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ABSTRACT

Three network optimization problems arising in disaster mitigation are addressed in this

thesis. Each problem involves strategic decision-making in pre-disaster stage for effective

post-disaster relief operations. The first problem is on assessing the reliability and perfor-

mance of infrastructure networks under disaster risk. Here, a framework to represent link

dependency in failures is proposed. Using this framework, a special type of dependency

structure which is relevant for the disaster situation with lack of sufficient past data, is de-

fined. Under this dependency structure, a novel polynomial-time algorithm is proposed to

analyze the reliability and performance of a network. The second problem involves allocating

a budget to links of an infrastructure network to increase the reliability and the performance

of the network. With investment, each link can be strengthened structurally such that its

probability of survival after a disaster increases. Then, the problem is to find which links

to invest in so that most benefit is obtained in terms of post-disaster performance of the

network with respect to accessibility and travel time between critical points in the network.

The computational applicability of a previously developed method is demonstrated in the

second problem by developing a Monte Carlo simulation algorithm and applying it to a

real-life case study. The last problem addressed in this thesis is a facility location problem

that seeks to identify locations of emergency response and distribution centers to provide

effective post-disaster logistics operations such as the supply of relief commodities to the

affected areas. For this problem, an uncapacitated facility location model is formulated with

the objective of reaching a maximum number of people in minimum time possible after a

disaster to distribute multiple commodities through the facilities under several disaster sce-

narios for demand and travel time. Average weighted travel time is minimized subject to

constraints on the existence of a facility within a fixed distance from each district for each

commodity. This model is used to solve a real-life problem. All of the three problems and

the methodology developed for these problems are computationally tested on the case of

Istanbul, a metropolitan under serious earthquake risk. Real-life data including the earth-
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quake scenarios, the risk of the highway structures under these scenarios, expected damage

at various districts, expected demand for relief commodities after an earthquake, travel

time estimates between critical origin-destination points were collected. Our mathematical

model inputs are generated with respect to the collected data, and our solution algorithms

are used to solve the real-life problems relevant for the earthquake preparedness of the city

of Istanbul.



ÖZETÇE

Bu tezde afet yönetimi ile ilgili üç ağ optimizasyonu problemi ele alınmıştır. Her problem

etkin afet sonrası faaliyetler için afet öncesi süreçte stratejik planlamayı kapsamaktadır. İlk

problem, alt yapı sistemlerinin güvenilirliğinin ve performansının değerlendirilmesi ile ilgi-

lidir. Bu problemde, ağ bağlarının kopma olasılıklarının birbirlerine bağımlı olduğu durum-

ları gösterebilmek için bir yaklaşım öne sürülmüştür. Bu yaklaşım kullanılarak, fazla verinin

bulunmadığı afet durumlarında kullanılabilecek bir bağımlılık tanımı ortaya konmuştur.

Bir ağın bu bağımlılık yapısı altında güvenilirliğini ve performansını ölçebilmek için yeni

ve polinom-zamanlı bir algoritma geliştirilmiştir. İkinci problem, ağ bağlarını güçlendirmek

için yapılan yatırımlarda belli bir bütçenin en iyi şekilde değerlendirilmesi icin kritik bağların

belirlenmesi problemidir. Kritik bağlar belirlenirkenki amaç, güçlendirildiği takdirde ağın

afet sonrası en yuksek performansını sergilediği bağı bulmaktır. İkinci problemde, daha önce

geliştirilmiş olan bir metodun hesapsal uygulanabilirliği Monte Carlo yöntemi kullanılarak

örnek bir olay üzerinde incelenmiştir. Tezde ele alınan son problem ise afet sonrası hizmet

vermesi planlanan aktarma ve dağıtma merkezlerinin yer seçimine karar verilmesidir. Amaç

fonksiyonu, farklı afet senaryoları altında en fazla sayıda insana en kısa zamanda çoklu

malzeme taşınması ve dağıtılması olarak belirlenmiştir. Aktarma ve dağıtma merkezlerinin

her bir malzeme için belli bir uzaklıkta olması koşulu altında taşıma zamanının ağırlıklı

ortalaması minimize edilmeye çalışıldığı kapasitesiz bir matematiksel model kurulmuştur.

Bu model gerçek bir problemi çözmek için kullanılmıştır. Bu üç problem de deprem riski

altında olan İstanbul için uygulamaya konulmuştur. Deprem senaryolari, bu senaryolar

altında ulaşım ağlarının durumları, belirli bölgelerdeki deprem riskleri ve bölgeler arasındaki

uzaklıklar gibi gerçek veriler toplanılmıştır. Matematiksel modelin girdileri toplanan ver-

iler kullanılarak türetilmiştir. Öne sürülen çözüm algoritmaları İstanbul şehrinin deprem

hazırlıkları aşamasında karşılaştığı problemlerin çözülmesi yolunda kullanılmıştır.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Disasters have posed a threat to human life from the beginning of life on earth. In

most cases, it is not possible to forecast the time and the size/magnitude of a disaster.

Consequently, the damage cannot be forecasted exactly. The situation should be handled

in the after-math of a disaster.

Making decisions for the post-disaster stage in the pre-disaster planning stage is chal-

lenging due to the inherent uncertainty. On the other hand, decision-making in the post-

disaster stage is also difficult since it requires assessing the current situation immediately

and responding to it effectively in the chaos arising after the disaster by coordinating and

dispatching the resources. The emergency and the post-disaster trauma complicate the con-

struction of a systematic rational approach at this stage, which intensifies the significance

of the strategic pre-disaster planning. The difficulty of the problem originates from this

fact; the uncertainty of the consequences of the disaster. Pre-disaster decisions must be

taken under uncertainty by considering the worst and the most likely conditions that might

happen after a disaster, and the possible actions that may be taken after the disaster.

Disaster management can be considered to consist of three-stages [34]. The first stage

is the pre-disaster stage which includes activities such as developing information systems,

educating people and strengthening infrastructure systems. In this stage, providing max-

imum potential benefit to the society under cost effectiveness is the main objective. The

second stage is the post-disaster emergency response stage which requires urgent interven-

tion immediately to rescue people in the affected areas. In this stage effective coordination

among different agencies and efficient use of resources is the main objective. The last stage

is the post-disaster reconstruction and recovery stage. In this stage, rather than an emer-

gency intervention, the disaster area is reconstructed in a longer period of time and relief

operations take place.
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Several Operations Research problems exist in each of these stages. Pre-disaster stage

includes planning such as optimization of resource usage. Transportation of injured people

to hospitals, transportation of search and rescue teams to the affected areas and distribution

of food and necessity items are examples to such operational research problems in the post-

disaster stage. The reconstruction and remedy of the city visage with optimal resource

usage is a problem encountered in the long term post-disaster stage.

In this thesis, three problems are analyzed. The first problem is on assessing the re-

liability and performance of infrastructure networks under disaster risk. A framework to

represent link dependency in failures is proposed. Using this framework, a special type of

dependency structure, which is relevant for the disaster situation with lack of sufficient past

data, is defined. Under this dependency structure, a novel polynomial-time algorithm is

proposed to analyze the reliability and performance of a network and this original depen-

dency structure is computationally tested on a case study for Istanbul. The second problem

involves allocating a budget to links of an infrastructure network to increase the reliability

and the performance of the network. With investment, each link can be strengthened struc-

turally such that its probability of survival after a disaster increases. Then, the problem is

to find which links to invest in so that most benefit is obtained in terms of post-disaster

performance of the network with respect to accessibility and travel time between critical

points in the network. The computational applicability of a previously developed method

is demonstrated in the second problem by developing a Monte Carlo simulation algorithm

and applying it to a real-life case study. The last problem addressed in this thesis is a

facility location problem that seeks to identify locations of emergency response and distri-

bution centers to provide effective post-disaster logistics operations such as the supply of

relief commodities to the affected areas. For this problem, an uncapacitated facility location

model is formulated with the objective of reaching a maximum number of people in mini-

mum time possible after a disaster to distribute multiple commodities through the facilities

under several disaster scenarios for demand and travel time. Average weighted travel time

is minimized subject to constraints on the existence of a facility within a fixed distance

from each district for each commodity. This model is used to solve a real-life problem for

Istanbul against an anticipated earthquake.

A review of literature on disaster and emergency management with Operations Research
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approaches will be given in this chapter. A more detailed literature review for each of the

problems can be found at the beginning of each related chapter.

For years, the studies on disaster management took place mostly in humanitarian science

areas. Operations Research as a tool for decision makers in complex circumstances, has

provided opportunities for the quantitative analysis of some problems arising in emergency

management and there have been many applications on emergency management. There has

been an increasing attention among researchers in Operations Research area on the analysis

of disaster management and emergency response issues. The number of articles published

since the beginning of the millennium support this fact as this number surpassed the total

number of published articles in the 1990s [2]. Altay and Green [2] provide a survey that

identifies the publication trends and the potential research directions in disaster operations.

Wright et al. [36] categorize the literature on emergency preparedness and response into

four parts as early work, location and resource allocation, evacuation models and disaster

planning and response and investigates the topic in terms of homeland security. The reader

is referred to Kolesar and Swersey [22] for a comprehensive literature survey and Green and

Kolesar [15] for an overview of the developments in the last 15 years and possible future

problems especially those relevant to emergency responsiveness published in the journal of

Management Science. A systems view of emergency management, emphasizing the need for

both pre-event and post-event strategies, policies and the role of advanced communications

and computing technologies, coupled with analytic procedures and models are discussed by

Tufekci and Wallace [33].

To sum up, disaster management and emergency preparedness topics have been exten-

sively studied in the recent years. However, the three problems considered in this thesis bring

different perspectives such as considering budgeting constraints for investments and using

dependent survival link probabilities for the reliability of a network. An original dependency

structure, vulnerability-based dependency, is introduced in this thesis. A polynomial-time

algorithm for calculating reliability under this structure is given together with a case study

which shows the practicality of the algorithm. A mathematical model and a solution to a

real case study is completed with real-life data on Istanbul.

Disaster and emergency management will continue to be one of the broadly researched

areas of operational research as it is linked to survival of many lives and the numbers and
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statistics reported after the disasters explain this link better. The Hurricane Katrina was

reported to be one of the deadliest hurricanes in the history of United States. Katrina

formed in late August during the 2005 Atlantic hurricane season and caused devastation

along much of the north-central Gulf Coast of the United States. At least 1,836 people

lost their lives. The storm is estimated to have been responsible for 81.2 billion (2005

U.S. dollars) in damage, making it the costliest natural disaster in U.S. history. There are

many similar examples from all over the world. Turkey experienced the terrific Marmara

Earthquake in 1999 that led to the death of over 17,000 people and a great damage to the

economy. The words of Andrew Vorkink, Country Director of the World Bank for Turkey

well introduces examples from all over the world and stresses the importance of disaster

preparation. “In today’s world, where the Marmara 1999 earthquake which killed 17,000

people and affected Turkey’s economy by 2.5 percent of Gross National Product, the 2004

tsunami which killed more than 250,000 in Asia, Hurricane Katrina which is estimated to

cost the U.S. well more than 100 billion dollars and more than 1000 lives, and the earthquake

in South Asia which killed more than 30,000 people, emergency preparedness and hazard

risk mitigation are essential roles of governments”.

According to the reports of the World Bank, Istanbul is vulnerable to earthquakes due

to its seismic-prone location on the North Anatolian Fault and its high population and

commercial/industrial densities. It has been reported by Parsons et al.[26] in 2000 that

the probability of a major earthquake in Istanbul in the next 30 years is 62.6 ∓ 15%.

If an earthquake of the same magnitude as that in 1999 were to occur in Istanbul, the

human suffering as well as the social, economic, and the environmental impacts would

be dramatically higher than the one in the Marmara region, as Istanbul is not only the

financial, cultural and industrial center of the country, but is also a nexus of inter-continental

importance and home to around 12 million people. Related to this declaration, the Turkish

Government is in a collaboration with The World Bank on “Istanbul Seismic Risk Mitigation

and Emergency Preparedness Project (ISMEP)”and is planning to invest in various districts

of Istanbul.

In this major undertaking, the study in this thesis attempts to provide a theoretical

framework for reliability analysis for optimal budget allocation in the pre-disaster stage,

which is practical and can be applied to different networks in different disaster contexts.
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Case studies are attained on highway networks in Istanbul supporting the fact that the

methods proposed are practical. The rest of the thesis is organized as follows. The literature

on general disaster management is given in the next section. The first problem, assessing

the reliability and expected performance of a highway network, is given in Chapter 2. The

second problem, strengthening the links of a stochastic highway network, is given in Chapter

3. The last problem is given in Chapter 4. Each chapter includes the related literature in

detail and the computational results together with concluding remarks. The contributions

of this study to the literature and future research ideas are in Chapter 5.
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Chapter 2

ASSESSING THE RELIABILITY AND THE EXPECTED

PERFORMANCE OF A NETWORK UNDER DISASTER RISK

The functionality of infrastructure networks after a disaster is critical for effective dis-

aster response. In a disaster situation, the local and central government agencies as well

as civil organizations should dispatch their resources immediately to rescue victims and

to supply medical care, machinery, and relief commodities to the affected areas. As the

search and rescue teams work in the field, the injured and dead people will be carried to

nearby hospitals and shelters. In addition to the time-critical logistics operations carried

out by the agencies, some residents will be on the roads trying to leave the affected area

while others will try to reach the area to provide humanitarian aid. However, the disaster

may render some of the links of the transportation network non-functional, leading to the

blockage of some routes. As a result, the functionality and consequently the connectivity of

the transportation network are vital factors for the success of the rescue and relief opera-

tions. In pre-disaster planning stage, it is important to assess the post-disaster performance

of the network under possible disaster scenarios for the purpose of both strengthening the

components of the network and for planning the post-disaster logistics activities.

In this problem, the aim is to measure the reliability and the expected post-disaster

performance of a network under disaster risk. In post-disaster response, several nodes in

the network act as supply points while affected areas are represented by demand points.

As a result, these points constitute pairs of origin-destination (O-D) nodes in the network

such that connectedness of these pairs of nodes in the post-disaster surviving network are

essential under the foreseen disaster scenario. A set of reliability and expected performance

measures that differ in terms of the number of disaster scenarios and the O-D pairs under

consideration are proposed in this chapter.

An important aspect of this problem is the nature of uncertainty due to both how the

disaster manifests itself and the vulnerability of the components in the network; hence how
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the network would be affected from a disaster event. It is assumed that each link of the

network will be in one of two states after the disaster: i) operational (it survives), or ii)

non-operational (it fails). In most cases, several likely disaster scenarios can be predicted

by experts. Each disaster scenario is characterized in terms of its intensity and a geographic

area of influence. In addition, the vulnerability of the components of the network can be

measured by field engineers, mostly by structural analysis and statistical predictive methods.

Hence, one needs to calculate the probability of failure/survival of each link under a given

disaster scenario by incorporating all of these factors. One more concern is whether the

links would fail independently or not. In the case of dependent link failures, one needs to

identify the nature of dependence.

The exact calculation of any general network reliability measure, including the basic

measures of two-terminal and all-terminal connectivity, is ]P-Hard [23]. This is also the

case for the measures proposed in this thesis due to the exponential number of possible

states. To overcome this computational difficulty, methods are sought to reduce the state

space by identifying relations among the link failures that would be pertinent to the par-

ticular disaster context. Furthermore, in case of a link failure dependency joint probability

distributions of links are needed. As major disasters are rare events, in most cases sufficient

amount of data does not exist to fit a joint probability distribution. In this chapter, a novel

set-based link failure dependency scheme is conceptualized which may also be applicable

in case of insufficient data. Next, a tractable link dependency structure that allows the

existence of a polynomial-time algorithm when the number of O-D paths in the network is

fixed is defined. In addition, Monte Carlo sampling based methods are present to estimate

these measures under a general dependency structure. The use of this framework is then

illustrated by a case study related to a highly anticipated earthquake in Istanbul.

The rest of the chapter is organized as follows. Section 2.1 provides a literature review

of several areas related to network reliability. The necessary background and the problem

characteristics are described in Section 2.2. Section 2.3 introduces the methodology used in

this study and presents both the polynomial-time exact algorithm and the Monte Carlo sim-

ulation algorithm. In Section 2.4, computational results from the real-life Istanbul highway

network case are reported and discussed together with a comparison between independent

and dependent link failure cases. Concluding remarks are given in Section 2.5.
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2.1 Literature Review

A degradation or a blockage of any infrastructure network, such as a telecommunication,

power, water, energy and transportation network, etc., may cripple the performance of the

network and complicate the daily life drastically. It is essential to identify the vulnerability

of these networks in order to reduce the existing risk factors and to enhance the functionality

of these networks. Researchers have contributed immensely on quantitative analysis to elicit

information on the working principles and functionality of networks subject to failure risk

over the last decades, mainly in the network reliability literature. In this section we discuss

various network reliability and vulnerability definitions, the quantitative measures used to

evaluate them and their role in the emergency/disaster management context.

2.1.1 Network Reliability

Network reliability is mainly the concern for a system to continue providing its function

when component failures exist. Practical needs forced many researchers to study reliability

of network systems, therefore there exists a wide and deep literature on network reliability.

Networks have been studied for risk/reliability analysis where failures may originate from

either natural or man-made disasters. Especially, increasing incidents of terrorism (e.g.

September 11, 2001) and natural disasters (e.g. Kobe earthquake 1995, Katrina hurricane

2005) have led to heightened interest in the vulnerability of infrastructure network systems

as a matter of national security. It has been recognized that it is essential to reinforce these

network systems for better functionality after any type of destructive disaster.

However, how the reliability of a network system may be measured quantitatively is still

not clear. This unclarity originates from the fact that the concepts of reliability and vul-

nerability do not yet have commonly accepted definitions and a theoretical basis on which

to build [17]. The most general definition of reliability is that it is the probability of a

specific pair of nodes to be connected in the network realization. There is an extensive

survey on network reliability by Ball et al. [3] which includes related definitions, compu-

tational complexities, exact computation methods with performance analysis, in addition

to Monte Carlo methods and computational techniques in practical use. Recently, Konak

and Smith [23] reviewed network reliability optimization. They discussed the state-of-the-

art techniques to solve the reliable and resilient network design problems and to evaluate
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reliability considering a survivability constraint. They also presented two original heuristic

solution methods.

The evaluation of reliability requires several measures with respect to the structure of

the system and concerns of the decision maker. Although it is possible to define them

differently, types of measures may be collected in two categories by taking into account the

connectivity and the performability aspects [3].

2.1.2 Connectivity Measures

Connectivity is defined as the probability that nodes of a network remain connected. It is

mostly beneficial whenever the network performance is considered to be satisfactory as long

as the network is connected [3]. Connectivity measures have special cases which narrows

down the content/scope of the definition [23]. The following are the basic special cases

of connectivity measures. i) Two-terminal reliability is the case in which the probability

of a path existing between two specific nodes is considered. ii) All-terminal reliability is

the probability that every node is connected with every other node in the network. iii)

K-terminal reliability is the probability that every node in K is connected with every other

node in K, where K is a subset of the total node set.

