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4.2 Gröbner Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



4.3 Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5: Applications of Gröbner Basis 46
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0.1 General Notation and Terminology.

In this section we will present some general notation and terminology.

Numbers and Sets

N = {0, 1, 2, . . .} = the set of natural numbers

N∗ = N \ {0}
Z = the set of all rational integers

Q = the set of all rational numbers

R = the set of all real numbers

C = the set of all complex numbers

P = partially ordered set

6 ordering relation

Tn = set of terms in the indeterminates x1, ..., xn

O = order ideal

Orderings

Lex= Lexicographic Ordering

DegLex= Degree Lexicographic Ordering

DegRevLex= Degree Reverse Lexicographic Ordering

vi



Rings

Unless otherwise stated R will denote throughout this thesis a commutative ring

with identity element.

(x1, x2, . . . , xn) =

{ ∑
1≤i≤n

rixi | r1, r2, . . . , rn ∈ R

}
= the ideal of R

generated by x1, x2, . . . , xn ∈ R

(x) = Rx = the principal ideal of R

generated by x ∈ R

R [x1, . . . , xn ] = the polynomial ring in the indeterminates

x1, . . . , xn with coefficients from the ring R

1 is the identity element of the ring R

IR is the identity map from ring R to itself

I I is an ideal of R

Mn(R) = the ring of n× n matrices over a ring R

Ker(ϕ) = the kernel of a morphism ϕ

Im(ϕ) = the image of a morphism ϕ

vii



Modules

M is a R-module

Hom R(M,N) = the set of R-morphisms from M to N

End R(M) = the ring of R-endomorphisms of M

M ⊕N = direct sum of modules M and N
∏
α∈I

Mα = the direct product of an arbitrary family (Mα)α∈I of modules

⊕
α∈I

Mα = the direct sum of an arbitrary family (Mα)α∈I of modules

k is a Field

viii
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Chapter 1

PRELIMINARIES

1.1 Rings

We begin with some definitions

Definition 1.1.1. Let S be a ring. A function

ϕ : R 7−→ S

is ring homomorphism provided that for all a, b ∈ R:

ϕ(a + b) = ϕ(a) + ϕ(b),

ϕ(ab) = ϕ(a)ϕ(b).

The composition of ring homomorphisms is again a ring homomorphism. An

endomorphism of a ring is a homomorphism of the ring into itself. An isomorphism

of rings is a ring homomorphism which is one-to-one and onto. A subset S of a ring R

is called a subring if S is closed under addition and multiplication and contains the

same identity element as R. A subset I of a ring R is called a left ideal(resp. right

ideal) of R if I is a subgroup of the additive group of R and if ri ∈ I (resp. ir ∈ I)

for all r ∈ R, i ∈ I.

Proposition 1.1.2. Let

I0 ⊆ I1 ⊆ ... ⊆ Im ⊆ ...

be a chain of ideals of R. Then

I =
⋃
i∈Λ

Ii
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is an ideal of R, where Λ is any index set.

Proof. If x ∈ I then ∃Ik in the chain such that x ∈ Ik for some k ∈ Λ. Ik is an ideal

of R so for any r ∈ R, rx ∈ Ik. Therefore rx ∈ I. If we take m,n ∈ I then ∃Ii, Ij

in the chain such that m ∈ Ii and n ∈ Ij for some i, j ∈ Λ. These submodules are

elements of the chain, we can assume Ii ⊆ Ij. Hence m,n ∈ Ij. Ij is an ideal of R so

m− n ∈ Ij and therefore m− n ∈ I and I is an ideal of R.

Theorem 1.1.3 (The Fundamental Theorem of Isomorphism For Rings). Let S be

rings with identity. If

ϕ : R 7−→ S

is a ring homomorphism then the Ker(ϕ) is a two-sided ideal of R, Im(ϕ) is a subring

of R and

R/ Ker(ϕ) ∼= Im(ϕ).

Definition 1.1.4. A non-empty set S is a multiplicative set if

i)∀s1, s2, s1s2 ∈ S

ii) 0 is not an element of S.

Example 1.1.5. If R is a commutative ring and P is a prime ideal, then R−P is a

multiplicative set. Assume R − P 6= ∅. Let a, b ∈ R − P and ab is not an element of

R− P. Thus ab ∈ P i.e., either a ∈ P or b ∈ P , that is either a is not in R− P or b

is not in R− P. That is a contradiction. Therefore if ab ∈ R− P and 0 ∈ P , then 0

is not in R− P.

Proposition 1.1.6. If S is a multiplicative set in R then R/S contains a prime ideal.

Proof. Let

K = {I ideals of R : I ∩ S = ∅}.

K is non-empty. {0} ∈ K since {0}∩S0 = ∅. If {Ij}j∈∆ is a chain in K then
⋃

j∈∆ Ij

is also an ideal of R. Therefore this union is an upper bound. By Zorn’s Lemma K
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has a maximal element say P. Now let a, b ∈ R such that ab ∈ P. If a is not in P then

form P + (a) ⊇ P. Since P is the maximal element in K, P + (a) ∩ S is not empty,

i.e., there exists s1 ∈ K such that s1 = p1 +r1a for some p1 ∈ P and r1 ∈ R. Similarly

if b is not an element of P then there exists s2 ∈ K such that s2 = p2 + r2b for some

p2 ∈ P and r2 ∈ R. Consider

s1s2 = (p1 + r1a)(p2 + r2b)

= p1p2 + p1r2b + p2r1a + abr1r2

Clearly s1s2 ∈ P but also s1s2 ∈ S ,i.e., P ∩ S is not empty. But this contradicts

with P ∈ K. Therefore P is a prime ideal such that P ∈ K.

1.2 Modules

Definition 1.2.1 (Module homomorphism). Let M and N be R modules. A function

ϕ : M 7−→ N

is a module homomorphism provided that:

ϕ(m1 + m2) = ϕ(m1) + ϕ(m2), ∀m1,m2 ∈ M

ϕ(rm) = rϕ(m), ∀m ∈ M, r ∈ R.

Theorem 1.2.2 (The Fundamental Theorem of Isomorphism For Modules). Let M

and N be R-modules. If a function ϕ:M −→ N is a module morphism;

M/ Ker(ϕ) ∼= Im(ϕ).

Theorem 1.2.3. Let N be a submodule of M . There is a bijection between the

submodules of M which contain N and the submodules of M/N .

Proposition 1.2.4. Let M be a module and

N0 ⊆ N1 ⊆ ... ⊆ Nm ⊆ ...
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be a chain of submodules of M . Then

N =
⋃

i∈N
Ni

is a submodule of M .

Proof. If x ∈ N then ∃Nk in the chain such that x ∈ Nk for some k ∈ N. Nk is

a R-module so for any r ∈ R, rx ∈ Nk. Therefore rx ∈ N . If we take m,n ∈ N

then ∃Ni, Nj in the chain such that m ∈ Ni and n ∈ Nj for some i, j ∈ N. These

submodules are elements of the chain, so without lost of generality we can assume

Ni ⊆ Nj. Hence m,n ∈ Nj. Nj is a R-module so m+n ∈ Nj and therefore m+n ∈ N

and N is submodule of M .

The R-module M is called cyclic if there exists m ∈ M such that M = Rm. The

R-module M is said to be finitely generated if there exists m1,m2, ..., mn ∈ M such

that M =
∑n

j=1 Rmj. In this case, we say m1,m2, ..., mn is a set of generators for M .

A submodule N ⊆ M is called maximal submodule if N 6= M and for any submodule

K with N ⊆ K ⊆ M , either N = K or K = M .

Definition 1.2.5. Let (Mi)i∈I be a collection of R-modules indexed by the set I. The

direct product of the modules (Mi)i∈I is the cartesian product

∏
i∈I

Mi =

{
(xi)i∈I : xi ∈ Mi

}

with componentwise addition and scalar multiplication. If x, y ∈ ∏
i∈I Mi, x = (xi)i∈I

and y = (yi)i∈I with components xi, yi ∈ Mi for all i ∈ I, then x + y is defined to be

the element with

(x + y)i = xi + yi, ∀i ∈ I.

