distinct event operators and examine the structural

properties of the operators rather than the whole value function because he shows that if

the event operators preserve some structural properties then the value function which is the

combination of these operators will also satisfy the same properties.

After the papers on the structural analysis, we now review the limited number of papers

which concentrate on the effects of the changes in the parameters on the optimal policies.

One of the papers including a complete sensitivity analysis is Ku and Jordan [27]. In

this study, they consider an admission control problem of two multi-server loss queues in

series with two different demand classes. They show that under appropriate conditions the

optimal admission policy maximizing the expected total discounted reward over an infinite
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horizon is given by a switching curve. They also characterize the form and shape of this

curve and its variation according to system parameters.

Ziya et. al [54] study the static pricing problem of a single-server queueing system with

finite waiting room capacity. They observe the effects of the customer willingness to pay,

the system parameters (service and arrival rates), and the waiting room capacity on the

optimal static pricing policies. Although it contains a complete sensitivity analysis, this

study is not directly in our scope because we only focus on dynamic control policies in our

study.

Another extensive sensitivity analysis is performed by Gans and Savin [19] for a joint

admission and dynamic pricing problem of a multi-server loss system. In this paper, they not

only establish the structure of the optimal policies maximizing the expected long-run average

reward but also investigate the effects of the parameters on these policies. The problem

in this study can be modeled by using the operators that we introduce in the subsequent

chapters, and the results of the original model and our redefined model coincide. Moreover,

in the redefined model, one can additionally observe the effects of the number of servers on

the optimal policies. Hence, [19] is a specific case of our general framework.

The last papers that we review as a sensitivity analysis are Aktaran-Kalaycı and Ayhan

[1] and Çil et.al. [7]. Both of the studies consider a dynamic pricing problem of a multi-

server queueing system with infinite waiting room capacity and examine the effects of the

parameters on the optimal prices. The models in these two independent studies are the

same, and the only slight difference between them is that the objective is maximizing the

expected total discounted and long-run average profit in [7] whereas the objective is only

maximizing the expected long-run average profit in [1]. As [19], [1] and [7] can be modeled

by using our operators, and thus they are also specific cases of our general framework.

In the remaining part of the literature review, we focus on pricing control, admission

control and rationing policies which are studied in the literature. Pricing, admission and

rationing problems have been studied since 1960s, and for comprehensive reviews, we refer

to Stidham [47], Altman [2], Bitran and Caldentey [5], Yano and Gilbert [53], Chan et. al.

[9], and Elmaghraby and Keskinocak [15] as a summary of the research papers on these

control problems which covers different aspects of the problems. The main difference of

the following research and our thesis is that none of them consider a complete sensitivity
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analysis (both theoretical and numerical). Moreover, some of them can be modeled by using

our operators, and therefore they are specific cases of our framework.

2.2 Pricing Control Problem

The pricing control problem has been studied by many researchers in both queueing and

inventory literature. In the queueing context, Naor [36] is the first to investigate the pricing

problem by presenting quantitative arguments based on a single server queueing system

with finite waiting room capacity. Then, Knudsen [25] extends Naor’s study to multiserver

queuing systems. The major difference between these two studies and our framework is

that the objective of the problem is to find the optimal static pricing policy in both of these

studies.

On the other hand, there is also some research on the dynamic pricing problem of

queueing systems. Low [31] first focuses on the dynamic pricing problem of a multiserver

queue with finite waiting room capacity. In this study, he proves the monotonicity of

the optimal prices in the state of the system. He then extends his results to multiserver

queue with infinite waiting room capacity [32]. Paschalidis and Tsitsiklis [41] consider the

pricing problem of a service provider, which provides access to communication network,

by modeling the problem as a dynamic pricing problem of multiserver loss system with N

different customers. As an important result, they show the monotonicity of the optimal

prices in the number of customers in the system. Another dynamic pricing problem is

introduced by Chen and Frank [10]. They consider a queuing system where a monopolist

can see the length of the queue and charges a fee depending on the number of customers in

the system. They prove the concavity of the expected total discounted reward and establish

the existence of monotone optimal prices. Moreover, they investigate the effects of the

arrival rate on the optimal prices through a numerical example. All of the above studies are

specific cases of our general framework because they can be redefined by using our operators.

Therefore, it is possible to perform sensitivity analysis on their optimal policies as we will

illustrate in the subsequent chapters.

The pricing control problem is also an attractive topic in the inventory control literature.

Federgruen and Heching [16], Thomas [48], Chen and Simchi-Levi [11], and Feng and Chen

[17] examine the pricing control problem by considering various aspects of the problem
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(periodic reviews, continuous reviews, set-up costs) and present the characteristics of the

optimal policies of the corresponding models. However, only a few of these papers explicitly

model production capacity constraints that induce endogenous and random lead times. In

the periodic review case, Federgruen and Heching [16] discuss these extensions to their basic

model but their main focus is on the uncapacitated zero-lead time case.

Li [29] seems to be the first paper whose focus is a production/inventory system with

joint pricing and replenishment considerations. He considers a continuous review model

with price-sensitive demand where the cumulative production and demand are modeled by

Poisson processes with controllable intensities. The demand is a continuous function of the

price. When there is demand in excess, sales are lost. The production and holding costs are

linear and the demand intensity is controlled through the price. When the prices are set

dynamically over time, Li shows that a base-stock policy is optimal. Moreover, it is shown

that the optimal price is a non-increasing function of the inventory level. In a recent study,

Gayon et. al. [20] extend [29] by considering the demand arrivals as a Markov Modulated

Poisson process. As we focus on the joint dynamic pricing and replenishment problem in

our general framework, [29] and [20] can be modeled by using our operators. Actually, [20]

is one of the example models that we use to illustrate our general framework.

2.3 Admission Control Problem

Buffer capacity control in production and service systems addresses optimal allocation of

fixed buffer resources to different demand segments. Since this objective can be achieved

by admission control policies which determine when to accept or reject different segments,

this class of control problems has received a lot of attention in the queueing literature.

Most of the earlier studies especially focus on systems where customers arrive individ-

ually. Altman et. al. [3], Örmeci et. al. [39] and Savin et. al. [43] work on an admission

control problem in a loss system receiving single arrivals from two classes of jobs which

demand exponential services with different rates. Altman et. al. [3] show that the optimal

policies are of threshold type. Örmeci et. al. [39] and Savin et. al. [43] analyze the issue

of the preferred class. Örmeci et. al. [39] also establish the monotonicity of the thresholds

under certain conditions. Furthermore, Örmeci and van der Wal [40] extend several of these

results to systems with renewal arrivals as opposed to Poisson arrivals; in particular the ex-
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istence of optimal thresholds, and sufficient conditions to have preferred class(es). Besides

the studies on the loss system, a number of studies analyze admission control in queues

with infinite waiting room receiving single arrivals. Ghoneim and Stidham [21], Stidham

[45] and [46], Blanc et. al. [6] investigate the structure of the optimal decisions in queueing

systems with infinite waiting room capacity and prove that the optimal admission policies

are of threshold type when the customers arrive individually.

Admission control problems in queueing systems receiving batch arrivals have also been

investigated in the literature as a natural extension of the single arrivals. Moreover, consid-

ering batch arrivals allows to study the system when customers may request more than one

resources. In models with batch arrivals, either a partial acceptance policy in which some of

the jobs in a batch can be admitted while the rest are rejected or a batch acceptance policy

where the system can either admit or reject the whole batch is employed as the control

policy.

The partial acceptance policy has been studied more than the batch acceptance policy

both in queueing systems with finite and infinite waiting room capacity since the policy

has a well-behaved structure and thus it is possible to prove some structural results such as

concavity and the existence of thresholds. As an instance on systems with finite capacity,

Örmeci and Burnetas [37] consider a partial acceptance problem of a Markovian multi-server

loss system receiving jobs which arrive in different batch sizes, bring different rewards, and

demand exponential services with the same rate. They establish the existence of an optimal

sequential threshold policy with monotone thresholds. Then, Örmeci and Burnetas [38]

analyze partial acceptance policies in a multi-server loss system with two classes of customers

whose batch sizes, service times and rewards are different. There are also some studies on

the partial acceptance problem of infinite capacity queues. In [45], Stidham considers the

batch arrivals in addition to the single arrival case. He examines the structure of the partial

acceptance policy in a GI/M/1 queue and proves that the optimal policy is still threshold

policy after assuming the batch arrivals. Similar to this study, Langen [28] and Helm and

Waldmann [24] observe the partial acceptance policy in a GI/M/c queue and shows the

existence of monotone optimal decision rules. For the batch acceptance policy, Çil et. al.

[8] perform a complete study on the problem, where they show that the optimal policy keeps

some structural properties only under some specific conditions.
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As we mentioned before, in order to perform sensitivity analysis using our framework,

the optimal policy needs to have a structure. Therefore, in the scope of this thesis, we only

work on the partial acceptance policy and take [37] as an example for admission control

problems to illustrate our framework.

2.4 Stock Rationing Problem

The rationing problem appears when different customer classes whose economic importance

varies have to be satisfied from a common stock. Since demand classes have different

values, it may be more important to satisfy one class than the others in anticipation of

future demand from the more valuable classes. The basic stock rationing problem has been

studied widely in the inventory literature. Topkis [49] studies optimal ordering and rationing

policies for a single-product inventory system with several demand classes. He shows that a

base-stock policy is optimal for ordering and the optimal rationing policy reserves items in

stock for future demands of more valuable customers. Nahmias and Demmy [35] observe the

cost improvements due to stock rationing for inventory systems with two demand classes.

Cohen et. al. [12] and Frank et. al. [18] consider the rationing problem for two classes of

customers where one of the class has high priority and show the complexity of obtaining

the structure of optimal rationing policy.

In all of the above papers, one of the important characteristics of the problem, the limited

capacity of the system, is not considered. However, there is also some research that models

the limited production capacity. Ha [22], [23], and de Vèricourt et. al. [14] examine the

inventory systems with limited production capacity by employing queueing based models.

Ha [22] considers the stock rationing problem in a make-to-stock production system with

several demand classes and lost sales and characterizes the optimal policy. After that, Ha

[23] studies the rationing problem in a make-to-stock system with two demand classes where

unsatisfied demand are back-ordered. In this study, Ha can not obtain a general structure

for the optimal policy. However, de Vèricourt et. al. [14] complete the characterization of

the optimal policy for the two demand class rationing problem and extend the model in

[23] by considering multiple-demand classes. In the scope of this thesis, we concentrate on

the stock rationing problem with limited capacity and lost sales. Thus, we study the model

introduced in [22] as an example rationing problem.
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Chapter 3

MARKOV DECISION PROCESSES

3.1 Introduction

In this chapter, we present the approach we will use in subsequent chapters to construct

and analyze Markov Decision Process optimality equations for certain systems with pricing,

admission, rationing and replenishment decisions. Markov Decision Processes (MDP) are

used to model the systems where decisions are made sequentially under uncertainty, and the

MDP models provide the opportunity to compare the immediate gain of current decisions

and the possible outcomes of future decision making opportunities [42].

The modern study of stochastic sequential decision problems begins with Wald’s work on

sequential statistical problems during the Second World War. He later published his stud-

ies in his book [51]. Also, Pierre Massé, minister in charge of French electrical planning,

introduced many of the basic concepts in his analysis of water resource management models

(1946). Many investigators studied sequential problems after the works of these two pio-

neers, and Bellman introduced the common ingredients to these problems as states, actions,

transition probabilities, and developed the fundamental equations to determine the optimal

policies [4]. He is considered as the first one to develop the mathematical foundations of

dynamic programming.
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3.2 Markov Decision Problems

In this section, we introduce the basic properties of the Markovian Decision problems that

we considered in the scope of this thesis. In Markov Decision problems, the decision maker

has to choose an action to influence the future performance of the system at some time

points which are called decision epochs. The set of decision epochs can be either discrete or

continuous. If it is discrete, then the decisions are made at each decision epoch; otherwise

the decisions could be made at random points in time when certain events occur, at the time

chosen by the decision maker, or continuously. In the problems discussed in this thesis, the

decisions are made at random points of time when certain events as arrivals, replenishments,

service completions or environment state changes occur. Therefore, the Markov Decision

problems that we analyzed can be described by the following five elements:

1. SS is the set of all possible states of the system.

2. A is the set of allowable actions a decision maker can choose at each decision epoch.

A = ∪s∈SSAs where As is the set of allowable actions for each state s. It is assumed

that SS and A do not vary with time.

3. Ct(i, a) (W t(i, a)) is the immediate cost incurred (reward received) and ct(i, a) (wt(i, a))

is the cost (reward) rate imposed from time t until the next transition occurs when

action a is chosen at state i at time t. That is, if a transition occurs after T units,

then the total cost incurred is given by Ct(i, a) + Tct(i, a). Ct(i, a) (W t(i, a)) and

ct(i, a) (wt(i, a)) together constitute the cost (reward) structure of the model.

4. Pijt(a) is the probability the next state will be j when the initial state is i and action

a is chosen at time t.

5. F t
ij(T |a) is the probability that the transition from i to j will occur before T time

units when action a is chosen at time t.

In the problems considered here, it is assumed that the costs (rewards), transition prob-

ability and transition time distributions are independent of time. Therefore, we drop the
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superscript “t” hereafter. The performance criterion for optimality can be either the dis-

counted cost (reward) over an infinite horizon or the long-run average cost (reward) crite-

rion. The objective of the Markov Decision problem may be minimizing the expected total

discounted cost over an infinite horizon (maximize the expected total discounted reward);

or minimizing the expected long-run average cost (maximize the expected long-run average

reward). In all of the problems studied in this thesis, the objective is to maximize the profit.

Thus, we will focus on maximization problems in all of the MDP formulations presented.

If the discounted reward criterion is used, then the optimal expected total discounted

reward with initial state i and discount rate β (β > 0) is denoted by vβ(i) and is presented

as below:

vβ(i) = max
a∈Ai

{W̄β(i, a) +
∞∑

j=0

Pij(a)
∫ ∞

0
e−βT vβ(j)dFij(T |a)}, (3.1)

where

W̄β(i, a) = W (i, a) +
∞∑

j=0

Pij(a)
∫ ∞

0

∫ T

0
e−βsw(i, a)dsdFij(T |a).

When Fij(.|a) are exponential for all i, j, a, and A, SS and the reward structure satisfy

certain conditions, it is well-known that there exists an optimal Markovian deterministic

policy which depends on the previous system states and actions through the current state

of the system (memoryless) and chooses an action with certainty (See Theorems 5.5.1,

8.1.2, 8.4.2, and Proposition 6.2.1 in Puterman). The problems we will consider in this

thesis satisfy these conditions, so we restrict ourselves to the set of Markovian deterministic

policies.

3.3 The Example Model

We will now formulate an example model to motivate the concepts of Markov decision

theory and illustrate our approach event-based dynamic programming. As an example

model, we consider a make-to-stock production system with Poisson arrivals and exponential

production times in which back-order is not allowed. We let the arrival rate be λ and the

production rate be µ. Items are produced one by one where the inventory capacity is limited

to K and the unit production cost is τ . Then, we assume that at any time, the decision

maker has to decide whether or not to satisfy an arriving demand (rationing decision) and

whether or not to produce (production decision) if the capacity is available. A reward of R



Chapter 3: Markov Decision Processes 14

is obtained if an arriving customer is satisfied and the customer is lost otherwise. Moreover,

h is the holding cost per unit per unit time.

We define the current state as X(t), the amount of inventory at time t, such that

0 ≤ X(t) ≤ K. Due to the exponential transition times, it is clear that observing only

the current state is sufficient so that we do not need to keep the historical information of

the process. Therefore, we simply denote the current state of the system as x without any

reference to the time.

Let a = (a1, a2) be the action taken at the state x such that a1 is the production decision

(0:not produce, 1:produce) and a2 is the rationing decision (0:not satisfy, 1:satisfy). Then,

if the action is (0, 0), the only possible event is that a demand arrival occurs and the

transition time will be exponential with rate λ. Since the rationing decision is not to satisfy

the demand, the next state will be (x), and no reward will be obtained. Similarly, if the

action is (0, 1), the only possible event is that a demand arrival occurs and the transition

time will be exponential with rate λ but the next state will be (x − 1) and a reward of R

is obtained as the rationing decision is to satisfy the demand. On the other hand, if the

action is (1, 0), the transition time will be exponential with rate (λ + µ) and there will be

two possible events: replenishment and an arrival with respective transition probabilities

[µ/(λ+µ)] and [λ/(λ+µ)]. If a replenishment occurs before an arrival occurs, the next state

will be (x+1) and production cost τ will be incurred. Otherwise, the next state will be (x)

and no reward will be obtained as a result of rationing decision. Likewise, the next state

will be (x + 1) and production cost τ will be incurred when a replenishment occurs first if

the action is (1, 1) but the next state will be (x − 1) and a reward of R will be obtained

when an arrival occurs first.

From now on, the discount rate will be fixed and taken as β, and we drop the subscript

denoting the discount rate hereafter. Thus, the optimal expected total discounted profit

with initial inventory amount x, v(x), can be represented as:

v(x) = max{A1(x), A2(x), A3(x), A4(x)}, (3.2)
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where,

A1(x) = −
∫ ∞

0

∫ t

0
e−βshxdsλe−λtdt +

∫ ∞

0
e−βtv(x)λe−λtdt,

A2(x) = −
∫ ∞

0

∫ t

0
e−βshxdsλe−λtdt +

∫ ∞

0
e−βt[R + v(x− 1)]λe−λtdt,

A3(x) = −
∫ ∞

0

∫ t

0
e−βshxds(λ + µ)e−(λ+µ)tdt

+
µ

λ + µ

∫ ∞

0
e−βt[−τ + v(x + 1)](λ + µ)e−(λ+µ)tdt

+
λ

λ + µ

∫ ∞

0
e−βtv(x)(λ + µ)e−(λ+µ)tdt,

A4(x) = −
∫ ∞

0

∫ t

0
e−βshxds(λ + µ)e−(λ+µ)tdt

+
µ

λ + µ

∫ ∞

0
e−βt[−τ + v(x + 1)](λ + µ)e−(λ+µ)tdt

+
λ

λ + µ

∫ ∞

0
e−βt[R + v(x− 1)](λ + µ)e−(λ+µ)tdt.

When we compute the integrals, we obtain that,

v(x) = max{A1(x), A2(x), A3(x), A4(x)},
where,

A1(x) =
[ −hx

β + λ
+

λ

β + λ
v(x)

]
,

A2(x) =
[
λR− hx

β + λ
+

λ

β + λ
v(x− 1)

]
,

A3(x) =
[−µτ − hx

β + λ + µ
+

µ

β + λ + µ
v(x + 1) +

λ

β + λ + µ
v(x)

]
,

A4(x) =
[
λR− µτ − hx

β + λ + µ
+

µ

β + λ + µ
v(x + 1) +

λ

β + λ + µ
v(x− 1)

]
.

The discount rate β will be considered as the exponential failure rate where P [failure

by time t]=1 − e−βt, and P [not failure by time t]=e−βt. Thus, if the production decision

is not to produce, a = (0, 0) or a = (0, 1), the expected transition time will be [1/(β + λ)]

unit times and the probability that an arrival occurs before the exponential failure will be

[λ/(β + λ)]. Then, the expected profit will be [−hx] and [λR − hx] times the expected
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transition time if the action is (0, 0) and (0, 1) respectively. Here, λR is the revenue rate

and hx is the holding cost rate. On the other hand, if the production decision is to produce,

a = (1, 0) or a = (1, 1), the expected transition time will be [1/(β + λ + µ)] unit times

and the probability that an arrival, replenishment or exponential failure occurs first will be

[λ/(β + λ + µ)], [µ/(β + λ + µ)], and [β/(β + λ + µ)], respectively. Moreover, the expected

profit will be [−µτ − hx] times the expected transition time if the action is (1, 0) where µτ

is the production cost rate, and it will be [λR− µτ − hx] if the action is (1, 1) .

3.4 Methods of Uniformization and Value Iteration

Uniformization and value iteration are commonly used tools to determine optimal policies in

queueing and inventory control problems. These methods can also be used to establish the

structure of optimal policies of the models constructed by using the operators we introduced

and the effects of parameters on these policies. Therefore, we present the methods of

uniformization and value iteration on the example model described above in this section.

As our example model evolves as a continuous time Markov chain and it is difficult to

track the revenues in such a system, we prefer to track the expected revenues in a discrete

time equivalent of the example model. To achieve this aim, we uniformize the system by

ensuring that the long-run average of the revenues and costs earned at discrete event epochs

equals to the long-run average of revenues and costs that would have earned in continuous

time (Lippman,1975). Then, instead of analyzing the optimality equation in the previous

section, we analyze the discrete time equivalent of the system by assuming that the time

between two consecutive transitions is exponentially distributed with rate λ + µ + θ ≤ 1,

and we rescale the time by taking β + λ + µ + θ = 1. θ is the fictitious event (an event that

does not change the state of the system) rate and it is introduced to ensure that time scale

is not affected by the changes in the parameters during sensitivity analysis. To illustrate,

when we observe the effects of the arrival rate, λ, if we increase (decrease) λ, then we will

decrease (increase) θ, and we ensure that time scale remains the same. After applying the

uniformization method on the example model, the transition probabilities for the state x

depending on the action are:



Chapter 3: Markov Decision Processes 17

a = (a1, a2) a = (0, 0) a = (0, 1) a = (1, 0) a = (1, 1)

Px,x µ + λ + θ µ + θ λ + θ θ

Px,x+1 0 0 µ µ

Px,x−1 0 λ 0 λ

Pfailure β β β β

As we mentioned before, we will determine the structure of the optimal policy of a system

which operates over an infinite horizon. For this purpose, we first prove the structure of

the optimal policy with the objective of maximizing the expected total β-discounted reward

for a finite number of transitions, n. The finite horizon problems allow us to use induction

to prove the structural properties for all finite n. We denote the maximum expected total

β-discounted reward of a system starting in state x when n transitions remain by vn(x)

conferring a terminal reward of v0, and we specify the terminal reward v0 as v0(x) = 0 for

all states x. Then, we present the optimality equation of the finite horizon problem as:

vn+1(x) =





µ max{−τ + vn(x + 1), vn(x)}+ (λ + θ)vn(x) + β0− hx if x = 0

µ max{−τ + vn(x + 1), vn(x)}

+λmax{R + vn(x− 1), vn(x)}+ θvn(x) + β0− hx if 0 < x < K

(µ + θ)vn(x) + λmax{R + vn(x− 1), vn(x)}+ β0− hx if x = K

(3.3)

We use the method of value iteration to relate the finite horizon problem with the infinite

horizon problems with the objective of maximizing the discounted and the long-run average

profits. This method is widely used when the Markov Decision problem considered satisfies

the assumptions below:

1. Rewards, transition probability and transition time distributions are stationary.

2. Rewards are bounded: |W̄ (i, a)| ≤ M < ∞ for all a ∈ Ai and i ∈ SS.

3. Future rewards are discounted according to a discount factor α, with 0 ≤ α < 1.

4. SS is discrete.

5. Ai is finite for each i ∈ SS, or Ai is compact, W̄ (i, a) is continuous in a for each i ∈ SS,

and for each i, j ∈ SS, Pij(a) is continuous in a.
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Consider the real-valued functions L defined on SS. The following theorem constructs

the basis of the method of value iteration. (Proof of Theorem and Corollary could be found

in Chapter 6 of Puterman).