There are also minimum over all two-terminal and average over all two-terminal relia-

bility measures which provide lower bounds and average values for the connectivity between

specific pairs of nodes [3]. All of these measures may be important in different network sys-

tems. When there are specific target nodes that is desired to be connected, two-terminal

would be a suitable measure. When traffic can be rerouted in case of a link failure for the

packet switched networks, it is important that the all-terminal reliability of the network is

high to keep the connectivity of the system. K-terminal measure is important for connec-

tivity of local area networks of computers. The preference of minimum and average values

for the two-terminal measures is up to the decision maker’s risk attitude.

2.1.3 Performance Measures

Measurements for the network performance are based on the functionality of the network.

Two measurements are defined below with respect to some requirements. i) Travel-time

reliability is the probability that a trip between two specified nodes can be completed within



Chapter 2: Assessing the Reliability and the Expected Performance of a Network Under Disaster
Risk 10

a specified time interval [31]. ii) Capacity reliability performance index is the probability

that a network can successfully accommodate a given level of travel demand.

Travel-time reliability and capacity-reliability terms have been proposed and analyzed in

several cases where the networks are transportation/road networks. Sumalee and Watling

[30] presented an algorithm for estimating bounds on the probability of a path travel time

for the case of multi-mode link failures. Sumalee and Kurauchi [29] studied the network

capacity reliability in terms of traffic regulations after a major disaster. Stochastic User’s

Equilibrium is assumed for the re-routing behavior effect due to changes in the traffic con-

dition and the capacity reliability of the network is approximated with the use of Monte

Carlo simulation. A capacity-reliability analysis has been conducted by Chen et al. [9]

which combines reliability and uncertainty analysis.

There are also other measurements such as behavioral-reliability which is related to the

attitude of the drivers in transportation systems and potential reliability which aims to find

potential weak points and their effects on the whole network system [10]. Examples to appli-

cations of such measures may be transportation networks for the travel-time measurement

and communication networks for the capacity reliability measurement.

Additionally, there are reliability measures concerning node failures. Node-reliability is

obviously the case where nodes, rather than edges fail with certain probabilities. Specified

root-related reliability is the probability that a specific number of roots are connected on

the average.

When the literature is examined, it is observed that reliability is a flexible concept that

can be modified with respect to the network characteristics in order to meet the decision

maker’s requirements. In addition to reliability, there are other concepts that help to char-

acterize a network such as vulnerability, risk and accessibility. Well-defined definitions of

these concepts are not available either. However, many researchers use the term vulnerabil-

ity more closely aligned with network weaknesses and consequences of failure while reliability

focuses on the probability of failure. Jenelius et al. [17] propose that vulnerability appears

when the network is under pressure with full capacity, and a small amount of further stress

may cause a major damage by magnifying itself and may cascade through the system. This

implies that a network can be reliable, yet highly vulnerable at the same time.
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2.1.4 Network Risk Assessment in Disaster Management

Emergency and disaster management is closely related with network reliability since disas-

ters may cause damage to any one of the infrastructure systems. There are various studies

on different types of disasters such as flood [28] and earthquake [27], [24], [8] with their

effects on several network systems such as transportation, water or gas pipeline networks.

An efficient pre-disaster strategy must contemplate reliability and vulnerability of such net-

work systems. The knowledge on the status of a network in terms of the reliability measures

prior to a disaster provides support for possible investment decisions on upgrading compo-

nents of the network. Viswanath et al. [35] addressed the link upgrading problem under a

limited budget and a disaster scenario with the purpose of effective post-disaster response.

The objective is to maximize the expected performance of the network after a disaster and

the study involves reducing the risk of disconnectedness of the O-D pairs via upgrading

investment.

An analysis of the risk of the components can be an effective guide for any strate-

gic/tactical level decisions. Moghtaderi-Zadeh [24] stated that systematic methods for effi-

cient upgrading of lifelines for post-disaster earthquake serviceability had not been studied

before 1983 and their paper is a first attempt at such a study. The aim of the paper is to de-

termine the critical components in networks that would increase the connectivity-reliability

of the network most. Selcuk and Yucemen [27] consider the reliability of lifeline networks

with multiple sources under seismic hazard and propose a decision support system that

presents a probabilistic model for the evaluation of the seismic reliability of a water dis-

tribution system. All of these previous studies support the fact that there is a need for

a quantitative measure that will lead to mathematical analyses of network systems for an

effective post-disaster response.

2.1.5 Computation of the Reliability Measures

Exact calculation of any general network reliability measure is known to be ]P-Hard [23].

Exponential time exact algorithms are present for general networks and polynomial time

exact algorithms for some restricted classes of networks [23]. With the assumption of two

possible states of the links of a network, as functional and non-functional, the number of

possible network realizations are 2n, for a network of n links. Therefore, sampling and
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Monte Carlo simulation are popular tools that are used for reliability calculations as the

problem is mostly intractable with exponential complexity [9], [6]. Buchsbaum [6] presents

a heuristic based on Monte Carlo and Markov Chain simulation techniques and proposes

approximations and bounds on various reliability-related parameters. Sumalee and Ku-

rauchi [29] utilize Monte Carlo simulation as well, however the authors generate the states

of the links and the amount of degradation in functionality of the links after the disaster by

random number generations. Karger [20] studies all-terminal connectedness using minimum

cuts by means of a Fully Polynomial Randomized Approximation Scheme (FPRAS). Carey

et al. [7] provide upper and lower bounds for the expected maximum flows in capacitated

networks.

2.1.6 Link Failure Dependency

To the best of our knowledge, most of the studies in the literature consider the failure

of the links of a network as independent events. However, it is often necessary to treat

the link failures of a network as dependent events as they are subject to similar forces.

This was also pointed out by Garg and Smith [14], who stated that in the context of

emergency service deployment, disasters such as earthquakes may damage several roadways

simultaneously, perhaps because of the presence of bridges or elevated roadways. Hence,

contingency plans for providing relief to affected areas need to consider the potential failure

of certain vulnerable links, some of which may simultaneously fail. Yet, how to define the

dependency relationship among the link failures is a challenging problem.

There are a limited number of studies that take into account the dependency relationship

among the links, such as [30], [31], [27]. Sumalee and Watling [30] also point out the lack of

studies on the dependent case. In their study, the authors propose a scenario-based model

where the causes of degradation of links change in each scenario. Each link is given a failure

probability called the conditional independence due to each specific cause. Integrating these

probabilities with the joint probabilities of the existence of these causes, dependency among

the links is supplied implicitly. Most probable network states are generated among the most

probable cause scenarios. Then, upper and lower bounds are calculated by the assumption

that the possible network states, which are not generated, are all failing/surviving for the

lower/upper bound. Taylor et al. [31] present a vulnerability analysis for the independent



Chapter 2: Assessing the Reliability and the Expected Performance of a Network Under Disaster
Risk 13

link failure case and suggest that the same procedure may be modified to a dependent case

by considering the node failures which would lead to simultaneous failures of the links that

are attached to it.

Selcuk and Yucemen [27] study the reliability of networks under seismic hazard. Al-

though they use independent failures in their study, they propose a spatial correlation where

the degree of spatial correlation between any two components depends on the distance sep-

arating them and generally decays with increasing distance. In this study our motivation

is also related to earthquakes, and seismic risk of highway networks. In fact, distance to

the epicenter of the earthquake are also identified as an important factor for risk. However,

rather than deriving a function of risk with respect to distance, areas of high/low risk are

defined. This approach seems to be more practical and allows a macro level analysis.

Joint probability distributions are necessary to incur a dependency relationship among

link failures. However, this requires identifying the probability of each realization, where in

the case of link failures, there exists an exponential number of realizations. Bayesian network

analysis [18] facilitates the calculation of the joint probability distribution by eliminating

a subset of the realizations. It first estimates the dependency relations by analyzing data

and models them by a network. It then sets the required conditional probabilities by the

network representation.

Bayesian networks are directed acyclic graphs where nodes represent the variables and

arcs represent the immediate dependencies between two variables. Conditional indepen-

dencies are defined among the variables that are dependent on each other but can become

independent with the addition of new knowledge, ie. P(a|b) 6= P(a) but P(a|b, c)=P(a|c) for

variables a, b and c. Hence, it is possible to use Bayesian network analysis to derive depen-

dency relations among link failures when sufficient amount of data exists. Unfortunately, in

the disaster context it is very difficult to obtain data on how the network components fail

in dependence to each other.

2.1.7 Overview of the Proposed Method

For this problem, we propose an original framework for calculating the reliability and perfor-

mance of a network under disaster risk. The disaster risk creates a dependency relationship

among the link failures. One needs to identify first the set of links that show dependency
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among each other. Then, in each set the dependency relations should be modelled. This

approach is neither network nor disaster specific and can be applied to different networks

for different problems. We define the term “reliability” as the probability that two nodes,

an origin and destination (O-D) pair, are connected and the “performance” of a network

as the expected shortest path distance between an O-D pair, including a penalty cost for

disconnectedness. It is already difficult to calculate the reliability under the independence

assumption due to the intractable number of possible states. Therefore, we develop a so-

lution approach for calculating/estimating the reliability and performance of a network

under link dependency. We reduce the number of possible states by defining a particular

dependency structure that is relevant in the disaster context. We then develop an exact

polynomial-time algorithm under this structure. We also utilize a Monte Carlo Simulation

algorithm to estimate the measures in cases where it is still intractable to obtain the exact

calculations.

This new approach is applied to Istanbul highway network under earthquake risk, where

the links are likely to fail due to the collapse of structures such as bridges and viaducts.

In this context, we also provide a comparison between the independent and dependent link

failure cases by analyzing how the performance measures vary under both cases.

2.2 Problem Definition

We consider the problem of assessing the reliability and travel distance of several O-D pairs

on a given undirected graph G = (V, E) under disaster risk, where V = {v1, v2, ..., vn}
is the vertex set and E = {e1, e2, ..., em} is the edge/link set. Several disaster scenarios

are identified and each disaster scenario is characterized in terms of its intensity and a

geographic area of influence. A disaster scenario is represented by ωj that takes values from

the possible set of disaster scenarios, Ω = {ω1, ω2, . . . , ω|Ω|}. The probability that scenario

ωj occurs is denoted by P(ωj). Nodes are assumed to survive all the time, whereas each

link, ei, may exist in either the operational or the non-operational state after the disaster.

Therefore, link ei has a survival probability, pei(ωj) under disaster scenario ωj . Each O-

D pair is represented by a commodity d ∈ C and has a positive weight rd, representing

estimated population traveling from its origin O(d) to its destination D(d). There is a

travel cost tei associated with each link ei ∈ E that represents travel distance along that
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link.

We represent the post-disaster state of link ei by a random variable ξei that takes the

value 1, if link ei is operational after the disaster; and 0, otherwise. The vector of realizations

of the random variables ξei over all links in E, denoted by ξ = (ξei), ξ ⊂ {0, 1}|E| induces

a subnetwork of G; G(ξ) = (V, E(ξ)) which we refer to as the “surviving network” where

E(ξ) = {ei ∈ E : ξei = 1} denotes the surviving edges. The set of all network realizations is

denoted by Ξ = {1, 2, ..., |Ξ|}. Travel distance of a shortest path from O(d) to D(d) in G(ξ)

is denoted by Td(ξ). If a particular O-D pair d is disconnected in any network realization,

the shortest path length is equal to a penalty cost Md for that pair. The probability of

survival of link ei under disaster scenario ωj , i.e. P(ξei = 1|ωj) is denoted by pei(ωj) and

the probability of occurrence of the vector realization ξ is denoted by p(ξ).

2.2.1 Reliability and Performance Measures

In pre-disaster planning, one may be interested in looking into only the worst-case disaster

scenario (single disaster scenario case) or a weighted combination of the desired measure

over the most probable disaster scenarios (multiple disaster scenario case). Also, reliability

and expected travel distance are possible measures of interest concerning either a single O-D

pair or a weighted sum over multiple O-D pairs. We consider eight types of measures in

this study with respect to these concerns. Each measure is characterized by three features

and (././.) is used to represent these features. The first entry is used to show the number

of O-D pairs, either S for single or M for multiple O-D pairs. The second entry denotes

the number of scenarios, either S for single or M for multiple scenarios, and the third entry

shows the type of the measure either R for reliability or P for performance. The measures

we are interested in are:

1. O-D reliability under a single disaster scenario: For O-D pair d, disaster scenario wj ,

P(O(d) and D(d) are connected in G(ξ) | ωj occurs): (S/S/R).

2. O-D reliability under multiple disaster scenarios: For O-D pair d,
∑|Ω|

j=1 P(ωj) P(O(d) and D(d) are connected in G(ξ) | ωj occurs): (S/M/R).

3. Multi O-D reliability under a single disaster scenario: For disaster scenario wj ,
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∑
d∈C

rdP(O(d) and D(d) are connected in G(ξ)|ωj occurs): (M/S/R).

4. Multi O-D reliability under multiple disaster scenarios:
|Ω|∑
j=1

P(ωj)(
∑
d∈C

rdP(O(d) and D(d) are connected in G(ξ)|ωj occurs): (M/M/R).

5. O-D performance under a single disaster scenario: For O-D pair d, and disaster sce-

nario ωj ,
∑
ξ∈Ξ

P(ξ|ωj) {P(O(d) and D(d) are connected in G(ξ)|ωj) Td(ξ)

+ (1-P(O(d) and D(d) are connected in G(ξ)|ωj))Md}: (S/S/P).

6. O-D performance under multiple disaster scenarios: For O-D pair d,
|Ω|∑
j=1

P(ωj)
∑
ξ∈Ξ

P(ξ|ωj) {P(O(d) and D(d) are connected in G(ξ)|ωj) Td(ξ)

+ (1-P(O(d) and D(d) are connected in G(ξ)|ωj))Md}: (S/M/P).

7. Multi O-D performance under a single disaster scenario: For scenario ωj ,
∑
ξ∈Ξ

P(ξ|ωj)
∑

d∈D

rd{P(O(d) and D(d) are connected in G(ξ)|ωj)Td(ξ)

+ (1-P(O(d) and D(d) are connected in G(ξ)|ωj))Md}: (M/S/P).

8. Multi O-D performance under multiple disaster scenarios:
|Ω|∑
j=1

P(ωj)
∑
ξ∈Ξ

P(ξ|ωj)
∑

d∈K

rd{P(O(d) and D(d) are connected in G(ξ)|ωj) Td(ξ)

+ (1-P(O(d) and D(d) are connected in G(ξ)|ωj))Md}: (M/M/P).

The first four measures are reliability measures for connectivity. The next four are

combined performance measures in which the reliability is also incorporated by means of

a penalty cost for disconnectedness. Measures that consider multiple disaster scenarios

incorporate the probability of occurrence of each scenario. In cases where estimating such a

probability is difficult due to lack of data, one can interpret these probabilities as weights.

Likewise, when multiple O-D pairs are considered, a weight can be assigned to each O-D

pair, representing either the traffic demand between these locations in a disaster situation or

the criticality of having connectivity between the particular O-D pair. Hence, the decision

maker needs to determine which measures are relevant in their context based on the type of

the disaster and the availability of data. The single scenario single O-D and multiple O-D
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measures are used on an investment problem in a previous study by Viswanath et al. [34]

that will be mentioned in Chapter 3.

2.2.2 Link Failure Dependency

Exposed to a disaster, the links of a network may fail independently or depending on each

other. This behavior is originated from the type of the disaster. The types of disasters

may be concerned in two main parts according to their causes as natural and man-made.

Usually, the natural disasters are more convenient to predictions in terms of happening time,

area affected and intensity via scientific studies. Therefore, several likely disaster scenarios

may be forecasted. On the other hand, the situation is a little different for man-made

disasters. Man-made disasters may happen intentionally or accidentally. The intentional

disasters such as terror attacks mostly target for specific links or nodes of a network such

as critical structures and this decreases the stochastic nature of the problem whereas in the

accidentally happening case, it is more difficult to predict both the source of the disaster and

the aggrieved area. For highway networks in disaster context, link failures may be assumed

to be independent for man-made intentional disasters or in cases for which the nature of

dependencies of link failures may not be characterized. However, for cases in which a natural

disaster affects an area enclosing the network, and the disaster hits certain links with more

intensity, it is more reasonable to assume that the link failures are dependent.

The causes of this dependency are both internal and external to the network. Although

the vulnerability of the link itself has an important effect on the failure of the link (such as

the strength of a bridge), the consequences of the disaster (such as the collapse of buildings,

an explosion or fire) have an effect that should not be neglected. The strength of a bridge on

the link and the soil type on which the link stands are internal factors whereas the magnitude

and the epicenter of an earthquake may be reckoned as external factors for a highway

network under earthquake disaster risk. With these thoughts in mind, the dependencies of

link failures tend to behave similarly for links sharing the same area. That is, a network

embedded in a geographical region is under study and in this region there exist “areas” or

“zones” with different characteristics that affect the link failures. Then, it is more probable

that the links in the same area are operational or not together. This concept of an “area”

on a network is to be specified with respect to the kind of the disaster it is subject to. It
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would be different for an earthquake than it is for a chemical explosion because diffusion of

intensity/danger of chemical explosion is different than the intensity of earthquakes. So the

characteristics of the disaster must be known for a better analysis. As a general observation,

it may be said that there exist subsets of links that tend to act together within their sets

after a disaster. Based on this idea, we propose a framework in which the set of links that

have dependency are identified as mutually exclusive sets Al ⊂ E, for l = 1, . . . , L. Each

set of links fail independently, while links in a set have dependence among each other.

The independent failure case can be represented with singleton sets containing each link

separately. The next section describes this concept of “area” utilized in this study in more

detail and gives theoretical interpretations that lead to further investigation.

2.3 Methodology

Computing the proposed measures is of high computational complexity due to the expo-

nential number of vector realizations when link failures are assumed to be independent. In

the case of a natural disaster, to analyze this dependency related to spatial factors, one

needs quantitative measures, such as the joint probability distributions of events relating to

the dependent components. We assume a dependency relationship among the link failures

which facilitates the computational effort. This relationship seems to be relevant and useful

in the disaster context where the vulnerability of link components can be assessed.

2.3.1 Models of Dependency

The computational complexity of calculating the reliability originates from the number of

conditional probabilities of components necessary to calculate the joint probability of the

whole network. If joint probabilities among the components are available, then a Bayesian

network can be used to determine the existing dependency structure. This would also help

reduce the the number of conditional probabilities information needed to form the joint

probability distribution. However, determination of the conditional probabilities requires

analysis of previous data and the available data on disasters is insufficient. We propose an

alternative approach for such cases where the dependency relationship among the compo-

nents of a network can not be determined through historical data.