If r ∈ R, then rx is defined to be the element with components

(rx)i = rxi, ∀i ∈ I.
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The submodule of
∏

i∈I Mi consisting of all elements m such that mi = 0 for all but

finitely many components mi is called the external direct sum of the modules (Mi)i∈I ,

and is denoted by
⊕
i∈I

Mi.

Definition 1.2.6. If (Mi)i∈I is a family of submodules of a given module, we can

define a new submodule of M , called the sum of the family (Mi)i∈I of submodules as

follows
∑
i∈I

Mi =

{∑
i∈I

xi|xi ∈ Mi, ∀i ∈ I, xi = 0 for almost all i ∈ I

}
.

1.3 Determinant Trick

Definition 1.3.1 (Kronecker Delta). For any index set J and ring R with identity

the symbol δij denotes

0 ∈ R if i 6= j

and

1R ∈ R if i = j.

Theorem 1.3.2. Let M be a finite R-module generated by n elements and

ϕ : M −→ M

a homomorphism. Suppose that I is an ideal of R such that ϕ(M) ⊂ IM . Then ϕ

satisfies a relation of the form

ϕn + a1ϕ
n−1 + ... + an−1ϕ + an = 0

where ai ∈ I i for i = 1, 2, ..., n.

Proof. Let m1,m2, ..., mn be a set of generators of M . Since ϕ(mi) ∈ IM we can

write

ϕ(mi) =
∑

aijmj where aij ∈ I
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i.e ϕ(mi) = ai1m1 + ai2m2 + ...+ ainmn where i = 1, ..., n. This can also be written as

∑
((δijϕ− aij)mj) = 0.

Now write ∆ = (δijϕ− aij)mj, i.e.

∆ =




ϕ− a11 −a12 ... −a1n

−a21 ϕ− a22 ... −a2n

... ... ... ...

−an1 −an2 ... ϕ− ann




.

Also if we do the calculations we will see that

det∆ = ϕn + a1ϕ
n−1 + ... + an−1ϕ + an.

Let adj∆ denote the adjoint matrix of ∆. We also know that

adj∆ =




ϕ− a11 −a21 ... −an1

−a21 ϕ− a22 ... −an2

... ... ... ...

−a1n −a2n ... ϕ− ann




.

Clearly

∆(adj∆) = (det∆)mk = 0, mk 6= 0, ∀k = 1, ..., n.

Therefore det∆ = ϕn + a1ϕ
n−1 + ... + an−1ϕ + an = 0

1.4 Exact Sequences

Suppose that L, M and N are R-modules, and

L
α7−→ M

β−→ N

is a sequence of homomorphisms. It is called exact at M if Ker(β) = Im(α), this

means that the composite βoα = 0, and that α maps surjectively to Ker(β). A longer

sequence

... 7−→ M1 7−→ M2 7−→ M3 7−→ ...
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is exact if it is exact at each term. An exact sequence of the form

0
α17−→ L

α7−→ M
β7−→ N

β17−→ 0

is called short exact sequence where Ker(β) = Im(α) and also Ker(α) = Im(α1) = 0,

i.e. α is a monomorphism and Ker(β1) = Im(β) = 0, i.e. β is an epimorphism. If we

have a direct sum L ⊕ N then we can construct a short exact sequence in a natural

way

0 7−→ L
α7−→ L⊕N

β7−→ N 7−→ 0

here α is the inclusion map α(l) = (l, 0) where l ∈ L and β is the projection β((l, n)) =

n where m ∈ N .
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Chapter 2

NOETHERIAN RINGS AND NOETHERIAN MODULES

2.1 Noetherian Rings

Proposition 2.1.1. The followings are equivalent

1)The set of ideals of R has ACC.

2)Any non-empty collection of ideals have maximal element.

3)Any ideal of R is finitely generated

Proof. (1)=⇒ (2) Let S be a collection of ideals in R. Now assume S 6= ∅. Let I1 ∈ S,

if I1 is maximal with respect to inclusion then I1 is a maximal element if not then

∃I2 ∈ S such that I1 ⊆ I2. Again if I2 is maximal then I2 is a maximal element. If we

proceed as such we will have I1 ⊆ I2 ⊆ .... But R has ACC so this chain stabilizes

after an ideal , say IN , than this IN is a maximal element in S.

(2)=⇒(3) Let I be an ideal of R. Consider the set of finitely generated submodules

of I, say S. By our assumption S has a maximal element, say I0. If there is x ∈ I\I0

then I0 + Rx is a larger finitely generated ideal so it is an element of S. Then

I0 ⊆ I0 + Rx but I0 is a maximal element of S. Therefore I = I0. Thus I is finitely

generated.

(3)=⇒(1) Take an increasing chain of ideals

I1 ⊆ I2 ⊆ ... ⊆ Im ⊆ ....

Let

I =
⋃
i∈Λ

Ii

be the union of all ideals in the chain and by Proposition 1.1.2 I is an ideal of R and so

I is finitely generated by our assumption,i.e. I = (x1, x2, ..., xn) for n ∈ Z +. And also
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∀i, i = 1, ..., n there is mi ∈ Λ such that xi ∈ Im(i). Now let m = max{m1, ...,mn},
Im(i) ⊆ Im ∀i = 1, ..., n so x1, x2, ..., xn ∈ Im. That is I = (x1, x2, ..., xn) ⊆ Im and

therefore this chain terminates.

Definition 2.1.2 (Noetherian Ring). If the conditions of Proposition 2.1.1 hold for

a ring R, then R is called Noetherian ring.

A ring R whose ideals satisfy the descending chain condition(DCC), that is any

decreasing chain

I1 ⊇ I2 ⊇ ... ⊇ Ik ⊇ ...

of ideals of R eventually stops, is called Artinian Ring. A ring R is called local ring

if and only if R has only one maximal ideal. And also A ring R is called local ring if

and if all units of R form an ideal.

Proposition 2.1.3. If M is a finite R-module and M = IM then there exists an

element x ∈ R such that x ≡ 1 mod I and xM = 0

Proof. Consider the identity homomorphism

idM : M −→ M

idM(M) = M = IM then by determinant trick we have

0 = (idM)n + a1(idM)n−1 + ... + an−1(idM) + an = idM + a1idM + ... + an−1idM + an.

idM is the identity element of the set of endomorphisms of M . So we have

idM(1 + an + ... + a1) = 0 where ai ∈ I

Therefore

x = an + ... + a1 ≡ 1 mod I.
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Proposition 2.1.4. If R is a local ring with the maximal ideal I then every element

of R− I is a unit.

Proof. Let y ∈ R− I and assume y is not a unit. Clearly (y) is an ideal of R which is

different from R. Therefore I ⊂ I+(y) 6= R. But that contradicts with the maximality

of I. So y is a unit.

Lemma 2.1.5 (Nakayama Lemma). Let R be a local ring with the maximal ideal I

and M be a finite module then M = IM implies M = 0.

Proof. From proposition 2.1.3 there exists an element x ∈ R such that x ≡ 1 modI.

Also from Proposition 2.1.4 x is a unit. So there exists y such that xy = 1. From

Proposition 2.1.3 xM = 0. Therefore

M = yxM = xyM = 0.

Proposition 2.1.6. Let R be an Artinian local ring. The maximal ideal M is nilpo-

tent.

Proof. R is a local ring then it has a unique maximal ideal. Say M . Since R is

Artinian and M is the unique max ideal, the descending chain

M ⊇ M2 ⊇ ... ⊇ Mk ⊇ ...

will eventually stops,i.e. ∃k ∈ Z+ such that Mk = Mk+1. Now assume Mk 6= 0

and let x ∈ M − Mk such that (x)Mk 6= 0 where (x) is the ideal generated by x.

We have (x)Mk 6= 0 and Mk = Mk+1, so (x)Mk = (x)Mk+1. That means (x)Mk =

(x)MkM = (x)MMk and (x) can be considered as a finitely generated R-module

then by Nakayama’s Lemma Mk = 0.

Proposition 2.1.7. Let R be a Noetherian ring. Any surjective ring homomorphism

ϕ : R −→ R

is also injective.
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Proof. If a ∈ Ker ϕ then ϕ(a) = 0 and ϕ(ϕ(a)) = 0 ,i.e. a ∈ Ker ϕ2. Therefore

Ker ϕ ⊆ Ker ϕ2. As we proceed that way we will have

Ker ϕ ⊆ Ker ϕ2 ⊆ ... ⊆ Ker ϕn ⊆ ....