Theorem 1 If the above assumptions are satisfied, then there exists an optimal determinis-

tic policy d such that v∗ is the unique solution to the equation v = maxd∈D{rd + Pdv} = Lv

where L is an operator in L and D denotes the set of Markovian Decision rules.

Corollary 1 If v0 ∈ L, vn defined by equation vn+1 = Lvn converges to v∗ such that

vn+1 = sup{W̄ (i, a) +
∑

j∈SS
Pij(a)vn(j)} converges to v∗(i) for all i ∈ SS.

In our example model, the state space is finite for every value of n, the action space is

finite (a = (0, 0), a = (0, 1), a = (1, 0) or a = (1, 1)) and rewards are bounded. Therefore,

there exists an optimal deterministic policy for the finite horizon problem by Theorem 1

and vn(x) converges to v(x), the maximum expected total discounted profit for the infinite

horizon problem, by Corollary 1, i.e. v(x) = limn→∞ vn(x). Hence, the structural results

obtained for the finite horizon problem also apply for the infinite horizon discounted and

long-run average problems. Moreover, we present the optimality equation for the long-run

average case as follows, where g∗ is the optimal average gain and v′(x) is the relative value

function.

v′(x) = µ max{−τ + v′(x + 1), v′(x)}+ λmax{R + v′(x− 1), v′(x)}+ θv′(x)− hx

3.5 The Optimal Policy and Event-Based Dynamic Programming

In the inventory control problems, concavity of the value function, v(x), implies the opti-

mality of the base-stock policy where it is optimal to produce if the amount of inventory

on-hand is lower than a base-stock level and not to produce otherwise. To illustrate the

relationship between the concavity and the base-stock policy, we assume that v(x) is con-

cave in x and it is optimal to produce at the state x + 1 whereas the optimal action is not

to produce at the state x, i.e. the optimal replenishment policy is not a base-stock policy.

Then we have that:

v(x) ≥ v(x + 1)− τ,

v(x + 2)− τ ≥ v(x + 1).
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When we combine these equations, we obtain that v(x)− v(x+1) ≥ v(x+1)− v(x+2),

and it obviously contradicts with the concavity of v(x). Therefore, our assumption is not

correct, and if the value function, v(x), is concave in x, then the optimal replenishment

policy will be a base-stock policy. Hence, we focus on the concavity of the value function in

this section. We prove the concavity of v(x) by using the event-based dynamic programming

technique to illustrate how the technique can be used.

In order to prove the concavity, we first work on the finite horizon problem and show

that vn(x) is concave in x for all finite n by induction. The initial condition of the induction

(for n = 0) is obviously true since we specify the terminal reward v0 as v0(x) = 0 for

all states x. Then, we need to show that vn+1(x) is concave in x if vn(x) is concave.

To simplify the notation, we define ∆v(x) = v(x) − v(x + 1), and thus we have to prove

∆vn+1(x) ≤ ∆vn+1(x + 1), i.e. the following inequality:



µ max{−τ + ∆vn(x + 1), ∆vn(x)}
+λmax{R + ∆vn(x− 1), ∆vn(x)}

+θ∆vn(x) + h


 ≤




µ max{−τ + ∆vn(x + 2), ∆vn(x + 1)}
+λmax{R + ∆vn(x),∆vn(x + 1)}

+θ∆vn(x + 1) + h




(3.4)

In the traditional approach, we have to consider all of the possible action cases (a = (0, 0),

a = (0, 1), a = (1, 0) or a = (1, 1)) and write the above equation for each case. Hopefully,

there are only 2 production and rationing decisions but in more complicated cases there

may be more than 2 cases for each decision. For example, if there are 2 production and 5

rationing decisions then the total number of possible actions will be 10. However, production

and rationing decisions are independent. Therefore, we can work on each maximization

separately and in this case we have to deal with 7 possible cases. Using this idea, Koole [26]

propose to divide the whole value function into distinct event operators and work on these

operators rather than working on the whole function.

Now, we demonstrate how one can use the event-based dynamic programming technique

by redefining the value function of the example model as the combination of certain event
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operators. After introducing the appropriate event operators, the value function is:

vn+1(x) = TCOST (µTPRDvn(x) + λTRAT vn(x) + θTFICvn(x))

where,

TPRDv(x) = max {v(x), v(x + 1)− τ} ,

TRAT v(x) =





max {v(x), v(x− 1) + R} if x > 0

v(0) if x = 0,

TFICv(x) = v(x)

TCOST v(x) = v(x)− hx.

Then, Equation 3.4 becomes:



µ∆TPRDvn(x)}
+λ∆TRAT vn(x)}
+θ∆TFICvn(x)

+h



≤




µ∆TPRDvn(x + 1)}
+λ∆TRAT vn(x + 1)}
+θ∆TFICvn(x + 1)

+h




.

At this point, we assume that all of the operators, TPRD, TRAT , TCOST , preserve the

concavity of v(x), i.e. if v(x) is concave in x, then Tv(x) will also be concave in x for all

operators. By using this assumption, it is obvious that the first three line of the above

inequality is true, and the last line is also true since both the left and right hand sides are

equal. Thus, Equation 3.4 holds, and vn(x) is concave in x for all finite n. Furthermore,

v(x) is also concave in x because vn(x) converges to v(x) as we mentioned before. As a

direct implication of the concavity, the optimal replenishment policy is the base-stock policy

and it is optimal to satisfy the demand always when it is possible.

As in this example, it will be easy to prove that the value function of a model has some

properties, say Prop1,. . . , Propk, if all of the operators which builds the model preserve

the same properties, Prop1,. . . , Propk, of the function on which they are applied. Hence,

the most important issues are to introduce the proper event operators and prove that they

preserve certain properties. Therefore, we define some event operators to model the events

in Markovian systems and examine their structures in the subsequent chapter.
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Chapter 4

THE OPERATORS

In this chapter, we define some event operators to model certain events in Markovian

queueing and inventory systems. By using these operators, various models can be con-

structed and then the structure of the control policies such as dynamic pricing, admission

control and stock rationing can be investigated.

In the operator definition, we consider v(x) as the value function of the models and x as

the state of the system (the number of customer in the queue or the amount of inventory).

We define the following operators for one-dimensional systems in which the state space is

unbounded, i.e. systems with infinite capacity, and the objective is to maximize the profit.

However, the operators can be used for systems with finite capacity by specifying that the

operator does not change the state of the system when the system reaches its capacity, i.e.

Tv(x) = v(x) if x = K where K is the capacity of the system. Moreover, the operators

can also be used for Markov Modulated models although these models may consist of two

or more states because the environment state in Markov Modulated models is exogenous

and we do not have any control on this state. To illustrate the usage in Markov Modulated

models, let a certain operator T be defined as Tv(x) = v(x + 1), then this operator can be

used in a Markov Modulated model by redefining the operator as Tv(x, e) = v(x+1, e) where

e is the state of the exogenous environment. Our focus in this thesis is on the properties of

the operators and the value functions, not on the existence of the optimal policies and the

validity of the value iteration. In the case of a finite state and action spaces, existence and

validity are guaranteed for all models (See Puterman [42]). For the problems with infinite

state space, it is necessary to check the existence of the optimal policy and the validity of

the value iteration before using our framework.
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The operators that we consider are:

The cost operator represents the systems incurring a holding cost, h(x), which is a

function of the state of the system:

TCOST v(x) = v(x) + h(x).

The arrival operator represents the arrival of a new customer to the system, where the

arrival rate may depend on the state of the system. We denote the probability that an

arriving customer joins the system when there are x customers by the function a(x), which

is non-increasing and convex in x. Then:

TARRv(x) = a(x)v(x + 1) + [1− a(x)]v(x).

The departure operator represents the departure of an existing customer from the system,

where the service rate may depend on the state of the system. We denote the probability

of a service completion when the system has x customers by the function b(x), which is

non-decreasing and concave in x. Thus:

TDEP v(x) = b(x)v(x− 1) + [1− b(x)]v(x).

The controlled departure and the controlled production operators, TCD and TC PRD,

represent the choice of the best service rate in queuing and inventory systems, respectively.

π is the used portion of the service rate and cπ is the cost of this portion with cπ ≤ 0. We

assume that c0 = maxπ∈[0,1]cπ. Then:

TCDv(x) =





maxπ∈[0,1] {cπ + πv(x− 1) + (1− π)v(x)} if x > 0

c0 + v(x) if x = 0,

TC PRDv(x) = max
π∈[0,1]

{cπ + πv(x + 1) + (1− π)v(x)} .

The queue pricing and the inventory pricing operators, TQ PRC and TI PRC represent the

optimal price to be charged for the arriving customers in queuing and inventory systems,

respectively. FR(.) is the cumulative distribution function of the reservation price of an

arriving customer, R, where R is the maximum price a customer is willing to pay. Hence:

TQ PRCv(x) = max
p

{
F̄R(p)[v(x + 1) + p] + FR(p)v(x)

}
,

TI PRCv(x) =





max
p

{
F̄R(p)[v(x− 1) + p] + FR(p)v(x)

}
if x > 0

v(x) if x = 0,
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where F̄R(p) = 1− FR(p).

The batch admission and the batch rationing operators, TB ADM i and TB RATIOi , rep-

resent the choice of the number of the customers to be admitted from an arriving batch of

class-i customers in queuing and inventory systems, respectively. Partial admission mean-

ing that a number of customers from an arriving batch can be accepted whereas the others

are rejected is permitted. B is the size of an arriving batch, κi is the number of class-i

customers admitted from this batch, and Ri is the reward obtained by admitting one class-i

customer. Therefore:

TB ADM iv(x) = max
κi≤B

{κiRi + v(x + κi)} ,

TB RATIOiv(x) = max
κi≤min{x,B}

{κiRi + v(x− κi)} .

The fictitious, TFIC , operator represents the fictitious service completions and produc-

tions, which affect neither the state nor the reward of the system:

TFICv(x) = v(x).

The environment, TENV (j), operator represents the transition between the exogenous

environment e and the exogenous environment j in the Markov Modulated models. Then:

TENV (j)v(x, e) = v(x, j).

A number of different control problems can now be described by using combinations

of the above operators. For instance, consider the inventory control problem introduced

in Chapter 3. This problem consists of the following operators: TCOST , TC PRD where

π ∈ {0, 1} and cπ = −πτ , and TB RATIO where B = 1.

The next chapter investigates the structural properties for each of the operators intro-

duced here.
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Chapter 5

STRUCTURE OF THE OPERATORS

5.1 Introduction

In this chapter, we first prove that the operators introduced in Chapter 4 preserve some

structural properties such as monotonicity and concavity under certain assumptions. This

will enable us to conclude that the models constructed by using these operators also have the

same properties. Actually, some of our operators are similar to the operators in Koole [26]

such as arrival, departure and admission control, and Koole has already shown structural

properties of these operators. However, we generalize some of these operators: We consider

the state dependent arrival and departure rates in the arrival and the departure operators,

and the batch arrivals in the admission control operator. Therefore, we also investigate the

structure of the operators which are similar to Koole’s operators as the operators which have

not been considered before. After determining the structure of the operators, we observe

the effects of the system parameters on the operators in subsection 5.3 where we focus on

supermodularity and submodularity properties and introduce a new term that turns out to

be critical for sensitivity analysis. We named this extra term as “the extra gain”.

5.2 Structural Properties

The first property on which we focus is the monotonicity. We define monotonicity as the

value function is non-increasing in x for all states x, i.e., v(x) ≥ v(x + 1). This property

implies a positive burden of an additional customer or an additional unit of inventory in the

system. We refer to this burden as the opportunity cost of an additional customer or an

additional inventory, and denote it by ∆v(x) as ∆v(x) = v(x)−v(x+1). For most plausible

queueing systems, this burden is indeed positive. However, in inventory models, opportunity

costs are not always positive, so that and the monotonicity of the inventory operators may

not hold. Moreover, in many queuing and inventory problems, the opportunity costs affect

optimal decisions and monotonicity of the opportunity costs (e.g. concavity of the value
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function because of the maximization problem), implies the monotonicity of the optimal

policies. For instance, threshold policies are optimal in admission control problems due

to the monotonicity of opportunity costs. Therefore, we also study the monotonicity of

opportunity costs in addition to the monotonicity of the value function.

Besides monotonicity and concavity, upper and lower bounds on the opportunity costs,

∆v(x), are considered in queueing and inventory problems. The existence of upper bounds in

queueing systems implies that the opportunity cost of a new customer, ∆v(x), may be lower

than the reward of one or more demand classes for all x, and thus these classes are admitted

to the system whenever it is possible. Similarly, the existence of lower bounds in inventory

systems implies that opportunity cost of an additional inventory, ∆v(x), may be higher than

the reward of one or more demand classes for all x, and thus the demand from these classes

are satisfied whenever it is possible. Such classes are defined to be preferred classes in [43]

and [39], a terminology we adapt here. Hence, these bounds imply the existence of preferred

class(es). Because of these relationships, we investigate the upper and lower bounds on the

opportunity costs as well as the monotonicity and concavity of the value function. To denote

the bounds, we define new properties “Lower-Bounded Differences (LBD)” and “Upper-

Bounded Differences (UBD)” such that f is a LBD function if v(x)− v(x+1) ≥ LB for all

x and it is a UBD function if v(x)− v(x + 1) ≤ UB for all x, where UB, LB ∈ R.

The results on the monotonicity, concavity and bounds of the operators are presented

in the following lemma. In Lemma 1, we use a similar notation to the one in [26]: For a

certain event operator, T , Prop1, . . . , P ropk → Prop denotes that if the function v has the

properties Prop1, . . . , P ropk then Tv has the property Prop. However, while considering

the cost operator, TCOST , the holding cost h should be non-decreasing and convex to prove

the monotonicity and concavity of TCOST v, respectively. In addition, for R ≥ 0;

Non− Inc(x) : v(x) ≥ v(x + 1),

Conc(x) : ∆v(x) ≤ ∆v(x + 1),

LBD(R) : v(x)− v(x + 1) ≥ −R

UBD(R) : v(x)− v(x + 1) ≤ R

We use −R in the LBD property because in inventory models the opportunity cost of an

additional inventory may be less than 0.
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Lemma 1 • TCOST : Non−Inc(x)→ Non−Inc(x) ; LBD(R)→ LBD(R); Conc(x) →
Conc(x).

• TARR: Non − Inc(x) → Non − Inc(x) ; UBD(R) → UBD(R); Non − Inc(x),

Conc(x) → Conc(x).

• TDEP : Non − Inc(x) → Non − Inc(x) ; UBD(R) → UBD(R); Non − Inc(x),

Conc(x) → Conc(x).

• TCD : Non− Inc(x) → Non− Inc(x) ; UBD(R) → UBD(R); Conc(x) → Conc(x).

• TC PRD : LBD(R) → LBD(R); Conc(x) → Conc(x).

• TQ PRC : Non − Inc(x) → Non − Inc(x) ; UBD(R) → UBD(R); Conc(x) →
Conc(x).

• TI−PRC : LBD(R) → LBD(R); Conc(x) → Conc(x).

• TB ADM i : Non − Inc(x) → Non − Inc(x) ; UBD(R) → UBD(R); Conc(x) →
Conc(x).

• TB RATIOi : LBD(R) → LBD(R); Conc(x) → Conc(x).

• TENV (j) : Non − Inc(x) → Non − Inc(x); UBD(R) → UBD(R); LBD(R) →
LBD(R); Conc(x) → Conc(x).

• TFIC : Non−Inc(x) → Non−Inc(x) ; UBD(R) → UBD(R); LBD(R) → LBD(R);

Conc(x) → Conc(x).

The proof of the lemma is trivial for TFIC since it is the same as v(x), and the proof

for TENV (j) is obvious when we assume that v(x, e) has some structural properties for all

demand environments. The proofs of the monotonicity and LBD for TCOST are obvious

when the holding cost is assumed to be non-decreasing, and similarly the proof of the

concavity for TCOST is also trivial when h is assumed to be convex. For the remaining

operators, the proofs can be found in the Appendix.
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In the following technical remark,we discuss why TCOST does not preserve the UBD

property and the implication of this structural property.

Remark 1 Unlike monotonicity, LBD and concavity, TCOST does not preserve the UBD

property of the function on which it is applied. To illustrate, we let v(x), the value function,

be a UBD function, and then try to prove that TCOST v(x) is also a UBD function. To

achieve this aim, we have to prove that ∆v(x)−∆h(x) ≤ R is true. We know that ∆v(x) ≤ R

by our assumption, so that we need to show ∆h(x) ≥ 0, i.e. the holding cost is non-

increasing. However, a non-increasing holding cost function is not a realistic assumption

in a queueing system in which the objective is to maximize the expected profit because if the

holding cost is non-increasing in the number of customers in the system then, there will not

be a positive burden of a new customer to the system. Therefore, the cost operator does not

preserve the UBD property of v(x), and this structural property implies that there does not

exist any preferred class in queueing systems incurring holding cost.

5.3 Effects of Parameters

In the beginning of the paper, we mentioned the importance of the information about

the effects of the changes in the parameters on the optimal decisions. Therefore, in this

subsection, we first focus on the behavior of the operators when the parameters change as a

starting point of the sensitivity analysis since we use the event-based dynamic programming

technique. The parameters we examine are the service rate or the production rate, µ, the

arrival rate, λ, the number of servers, c, and the waiting room capacity (including the

servers), K.

In order to perform sensitivity analysis on the optimal policy, we increase α, the param-

eter whose effect we would like to observe, by ε and compare the opportunity costs in the

systems with parameters α and α + ε. For this purpose we use supermodularity and sub-

modularity properties. These properties are generally used in models with two dimensional

state spaces to indicate the effects of one dimension on the other one. However, here we say

that the value function, v(x), is supermodular with respect to α and x if the opportunity

cost is non-increasing in α, and it is submodular if the opportunity cost is non-decreasing

in α. Formally, Equations 5.1 and 5.2 represent the supermodularity and submodularity of

v(x), respectively, where we denote the value function of the system with parameter α + ε
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by ṽ(x).

∆v(x) ≥ ∆ṽ(x) (5.1)

∆v(x) ≤ ∆ṽ(x) (5.2)

Supermodularity and submodularity properties are not sufficient to investigate the effects

of the changes in a parameter on the opportunity cost. In particular, when we increase the

parameter α whose effects we would like to observe by ε, the occurrence rate of the event

related with the parameter increases whereas the occurrence rate of the fictitious event

decreases. Therefore, we obtain an extra term of T ṽ(x) − ṽ(x) in the optimality equation

where T is the operator related with α. We call this term as “the extra gain” in this paper.

For example, consider the example model in Chapter 3 and its optimality equation. If

the arrival rate, λ, increases by ε in this model then θ will decrease by ε to ensure that

µ + λ + θ = 1 and thus, the optimality equation becomes:

ṽ(x) = TCOST (µTPRDṽ(x) + λTRAT ṽ(x) + θTFIC ṽ(x) + ε[TRAT ṽ(x)− ṽ(x)]) whereas,

v(x) = TCOST (µTPRDv(x) + λTRAT v(x) + θTFICv(x)).

Here, the extra gain, TRAT ṽ(x) − ṽ(x), emerges as a result of an increase in the occur-

rence rate of the arrival event. While comparing the opportunity costs (∆v(x) and ∆ṽ(x))

during sensitivity analysis, it is obvious that the first three terms can be compared by us-

ing supermodularity or submodularity but we still have to deal with the remaining term,

TRAT ṽ(x)− ṽ(x) in order to complete the comparison. Therefore, we investigate the struc-

ture of this latter term besides supermodularity and submodularity properties of the other

terms.

5.3.1 Supermodularity and Submodularity

According to our literature survey, a complete study on the supermodularity and submod-

ularity of the operators we consider has not been performed before. Although Gans and

Savin [19] and Ku and Jordan [27] prove the monotonicity of optimal actions in the sys-

tem parameters for certain loss systems, they do not work on the supermodularity and

submodularity of the operators used in their models. Thus, we prove supermodularity and

submodularity of all operators in this subsection.
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While considering the service (production) rate, µ, and the arrival rate, λ, all operators

preserve supermodularity and submodularity of the value function, v(x) because the changes

in these parameters do not affect the definition of the operators.