Set-Based Dependency:
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Definition 2.3.1. Given a network with link set E subject to failure due to a disaster

event, the network is said to have Set-Based Dependency (SB-dependency), if E can

be partitioned into mutually exclusive sets Al ⊂ E, for l = 1, . . . , L such that each set of links

Al fail independently with each other, while links within a set Al have dependence among

each other. If L = 1, that is E = A1, then we have the all-dependent case. If each Al

consists of a single link, that is |Al| = 1 for each l, then we have the all-independent case.

This definition provides a framework to analyze link failures and can be applicable in

cases where the network is embedded in a geographical region and the set of links are par-

titioned with respect to the effect of the disaster on the network under a particular disaster

scenario. Thus, links in the same impact area of the disaster may constitute a set such that

the set of links is partitioned into dependent subsets. In fact, this definition is sufficiently

general to encompass the all-independent and all-dependent link failure cases as well. The

all-independent case can be represented by considering each link as a single set and the all-

dependent case can be obtained by using single set composed of all links. SB-dependency

also allows the use of Bayesian network to determine the dependency relationships within

each set.

In order to achieve further computational tractability, and a more specific structure on

dependency in the disaster context, we define the following type of dependency within each

set Al ⊂ E. Here we assume that we are focusing on a particular disaster scenario and

the link survival probabilities are given conditional on this scenario. However, for ease of

presentation we change the notation from pei(ωj) to pei .

Vulnerability-Based Dependency:

Definition 2.3.2. Given two links i and j in set Al with survival probabilities pi and pj, we

say links i and j have Vulnerability-based dependency (VB-dependency), if pi ≤ pj

implies P(i fails | j fails)=1.

Intuitively, one can think of this dependency relation as “the failure of the strongest link

implies failure of all links”. The links that have VB-dependency among each other are said

to be in the same VB-dependency set. This concept of dependency allows us to determine

the joint probability of failure or survival of a set of links. We denote the joint probability

of survival of links i and j by < pi, pj >. Here we need to calculate the probability of

connectedness of the O-D paths. Therefore, with respect to the VB-dependency definition
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above, the probability of link i surviving and link j failing in a vector realization of the links

should be equal to zero. As a result, we obtain the following joint probability distribution

for two links i, j in the same VB-dependency set, where pi ≤ pj :

P(i survives, j fails)=〈pi(1− pj)〉 = 0 = 〈pi〉 − 〈pipj〉.
Then, 〈pipj〉 = 〈pi〉.
P(i fails, j survives)= 〈(1− pi)pj〉 = 〈pj〉 − 〈pipj〉 = pj − pi.

P(i survives, j survives)= 〈pipj〉 = pi.

P(i fails, j fails)= 〈(1−pi)(1−pj)〉 = 1−〈pj〉−〈pi〉+〈pipj〉 = 1−〈pj〉−〈pi〉+〈pi〉 = 1−pj .

To explain this concept more clearly, consider the case of a single disaster scenario

occurring on a network with only 3 links of the network belonging to a single VB-dependency

set. Assume that each link has a different survival probability, pi 6= pj ∀ i, j ∈ E, and the

links are ranked in the increasing order of their survival probabilities, that is p1 < p2 < p3.

Table 2.1: Example of joint distribution of three links under VB-dependency

Case No ξ1 ξ2 ξ3 Probability

1 1 1 1 p1

2 0 1 1 p2 − p1

3 0 0 1 p3 − p2

4 0 0 0 1− p3

Table 2.1 shows all possible network vector realizations together with their probabilities

of occurrence. In the second, third and fourth columns, ξi, i ∈ {1, 2, 3}, equals 1 if the

corresponding link survives after the disaster, and 0 otherwise. In case 1, all the links are

functional. With respect to VB-dependency, probability of this vector realization equals to

the survival probability of the weakest link, p1, because it is guaranteed that if the weakest

link has survived, the others will definitely survive. In the second case, where all but the

first link survived, the probability is equal to p2 − p1. Only the third link survives in the

third case, which makes the probability of such a case equal to p3 − p2. In the fourth case,

all links are non-functional with probability equal to 1− p3, because this is the probability

that the strongest link will fail.

We next characterize the probability of realization of a particular surviving network
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configuration.

Proposition 2.3.1. For networks with a single VB-dependency set, P(E(ξ)=E) = min{pi}1≤i≤m

with respect to VB-dependency. For networks with multiple VB-dependency sets, P(E(ξ)=E)=
∏L

l=1 min{pi}i∈Al
with respect to VB-dependency.

Proof. The first statement implies that the probability of all links surviving is equal to the

minimum of the survival probabilities of the links in a single VB-dependency set. This can

be shown using induction. First, note that P(E(ξ) = E) = P(all links survive) = P(pi1

survives, pi2 survives,..., pim survives).

Without loss of generalization, assume pi1 ≤ pi2 ≤ ... ≤ pim under VB-dependency. 〈pi1〉 =

〈pi1 , pi2〉 by definition of VB-dependency. Then,

P(E(ξ)=E)= 〈pi1 , pi2 , ..., pim〉 = 〈pi1〉〈pi2〉, ..., 〈pim〉 = 〈pi1〉〈pi3〉...〈pim〉
= 〈pi1〉〈pi4〉...〈pin〉 = ... = 〈pi1〉〈pim−1〉〈pim〉 = 〈pi1〉〈pim〉 = 〈pi1〉

For the proof of the second statement of the proposition, simply consider that the probability

of all links survive is equal to the product of probabilities of all links surviving in each set,

since all VB-dependency sets are independent.

Since the proposed measures include the connectivity of the O-D pairs, we need to

concentrate on the joint probability distribution of links connecting each O-D pair. For

connectivity, there must be at least one surviving path between an O-D pair and clearly,

all of the links on a path should survive for a path to survive. Proposition 2.3.1 can be

adapted for a single path as follows.

Corollary 2.3.2. For a path with a single VB-dependency set, P(all links in the path

survive) = min{pi}i∈path with respect to VB-dependency, where i ∈ path represent the links

on that path. For a path with links belonging to multiple VB-dependency sets, P(all links in

the path survive)=
∏L′

l=1 min {pi}i∈Al,i∈path with respect to VB-dependency, where L′ is the

number of different VB-dependency sets that the links on the path belong to.

As a result, the following corollary provides computational efficiency in calculating the

probabilistic measures that we are interested in.

Corollary 2.3.3. If the links of a network with a single VB-dependency set are ranked with

respect to their survival probabilities, p[1] ≤ p[2] ≤ ... ≤ p[m] in increasing order, then the
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probability of occurrence of a case in which a link with a higher index in this ordering fails

while the one with a lower index survives is zero.

Calculating any of the proposed measures defined in section 2.2 is computationally dif-

ficult due to the exponential number of possible realizations. However, the defined de-

pendency relationship among the links, causes a decrease in the number of possible vector

realizations (Corollary 2.3.3) and allows calculation of the reliability of a network in polyno-

mial time for specified number of VB-dependency sets and number of shortest paths between

O-D pairs.

We propose the following notation. The vector of realizations in which all links survive

is represented by the vector (1, 1, ..., 1) with size equal to the number of links in the net-

work. Corollary 2.3.3 implies that, since the links are ordered with respect to their survival

probabilities, a vector realization such as (1, 0, ..., 1) can never exist because the failure of a

link that is stronger in the survivability sense (with higher index) suggests that the weaker

links (with lower index) must have already failed. This leads to the following proposition.

Proposition 2.3.4. The maximum number of possible vector realizations for a network

having a single VB-dependency set is equal to (m + 1), where m is the number of links in

the set.

Proof. The number of possible vector realizations depends on the number of links which

have the same probability of survival. It actually equals to (m + 1) in the case where

all links have different survival probabilities. When there are links with equal probabilities,

then they behave as a single link surviving or failing together and this decreases the possible

number of vector realizations.

2.3.2 Calculation of the Reliability and Performance Measures

The reliability of the network is calculated as the summation of the probabilities of vector

realizations which satisfy connectivity. If there is no functional link, ie. all links have

failed, then this case does not contribute to the reliability of the network. However, the

probability of occurrence of such vector realization is important because it will count towards

the performance of the network due to the travel distance penalty, Md, for the O-D pair d.

The connectivity of the surviving networks associated with the vector realizations are

determined by checking the existence of the paths between the origin and destination nodes.
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The number of paths between the O-D pairs may change according to the characteristics

of the network. In this study, k-shortest paths between the origin and destination nodes

are taken into account. πs is the set of k-shortest paths determined in the preprocessing

stage with T (πi) as the travel distance for path πi. These k-shortest paths are considered

as thresholds for the connectivity, ie. a vector realization is connected if any one of the k-

shortest paths exists. In sparse networks, limiting the calculations to only k paths for each

O-D pair is reasonable as the number of paths between any of the O-D pairs will be small.

On the other hand, the number of paths connecting any two nodes may be exponential if

the network is dense but using only the k-shortest paths is a practical approach in that

case.

The pseudo-code to compute the reliability Rel, and the performance Per, of a single

O-D pair in a network composed of a single VB-dependency set, A1, under a single disaster

scenario is given below. For the multi-scenario and the multi-O-D pair cases, each disaster

scenario/O-D pair is given a weight. The weights for the disaster scenarios/O-D pairs reflect

the importance given to that scenario/O-D pair. The O-D pairs are assumed to be connected

for at least when all links are functional. Let pi represent the survival probability of link i.

(S/S/R) and (S/S/P) measures are calculated at the same time.

Algorithm for (S/S/R) and (S/S/P) Measures (Single VB-dependency Set)

Inputs: pi ∀i ∈ E, {π1, π2, ..., πk}
Outputs: Rel, Per

Step 1 Rank pi such that p[i] ≤ p[i+1]

Step 2 Compute initial reliability and performance (INITIAL)

Step 3 Generate a realization ξi (GENERATE)

Step 4 Check connectivity and calculate reliability and performance (CALCULATE)

Go to Step 3.

Step 5 Stop when all realizations are generated

INITIAL:

ξi = 1 for all i

Rel = p[1]

Per = p[1] · T (π1)

GENERATE:
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For i=1 to n

ξi = 0

CALCULATE:

For s=1 to k repeat

Check if πs survives in ξi

4.1 If yes, then

Rel = Rel + p(ξ)

Per = Per + p(ξ) · T (πs)

4.2 else

Per = Per + p(ξ) ·Md

Computations of reliability and performance of the network are completed through an

iterative approach. The first step is to sort the links with respect to their survival prob-

abilities within the set. Reliability is computed as the summation of the probabilities of

vector realizations which provide connectivity between the origin and destination nodes.

In a similar manner, the performance is measured as the summation of the product of the

traversal costs and the probabilities of the corresponding vector realizations. A penalty

traversal cost is incurred whenever a vector realization is not connected. In the second step,

the iteration starts with the full-functional case which is the case when all links are func-

tional. Then, the initial reliability is the survival probability of the weakest link in the set,

p[1], as shown in Proposition 2.3.1. The initial performance of the network is the shortest

path between the origin and destination nodes since this path definitely exists when all the

links are functional. In the third step, the next vector realization is generated in which the

weakest link is non-functional. Connectivity check is completed in Step 4. This is done by

checking the existence of the k-shortest paths. The first shortest path found to exist will be

the traversal cost of that vector realization. Reliability of the network will be increased with

the addition of the probability of that vector realization. When all the k-shortest paths are

checked, if none of them exists within the given vector realization, then a penalty traversal

cost is incurred which is a constant for each O-D pair d as Md. The performance of the

network is increased by the product of the traversal cost and the probability of the vector

realization. If none of the shortest paths are found to exist, then the reliability stays the

same, however, the performance of the network is increased by the amount of the product
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of the probability of the vector realization and Md. The third step is repeated as many

times as the number of links in the set. In m steps, all of the links will be failed one by one

iteratively.

We next analyze the computational complexity of the proposed algorithm.

Proposition 2.3.5. The computational complexity of the algorithm for a single O-D pair

in a network composed of a single VB-dependency set with m links, under a single scenario

is O(km2), where k is the number of shortest paths between the origin and destination nodes

that are input to the algorithm.

Proof. The time required for the algorithm to sort m elements is O(mlogm). Then checking

for connectedness is O(m) because each link is checked for whether it is functional or not.

This checking is repeated for the k-shortest paths in the worst case for a single step and

this increases the complexity to O(km2) for m steps.

Therefore, the computational complexity is polynomial time when k is a fixed number.

The complexity differs for the case of multiple VB-dependency sets as follows.

Proposition 2.3.6. The maximum number of possible vector realizations for a network

of multi VB-dependency sets is equal to (m1 + 1) · (m2 + 1) . . . (mL + 1), where ml is the

number of links in VB-dependency set Al and L is the number of VB-dependency sets in

the network.

Let pl
[i] represent the survival probability of i-th link Al when ranked with respect to

survival probabilities. The pseudo-code for the single O-D pair, multiple VB-dependency

sets is as follows:

Algorithm for (S/S/R) and (S/S/P) Measures with Multiple VB-dependency Sets

Step 1 Within each set Al rank pi such that p[i] ≤ p[i+1]

Step 2 Compute initial reliability and performance (INITIAL)

Step 3 Generate a realization ξi (GENERATE)

Step 4 Check connectivity and calculate reliability and performance (CALCULATE)

Go to Step 3.

Step 5 Stop when all realizations are generated

INITIAL:
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ξi = 1 for all i.

Rel = p1
[1]p

2
[1]...p

L
[1].

Per = (p1
[1]p

2
[1]...p

L
[1]) · π1.

GENERATE:

For i11 = 1 to m1 repeat

Generate ξl
i = 1 for all i in all Al

ξl
i = 0

For i21 = 1 to m2 repeat

Generate ξl
i = 1 for all i in all Al

ξl
i = 0

. . .

For iL1 = 1 to mL repeat

Generate ξl
i = 1 for all i in all Al

ξl
i = 0

CALCULATE:

For s=1 to k repeat

Check if πs exists

3.1 If yes, then

Rel = Rel + p(ξ)

Per = Per + p(ξ) · T (πs)

3.2 else

Per = Per + p(ξ) ·Md

The algorithm starts with a full-functional state, similar to the algorithm for networks

with a single VB-dependency set. The reliability and the performance are calculated iter-

atively. In this case, the initial reliability equals to the product of survival probabilities of

the weakest links in each VB-dependency set, as shown in Proposition 2.3.1. The initial

performance is then the product of this probability and the length of the shortest path,

with the same reasoning as above. The major difference between the single VB-dependency

set and the multiple VB-dependency set cases is the generation of the vector realizations.

The number of possible realizations is
∏L

l=1(|Al|+1) where the resulting vector realizations
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are combinations of vector realizations generated for each single VB-dependency set in the

first algorithm. After generation of each vector realization, a connectivity check is done by

searching for the k-shortest paths. If any of them exists, then the reliability is increased in

the amount of the probability of that vector realization. The performance is calculated as

the product of this probability and the shortest path length. If none of the k-shortest paths

exist, then the traversal cost is taken as Md, for the O-D pair d. The reliability stays the

same, however the performance increases in the amount of the product of the traversal cost

and the probability of the vector realization.

We give the following example to illustrate how the algorithms work. Consider the sim-

ple network in Figure 2.1. The survival probabilities of links pi, i∈ {1, ..., 5} are given as

0.4, 0.4, 0.7, 0.7, 0.6, respectively. The traversal costs are 10, 10, 5, 5, 15 in the same order of

links. The network is composed of two VB-dependency sets, namely A1 = {p1, p2} and A2 =

{p3, p4, p5}. 4-shortest paths are determined as π1 = 1, 4, π2 = 2, 3, 4, π3 = 2, 5, π4 = 1, 3, 5

with travel distances between the O-D pair given as T (π1) = 15, T (π2) = 20, T (π3) = 25,

T (π4) = 30. Here the penalty cost is taken as M = 31, just greater than the longest path.

Figure 2.1: An example simple network

Preprocessing

Step 1 Sorting p1
[1] = 0.4, p1

[2] = 0.4, p2
[1] = 0.6, p2

[2] = 0.7, p2
[3] = 0.7

Step 2 Start with ξ = (1, 1, 1, 1, 1)

Rel = p1
[1] · p2

[1] = 0.4 · 0.6 = 0.24

Per = (p1
[1] · p2

[1]) · T (π1) = 0.24 · 15 = 3.6

Iteration 1
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Step 3 ξ = (1, 1, 0, 1, 1)

Step 4 π1 = (1, 0, 0, 0, 1). Check ξ ≥ π1 or not

TRUE

Step 4.1 Rel = Rel + p(ξ) = 0.24 + (0.4 · (0.7− 0.6)) = 0.28

Per = Per + (p(ξ) · T (π1)) = 3.6 + (0.04 · 15) = 4.2

Go to Step 3.

Iteration 2

Step 3 ξ = (1, 1, 0, 0, 0).

Step 4 π1 = (1, 0, 0, 0, 1). Check ξ ≥ π1 or not

FALSE

π2 = (0, 1, 0, 1, 1). Check ξ ≥ π2 or not

FALSE

π3 = (0, 1, 1, 0, 0). Check ξ ≥ π3 or not

FALSE

π4 = (1, 0, 1, 1, 0). Check ξ ≥ π4 or not

FALSE

Step 4.2 Rel = 0.28

Per = Per + (p(ξ) + M · (π1)) = 4.2 + (0.12 · 31) = 7.92

Go to Step 3.

. . .

Step 5 Stop after Iteration 5 (when all realizations are generated)

Next we analyze the computational complexity of the algorithm.

Proposition 2.3.7. The computational complexity of this algorithm for a single O-D pair

in a network composed of L VB-dependency sets with ml links in each set, Al, under a

single disaster scenario is O(km(mmax + 1)L), where mmax is the maximum of ml and k is

the number of input shortest paths between the origin and the destination nodes.

As implied by Proposition 2.3.7, this algorithm calculates the reliability and performance

measures in reasonable computational time for most practical cases. The computational

time increases when the number of shortest paths or the number of VB-dependency sets

increases. In the extreme case, if every VB-dependency set consists of a single link, ie. the
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all-independent link failure case, the complexity becomes exponential, O(km2m). Then,

Monte Carlo simulation can be utilized to calculate these measures. The pseudo-code

below summarizes such a Monte Carlo Simulation algorithm for networks with multiple

VB-dependency sets, where N is the number of scenarios generated, C is the number of

connected realizations and T is the shortest path length.