We know R is Noetherian and elements of this chain are ideals of R, so this ascending

chain of ideals of R must terminate after finitely many steps. Now assume Ker ϕ 6= 0

and take a ∈ Ker ϕ. Since ϕ is onto, we can find b ∈ R such that ϕ(b) = a then

ϕ2(b) = ϕ(a) = 0, i.e. b ∈ Ker ϕ2. That means we have a strictly ascending chain

∀n ∈ N

Ker ϕ ⊂ Ker ϕ2 ⊂ ... ⊂ Ker ϕn ⊂ ....

But this contradicts that R is Noetherian. So a = 0, i.e. Ker ϕ = 0

Theorem 2.1.8 (Cohen’s Theorem). If all prime ideals of a ring R are finitely gen-

erated then R is a Noetherian ring.

Proof. Let

S = {I ⊆ R : ideals which are not finitely generated}

and assume S 6= ∅. S is partially ordered by inclusion. Let

I1 ⊆ I2 ⊆ ...

be an ascending chain in S and

I =
⋃
i∈Λ

Ii

where Λ is any index set. I is an upper bound for S. By Zorn’s Lemma S has a

maximal element, say J . We claim that J is a prime ideal. To prove this claim, let

ab ∈ J such that a, b are not in J . Then J ⊆ J + a and J ⊆ J + b. Therefore J + a

and J + b are finitely generated then (J + a)(J + b) = J + ab is finitely generated and

that means (J + ab) = J is finitely generated, that contradicts with our assumption

S 6= ∅.
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2.2 Noetherian Modules

An R module M is Noetherian (resp. Artinian) if the submodules of M have the

ACC (resp. DCC), that is any increasing chain M1 ⊂ M2 ⊂ ... ⊂ Mk ⊂ ...(resp.

decreasing chain M1 ⊃ M2 ⊃ ... ⊃ Mk ⊃ ...) of submodules eventually stops. Just

as before, it is equivalent to say that any non empty set of submodules of M has a

maximal element, or that every submodule of M is finite.

Let L,M, N be R−modules and

0 7−→ L
α7−→ M

β7−→ N 7−→ 0 (∗)

a short exact sequence of R−modules.

Lemma 2.2.1. We use the above notation (∗). For submodules M1 ⊆ M2 ⊆ M,

L ∩M1 = L ∩M2 and β(M1) = β(M2) =⇒ M1 = M2.

[2]

Proof. If m ∈ M2 then β(m) ∈ β(M1) = β(M2), so that there is an n ∈ M1 such that

β(m) = β(n). Then β(m− n) = 0, so that m− n ∈ M2 ∩Ker(β). Hence m ∈ M1.

Proposition 2.2.2. We use the above notation (∗). M is Noetherian if and only if

L and N are.[2]

Proof. If M is Noetherian then clearly L and N are Noetherian because ascending

chain of submodules in L and N correspond one-to-one to certain ascending chains in

M. Now assume L and N are Noetherian we want to show M is Noetherian. Suppose

M1 ⊂ M2 ⊂ ... ⊂ Mk ⊂ ... is an increasing chain of submodules of M , then identifying

α(L) with L and taking intersection gives a chain

L ∩M1 ⊂ L ∩M2 ⊂ ... ⊂ L ∩Mk ⊂ ...
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of submodules of L and applying β gives

βM1 ⊂ βM2 ⊂ ... ⊂ β(Mk) ⊂ ...

of submodules of N. Each of these chains eventually stops by the assumption on L

and N . Without loss of generality assume β(Mn) = β(Mn+1) = ... and L ∩ Mn =

L ∩Mn+1 = .... Therefore by Lemma 2.2.1Mn = Mn+1 = ... i.e., M is Noetherian.

Proposition 2.2.3. If I1, ..., Ik are ideals such that R/Ii is a Noetherian ring, then
⊕

R/Ii is a Noetherian R-module. Also if ∩Ii = 0 then R is Noetherian.

Proof. As we mentioned in Section Exact Sequences we can construct an exact se-

quence for n = 2 whereR/I1 and R/I2 are Noetherian as follows,

0 −→ R/I1 −→ R/I1 ⊕R/I2 −→ R/I2 −→ 0.

From the Proposition 2.2.2 R/I1 ⊕ R/I2 is Noetherian. By the same way we can

construct

0 −→ R/I1 ⊕R/I2 −→ R/I1 ⊕R/I2 ⊕R/I3 −→ R/I3 −→ 0.

And as the previous step R/I1⊕R/I2⊕R/I3 is Noetherian. As we proceed that way

for k steps where k ∈ Z + we will end up with an exact sequence

0 −→ R/I1 ⊕ ...⊕R/Ik−1 −→ R/I1 ⊕ ...⊕R/Ik−1 ⊕R/Ik −→ R/Ik −→ 0.

Then clearly
k⊕

i=1

R/Ii

is Noetherian. Now to prove the next part of the proposition let us define the map ϕ

such that

ϕ : R −→
k⊕

i=1

R/Ii
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for any a ∈ R, ϕ(a) = (I1 + a, I2 + a, ..., Ik + a). Clearly this is a well-defined module

homomorphism. Now consider

Ker(ϕ) = {a : ϕ(a) = (I1, ..., Ik)} = {a : a ∈ I1 ∩ I2 ∩ ... ∩ Ik} = 0.

That shows our map ϕ is a one-to-one map. Then there is a one-to-one correspondence

with the ideals of R and ideals of
⊕k

i=1 R/Ii, since
⊕k

i=1 R/Ii is Noetherian, R is

Noetherian.

Proposition 2.2.4. Let R be a Noetherian ring and M be a finite R-module. ∃ an

exact sequence

Rq α−→ Rp β−→ M −→ 0

Proof. M is a finite module. Let the generator set GM = {m1, ..., mp} have p many

elements where p ∈ Z +. Let us define

β : Rp −→ M

where β((a1, ..., ap)) = m1a1 + ...+mpap. Obviously this is a well-defined onto module

morphism. Let

K = Ker β = {(a1, ..., ap) : m1a1 + ... + mpap = 0}.

This is a submodule of Rp and so it is a finite module. Assume the generator set GK

of K has q many elements where q ∈ Z +, i.e. GK = {k1, ..., kq}. Define ϕ such that

f : Rq −→ K

such that β((a1, ..., aq)) = k1a1 + ... + kqaq. Clearly this is a well-defined and onto

module homomorphism. So we have

Rq f−→ K
i−→ Rp β−→ M −→ 0.
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i is embedding so it is an injection, since K is the kernel of β. Now let α = i ◦ f ,then

by construction we can say Im α = Ker β and therefore

Rq α−→ Rp β−→ M −→ 0

is an exact sequence.

2.3 Hilbert Basis Theorem

Theorem 2.3.1 (Hilbert Basis Theorem). If R is a Noetherian ring then so is the

polynomial ring R[x]

Proof. Let I be a non-zero ideal in R[X] and for every positive integer d

Ad = {ad : adx
d + lower degree terms ∈ I}

If for any ad, bd ∈ Ad then f(x) = adx
d + ..., g(x) = bdx

d + ... ∈ I and since I is an

ideal of R[X] we have f(x)− g(x) ∈ I and ∀r ∈ R, rf(x) ∈ I. Therefore ad− bd ∈ Ad

and ∀r ∈ R rad ∈ Ad. Clearly Ad is an ideal of R and

A0 ⊆ A1 ⊆ A2 ⊆ ....

is chain of ideals in R. Let

A =
∞⋃
i=0

.

A is an ideal of R and A is finitely generated as in proposition 2.1.1 because R is

Noetherian. Assume A =< α0, α1, ..., αk > where αi ∈ R. Also we know there is

m ∈,Z + such that α0, α1, ..., αk ∈ Am. Now let bi1, bi2, ..., bin be the generators of

Ai for all i = 1, ..., m and fij be the polynomial of I with leading coefficient bij and

degree i. We claim that

I = 〈fij : i = 0, ..., m and j = 0, ...,m〉.