While considering the waiting room capacity, K, TARR preserves supermodularity and

submodularity of v(x) according to the effects of K on the function a(x), join probability,

because K may affect the definition of the function a(x), and thus the definition of the arrival

operator. For instance, consider a system in which a(x) is defined as a(x) = (K −x)/K. In

this system, a(x) will be a(x) = (K + 1− x)/(K + 1) if the capacity is increased by 1. In a

system where K affects a(x), one should check whether the conditions in lemmas hold or not

to show the supermodularity and submodularity of TARRv(x). The conditions in Lemma

2, the supermodularity lemma, ensure that the join probability for each state decreases by

an increase in K and the amount of decrease in the join probability is a non-decreasing

function of the state x. In other words, these conditions imply that the load of the system

will decrease with an increasing rate if the capacity increases, and thus the opportunity cost

of a new customer will decrease. Similarly, the conditions in Lemma 3 imply that the load

of the system will increase with an increasing rate if the capacity increases, and thus the

opportunity cost of a new customer will increase.

For capacitated systems, it is specified that the operators, TQ PRC , TB ADM i and TC PRD,

do not change the state of the system when the system reaches its capacity. Therefore the

capacity, K, affects the definition of the operators. As a result of this effect, these oper-

ators can only preserve the supermodularity of the value function. The intuition behind

the non-submodular property is clear: In a queueing system with waiting room capacity

K, new arrivals are not allowed to enter the system when there are K customers in the

system whether it is optimal or not. If it is optimal to reject the arrivals, the optimal policy

does not change when the capacity increases. On the other hand, if the arrivals are rejected

because of the capacity, a new customer may be accepted when there are K customers after

an increase in the capacity. Thus, it is obvious that an increase in the capacity can not

lead to rejecting the customers who are already accepted before the capacity increases. In

other words, the opportunity cost of a new customer can not increase by an increase in the

capacity.

Since the operators TDEP , TCD, TI PRC , TB RAT i , TENV (j), TFIC and TCOST are not
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affected by an increase in the capacity, these operators preserve both supermodularity and

submodularity of the value function with respect to K and x.

The effects of the number of servers, c, is similar to the effects of K. We only examine

the effects of the number of servers on queueing related operators because multi-server sys-

tems are mostly used in queueing problems. Like the effects of K on a(x), an increase in c

affects the definition of the function b(x). Therefore, TDEP preserves supermodularity and

submodularity of the value function according to the effects of c on the function b(x). The

remaining operators, TQ PRC , TB ADM i , TDEP , TCD, TENV (j), TFIC and TCOST preserve

both supermodularity and submodularity of v(x) with respect to c and x since they are not

affected by an increase in the number of server. However, if K = c the arrival related opera-

tors, TQ PRC and TB ADM i , only preserves supermodularity of v(x) by the same intuition we

stated while considering K. We do not examine the effect of c on the controlled departure

operator, TCD, because systems constructed by using TCD are single-server systems.

We summarize our results about the effects of the parameters on the operators in the fol-

lowing lemmas. We use the same notation in Lemma 1. In addition, we define SuperM(α, x)

and SubM(α, x) to denote the supermodularity and submodularity with respect to α and

x.

The supermodularity lemma is:

Lemma 2 • TCOST :SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ, c, K}.

• TARR : Non− Inc(x), Conc(x), SuperM(α, x) → SuperM(α, x). Given that a(x) is

non-increasing in α and submodular with respect to α and x, for all α ∈ {µ, λ, c,K}.

• TDEP : Non− Inc(x), Conc(x), SuperM(α, x) → SuperM(α, x). Given that b(x) is

non-decreasing in α and supermodular with respect to α and x, for all α ∈ {µ, λ, c, K}.

• TCD : SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ,K}.

• TC PRD : SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ,K}.

• TQ PRC : SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ, c, K}.

• TI PRC : SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ,K}.
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• TB ADM i : Conc(x), SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ, c, K}.

• TB RATIOi : Conc(x), SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ, K}.

• TENV (j): SuperM(α, x) for all demand environments→ SuperM(α, x) for all demand

environments, for all α ∈ {µ, λ, c, K}.

• TFIC :SuperM(α, x) → SuperM(α, x), for all α ∈ {µ, λ, c, K}.

The submodularity lemma is:

Lemma 3 • TCOST :SubM(α, x) → SubM(α, x), for all α ∈ {µ, λ, c, K}.

• TARR : Non− Inc(x), Conc(x), SubM(α, x) → SubM(α, x). Given that a(x) is non-

decreasing in α and supermodular with respect to α and x, for all α ∈




{µ, λ, c, K} if K 6= c

{µ, λ, c} if K = c

.

• TDEP : Non − Inc(x), Conc(x), SubM(α, x) → SubM(α, x). Given that b(x) is

non-increasing in α and submodular with respect to α and x, for all α ∈ {µ, λ, c,K}.

• TCD : SubM(α, x) → SubM(α, x), for all α ∈ {µ, λ, K}.

• TC PRD : SubM(α, x) → SubM(α, x).α ∈ {µ, λ}.

• TQ PRC : SubM(α, x) → SubM(α, x), for all α ∈




{µ, λ, c} if K 6= c

{µ, λ} if K = c

.

• TI PRC : SubM(α, x) → SubM(α, x), for all α ∈ {µ, λ, K}.

• TB ADM i : Conc(x), SubM(α, x) → SubM(α, x), for all α ∈




{µ, λ, c} if K 6= c

{µ, λ} if K = c

.

• TB RATIOi : Conc(x), SubM(α, x) → SubM(α, x), for all α ∈ {µ, λ, K}.

• TENV (j): SubM(α, x) for all demand environments → SubM(α, x) for all demand

environments, for all α ∈ {µ, λ, c, K}.

• TFIC : SubM(α, x) → SubM(α, x), for all α ∈ {µ, λ, c, K}.
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5.3.2 The Extra Gain, Tv(x)− v(x)

As we mentioned before, the effect of a parameter on the opportunity cost is closely related

with the structure of the extra gain obtained by the operator related to the parameter.

Simply the relation is: If the extra gain is non-decreasing in x then the opportunity cost

will be non-increasing in the parameter and if the extra gain is non-increasing in x then the

opportunity cost will be non-decreasing in x. To illustrate this relation , let us concentrate

on the example model that we discussed in Chapter 3 and assume that all of the operators

preserve supermodularity of the value function and TRAT v(x)− v(x) is non-decreasing in x.

Then, we obtain

∆v(x) =




µ∆TPRDv(x)

+λ∆TRAT v(x)

+θ∆TFICv(x)



≥




µ∆TPRDṽ(x)

+λ∆TRAT ṽ(x)

+θ∆TFIC ṽ(x)

+ε∆[TRAT ṽ(x)− ṽ(x)]




= ∆ṽ(x)

because of the supermodularity and the structure of the extra gain: The first three lines hold

by the supermodularity and the last line holds by the monotone structure of TRAT v(x)−v(x).

As it can be easily seen, this equation implies that the opportunity cost of an additional

inventory decreases when the arrival rate increases in our example model.

The monotone structure of the extra gain depends on the characteristics of the event and

the context of the problem. In the queueing control context, the departure of an existing

customer is more valuable when there is one more customer in the system where as the

arrival of a new customer is more valuable when there is one less customer. Therefore,

Tv(x)− v(x) is non-decreasing in x for the departure operators and non-increasing in x for

the arrival related operators. However, while considering TARR, this intuition may not work

if the join probability function, a(x) is not constant because the join probability decreases

while the number of customers in the system is increasing. In other words, the system faces

conflicting effect: Since the load of the system becomes higher, the arrival of a new customer

has a positive burden on the system but a new customer also relieves this burden because

of a decrease in the join probability. Hence, we only consider the arrival operator given that

a(x) is constant while observing the structure of TARRv(x)− v(x).

On the other hand, in the inventory control context, Tv(x)−v(x) is non-decreasing in x

for the arrival related operators and non-increasing in x for the production operator because
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if there is much more inventory on-hand, then the arrival of a new customer will be more

valuable and it will not be worth producing a new product. We state the results on the extra

gain in Lemma 4. The notation is similar to Lemma 1 but in Lemma 4, Prop1, . . . , P ropk →
Propj denotes that if the function f has the properties Prop1, . . . , P ropk then Tf − f has

the property Propj . Furthermore, Non−Dec(x) represents v(x) ≤ v(x + 1).

Lemma 4 • TARR: Non − Inc(x), Conc(x) → Non − Inc(x). Given that a(x) is

constant.

• TDEP : Non− Inc(x), Conc(x) → Non−Dec(x).

• TCD : Conc(x) → Non−Dec(x).

• TC PRD : Conc(x) → Non− Inc(x).

• TQ PRC : Conc(x) → Non− Inc(x).

• TI−PRC : Conc(x) → Non−Dec(x).

• TB ADM i : Conc(x) → Non− Inc(x).

• TB RATIOi : Conc(x) → Non−Dec(x).
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Chapter 6

SENSITIVITY ANALYSIS EXAMPLES

6.1 Introduction

In this chapter, we illustrate our framework by performing sensitivity analysis on queueing

and inventory control problems that have been studied in literature. We first work on three

basic problems discussed in Lippman [30]: the admission control problem of Miller [34], the

pricing control problem of Low [31], and the service rate control problem of Crabill [13].

We redefine each of the models considered in these problems by using our operators. We

use the batch admission operator, TB ADM , in [34], the queue pricing operator, TQ PRC , in

[31], and the controlled departure operator, TCD, in [13]. At the end of this investigation,

we show that the thresholds are non-decreasing in the service rate and non-increasing in the

arrival rate, the optimal prices are non-increasing in the service rate and non-decreasing in

the arrival rate, and the optimal used portion of server is non-increasing in the service rate

and non-decreasing in the arrival rate.

Then, we concentrate on more complex and recent queueing and inventory control prob-

lems. We start with the joint dynamic pricing and replenishment problem introduced by

Gayon et. al. [20]. Then, we observe the effects of system parameters on the model

in Örmeci and Burnetas [37] where the partial acceptance problem in a multi-server loss

system with batch arrivals is considered. Finally, we extend the stock rationing problem

studied by Ha [22] and obtain new structural results and perform sensitivity analysis on the

extended model.

Since we analyze three different models, we use an index m with m ∈ {1, 2, 3} to dis-

tinguish the parameters, functions and variables defined in each model. For example, Rim

denotes the reward obtained by satisfying a class-i customer in model m.
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6.2 Pricing Control Problem

Dynamic pricing for inventory management has received a lot of attention in recent research.

Since the model introduced in [20] is one of the most recent and interesting ones that fall

into our framework, this model is the first example to illustrate the approach. Gayon et. al.

[20] consider a joint dynamic pricing and replenishment problem of a supplier who produces

a single part at a single facility. The processing time is exponentially distributed with mean

1/µ and the completed items are placed in a finished goods inventory. The supplier incurs

a unit variable cost, τ , per part and h(x), a convex function of the inventory level, is the

inventory holding cost per unit time. The demand arrivals occur according to a Markov

Modulated Poisson process (MMDP) with potential arrival rate λe depending on the state

of the demand environment e. Then, an arriving customer buys the part if his reservation

price, i.e., the maximum willingness to pay, is higher than the announced price, p, otherwise

he leaves the system. The reservation price, R, is assumed as a random variable with the

cumulative distribution function FR(.). The demand environment state is a continuous time

Markov Chain with state space E = {1, . . . , n} and transition rates qej from state e to j 6= e.

In the original model, Gayon et. al. prove that a base stock policy is the optimal production

control policy and optimal prices are non-increasing in the inventory level. Furthermore,

they numerically show that dynamic pricing is significantly more beneficial than the static

pricing only when the demand environment fluctuations are high.

We use TI PRC , TC PRD and TFIC to denote the pricing control, the production control

and the fictitious events, respectively. To use the controlled production operator, TC PRD,

we specify that π1, the used portion of the production rate in Model 1, can be either 0

(not to produce) or 1 (to produce), and cπ1 = −π1τ1, i.e., the cost of the used portion is

τ1 (unit variable cost in Model 1) if π1 = 1, and it is 0 otherwise. In addition, we use the

environment operator, TENV (j), to represent the transition between states e and j 6= e.

At any time, the decision maker has to decide whether to produce or not and choose a

price p ∈ P. P may be either discrete or continuous. When P is continuous, it is assumed

to be a compact subset of IR+. As in the original model, we assume that the arrivals occur

according to a Markov Modulated Poisson process, and denote the potential arrival rate of

the demand environment e in Model 1 by λe1. We also use the same assumption on the

reservation price as in the original model, i.e. FR(.) is the cumulative distribution function
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of the reservation price, R.

Then, the current state of the system is described by the state variable (x, e) with x as

the stock level and e as the environment state. (x, e) belongs to the state space SS1×E such

that SS1 = {x : 0 ≤ x < ∞} and E = {1, . . . , n}.
The objective of the problem is to maximize the expected total β-discounted reward over

an infinite horizon. To achieve this aim, we build the corresponding discrete-time MDP of

the model by using uniformization and normalization since the potential transition rate is

finite. Then, we assume that the time between two consecutive transition is exponentially

distributed with rate µ1 +
∑

λe1 +
∑
e

∑
j 6=e

qej + β + θ and using the appropriate time scale,

assume that µ1 +
∑

λe1 +
∑
e

∑
j 6=e

qej + β + θ = 1. We introduce the new parameter θ to

ensure that time scale remains the same after the parameters µ1 and λ change during the

sensitivity analysis. For example, if the arrival rate, λ, increases by ε then, θ will decrease

by ε and time scale will not change.

As we will describe some structural properties (concavity, supermodularity, etc.) of the

systems which operate over an infinite horizon in this study, we first prove these structural

properties with the objective of maximizing the expected total β-discounted reward for a

finite number of transitions, n. The finite horizon problems allow us to use the induction

to prove the structural properties for all finite n. We let vn
1 (x, e) be the maximum expected

total β-discounted reward of a system starting in state (x, e) with n transitions remaining

in the future, and specify the terminal function v0
1 as v0

1(x, e) = 0 for all states (x, e) to start

the induction. Then, we present the optimality equations of the finite horizon problem as:

vn
1 (x, e) = TCOST ( µ1TC PRDvn−1

1 (x, e) + λe1TI PRCvn−1
1 (x, e)

+
∑

j 6=e

qejTENV (j)v
n−1
1 (x, e) + (

∑

i6=e

λi +
∑

i6=e

∑

j 6=i

qij + θ)TFICvn−1
1 (x, e)),

where the holding cost function is h1(x, e), which is non-decreasing and convex in x.

By using the standard arguments of Markov decision theory (See Puterman [42]), the

structural results for the finite horizon problem can be extended to the infinite horizon

problem with the objective of maximizing the discounted reward as well as the expected

average reward. We denote the value function of the system for the infinite horizon expected

discounted reward criterion by v1(x, e), the gain and the relative value function of the

system for the average reward criterion by g1 and v′1(x, e), respectively. Thus, for β > 0,
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v1(x, e) = limn→∞ vn
1 (x, e) and the optimality equation for the average reward criterion is:

g1 + v′1(x, e) = TCOST ( µ1TC PRDv′1(x, e) + λe1TI PRCv′1(x, e)

+
∑

j 6=e

qejTENV (j)v
′
1(x, e) + (

∑

i6=e

λi1 +
∑

i6=e

∑

j 6=i

qij + θ)TFICv′1(x, e)).

To this end, we define the value function of the model. In order to use Lemmas 2, 3,

and 4, we have to show the basic structural properties (monotonicity, concavity) of the

value function. However, these properties have already been proven in the original model

so that, we only focus on the effects of the parameters on the opportunity cost, ∆v1(x, e),

and the optimal policy. The parameters that we consider in the sensitivity analysis are the

production rate, µ1, and the arrival rate in a demand environment k, λk1, for all k.

6.2.1 Effects of the Parameters: µ1 and λk1

Intuitively, if the production rate, µ, increases, then the system will process faster and the

opportunity cost of an additional inventory will increase because it is not necessary to keep

more inventory when the system processes faster. On the other hand, the opportunity cost

of an additional inventory decreases by an increase in the arrival rate, λ, because the higher

the arrival rate the faster the inventory on hand is consumed. Equation 5.1 and 5.2 implies

the intuitions about the effects of the arrival rate and the production rate on the opportunity

cost, respectively, and thus, we work on the supermodularity of the value function, v1(x, e),

with respect to λk1 and x, and the submodularity of v1(x, e) with respect to µ1 and x.

To prove the supermodularity and submodularity of the value function, v1(x, e), we first

prove these properties of vn
1 (x, e) for all finite n by induction. Both proofs are similar and

we only present the proof of the supermodularity of v1(x, e) with respect to λk1 and x. The

initial condition of the induction holds by the specification that v0
1(x, e) = 0 for all states

(x, e). Then, we assume that vn−1
1 (x, e) is supermodular with respect to λk1, and x, and

show the supermodularity of vn
1 (x, e) with respect to λk1 and x, for all k. Since we observe

the supermodularity for all k, we have to investigate the cases: e = k and e 6= k. For

e = k, we can write the supermodularity equation, Equation 5.1, for vn
1 (x, e) by using the
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optimality equation as follows:

µ1∆TC PRDvn−1
1 (x, e)

+λe1∆TI PRCvn−1
1 (x, e)

+
∑
j 6=e

qej∆TENV (j)v
n−1
1 (x, e)

+[
∑
i6=e

(λi1 +
∑
j 6=i

qij) + θ]∆TFICvn−1
1 (x, e)

≥

µ1∆TC PRDṽn−1
1 (x, e)

+λe1∆TI PRC ṽn−1
1 (x, e)

+
∑
j 6=e

qej∆TENV (j)ṽ
n−1
1 (x, e)

+[
∑
i6=e

(λi1 +
∑
j 6=i

qij) + θ]∆TFIC ṽn−1
1 (x, e)

+ε
[
∆TI PRC ṽn−1

1 (x)−∆ṽn−1
1 (x)

]
.

(6.1)

It is obvious that the third line is true by the assumption on vn−1
1 (x, e) and the first, the

second and the fourth lines are true due to Lemma 2. Therefore, we only need to show that

the last line is smaller than or equal to 0. As a result of Lemma 4, TI PRCf(x) − f(x) is

non-decreasing in x, i.e., ∆TI PRCf(x) −∆f(x) ≤ 0. Hence, the last line is also true and

we complete the proof for the case e = k.

Similar to the case e = k, we can write Equation 5.1 for vn
1 (x, e) where e 6= k as follows:

µ1∆TC PRDvn−1
1 (x, e)

+λe1∆TI PRCvn−1
1 (x, e)

+
∑
j 6=e

qej∆TENV (j)v
n−1
1 (x, e)

+[
∑
i 6=e

(λi1 +
∑
j 6=i

qij) + θ]∆TFICvn−1
1 (x, e)

≥

µ1∆TC PRDṽn−1
1 (x, e)

+λe1∆TI PRC ṽn−1
1 (x, e)

+
∑
j 6=e

qej∆TENV (j)ṽ
n−1
1 (x, e)

+[
∑
i6=e

(λi1 +
∑
j 6=i

qij) + θ]∆TFIC ṽn−1
1 (x, e),

(6.2)

and Equation 6.2 is true by the induction hypothesis and Lemma 2 as Equation 6.1. Thus, we

show the supermodularity of vn
1 (x, e) with respect to λk1 and x for all finite n by considering

the cases e = k and e 6= k. As a result of the relationship between the finite horizon problem

and the infinite horizon problem, v1(x, e) and v′1(x, e) are also supermodular with respect

to λk1 and x. We state the effects of the production rate and the arrival rate on the value

function and the optimal actions in the following theorem and corollary, respectively. The

proof for the effects of the parameters on the optimal actions can be found in the Appendix.

Theorem 2 In this model:

• v1(x, e) and v′1(x, e) are submodular with respect to µ1 and x.
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• v1(x, e) and v′1(x, e) are supermodular with respect to λk1 and x, whether e = k or

not.

Corollary 2 The optimal base-stock level for the demand environment e, S∗1(e), and the

optimal price for the state (x, e), p∗1(x, e), are non-increasing in µ1 and non-decreasing in

λk1, for all k.

6.3 Admission Control Problem

Admission control is one of the control problems in queueing control, and we use the model in

Örmeci and Burnetas [37] to illustrate our framework. In this paper, Örmeci and Burnetas

consider a partial acceptance problem, where some of the jobs in a batch can be admitted

while the remaining ones are rejected, in a loss system which consists of c identical parallel

servers with no waiting room and N classes of jobs. Arrivals occur according to a Poisson

process with rate µ. At each arrival epoch, a random number of jobs from each class arrive

at the system. They denote an arriving batch by j = (j1, . . . , jN ) where ji is the number

of class-i jobs in an arriving batch. The system receives a batch j = (j1, . . . , jN ) with

probability pj . A reward of Ri ≥ 0 is obtained if a class-i job is admitted and each admitted

job requires an exponential service time with rate µ. In the original model, Örmeci and

Burnetas show that it is always optimal to accept class-1 jobs and there exists an optimal

sequential threshold policy for the remaining classes if the classes are ordered with respect

to their rewards, i.e., R1 ≥ · · · ≥ RN .

Before redefining the model by using our operators, we assume that each arriving batch

consists of only one class of jobs and the probability that B class-i jobs arrive in a batch

is piB. These assumptions do not change the nature of the problem and our results about

the redefined model can also be shown for the original model in [37]. With the assumption,

we use the batch admission operator, TB ADM i , the departure operator TDEP , where the

probability of service completion is b2(x) = x/M , and the fictitious operator, TFIC to

denote the arrivals and control policy, the departures and the fictitious service completions,

respectively. The new parameter M , which is greater than all c considered during the

sensitivity analysis, is introduced to ensure that time scale remains the same after the

number of servers is changed.
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At each arrival epoch, the decision maker has to decide the number of class-i jobs to

be admitted from an arriving batch, κi2. Then, whenever a class-i customer is admitted,

a reward of Ri2 ≥ 0 is obtained. We define the state of the system as x, the number of

customers in the system, and x belongs to the state space SS2, such that SS2 = {x : 0 ≤ x ≤ c}.
Our objective in this problem is finding the optimal policy that maximizes the expected

total β-discounted reward over an infinite horizon. Therefore, we build the corresponding

discrete-time MDP of the model by using uniformization and normalization. After the uni-

formization and normalization, we assume that the time between two consecutive transition

is exponentially distributed with rate Mµ2 + λ2 + β + θ = 1.