Monte Carlo Simulation Algorithm for (S/S/R) and (S/S/P) Measures for Mul-

tiple VB-dependency Sets

Step 1 For t=1:N, repeat

For each set Al, l = 1, 2, . . . , L

Generate al
t uniformly such that 0 ≤ al

t ≤ 1

For each link ξi ∈ Al, repeat

if al
t ≤ pi then ξi = 1

else ξi = 0

Step 2 For s=1 to k

Check if πs exists

Step 2.1 If yes, then

C = C + 1

T = T + T (πs)

Step 2.2 else

T = T + Md

Step 3 Rel = C/N

Per = T/N

In this algorithm, the reliability and the performance are calculated as the average over a

sample of vector realizations which are generated using random numbers. In each iteration,

the status of the links in each set Al are determined by the same random number supporting

the fact that the links belonging to the same VB-dependency set behave similarly. However,

the random number used in each iteration is different. This is because every set is assumed

to be independent from the other sets in the definition of SB-dependency. After generating

the vector realizations, they are checked for connectedness and their performance in the
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same way as they were checked in the previous algorithms. This procedure is repeated for

a fixed number of scenarios to be determined by the decision maker.

We have implemented all of the proposed algorithms and provide the computational

results in the next section. The next section also demonstrates how to apply our proposed

framework in a real-life case study.

2.4 Computational Results

The idea behind the proposed algorithms, with respect to the VB-dependency relationship,

is a general approach that may be used for various applications; transportation, telecommu-

nication or highway networks. These algorithms are applied to a case study on the urban

highway network of Istanbul under earthquake risk. Istanbul, the cultural and industrial

center of Turkey is under a serious risk of earthquake. Many studies have been completed

on estimating the magnitude and the consequences of possible earthquakes and several

earthquake scenarios have been developed [1] by the Government together with several uni-

versities in the city. The network considered in this thesis is constructed with respect to

the two main highways in Istanbul and the bridges/viaducts located on them. The network

includes 25 nodes and 30 links as depicted in Figure A.4. The O-D pairs are chosen based on

detailed analysis of four most likely earthquake scenarios for the region of interest [1](Japan

International Cooperation Agency Report, 2002). In these scenarios, the expected number

of collapsed buildings, and the number of fatalities and injuries in each district of the region

are estimated. The most-damaging earthquake scenario provides the basis for the selection

of the O-D pairs. The origins correspond to the districts with the highest expected num-

ber of injured people. The destination nodes are the districts which have a large medical

support capacity. The O-D pairs are (14-7), (12-18), (4-8), (9-7), (14-20).

The travel times are difficult to assess, especially in the case of disasters, as it is not

possible to forecast the behavior of people. In this study, expected travelling distances are

taken as the performance measures. We determined the possible k-shortest paths between

the O-D pairs that will be needed to check connectivity. For each path, the total distance

is calculated as the summation of the length of the links on that path. These distances are

given in Table 2.2. If an O-D pair, d, turns out to be disconnected after the earthquake, then

the travel distance for that pair is taken as a constant, Md. This may be thought of using
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a helicopter for transportation. Using helicopters is one way in relief operations, however

this is a costly way. The Md value is taken as just higher than the longest shortest path

between the O-D nodes for each pair so that it is always better to use one of the shortest

paths rather than taking Md as the travelling distance.

Table 2.2: k-shortest path distances for the O-D pairs

O −D π1 π2 π3 π4 π5 π6 M

4-8 14.0012 17.9143 18.7937 21.511 26.7312 34.1542 35

14-7 11.1397 20.0876 25.4816 26.575 29.0784 30.1717 31

14-20 6.6489 20.4118 29.2 30.2664 − − 31

12-18 9.5609 20.0476 20.2432 27.0592 − − 28

9-7 9.4565 14.8505 16.8795 18,4473 − − 19

2.4.1 Probability of Link Failures

The survival probabilities of the arcs are difficult to investigate. The likelihood of link

failures vary with respect to the intensity and the location of the disaster experienced and

the condition of the network components. Thus, a prior analysis of these factors is required.

Still, it may be difficult to obtain a probability distribution for the network realizations

or to use simulation. This is because the studies on disasters are mostly obliged to use

historical data. However, sufficient data or statistics on link failures are not available in

most cases because disasters are not frequently occurring natural events. Therefore, several

assumptions have to be made and some parameters should be estimated using available

information.

The factors that have been taken into account in this study for determining the link

survival probabilities on the highway are the number of risky bridges on the roads includ-

ing the strength of the bridges located on the links. The types of disasters is a crucial

component in determining the failure probabilities of links as well because each type of

disaster affects a different amount of area and with different severity. When a closer look

is taken into each link, it is seen that each link may contain several vulnerable components

and each component may withstand different levels of force depending on its structure, ie.
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different survival probabilities appear due to different risk levels. These levels need to be

translated into parameters, that will be input into a cumulative probability distribution

function characterizing the failure probability of the component as a function of force on

the component. Fragility curves can be used for this purpose. The intensity of a given

disaster scenario determines the level of force at different areas, hence the probability of

failure of a component under a given disaster scenario is calculated using this function. This

incorporates the spatial factor into the probabilities as links in the same area are subject

to the same disaster intensity in a given scenario. Scientific studies in Turkey agree on four

different earthquake scenarios that Istanbul is mostly likely to experience. These scenarios

are labeled as A, B,C and D where A is characterized as the most probable and C as the

worst case scenario. The survival probabilities of the links change for each of these disaster

scenarios; the survival probabilities are low for the risky scenarios whereas they are high in

more risk averse scenarios.

2.4.2 Determination of VB-dependency Sets

For the earthquake application in this study, the idea of constructing “areas” for VB-

dependency sets is administered using the measure of Peak Geographic Acceleration (PGA).

PGA is a common measure used by earthquake engineers to evaluate the earthquake risk

of a region. The PGA may be defined as the maximum acceleration experienced by an

object in case of an earthquake. Various modeling of PGA distributions of Istanbul are

done constituting of four different levels of PGA values [1] with respect to the disaster

scenarios mentioned above. Based on previous studies [1], we were able to classify the links

of the network as sets, Al, l = 1, ..., L, for each PGA level under each disaster scenario. The

classification for disaster scenario A is given Figure A.2. The links belonging to each set in

each disaster scenario are summarized in Table 2.3.

Table 2.4 shows the survival probabilities for each link and how they are modified with

respect to different PGA levels in each disaster scenario. Figure A.3 illustrates an example

of risk levels for disaster scenario A by colors where the risk decreases as the color lightens.
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Table 2.3: Links included in each VB-dependency set

Set Links

Scenario A

A1 5

A2 2, 3, 8, 9, 27

A3 1, 4, 6, 7, 10, 11, 12, 13, 16, 20, 21, 22, 25, 26, 28, 29, 30

A4 14, 15, 17, 18, 19, 23, 24

Scenario B

A1 2, 3, 5, 8, 9, 27

A2 1, 4, 6, 7, 10, 12, 13, 16, 21, 22, 25, 28

A3 11, 14, 15, 17, 18, 19, 20, 23, 24, 26, 29, 30

Scenario C

A1 2, 5, 8

A2 3, 9, 12, 27

A3 1, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30

Scenario D

A1 5

A2 2, 3, 8, 9, 27

A3 1, 4, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30

2.4.3 Calculation of the Measures

The calculations for the eight measures defined in section 2.2 are completed with this data

and the results are expressed in Table 2.51. The first column shows the measure that is

being evaluated as defined in Section 2.2. Measures (S/S/R) and (S/S/P) are given in the

same row for the specified O-D pair in column 2. The third column contains the name of

the earthquake scenario that is being considered. The last two columns give the reliability

of the O-D pair and the performance, the expected shortest path distance between the

O-D pair, respectively. The cpu time for these computations does not exceed a couple of

seconds. To calculate the measures for the multiple O-D cases, weights are given to each

1All of the computations have been carried on the PC with 2x2.8 GHz Xeon Linux processor and 5 GB
RAM memory with the algorithms implemented in Matlab 7.0.
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Table 2.4: Survival probabilities of each link in different disaster scenarios

Link A B C D

1 0.8 0.8 0.8 0.84

2 0.76 0.76 0.72 0.8

3 0.76 0.76 0.76 0.8

4 0.7 0.7 0.7 0.735

5 0.72 0.76 0.72 0.76

6 0.6 0.6 0.6 0.63

7 0.8 0.8 0.8 0.84

8 0.57 0.57 0.54 0.6

9 0.76 0.76 0.76 0.8

10 0.7 0.7 0.7 0.735

11 0.55 0.5775 0.55 0.5775

12 0.8 0.8 0.76 0.84

13 0.6 0.6 0.6 0.63

14 0.525 0.525 0.5 0.525

15 0.84 0.84 0.8 0.84

16 0.55 0.55 0.55 0.5775

17 0.735 0.735 0.7 0.735

18 0.63 0.63 0.6 0.63

19 0.84 0.84 0.8 0.84

20 0.55 0.5775 0.55 0.5775

21 0.8 0.8 0.8 0.84

22 0.7 0.7 0.7 0.735

23 0.84 0.84 0.8 0.84

24 0.63 0.63 0.6 0.63

25 0.7 0.7 0.7 0.735

26 0.6 0.63 0.6 0.63

27 0.5225 0.5225 0.5225 0.5775

28 0.8 0.8 0.8 0.84

29 0.7 0.735 0.7 0.735

30 0.6 0.63 0.6 0.63
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Table 2.5: Results for the reliability and performance measures for single O-D

Measure O −D Scenario Rel Per

(S/S/R), (S/S/P ) 4-8 A 0.573 23.4556

B 0.5890 23.1688

C 0.7264 21.4638

D 0.6359 22.1951

(S/S/R), (S/S/P ) 14-7 A 0.550 20.0768

B 0.423 23.9651

C 0.550 20.0768

D 0.577 19.5307

(S/S/R), (S/S/P ) 14-20 A 0.7 13.9542

B 0.757 13.9119

C 0.7 13.9542

D 0.735 13.1019

(S/S/R), (S/S/P ) 12-18 A 0.4358 20.421

B 0.5775 19.3215

C 0.6 17.6330

D 0.63 17.1147

(S/S/R), (S/S/P ) 9-7 A 0.4358 15.0753

B 0.6878 12.9097

C 0.6 13.2739

D 0.63 12.9876

O-D pair. In this application, the weights of all of the O-D pairs are taken to be equal.

For the multiple disaster scenario measures, each disaster scenario is given a weight to

emphasize its relative significance rather than its probability of occurrence. We know from

previous studies that propose these disaster scenarios have labeled scenario A as the most

probable disaster scenario and C as the worst case scenario, therefore we have chosen to

give 0.4 weight for scenario C and 0.3, 0.2, 0.1 for the scenarios A, B and D, respectively.

The results for the multiple O-D pairs and multiple disaster scenarios are given in Table

2.6.
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Table 2.6: Results for the reliability and performance measures.

Measure O −D Scenario Rel Per

(S/M/R), (S/M/P ) 4-8 multi 0.5520 23.8449

14-7 multi 0.5270 20.7998

14-20 multi 0.7150 13.8605

12-18 multi 0.5492 18.7553

9-7 multi 0.5713 13.7129

(M/S/R), (M/S/P ) multi A 0.5389 18.5966

multi B 0.6071 18.6554

multi C 0.5894 17.9651

multi D 0.6417 16.9860

(M/M/R), (M/M/P ) multi multi 0.5830 18.1947

2.4.4 Comparison of Various Dependency Structures

To reach a general conclusion of whether reliability of a network is higher or lower in the

all-independent or the VB-dependent link failure cases, we made a comparison of the results

of this method with the results of the calculations of the two extreme cases which are the

all-independent and the all-dependent cases.

Since it is computationally difficult to calculate the exact reliability value for the all-

independent case, we used the Monte Carlo Simulation Algorithm given in the previous

section. Several sample sizes are chosen. The estimations are subject to error and a confi-

dence interval is computed for each estimated performance value by the standard formula

Per ∓ z σ√
n

= Per ∓ ∆, where Per is taken as the estimated performance value, σ as the

sample standard deviation, n as 4,000,000 for the sample size and for a desired confidence

of %90, z is taken to be 1.645. With these parameters, the representative ∆ values for one

O-D pair (4,8) are provided in Table 2.7, along with the confidence interval limits. It illus-

trates that we obtain robust accuracy with the selected sample size and within reasonable

computation time relative to pre-disaster planning context.

The results of the comparison are given in Table 2.8. The first column shows the link

dependency structure. The structure given in the first row is when the VB-dependency sets
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are based on the PGA values of the region. The case with only one VB-dependency set

is given in the second row as all-dependent link failure. In the all-independent case, the

number of VB-dependency sets is equal to the number of links in the network.

In this comparison, it is observed that the reliability has the lowest value in the 10-sets

case and the all-independent case is less reliable then the all-dependent case. However, no

pattern can be observed among reliability. The reason is as follows. Note that for a path

to be connected, it is necessary that all the links on that path should survive. If all the

links on the path belong to the same VB-dependency set, then reliability of the network

is min{pi}i∈E . If the link failures are assumed independent, then the reliability becomes
∏

i∈E pi.
∏

i∈E pi ≤ min{pi}i∈E , since 0 ≤ pi ≤ 1. Therefore, the single VB-dependency set

is always more reliable. On the other hand if the links of the path belong to more than one

VB-dependency set, then the reliability becomes
∏L′

l=1 min{pi}i∈Al,i∈path. The extreme case

now is that each link belongs to a different VB-dependency set which is equal to the case

of all-independent link failures. However, the reliability of an O-D is the summation of the

probabilities of the existing k-shortest paths. So, every time a vector realization is checked,

Table 2.7: Results for Monte Carlo Simulation for the O-D pair 4− 8, Disaster Scenario C
and M=35

Sample Size Rel ∆ Lower Limit Upper Limit Cpu T ime

500000 0.6664 0.0211 22.6340 22.6762 11.71

750000 0.6669 0.0173 22.6193 22.6539 17.62

1000000 0.6667 0.0149 22.6285 22.6583 23.69

4000000 0.6668 0.0075 22,6321 22,6471 23.53

Table 2.8: Results for the O-D pair 4− 8, Disaster Scenario C and M=35

Link Dependency Structure Rel Per

1-set (all-dependent) 0.7000 20.7801

3-sets (PGA) 0.7264 21.4638

10-sets (PGA) 0.6031 24.0035

30-sets (all-independent) 0.6668 22.6396
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it is checked for more than one path. In this case, the effect of survival probability of a link

changes with how many different shortest paths it belongs to. Then the reliability becomes a

characteristic for the specific network and this prevents us from reaching a general conclusion

on the comparison of reliability of the network in the all-independent or VB-dependent link

failures. Additionally, the number of links that have the same survival probability affects

these measures.

The example network in Figure 2.1 is an example which shows that there is no general

behavior for the change in the reliability of the network when the link failures are assumed

either to be VB-dependent or independent. The reliability for several cases for the network

Table 2.9: Comparison of Various Dependency Structures

Case No p1 p2 p3 p4 p5 Rel1−V B Rel2−V B Relind

1 0.4 0.5 0.7 0.3 0.6 0.5 0.30 0.46800

2 0.4 0.4 0.7 0.7 0.6 0.4 0.28 0.53008

is given in Table 2.9 where pi show the survival probability of link i. The seventh column,

Rel1−V B is the reliability in the case where the network consists of only one VB-dependent

set. The next column, Rel2−V B, gives the reliability in the case where two VB-dependent

sets are present, where the first VB-dependency set includes links 1, 2 and the second one

includes the remaining links 3, 4, 5. The last column, Relind, gives the reliability in the all-

independent link failure case. In Case 1, the reliability in the all-dependent case is higher

than the reliability in the all-independent case. Although this is consistent with the results

in Table 2.8, the all-independent case has the highest reliability in case number 2. This case

is a counter example to the statement that the all-independent link failure structure is less

reliable than the all-dependent link failure structure.

2.5 Concluding Remarks

In this chapter, a network system is examined for its reliability and performance after a

disaster. Concentrating on eight different reliability measures a transportation network is

examined for status in the pre-disaster stage. The paths between several O-D pairs are
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examined. The link failures are assumed to be dependent on each other and a general con-

clusion about reliability is attempted to be found out. However, it is shown that reliability

is a characteristic feature of a network and it is not possible to reach a general conclusion

on the reliability in the dependent or independent link failure cases.



Chapter 3: Strengthening the Links of a Stochastic Network for Disaster Response 40

Chapter 3

STRENGTHENING THE LINKS OF A STOCHASTIC NETWORK

FOR DISASTER RESPONSE

In this chapter, the optimal budget allocation for pre-disaster strengthening of infrastruc-

ture networks in disaster management problem is discussed. This chapter is an application

of the paper by Viswanath et al. [35] and provides computational results using a real-world

case study. It illustrates the quality of the local optimum solution compared to the global

optimum for instances in which the global optimum could be obtained by enumeration. It

also demonstrates the practical applicability of the approach proposed.

3.1 Summary of the Previous Study

A strategic planning problem that seeks to strengthen, under a limited budget, an infrastruc-

ture network whose links are subject to independent and random failures due to a disaster is

addressed in this study. The objective is to optimize post-disaster response in terms of net-

work reliability and accessibility of nodes through investment which increases the survival

probabilities of the links invested in. A network with several origin-destination (O-D) pairs

is considered with the objective of minimizing the expected value of the weighted traversal

costs between the origin and destination nodes, across post-disaster network realizations.

The traversal cost under a realization is the least path cost among the surviving paths of

the O-D pairs. If no surviving path exists for an O-D, the traversal cost is a fixed penalty

cost. The problem is modelled as a two-stage stochastic program in which the probability

distribution of the network realization in the second stage is dependent on the investment

decisions of the first stage. The objective is to strengthen the links in the pre-disaster

stage so that the expected value of the shortest paths after the disaster is minimized for

an efficient post-disaster response including the transportation of people, food, medicine,

etc. from/to the affected areas. The approximate equivalent deterministic program of the

two-stage stochastic program, constructed using a path-based approach, is used to show
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that there exists a monotone decreasing multilinear function of the investment variables

that coincides with the objective function. It is shown that using the first order terms of

the multilinear function leads to a knapsack problem whose solution is a local optimum to

the original problem.

The two-stage stochastic model of the problem is given below and the related notation

can be found below.

Notations:

ce : Cost of investing in link e

B : Budget

ye : 1, If there is an investment in link e; 0, otherwise

y = (ye) : The investment decision vector for all links in E

ξe : 1, If link e is operational after the disaster; 0, otherwise

ξ = (ξe) : 1, The vector of the random variables ξe for all links in E

ξ̃e : a specific realization of ξe

ξ̃ = (ξ̃e) : a specific realization of ξ

te : Non-negative traversal cost for link e

xe(ξ̃) : 1, if there is a unit flow through link e in the network realization ; 0, otherwise

x(ξ̃) = (xe(ξ̃)) : The flow vector

X(ξ) : The set of paths from O to D in the network realization

f(ξ) : Least path cost if it exists, or the penalty cost M if O-D is not connected

F (y) : Expectation of f(ξ) wrt the random variable ξ for a given investment vector y

ue : Unit vector of dimension |E| having 1 at component e and 0 at the remaining.