To prove our claim, let g(x) 6= 0 ∈ I, we will do induction on degree of g(x). If

deg(g(x)) = 0 then g(x) is constant and so it is an element of A0, therefore g(x) ∈ R.
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By induction hypothesis assume the result holds for polynomials in I with degree less

than degree of g(x). Now let deg(g(x)) = t where t ≥ 1,

Case(1): t ≤ m

Let

g(x) = ctx
t + ...; ct ∈ At so ct = β1bt1 + ... + βntbtnt

where bti generators of At and βi ∈ R. Then form

h(x) = β1ft1 + β2ft2 + ... + βntftnt

h(x) and g(x) have the same leading coefficients so

g(x)− (β1ft1 + β2ft2 + ... + βntftnt)

has degree less than deg(g((x)). So by induction it belongs to the ideal generated by

fij.

Case(2): t > m, t−m > 0

Let g(x) = ctx
t + ...; ct ∈ At = Am since t > m and R is Noetherian,i.e

A1 ⊆ A2 ⊆ A3 ⊆ .... ⊆ At = At+1 = ... = Am = ... so ∃i = 1, ..., nm such that

ct = β1bm1 + ... + βnmbmnm .

Then form

h(x) = (β1fm1 + β2fm2 + ... + βnmfmnm)xt−m.

The leading coefficient of h and g are the same so deg(g − h) < deg(g). So it can be

written as a linear combination of fij.

The trivial examples for Noetherian Rings are ,Z and fields. As an example for

rings which are not Noetherian, we can consider the ring R of polynomials in x, y

such that

R = F [x, xy, xy2, ...]
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where F is a field. Clearly I = (x, xy, xy2, ...) is an ideal of R which is not finitely

generated. To prove this claim assume I is finitely generated. Let G = {a1, a2, ..., an}
where n ∈ Z + be the finite generator set of R. ∀ai ∈ G ai = xyαi for some αi ∈ Z +

and also ∀a ∈ R, a = xym for some m ∈ Z + and xym = r1xyα1+r2xyα2+r3xyα3+...+

rnxyαn ∀ri ∈ F [x, xy, xy2, ...]. So r′is are of the form xyki ki ∈ Z +. Then ∀m ∈ Z +

r1xyα1+r2xyα2+r3xyα3+...+rnxyαn = x2yα1+k1+x2yα2+k2+x2yα3+k3+...+xnyαn+kn 6= xym.

That means G is not finite.

A subring of a Noetherian ring does not have to be Noetherian. As an example

consider

C[x, xy, xy2, xy3, ...] ⊆ C[x, y].

C[x, y] is Noetherian by Hilbert Basis Theorem since C is Noetherian so by Hilbert

Basis Theorem C[x] is Noetherian and again by Hilbert Basis Theorem C[x, y] is

Noetherian. But C[x, xy, xy2, xy3, ...] is not a Noetherian ring because (x, xy, xy2, xy3, ...)

is an ideal of C[x, xy, xy2, xy3, ...] which is not finitely generated.
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Chapter 3

INTEGRAL EXTENSIONS AND HILBERT’S

NULLSTELLENSATZ

3.1 Finite and Integral R-algebra

An R- algebra A is by definition a ring A with a given ring homomorphism

ϕ : R −→ A.

The point is that A is then a R-module, with the multiplication defined by

ϕ(a).b

where a ∈ R, b ∈ A. An important case of this is when R ⊂ A, A is also called an

extension ring of R, we can usually reduce to this case by writing

ϕ(R) = R′ ⊂ A.

A is a finite R-algebra(or finite over R) if it is finite as a R-module. An element a ∈ A

is integral over R if there exists a monic polynomial f(x) = xn + rn−1x
n−1 + ... + r0 ∈

R′[x] such that

(1) f(a) = an + rn−1a
n−1 + ... + r0 = 0.

The algebra A is integral over R if every a ∈ A is integral. In terms of A viewed as a

R-module, the integral dependence relation (1) is a linear relation

an + rn−1a
n−1 + ... + r0 = 0

between the powers of a, with coefficients in R, and such that the highest power an

has coefficient 1. [2]
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Proposition 3.1.1. If ϕ : R −→ A and A is an R-algebra, and a ∈ A, then there

are three equivalent conditions:

(i) a is integral over R.

(ii)The subring R′[a] ⊂ A generated by R′ = ϕ(R) and a is finite over A.

(iii)There exists an R-subalgebra C ⊂ A such that R′[a] ⊂ C and C is finite over

R.[2]

Proof. (i) =⇒ (ii) If a is integral over R then there is a polynomial f(x) = xn +

rn−1x
n−1 + ... + r0 in R[x] such that

f(a) = an + rn−1a
n−1 + ... + r0 = 0.

Now by induction assume proposition holds for polynomial with degree smaller than

n. It can be written as a linear combination of ai where i = 1, ..., n. Take a polynomial

g ∈ R′[x] with degree m. If m < n by induction hypothesis this polynomial can be

generated by 1, a, ..., an. Now assume m > n, g(x) = bmxm + bm−1x
m−1 + ...+ b0. f(x)

is a monic polynomial multiply f(x) by bmxm−n then we get

h(x) = g(x)− bmxm−nf(x).

The degree of h(x) is smaller than n. So h(x) can be written as a linear combination

ai, where i = 1, ..., n, and also

g(a)− bmam−nf(a) = h(a)

i.e g(a) = h(a) so g(x) can be written as a linear combination of ai, where i = 1, ..., n.

(ii) =⇒ (iii) is clear.

(iii) =⇒ (i) Consider the R-module homomorphism

f = µa : C −→ C

defined by multiplication by a. Then C is a finite R-module. We can apply the

Determinant Trick to f. This gives a relation

fn + rn−1f
n−1 + ... + r0 = 0.

Also f i(1) = a.a...a.1(i times) = ai, which is what we wanted.
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3.2 Radicals and Affine Algebraic Sets

Definition 3.2.1. For a positive integer n we define the affine n-space

An = {(a1, a2, ..., an) : ai ∈ k, i = 1, ..., n}.

[4]

A polynomial f ∈ k[x1, ..., xn] determines a function f,

f : An −→ k

(a1, ..., an) −→ f(a1, ..., an)

where (a1, ..., an) ∈ An. This function is called evaluation. There are two ways, f can

be viewed as a polynomial and also a k-valued function on An. f ∈ k[x1, ..., xn] we

define V (f) to be the set of solutions of the equation f = 0, i.e.,

V(f) = {(a1, ..., an) ∈ An : f(a1, ..., an) = 0} ⊆ An.

V(f) is called the variety defined by f. This evaluation function gives a ring of k-

valued functions on An denoted by k[An] and called the coordinate ring of An. Also

for any set S ⊆ k[An],

V(S) = {(a1, ..., an) ∈ An : f(a1, ..., an) = 0forallf ∈ S}.

Obviously V(∅) = An.

Definition 3.2.2. A subset V of An is called an affine algebraic set, if V is the set of

common zeros of some set S of polynomials, i.e., if V = V(S) for some S ⊆ k[An].

V = V (S) is called the locus of S in An.

The one point subsets of An for any n are algebraic since {(a1, ..., an)} is V(x1 −
a1, ..., xn − an). More generally any finite subset of An is an affine algebraic set.

Proposition 3.2.3. V(S) = V(I) where I = (S) is the ideal in k[An] generated by

the subset S.
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Proof. (a1, ..., an) ∈ V(S) if and only if fi(a1, ..., an) = 0 for all fi ∈ S if and only

if gi(a1, ..., an) = 0 where gi =
∑

fihi gi ∈ I and hi(6= 0) ∈ k[kn] if and only if

(a1, ..., an) ∈ V (I).

Proposition 3.2.3 shows that, every affine algebraic set corresponding to an ideal

of the coordinate ring,

V : {ideals of k[An]} −→ {affine algebraic sets in An}

While the ideal I where V = V(I) is not unique(for example, in affine 2-space over

R, y-axis is the locus of the ideal (x) of R[x, y] also is the locus of (x2), (x3),...,etc.