As in the previous example model, we denote the maximum expected total β-discounted

reward of the system starting in state x after n transitions by vn
2 (x), where v0

2(x) = 0 for

all states x, the value function of the system for the infinite horizon expected discounted

reward criterion by v2(x), and the gain and the relative value function of the system for

the average reward criterion by g2 and v′2(x), respectively. Then, we present the optimality

equations of the finite horizon problem and the infinite horizon problem for the average

reward criterion as in Equations 6.3 and 6.4, respectively. Finally, by using the standard

arguments of Markov decision theory, we state that for β > 0, v2(x) = limn→∞ vn
2 (x) and

all structural results obtained for vn
2 (x) is also valid for v2(x) and v′2(x).

vn
2 (x) = Mµ2TDEP vn−1

2 (x) + λ2

N∑

i=1

∑

B

piBTB ADM iv
n−1
2 (x) + θTFICvn−1

2 (x), (6.3)

g2 + v′2(x) = Mµ2TDEP v′2(x) + λ2

N∑

i=1

∑

B

piBTB ADM iv
′
2(x) + θTFICv′2(x). (6.4)

6.3.1 Effects of the Parameters: µ2, λ2, and c

The effects of the service and arrival rates on a queueing system are the reverse of the effects

on the inventory system: The congestion in the system decreases and thus the opportunity

cost of an additional customer decreases by an increase in the service rate, µ2, whereas the

congestion and the opportunity increases by an increase in the arrival rate, λ2. Therefore,

we work on the supermodularity of v2(x) with respect to µ2 and x and the submodularity of

v2(x) with respect to λ2 and x. In addition to µ2 and λ2, we also examine the effects of the

number of servers, c. Intuitively, if the number of servers increases, then the congestion in



Chapter 6: Sensitivity Analysis Examples 41

the system will decrease since the occurrence probability of the service completion increases.

Thus, we focus on the supermodularity of the value function as in the case of the service

rate.

The proofs of the supermodularity and submodularity of the value function, v2(x), are

similar to the proof in the previous example. We first prove the properties for vn
2 (x) by

using Lemmas 2, 3, and 4 and then, extend the results for the infinite horizon problem. The

following theorem summarizes our results about the effects of the parameters on the value

function and the optimal decisions in the partial acceptance problem.

Theorem 3 In this partial acceptance problem:

• v2(x) and v′2(x) are supermodular with respect to µ2 and x.

• v2(x) and v′2(x) are submodular with respect to λ2 and x.

• v2(x) and v′2(x) are supermodular with respect to c and x.

Corollary 3 The optimal number of class-i customers to be admitted from an arriving batch

for the state x, κi
∗
2(x), is non-decreasing in the service rate and the number of servers and

non-increasing in the arrival rate.

6.4 Stock Rationing Problem

The final example we present is on the stock rationing problem of a make-to-stock production

system. As an example rationing problem to perform sensitivity analysis, we choose the

model introduced by Ha [22]. In this study, Ha considers a make-to-stock production system

that produces a single product with N demand classes and lost sales. When a demand arises,

it is either satisfied from on-hand inventory or rejected. A rejected demand is lost and a lost

sale cost of ci with c1 ≥ · · · ≥ cN is incurred. Demand arrivals occur according to a Poisson

process with rate λ and each customer requests one unit of product. The production time

is exponential with mean 1/µ. Moreover, the inventory holding cost per unit time, h, is a

non-decreasing and convex function of the on-hand inventory.

In real life applications, it is plausible that some classes of customers may demand more

than one unit of product at a time. However, as a result of the assumption that each demand
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requests one unit of product, the original model in [22] does not cover multiple demand

requests. Therefore, we not only redefine the model but also extend it by considering batch

arrivals. As in Model 2, an arriving batch consists of only one class of customers and piB

is the probability that there are B class-i customers in the batch. Furthermore, we assume

that the variable production cost is τ3, which is set to 0 in [22]. Then, we denote the arrivals

and rationing policy by TB RATIOi , the production control by TC PRD, where π3 ∈ {0, 1}
and cπ3 = −π3τ3, and the fictitious production by TFIC .

At any time, the decision maker has to decide whether to produce or not and the number

of class-i customers to be satisfied from an arriving batch, κi3. Since we concentrate on

profit maximization rather than cost minimization, we assume that a reward of Ri3 > 0 is

obtained if a class-i customer is admitted, and without loss of generality we assume that

R13 ≥ · · · ≥ RN 3

As in the previous example models, we build the discrete-time MDP of the system. We

denote the current state of the system by x, the amount of on-hand inventory, the maximum

expected total β-discounted reward of the system starting in state x with n remaining

transitions by vn
3 (x), where vn

3 (x) = 0 for all x, the value function for the expected β-

discounted criterion by v3(x), and the relative value function for the average reward criterion

by v′(x). In this setting, for β > 0, v3(x) = limn→∞ vn
3 (x) and the optimality equations

of the finite horizon problem for the expected β-discounted criterion and infinite horizon

problem for the average reward criterion are as in Equations 6.5 and 6.6.

vn
3 (x) = TCOST (µ3TC PRDvn−1

3 (x) + λ3

N∑

i=1

∑

B

piBTB RATIOiv
n−1
3 (x) + θTFICvn−1

3 ), (6.5)

g3 + v′3(x) = TCOST (µ3TC PRDv′3(x) + λ3

N∑

i=1

∑

B

piBTB RATIOiv
′
3(x) + θTFICv′3(x)), (6.6)

where the holding cost function is h3(x), which is non-decreasing and convex in x.

6.4.1 Structure of the Optimal Policy

In the original model [22], Ha proves the convexity of the value function and then show

that the optimal production control and rationing policies are of threshold type and class-1,
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which has the largest lost sale cost, is the preferred class, i.e., it is always optimal to satisfy

class-1 whenever it is possible. We investigate whether similar structures can be proven

for the extended model or not. We first concentrate on the concavity of the value function

because we seek profit maximization whereas the objective in [22] is cost minimization. To

prove the concavity v3(x), we first prove the concavity of vn
3 (x) for all finite n by induction.

The initial condition of the induction holds as a result of the specification on v0
3. Then, we

assume that vn−1
3 (x) is concave in x and show vn

3 (x) is also concave in x. In other words,

we show the following inequality is true.

µ3∆TC PRDvn−1
3 (x)

+λ3

N∑
i=1

∑
B

piB∆TB RATIOiv
n−1
3 (x)

+∆θTFICvn−1
3 (x)

+∆h3(x)

≤

µ3∆TC PRDvn−1
3 (x + 1)

+λ3

N∑
i=1

∑
B

piB∆TB RATIOiv
n−1
3 (x + 1)

+∆θTFICvn−1
3 (x + 1)

+∆h3(x + 1)

(6.7)

First three lines are true due to Lemma 1 and the last line is true by the concavity of

h3(x). Hence, vn
3 (x) is concave in x for all finite n. By using the relationship between the

finite and infinite horizon problems, v3(x) and v′3(x) are also concave in x.

Now, we state the effects of the concavity of v3(x) on the optimal actions: Define the

values S∗3 and li
∗
3 for each class-i such that S∗3 = min{x : v3(x) − v3(x + 1) > −τ3} and

li
∗
3 = max{x : v3(x−1)−v3(x) < −Ri}, where we set li

∗
3 = 0 if there is no such x. Because of

the concavity of v3(x), for all states x ≥ S∗3 , the opportunity cost of an additional inventory

exceeds the production cost, −τ3 and thus, it is not worth producing a new unit. Similarly,

for all states x ≤ li
∗
3 the optimal rationing policy is rejecting the entire batch which consists

of class-i customers. For state x = li
∗
3 + 1, we know that v(li∗3) + Ri3 ≥ v(li + 1∗3) by

the definition of li3. Therefore, satisfying one class-i customer is better than rejecting the

whole batch. Then, assume satisfying two class-i customer is better than satisfying one

customer, i.e. v(li∗3 − 1) + 2Ri3 ≥ v(li∗3) + Ri3. If we arrange this inequality, we obtain that

v(li∗3 − 1) − v(li∗3) ≥ −Ri3 which contradict with the definition of li
∗
3. Thus, the optimal

number of class-i customers to be satisfied from an arriving batch for the state x = li
∗
3 + 1,

κi
∗
3(x), is 1. When we iterate this reasoning, κi

∗
3(x) = x− li

∗
3 for the states x > li

∗
3. However,

for the states x ≥ li
∗
3 + B, κi

∗
3(x) = B since we can not satisfy more than the number of

customers in a batch. Briefly, the optimal rationing policy is to partially satisfy the demand

if li
∗
3 < x < li

∗
3 + B, and satisfy the entire batch if x ≥ li

∗
3 + B.
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Moreover, if the reward obtained by admitting a class-i batch is higher than the reward

of a class-j batch, then the optimal threshold of class-i will be lower than that of class-j as

a result of the definition of li
∗
3 and it is optimal to satisfy class-1 whenever it is possible.

The proof of the existence of the preferred class can be seen in the Appendix. The same

results are also valid for the average reward criterion. We summarizes our results on Model

3 in the following theorem.

Theorem 4 In this stock rationing problem, ∆v3(x) ≤ ∆v3(x+1) and ∆v′3(x) ≤ ∆v′3(x+1).

Corollary 4 • A base-stock policy is the optimal production control policy. S∗3 is the

critical inventory level such that it is optimal to produce if the on-hand inventory is

below S∗3 .

• The optimal rationing policy is a sequential threshold policy for each demand class,

where the optimal number of class-i customers to be satisfied from an arriving batch

for the state x, κi
∗
3(x), is as follows, κi

∗
3(x) =





min{B, x− li
∗
3} if x > li

∗
3

0 if x ≤ li
∗
3

.

• Moreover, li
∗
3’s are monotone in i and class-1 is the preferred class, i.e., lN

∗
3 ≥ · · · ≥

l1
∗
3 = 0

6.4.2 Effects of the Parameters: µ3, λ3

In this model, we examine the effects of the changes in the production rate, µ3, and the

arrival rate, λ3, on the value function and the optimal policies. As in the joint dynamic

pricing and replenishment problem in [20], the opportunity cost of an additional inventory

is non-decreasing in µ3 and non-increasing in λ3. Therefore, we work on the submodularity

of v3(x) with respect to µ3 and x and the supermodularity of v3(x) with respect to λ3 and

x. The proof of the supermodularity and the submodularity of the value function and the

proof of the effects of the parameters on the optimal actions are similar to previous proofs.

We present the results of the sensitivity analysis in the following theorem.

Theorem 5 In this model:

• v3(x) and v′3(x) are submodular with respect to µ3 and x.
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• v3(x) and v′3(x) are supermodular with respect to λ3 and x.

Corollary 5 • The optimal base-stock level, S∗3 , and the optimal rationing thresholds,

li
∗
3, are non-increasing in µ3 and non-decreasing in λ3.

• The optimal number of class-i customers to be satisfied from an arriving batch for the

state x, κi
∗
3(x), is non-decreasing in µ3 and non-increasing in λ3.
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Chapter 7

2-DIMENSIONAL MODEL

7.1 Introduction

In this section, we work on extending our findings on the sensitivity analysis of one-

dimensional models to two-dimensional models. To achieve this aim, we consider a dynamic

pricing problem of a queueing system with 2 classes of customers differing in their holding

costs. Maglaras [33] studies a similar problem by assuming multiple classes. In this study,

he can not prove the structure of the optimal policy but he determine the optimal policy

by fluid approximations.

As in one-dimension, it is essential to show the structure of the model before sensitivity

analysis. Therefore, we first focus on the structural properties of two-dimensional model

that we consider. Then, we investigate the effects of the parameters on the optimal deci-

sions. Unfortunately, we can not prove the results that we expect about the effects of the

parameters. This seems to be a shortcoming of using event-based dynamic programming.

Hence, the scope of this section is to show the limitations of our approach while considering

two-dimensional models.

7.2 The Model

We consider a single server queue with infinite waiting room capacity and 2 classes of

customers. Arrivals occur according to a Poisson process with rate λ. At each arrival epoch,

the probability that an arriving customer is a class-j customer with j = 1, 2 is pj with p1 +

p2 = 1. Whenever a class-j customer arrives, he either enters the system if his reservation

price, Rj , is higher than the announced price or leaves the system without bringing any

reward. We assumed that Rj ’s are random variables with cumulative distribution function

of FRj (.). The service times of all customers are exponentially distributed with mean 1/µ

regardless of the class of customers. Moreover, the queue owner incurs a holding cost per

unit time, hj , and without loss of generality it is assumed that h1 > h2. In this model,
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we are interested in dynamic pricing policies that maximize the total expected discounted

profit with a continuous discount rate β over an infinite horizon as well as the long run

average profit.

At any time, the decision maker has to decide which class of customer is served and

choose a price from a discrete (but arbitrarily large) set [pmin, pmax]. Under any given

feasible scheduling and pricing policy, π, the system evolves as a continuous time Markov

chain with state (X1(t), X2(t)), where Xj(t) is the number of class-j customers in the system.

Due to the Markovian property, it is clear that we observe only the current state and do

not need to refer to the time, and thus we simply denote the current state of the system by

(x1, x2), where (x1, x2) ∈ ZZ2.

In order to find the optimal policy π∗ that maximizes the total expected discounted

profit, we build the discrete time equivalent of the original system by using uniformization

and normalization. To this end, we assume that the time between two consecutive transi-

tions is exponentially distributed with rate µ + λ + θ + β, and using the appropriate time

scale, assume that µ + λ + θ + β = 1. θ is a fictitious transition (i.e. state of the system

does not change) rate and introduced to ensure that the time scale is not affected by the

changes in the parameters.

As we will describe some structural properties of a system which operate over an infinite

horizon in this example, we first prove these structural properties with the objective of

maximizing the expected total β-discounted reward for a finite number of transitions, n. The

finite horizon problems allow us to use the induction to prove the structural properties for

all finite n. To start the induction we specify the initial function v0(x1, x2) as v0(x1, x2) = 0

for all states (x1, x2). vn(x1, x2) is the maximum expected total β-discounted reward of

the system starting in state (x1, x2) with n transitions remaining in the future and the
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optimality equation of the finite horizon problem is:

vn+1(x1, x2) = µTDEP2vn(x1, x2) + λ
∑

j=1,2

pjTPRCjvn(x1, x2) + θTFICvn(x1, x2)− h1x1 − h2x2

where,

TDEP2v(x1, x2) =





max {v(x1 − 1, x2), v(x1, x2 − 1)} if x1 > 0, x2 > 0

max {v(x1 − 1, 0), v(x1, 0)} if x1 > 0, x2 = 0

max {v(0, x2 − 1), v(0, x2)} if x1 = 0, x2 > 0

v(0, 0) if x1 = 0, x2 = 0,

TPRC1v(x1, x2) = max
p

{
F̄R1(p)[v(x1 + 1, x2) + p] + FR1(p)v(x1, x2)

}
,

TPRC2v(x1, x2) = max
p

{
F̄R2(p)[v(x1, x2 + 1) + p] + FR2(p)v(x1, x2)

}
,

TFICv(x1, x2) = v(x1, x2).

By using the standard arguments of Markov Decision theory (See Puterman [42]),

there exists an optimal stationary policy for the infinite horizon problem and v(x1, x2) =

limn→∞ vn(x1, x2) whenever β > 0. v(x1, x2) is the value function of the infinite horizon

problem. Therefore, structural results obtained for vn(x1, x2) hold for v(x1, x2). Moreover,

these structural results are also true for the average reward criterion as a result of the con-

ditions introduced by Weber and Stidham [52]. The optimality equation for the average

reward criterion is as follows, where g∗ is the optimal expected revenue per unit time and

v′(x1, x2) is the relative value function:

g∗+v′(x1, x2) = µTDEP2v
′(x1, x2)+λ

∑

j=1,2

pjTPRCjv
′(x1, x2)+θTFICv′(x1, x2)−h1x1−h2x2

7.3 Structure of the Model

As in the one-dimensional models, we first focus on the monotonicity property to determine

the existence of opportunity cost. However, in two-dimensional models, we need to observe

three monotonicity properties: monotonicity in x1, monotonicity in x2 and monotonicity on

the diagonal. We denote these properties as:

Monotonicity in x1: v(x1, x2) ≥ v(x1 + 1, x2) (7.1)

Monotonicity in x2: v(x1, x2) ≥ v(x1, x2 + 1) (7.2)

Monotonicity on the diagonal: v(x1, x2 + 1) ≥ v(x1 + 1, x2) (7.3)
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Equation B.1 implies that when a new class-1 customer enters the system, the expected

discounted profit decreases. In other words, it implies a positive opportunity cost of an

additional class-1 customer. Similarly, Equation B.2 implies a positive opportunity cots of

an additional class-2 customer. Besides these equations, diagonal monotonicity, Equation

B.3, means that when a class-2 customer is changed by a class-1 customer, system incurs

a positive burden because of the higher holding cost of class-1 customers, so that this

property implies the opportunity cost of an additional expensive, class-1, customer instead

of a cheaper, class-2, customer. For the sake of simplicity, we define

∆1v(x1, x2) = v(x1, x2)− v(x1 + 1, x2),

∆2v(x1, x2) = v(x1, x2)− v(x1, x2 + 1),

∆Dv(x1, x2) = v(x1, x2 + 1)− v(x1 + 1, x2).

Then, we denote the opportunity cost of class-1 by ∆1v(x1, x2), the opportunity cost of class-

2 by ∆2v(x1, x2) and the opportunity cost of an additional expensive customer instead of a

cheaper one.

After monotonicity properties, we focus on concavity properties because concavity repre-

sents the monotonicity of opportunity costs and optimal decisions are directly related with

the monotonicity of opportunity costs as we mentioned for the one-dimensional models.

Since we have two dimensions, we work on concavity in both x1 and x2. In the following

equations, Equation 7.4 implies the concavity of v(x1, x2) in x1, i.e., the opportunity cost of

a class-1 customer is non-decreasing in x, and Equation 7.5 implies the concavity of v(x1, x2)

in x2:

∆1v(x1, x2),≤ ∆1v(x1 + 1, x2) (7.4)

∆2v(x1, x2) ≤ ∆2v(x1, x2 + 1). (7.5)

Although concavity properties are quite intuitive, it is difficult to prove these equations

directly. Therefore, we use some supporting properties in order to prove concavity. These

supporting properties are submodularity and subconcavity. The most significant advantage

of these properties is that their sum implies the concavity equations, and thus we can prove

concavity of the model by proving both submodularity and subconcavity. Here, the defini-

tion of submodularity is the same as the one we used in sensitivity analysis but it means that
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the opportunity cost of a class-1 (class-2) customer is non-decreasing in x2 (x1) rather than

a system parameter. On the other hand, subconcavity is the monotonicity of the oppor-

tunity cost on the diagonal. Since we have two classes of customers, subconcavity consists

of two conditions: The first condition says that the opportunity cost of a class-1 customer

is non-decreasing on the diagonal whereas the second condition says that the opportunity

cost of a class-2 customer is non-increasing on the diagonal. We present submodularity and

subconcavity as:

Submodularity: ∆1v(x1, x2) ≤ ∆1v(x1, x2 + 1) or ∆2v(x1, x2) ≤ ∆2v(x1 + 1, x2)

Subconcavity 1st condition: ∆1v(x1, x2 + 1) ≤ ∆1v(x1 + 1, x2)

Subconcavity 2nd condition: ∆2v(x1 + 1, x2) ≤ ∆2v(x1, x2 + 1)

The following figure illustrates the relationship between submodularity, subconcavity

and concavity:

SUBMODULARITY
Non-decreasing in x2

SUBCONCAVIT
Y

Non-d
ecr

ea
sin

g o
n d

iag
onal

C
O

N
C

A
V

IT
Y

N
o

n
-d

ec
re

as
in

g
 in

 x
1

OPPORTUNITY COST OF CLASS-1

CONCAVITY
Non-decreasing in x2

SUBCONCAVIT
Y

Non-in
cr

ea
sin

g o
n d

iag
onal

S
U

B
M

O
D

U
L

A
R

IT
Y

N
o

n
-d

ec
re

as
in

g
 in

 x
1

OPPORTUNITY COST OF CLASS-2

Figure 7.1: The relationship between submodularity, subconcavity and concavity

Before studying the whole value function, we first focus on the operators and show that

all operators preserve the monotonicity and concavity properties of a function, v(x1, x2),

on which they are applied. The proof for the fictitious operator is obvious and the proofs

for the other operators can be seen in the appendix. We present the results about the
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operators in the following lemma by using a similar notation to the previous lemmas: For

a certain event operator, T , Prop1, . . . , P ropk → Propj denotes that if the function v has

the properties Prop1, . . . , P ropk then Tv has the property Propj . We denote monotonicity

in x1, monotonicity in x2, monotonicity on the diagonal, submodularity, subconcavity 1st

condition and subconcavity 2nd by Monx1, Monx2, MonD, SubM , SubC1 and SubC2,

respectively.

Lemma 5 • TDEP2: Monx1, Monx1, MonD → Monx1, Monx1, MonD.

• TPRC1: Monx1 → Monx1 ; Monx2 → Monx2 ; MonD → MonD.

• TPRC2: Monx1 → Monx1 ; Monx2 → Monx2 ; MonD → MonD.

• TFIC : Monx1 → Monx1 ; Monx2 → Monx2 ; MonD → MonD

• TDEP2: Monx1, Monx1, MonD, SubM → SubM .

• TDEP2: Monx1, Monx1, MonD, SubM , SubC1, SubC2 → SubC1, SubC2.

• TPRC1: SubM → SubM ; SubM , SubC1, SubC2 → SubC1, SubC2.

• TPRC2: SubM → SubM ; SubM , SubC1, SubC2 → SubC1, SubC2.

• TFIC : SubM → SubM ; SubC1 → SubC1 ; SubC2 → SubC2.