Program P:

1st Stage:

Z = min
y

F (y) = min
y

Eξ|y(fi(ξ)) (3.1)
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subject to

∑

e∈E

ceye ≤ B (3.2)

ye = 0 or 1 ∀e ∈ E (3.3)

2nd Stage:

min f(ξ) =





min
x(ξ)∈X(ξ)

∑
e∈E

texe(ξ), if X(ξ) 6= ∅

M, otherwise
(3.4)

subject to

∑

e=(i,j)∈E

xe(ξ) =
∑

e=(j,i)∈E

xe(ξ) =





1 if i = O,

−1 if i = D,

0 otherwise. ∀i ∈ N

(3.5)

xe(ξ) ≤ ξe ∀e ∈ E (3.6)

0 ≤ xe(ξ) ≤ 1 ∀e ∈ E (3.7)

Here X(ξ)= {x(ξ)|x(ξ) satisfies constraints (4), (5) and (6)} is the set of paths in the

network realization ξ̃ for the O-D pair d. The second-stage objective function f(ξ) is

a function of the random variable ξ whose probability distribution is determined by the

investment vector y. Its value is equal to the least path cost in the network realization, if

such a path exists, or the penalty cost M if O-D is disconnected. The objective function,

F (y) = Eξ|y(f(ξ)), is the expectation of f(ξ) with respect to the random variable ξ for a

given investment vector y and can be expanded as F (y) =
∑
eξ∈E

P (ξ = ξ̃|y) · f(ξ̃)

where P (ξ = ξ̃|y) is the probability that is realized given that the investment vector is y.

The P −approx program given below is proven to give the local optima of the two-stage

stochastic program.

P − approx:

min
y

∑

e∈E

ge(0)ye (3.8)
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subject to

∑

e∈E

ceye ≤ B (3.9)

ye = 0 or 1 ∀e ∈ E (3.10)

where ge(0) are the first order term Taylor series expansion coefficients for F (y) in the

neighborhood of point 0, which is the no-investment case. P − approx is a 0-1 knapsack

problem that can be solved efficiently either in pseudo-polynomial time by dynamic pro-

gramming (see Martello and Toth, 1990), or by branch and bound using a standard solver.

Lemma 3.1.1. [35] ge(0) = F (ue)− F (0).

Proposition 3.1.2. [35] ge(0) denotes the marginal system-level benefit of investing in link

e alone.

Proof. See Viswanath et al.[35] for the proofs.

3.2 Monte Carlo Sampling-Based Implementation Procedure

This section describes a Monte Carlo sampling procedure to calculate ge(0) using the equal-

ity in Lemma 3.1.1. It is important to note that while computation time is not a key factor

in the deployment of this method due to its pre-disaster planning context, we nevertheless

need a procedure that is efficient for tractability.

It is shown in Section 4.3 of [35] that the objective coefficients ge(0) of the approximate

integer program P − approx are computed as F (ue)−F (0) for a given O-D pair. However,

calculating F (y) for any y requires exploring an exponential number of possible network

realizations. For example, for the 30-link network, 30 · 230 (≈ 32 billion) cases should be

explored. As a practical approach to overcome this difficulty, Monte Carlo Sampling is

used to estimate the F (ue) and F (0) values. First, the k-shortest paths are determined

in advance for the O-D pair under consideration. To estimate F (ue) for each link e, one

million random network realizations are generated such that the links are either operational

or non-operational according to the probabilities determined by the investment vector ue.

For each realization, the O-D connectivity of the predetermined k-shortest paths is checked

in terms of the increasing order of traversal cost to find the minimum cost operational

path. If the O-D pair is not connected in that realization, the traversal cost is taken as
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Md, for the O-D pair d. Then, the average of these 1 million traversal costs is assumed to

be the estimated F (ue) value. The procedure is repeated for each link with a different set

of realizations generated for the corresponding post-investment probabilities. Finally, one

million random network realizations are generated to estimate F (0), and ge(0) estimates

are obtained. This computation takes about 380 seconds of CPU time for one O-D pair in

the 30-link network.

3.3 Computational Studies

Numerical experiments on real-life data related to the strengthening of Istanbul’s urban

highway system against earthquake risk both illustrates the applicability of the method and

suggests insights and trade-offs between the expected least path cost and reliability.

The computational study is based on highway networks from Istanbul, Turkey. Istanbul

has been affected by two major earthquakes in 1999 with epicenters about 250km from it

that caused $10-$25 billion in damage [26]. The Turkish government is planning to invest

$400 million to strengthen critical public infrastructure for earthquake resistance. A key

element of this plan is to retrofit the highway system to ensure maximum accessibility and

functionality after an earthquake. This implies the seismic retrofit of bridges/viaducts which

tend to be the weakest structural elements in the highway system. For this study, it provides

a very relevant setting to analyze the practical use of the model proposed by Viswanath

et al.[35]. The relevant data is obtained from the 2003 Master Earthquake Plan (MEP) of

the Istanbul municipality, and focuses on the two main highways TEM and E-5 in the city

and the bridges/viaducts located on them. The associated map is depicted in Figure A.1.

It shows the southern part of the city, which is its most densely populated and seismically

risk-prone region. The city is separated into the European and Asian sides by the Strait

of Bosphorus. In our experiments, we consider two networks to analyze our model. The

first one consists of 25 nodes and 30 links and includes both sides as shown in Figure A.4.

It is used to analyze the performance and the computational scalability of the model. The

second network has 8 nodes and 9 links, shown in Figure A.4, and represents only the Asian

side. It is considered because the global optimum can be obtained by enumeration, thereby

providing a benchmark for the quality of the local optimum obtained through our approach.

The link traversal costs are chosen proportional to the distances between the nodes.
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The initial link survival probabilities are typically determined by structural engineers

using domain-specific information. In this study, we use data from the MEP that clas-

sifies bridges/viaducts as less “risky” and “very risky”, to determine the probabilities as

shown in Figure A.1. This is done by identifying the numbers of less risky and very risky

bridges/viaducts on each link, and determining a weighted score which is then translated

into the survival probabilities. In this context, very risky structures are weighted with 3

points while less risky ones are weighted with 1 point. Five initial link survival probabil-

ity levels are assigned ranging from 0.5 to 0.8, based on link scores as illustrated in Table

3.1. Post-investment, the link survival probabilities are assumed to be 1 based on feedback

from the structural engineers involved in the retrofitting plan. The investment cost for

each link is calculated as a weighted score proportional to the link length and the number

of bridges/viaducts located on it. The survival probabilities and the investment costs are

given in Table 3.2.

Table 3.1: Scale used to determine the survival probabilities

Link Score < 1 < 5 < 10 < 15 < 20

Probability 0.8 0.7 0.6 0.55 0.5

The total budget needed to invest in all links is 11640 units. We consider three budget

levels for the experiments: B1 = 1164, B2 = 2328, and B3 = 3492. They correspond to

strengthening approximately 10%, 20% and 30% of the links, respectively. The O-D pairs

are chosen as the pairs in Chapter 2 for the 30-link network. For the 9-link network, (15,22)

and (17,19) are considered as the O-D pairs.

3.3.1 Sample Size and Convergence

We investigate the convergence of the estimated F (ue) values by increasing sample sizes

of the generated realizations for the 30-link network. Table 3.3 shows the representative

estimated F (ue) values, denoted by F (ue)′, for a subset of links, for sample sizes varying

from 2 to 1,000,000. Table 3.4 shows the difference between the F (ue)′ values for consecutive

sample sizes for the same subset of links, where the lower case letters, a, b, c, d, e, f, g, h, i, j

denote the differences between F (ue) values obtained by consecutive sample sizes. Also
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the mean square error (MSE), the average of the squared differences over all 30 links, is

reported for each sample size. They indicate that the estimated values converge rapidly as

the sample size changes between 10,000 and 100,000. Hence, the computation time could be

reduced more than tenfold with an insignificant loss in accuracy. Even if 1,000,000 samples

were used, they would represent about 0.009 of the possible realizations, while providing

high levels of accuracy.

3.3.2 Confidence Intervals

The estimations are subject to error and a confidence interval is computed for each estimated

value by the standard formula given in Chapter 2 Section 2.4.4. With the same parameters,

the representative ∆ values for one O-D pair (14,7) are provided in Table 3.5, along with

the confidence interval limits. It illustrates that we obtain robust accuracy with the selected

sample size and within reasonable computation time relative to the pre-disaster planning

context.

3.3.3 Insights on the Solution Method and Parameters

This section provides insights on the interpretation of the ge(0) values and the effect of

parameter M on the solution using the 30-link network with the five O-D pairs.

Table 3.2: Link investment costs and survival probabilities

Link ce pe Link ce pe Link ce pe

1 80 0.8 11 940 0.55 21 40 0.8

2 80 0.8 12 160 0.8 22 160 0.7

3 320 0.8 13 620 0.6 23 40 0.8

4 260 0.7 14 1180 0.5 24 620 0.6

5 160 0.8 15 40 0.8 25 260 0.7

6 420 0.6 16 940 0.55 26 780 0.6

7 160 0.8 17 300 0.7 27 800 0.55

8 620 0.6 18 520 0.6 28 120 0.8

9 120 0.8 19 40 0.8 29 220 0.7

10 340 0.7 20 800 0.55 30 500 0.6
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Interpretation of the ge(0) values

The ge(0) values for the five O-D pairs are summed up to form the objective coefficients of

the knapsack problem P − approx, and are shown in Table 3.6. Table 3.8 and Table 3.9

show the solutions to the knapsack problems for the 3 budget levels. Solving the knapsack

problem takes less than one second on our computing platform.

The F (0) value for each O-D pair are again determined by Monte Carlo sampling with

sample size 200,000 for the first case with M = 120 and 500,000 for the second case in which

each O-D pair has different M values and the following values are obtained.

From Table 3.6, the objective coefficients with the most negative values appear in links

10, 11, 13, 16, 20, and 22, for M = 120, and links 10, 16, 20, 22, and 25, for M = 31. In

Table 3.3: F (ue)′ values for different sample sizes

Sample Size

F (ue)′ 2 10 100 1000 10000 100000 200000 400000 600000 800000 1000000

F (u1)′ 65.5699 68.5476 99.7284 90.4219 89.2341 89.0514 88.8871 88.915 88.932 89.0732 89.0106

F (u2)′ 120 87.3419 87.2498 91.5962 89.1253 88.8526 89.0942 88.9732 88.9392 89.0564 89.0394

F (u3)′ 120 89.7802 87.2862 88.5659 88.8772 88.7807 88.9159 89.1911 89.0184 88.9748 88.9921

F (u4)′ 120 68.0082 90.0928 88.2565 89.3811 89.0233 89.163 88.9458 89.0149 88.9408 89.0019

F (u5)′ 120 109.114 96.9687 87.635 88.8266 88.6577 89.1829 89.0444 89.0423 88.8787 89.0009

F (u6)′ 72.7408 87.3419 95.512 88.5946 88.9952 88.6965 88.6423 88.7613 88.7024 88.6339 88.6864

F (u7)′ 120 99.6621 90.5332 92.2611 88.2813 88.6443 88.8855 88.8078 88.7379 88.9932 88.8845

F (u8)′ 73.2875 109.114 85.3278 89.9902 88.8237 88.6805 88.8231 88.9457 88.9264 89.0716 89.0601

F (u9)′ 120 78.8942 81.6857 87.9703 88.2132 87.7325 88.0062 87.8183 87.8783 87.9139 87.9015

F (u10)′ 120 43.7978 83.1665 78.2807 80.2595 80.452 80.6969 80.6232 80.4943 80.5887 80.5564

F (u11)′ 120 99.1227 83.5378 88.5106 85.8299 85.4444 85.5188 85.4745 85.4122 85.3958 85.519

F (u12)′ 72.7408 88.2367 86.1721 87.061 88.7283 88.5252 88.5086 88.3917 88.4047 88.3975 88.5037

F (u13)′ 120 67.1134 80.4669 85.2427 86.0284 86.7632 86.776 86.5705 86.6048 86.6385 86.6015

F (u14)′ 120 109.114 81.3062 82.9552 83.9622 82.9159 83.0438 83.1116 82.984 82.8841 83.0678

F (u15)′ 72.7408 67.8988 82.0287 88.6072 89.3701 88.8141 88.8234 88.9852 88.9606 88.96 88.9048

F (u16)′ 65.5699 77.8901 73.7856 74.6744 73.9044 73.6204 73.7129 73.3949 73.4572 73.638 73.6412

F (u17)′ 65.5699 87.3419 89.7963 88.7252 86.8622 86.5872 86.4109 86.4782 86.3446 86.438 86.3217

F (u18)′ 65.5699 77.8901 78.0111 86.2035 88.9627 88.8299 88.9062 88.8545 88.9165 89.0947 88.9528

F (u19)′ 120 98.2279 98.0498 89.8511 88.6053 88.8844 89.1825 89.0061 88.9759 88.9371 89.0143

F (u20)′ 65.5699 88.7761 56.8557 65.4956 62.9872 63.7297 63.711 63.6033 63.6056 63.5462 63.5135

F (u21)′ 120 109.114 86.0642 86.2938 88.7158 89.1216 89.232 88.923 88.9883 88.9444 89.0111

F (u22)′ 65.5699 69.5517 88.5146 89.3242 89.0866 89.1916 88.9105 88.9923 89.041 88.8572 88.9114

F (u23)′ 65.5699 109.114 92.791 91.4769 88.5238 89.1625 89.0753 89.0216 88.8955 88.9874 88.9389

F (u24)′ 65.5699 87.3419 85.8584 87.0283 88.8355 89.0397 88.908 88.9805 89.0266 88.8764 89.0375

F (u25)′ 15.6137 78.7849 85.9173 88.3581 88.2472 89.1627 88.8867 89.0481 89.0217 88.867 88.9848

F (u26)′ 23.3313 110.009 91.3178 85.3852 89.1894 88.9621 88.9525 88.9939 89.0257 88.9291 88.9411

F (u27)′ 65.5699 110.548 80.1848 90.2803 88.7972 88.7075 88.9966 88.9967 89.0298 88.9585 88.9354

F (u28)′ 11.1397 98.2279 91.3822 88.6903 88.643 88.8142 88.8531 89.0243 88.9878 89.0187 89.0185

F (u29)′ 65.5699 65.5699 83.5401 88.2562 88.7485 89.0428 89.1445 88.983 89.0426 89.0936 89.0118

F (u30)′ 120 76.4559 95.9406 88.9307 88.6466 89.0565 88.9696 89.0181 88.9746 88.9642 88.9543
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Proposition 1 in [35], the objective coefficients for links were interpreted as the marginal

system-level benefit of investing in that link alone, indicating that the links with the most

negative objective coefficients provide the maximum improvement under investment. When

the solutions are examined in Table 3.8 and 3.9, we note that links 10, 20, 21, 22, 23 and

25 have been invested in under most budget levels. We also note that some links, such

as 16, which have high negative coefficients, are not invested in. Others, with very low

coefficients, such as 23, are invested in. This highlights the systems perspective inherent

in our method, where the marginal benefits are traded-off with budget limitations and unit

investment costs. It also illustrates the fallacies of some existing approaches that focus on

Table 3.4: Difference in F (ue)′ values between consecutive sample sizes. and MSE across
all links

Sample Size

Link a b c d e f g h i j

1 2.9777 31.1808 -9.3065 -1.1878 -0.1827 -0.1643 0.0279 0.017 0.1412 -0.0626

2 -32.658 -0.0921 4.3464 -2.4709 -0.2727 0.2416 -0.121 -0.034 0.1172 -0.017

3 -30.22 -2.494 1.2797 0.3113 -0.0965 0.1352 0.2752 -0.1727 -0.0436 0.0173

4 -51.992 22.0846 -1.8363 1.1246 -0.3578 0.1397 -0.2172 0.0691 -0.0741 0.0611

5 -10.886 -12.145 -9.3337 1.1916 -0.1689 0.5252 -0.1385 -0.0021 -0.1636 0.1222

6 14.6011 8.1701 -6.9174 0.4006 -0.2987 -0.0542 0.119 -0.0589 -0.0685 0.0525

7 -20.338 -9.1289 1.7279 -3.9798 0.363 0.2412 -0.0777 -0.0699 0.2553 -0.1087

8 35.8265 -23.786 4.6624 -1.1665 -0.1432 0.1426 0.1226 -0.0193 0.1452 -0.0115

9 -41.106 2.7915 6.2846 0.2429 -0.4807 0.2737 -0.1879 0.06 0.0356 -0.0124

10 -76.202 39.3687 -4.8858 1.9788 0.1925 0.2449 -0.0737 -0.1289 0.0944 -0.0323

11 -20.877 -15.585 4.9728 -2.6807 -0.3855 0.0744 -0.0443 -0.0623 -0.0164 0.1232

12 15.4959 -2.0646 0.8889 1.6673 -0.2031 -0.0166 -0.1169 0.013 -0.0072 0.1062

13 -52.887 13.3535 4.7758 0.7857 0.7348 0.0128 -0.2055 0.0343 0.0337 -0.037

14 -10.886 -27.808 1.649 1.007 -1.0463 0.1279 0.0678 -0.1276 -0.0999 0.1837

15 -4.842 14.1299 6.5785 0.7629 -0.556 0.0093 0.1618 -0.0246 -0.0006 -0.0552

16 12.3202 -4.1045 0.8888 -0.77 -0.284 0.0925 -0.318 0.0623 0.1808 0.0032

17 21.772 2.4544 -1.0711 -1.863 -0.275 -0.1763 0.0673 -0.1336 0.0934 -0.1163

18 12.3202 0.121 8.1924 2.7592 -0.1328 0.0763 -0.0517 0.062 0.1782 -0.1419

19 -21.772 -0.1781 -8.1987 -1.2458 0.2791 0.2981 -0.1764 -0.0302 -0.0388 0.0772

20 23.2062 -31.92 8.6399 -2.5084 0.7425 -0.0187 -0.1077 0.0023 -0.0594 -0.0327

21 -10.886 -23.05 0.2296 2.422 0.4058 0.1104 -0.309 0.0653 -0.0439 0.0667

22 3.9818 18.9629 0.8096 -0.2376 0.105 -0.2811 0.0818 0.0487 -0.1838 0.0542

23 43.5441 -16.323 -1.3141 -2.9531 0.6387 -0.0872 -0.0537 -0.1261 0.0919 -0.0485

24 21.772 -1.4835 1.1699 1.8072 0.2042 -0.1317 0.0725 0.0461 -0.1502 0.1611

25 63.1712 7.1324 2.4408 -0.1109 0.9155 -0.276 0.1614 -0.0264 -0.1547 0.1178

26 86.6775 -18.691 -5.9326 3.8042 -0.2273 -0.0096 0.0414 0.0318 -0.0966 0.012

27 44.9783 -30.363 10.0955 -1.4831 -0.0897 0.2891 0.0001 0.0331 -0.0713 -0.0231

28 87.0882 -6.8457 -2.6919 -0.0473 0.1712 0.0389 0.1712 -0.0365 0.0309 -0.0002

29 0 17.9702 4.7161 0.4923 0.2943 0.1017 -0.1615 0.0596 0.051 -0.0818

30 -43.544 19.4847 -7.0099 -0.2841 0.4099 -0.0869 0.0485 -0.0435 -0.0104 -0.0099

MSE 1504.458 318.6208 28.81053 3.275041 0.184238 0.035594 0.022299 0.004928 0.012244 0.006714
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individual link-level “criticality” measures.