), there is a unique largest ideal that determines V , given by the set of polynomials

that vanish on V. For any subset S ⊆ sn

I(S) = {f ∈ k[x1, ..., xn] : f(a1, ..., an) = 0 for all(a1, ..., an) ∈ An}

Clearly I(S) is an ideal and is the unique largest ideal of functions that are identically

zero on S. So there is a correspondence

I : {subsets in An} −→ {ideals of k[An]}.

Example 3.2.4. Define ϕ;

ϕ : k[x1, ..., xn] −→ k

fi(x1, ..., xn) −→ fi(a1, ..., an)

where (a1, ..., an) ∈ kn. Clearly ϕ is a well-defined surjective ring homomorphism. By

The Fundamental Theorem For Isomorphism For Rings ϕ(k[x1, ..., xn])/ Ker(ϕ) ∼= k.

Therefore Ker(ϕ) is the maximal ideal. Clearly

Ker(ϕ) ⊇ I((a1, ..., an)) = (x1 − a1, ..., xn − an).

Now let f ∈ Ker ϕ and if f is not an element of I((a1, ..., an)) then we can write

f = h1(x1 − a1) + ... + hn(xn − an) + q(x1, ..., xn)



Chapter 3: Integral Extensions and Hilbert’s Nullstellensatz 22

where q(x1, ..., xn), hi ∈ k[x1, ..., xn] i = 1, ..., n and q is not divisible by (xi − ai)

i = 1, ..., n. Obviously q(a1, ..., an) = 0 i.e, q ∈ Ker ϕ. Also deg(q) < deg((xi−ai)) = 1.

Hence q ∈ k. Since q ∈ Ker ϕ and q ∈ k q = 0.

Definition 3.2.5. Let I be an ideal in a commutative ring R.

1)The radical of I denoted radI, is the ideal ∩P , where the intersection is taken

over all prime ideals P which contains I. If the set of prime ideals containing I is

empty, then radI is defined to be R.

2) The radical of the zero ideal is called the nilradical of R.

3) An ideal is called a radical ideal if I = radI.

Example 3.2.6. In any integral domain the zero ideal is prime, hence rad0 = 0. In

the ring Z, Rad(12) = (2) ∩ (3) and also rad(4) = rad(32) = (2).

Proposition 3.2.7. If I is an ideal in R, then

radI = {r ∈ R : rn ∈ I for some n > 0}.

Proof. If radI = R then {r ∈ R : rn ∈ I} ⊆ radI. Now assume this is not the case.

If rn ∈ I and P is any prime ideal containing I, then rn ∈ P. Since P is a prime

ideal r ∈ P. Therefore {r ∈ R : rn ∈ I} ⊆ radI. Conversely if t ∈ R and tn is not

an element of I for all n > 0, then S = {tn + x : x ∈ I} is a multiplicative set such

that S ∩ I = ∅. By Proposition 1.1.6 there is a prime ideal P disjoint from S that

contains I. By construction t is not in P and hence is not an element of radI. Thus

radI ⊆ {r ∈ R : rn ∈ I}.

If a is in the nilradical of R then some power of a is 0, so the nilradical of R is the

set of all nilpotent elements of R.

Proposition 3.2.8. Let I be an ideal in R. R/I has no nilpotent elements if and only

if I = radI.
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Proof. It is clear that I ⊆ radI. As we mentioned before nilradical of R is the set of

nilpotent elements. If x is any element from the nilradical of R/I, then x = I + r

where r ∈ R and xn = I + rn = I for some n > 0, i.e., rn ∈ I. Thus r ∈ radI.

Therefore R/I has no nilpotent elements if and only if there exists no r ∈ R− I such

that rn ∈ I, i.e., there exists no r ∈ radI. Thus I = radI.

The elements of the ring k[kn]/I(V ) give k-valued functions on V and since k

has no nilpotent elements, powers of non-zero functions are also non-zero functions.

Therefore k[kn]/I(V ) has no nilpotent elements and by the Proposition 3.2.8 I(V ) =

rad(I(V )).

3.3 Noether Normalisation

Definition 3.3.1. Let A be a k-algebra. Elements a1, ..., an ∈ A are algebraically

independent over k if the natural surjection k[x1, ..., xn] −→ k[a1, ..., an] is an isomor-

phism, where the left-hand side is the polynomial ring. This just means that there are

no non-zero polynomial relations F (a1, ..., an) = 0 with coefficients in k.[2]

Theorem 3.3.2. Suppose that A = k[r1, ..., rm] is a finitely generated k−algebra.

Then for some q, 0 ≤ q ≤ m, there are algebraically independent elements y1, ..., yq ∈
A such that A is integral over k[y1, ..., yq] [4]

Proof. We will do induction on m. If r1, ..., rm are algebraically independent over k

then take yi = ri, i = 1, ..., m. Otherwise, there exists f(x1, ..., xm) ∈ k[x1, ..., km] such

that f(r1, ..., rm) = 0. The polynomial f is a sum of monomials of the form axe1
1 ...xem

m ,

where the degree of this monomial is e1+...+em and the degree, d, of f is maximum of

the degrees of its monomials. Renumbering the variables if necessary, we say assume

that f is a nonconstant polynomial in xm with coefficients in the ring k[x1, ..., xm−1].

Now we will perform a change of variables that transforms (or normalizes) f into a

monic polynomial in xm with coefficients from a subring of A which is generated over

k by m− 1 elements, at which point we shall be apply induction.
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Define integers αi = (1 + d)i and new variables Xi = xi − xαi
m for 1 ≤ i ≤ m− 1.

Let

g(X1, ..., Xm−1, xm) = f(X1x
α1
m +, ..., Xm−1 + xαm−1

m , xm)

so g ∈ k[X1, ..., Xm−1, xm]. Each monomial term of f contributes a single term of the

form a constant times xe
m to g. Also the choice of αi ensures that distinct monomials

in f give different values of e. If N is the highest power of xm that occurs, then it

follows that

g = cxN
m +

N−1∑
i=0

hi(X1, ..., Xm−1)x
i
m

for some non-zero c ∈ k. If now si = ri − rαi
m then

1

c
g(s1, ..., sm−1, rm) =

1

c
f(r1, ..., rm−1, rm) = 0,

which shows that rm is integral over B = k[s1, ..., sm−1]. Each ri for 1 ≤ i ≤ m− 1 is

integral over B[rm] since ri is a root of the monic polynomials x − si − rαi
m , so A is

integral over B[rm]. By transitivity of integrality, A is integral over B. Since B is a

k−algebra generated by m− 1 elements, induction completes the proof.

Proposition 3.3.3. If R is an integral domain and i, j are relatively prime integers

then, the ideal (xi − yj) is a prime ideal.

Proof. Define

ϕ : R[x, y] −→ R[t]

x −→ tj

y −→ ti

where i, j ∈ Z+. Clearly ϕ is a well-defined ring homomorphism and (xi − yj) ⊆
Ker(ϕ) since xi − yj ∈ Ker(ϕ). Pick g ∈ Ker(ϕ), clearly g ∈ R[x, y] so it can be
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written as

g = f(x, y)(xi − yj) + h(x, y)

where h(x, y) ∈ R[x, y] and f(x, y) ∈ R[x, y]. h(x, y) is a polynomial of the form

h(x, y) = c1x
rys + ...

where 0 ≤ s < j. Now we want to show h(x, y) = 0. g ∈ Ker(ϕ) so ϕ(g) = 0. Clearly

ϕ(h(x, y)) = 0. That is

ϕ(h(x, y)) = ϕ(c1x
r1ys1 + c2x

r2ys2 + c3x
r3ys3 + ...) = c1t

r1j+s1i + c2t
r2j+s2i + ... = 0.

Now without loss of generality we may assume(rm − rn > 0). Also assume that

the exponents are not distinct,i.e.

rmj + smi = rnj + sni

where m,n ∈ Z+. Therefore we obtain,

(rm − rn) = i(sn − sm)/j.

By our assumption we have (i, j) = 1, j | (sn − sm) and sn − sm > 0. But we know

that sn − sm < j. That shows our assumption is not correct, i.e. all the exponents

are distinct. Therefore h(x, y) = 0. That is g ∈ (xi − yj) so Ker(ϕ) = (xi − yj). Now

we want to show that (xi− yj) is a prime ideal. By the first isomorphism theorem we

have

R[x, y]/ Ker(ϕ) ∼= ϕ(R[x, y]) ⊆ R[t].