7.3.1 Monotonicity of v(x1, x2)

Now, we prove the monotonicity of the value function, i.e. show that monotonicity equations,

Equation B.1, B.2 and B.3, are true for the value function, v(x1, x2). For this purpose,

we first work on the finite horizon value function, vn(x1, x2), and show the monotonicity

properties of vn(x1, x2) for all finite n by induction.

Initial condition of the induction is true because we set v0(x1, x2) = 0 for all (x1, x2).

Then, we show that vn+1(x1, x2) is monotone in x1, x2 and on the diagonal by assum-

ing vn(x1, x2) is monotone in x1, x2 and on the diagonal. Monotonicity equations for
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vn+1(x1, x2) can be written according to the optimality equation as follows, respectively:

µTDEP2vn(x1, x2)

+λ
∑

j=1,2
pjTPRCjvn(x1, x2)

+θTFICvn(x1, x2)

−h1x1 − h2x2

≥

µTDEP2vn(x1 + 1, x2)

+λ
∑

j=1,2
pjTPRCjvn(x1 + 1, x2)

+θTFICvn(x1 + 1, x2)

−h1(x1 + 1)− h2x2

µTDEP2vn(x1, x2)

+λ
∑

j=1,2
pjTPRCjvn(x1, x2)

+θTFICvn(x1, x2)

−h1x1 − h2x2

≥

µTDEP2vn(x1, x2 + 1)

+λ
∑

j=1,2
pjTPRCjvn(x1, x2 + 1)

+θTFICvn(x1, x2 + 1)

−h1x1 − h2(x2 + 1)

µTDEP2vn(x1, x2 + 1)

+λ
∑

j=1,2
pjTPRCjvn(x1, x2 + 1)

+θTFICvn(x1, x2 + 1)

−h1x1 − h2(x2 + 1)

≥

µTDEP2vn(x1 + 1, x2)

+λ
∑

j=1,2
pjTPRCjvn(x1 + 1, x2)

+θTFICvn(x1 + 1, x2)

−h1(x1 + 1)− h2x2

In all of these three equations, the last lines are true due to holdings costs, h1 and h2,

and the assumption of h1 > h2. Moreover, the first three lines are true by Lemma 5. Hence,

we show that if vn(x1, x2) has all of the three monotonicity properties, vn+1(x1, x2) will also

have these properties, and thus vn(x1, x2) is monotone in x1, x2 and on the diagonal for all

finite n. Since v(x1, x2) = limn→∞ vn(x1, x2), v(x1, x2) is also monotone in x1, x2 and on

the diagonal. The same properties are also true for v′(x1, x2), the relative value function.

Since v(x1, x2+1) ≥ v(x1+1, x2) by the monotonicity of the value function on the diagonal,

serving a class-1 customer is always more preferable than serving a class-2 customer, i.e.

class-1 has priority on service. The following theorem and corollary summarize our results

about the monotonicity of the value function and the structure of the optimal service policy.

Theorem 6 In this model, v(x1, x2) and v′(x1, x2) are non-increasing in x1, x2 and on the

diagonal.

Corollary 6 The optimal service policy is to serve class-1 first whenever there is a class-1

customer in the queue.
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Figure 7.2: The illustration of Theorem 6

7.3.2 Submodularity, Subconcavity and Concavity of v(x1, x2)

As a result of the monotonicity properties of v(x1, x2), we determine the optimal service

policy. However, we still need to determine the optimal pricing policy. Therefore, we work

on the concavity of the value function since it implies the monotonicity of the opportunity

cost, and also implies the monotonicity of the optimal prices. Instead of proving the con-

cavity of v(x1, x2), we concentrate on the submodularity and subconcavity of value function

because submodularity and subconcavity together add up to concavity. Since the proofs of

submodularity and subconcavity is so similar, we only show the proof of submodularity.

As in the previous proofs, we start with considering the finite horizon problem and prove

the submodularity of vn(x1, x2) for all finite n by induction. Initial condition, ∆1v0(x1, x2) ≤
∆1v0(x1, x2+1), is true because of the specification that v0(x1, x2) = 0 for all states (x1, x2).

Then, we assume the submodularity of vn(x1, x2) and show that of vn+1(x1, x2). We can

write the submodularity equation for vn+1(x1, x2) as:

µ∆1TDEP2vn(x1, x2)

+λ
∑

j=1,2
pj∆1TPRCjvn(x1, x2)

+θ∆1TFICvn(x1, x2)

≤
µ∆1TDEP2vn(x1, x2 + 1)

+λ
∑

j=1,2
pj∆1TPRCjvn(x1, x2 + 1)

+θ∆1TFICvn(x1, x2 + 1).

(7.6)

We know that vn(x1, x2) is monotone in x1, x2 and on the diagonal by Theorem 6, and
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assume that vn(x1, x2) is submodular as the induction hypothesis. Thus, Equation 7.6 is true

by Lemma 5 and vn(x1, x2) is submodular, i.e. ∆1vn(x1, x2) ≤ ∆1vn(x1, x2+1), for all finite

n. Then, v(x1, x2) and v′(x1, x2) are also submodular as vn(x1, x2) converges to v(x1, x2).

By a similar proof, v(x1, x2) and v′(x1, x2) satisfy both of the subconcavity properties.

Furthermore, when we add submodularity and subconcavity 1st condition, we obtain the

concavity of v(x1, x2) in x1, and similarly when we add submodularity and subconcavity

2nd condition, we obtain the concavity of v(x1, x2) in x2. As in the one-dimensional models,

monotone opportunity costs lead to monotone optimal prices in this model and we present

the structure of the optimal prices in the following theorem. Theorem 7 and Corollary 7

summarizes the structure of the value function and the optimal pricing policy, respectively.

The proof of the structure of the optimal prices can be seen in the appendix.

Theorem 7 In this model, v(x1, x2) and v′(x1, x2) satisfy submodularity, subconcavity 1st

and subconcavity 2nd conditions, and they are concave in both x1 and x2.

Corollary 7 The optimal prices for class-1 customers, p∗1(x1, x2), are non-decreasing in

x1, x2 and on the diagonal, whereas the optimal prices for class-2 customers, p∗2(x1, x2), are

non-decreasing in x1, x2 and non-increasing on the diagonal.
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Figure 7.3: Structure of the optimal prices in the 2-dimensional model
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7.4 Sensitivity Analysis

We aim to investigate the effects of changes in the system parameters, the service rate

(µ) and the arrival rate (λ), on the optimal prices in this subsection. As we did in one-

dimensional models, we compare the opportunity costs in a system with parameter α and

the opportunity costs in a system with parameter α+ ε. Intuitively, the opportunity cost of

a class-1 customer, ∆1v(x1, x2), the opportunity cost of a class-2 customer, ∆2v(x1, x2) and

the opportunity cost of an additional expensive customer instead of an additional cheap

customer, ∆Dv(x1, x2), decreases by an increase in the service rate and increases by an

increase in the arrival rate. The intuition is clear because if the system serves the existing

customers faster, then the expected average waiting time will decrease, and thus the burden

of the customers on the system will decrease. In order to represent this intuition, we define

two set of properties C1(α) and C2(α), such that:

If v(x1, x2) ∈ C1(α), then

∆1v(x1, x2) ≥ ∆1ṽ(x1, x2)

∆2v(x1, x2) ≥ ∆2ṽ(x1, x2)

∆Dv(x1, x2) ≥ ∆Dṽ(x1, x2)

If v(x1, x2) ∈ C2(α), then

∆1v(x1, x2) ≤ ∆1ṽ(x1, x2)

∆2v(x1, x2) ≤ ∆2ṽ(x1, x2)

∆Dv(x1, x2) ≤ ∆Dṽ(x1, x2),

where ṽ(x1, x2) is the value function of the system with parameter α + ε.

By using this definition, we will show that v(x1, x2) ∈ C1(µ) and v(x1, x2) ∈ C2(λ) to

prove our intuition. As we use event-based dynamic programming, we need to focus on

the operators before the whole value function and have to prove that all of the operators

preserve the same set of properties that the function on which they are applied, v(x1, x2),

keeps. However, we encounter a contradiction while working on the pricing operator.

To illustrate this contradiction, let us consider the price set {pL, pH} where FR(pL) = 1

and FR(pH)=0 and concentrate on the case where the optimal price of class-1 for the states

(x1, x2) and (x1, x2 + 1) are pL and pH , respectively, before and after an increase in the

service rate. In other words, the optimal price for the states x and x + 1 are not affected

by an increase in the service rate. This might be one of the possible cases, and in this case,
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we have that:

TPRC1v(x1, x2) = pL + v(x1 + 1, x2), (7.7)

TPRC1v(x1, x2 + 1) = v(x1, x2 + 1), (7.8)

TPRC1 ṽ(x1, x2) = pL + ṽ(x1 + 1, x2), (7.9)

TPRC1 ṽ(x1, x2 + 1) = ṽ(x1, x2 + 1). (7.10)

According to our intuition, we have v(x1, x2) ∈ C1(µ), so that we need to show if

v(x1, x2) ∈ C1(µ), then Tv(x1, x2) ∈ C1(µ) for all operators. When we specifically focus on

the second condition of C1(µ) for the pricing operator, ∆2Tv(x1, x2) ≥ ∆2T ṽ(x1, x2), by

considering our example case, we see that this condition can be written as follows by using

Equations 7.7-7.10:

v(x1 + 1, x2)− v(x1, x2 + 1) ≥ ṽ(x1 + 1, x2)− ṽ(x1, x2 + 1),

and it definitely contradicts with the third condition of the set C1(µ). Hence, we can not

prove that TPRC1 preserves all of the properties of C1(µ), and our approach, based on event-

based dynamic programming, fails during the sensitivity analysis of this model. We think

that similar problems will arise in other 2-dimensional models.

We can also illustrate the same contradiction by a numerical example. In this example,

we set the parameters as: µ = 150, λ = 100, θ = 50, p1 = 0.5, p2 = 0.5, h1 = 1, h2 = 0.8.

Moreover, we specify the price set as {100, 200} where FR(100) = 1 and FR(200)=0. To see

the effects of an increase in the service rate, we increase µ from 150 to 151.

We exhibits the result of this numerical study for the states (1, 20), (1, 21), (2, 20) and

(2, 21) in Table 7.1. The value functions and the optimal pricing policy for this states can

be seen in this table. Then, using the value functions, we calculate TPRC1v(x1, x2) values

for the states (1, 20), (1, 21), (2, 20) and (2, 21) as in Table 7.2. We also illustrate that

although the value function keeps all of the properties of the set C1(µ), TPRC1v(x1, x2)

may not have the second property of this set in Table 7.2. Hence, we can not prove the

effects of the parameters on the optimal prices by using event-based dynamic programming

technique. However, this does not mean that these effects can not be proven by another

technique because we numerically observe the monotonicity of the optimal prices in the

system parameters as in the one-dimensional models.
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v(x1, x2): value function of

the system with µ = 150

(x1, x2) 20 21

1 27120.04 27021.67

2 27020.78 26920.8

ṽ(x1, x2): value function of

the system with µ = 151

(x1, x2) 20 21

1 26944.62 26847.03

2 26846.15 26746.77

p∗1(x1, x2): optimal price for class-1

in the system with µ = 150

(x1, x2) 20 21

1 100 200

2 200 200

p∗1(x1, x2): optimal price for class-1

in the system with µ = 151

(x1, x2) 20 21

1 100 200

2 200 200

Table 7.1: Numerical results of the effects of the service rate on the value function and the
optimal prices of the example 2-dimensional model

TPRC1v(1, 20)=27120.78

TPRC1v(1, 21)=27021.67

TPRC1 ṽ(1, 20)=26946.15

TPRC1 ṽ(1, 21)=26847.03

∆2TPRC1vn(1, 20) = 99.11 ≤ ∆2TPRC1 ṽn(1, 20) = 99.12

∆1v(1, 20) = 99.26 ≥ 98.47 = ∆1ṽ(1, 20)

∆2v(1, 20) = 98.37 ≥ 97.59 = ∆2ṽ(1, 20)

∆Dv(1, 20) = 0.89 ≥ 0.88 = ∆Dṽ(1, 20).

Table 7.2: Counter example to show that TPRC1 does not preserve all of the properties of
the set C1(µ)
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Chapter 8

CONCLUSION

In the scope of this thesis, we aimed to establish a general framework to perform sensitiv-

ity analysis on a class of Markovian queueing and inventory systems. We consider dynamic

control policies employed in these systems because the applications of such policies are gain-

ing popularity both in the literature and industry. Specifically, we consider pricing control,

admission control and stock rationing problems.

Since our objective is to understand the behavior of the optimal policies when system

parameters change, we use event-based dynamic programming as an approach to prove the

structure of the models and optimal policies. To use this approach, we first define certain

event operators to represent the events occurring in Markovian queueing and inventory sys-

tems such as, arrival, service completion, replenishment, pricing, rationing, etc. Then, we

show that the operators preserve monotonicity, concavity, supermodularity and submodu-

larity properties of the function on which they are applied.

After studying the properties of individual operators, we focus on some existing queueing

and inventory problems in the literature. We first work on the joint pricing and replenish-

ment problem of a make-to-stock inventory system in which the demand arrival process is

assumed to be a Markov Modulated Poisson process. As a result of sensitivity analysis,

we establish that the optimal base-stock level and the optimal prices are non-increasing in

the production rate and non-decreasing in the arrival rate. The intuition behind this result

is: When the system can process items faster, the opportunity cost of inventory on-hand

increases, so that we do not want to produce as much as we produced before, and we en-

courage demand arrivals by decreasing the price. Similarly, when the arrival rate increases,

the opportunity cost of inventory on-hand decreases since we expect more customers. Then,

obviously, we want to produce more and increase the price to obtain more profit.

The second problem that we consider is the admission control of a queueing system with

customers arriving in batches. For this problem, we observe that the optimal number of
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customers to be admitted from an arriving batch is non-decreasing in the service rate and

non-increasing in the arrival rate. The intuition is similar to the previous one but there are

some differences since the model is a queueing system. When the service rate increases, the

opportunity cost of a new customer decreases because we can serve the existing customers

faster, and thus we can admit more customers. On the other hand, the opportunity cost of

a new customer increases by an increasing in the arrival rate since the system load increases.

Therefore, we do not want to admit customers as much as we did before.

While considering the third problem, the stock rationing problem of a make-to-stock

inventory system with multiple arrivals and lost sales, we not only perform a sensitivity

analysis but also extend the original model by allowing multiple demand requests. Since

we provide some extensions, we determine the structure of the optimal policy before the

sensitivity analysis. We establish that the optimal replenishment policy is a base-stock

policy and the optimal rationing policy is a sequential threshold policy. Then, we work on

the effects of parameters on the optimal policies. As a result, we obtain that the optimal

base-stock level and the thresholds are non-increasing in the production rate and non-

decreasing in the arrival rate. The intuition of the result is very similar to the first model.

After investigating several one-dimensional models, we consider a two-dimensional model

which is a pricing problem of a queueing system with 2 classes of customers whose holding

costs are different. We prove that the optimal prices for each class is monotone in the number

of customers in the system. However, we can not establish the structure of the optimal prices

when system parameters change. This manifests the limitation of our approach for general

multi-dimensional systems.

In conclusion, we constructed a general framework to analyze the effects of the changes

in system parameters on the optimal policies. As we illustrated, our framework can be used

to perform sensitivity analysis on a class of Markovian queueing and inventory systems. In

addition to the three models that we consider, sensitivity analysis can also be performed on

some of the papers mentioned in the literature review. Our framework generalizes several

existing results on specific models in the literature, and provides a structural methodology

to perform sensitivity analysis for any problem that can be described by the operators

described here.

A natural extension of this study is to establish a similar framework for non-Markovian
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queueing and inventory systems, especially for systems where the arrival times are generally

distributed. Since most of the structural properties preserved by Markovian systems con-

tinue to be valid for non-Markovian systems, this extension seems promising. There could

also be other interesting extensions on particular operators and different problems. For

instance, one possible path might be to investigate the effects of changes in the reservation

price distribution in pricing control problems, to allow batch production in the inventory

problems, to add perishability to the inventory models by considering inventory as decaying

over time or to assume that customers have a patience time and abandon the system if they

are not served until this time.
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Appendix A

ONE- DIMENSIONAL MODELS

A.1 Proof: Monotonicity of the Operators

In this proof, we show the monotonicity of a certain operator, T , under the assumption on

f(x). In other words, we prove the following equation for all queueing related operators

(TARR, TDEP , TCD, TQ PRC , TB ADM i) where f(x) is a non-increasing function of x. We

show all of the proofs for the incapacitated queues and note that the proofs are also valid

for the capacitated ones.

Tf(x) ≥ Tf(x + 1) (A.1)

A.1.1 Monotonicity of TARR

We can write Equation A.1 for TARR as follows by using the definition of the operator:

a(x)f(x + 1) + [1− a(x)]f(x) ≥ a(x + 1)f(x + 2) + [1− a(x + 1)]f(x + 1).

When we rearrange this equation, we obtain that,

[1− a(x)]f(x)

+a(x + 1)f(x + 1)
≥ [1− a(x)]f(x + 1)

+a(x + 1)f(x + 2)
. (A.2)

Both of the lines are true by the assumption on f(x) and thus, we complete the proof of

the monotonicity of TARRf(x). For the capacitated case, we need to observe the boundary

effects, i.e., the state x = K − 1, where K is the waiting room capacity of the system

(including the servers). For this state, a(x + 1) = 0 because the system can not admit

new arrivals when there are already K customers in the system. Therefore, the last line of

Equation A.2 becomes 0 and then Equation A.1 still holds for the capacitated case.
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A.1.2 Monotonicity of TDEP

Similar to the previous proof, we can write and rearrange Equation A.1 as follows:

b(x)f(x− 1)

+[1− b(x + 1)]f(x)
≥ b(x)f(x)

+[1− b(x + 1)]f(x + 1)
,

and the equation is true by the monotonicity of f(x). Therefore, the departure operator,TDEP f(x),

will be non-increasing in x if f(x) is non-increasing in x. Since the waiting room capacity

of the system does not affect the departures, we do not work on the proof of capacitated

case.

A.1.3 Monotonicity of TCD

Let πx and πx+1 be the optimal service rates for the states x and x + 1, respectively. Then,

we can write Equation A.1 for TCD as follows:

cπx + πxf(x− 1) + (1− πx)f(x) ≥ cπx+1 + πx+1f(x) + (1− πx+1)f(x + 1). (A.3)

By the definition of the operator and the monotonicity of f(x), we have,

cπx + πxf(x− 1) + (1− πx)f(x) ≥ cπx+1 + πx+1f(x− 1) + (1− πx+1)f(x), and

cπx+1 + πx+1f(x− 1) + (1− πx+1)f(x) ≥ cπx+1 + πx+1f(x) + (1− πx+1)f(x + 1).

When we combine these two equations, we obtain that Equation A.3 holds and thus,

TCDf(x) is non-increasing in x. As in the departure operator, we do not observe the

capacitated case.

A.1.4 Monotonicity of TQ PRC

Let px and px+1 be the optimal prices for the states x and x + 1, respectively. Then,

Equation A.1 for TQ PRC is as follows:

F̄R(px)[f(x+1)+px]+FR(px)f(x) ≥ F̄R(px+1)[f(x+2)+px+1]+FR(px+1)f(x+1) (A.4)

As in the monotonicity of the controlled departure, we have the following equations by

the definition of the operator and the monotonicity of f(x).

F̄R(px)[f(x + 1) + px] + FR(px)f(x) ≥ F̄R(px+1)[f(x + 1) + px+1] + FR(px+1)f(x)

F̄R(px+1)[f(x + 1) + px+1] + FR(px+1)f(x) ≥ F̄R(px+1)[f(x + 2) + px+1] + FR(px+1)f(x + 1).
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Then, when we combine these equations, we obtain that Equation A.4 holds and thus,

TQ PRC is non-increasing in x. The pricing operator can also be used in the capacitated

queues. In this case, we need to observe the monotonicity of the operator for the state

x = K − 1. However, since we use the optimality of px, the foregoing proof is still true for

the capacitated queues.

A.1.5 Monotonicity of TB ADM i

Let κx and κx+1 be the optimal number of class-i customers to be admitted form an arriving

batch. Then, we can write Equation A.1 for the operators as follows:

κxRi + f(x + κx) ≥ κx+1Ri + f(x + 1 + κx+1) (A.5)

Since κx is the optimal action for the state x and f(x) is non-increasing in x, we have,

κxRi + f(x + κx) ≥ κx+1Ri + f(x + κx+1), and

κx+1Ri + f(x + κx+1) ≥ κx+1Ri + f(x + 1 + κx+1).

As in the previous proofs, when we combine these equations we complete the proof.

Therefore, TB ADM if(x) is non-increasing in x if f(x) is a non-increasing function of x. As

in the pricing operator, the proof of the monotonicity for the capacitated queues are the

same as the incapacitated queues since we use the optimality of κx.

A.2 Proof: Upper-Bounded Difference, UBD

In this proof, we show that if f(x) is an UBD function then Tf(x) will also be an UBD

function for a certain event operator, T . In other words, we prove the following equation

for each operator under the assumption that f(x)− f(x + 1) ≤ R.

Tf(x)− Tf(x + 1) ≤ R (A.6)

Since the UBD property of f(x) is preserved only by the queueing related operators, we

only work on TARR, TDEP , TCD, TQ PRC and TB ADM i . As in the monotonicity proof, we

prove Equation A.6 for the incapacitated queues and then, note that the proofs are also valid

for the capacitated cases. We only focus on the arrival related operators while considering

the capacitated cases because the waiting room capacity does not affect the departures.
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A.2.1 UBD of TARR

We can write Equation A.6 for the arrival operator as follows:

a(x)f(x + 1) + [1− a(x)]f(x)

−a(x + 1)f(x + 2)− [1− a(x + 1)]f(x + 1)
≤ R. (A.7)

Since a(x) ≥ a(x + 1) by the definition of the function a and by the assumption that

f(x)− f(x + 1) ≤ R, we have,

a(x)f(x + 1) + [1− a(x)]f(x)

−a(x + 1)f(x + 2)− [1− a(x + 1)]f(x + 1)
=

a(x + 1)[f(x + 1)− f(x + 2)]

+[1− a(x)][f(x)− f(x + 1)]

≤ [1− a(x) + a(x + 1)]R

≤ R.