Effect of Parameter M

Table 3.5: Confidence intervals for the O-D pair (14,7) with M = 120 for the 30-link network

Link σ2 σ ∆ Lower Limit Upper Limit

1 1389.188 37.27181 0.061312 89.07191 88.94929

2 1388.248 37.2592 0.061291 89.10069 88.97811

3 1389.632 37.27777 0.061322 89.05342 88.93078

4 1389.9 37.28136 0.061328 89.06323 88.94057

5 1390.436 37.28855 0.06134 89.06224 88.93956

6 1395.676 37.35875 0.061455 88.74786 88.62494

7 1390.828 37.29381 0.061348 88.94585 88.82315

8 1388.664 37.26478 0.061301 89.1214 88.9988

9 1409.804 37.54736 0.061765 87.96327 87.83973

10 1603.168 40.03958 0.065865 80.62227 80.49053

11 1449.236 38.06883 0.062623 85.58162 85.45638

12 1401.328 37.43432 0.061579 88.56528 88.44212

13 1439.58 37.9418 0.062414 86.66391 86.53909

14 1497.128 38.69274 0.06365 83.13145 83.00415

15 1391.292 37.30003 0.061359 88.96616 88.84344

16 1697.32 41.19854 0.067772 73.70897 73.57343

17 1441.884 37.97215 0.062464 86.38416 86.25924

18 1389.452 37.27535 0.061318 89.01412 88.89148

19 1389.652 37.27804 0.061322 89.07562 88.95298

20 1668.3 40.84483 0.06719 63.58069 63.44631

21 1389.76 37.27948 0.061325 89.07242 88.94978

22 1392.068 37.31043 0.061376 88.97278 88.85002

23 1390.492 37.2893 0.061341 89.00024 88.87756

24 1390.828 37.29381 0.061348 89.09885 88.97615

25 1391.308 37.30024 0.061359 89.04616 88.92344

26 1390.884 37.29456 0.06135 89.00245 88.87975

27 1390.764 37.29295 0.061347 88.99675 88.87405

28 1389.2 37.27197 0.061312 89.07981 88.95719

29 1388.216 37.25877 0.061291 89.07309 88.95051

30 1390.32 37.287 0.061337 89.01564 88.89296
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Table 3.8 and 3.9 illustrate the effect of M on the solution. As discussed earlier, larger

M implies greater emphasis on connectivity. In Table 3.8 and 3.9, we note that link 9 is

invested in under all budget levels when M = 120, and under none when M = 31. Similar

results are also noted for link 4. In both cases, the links provide key options for connectivity

as seen in Figure A.4.

Table 3.6: Objective coefficients of P − approx model for the 30-link network for M = 120
and M = 31

Link M 1 2 3 4 5 6 7 8

Obj. Coeff. 120 0.4796 0.0909 -7.5522 -12.9623 -4.6874 -10.1104 -3.5077 -12.6736

Obj. Coeff. 31 0.2411 0.2723 0.2486 0.2546 0.2583 0.2665 0.2172 0.3085

Link M 9 10 11 12 13 14 15 16

Obj. Coeff. 120 -9.62 -23.4098 -22.5208 -7.959 -20.1996 -10.7251 -0.2549 -19.1451

Obj. Coeff. 31 0.0025 -3.0429 -0.5788 0.061 -2.3111 -0.5424 0.2497 -3.0092

Link M 17 18 19 20 21 22 23 24

Obj. Coeff. 120 -12.0672 -11.7344 0.299 -45.7208 -16.122 -27.9923 -4.6131 -12.0463

Obj. Coeff. 31 -2.8857 -1.1547 0.2678 -9.7512 -4.0536 -7.1832 -0.2923 -1.1597

Link M 25 26 27 28 29 30

Obj. Coeff. 120 -16.4982 -9.5883 0.0067 -1.7972 -2.5347 -4.4025

Obj. Coeff. 31 -3.4785 -1.3181 0.2753 0.1773 0.1187 0.0333

Table 3.7: F (0) values for different O-D pairs

O D M F(0) O D M F(0)

14 7 120 88.774 14 7 31 26.1843

14 20 120 69.2556 14 20 31 21.0518

9 7 120 46.264 9 7 19 14.0559

4 8 120 50.999 4 8 35 22.6365

12 18 120 79.669 12 18 28 22.9214
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3.4 Quality of the Local Optimum Solution

As stated earlier, the 9-link network was considered primarily to analyze the solution quality

as it allows for the enumeration of the solution. Tables 3.10, 3.11 and 3.12 report investment

vectors, ya, obtained by solving P − approx when its objective coefficients are calculated

with respect to sample sizes ranging from 1 to 100,000, for three budget levels. F (ya) is

the objective value of the problem P at the proposed approximate solution ya. F (ya) is

compared to F (yopt), where the optimal solution yopt is found by enumeration. The values of

F (yopt) are 16.082, 12.085 and 8.7546 for budget levels 100, 200, and 800, respectively. We

note that the proposed method reaches the optimal solution with a sample size of 1,000 for

B=100, 100 for B=200, and 10 for B=800. Therefore, smaller sample sizes are sufficient as

the budget constraint is relaxed. Also, the proposed approach obtains the optimal solution

with little computational effort in this case.

Table 3.8: The knapsack problems solutions for the 30-link network for M = 120

Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1

B2 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0

B3 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1

Link 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

B1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0

B2 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0

B3 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Table 3.9: The knapsack problem solutions for the 30-link network for M = 30

Link 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

B3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

Link 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

B1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

B2 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0

B3 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0
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3.5 Making investment decisions under VB-dependency

In this section, VB-dependency structure defined in the previous chapter is used to deter-

mine the criticality of the links in the dependent link failure structure. The O-D pair 9-7

Table 3.10: Solution of P −approx model for various sample sizes and comparison with the
global optimum. (B = 100 and ce = 100 for each link e)

Sample size 1 2 3 4 5 6 7 8 9 F (ya) F (ya)− F (yopt)

1 0 0 1 0 0 0 0 0 0 16.812 -0.73

10 0 0 0 0 0 1 0 0 0 17.99 -1.908

100 0 0 1 0 0 0 0 0 0 16.812 -0.73

1000 1 0 0 0 0 0 0 0 0 16.082 0

10000 1 0 0 0 0 0 0 0 0 16.082 0

100000 1 0 0 0 0 0 0 0 0 16.082 0

Table 3.11: Solution of P − approx model for various sample sizes and comparison with
global optimum. (B = 200 and ce = 100 for each link e)

Sample size 1 2 3 4 5 6 7 8 9 F (ya) F (ya)− F (yopt)

1 0 0 0 0 0 0 0 1 1 18.026 -5.941

10 1 0 0 0 0 1 0 0 0 13.75 -1.665

100 1 0 1 0 0 0 0 0 0 12.085 0

1000 1 0 1 0 0 0 0 0 0 12.085 0

10000 1 0 1 0 0 0 0 0 0 12.085 0

100000 1 0 1 0 0 0 0 0 0 12.085 0

Table 3.12: Solution of P − approx for various sample sizes and comparison with global
optimum. (B = 800 and ce = 100 for each link e)

Sample Size 1 2 3 4 5 6 7 8 9 F (ya) F (ya)− F (yopt)

1 0 1 1 1 0 0 0 1 1 14.515 -5.7604

10 1 0 1 0 1 1 1 0 0 8.7546 0

100 1 0 1 0 0 1 0 1 0 8.7546 0

1000 1 0 1 1 1 1 1 1 1 8.7546 0

10000 1 1 1 0 0 1 1 1 1 8.7546 0

100000 1 1 1 1 0 1 1 1 1 8.7546 0
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is used as an example to make a comparison with the independent failure case. The results

are given in Table 3.13.

Table 3.13: Link investment under VB-dependency structure

e F (ue) F (ue)− F (0) F (ue) F (ue)− F (0)

1 14.0627 0.0068 13.2739 0

2 14.0515 -0.0044 13.2739 0

3 14.0696 0.0137 13.2739 0

4 14.0624 0.0065 13.2739 0

5 14.0571 0.0012 13.2739 0

6 14.049 -0.0069 13.2739 0

7 14.0548 -0.0011 13.2739 0

8 14.0616 0.0057 13.2739 0

9 13.8598 -0.1961 13.2739 0

10 12.5746 -1.4813 13.2739 0

11 13.3921 -0.6638 12.0125 -1.2614

12 13.8743 -0.1816 13.2739 0

13 11.8684 -2.1875 12.3196 -0.9543

14 13.9823 -0.0736 13.2739 0

15 14.0594 0.0035 13.2739 0

16 13.9984 -0.0575 13.2739 0

17 14.0264 -0.0295 13.2739 0

18 14.056 0.0001 13.2739 0

19 14.061 0.0051 13.2739 0

20 14.061 0.0051 13.2739 0

21 14.0589 0.0030 13.2739 0

22 14.0688 0.0129 13.2739 0

23 14.0507 -0.0052 13.2739 0

24 14.0676 0.0117 13.2739 0

25 14.0605 0.0046 13.2739 0

26 14.0612 0.0053 13.2739 0

27 14.0594 0.0035 13.2739 0

28 14.06 0.0041 13.2739 0

29 14.0634 0.0075 13.2739 0

30 14.0642 0.0083 13.2739 0
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In Table 3.13, the first column show the link under consideration. The second column

gives the F (ue) value which is the expectation for investing on link e. The next column gives

the difference between F (ue) and F (0) values which represent the decrease in the expected

value. The last two columns are the similar values obtained by considering dependent link

failures and using the VB-based approach. The results in the third column show that the

most benefit is gained by investing in link 13 since it has the largest decrease. Links 10 and

11 are the next two beneficial links. It is observed that in the dependent link failure case, it

is not beneficial to invest in any of the links except link 13 and link 11. The reason why it

does not help to invest in the other links may be due to the characteristics of the network

or the links that form the paths between the O-D pairs. However, the fact that link 13

and 11 are the most beneficial links in the VB-dependent case supports the results in the

independent case. In both approaches, it is most beneficial to invest in link 13 and 11.

3.6 Concluding Remarks

We presented numerical experiments on a real-world case related to strengthening Istanbul’s

urban highway system against earthquake risk. The problem was solved on a 30-link in

less than 7 minutes by utilizing Monte Carlo sampling of the network realizations. An

investigation of the convergence suggests that much lesser computational effort, in terms of

sample size, yields the same solutions. The experiments also provided insights on the effects

of problem parameters on the solutions. The quality of the solutions was investigated on a

9-link network by comparing the solutions using the proposed approach with those obtained

through enumeration. The proposed method found the global optimum in all cases explored

in negligible computation time.

The proposed model and the solution approach can be used by local and central govern-

ment agencies to aid investment decisions in the context of response to natural calamities

and protection against terrorist attacks.
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Chapter 4

A FACILITY LOCATION MODEL FOR EMERGENCY RESPONSE

AND DISTRIBUTION CENTERS

Disaster response starts with the transportation of food, medicine as well as search and

rescue (SAR) teams to help the people blocked in the affected area as soon as possible.

Afterwards, the injured people should be moved to safer locations and provided medical

aid. One of the problems in this post-disaster stage is distribution of goods and necessity

items. However, demand for these services and the status of the resources are not known

in advance because the needs and the functionality to reach the resources depend on the

impact of the disaster. Therefore, pre-disaster planning is to take due precautions.

This chapter presents an uncapacitated emergency facility location problem in pre-

disaster planning for effective post-disaster logistics. The selection of locations of Emergency

Response and Distribution Centers (ERDC) is considered for post-disaster transportation

of commodities such as search and rescue teams, medical teams, food, water, necessity items

and machinery. The mathematical model formulated will be utilized for the site selection

of ERDC in Istanbul with earthquake risk considerations.

Post-disaster logistics problems have more distinct characteristics compared to a con-

ventional logistics problem. There exist multiple objectives with different priority levels. In

emergency logistics, the main goal is to reach the affected areas as soon as possible, rather

than minimizing transportation costs. Minimizing access time is the most vital objective

because people in the affected area are in need of urgent help. Furthermore, different time

periods have different significance in terms of response objectives. The post-disaster time

frame is typically divided into the first 4, 8, 12, 16, 24 hours and so on as the chances of

saving lives, as well as the services needed differ at each interval. This study aims to provide

the need in the first 24 hours. In addition to time restrictions, the actions needed to be taken

after a disaster require cooperation of different departments such as the fire department,

independent search and rescue teams, military rescue personnel, emergency relief centers,
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hospitals, etc. The problem may become intractable if the location under consideration is

large-scaled. The dispatching of multiple resources which are under the control of multiple

decision makers clearly needs well organization and coordination. For successful results, the

planning should be done before disaster happens.

The Municipality of Istanbul is preparing to locate Emergency Response and Distri-

bution Centers (ERDC) throughout the city. These centers will be used as coordination

centers for different departments of the Municipality that will be in charge in case of an

emergency. As the name implies, these centers will be used for organization and distribu-

tion of resources after the disaster. More specifically, the problem considered in this paper

is the selection of locations of the Emergency Response and Distribution Centers (ERDC)

among suitable regions, determined by the municipality in Istanbul, so that the demand for

the distribution of goods and services is satisfied as much as possible in the shortest time

right after a disaster occurs. An uncapacitated facility location model is formulated with

the objective of reaching a maximum number of people in minimum time possible after a

disaster to distribute multiple commodities through the facilities under several scenarios for

demand and travel time. Average weighted travel time is minimized subject to constraints

on the existence of a facility within a fixed distance from each district for each commodity.

The aim of this study is to provide a guide for the Local Municipality of Istanbul by

preparing policies and providing recommendations on the selection of locations of the ERDC

in the city. At the same time our objective is to provide a realistic mathematical model and

a solution method that can be applicable for decision making under other disaster-planning

circumstances.

4.1 Literature Review

The literature on strategic planning for emergency logistics is rather rare but there are

considerably many studies on different components of the problem such as the location of

emergency services and dispatching of commodities.

One of the earliest studies conducted on location of emergency service facilities is by

Toregas et al. [32]. The problem is modelled as a set covering problem where the affected

areas are represented as demand nodes and the emergency service facilities are the supply

nodes. The objective is to minimize the maximum time/distance of a demand node to its
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closest supply node. An upper bound is determined as a constraint for a time/distance

between any demand and supply node and linear programming is applied to solve the

covering problem.

Consignment of goods are typically examined in the literature as a multi-commodity

network flow problem, with a multi-period and/or multi-modal setting. Haghani and Oh

[16] formulated a multi-commodity, multi-modal network flow model with time windows

for disaster response. The objective is to minimize the costs under the assumptions that

all the cost functions are linear and all the commodity quantities at supply and demand

nodes are known in advance. Therein the time concern is handled by including penalty

costs for late deliveries in the objective function. The authors put emphasis on the diversity

of transportation modes to optimize the shipping efficiency. Two heuristic algorithms are

proposed.

The flow of goods over an urban transportation network is modelled as a multi-commodity,

multi-modal network flow problem by Barbarosoglu and Arda [4]. The demand and the re-

sources are treated as random variables. The vulnerability of the transportation system is

considered with random arc capacities based on sample earthquake and impact scenarios.

A two-stage stochastic programming framework is formed as the solution approach.

Another study on the topic, conducted by Fiedrich et al. [13], model the problem

similarly to a machine scheduling problem. The authors develop an optimization model for

allocating search and rescue resources to appropriate operational areas. The paper aims to

build a model to be effective especially for the first 3 days after the disaster because the SAR

work peaks in efficacy for the aforesaid period. Minimizing the total number of fatalities,

which changes over all relevant time intervals, in the SAR period is the main objective of

the model. Two heuristics, Simulated Annealing and Tabu Search, are used as the solution

methods.

As seen from the previous work discussed above, mathematical modelling of disaster

recovery operations has been limited in the literature, whereas as stated in Bryson et al.

[5] decision makers could benefit from the application of quantitative decision-making tech-

niques. A systems view of emergency management, emphasizing the need for both pre-event

and post-event strategies, policies and the role of advanced communications and computing

technologies, coupled with analytic procedures and models is also discussed by Tufekci and
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Wallace [33].

In addition to the above-mentioned studies, there are some applications of such mathe-

matical models to real-life cases. Ozdamar et al. [25] analyze the dispatching of commodities

to distribution centers as part of emergency logistics planning for the Marmara region. Their

contribution to this literature is by a complex model in which the problem is considered as

a hybrid that integrates the multi-commodity network flow problem and the vehicle routing

problem. This study concentrates mainly on the detailed planning of pick-up, load and

delivery time of commodities and usage of vehicles. The solution approach proposed in-

cludes Lagrangean relaxation on the capacity constraints. The model is run repetitively at

given time intervals with updated information at each interval. The model and the solution

methodology is implemented on a scenario based on the 1999 Marmara Earthquake. Sim-

ilarly, Yi and Ozdamar [37] consider a dynamic and fuzzy logistics coordination model for

conducting disaster response activities for which they rerun the corresponding model in each

planning period to handle the new information communicated from affected areas. The au-

thors define the problem in detail, taking into consideration the uncertain demand, supply,

injured people and hospital service rates. The injured people are classified with respect to

their health priorities and different transportation modes are considered for carriage. Fuzzy

parameters are used to cope with the uncertainties while minimizing the risk of unserved

medical requirements and unsatisfied commodity demand. The model is illustrated on an

earthquake data set from Istanbul.

The location of emergency facility locations have been considered by Dekle et al. [12] for

a real application study for Florida. A covering location model with a two-stage approach

is used to determine the locations of disaster recovery centers that will be used by the

Federal Emergency Management Agency(FEMA). The first stage in the solution approach

is the determination of the number of such facilities with respect to the objective that each

residence in the county to be within a specified miles of the closest facility. In the second

stage, other criteria have been taken into consideration while relaxing the objective in the

first stage.