By our assumption we know that R is an integral domain so R[t] is an integral domain

and also ϕ(R[x, y]) is a subring of R[t] so it is an integral domain,too. That shows

Ker(ϕ) = (xi − yj) is a prime ideal.

Example 3.3.4. Consider R = k[x, y]/(y3 − x5), (3, 5) = 1 so by Proposition 3.3.3

R is an integral domain.
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Example 3.3.5. Consider R = k[x, y]/(y5−x19), (5, 19) = 1 so by Proposition 3.3.3

R is an integral domain.

Proposition 3.3.6. The ring R = k[x, y]/(y2 − x3) is not normal and its field of

fractions, FracR = k(t) where t = y/x.

Proof. (2, 3) = 1 so by Proposition 3.3.3 (y2−x3) is a prime ideal so k[x, y]/(y2−x3)

is an integral domain. t = y/x and t is integral over R since

(y/x)3 − y = 0.

And also for x ∈ R, x = t2 so x ∈ k[t]. By the same way y ∈ R, y = t3 and so

y ∈ k[t]. Therefore R ⊆ k[t]. Since t is integral over R, k[t] is integral over R. We

have R ⊆ k[t] and clearly Frack[t] = k(t) and so R ⊆ k(t). Also y/x = t ∈ FracR

and by definition of FracR, k(t) = FracR. Obviously t ∈ k[t] but t is not in R so R

is not integrally closed.

Proposition 3.3.7. k[x, y]/(y2 − x2 − x3) is an integral domain.

Proof. Let t = y/x. Define

ϕ : k[x, y] −→ k[t]

x −→ t2 − 1

y −→ t(t2 − 1)

Our first aim is the show that Ker(ϕ) = (y2 − x2 − x3). If we prove that then as

in the Proposition 3.3.3 this will show k[x, y]/(y2 − x2 − x3) is an integral domain.

Clearly (y2 − x2 − x3) ⊆ Ker(ϕ). To show (y2 − x2 − x3) ⊇ Ker(ϕ), pick g ∈ Ker(ϕ).

Let g = f(x, y)(y2 − x2 − x3 + h(x, y) where f, g ∈ k[x, y] where

h(x, y) = c1x
r1ys1 + c2x

r2ys2 + c3x
r3ys34...

and ∀i ∈ N, si < 2. Obviously ϕ(h(x, y)) = 0.

ϕ(h(x, y)) = ϕ(c1x
r1ys1 + c2x

r2ys2 + c3x
r3ys34...) = 0
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ϕ(h(x, y)) = c1t
3s1+2s1r1 + c2t

3s2+2s2r2 + c3t
3s3+2s3r3 + ... = 0

Now assume

3si + 2siri = 3sj + 2sjrj where i 6= j and i, j ∈ N.

Therefore

si − sj/(sjrj − siri) = 2/3.

But we know that si > 2 so si−sj = 0 or si−sj = 1. Clearly si−sj 6= 0 but sjrj−siri

is an integer and so si − sj = 1 6= 1. That shows our assumption is not correct. That

means all the exponents are distinct. So h(x, y) = 0 and g ∈ (y2 − x2 − x3).

Proposition 3.3.8. If R = k[x, y]/(y2 − x2 − x3), then normalization of R is k(t)

where t = y/x .

Proof. From the Proposition 3.3.7 we know that k[x, y]/(y2 − x2 − x3) is an integral

domain. If x ∈ R then x = t2 − 1 so x ∈ k[t] and by the same way y ∈ R then

y = t(t2 − 1) so y ∈ k[t]. Therefore R ∈ k[t]. Also t is integral over R ((y/x)3 −
(y/x)− y = 0) which also means k[t] er is integral over R. So as in Proposition 3.3.6

FracR = k(t).

3.4 Hilbert’s Nullstellensatz

Proposition 3.4.1. Let R be a subring of the integral domain S and S be integral

over R. Then R is a field if and only if S is a field. [4]

Proof. Assume R is a field and let s be a nonzero element of S. The element s is

integral over R, so

sn + an−1s
n−1 + ... + a1s + a0 = 0

for some a0, ..., an−1 ∈ R. We may assume a0 6= 0 since S is an integral domain. Then

s(sn−1 + an−1s
n−2 + ... + a1) = −a0
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and −1/a0 ∈ R. Therefore we can find an inverse of s ∈ S, so S is a field. Conversely,

suppose S is a field and r is a nonzero element of R. S is integral over R, thus r−1 ∈ S

and,

r−m + am−1r
1−m + ... + a1r

−1 + a0 = 0

for some a0, ..., an−1 ∈ R. Then r−1 = am−1 + ... + a1r
m−2 + a0r

m−1 ∈ R, so R is a

field.

Proposition 3.4.2 (Lying Over). Let R be a subring of S and S be integral over

R. If P is a prime ideal in R then there is a prime ideal Q in S with P = Q ∩ R.

Moreover, P is maximal if and only if Q is maximal. [1]

Proof. P is a prime ideal so by Example 1.1.5 R − P is a multiplicative subset of R

and hence multiplicative subset of S. 0 is not an element of R − P. By Proposition

1.1.6 there is an ideal Q of S that is maximal in the set of ideals I of S such that

I ∩ (R − P ) = ∅ and that Q is prime in S. Thus Q ∩ (R − P ) = ∅, i.e., Q ∩ R ⊆ P.

If Q ∩ R 6= P, choose u ∈ P such that u is not in Q, then the ideal Q + (u) ⊆ S and

Q ⊆ Q + (u). Since Q is the maximal ideal of S that satisfies Q ∩ (R − P ) = ∅ then

∃c ∈ (Q + (u)) ∩ (R− P ) 6= ∅, c = q + su where q ∈ Q and s ∈ S. S is integral over

R so ∃ai ∈ R, i = 1, ..., n− 1 such that

sn + an−1s
n−1 + ... + a1s + a0 = 0

multiplying by un,

(su)n + an−1u(su)n−1 + ... + a1u
n−1su + a0u

n = 0

su = c− q,

(c− q)n + an−1u(c− q)n−1 + ... + a1u
n−1(c− q) + a0u

n = 0

v = (c)n + an−1u(c)n−1 + ... + a1u
n−1c + a0u

n ∈ Q

Also v ∈ R and hence v ∈ R ∩ Q ⊆ P. But u ∈ P and v ∈ P implies cn ∈ P. P

is prime therefore c ∈ P but that is a contradiction so P = Q ∩ R. For the second
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part of the statement, S/Q is integral extension of R/P. By proposition 3.4.1 S/Q

is a field if and only if R/P is a field, i.e., Q is a maximal ideal if and only if P is a

maximal ideal.

Theorem 3.4.3 (Hilbert’s Nullstellensatz-Weak Form). Let k be an algebraically

closed field. Then M is a maximal ideal in the polynomial ring k[x1, ..., xn] if and

only if M = (x1 − a1, ..., xn − an) for some a1, ..., an ∈ k. Equivalently the maps V

and I give bijective correspondence

{points ∈ An} ¿ {maximal ideals in k[An]}.

Moreover, If I is any proper ideal in k[x1, ..., xn], then V(I) 6= ∅. [4]

Proof. Clearly (x1 − a1, ..., xn − an) is a maximal ideal in k[x1, ..., xn]. (seeExample

3.2.4) For the converse, for any maximal ideal M in k[x1, ..., xn], let E = k[x1, ..., xn]/M.

Then E is a finitely generated field over k. By Noether Normalization Lemma, E

is integral over a polynomial ring k[z1, ..., zm]. By Proposition 3.4.1 k[z1, ..., zq] is a

field since E is a field but this can only happen when q = 0. Since E is integral

over k, E is algebraic over k but k algebraically closed. Therefore E = k. Hence

for i = 1, ..., n there is some ai ∈ k such that xi − ai ∈ M, i.e., the maximal ideal

(x1−a1, ..., xn−an) ∈ M. Thus M = (x1−a1, ..., xn−an). Finally if I is any nonzero

ideal in k[x1, ..., xn] then it is contained in a maximal ideal M = (x1− a1, ..., xn− an)

and so (a1, ..., an) ∈ V(I)

Theorem 3.4.4 (Hilbert’s Nullstellensatz ). Let k be an algebraically closed field.