Thus, we complete the proof and TARRf(x)−TARRf(x+1) ≤ R if f(x)− f(x+1) ≤ R.

For the capacitated case, we observe the state x = K − 1 and for this state a(x + 1) = 0.

Therefore, [1−a(x)+a(x+1)]R is still less than or equal to R and TARRf(x)−TARRf(x+1) ≤
R is also true for the capacitated case.

A.2.2 UBD of TDEP

Equation A.6 for this operator can be written as follows:

b(x)f(x− 1) + [1− b(x)]f(x)

−b(x + 1)f(x)− [1− b(x)]f(x + 1)
≤ R. (A.8)

When we rearrange the left hand side, we obtain that,

b(x)f(x− 1) + [1− b(x)]f(x)

−b(x + 1)f(x)− [1− b(x)]f(x + 1)
=

b(x)[f(x− 1)− f(x)]

+[1− b(x + 1)][f(x)− f(x + 1)]
,

and by the definition of b(x) and the assumption on f(x),

b(x)[f(x− 1)− f(x)]

+[1− b(x + 1)][f(x)− f(x + 1)]
≤ [1 + b(x)− b(x + 1)]R ≤ R.

Therefore, Equation A.8 is true and TDEP f(x)−TDEP f(x+1) ≤ R if f(x)−f(x+1) ≤ R.
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A.2.3 UBD of TCD

Let πx be the optimal service rate for the state x. Then, we can write Equation A.6 for

TCD as follows:

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≤ R. (A.9)

As a result of the optimality of πx+1, we have that,

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≤ cπx + πxf(x− 1) + (1− πx)f(x)

−cπx − πxf(x)− (1− πx)f(x + 1)
.

By rearranging the right hand side,

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≤ πx[f(x− 1)− f(x)]

+(1− πx)[f(x)− f(x + 1)].
.

Since we assume that f(x)− f(x + 1) ≤ R, it is obvious that Equation A.9 is true and

thus, TCDf(x)− TCDf(x + 1) ≤ R.

A.2.4 UBD of TQ PRC

Let px be the optimal price for the state x. Then, Equation A.6 for TQ PRC , where R is the

maximum price, is:

F̄R(px)[f(x + 1) + px] + FR(px)f(x)

−F̄R(px+1)[f(x + 2) + px+1]− FR(px+1)f(x + 1)
≤ R. (A.10)

As in the proof of TCD, by the optimality of px+1 we have that,

F̄R(px)[f(x + 1) + px] + FR(px)f(x)

−F̄R(px+1)[f(x + 2) + px+1]− FR(px+1)f(x + 1)
≤ F̄R(px)[f(x + 1)− f(x + 2))]

FR(px)[f(x)− f(x + 1))]
.

Since we assume that f(x)−f(x+1) ≤ R, Equation A.10 is true and thus, TQ PRCf(x)−
TQ PRCf(x+1) ≤ R. In addition, we need to observe the state x = K−1 for the capacitated

queues. For this state, Equation A.10 turns out to:

F̄R(px)px + FR(px)[f(x)− f(x + 1)] ≤ R,

and this equation is true since f(x)−f(x+1) ≤ R and R is the maximum price. Therefore,

TQ PRCf(x)− TQ PRCf(x + 1) ≤ R also holds for the capacitated cases.
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Cases κ̄∗ = (κ∗x, κ∗x+1) Rewritten form of Equation A.11

Case I (0,0) f(x)− f(x + 1) ≤ Ri

Case II (a+1,a) Ri ≤ Ri

Case III (B,B) f(x + B)− f(x + B + 1) ≤ Ri

Table A.1: Possible optimal actions in states x, x + 1

A.2.5 UBD of TB ADM i

Let κ̄ = (κ∗x, κ∗x+1) be the optimal action vector and κ∗x be the optimal number of customers

to be admitted form an arriving batch for the state x. Then, we show that the following

equation will be true if f(x)− f(x + 1) ≤ Ri for all possible κ̄.

κ∗xRi + f(x + κ∗x)

−κ∗x+1Ri − f(x + 1 + κ∗x+1)
≤ Ri. (A.11)

Although there are more possible κ̄, it is enough to consider the cases: (0, 0), (a + 1, a),

and (B, B), where 0 ≤ a < B, as a result of the concavity of f(x). We rewrite Equation

A.11 for each case in Table A.1. Case II is obviously true and Cases I and III are also true

by the assumption that f(x)− f(x + 1) ≤ Ri. Thus, Equation A.11 is true for all cases and

then TB ADM if(x)− TB ADM if(x + 1) ≤ Ri. While considering the capacitated queues, we

need to observe the states x ≤ K−B in order to see the boundary effects. For these states,

Case I and II ares still possible but Case III is not. Since there is not any additional cases

on the boundaries and it is already proven that Equation A.11 is true for Cases I and II,

TB ADM if(x)− TB ADM if(x + 1) ≤ Ri also holds for the capacitated queues.

A.3 Proof: Lower-Bounded Difference, LBD

In this proof, we show that if f(x) is an LBD function then the following equation holds

for the operators: TC PRD, TI PRC and TB RATIOi .

Tf(x)− Tf(x + 1) ≥ −R. (A.12)
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A.3.1 LBD of TI PRC

Let px be the optimal price for the state x. Then, Equation A.12 for TI PRC , where R is

the maximum price, is:

F̄R(px)[f(x− 1) + px] + FR(px)f(x)

−F̄R(px+1)[f(x) + px+1] + FR(px+1)f(x + 1)
≥ −R. (A.13)

As a result of the optimality of px, we have that,

F̄R(px)[f(x− 1) + px] + FR(px)f(x)

−F̄R(px+1)[f(x) + px+1]− FR(px+1)f(x + 1)
≥ F̄R(px+1)[f(x− 1) + px+1] + FR(px+1)f(x)

−F̄R(px+1)[f(x) + px+1]− FR(px+1)f(x + 1)
.

When we rearrange this equation, we obtain that,

F̄R(px)[f(x− 1) + px] + FR(px)f(x)

−F̄R(px+1)[f(x) + px+1] + FR(px+1)f(x + 1)
≥ F̄R(px+1)[f(x− 1)− f(x)]

+FR(px+1)[f(x)− f(x + 1)]
.

This equation is obviously true since we assume that f(x) − f(x + 1) ≥ −R and thus

TI PRCf(x)−TI PRCf(x+1) ≥ −R. However, this proof is only valid for x > 0 because we

can not use the optimality of p0. p0 is equal to the maximum price in order to ensure that

the system does not satisfy the new arrival when there is no inventory on hand. Therefore,

we have to observe the state x = 0. For this state, we can write and rearrange Equation

A.13 as follows:

−F̄R(p1)p1 + FR(p1)[f(0)− f(1)] ≥ −R,

and this equation is also true because of the assumptions that f(0)−f(1) ≥ −R and p1 ≤ R.

Thus, we also prove that TI PRCf(x) − TI PRCf(x + 1) ≥ −R for x = 0 and complete the

proof.

The proof of LBD of TC PRD is similar to this proof and it is not necessary to investigate

the state x = 0 for TC PRD.

A.3.2 LBD of TB RATIOi

Let κ̄ = (κ∗x, κ∗x+1) be the optimal action vector and κ∗x be the optimal number of customers

to be satisifed form an arriving batch for the state x. Then, we show that the following

equation will be true if f(x)− f(x + 1) ≥ −Ri for all possible κ̄.

κ∗xRi + f(x− κ∗x)

−κ∗x+1Ri − f(x + 1− κ∗x+1)
≤ Ri. (A.14)



Appendix A: One- Dimensional Models 73

Cases κ̄∗ = (κ∗x, κ∗x+1) Rewritten form of Equation A.14

Case I (0,0) f(x)− f(x + 1) ≥ −Ri

Case II (a,a+1) −Ri ≥ −Ri

Case III (B,B) f(x−B)− f(x + 1−B) ≥ −Ri

Table A.2: Possible optimal actions in states x, x + 1

Although there are more possible κ̄, it is enough to consider the cases: (0, 0), (a, a + 1),

and (B, B), where 0 ≤ a < B, as a result of the concavity of f(x). We rewrite Equation

A.14 for each case in Table A.2. Case II is obviously true and Cases I and III are also true

by the assumption that f(x) − f(x + 1) ≥ −Ri. Thus, Equation A.14 is true for all cases

and then TB RATIOif(x) − TB RATIOif(x + 1) ≥ −Ri. As a remark, the last case, (B, B),

is not possible for the states x < B. We only consider the first two cases for these states

and Equation A.14 is also true for the states x < B in Cases I and II.

A.4 Proof: Concavity

In this proof, we show that a certain operator, T , is concave in x under certain assumptions

on f(x). We prove that Equation holds for TARR and TDEP if f(x) is non-increasing and

concave in x and holds for the remaining ones if f(x) is concave in x. As in the previous

proofs, we first show the proofs for the incapacitated cases and then note that they are still

valid for the capacitated cases.

∆Tf(x) ≤ ∆Tf(x + 1) (A.15)

A.4.1 Concavity of TARR

We can write the concavity equation for the operator as follows:

a(x)f(x + 1) + [1− a(x)]f(x)

−a(x + 1)f(x + 2)− [1− a(x + 1)]f(x + 1)
≤ a(x + 1)f(x + 2) + [1− a(x + 1)]f(x + 1)

−a(x + 2)f(x + 3)− [1− a(x + 2)]f(x + 3).

When we rearrange the equation, we obtain that,

[1− a(x)][f(x)− f(x + 1)]

+[2a(x + 1)− a(x)][f(x + 1)− f(x + 2)]
≤ [1− a(x)][f(x + 1)− f(x + 2)]

+a(x + 2)[f(x + 2)− f(x + 3)].
(A.16)
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The first line is true due to the concavity of f(x). Therefore, we have to focus on the

second line. We have the following equation as a result of the definition of the function a

and the assumptions on f(x).

2a(x + 1)− a(x) ≤ a(x + 2)

a(x) ≥ 0

f(x)− f(x + 1) ≥ 0

∆f(x) ≤ ∆f(x + 1)

When we combine these equations, we obtain that the second line is also true and thus

we complete the proof of the concavity of TARRf(x) in x. While considering the capacitated

queues, a(x+2) = 0 for the state x = K− 2 and thus Equation A.16 is still true. Therefore

TARRf(x) is also concave in x for the capacitated queues.

A.4.2 Concavity of TDEP

Similar to the concavity of TARR, we can write and rearrange Equation A.15 for TDEP as

follows:

b(x)[f(x− 1)− f(x)]

+[1− 2b(x + 1) + b(x)][f(x)− f(x + 1)]
≤ b(x)[f(x)− f(x + 1)]

+[1− b(x + 2)][f(x + 1)− f(x + 2)].

As in the previous proof, Equation A.17 is true by the definition of b(x) and the as-

sumptions on f(x). Thus, TDEP f(x) is concave in x if f(x) is non-increasing and concave

in x.

A.4.3 Concavity of TCD

Let πx, πx+1 and πx+2 be the optimal service rates for the states x, x + 1 and x + 2. then,

the concavity equation of the operator is:

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≤ cπx+1 + πx+1f(x) + (1− πx+1)f(x + 1)

−cπx+2 − πx+2f(x + 1)− (1− πx+2)f(x + 2)
.

(A.17)

Since πx+1 is the optimal service rate for the state x + 1, we have that,

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≤ cπx + πxf(x− 1) + (1− πx)f(x)

−cπx − πxf(x)− (1− πx)f(x + 1)
.
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After rearranging the right hand side,

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≤ f(x)− f(x + 1)

+πx [[f(x− 1)− f(x)]− [f(x)− f(x + 1)]]
.

By the concavity of f(x), [f(x− 1)− f(x)]− [f(x)− f(x + 1)] ≤ 0 and then,

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≤ f(x)− f(x + 1) . (A.18)

Similarly, we have that,

cπx+1 + πx+1f(x) + (1− πx+1)f(x + 1)

−cπx+2 − πx+2f(x + 1)− (1− πx+2)f(x + 2)
≥ f(x)− f(x + 1) . (A.19)

If Equations A.18 and A.19 are combined, it is obvious that Equation A.17 is true.

Hence, TCDf(x) preserves concavity of f(x) in x.

Proofs of the concavity of TC PRD, TQ PRC and TI PRC are similar to this proof. How-

ever, while considering the capacitated queues, we need to observe the concavity of TQ PRC

for the state x = K − 2. Since we use the optimal action for the state x + 1, i.e., K − 1,

and it is not affected by the waiting room capacity, the foregoing proof is still valid for the

capacitated cases.

A.4.4 Concavity of TB ADM i

Let κ̄∗ = (κ∗x, κ∗x+1, κ
∗
x+2) be the optimal action vector and κ∗x be the optimal number of

customers admitted form an arriving batch for the state x. Then, we prove that the batch

admission operator will be concave in x if f(x) is concave in x. In other words, we show

that the following equation is true for all possible κ̄∗.

κ∗xRi + f(x + κ∗x)

−κ∗x+1Ri − f(x + 1 + κ∗x+1)
≤ κ∗x+1Ri + f(x + 1 + κ∗x+1)

−κ∗x+2Ri − f(x + 2 + κ∗x+2)
. (A.20)

However, we do not need to observe all possible optimal action permutation, i.e., all

possible κ̄∗, because of the concavity of f(x) and it is enough to consider only the cases:

(0, 0, 0), (1, 0, 0), (a + 2, a + 1, a), (B, B, B − 1) and (B,B,B). We rewrite Equation A.20

for each case in Table A.3. Case III is obviously true and cases I and IV are true due to the

concavity of f(x). In case II, the optimal action is rejecting the entire batch for the state
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Cases κ̄∗ = (κ∗x, κ∗x+1, κ
∗
x+2) Rewritten form of Equation A.20

Case I (0,0,0) f(x)− f(x + 1) ≤ f(x + 1)− f(x + 2)

Case II (1,0,0) Ri ≤ f(x + 1)− f(x + 2)

Case III (a+2,a+1,a) Ri ≤ Ri

Case IV (B,B,B-1) f(x + B)− f(x + B + 1) ≤ Ri

Case V (B,B,B) f(x + B)− f(x + B + 1) ≤ f(x + B + 1)− f(x + B + 2)

Table A.3: Possible optimal actions in states x, x + 1 and x + 2

x + 1 and it implies that f(x + 1) ≥ Ri + f(x + 2). When we arrange this inequality, we

obtain that Ri ≤ f(x+1)− f(x+2) and thus, Equation A.20 is true in case II. In a similar

manner, Equation A.20 is also true in case IV by the optimal action in the state x + 1.

Therefore, we complete the proof and show that TB ADM if(x) is concave in x when f(x) is

concave in x. For the capacitated queues, we need to focus on the states x = K − B − 1

and x ≥ K − B to investigate the boundary effect. For x = K − B − 1, Case V is not

possible because while considering the state x + 2 = K − B + 1, admitting B customer is

not possible, so that we only work on the first four cases. Equation A.20 holds for all these

cases as it is shown for the incapacitated queues. On the other hand, for x ≥ K −B, Case

IV is also not possible beside Case V because while considering the state x = K −B, B− 1

can not be optimal action for the state x + 2 = K − B + 2. Thus, we only work on the

first three cases for the states x ≥ K −B and Equation A.20 is also true for all these cases.

Therefore, TB ADM if(x) is concave in x for the capacitated queues.

The proof of the concavity of TB RATIOif(x) is similar to this proof.

A.5 Proof: Supermodularity

In this proof, we prove that a certain operator, T , is supermodular with respect to the

parameter α whose effects we would like to observe and x under certain assumptions men-

tioned in Lemma 2. We denote the function f , a, and b by f̃ , ã, and b̃ after the parameter

α increases, respectively and write the supermodularity equation for a certain operator, T ,

as follows:

∆Tf(x) ≥ ∆T f̃(x). (A.21)



Appendix A: One- Dimensional Models 77

A.5.1 Supermodularity of TARR

We can write the supermodularity equation, Equation A.21, for this operator as follows:

a(x)f(x + 1) + [1− a(x)]f(x)

−a(x + 1)f(x + 2)− [1− a(x + 1)]f(x + 1)
≥ ã(x)f̃(x + 1) + [1− ã(x)]f̃(x)

−ã(x + 1)f̃(x + 2)− [1− ã(x + 1)]f̃(x + 1)
.

(A.22)

When we rearrange the equation, we obtain that,

a(x + 1)[f(x + 1)− f(x + 2)]

+[1− a(x)][f(x)− f(x + 1)] ≥

a(x + 1)[f̃(x + 1)− f̃(x + 2)]

+[1− a(x)][f̃(x)− f̃(x + 1)]

+[a(x)− ã(x)][f̃(x)− f̃(x + 1)]

−[a(x + 1)− ã(x + 1)][f̃(x + 1)− f̃(x + 2)]

. (A.23)

The first two lines are true by the supermodularity of f(x) with respect to α and x.

Then, if we show that the third line is smaller than or equal to the last line we will complete

the proof. We have the following equations as a result of the assumptions on a(x) and f(x).

f̃(x)− f̃(x + 1) ≥ 0

f̃(x)− f̃(x + 1) ≤ f̃(x + 1)− f̃(x + 2)

a(x)− ã(x) ≥ 0

a(x)− ã(x) ≤ a(x + 1)− ã(x + 1)

When we combine these equations, we have that,

[a(x)− ã(x)][f̃(x)− f̃(x + 1)] ≤ [a(x + 1)− ã(x + 1)][f̃(x + 1)− f̃(x + 2)].

Thus, the third line in Equation A.23 is smaller than or equal to the last line and we

complete the proof of the supermodularity of TARRf(x) with respect to α and x.

A.5.2 Supermodularity of TDEP

As in the supermodularity of TARR, we can write and rearrange the supermodularity equa-

tion for this operator as follows:

b(x)[f(x− 1)− f(x)]

+[1− b(x + 1)][f(x)− f(x + 1)] ≥

b(x)[f̃(x− 1)− f̃(x)]

+[1− b(x + 1)][f̃(x)− f̃(x + 1)]

+[b̃(x)− b(x)][f̃(x− 1)− f̃(x)]

−[b̃(x + 1b(x + 1)][f̃(x)− f̃(x + 1)]

. (A.24)
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The first two lines are true due to the supermodularity of f(x). Therefore,if we show

that the third line is smaller than or equal to the last line we will complete the proof. By

the assumptions on b(x) and f(x), we have the following equations:

f̃(x)− f̃(x + 1) ≥ 0,

f̃(x)− f̃(x + 1) ≤ f̃(x + 1)− f̃(x + 2),

b̃(x)− b(x) ≥ 0,

b̃(x)− b(x) ≤ b̃(x + 1)− b(x + 1).

When we combine these equations, we can obtain that,

[b̃(x)− b(x)][f̃(x− 1)− f̃(x)] ≤ [b̃(x + 1b(x + 1)][f̃(x)− f̃(x + 1)].

Hence, we show that the third line in Equation A.24 is smaller than or equal to the last

line and TDEP f(x) is supermodular with respect to α and x under the certain assumptions

mentioned in Lemma 2.

A.5.3 Supermodularity of TCD

Let πx and πx̃ be the optimal service rates for the state x before and after the parameter α

increases, respectively. Then, we show that the following supermodularity equation is true

for TCD.

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≥ cπx̃ + πx̃f̃(x− 1) + (1− πx̃)f̃(x)

−cπ ˜x+1
− π ˜x+1f̃(x)− (1− π ˜x+1)f̃(x + 1)

.

(A.25)

As a result of the optimality of πx for the state x, we have that,

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≥ cπx̃ + πx̃f(x− 1) + (1− πx̃)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
.

Then, if we rearrange the right hand side, we can obtain,

cπx + πxf(x− 1) + (1− πx)f(x)

−cπx+1 − πx+1f(x)− (1− πx+1)f(x + 1)
≥

cπx̃ − cπx+1

+πx̃[f(x− 1)− f(x)]

+(1− πx+1)[f(x)− f(x + 1)]

. (A.26)



Appendix A: One- Dimensional Models 79

Cases κ̄∗ = (κ∗x, κ∗x+1, κ
∗
x̃, κ∗˜x+1

) Rewritten form of Equation A.28

Case I (0, 0, 0, 0) f(x)− f(x + 1) ≥ f̃(x)− f̃(x + 1)

Case II (0, 0, a + 1, a) f(x)− f(x + 1) ≥ Ri

Case III (0, 0, B, B) f(x)− f(x + 1) ≥ f̃(x + B)− f̃(x + B + 1)

Case IV (a + 1, a, a + d + 1, a + d) Ri ≥ Ri

Case V (a + 1, a, B, B) Ri ≥ f̃(x + B)− f̃(x + B + 1)

Case VI (B, B, B, B) f(x + B)− f(x + B + 1) ≥ f̃(x + B)− f̃(x + B + 1)

Table A.4: Possible optimal actions in states x, x + 1, x̃ and ˜x + 1

Similarly, we can also obtain that,

cπx̃ + πx̃f̃(x− 1) + (1− πx̃)f̃(x)

−cπ ˜x+1
− π ˜x+1f̃(x)− (1− π ˜x+1)f̃(x + 1)

≤
cπx̃ − cπx+1

+πx̃[f̃(x− 1)− f̃(x)]

+(1− πx+1)[f̃(x)− f̃(x + 1)]

. (A.27)

When we combine Equations A.26 and A.27, it is obvious that the supermodularity

equation for this operator, Equation A.25, is true and thus, we complete the proof of the

supermodularity of TCDf(x) with respect to α and x.