The reader is referred to [19] for a review of facility location models for emergency

services. The review is separated into three sections depending on the objective function of

the location models which are covering models, p-median models and p-center models.
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When the literature is reviewed, most of the models stated deal with predetermined

supply nodes. In none of the above, the decision maker tries to optimize the location of

transshipment nodes to maximize the commodity transportation. The models consider arc

capacities which may actually be realized at different levels in case of emergency. The

stochastic nature of the problem is handled via sampled scenarios in a two-stage stochastic

model by Barbarosoglu and Arda [4] and via fuzzy variables by Yi and Ozdamar [25]. In this

study we cope with the uncertainty by considering several disaster scenarios. We represent

the functionality of the highway system and the facilities via using different travel times

under different disaster scenarios with estimated potential damage. The demand nodes are

also determined according to the most likely disaster scenario and estimated damage in

terms of population. We do not consider detailed post-disaster dispatching since our main

goal is to determine the location of the ERDC facilities. However, we consider accessibility

after the disaster as one of the main constraints for the selection of sites.

This study attempts to provide a systematic approach for decision makers to minimize

the detriments of the disaster by fast access to the affected areas with necessary commodities

immediately after the disaster. The time restrictions in the problem are dealt by assigning

higher weights to the commodities with urgency rather than assigning penalty costs for

delays in the objective function as done in the literature. Our model includes a rather

simple setting for distribution of commodities, excluding a detailed study of the dispatching

and the loading/unloading of vehicles since the main aim of this study is to optimize the

selection of facility locations and construct a pre-disaster strategy. The detailed scheduling

and vehicle routing is to be carried out after the disaster dynamically, as soon as information

on the damage is available.

4.2 Problem Definition

The problem considered is the location of Emergency Response and Distribution Centers

(ERDC) for post-disaster emergency response. In particular, the aim is to solve for the

selection of locations of ERDC among forty possible sites determined by the Municipality

of Istanbul. ERDC are facilities which will be used both for transshipment and storage of

commodities.

The first 24 hours after a disaster are critical for saving lives. The search and rescue
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teams have the greatest chance in this period to rescue the people trapped under debris with

minimum injury. The fastest transportation of the medical teams and machinery are the

top priority objectives. The transportation of water, food and necessities, shelter equipment

and the personnel to service the affected areas form the second level priority, because if

the transportation of both of these medical and rescue teams are not successful then the

transportation of the rest would be unnecessary. The ERDC are considered as transshipment

points. Since the timing and the magnitude of an earthquake is not known in advance with

the existing technology, if the goods and commodities necessary to be distributed in the

post-disaster stage were to be stored in a depot, they would perish. Therefore, the centers

will function as transshipment nodes between suppliers and the districts of population after

the disaster for the distribution of perishable goods and also equipment and personnel that

will be called on duty right after the disaster.

4.3 The Mathematical Approach

The uncertainties due to the emergency situation complicates the large-scale facility loca-

tion problem which is already computationally difficult to solve. Therefore, the following

assumptions are made on different aspects of the problem to formulate an uncapacitated

facility location model.

4.3.1 Assumptions

The assumptions are made on travel time between nodes, the capacities of the facilities,

cost of opening a facility, demand of the affected people and the earthquake risk of both

facilities and districts.

Travel time: The travel time considered in the model involves uncertainty with respect

to the disaster scenarios. This uncertainty is incurred in the model by means of failure

of the links and the nodes connecting the supplier, facility and the demand points. The

expected distance are thus calculated with respect to the measure proposed in Chapter 3.

However, the number of binary variables necessary to represent the functional links and

nodes is exponential. In this large-scale case study, the travel times between two nodes

are calculated as Euclidean distances. This simplification allows modification of the travel

times/distances for each disaster scenario by means of coeffients.
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Capacity: The capacity is considered both as a parameter for the suppliers and a decision

variable for the capacity of the ERDC. However, under emergency conditions, it is difficult

to predict the amount available at each supplier for every commodity. The decision for

the capacities of the ERDC are not considered in the model because, as the suppliers are

assumed uncapacitated and the demand is assumed to be fully satisfied.

Cost: The model includes fixed cost of opening facilities together with holding costs for

storing durable commodities. The costs in the new model include only the fixed cost of

opening new facilities. Since the capacities are not decision variables any more, the cost of

opening an ERDC are assumed to be equal. Therefore, rather than an available budget, the

number of facilities that can be opened are limited by a constant. This is similar to p-center

and p-median problems where the aim is to open p facilities under additional restrictions.

Demand: The demand is obtained by data generation with respect to previous data. The

details of demand for each commodity at each district are given in the next section.

Disaster risk: It is important that ERDC remain functional after the disaster. Therefore,

the structure of the facility must be strong and the location should be chosen with respect to

the disaster risk of the region. Rather than including this factor in the mathematical model,

the disaster risk for the supplier nodes and the potential sites are searched in a preprocessing

stage which prevents risky locations to be potential sites for ERDC. The municipality has

already determined the possible sites with respect to risk levels and proximity to entrances

and highways of Istanbul.

In case of disasters, the most critical issue is time management. The problem analyzed in

this chapter is a facility location problem to minimize the total time to reach every district.

Therefore, rather than a complex setting for capacities, costs and transportation amounts,

a model is constructed that optimizes the locations of ERDC to reach the disaster area as

soon as possible. The following are the notations used in the model.
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P : Set of potential sites

D : Set of districts

S : Set of suppliers

W : Set of possible scenarios

p(w) : Probability of scenario w occurring, w ∈ W

NC : Set of non-durable commodities

Ic : importance factor of commodity c, c ∈ NC

Tw
kjc : Total distance for c to reach k using node j

sw
ijc : 1 if i is the supplier of j for commodity c in scenario w

aw
jkc : 1 if j can serve k for commodity c in scenario w

twjc : distance from supply of c to j

Rc : Allowed distance for commodity c for every district

B : number of facilities to be opened

oj : 1, if a facility will be open at site j; 0, otherwise, j ∈ P

Rc is a parameter that controls the allowed distance for a facility, which can serve commodity

c, to be away from any district. This parameter is stated by the decision maker and may

change for every commodity. This is reasonable because it may be more important to have

a facility that can serve water than a facility which serves food and hygiene items for the

first hours after the disaster. Therefore the allowed distance for facility with food and

hygiene items are greater than the allowed distance for a facility that can serve water. aw
jkc

is dependent on this parameter Rc that is set by the decision maker.

4.3.2 The Uncapacitated Mathematical Model

min
∑

w∈W

p(w)(
∑

c∈NC

Ic

∑

k∈D

dw
kcT

w
kjc) (4.1)
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subject to

∑

w∈W

p(w)sw
ijc ≤ oja

w
jkc ∀i ∈ S,∀j ∈ P, ∀c ∈ NC (4.2)

∑

j∈P

sw
jkc = 1 ∀j ∈ P, ∀k ∈ D, ∀c ∈ NC, ∀w ∈ W (4.3)

Tw
kjc = twjc + twjcs

w
jkc ∀j ∈ P, ∀k ∈ D, ∀c ∈ NC, ∀w ∈ W (4.4)

∑

j∈P

oj ≤ B (4.5)

oj ∈ {0, 1}, ∀j ∈ P

The objective function 4.1 is the minimization of total travel distances multiplied by

the amount of demand at each district. Constraint 4.2 shows that a facility j can not

serve district k if j is not opened or j is not in the allowed distance for district k to

serve commodity c. Constraint 4.3 forces the model to assign a facility for every district.

Constraint 4.4 shows the total distance travelled by a commodity, from the supplier plus the

distance from the facility to district if that facility serves it. Constraint 4.5 is the budget

constraint which determines the number of facilities to be opened.

4.4 Computational Studies

In this section, we report our computational studies and discuss the insights obtained. This

study aims to provide a portfolio of solutions for the decision maker to reach the affected

areas in minimum possible time. All of the computations have been carried on the PC

with 1.60 GHz Intel Pentium processor and 504 MB RAM memory with the algorithms

implemented in GAMS 22.5 with OSL solver. The computations are based on the most

risky regions of Istanbul, with the data generated as described in Section 4.4.1.

4.4.1 Data Collection

The Municipality has cooperated with several universities in Turkey and prepared a detailed

report containing four disaster scenarios ([1]). Most likely, some of the people will rush to

hospitals, shelters and so on while others will prefer to stay by their houses. The travel

behavior of the people under a disaster is still an open issue that needs to be researched as

mentioned in Chapter 3 and Chapter 2. To construct the data three types of locations are
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needed; potential sites, demand points and supplier points. Additionally, the goods to be

transported and stored should be determined, together with the demand for the districts

for each commodity.

The locations are chosen from a selected number of sites. Several characteristics have

been taken into account in determining these possible sites. One of these is of being reach-

able by at least two highways to be used alternatively in case one of them fails. Another

consideration is the available area which is not easy to find in a metropolitan like Istanbul

since it is not only the most populated city but also the industrial center in Turkey. The

size of an ERDC is approximated based on the facilities it will contain such as a storage

area, a large enough car park, several offices, a medical crisis unit and loading/unloading

platforms.

Potential Locations:

The forty potential sites are determined by Municipality of Istanbul, the decision maker,

with respect to the available areas and their proximities to highways in the city. Population

densities throughout the city is available by previous studies [1]. This data is used as a

reference and changed into a point-wise representation. District points are then aggregated

to construct 84 demand points. The aggregation is completed taking weighted combinations

of points in the same region to decrease the number of demand points for computational

complexity. The eighty four districts are classified into 5 parts according to their population

densities. The average number of people at each point and the number of points with such

density are given in Table 4.1.

Table 4.1: District nodes with estimated population values

Num. of Nodes Avg Num. of People

District 1 19 35842

District 2 20 71685

District 3 22 107527

District 4 15 215054

District 5 8 286738

Suppliers:

The supplier nodes are determined separately for each commodity. The following are con-
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sidered as the commodities to be transported; water, food and necessity items, medicine

and search and rescue (SAR) teams. The obvious diversification is the shelf-life of each

commodity which determines whether it can be stored or not. Sometimes the commodity

may not easily perish but it may still be impractical to hold it in large amounts due to

capacity limitations. Water is a good example of this. The fastest existence of the SAR

teams in the affected area are highly important and it is considered as the commodity to be

distributed after the disaster with highest priority. After this, the transportation of bread

and water form the second priority level. It is assumed that direct transportation from

the supplier nodes to the affected districts is not possible. This is a rational assumption

because the outgoing goods from the suppliers will be in large amounts. The airport and

highways to city entrances are considered to be suppliers node for resources brought in by

international aid offices. The transportation of injured people is also an important aspect

of post-disaster logistics. However, this issue will not be coordinated through the ERDC,

whose site selection is the main concern in this study. For all kinds of aid and assistance

to reach to the devastated area, connectivity to the affected districts is the most important

criterion. As the links between any two nodes is subject to failure, the maximum surviv-

ability must be satisfied when choosing the facility locations so that alternative paths are

available to reach every region. If the access to a district by highways is totally blocked after

the disaster, helicopters may be utilized. However, helicopters are not suitable for trans-

portation of heavy commodities and additionally not many helicopters are available in the

Local Municipality. To prevent helicopter usage as much as possible in the mathematical

model, a penalty cost will be added if a district can not be reached from any of the ERDC.

Therefore, when selecting the sites, accessibility is an important criterion.

Commodities:

Five types of commodities are chosen that can be transported through ERDC; bread, drink-

ing water, food and hygiene items, medical help and search and rescue teams. The com-

modities to be stored in ERDC are chosen to be stored as a unite package and therefore

considered as one single commodity. The suppliers for each commodity are shown as sep-

arate points on the network. The suppliers for bread are chosen as the large bakeries in

the city that are operated by the local government. Municipality has 27 drinking water

tanks in the city. For food and hygiene packages, the depots of three large supermarkets
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in the city are considered together with the communal kitchen operated by Turkish Red

Crescent. The scope of the medical help in our problem includes the blood supply in the

first 24 hours, and not in detail of all hospitals in the city. The blood center operated by

Turkish Red Crescent and the medical military hospital are taken as suppliers for medical

help. Past experience connote that a lot of national and international help accrue out of

city and out of country for search and rescue operations. Therefore, the entry points to the

city are taken as supply points for search and rescue activities together with the 25 local

offices of voluntary organizations. These entry points are chosen as the 2 airports and 2

national bus stations one in each side of Bosphorus, 1 national train station and 2 national

ferry ports.

Demand:

The demand for each commodity at each district point is calculated with respect to the

average number of people at that point. The requirements of one person for one day is

determined as 2 breads, 3 liters of water. For the other commodities 1 package of food and

hygiene items for 8 people, 1 medical supply for 50 people, 1 package of durable goods for

4 people and 1 search and rescue team for 20 people are determined as needs for the first

24 hours. These demands are adapted for each disaster scenario, increasing with a more

intense scenario, as given in Table 4.2.

Travel time:

Measuring real travelling time requires to focus on a limited region. However, this study

considers a large-scale problem and uses the southern part of Istanbul for computations.

Therefore, it is difficult to measure the traveling times between the potential sites, suppliers

and the district points. Therefore, direct distances between each point is taken as the

travelling distance between any two nodes. Since it would not be reasonable to make a

center further away from a point to serve that point, an upper bound is determined which

prevents a center to be assigned to a very far away district. The available distance lengths

are then adapted by coefficients for each disaster scenario. So rather than an assumption

of travelling times, the distances are increased or decreased with respect to the expected

impact of the disaster.

Budget:

The budget restrictions are the least important constraints in case of emergency. The
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only cost considered in this problem is the fixed cost of opening an ERDC. The cost of

constructing such a center depends on many facts such as its location, equipments or the

area used. All the fixed costs are assumed to be the same together with same capacities in

this study. The capacities are taken as the maximum number of durable commodities in

disaster scenario C. Four levels are determined for the total budget to control the number

of open facilities.

In case of an emergency, since time is the most critical issue and it is difficult to supply

all the demand, priorities are given to districts and commodities. This approach is incurred

Table 4.2: Demand amounts at each district

Bread Water Food Blood SaR Durable Goods

(units) (lt) (units) (units) (units) (units)

Scenario A District 1 86022 129032 5376 860 2151 10753

District 2 172043 258065 10753 1720 4301 21505

District 3 258065 387097 16129 2581 6452 32258

District 4 516129 774194 32258 5161 12903 64516

District 5 688172 1032258 43011 6882 17204 86022

Scenario B District 1 78853 118280 4928 789 1971 9857

District 2 157706 236559 9857 1577 3943 19713

District 3 236559 354839 14785 2366 5914 29570

District 4 473118 709677 29570 4731 11828 59140

District 5 630824 946237 39427 6308 15771 78853

Scenario C District 1 93190 139785 5824 932 2330 11649

District 2 186380 279570 11649 1864 4659 23297

District 3 279570 419355 17473 2796 6989 34946

District 4 559140 838710 34946 5591 13978 69892

District 5 745520 1118280 46595 7455 18638 93190

Scenario D District 1 71685 107527 4480 717 1792 8961

District 2 143369 215054 8961 1434 3584 17921

District 3 215054 322581 13441 2151 5376 26882

District 4 430108 645161 26882 4301 10753 53763

District 5 573477 860215 35842 5735 14337 71685
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into the mathematical model with importance factors for each district and commodity.

These importance factors are given in Table 4.3. As it can be seen from the table, the

highest priorities are given to the cities with most population and to the most urgent

needed commodities.

Table 4.3: Importance factors for districts and commodities

Disaster Scenarios Districts Commodities

A B C D D1 D2 D3 D4 D5 C1 C2 C3 C4 C5 C6

0.3 0.2 0.4 0.1 0.1 0.1 0.2 0.2 0.4 0.2 0.2 0.1 0.1 0.3 0.1

4.4.2 Results

The objective function of the model gives the summation of the weighted travel time over all

districts and commodities. For a better analysis, the weighted travel time over all districts

is calculated for each commodity. Then, this value is divided by the weighted total demand

of that commodity and the number of districts which gives the average weighted travel time

for a single commodity. The solutions of this model for R1 = 20, R2 = 20, R3 = 20, R4 =

40, R5 = 40 are reported in Table 4.4.

The first column in Table 4.4 shows the available budget for opening facilities. This

number determines the number of facilities to be opened since all the facilities have the same

fixed cost. (1000 distance unit corresponds to approximately 1 km in real life). Facilities

to be opened are shown with a + sign. When there is enough budget to open all facilities,

all of the facilities are opened, as expected. When the budget is decreased step by step,

it is observed that some of the facilities remain open while some are closed. For example,

facilities 2, 3, 4, 5, 8, 11, 12, 13, 18, 22, 23, 27, 28, 29, 32 and 33 are open in every solution

and facilities 7, 14, 19, 20 and 36 are only open when there is budget to open every facility.

Thus, the results are robust in the sense that the open facilities in different budget levels

show consistency.

The computational time needed to solve the model increases as the number of facilities

to be opened approaches to 10. In Table 4.5 it can be observed how cpu times change for

each number of facilities. For 10 open facilities, the model has been run for more than 14



Chapter 4: A Facility Location Model for Emergency Response and Distribution Centers 69

hours and a solution with %0.68 gap is obtained. The model is infeasible for the case when

only 5 open facilities are allowed.

The Rc, c ∈ NC, values can be modified with respect to the risk aversion of the decision

maker. Solutions to several uniform and non-uniform R values are given in Table 4.6, Table

4.7 and Table 4.8. The solutions for different Rc values support the fact that some facilities

are open in almost all cases.

The change in the expected average weighted travel distance for each commodity with

respect to the number of open facilities is given in Figure A.5. All of these results are

weighted over the four possible earthquake scenarios. When only the worst case disaster

scenario C is considered with probability 1, the model is infeasible for R1 = 20, R2 =

20, R3 = 20, R4 = 20, R5 = 20. If the Rc values are relaxed, then the results in Table 4.10

are obtained. It is interesting that for Rc values that are just smaller than 40, the solutions

Table 4.4: Solutions for several budget limits for R1 = 20, R2 = 20, R3 = 20, R4 = 40, R5 =
40

No of Open

Facilities 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

40 + + + + + + + + + + + + + + + + + + + +

35 + + + + + + + - + + + + + + - + + + + -

30 - + + + + + - - + + + + + + - + + + + -

25 - + + + + + - - + + + + + + - + + + + -

20 - - + + + + - - + + + + + + - + + + + -

15 - - + + + + - - + - - + + + - - - - + -

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 + + + + + + + + + + + + + + + + + + + +

35 - + + + + + + + + + + + + + + + - + + +

30 - - + + + + + + + + - + + + + - - + + +

25 - - + + - + + + + + - + + - + - - - - -

20 - - + + + + + + + + - + + + + - - + + +

15 - - + + - - - + + + - - + + - - - - - -

Table 4.5: Cpu times for different number of open facilities for R1 = 20, R2 = 20, R3 =
20, R4 = 40, R5 = 40

Num. of open facilities 40 35 30 25 20 15

Cpu Time 2.125 19.187 31.609 79.265 243.328 1194.654
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Table 4.6: Solutions for several budget limits for R1 = 40, R2 = 40, R3 = 40, R4 = 40, R5 =
40

No of Open

Facilities 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

40 + + + + + + + + + + + + + + + + + + + +

30 - + + + + + - - + + + + + + - + + + + -

20 - + + + + + - - + + + + + + - + - - + -

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 + + + + + + + + + + + + + + + + + + + +

30 - - + + + + + + + + - + + + + - - + + +

20 - - + + + + + + - + - - + - + - - - - -

Table 4.7: Solutions for several budget limits for R1 = 20, R2 = 20, R3 = 20, R4 = 20, R5 =
20

Num. of Open

facilities 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

40 + + + + + + + + + + + + + + + + + + + +

30 - + + + + + - - + + + + + + - + + + + -

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 + + + + + + + + + + + + + + + + + + + +

30 - - + + + + + + + + - + + + + - - + + +

Table 4.8: Solutions for several budget limits for R1 = 30, R2 = 30, R3 = 40, R4 = 30, R5 =
20

Num. of Open

Facilities 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

40 + + + + + + + + + + + + + + + + + + + +

30 - + + + + + - - + + + + + + - + + + + -

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 + + + + + + + + + + + + + + + + + + + +

30 - - + + + + + + + + - + + + + - - + + +

are infeasible as shown in Table 4.11.