Then is I(V (I)) = radI for every ideal I in the polynomial ring k[x1, ..., xn]. Moreover

the maps V and I give bijective correspondence

{affine algebraic sets} ¿ {radical ideals}.

Moreover, If I is any proper ideal in k[x1, ..., xn], then V(I) 6= ∅.[4]
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Proof. Clearly radI ⊆ I(V(I))(see Example 3.2.4). For the converse, By Hilbert Basis

Theorem I = (f1, ..., fm). Let g ∈ I(V(I)). Introduce a new variable xn+1 such that

k[x1, ..., xn, xn+1], and consider the ideal I ′ generated by f1, ..., fm and xn+1g − 1. At

any point of An+1 where f1, ..., fm vanish the polynomial g ∈ I(V(I)) also vanishes,

so that xn+1g − 1 is non zero. Hence V(I ′) = ∅ in An+1. By the Weak Form of

the Nullstellensatz I ′ can not be a proper ideal, i.e., 1 ∈ I ′. Therefore, for some

ai ∈ k[x1, ..., xn, xn+1]

1 = a1f1 + ... + amfm + am+1(xn+1g − 1).

Let y = 1/xn+1 and multiply the equation by yN .

yN = c1f1 + ... + cmfm + cm+1(g − y)

for some ci ∈ k[x1, ..., xn, y. If we substitute g for y, the polynomial equation will show

that gN ∈ I i.e., g ∈ radI. Thus radI = I(V(I)).

if S is an integral extension of R with 1 ∈ R and if I is an ideal of R, then

(radSIS) ∩R = radRI

where IS is the ideal generated by I and S and the subscript indicates the ring in

which radicals are computed. To see it, let Pi be any ideal that contains I in R. By

proposition 3.4.2 there is a prime ideal that contains I in S such that Qi ∩ R = Pi.

if we take intersection of all prime ideals in R and S which satisfies Qi ∩ R = Pi

we will end up with ∩Qi

⋂
R = ∩Pi = radRI. Clearly, I ⊆ ∩Qi, hence I ∈ Qi∀i.

Qi are ideals of S so for any g ∈ S, gI ∈ Qi, i.e., for every i, IS ∈ Qi. Therefore

IS ⊆ ∩Qi = radS(IS) ∩R = radRI.

Proposition 3.4.5 (Hilbert’s Nullstellensatz For The Varieties). If k is any field

with algebraic closure k̄ and I is the ideal in k[x1, ..., xn], then Ik(Vk̄(I)) = radI

where Vk̄(I) is the zero set in k̄ of the polynomials in I and Ik(Vk̄(I)) is the ideal of

polynomials k[x1, ..., xn] vanishing at all points in Vk̄(I). In particular, I = (1) if and

only if there are no common zeros in k̄n of the polynomials in I.
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Proof. Let R = k[x1, ..., xn] and S = k̄[x1, ..., xn]. Clearly S is an integral extension of

R and I is an ideal of R where 1 ∈ R. So by previous remark we can say radS(IS)∩R =

radRI. Also by Hilbert Nullstellensatz Ik̄(Vk̄(IS)) = radS(IS). Therefore

Ik(Vk̄(I)) = Ik(Vk̄(IS)) ∩R = radS(IS) ∩R = radRI.

For the second part, by Hilbert Nullstellensatz if I = (1) then, Vk̄(I) = ∅. Now we

want to show if Vk̄(I) = ∅ then, I = (1). From Hilbert Nullstellensatz if Vk̄(I) = ∅
then, IS = (1). Now assume I is not a proper ideal of R. I is contained in a prime

ideal i.e., I ⊆ P. By Proposition 3.4.2 there exists a proper prime ideal in S such that

IS ∈ Q. But that contradicts with 1 ∈ IS. Therefore I = (1).
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Chapter 4

GRÖBNER BASIS

4.1 Monomials

A non-zero polynomial in x1, x2, ..., xn with coefficients in R is a finite sum of non-zero

monomial terms i.e., a finite sum elements of the form

axα1
1 xα1

2 ...xαn
n

a ∈ R and αi non-negative integers. A monic term xα1
1 xα2

2 ...xαn
n is simply the monomial

part of the term. The exponent αi is called the degree in xi of the term and the sum

α = (α1 + ... + αn) is called the degree of the term. The ordered n−tuple (α1, ..., αn)

is the multidegree of the term.

4.1.1 Monomial Ordering

Definition 4.1.1. A monomial ordering is a well ordering ”6” on the set of mono-

mials that satisfies mm1 > mm2 whenever m1 > m2 for monomials m,m1,m2.[4]

There are infinitely many orderings that are ”admissible” for ”Gröbner Bases”

theory. In this section we will give three types of monomial orderings as examples,

lexicographic ordering(Lex), degree lexicographic ordering(DegLex), degree reverse

lexicographic ordering (DegRevLex). And also every monomial ordering is a well

ordering. Actually using Hilbert Basis Theorem one can show any total ordering on

monomials is a well ordering (monomial ordering). Throughout this thesis unless

otherwise is stated, the ordering in use is Lex ordering.



Chapter 4: Gröbner Basis 33

Definition 4.1.2. Lexicographic ordering(Lex) Let x1 > x2 > ... > xn and

α = (α1, ..., αn) β = (β1, ..., βn) ∈ N. We define

xα < xβ ⇐⇒




the first coordinates αi and βi in α

and β from the left, which are different, satisfy αi < βi.

[3]

Example 4.1.3. If we use Lex order x > y on k[x, y], then we have,

1 < y < y2 < y3 < ... < x < xy < y2x < ... < x2 < ....

Definition 4.1.4. Degree Lexicographic ordering(DegLex) Let x1 > x2 > ... >

xn and α = (α1, ..., αn) β = (β1, ..., βn) ∈ N. We define

xα < xβ ⇐⇒





∑n
i=1 αi <

∑n
i=1 βi

or
∑n

i=1 αi =
∑n

i=1 βi and xα < xβ

with respect to lex with x1 > x2 > ... > xn.

[3]

Example 4.1.5. If we use DegLex order x > y on k[x, y], then we have,

1 < y < x < y2 < xy < x2 < y3 < y2x < yx2 < x3....

Definition 4.1.6. Degree Reverse Lexicographic ordering(DegRevLex) Let

x1 > x2 > ... > xn and α = (α1, ..., αn) β = (β1, ..., βn) ∈ N. We define

xα < xβ ⇐⇒





∑n
i=1 αi <

∑n
i=1 βi

or
∑n

i=1 αi =
∑n

i=1 βi and the first coordinates αi and βi

inα and β from the right, which are different, satisfy αi > βi.

[3]
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To illustrate the difference between DegLex and DegRevLex, consider a three

variable case. Since the in the two variable case Deglex and DegRevLex are the same.

Following example shows,

x2
1x2x3 > x1x

3
2 with respect to the DegLex x1 > x2 > x3

but

x2
1x2x3 < x1x

3
2 with respect to the DegRevLex x1 > x2 > x3.

Definition 4.1.7. Fix a monomial ordering on the polynomial ring k[x1, x2, ..., xn],

i) The leading term of a non-zero polynomial f in k[x1, x2, ..., xn] denoted LT (f)

is the monomial term of a maximal order in f .

ii) Multi-degree of f is the multi-degree of the leading term of f and is denoted as

∂(f).

4.1.2 General Polynomial Division

We will give an ”Algorithm” for general polynomial division. Fix a monomial ordering

on k[x1, ..., xn] and suppose g1, ..., gm is the set of non-zero polynomials in k[x1, ..., xn].

Let q1, ..., qm be the set of quotients and r be the remainder(all initially zero). Then

the algorithm is as follows,

• Check if LT (f) is divisible by LT (gi) in that order g1, ..., gm.

• If LT (f) is divisible by LT (gi), say, LT (f) = aiLT (gi), add ai to the quotient

qi and replace f by f − aigi and reiterate the process.

• If LT (f) is not divisible by any of LT (g1), ..., LT (gm), add the leading term of

f to the remainder r and replace f by the dividend f −LT (f) and reiterate the

entire process.