Proofs of the supermodularity of TC PRD, TQ PRC and TI PRC are similar to this proof.

A.5.4 Supermodularity of TB ADM i

Let κ̄∗ = (κ∗x, κ∗x+1, κ
∗
x̃, κ∗ ˜x+1

) be the optimal action vector, where κ∗x and κ∗x̃ are the optimal

number of customers to be admitted form an arriving batch for the state x before and after

the parameter α increases, respectively. Then, we show that the following supermodularity

equation is true for the batch admission operator.

κ∗xRi + f(x + κ∗x)

−κ∗x+1Ri − f(x + 1 + κ∗x+1)
≤ κ∗x̃Ri + f̃(x + κ∗x̃)

−κ∗ ˜x+1
Ri − f̃(x + 1 + κ∗ ˜x+1

)
. (A.28)

We have to consider all possible optimal action vector to prove the supermodularity

of TB ADM i . However, it is enough to consider only the cases: (0, 0, 0, 0), (0, 0, a + 1, a),

(0, 0, B, B), (a+1, a, a+d+1, a+d), (a+1, a, B, B) and (B,B,B, B), where 0 ≤ a ≤ B−1

and 0 ≤ d ≤ B − a− 1, because of the concavity and supermodularity of f(x). We rewrite

Equation A.28 for each case in Table A.4. It is obvious that Case IV is true and Cases I
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and VI are true by the supermodularity of f(x). In Case II, it is optimal to reject the entire

batch for the state x. As a result of this action, we have that f(x) ≥ f(x + 1) + Ri. If we

rearrange this inequality we can obtain that f(x) − f(x + 1) ≥ Ri, which is the rewritten

form of the supermodularity equation for this case. Therefore, Equation A.28 is true in

Case II. Similarly, in Case V, the optimal action is admitting the whole batch for the state

˜x + 1 and it implies that BRi + f̃(x + B1) ≥ (B − 1)Ri + f̃(x + B). Since this inequality

is the rewritten form of the supermodularity equation, Equation A.28 is true in Case V.

Finally, Equation A.28 is also true in Case III due to the optimal actions for the states x and

˜x + 1. Thus, we show that Equation A.28 is true for all of the six cases and TB ADM if(x)

is supermodular with respect to α and x if f(x) is concave in x and supermodular with

respect to α and x.

The proof of TB RATIOi is similar to this proof.

A.6 Proof: Submodularity

The proofs of the submodularity of the operators are similar to the proofs of the super-

modularity so that, we do not show these proofs here. In this section we work on the

“non-submodular” property of the queueing related operators while considering the waiting

room capacity and the number of server. The intuition behind the “non-submodular” prop-

erty can be explained by the following example: Let consider a capacitated system with

total capacity K. In this system, new arrivals are not allowed to enter the system when

there are K customers in the system whether it is optimal or not. If it is optimal to reject

the arrivals, the optimal policy does not change when the capacity increases. On the other

hand, if the arrivals are rejected because of the capacity, a new customer may be accepted

when there are K customers after an increase in the capacity. Thus, it is obvious that

an increase in the capacity can not lead to reject the customers who are already accepted

before the capacity increases. In other words, the opportunity cost of a new customer can

not increase by an increase in the capacity. The intuition for the increase in the number of

servers is the same.

Since we intuitively know that the queueing related operators are not submodular while

considering the waiting room capacity and the number of servers, we disproof the submod-

ularity of the operators by a counter example. We consider a loss system consisting of 10
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# of

customers ∆f(x) ∆f̃(x) ∆TDEP f(x) ∆TDEP f̃(x) ∆TB ADM1f(x) ∆TB ADM1 f̃(x)

0 7.969376 7.20371 7.438084 6.723463 8.396632 7.589944

1 8.396632 7.589944 7.808373 7.058198 8.869616 8.017516

2 8.869616 8.017516 8.215243 7.426005 9.395681 8.493074

3 9.395681 8.493074 8.664089 7.831757 9.983758 9.024689

4 9.983758 9.024689 9.161354 8.281279 10.8597 9.622239

5 10.8597 9.622239 9.843738 8.781573 11.94845 10.39721

6 11.94845 10.39721 10.71638 9.394077 13.26869 11.4722

7 13.26869 11.4722 11.768 10.20573 14.87671 12.8293

8 14.87671 12.8293 13.02732 11.25023 17.7874 14.52129

9 17.7874 14.52129 14.85516 12.53801 25 17.46946

Table A.5: The relative value function and the operators before and after the number of
servers increases

servers with no waiting room capacity and 5 different customer classes. Customers arrive

according to a Poisson process with a rate of 140 customers per hour and the service times

are exponentially distributed with a mean of 1/6 hour. At each arrival epoch, an arriving

customer is a class-i customer with probability of pi, where p1 = p2 = p3 = p4 = p5 = 0.2,

and the decision maker has to decide whether to admit or reject the arriving customer.

Whenever, a class-i customer is admitted, a reward of Ri is obtained such that R1 = 25,

R2 = 20, R3 = 15, R4 = 10, and R5 = 5. The objective of the problem is maximizing

the total expected average reward over an infinite horizon. We denote the relative value

function and the average reward by f(x) and g, respectively and present the optimality

equation as follows:

g + f(x) = MµTDEP f(x) + λ
5∑

i=1

piTB ADM if(x),

where Mµ + λ = 1 after normalization, b(x) = x/M in TDEP and B = 1 in TB ADM i . M is

introduced to ensure that time scale is not affected by an increase in the number of servers

and equal to 15.

We increase the number of servers (c) from 10 to 11 in order to see the effects of the

parameter on the relative value function and the operators. We solve the optimality equation
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by value iteration and obtain the relative value function and the operators as in Table A.5,

where f̃(x) represents the relative value function after the number of servers increases. Since

the batch admission operator for each class is the same, we only present the operator for

class-1. As it can be seen in the table, none of the ∆f(x), ∆TDEP f(x), and ∆TB ADM1f(x)

values are increasing in the number of servers. Thus, the departure and batch admission

operators are not submodular with respect to the capacity and the state of the system.

There are similar examples to disproof the submodularity of the operators: TARR, TCD,

and TQ PRC .

A.7 Proof: Structure of Tf(x)− f(x)

In this proof, we show that if f(x) has some structural properties then, Tf(x)−f(x) will be

either non-increasing or non-decreasing in x according to the characteristics of the operator

T . As we mentioned in the paper, while considering queueing problems, Tf(x) − f(x) is

non-decreasing in x for the departure related operators and non-increasing in x for the

arrival related operators. On the other hand, Tf(x) − f(x) is non-increasing in x for the

production operator and non-decreasing in x for the arrival operators.

We use the following equations to denote the structure of Tf(x)− f(x): Equation A.29

represents that Tf(x)− f(x) is non-decreasing in x, whereas Equation A.30 represents that

Tf(x)− f(x) is non-increasing in x.

Tf(x)− f(x) ≤ Tf(x + 1)− f(x + 1), (A.29)

Tf(x)− f(x) ≥ Tf(x + 1)− f(x + 1). (A.30)

A.7.1 TARRf(x)− f(x)

Since we use the arrival operator in queueing systems, we are expecting that TARRf(x)−f(x)

is non-increasing in x. However, as we mentioned in the paper, the arrival operator holds

this property only under the assumptions that a(x) is constant and the buffer capacity is

infinite. Then, under these assumptions, we write Equation A.30 for the operator as:

f(x + 1)− f(x) ≥ f(x + 2)− f(x + 1).

This equation is true by the concavity of f(x), so that the proof is completed.
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A.7.2 TDEP f(x)− f(x)

Unlike the arrival operator, we are expecting that TDEP f(x)− f(x) is non-decreasing in x

and Equation A.29 for the departure operator can be written as:

b(x)f(x− 1)

+[1− b(x + 1)]f(x)− f(x)
≤ b(x)f(x)

+[1− b(x + 1)]f(x + 1)− f(x + 1).

When we arrange this equation, we have that,

b(x)[f(x− 1)− f(x)] ≤ b(x)[f(x)− f(x + 1)]

+[b(x + 1)− b(x)][f(x)− f(x + 1)].

It is obvious that the first line is true by the concavity of f(x). Then, we complete the

proof if we show that the last line is greater than or equal to 0. Since [b(x + 1)− b(x)] ≥ 0

by the definition of the function b and [f(x) − f(x + 1)] ≥ 0 by the monotonicity of f(x),

the last line is greater than or equal to 0 and thus we complete the proof.

As we mentioned in the previous proofs, the foregoing proof is still valid for the capac-

itated systems because the departure related operators are not affected by the boundary

effects.

A.7.3 TCDf(x)− f(x)

Let πx be the optimal service rates for the state x. As in the departure operator, TCDf(x)−
f(x) is non-decreasing in x intuitively and we write Equation A.29 for this operator as:

cπx + πxf(x− 1)

+(1− πx)f(x)− f(x)
≤ cπx+1 + πx+1f(x)

+(1− πx+1)f(x + 1)− f(x + 1).
(A.31)

Since πx+1 is the optimal action for the state x + 1,

cπx+1 + πx+1f(x)

+(1− πx+1)f(x + 1)− f(x + 1)
≥ cπx + πxf(x)

+(1− πx)f(x + 1)− f(x + 1).
(A.32)

Moreover, by using the concavity of f(x),

cπx + πxf(x)

+(1− πx)f(x + 1)− f(x + 1)
=

cπx

+πx[f(x)− f(x + 1)]
≥ cπx

+πx[f(x− 1)− f(x)],
(A.33)
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and by arranging the right hand side,

cπx

+πx[f(x− 1)− f(x)]
=

cπx + πxf(x− 1)

+(1− πx)f(x)− f(x).
(A.34)

By combining Equations A.32, A.33, and A.34, Equation A.31 is true and TCDf(x)−f(x)

is non-decreasing in x.

A.7.4 TC PRDf(x)− f(x)

The proof is similar to the previous proof but intuitively TC PRDf(x)−f(x) is non-increasing

in x because of its characteristics. Then, let πx be the optimal service rates for the state x

and write Equation A.30 for the operator as:

cπx + πxf(x + 1)

+(1− πx)f(x)− f(x)
≥ cπx+1 + πx+1f(x + 2)

+(1− πx+1)f(x + 1)− f(x + 1).
(A.35)

Since πx is the optimal action for the state x,

cπx + πxf(x + 1)

+(1− πx)f(x)− f(x)
≥ cπx+1 + πx+1f(x + 1)

+(1− πx+1)f(x)− f(x)
(A.36)

As in the previous proof, by using the concavity of f(x) and arranging the right hand

side, we have that,

cπx+1 + πx+1f(x + 1)

+(1− πx+1)f(x)− f(x)
≥ cπx+1 + πx+1f(x + 2)

+(1− πx+1)f(x + 1)− f(x + 1)
(A.37)

By combining Equations A.36 and A.37, Equation A.35 is true and thus, TC PRDf(x)−
f(x) is non-decreasing in x.

A.7.5 TQ PRCf(x)− f(x)

Since the operator, TQ PRCf(x), is an arrival related queueing operator, we are expecting

that TQ PRCf(x) − f(x) is non-increasing in x. As a result of this intuition, we write

Equation A.30 for this operator as follows by letting px is the optimal price for the state x:

F̄R(px)[f(x + 1) + px]

+FR(px)f(x)− f(x)
≥ F̄R(px+1)[f(x + 2) + px+1]

+FR(px+1)f(x + 1)− f(x + 1)
(A.38)
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Since px is the optimal price, we have that,

F̄R(px)[f(x + 1) + px]

+FR(px)f(x)− f(x)
≥ F̄R(px+1)[f(x + 1) + px+1]

+FR(px+1)f(x)− f(x)
=

F̄R(px+1)px+1

+F̄R(px+1)[f(x + 1)− f(x)].
(A.39)

Moreover, by the concavity of f(x),

F̄R(px+1)px+1

+F̄R(px+1)[f(x + 1)− f(x)]
≥ F̄R(px+1)px+1

+F̄R(px+1)[f(x + 2)− f(x + 1)]
=

F̄R(px+1)[f(x + 2) + px+1]

+FR(px+1)f(x + 1)− f(x + 1).
(A.40)

By combining Equations A.39 and A.40, Equation A.38 is true and thus, TQ PRCf(x)−
f(x) is non-decreasing in x. In the capacitated case, we need to observe Equation A.38 for

the state x = K − 1. However, since we use the optimality of px, the foregoing proof is still

true for the capacitated queues.

A.7.6 TI PRCf(x)− f(x)

Since the operator, TI PRCf(x), is an arrival related inventory operator, we are expecting

that TI PRCf(x) − f(x) is non-decreasing in x. As a result of this intuition, we write

Equation A.29 for this operator as follows by letting px is the optimal price for the state x:

F̄R(px)[f(x− 1) + px]

+FR(px)f(x)− f(x)
≤ F̄R(px+1)[f(x) + px+1]

+FR(px+1)f(x + 1)− f(x + 1)
(A.41)

Since px+1 is the optimal price, we have that,

F̄R(px+1)[f(x) + px+1]

+FR(px+1)f(x + 1)− f(x + 1)
≥ F̄R(px)[f(x) + px]

+FR(px)f(x + 1)− f(x + 1)
=

F̄R(px)px

+F̄R(px)[f(x)− f(x + 1)].
(A.42)

Moreover, by the concavity of f(x),

F̄R(px)px

+F̄R(px)[f(x)− f(x + 1)]
≥ F̄R(px)px

+F̄R(px)[f(x− 1)− f(x)]
=

F̄R(px)[f(x− 1) + px]

+FR(px)f(x)− f(x).
(A.43)

By combining Equations A.42 and A.43, Equation A.41 is true and thus, TQ PRCf(x)−
f(x) is non-decreasing in x.



Appendix A: One- Dimensional Models 86

Cases κ̄∗ = (κ∗x, κ∗x+1, κ
∗
x+2) Rewritten form of Equation A.44

Case I (0,0) 0 ≥ 0

Case II (a+1,a) Ri ≥ f(x)− f(x + 1)

Case III (B,B) f(x + B)− f(x) ≥ f(x + B + 1)− f(x + 1)

Table A.6: Possible optimal actions in states x and x + 1

A.7.7 TB ADMf(x)− f(x)

Let κ̄∗ = (κ∗x, κ∗x+1) be the optimal action vector and κ∗x be the optimal number of customers

admitted form an arriving batch for the state x. Then, we prove that TB ADMf(x)− f(x)

is non-increasing in x since it is an arrival related queueing operator. In other words, we

show that the following equation is true for all possible κ̄∗.

κxRi + f(x + κx)− f(x) ≥ κx+1Ri + f(x + 1 + κx+1)− f(x + 1) (A.44)

However, we do not need to observe all possible optimal action permutation, i.e., all

possible κ̄∗, because of the concavity of f(x) and it is enough to consider only the cases:

(0, 0), (a + 1, a) and (B,B). We rewrite Equation A.44 for each case in Table A.6. Case I

is obviously true and cases III is true due to the concavity of f(x). In case II, the optimal

action is admitting a + 1 customer from an arriving batch for the state x and it implies

that Ri ≥ f(x + a) − f(x + a + 1). Moreover, by the concavity of f(x), we have that

f(x) − f(x + 1) ≤ f(x + a) − f(x + a + 1). When we combine these two inequalities, we

obtain that Ri ≥ f(x)− f(x + 1) and thus, Equation A.44 is true in case II. Therefore, we

complete the proof and show that TB ADM if(x)− f(x) is non-increasing in x when f(x) is

concave in x. For the capacitated queues, we need to focus on the states x ≥ K−B in order

to investigate the boundary effect. For these states, Case III is not possible because the

optimal action can not be admitting B customer for the state x+1. Thus, we only work on

Cases I and II, and the proof is the same as the proof of Cases I and II in the incapacitated

case.

The proof of the structure of TB RATIOif(x)− f(x) is similar to this proof.
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A.8 Proof: Effects of the Parameters on the Optimal Actions in Model 1

In this proof, we show the effects of the service rate and the arrival rate on the base-stock

level and the optimal prices. We first work on the effects of µ on the base-stock level. Let

Se and S̃e be the optimal base-stock levels for the demand environment e before and after

the service rate increases, respectively, and assume that Se < S̃e. Therefore, we have that

it is optimal to produce when there are Se units of inventory on hand after the service rate

increases whereas it is not optimal to produce for this state before the service rate increases,

i.e.,

v1(Se, e)− v1(Se + 1, e) ≥ −τ1, and

ṽ1(Se, e)− ṽ1(Se + 1, e) ≤ −τ1.

When we combine these equations, we obtain that v1(Se, e)− v1(Se + 1, e) ≥ ṽ1(Se, e)−
ṽ1(Se + 1, e) and this inequality contradicts with the submodularity of v1(x, e) with respect

to µ and x. Therefore, the assumption of Se < S̃e is not correct and the base-stock level,

S∗1(e), is non-increasing in the service rate. The proof of the effects of λ on the base-stock

level is similar to this proof.

Now, we show the effects of the service rate on the optimal prices. Let p and p̃ be the

optimal price for the state x before and after the service rate increases and assume that

p < p̃. Then, we have the following equations due to the optimality of p and p̃.

F̄ (p)[v1(x− 1, e) + p] + F (p)v1(x, e) ≥ F̄ (p̃)[v1(x− 1, e) + p̃] + F (p̃)v1(x, e),

F̄ (p̃)[ṽ1(x− 1, e) + p̃] + F (p̃)ṽ1(x, e) ≥ F̄ (p)[ṽ1(x− 1, e) + p] + F (p)ṽ1(x, e).

When we combine these equations, we obtain that,

[F̄ (p)− F̄ (p̃)][[v1(x− 1, e)− v1(x, e)]− [ṽ1(x− 1, e)− ṽ1(x, e)]] ≥ 0. (A.45)

F̄ (p)−F̄ (p̃) > 0 and [v1(x−1, e)−v1(x, e)]−[ṽ1(x−1, e)−ṽ1(x, e)] ≤ 0 by the assumption

on the optimal prices and the submodularity of v1(x, e) so that, Equation A.45 can not be

true. In other words, there is a contradiction because of our assumption and thus, the

optimal price for the state x, p∗1(x, e), is non-increasing in the service rate.The proof of the

effects of λ on the the optimal prices is similar to this proof.
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A.9 Proof: Effects of the Parameters on the Optimal Actions in Model 2

Let κ and κ̃ be the optimal number of customers to be admitted from an arriving batch

and assume that κ > κ̃. Then, by the definition of the operator,

κR2 + v2(x + κ) ≥ κ̃R2 + v2(x + κ̃), and

κ̃R2 + ṽ2(x + κ̃) ≥ κR2 + ṽ2(x + κ).

When we combine these equations, we obtain that, v2(x + κ̃)− v2(x + κ) ≤ ṽ2(x + κ̃)−
ṽ2(x + κ), which contradicts with the supermodularity of v2(x). Hence, the assumption on

the optimal actions is not correct and the optimal number of customers to be admitted from

an arriving batch, κi
∗
2(x), is non-decreasing in the service rate. The proof of the effects of

λ and c on the the optimal admission policy is similar to this proof.

A.10 Proof: Existence of a Preferred Class in Model 3

In this proof, we show that class-1 is a preferred class in Model 3, i.e., ∆v3(x) ≥ −R1 for all

x. To prove this equation, we first prove the following equation for all finite n by induction.

∆vn
3 (x) ≥ −R1. (A.46)

The initial condition of the induction, ∆v0
3(x) ≥ −R1, holds by the specification on

v0
3(x). Then, we rewrite Equation A.46 by using the optimality equation as follows:

µ∆TC PRDvn−1
3 (x)

+λ
N∑

i=1

∑
B

piB∆TB RATIOiv
n−1
3 (x)

+θ∆TFICvn−1
3 (x)

≥ −R1

This equation is true as a result of LBD(R) property of the operators (See Lemma 1)

and thus, ∆vn
3 (x) ≥ −R1 for all finite n. By using the relationship between vn

3 (x) and

v3(x), v3(x) has also LBD(R) property. This result implies that v3(x) + R1 ≥ v3(x + 1),

i.e., satisfying class-1 customers is optimal whenever it is possible.
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Appendix B

TWO- DIMENSIONAL MODEL

B.1 Proof: Monotonicity of the Operators

In this proof, we prove that the operators that we consider in the 2-dimensional model,

TDEP2, TPRC1 and TPRC2 , preserve the monotonicity properties of the function on which

they are applied, v(x1, x2). In other words, we prove that the following monotonicity equa-

tions are true for these operators under certain assumption mentioned in the lemma.

Monotonicity in x1: Tv(x1, x2) ≥ Tv(x1 + 1, x2) (B.1)

Monotonicity in x2: Tv(x1, x2) ≥ Tv(x1, x2 + 1) (B.2)

Monotonicity on the diagonal: Tv(x1, x2 + 1) ≥ Tv(x1 + 1, x2) (B.3)

B.1.1 Monotonicity of TDEP2

During the proof of the monotonicity of TDEP2v(x1, x2), we assume that v(x1, x2 + 1) ≥
v(x1 +1, x2) and this property implies that serving the expensive customer is more valuable

than serving a cheap customer. Therefore, we can redefine this operator by using this fact

as:

TDEP2v(x1, x2) =





v(x1 − 1, x2) if x1 > 0, x2 > 0

v(0, x2 − 1) if x1 = 0, x2 > 0

v(0, 0) if x1 = 0, x2 = 0.

(B.4)

Then, we investigate whether the departure operator keeps all of the three monotonicity

properties. Since the operator is partially defined, we consider each possible cases: (x1 > 0,

x2 > 0), (x1 = 0, x2 > 0) and (x1 = 0, x2 = 0), separately for each property.