The facilities which are open in almost all the cases, when the budget is available, are

shown on the Figure A.6. There are more open facilities on the European side of the city.

This is reasonable as the demand in the European side is greater than the Asian side due
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Table 4.9: Average weighted travel distance for each commodity for different Rc

R1 R2 R3 R4 R5 No of Open Facilities Average Weighted Travel Distance

Bread Water Food Blood SaR

20 20 20 40 40 40 140.28 180.92 256.27 153.56 154.26

35 140.58 181.85 262.14 154.40 155.11

30 141.32 183.70 265.08 155.27 157.16

25 143.35 186.01 268.89 156.86 161.84

20 147.57 190.71 275.40 160.41 167.68

15 155.65 199.24 316.35 173.70 174.25

40 40 40 40 40 40 140.28 180.92 152.78 153.56 154.26

30 141.17 183.66 153.65 155.27 157.16

20 146.63 190.51 158.89 158.54 166.31

20 20 20 20 20 40 140.28 180.92 256.27 153.57 154.26

30 141.32 183.70 265.08 169.17 157.31

30 30 40 30 20 40 140.28 180.92 152.78 153.56 154.26

30 141.17 183.66 153.65 155.27 157.31

Table 4.10: Solutions for the single disaster scenario C for R1 = 40, R2 = 40, R3 = 40, R4 =
40, R5 = 40

Num. of Open

Facilities 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

40 + + + + + + + + + + + + + + + + + + + +

30 + + + + + + - - + + + + + + - + + - + -

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 + + + + + + + + + + + + + + + + + + + +

30 - + + + + + + + + + + + - - + - + + + -

Table 4.11: Average weighted travel distance for each commodity for R1 = 40, R2 = 40, R3 =
40, R4 = 40, R5 = 40 for disaster scenario C

R1 R2 R3 R4 R5 No of Open Facilities Avrg Weighted Travel Distance

Bread Water Food Blood SaR

40 40 40 40 40 40 267.63 518.77 17.75 2.92 7.34

30 267.63 519.23 17.76 2.93 7.35

to the population densities.

4.5 Concluding Remarks

A pre-disaster facility location problem for disaster relief is formulated in this study. An

application of the problem is considered for Istanbul to provide guidance to the Local Mu-
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nicipality for the location of ERDC within the scope of planning for post-disaster logistics,

especially against an expected major earthquake in the area. Further sensitivity analysis

on parameters (distance tolerated for each commodity, number of facilities to be opened)

can be completed for better analysis of the marginal benefits of each facility.

The uncertainties in the problem data such as the magnitude and impact of the disas-

ter, the number of injured people, the functionality of transportation links, and so on could

also be handled with several approaches. One which is a two-stage stochastic programming

model is given in Appendix B.2. We have constructed a capacitated facility location model

that decides on both the locations of the facilities to be opened and the capacities of the

facilities together with the amount of commodity stored at each facility is given in that can

be used in a further study.



Chapter 5: Conclusions 73

Chapter 5

CONCLUSIONS

In this thesis, three problems in a disaster management context are analyzed. All of

the three problems take place in the pre-disaster stage and include pre-disaster planning

strategies for effective post-disaster relief operations. The first two problems consider trans-

portation networks and the last problem is a facility location problem.

In the first problem, network reliability under dependent link failures is considered.

Up to our knowledge, studies considering dependent link failures for a highway network

under disaster risk are limited. Reliability concept is attracting an increasing attention by

researchers however not many quantitative measures are present. The algorithm proposed

in this thesis attempts to fulfill the deficiency of such quantitative measures by providing an

efficient algorithm, that is polynomial time for special cases, for calculating the reliability

and expected performance of a network. An original framework is designed for dependent

link failures that evaluate the network in independent sets of links where the links in a

set are dependent. This framework can be adapted in different contexts where dependent

sets can be determined by the decision maker with respect to the network and the way

environment affects the dependency relationship. Within the proposed framework, in order

to identify the dependencies within a set, a vulnerability-based link dependency structure

is defined that ranks the links according to their probabilities of survival. Then, the failure

of a stronger link, that is the link with higher probability of survival, implies the failure

of weaker links (links with smaller probability of survival) certainly. This approach seems

reasonable in the earthquake context where links within the same area are exposed to similar

risk.

The second problem is an optimal budget allocation problem for strengthening the links

of a transportation network under disaster risk. The scope of the problem is limited to

computational studies of a previous study [35]. The study constitutes of two parts; data

collection and computational studies. Data collection process revealed that data on disaster
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related issues are difficult to collect and more attention should be given to numerical reports

after disasters. In this chapter of the thesis, the applicability of the proposed approach is

illustrated by means of a case study of the Istanbul highway system. The aim here is to

identify the most critical links in terms of reliability. A Monte Carlo Simulation algorithm

is developed where link failures are assumed to be independent. The performance of the

algorithm is measured by using a smaller size network for which the reliability and the

expected performance can be enumerated. For the intractable cases, where the exact values

of reliability results are not available, convergence of the results are taken into account for

analysis. These results support that reliability and performance of a network of realistic

size can be estimated with high accuracy in moderate computation time with the proposed

Monte Carlo simulation method. Hence, very promising results are obtained in terms of

proving the practicality of the proposed approach. The algorithm is also tested in a VB-

dependent link failure environment. It is interesting that the critical links in the independent

and dependent cases for the same O-D pair match each other. This can be due to several

reasons such as the characteristics of the network.

The third problem is an emergency facility location problem. The uncertainties in the

problem originate from the uncertainties of consequences and impact of the disaster. The

problem is formulated as an uncapacitated mathematical model under several assumptions

and solved with data related to Istanbul against an earthquake. The aim is to reach max-

imum number of people in minimum time possible. The selection of ERDC locations are

completed under different budgets restrictions and different scenarios.
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Figure A.4: Highway networks of Istanbul
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Figure A.5: Expected average travel distance for each commodity
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Figure A.6: Facilities that are open in most of the budget levels
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Appendix B

A CAPACITATED GOAL PROGRAMMING MODEL FOR LOCATION

OF EMERGENCY RESPONSE AND DISTRIBUTION CENTERS

B.1 Problem Difficulty

The uncapacitated fixed-charge facility location problem is known to be an NP-Hard prob-

lem [21], [11]. In addition, the problem in this paper requires deciding on the capacity of

the facilities and the storage quantities for durable commodities. Our model differs from

classical location models in that uncertainty due to a disaster has to be considered. This

uncertainty is handled via a two-stage stochastic programming model. In the first stage

the facilities to be opened are determined together with their capacities and the storage

quantities of each commodity. In the second stage, the distribution of the commodities

are optimized. The transportation variables and binary variables indicating whether each

link is being used by each commodity need to be duplicated for each scenario. According

to the goal programming approach, the model will be solved for each priority level with

corresponding goals. For a specific objective in a priority level, we need to solve a two-stage

stochastic program. Monte Carlo Sampling may be utilized to cope with the large number

of possible scenarios. However, the availability of data is still limited.

B.2 The Mathematical Framework

The problem is formulated as a two-stage multi-criteria stochastic programming model.

The first-stage decisions are whether to open a facility at a site and if so, to determine the

capacity of the facility and how much to store of the durable commodities. In the second

stage, a transshipment problem is solved with two assumptions: 1) The links connecting

the regions are uncapacitated but might have failed in a given disaster scenario; 2) The

transhipment nodes serve as depots for commodities. The decision of opening such centers

are taken with respect to the expected value of several objectives over the possible disaster

scenarios with target values determined by the decision maker. The goals are given below
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with their corresponding priority levels.

(Priority 1)

Goal 1: Total expected weighted time to transport all commodities to the affected areas

should not exceed G1, the target level for Goal 1.

Goal 2: The expected maximum time for each commodity to reach a district must be

less than G2, the target level for Goal 2.

(Priority 2)

Goal 3: The average risk associated with the locations of open facilities should not

exceed G3, the target level for Goal 3.

(Priority 3)

Goal 4: Total expected weighted unsatisfied demand should not exceed G4, the target

level for Goal 4.

(Priority 4)

Goal 5: The sum of the fixed opening costs and holding costs over the planning horizon

should not exceed G5, the budget.

Four priority levels are determined to reach the affected areas as soon as possible with

the necessary commodities. The expectations are taken over all possible disaster scenarios.

This first level priority includes two goals. One of these is to minimize the expected weighted

time to reach the affected areas. The weights are with respect to both the criticality of a

commodity and the criticality of a district. The importance of a commodity is determined

by the urgency of requirement. The importance of a district depends on aspects such as the

population and the number of industrial centers present, as well as its risk. The second goal

in this priority level is the minimization of the expected maximum time for each commodity

to reach a district. This is to enforce that all the commodities are delivered to the districts

in need as soon as possible. The second level priority goal is minimizing the average risk

associated with locations of open facilities. For example, based on most likely earthquake

scenarios and the geological condition of the region, a risk index can be assigned to each

location. It is crucial that these facilities are functional after an earthquake, therefore the

average risk is attempted to be kept below a target value. Since it is very difficult to

satisfy all of the demand, a dummy node is created in the model to represent the supply

of unsatisfied demand. The third level priority is to minimize total weighted unsatisfied
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demand. Clearly, some of the commodities such as SAR teams, water and medical supplies

are critical for the survival of the victims. The fifth goal is in the fourth priority level.

It is the total cost of opening the facilities and the inventory cost for holding the durable

commodities in these facilities over a specified duration. This goal has the least priority

compared to the others. Although budget is an important concern in many cases, in a

disaster situation both the government and the people mobilize their resources without

hesitation. Still, in pre-disaster planning stage agencies have to operate under a budget

limit.

Formulation

The following additional notation is used in the model.

Decision Variables

oj : 1, if a facility will be open at site j; 0, otherwise, j ∈ P

xw
cij : amount of commodity type c sent from supply i to facility j in scenario w

yw
cjk : amount of commodity type c sent from facility j to district k in scenario w

zcj : amount of commodity type c stored in facility j

cj : capacity of the facility to be opened at site j

mw
ck : amount of unsatisfied commodity c for district k in scenario w

Tmax : upper limit for the maximum time for any commodity to reach to any district
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Parameters

Tw
1ijc : time to transport commodity type c from supply i to facility j in scenario w

Tw
2jkc : time to transport commodity type c from facility j to district k in scenario w

Rj : earthquake risk index of potential site j

R : average risk that can be tolerated

I1k : importance factor of district k, k ∈ D

nw
1i : 1, if supply node i is operational in scenario w; 0, otherwise

nw
2j : 1, if potential site node j is operational in scenario w; 0, otherwise

lw1ij : 1, if link between i and j is operational in scenario w; 0, otherwise

lw2jk : 1, if link between j and k is operational in w; 0, otherwise

Sci : supply amount of commodity c present at supply node i

Cj : capacity of site j, j ∈ P

fj : fixed charge of opening a facility at site j

dw
ck : demand for commodity type c at district k in scenario w

hcn : holding cost for one unit of commodity c in year n

ak : cost of carrying one unit of commodity k by helicopter

M : a big number

N : number of years for which the holding costs are considered

Gi : : target level of goal i

z1 : maximum risk that can be tolerated

Goal Formulation 1:

∑

w∈W

p(w)(
∑

c∈NC

I2c

∑

i∈S

∑

j∈P

xw
cijT1ijc +

∑

c∈DC,NC

I2c

∑

j∈P

∑

k∈D

I1ky
w
cjkT2jkc) ≤ G1

Goal Formulation 2:

∑

w∈W

p(w)(vw
cjkT2jkc) ≤ Tmax, ∀c ∈ DC, and ∀j ∈ P, ∀k ∈ D
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∑

w∈W

p(w)(
∑

i∈S

∑

j∈P

uw
cijT1ijc +

∑

j∈P

vw
cjkT2jkc) ≤ Tmax, ∀c ∈ NC and ∀k ∈ D

Tmax ≤ G2

Goal Formulation 3:
∑

j∈P

Rjoj ≤ G3R

Goal Formulation 4:
∑

w∈W

p(w)
∑

k∈D

I1k

∑

c∈DC,NC

I2cm
w
ck ≤ G4

Goal Formulation 5:
∑

j∈P

fjcj +
N∑

n=1

(
∑

j∈P

∑

c∈DC,NC

hcnzcj) ≤ G5

The Model

min P1(d+
1 ) + P1(d+

2 ) + P2(d+
3 ) + P3(d+

4 ) + P4(d+
5 ) (B.1)

subject to

∑

w∈W

p(w)(
∑

c∈NC

I2c

∑

i∈S

∑

j∈P

xw
cijT1ijc +

∑

c∈DC,NC

I2c

∑

j∈P

∑

k∈D

I1ky
w
cjkT2jkc) = G1 + d+

1 − d−1 (B.2)

Tmax = G2 + d+
2 − d−2 , ∀w(B.3)

∑

j∈P

Rjoj = G3R + d+
3 − d−3 (B.4)

∑

w∈W

p(w)
∑

k∈D

I1k

∑

c∈DC,NC

I2cm
w
ck = G4 + d+

4 − d−4 (B.5)

∑

j∈P

fjcj +
N∑

n=1

(
∑

j∈P

∑

c∈DC,NC

hcnzcj) = G5 + d+
5 − d−5 (B.6)



Appendix B: A capacitated goal programming model for location of emergency response and
distribution centers 91

∑

i∈S

xw
cij + zcj ≥

∑

k∈D

yw
cjk, ∀w ∈ W,∀j ∈ P, ∀c ∈ DC (B.7)

∑

i∈S

xw
cij ≥

∑

k∈D

yw
cjk, ∀w ∈ W,∀j ∈ P, ∀c ∈ NC (B.8)

∑

c∈DC

zcj ≤ cj ≤ Cjoj , ∀j ∈ P (B.9)

yw
cjk ≤ Mnw

2j , ∀w ∈ W, ∀j ∈ P, ∀k ∈ D, ∀c ∈ DC, NC (B.10)

xw
cij ≤ Mlw1ij , ∀w ∈ W, ∀i ∈ S, ∀j ∈ P, ∀c ∈ DC, NC (B.11)

yw
cjk ≤ Mlw2jk, ∀w ∈ W, ∀j ∈ P, ∀k ∈ D, ∀c ∈ DC, NC (B.12)

∑

j∈P

yw
cjk + mw

ck = dw
ck, ∀w ∈ W, ∀k ∈ D, ∀c ∈ DC,NC (B.13)

∑

j∈P

xw
cij ≤ Scin

w
1i, ∀w ∈ W, ∀i ∈ S, ∀c ∈ DC, NC (B.14)

∑

w∈W

p(w)(
∑

j∈P

vw
cjkT2jkc) ≤ Tmax, ∀k ∈ D, ∀c ∈ DC (B.15)

∑

w∈W

p(w)(
∑

i∈S

∑

j∈P

uw
cijT1ijc +

∑

j∈P

vw
cjkT2jkc) ≤ Tmax, ∀k ∈ D, ∀c ∈ NC (B.16)

oij ∈ {0, 1}, ∀i ∈ S, ∀j ∈ P

uw
cij , vw

cjk ∈ {0, 1}, ∀w ∈ W, ∀i ∈ S, ∀j ∈ P, ∀k ∈ D, ∀c ∈ DC, NC

xw
cjk, yw

cij , mw
ck ≥ 0, ∀w ∈ W, ∀i ∈ S, ∀j ∈ P, ∀k ∈ D, ∀c ∈ NC

zcj ≥ 0, ∀j ∈ P, ∀c ∈ DC

cj ≥ 0, ∀j ∈ P

Tmax ≥ 0

d+
i , d−i ≥ 0, i = 1, ..., 5

The objective function B.1 is the minimization of deviations from the five goals with four

priority levels. The constraints (B.2), (B.3), (B.4), (B.5) and (B.6) are the goal equations.

In constraint (B.4) the target value is multiplied with the constant R, which can be set by

the decision maker depending on his/her risk attitude. Constraint (B.7) and (B.8) are the

balance equations at the ERDC for the durable and non-durable commodities, respectively.

In constraint (B.9), the first and the second inequalities guarantee that the amount stored in

an ERDC is less than its capacity and the capacity of an ERDC is equal to 0 if that ERDC is
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not opened, respectively. Constraint (B.10) represents the fact that the transshipment nodes

may not be functional after the disaster. Constraints (B.11) and (B.12) force the amount of

commodity carried from link i to j and j to k to be 0 if those links have failed in a realization,

respectively. Constraint (B.13) is the demand satisfaction constraint. Constraint(B.14) is

the capacity restriction on the supplier, where the capacity is zero if the supplier has failed

in a disaster scenario. Lastly constraints (B.15), (B.16) force the expected maximum time

for each commodity to reach a district to be less than the variable Tmax.

The problem is formulated as a two-stage stochastic programming model. The first-

stage decisions are whether to open a facility at a site and if so, to determine the capacity

of the facility and how much to store of the durable commodities. In the second stage,

a transshipment problem is solved with two assumptions: 1) The links connecting the

regions are uncapacitated. 2) The transhipment nodes serve as depots for commodities.

The decision of opening such centers are taken with respect to the expected value of the

objective over the possible disaster scenarios.

It is crucial that these facilities are functional after an earthquake, therefore the average

risk is attempted to be kept below a target value. Since it is very difficult to satisfy all of

the demand, a dummy node is created in the mathematical model to represent the supply of

unsatisfied demand together with an upper bound to limit the unsatisfied demand. There

is also a budget constraint. Although budget is an important concern in many cases, in

a disaster situation both the government and the people mobilize their resources without

hesitation. Still, in pre-disaster planning stage agencies have to operate under a budget

limit.
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