Monotonicity in x1

We can write the first monotonicity equation for TDEP2 as follows for each cases:
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Cases TDEP2v(x1, x2) ≥ TDEP2v(x1 + 1, x2)

(x1 > 0, x2 > 0) v(x1 − 1, x2) ≥ v(x1, x2)

(x1 = 0, x2 > 0) v(0, x2 − 1) ≥ v(0, x2)

(x1 = 0, x2 = 0) v(0, 0) ≥ v(0, 0)

It is obvious that three cases are true: the first case is true by the monotonicity of

v(x1, x2) in x1, the second case is true by the monotonicity of v(x1, x2) in x2, and the left

hand side and the right hand side is equal in the third case. Thus, the departure operator

preserves the first monotonicity property of v(x1, x2).

Monotonicity in x2

Similar to first property, we can write the second monotonicity equation for TDEP2 as follows

for each cases:

Cases TDEP2v(x1, x2) ≥ TDEP2v(x1, x2 + 1)

(x1 > 0, x2 > 0) v(x1 − 1, x2) ≥ v(x1 − 1, x2 + 1)

(x1 = 0, x2 > 0) v(0, x2 − 1) ≥ v(0, x2)

(x1 = 0, x2 = 0) v(0, 0) ≥ v(0, 0)

First and second cases are true by the monotonicity of v(x1, x2) in x2 and the third case

is obvious. Therefore, the departure operator preserves the second monotonicity property

of v(x1, x2).

Monotonicity on the diagonal

The third monotonicity equation for TDEP2 as follows for each cases:

Cases TDEP2v(x1, x2 + 1) ≥ TDEP2v(x1 + 1, x2)

(x1 > 0, x2 > 0) v(x1 − 1, x2 + 1) ≥ v(x1, x2)

(x1 = 0, x2 > 0) v(0, x2) ≥ v(0, x2)

(x1 = 0, x2 = 0) v(0, 0) ≥ v(0, 0)

In this monotonicity property, all of the three cases are also true: the first one is true

by the monotonicity of v(x1, x2) on the diagonal and the remaining ones are true as in the

previous monotonicity properties. Hence, the departure operator also preserves the third

monotonicity property of v(x1, x2), and it preserves all of the monotonicity properties of

v(x1, x2).
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B.1.2 Monotonicity of TPRC1

Monotonicity in x1

Let p∗1 and p∗2 be the optimal prices for the states (x1, x2) and (x1 + 1, x2), respectively.

Then, we show that TPRC1 preserves the monotonicity of v(x1, x2) in x2. Equation B.1 for

this operator can be written as:

F̄ (p1)[p1 + v(x1 + 1, x2)] + F (p1)v(x1, x2) ≥ F̄ (p2)[p2 + v(x1 + 2, x2)] + F (p2)v(x1 + 1, x2).

(B.5)

Since p∗1 is the optimal price for the state (x1, x2), we have that,

F̄ (p1)[p1+v(x1+1, x2)]+F (p1)v(x1, x2) ≥ F̄ (p2)[p2+v(x1+1, x2)]+F (p2)v(x1, x2), (B.6)

and by the monotonicity of v(x1, x2) in x1,

F̄ (p2)[p2 + v(x1 + 1, x2)] + F (p2)v(x1, x2) ≥ F̄ (p2)[p2 + v(x1 + 2, x2)] + F (p2)v(x1 + 1, x2).

(B.7)

When we combine Equations B.6 and B.7, it is obvious that Equation B.5 is true and

thus TPRC1 preserves the monotonicity of v(x1, x2) in x1.

Monotonicity in x2

Similar to the proof of the monotonicity in x2, we let p∗1 and p∗2 be the optimal prices for the

states (x1, x2) and (x1 +1, x2), respectively, and write Equation B.2 for the pricing operator

as:

F̄ (p1)[p1 +v(x1 +1, x2)]+F (p1)v(x1, x2) ≥ F̄ (p2)[p2 +v(x1 +1, x2 +1)]+F (p2)v(x1, x2 +1).

(B.8)

Since p∗1 is the optimal price for the state (x1, x2), we have that,

F̄ (p1)[p1+v(x1+1, x2)]+F (p1)v(x1, x2) ≥ F̄ (p2)[p2+v(x1+1, x2)]+F (p2)v(x1, x2), (B.9)

and by the monotonicity of v(x1, x2) in x2,

F̄ (p2)[p2 +v(x1 +1, x2)]+F (p2)v(x1, x2) ≥ F̄ (p2)[p2 +v(x1 +1, x2 +1)]+F (p2)v(x1, x2 +1).

(B.10)

When we combine Equations B.9 and B.10, it is obvious that Equation B.8 is true and

thus TPRC1 preserves the monotonicity of v(x1, x2) in x2.
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Monotonicity on the diagonal

Similar to the previous monotonicity proofs of the pricing operator, we let p∗1 and p∗2 be the

optimal prices for the states (x1, x2 + 1) and (x1 + 1, x2), respectively, and write Equation

B.3 for the pricing operator as:

F̄ (p1)[p1+v(x1+1, x2+1)]+F (p1)v(x1, x2+1) ≥ F̄ (p2)[p2+v(x1+2, x2)]+F (p2)v(x1+1, x2).

(B.11)

Since p∗1 is the optimal price for the state (x1, x2 + 1), we have that,

F̄ (p1)[p1+v(x1+1, x2+1)]+F (p1)v(x1, x2+1) ≥ F̄ (p2)[p2+v(x1+1, x2+1)]+F (p2)v(x1, x2+1),

(B.12)

and by the monotonicity of v(x1, x2) on the diagonal,

F̄ (p2)[p2+v(x1+1, x2+1)]+F (p2)v(x1, x2+1) ≥ F̄ (p2)[p2+v(x1+2, x2)]+F (p2)v(x1+1, x2).

(B.13)

When we combine Equations B.12 and B.13, it is obvious that Equation B.11 is true

and thus TPRC1 preserves the monotonicity of v(x1, x2) on the diagonal.

The monotonicity proofs for TPRC2 is similar to these proofs.

B.2 Proof: Submodularity of the Operators

In this proof, we prove that TDEP2, TPRC1 and TPRC2 preserve the submodularity of a

function on which they are applied v(x1, x2). In other words, we show that the below

equation is true for TDEP2, TPRC1 and TPRC2 under the assumptions mentioned in the

lemma.

∆1Tv(x1, x2) ≤ ∆1Tv(x1, x2 + 1) (B.14)

B.2.1 Submodularity of TDEP2

While considering the departure operator, we assume that v(x1, x2) is non-increasing in x1,

x2 and on the diagonal, and it satisfies the submodularity and subconcavity equations, i.e.

v(x1, x2) is concave in x1 and x2. Since we assume the monotonicity of v(x1, x2), we can

use the redefined version of the departure operator, i.e. Equation B.4. Then, we need to

examine the submodularity equation for the three possible cases: (x1 > 0, x2 > 0), (x1 = 0,
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x2 > 0) and (x1 = 0, x2 = 0), separately. Equation B.14 can be written as follows for each

cases:

Cases ∆1TDEP2v(x1, x2) ≤ ∆1TDEP2v(x1, x2 + 1)

(x1 > 0, x2 > 0) v(x1 − 1, x2)− v(x1, x2) ≤ v(x1 − 1, x2 + 1)− v(x1, x2 + 1)

(x1 = 0, x2 > 0) v(0, x2 − 1)− v(0, x2) ≤ v(0, x2)− v(0, x2 + 1)

(x1 = 0, x2 = 0) v(0, 0)− v(0, 0) ≤ v(0, 0)− v(0, 1)

The first case is true by the submodularity of v(x1, x2), the second case is true by the

concavity of v(x1, x2) in x2, and the last case is true by the monotonicity of v(x1, x2) in x2.

Hence, TDEP2 preserves the submodularity of v(x1, x2) under given assumptions.

B.2.2 Submodularity of TPRC1

We let the optimal prices for the states (x1, x2), (x1 +1, x2), (x1, x2 +1) and (x1 +1, x2 +1)

as follows:

p∗(., .) x2 x2 + 1

x1 p1,1 p1,2

x1 + 1 p2,1 p2,2

Then, we write the submodularity equation for the pricing operator as:

F̄ (p1,1)[p1,1 + v(x1 + 1, x2)]

+F (p1,1)v(x1, x2)

−F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

−F (p2,1)v(x1 + 1, x2)

≤

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1).

(B.15)

Since p2,1 is the optimal price for the state (x1 + 1, x2), we have that,

F̄ (p1,1)[p1,1 + v(x1 + 1, x2)]

+F (p1,1)v(x1, x2)

−F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

−F (p2,1)v(x1 + 1, x2)

≤

F̄ (p1,1)[p1,1 + v(x1 + 1, x2)]

+F (p1,1)v(x1, x2)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2)]

−F (p2,2)v(x1 + 1, x2).

If we rearrange the right hand side, we can obtain that,

F̄ (p1,1)[p1,1 + v(x1 + 1, x2)]

+F (p1,1)v(x1, x2)

−F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

−F (p2,1)v(x1 + 1, x2)

≤
F̄ (p1,1)p1,1 − F̄ (p2,1)p2,2

+F (p1,1)[v(x1, x2)− v(x1 + 1, x2)]

+F̄ (p2,2)[v(x1 + 1, x2)− v(x1 + 2, x2)].

(B.16)
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Similarly, since p1,2 is the optimal price for the state (x1, x2 + 1),

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

≥
F̄ (p1,1)p1,1 − F̄ (p2,1)p2,2

+F (p1,1)[v(x1, x2 + 1)− v(x1 + 1, x2 + 1)]

+F̄ (p2,2)[v(x1 + 1, x2 + 1)− v(x1 + 2, x2 + 1)].

(B.17)

Moreover, by using the submodularity of v(x1, x2), we have that,

F̄ (p1,1)[p1,1 − p2,2]

+F (p1,1)[v(x1, x2)− v(x1 + 1, x2)]

+F̄ (p2,2)[v(x1 + 1, x2)− v(x1 + 2, x2)]

≤
F̄ (p1,1)p1,1 − F̄ (p2,1)p2,2

+F (p1,1)[v(x1, x2 + 1)− v(x1 + 1, x2 + 1)]

+F̄ (p2,2)[v(x1 + 1, x2 + 1)− v(x1 + 2, x2 + 1)].
(B.18)

Finally, when we combine Equations B.16, B.17 and B.18, it is obvious that Equation

B.15 holds and TPRC1 preserves the submodularity of v(x1, x2). The proof for TPRC2 is

similar.

B.3 Proof: Subconcavity of the Operators

In this proof, we prove that TDEP2, TPRC1 and TPRC2 preserve both of the subconcavity

conditions of a function on which they are applied v(x1, x2). In other words, we show that

the below equations are true for TDEP2, TPRC1 and TPRC2 under the assumptions mentioned

in the lemma.

∆1Tv(x1, x2 + 1) ≤ ∆1Tv(x1 + 1, x2) (B.19)

∆2Tv(x1 + 1, x2) ≤ ∆2Tv(x1, x2 + 1) (B.20)

B.3.1 Subconcavity of TDEP2

We can write the first condition of subconcavity for each of the cases as follows:

Cases ∆1TDEP2v(x1, x2 + 1) ≤ ∆1TDEP2v(x1 + 1, x2)

(x1 > 0, x2 > 0) v(x1 − 1, x2 + 1)− v(x1, x2 + 1) ≤ v(x1, x2)− v(x1 + 1, x2)

(x1 = 0, x2 > 0) v(0, x2)− v(0, x2 + 1) ≤ v(0, x2)− v(1, x2)

(x1 = 0, x2 = 0) v(0, 0)− v(0, 1) ≤ v(0, 0)− v(1, 0)
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The first case is true by the first condition of subconcavity and the last two cases are

true by the monotonicity of v(x1, x2) on the diagonal, i.e. v(x1, x2 + 1) ≥ v(x1 + 1, x2).

Therefore, TDEP2 preserves the first condition of subconcavity.

Similar to the first condition, we can write the second condition of subconcavity as:

Cases ∆2TDEP2v(x1 + 1, x2) ≤ ∆2TDEP2v(x1, x2 + 1)

(x1 > 0, x2 > 0) v(x1, x2)− v(x1, x2 + 1) ≤ v(x1 − 1, x2 + 1)− v(x1 − 1, x2 + 2)

(x1 = 0, x2 > 0) v(0, x2)− v(0, x2 + 1) ≤ v(0, x2)− v(0, x2 + 1)

(x1 = 0, x2 = 0) v(0, 0)− v(0, 1) ≤ v(0, 0)− v(, 1)

The last two cases are obviously true and the first case is true by the second condition

of subconcavity. Hence, TDEP2 also preserves the second condition of subconcavity.

B.3.2 Subconcavity of TPRC1

In order to prove both of the subconcavity conditions, we let the optimal prices for the

states (x1, x2 + 1), (x1, x2 + 2), (x1 + 1, x2), (x1 + 1, x2 + 1) and (x1 + 2, x2) as follows:

p∗(., .) x2 x2 + 1 x2 + 2

x1 p1,2 p1,3

x1 + 1 p2,1 p2,2

x1 + 2 p3,1

and then focus on the subconcavity equations.

1stCondition

We can write the subconcavity first condition for the pricing operator as:

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

≤

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p3,1)[p3,1 + v(x1 + 3, x2)]

−F (p3,1)v(x1 + 2, x2).

(B.21)

Since p2,2 is the optimal price for the state (x1 + 1, x2 + 1), we have that,

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

≤

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p3,1)[p3,1 + v(x1 + 2, x2 + 1)]

−F (p3,1)v(x1 + 1, x2 + 1).



Appendix B: Two- Dimensional Model 96

If we rearrange the right hand side, we can obtain that,

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

≤
F̄ (p1,2)p1,2 − F̄ (p3,1)p3,1

+F (p1,2)[v(x1, x2 + 1)− v(x1 + 1, x2 + 1)]

+F̄ (p3,1)[v(x1 + 1, x2 + 1)− v(x1 + 2, x2 + 1)].

(B.22)

Similarly, by using the optimality of p2,1,

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p3,1)[p3,1 + v(x1 + 3, x2)]

−F (p3,1)v(x1 + 2, x2)

≥
F̄ (p1,2)p1,2 − F̄ (p3,1)p3,1

+F (p1,2)[v(x1 + 1, x2)− v(x1 + 2, x2)]

+F̄ (p3,1)[v(x1 + 2, x2)− v(x1 + 3, x2)].

(B.23)

Moreover, by using the subconcavity first condition, we have that

F̄ (p1,2)p1,2 − F̄ (p3,1)p3,1

+F (p1,2)[v(x1, x2 + 1)− v(x1 + 1, x2 + 1)]

+F̄ (p3,1)[v(x1 + 1, x2 + 1)− v(x1 + 2, x2 + 1)]

≤
F̄ (p1,2)p1,2 − F̄ (p3,1)p3,1

+F (p1,2)[v(x1 + 1, x2)− v(x1 + 2, x2)]

+F̄ (p3,1)[v(x1 + 2, x2)− v(x1 + 3, x2)].
(B.24)

Finally, when we combine Equations B.22, B.23 and B.24, it is obvious that Equation

B.21 holds, and thus we complete the proof for the first condition.

2nd Condition

The proof of the second condition is not as trivial as the first condition because second

condition is related with the opportunity costs of class-2 customers and the pricing operator

is defined for class-1 customers. Therefore, we work on the second condition in two cases:

(p2,1 ≥ p1,3) and (p2,1 < p1,3). The idea of this case by case analysis comes from our

computational studies. In these studies, we observe that for some holding cost parameters

p2,1 ≥ p1,3 whereas for some other parameters p2,1 < p1,3. This result implies that the

opportunity cost of an additional class-1 customer at state (x1 + 1, x2) may or not may not

be higher than the opportunity cost of an additional class-1 customer at state (x1, x2 + 2)

according to the cost parameters. The intuition behind this result is the ratio of the holding

cost of an expensive customer and a cheap customer. When this ratio is very high, i.e. cost
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of an expensive customer is much more higher than cost of a cheap one, having 2 more class-

1 customer may be more expensive than having one expensive and two cheap customers,

and thus p2,1 ≥ p1,3.

Then, we write Equation B.20 for the pricing operator as:

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

≤

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]

−F (p1,3)v(x1, x2 + 2).

(B.25)

Case 1: (p2,1 ≥ p1,3)

Since p2,2 is the optimal price for the state (x1, x2), we have that,

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

≤

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p2,1)[p2,1 + v(x1 + 2, x2 + 1)]

−F (p2,1)v(x1 + 1, x2 + 1).

When we rearrange the right hand side,

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

≤ F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 2, x2 + 1)]

+F (p2,1)[v(x1 + 1, x2)− v(x1 + 1, x2 + 1)]
(B.26)

Similarly, by using the optimality of p1,2, we have that

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]

−F (p1,3)v(x1, x2 + 2)

≥ F̄ (p1,3)[v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]

+F (p1,3)[v(x1, x2 + 1)− v(x1, x2 + 2)].

(B.27)

Now, we focus on the right hand side of the Equations B.26 and B.27 and show that the

following inequality holds.

F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 2, x2 + 1)]

+F (p2,1)[v(x1 + 1, x2)− v(x1 + 1, x2 + 1)]
≤ F̄ (p1,3)[v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]

+F (p1,3)[v(x1, x2 + 1)− v(x1, x2 + 2)].
(B.28)
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As we know that (p2,1 ≥ p1,3), we also have that F̄ (p1,3) = F̄ (p2,1) + ξ, where ξ > 0.

Then, Equation B.28 becomes:

F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 2, x2 + 1)]

+F (p2,1)[v(x1 + 1, x2)− v(x1 + 1, x2 + 1)] ≤

F̄ (p2,1)[v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]

+F (p2,1)[v(x1, x2 + 1)− v(x1, x2 + 2)]

ξ


 [v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]

−[v(x1, x2 + 1)− v(x1, x2 + 2)]


 .

Here, first two lines are true by the second condition of subconcavity and the last line is

true by the submodularity of v(x1, x2). Therefore, Equation B.28 is true. When we combine

Equations B.26, B.27 and B.28, it is obvious that Equation B.25 holds for the first case.

Case 2: (p2,1 < p1,3)

We first rearrange Equation B.25 as:

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

≤

F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]

−F (p1,3)v(x1, x2 + 2).

(B.29)

Then, by using the optimality of p1,2, we have that

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

≤

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p2,1)[p2,1 + v(x1 + 1, x2 + 1)]

+F (p2,1)v(x1, x2 + 1).

When we work on the right hand side, we obtain that,

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]

+F (p2,1)v(x1 + 1, x2)

−F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)

≤ F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]

+F (p2,1)[v(x1 + 1, x2)− v(x1, x2 + 1)]
(B.30)

Similarly, by using the optimality of p2,2,

F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1)

−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]

−F (p1,3)v(x1, x2 + 2)

≥ F̄ (p1,3)[v(x1 + 2, x2 + 1)− v(x1 + 1, x2 + 2)]

+F (p1,3)[v(x1 + 1, x2 + 1)− v(x1, x2 + 2)]

(B.31)
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As in the previous case, we show that the following equation is true:

F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]

+F (p2,1)[v(x1 + 1, x2)− v(x1, x2 + 1)]
≤ F̄ (p1,3)[v(x1 + 2, x2 + 1)− v(x1 + 1, x2 + 2)]

+F (p1,3)[v(x1 + 1, x2 + 1)− v(x1, x2 + 2)]
(B.32)

Since (p2,1 ≥ p1,3), we have that F̄ (p2,1) = F̄ (p1,3) + ξ, where ξ > 0. Then, Equation

B.32 becomes:

F̄ (p1,3)[v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]

+F (p1,3)[v(x1 + 1, x2)− v(x1, x2 + 1)]

+ξ


 [v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]

−[v(x1 + 1, x2)− v(x1, x2 + 1)]



≤

F̄ (p1,3)[v(x1 + 2, x2 + 1)− v(x1 + 1, x2 + 2)]

+F (p1,3)[v(x1 + 1, x2 + 1)− v(x1, x2 + 2)]

.

Here, first two lines are true by the second condition of subconcavity and the last line

is true by the first condition of subconcavity. Therefore, Equation B.32 is true. When

we combine Equations B.30, B.31 and B.32, it is obvious that Equation B.25 holds for

the second case. Therefore, we prove that TPRC1 preserves the second condition of the

subconcavity for both of the cases.

In conclusion, we show that TPRC1v(x1, x2 will keep both conditions of the subconcavity

if the necessary assumptions are satisfied. The proof for TPRC2 is similar to this proof.

While considering TPRC2 , we need to work on the first condition in two cases: (p1,2) ≥ p3,1

and (p1,2) < p3,1.

B.4 Proof: Monotonicity of the Optimal Prices

Let p∗1 and p∗2 be the optimal prices for class-1 for the states (x1, x2) and (x1 + 1, x2),

respectively, and assume that p∗1 > p∗2. Then, we have the following equation as a result of

the optimality of p∗1 and p∗2:

F̄ (p1)[p1 + v(x1 + 1, x2)] + F (p1)v(x1, x2) ≥ F̄ (p2)[p2 + v(x1 + 1, x2)] + F (p2)v(x1, x2)

F̄ (p2)[p2 + v(x1 + 2, x2)] + F (p2)v(x1 + 1, x2) ≥ F̄ (p1)[p1 + v(x1 + 2, x2)] + F (p1)v(x1 + 1, x2)

When we combine these equations, we obtain that,

[F (p1)− F (p2)][[v(x1, x2)− v(x1 + 1, x2)]− [v(x1 + 1, x2)− v(x1 + 2, x2)]] ≥ 0 (B.33)
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Since F (p1)−F (p2) > 0 by our assumption on the optimal prices and [v(x1, x2)−v(x1 +

1, x2)]−[v(x1+1, x2)−v(x1+2, x2)] ≤ 0 by the concavity of v(x1, x2), Equation B.33 can not

be true. Therefore,there is contradiction and our assumption on the optimal prices are not

correct. Hence, the optimal prices for class-1, p∗1(x1, x2), are non-decreasing in the number

of class-1 customer in the system. The monotonicity of the optimal prices for class-1 in x2

and on the diagonal can be proven in a similar manner. Moreover, the monotonicity of the

optimal prices for class-2 can also be proven by a similar proof.
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