Monomial ordering is a well-ordering on the set of monomials i.e., every non-empty

subset of a monomial has a smallest element. Therefore every descending chain of
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monomials terminates and that also means that the polynomial division process ter-

minates,too. This process terminates when the dividend is 0 and the results is in the

set of quotients q1, ..., qm and a remainder r with

f = q1g1 + ... + qmgm + r.

Each aigi has multi-degree less than or equal to multi-degree of f and r has the

property that no non-zero term is divisible by any of LT (g1), ..., LT (gm).

Example 4.1.8. Fix Lex ordering x > y on k[x, y]. Suppose f = x4 + 3x2y4 and

g = xy2. The leading term of f , x4 ,is not divisible by the leading term of g, so add

x4 the remainder r and replace f with f − LT (f) = 3x2y4 as in the algorithm and

start over. 3x2y4 is divisible by LT (g) = xy2, with quotient q1 = 3xy2, add 3xy2 to

the quotient q and replace 3x2y4 by 3x2y4 − q1LT (g) = 0 which means the process

terminates. The result is

f = x4 + 3x2y4 = qg + r = (3xy2)(xy2) + x4.

Definition 4.1.9. For a fixed ordering on R = k[x1, ..., xn] and ordered set of poly-

nomials G = {g1, ..., gm} in R we write;

f ≡ r modG,

where the remainder r is obtained by general polynomial division by g1, ..., gm in that

order i.e.,

f = q1g1 + ... + qmgm + r.

[4]

4.1.3 Monomial Ideals

Definition 4.1.10. If I is an ideal in k[x1, x2, ..., xn], the ideal of leading terms

denoted LT (I) is the ideal generated by the leading terms of all the elements in the

ideal, i.e.

LT (I) = (LT (f) : f ∈ I).

[4]
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One can easily see that

∂(fg) = ∂(f) + ∂(g)

LT (fg) = LT (f) + LT (g).

LT(I) is by definition generated by monomial ideals. Such ideals are called monomial

ideals. Also, if I = (f1, ..., fn) then

LT (I) ⊇ (LT (f1), LT (f2), ..., LT (fn)).

Next we will show that a polynomial is contained in a monomial ideal if and only

if each of its monomial terms is a multiple of one of the generators for the ideal

Proposition 4.1.11. Suppose I is a monomial ideal generated by monomials m1, ..., mk.

A polynomial f ∈ k[x1, ..., xn] is contained in a monomial ideal if and only if each of

its monomial terms is a multiple of one of the m′
is.

Proof. Let I be a monomial ideal generated by monomials I = (m1, ..., mk) and

f ∈ k[x1, ..., xn]. By General Polynomial Division we can write,

f =
k∑

i=1

qimi + r

where none of the mi divides r and qi ∈ k[x1, ..., xn] If f ∈ I then r = 0. Therefore

f = q1m1 + ... + qkmk

where mi’s are monomials and so every monomial term is multiple of at least one

mi. For the converse assume r 6= 0 and r is not divisible by m′
is. Since each of f ’s

monomial terms is a multiple of one of the generators for I, r must be divisible one

of the mi’s. That means r = 0 and therefore f ∈ I.

Definition 4.1.12. The ideal quotient of two ideals I and J in a ring R is the ideal

(I : J) = {r ∈ R : rJ ∈ I}.

[4]
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Proposition 4.1.13. Suppose R is an integral domain f 6= 0 and I is an ideal in R.

If {g1, ..., gm} are generators for the ideal I ∩ (f) then {g1/f, ..., gm/f} are generators

for the ideal quotient .

Proof. If g ∈ 1
f
(I ∩ (f)) then gf ∈ I and hence g ∈ (I : (f)).

Conversely is g ∈ I : (f) then gf ∈ J and hence g ∈ I ∩ (f) so g ∈ 1
f
(J ∩ (f).

Proposition 4.1.14. If I is an ideal in the commutative ring R and f1, ..., fm ∈ R

then the ideal quotient (I : (f1, ..., fm)) is the ideal

m⋂
i=1

(I : (fi)).

Proof. Let J = (f1, ..., fm). We want to show (I : J) =
⋂m

i=1(I : (fi) = {g ∈ R : gJ ∈
I}. If g ∈ I : J then gJ ⊆ I so gfi ∈ I for i = 1, .., m. Therefore g ∈ ⋂m

i=1(I : (fi)).

Conversely if g ∈ ⋂m
i=1(I : (fi)) then g(fi ⊆ I) for i = 1, .., m so gJ ⊆ I and therefore

g ∈ (I : J).

One can show that the intersection of two monomial ideals is a monomial ideal

by showing that M ∩ N = (ei,j : i ∈ Iandj ∈ J) where ei,j is the least common

multiple of the generators mi : i ∈ I and nj : j ∈ J for some index sets I and J.

First we will show that lcm(f, g) = (f)∩ (g) for monomials f, g. If l = lcm(f, g) then

l ∈ (f)∩ (g) by definition of l. Conversely if h ∈ (f)∩ (g) then h = af = bg for some

a, b ∈ k[x1, ..., xn]. Therefore f and g divides h. Thus l divides h. So by definition of

least common multiple, h ∈ (l). Obviously M ∩ N ⊇ {ei,j : i ∈ Iandj ∈ J}. We will

try to show the converse by using Proposition 4.1.11. If f ∈ M ∩N where M and N

are monomial ideals then f ∈ M and f ∈ N. So by Proposition 4.1.11 every monomial

term is a multiple of generators of both M and M and also from the previous result

we can say every monomial term of f is a multiple of least common multiple of the

generators of M and M i.e., f ∈ (ei,j : i ∈ I and j ∈ J). Therefore

M ∩N = (ei,j : i ∈ I and j ∈ J).
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Let M be a monomial ideal generated by monomials,M = (mi : i ∈ I), one can

show that for any monomial n, the ideal quotient (M : (n)) = (mi

di
: i ∈ I) where di

is the greatest common divisor of mi. We know that for any polynomial f and g we

have

gcd(f, g) =
fg

lcm(f, g)
.

To show our assumption we will use this, for our case, we have

lcm(mi, n) =
min

gcd(mi, n)

for i ∈ I. Therefore

lcm(mi, n) =
min

di

∈ M

and by definition of quotient ideal mi

di
∈ (M : (n)) for every i ∈ I. For the converse, if

g ∈ (M : (n)) then g(n) ⊆ M that also means gn ∈ M∩N. Therefore gn ∈ lcm(mi, n)

i.e., gn ∈ min
di

and g ∈ mi

di
.

4.2 Gröbner Basis

A Gröbner basis for an ideal I in the polynomial ring k[x1, x2, ..., xn] is a finite set of

generators {g1, g2, ..., gm} for I whose leading terms generate the ideal of all leading

terms, i.e.,

LT (I) = (LT (g1), ..., LT (gm)).

In general we will show that the remainder and the quotients are not unique and

depend on the order with an example . Choose Lex ordering x > y on k[x, y]. Let

f = x2 + x− y2 + y where g1 = xy + 1 and g2 = x + y. f can be written as

f = (−1)(xy + 1) + (x + 1)(x + y) + (−y2 + 1)

= q1g1 + q2g2 + r

where q1 = −1, q2 = x + 1 and r = −y2 + 1. We can also write

f = (x− y + 1)(x + y) = q1g1 + q2g2 + r
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where q1 = x− y + 1, q2 = 0 and r = 0. This shows that f ∈ I = (x + y, xy + 1) since

r = 0 but previously we found r = −y2 + 1 and we can not say f is an element of I.

If we use Gröbner Basis for the ideal I then these difficulties do not arise, we obtain

a unique remainder, which in turn can be used to determine whether polynomial f is

an element of the ideal I. And this fact makes the Gröbner Bases theory very useful.

Now fix a monomial ordering on R = k[x1, ..., xn] and let I be a non-zero ideal in

R.

Theorem 4.2.1. Suppose {g1, ..., gm} is a Gröbner Basis for I. Every polynomial

f ∈ R can be written uniquely in the form

f = f1 + r

where f1 ∈ I and no non-zero monomial term of the remainder ”r” is divisible by any

of the leading terms LT (g1), ..., LT (gm).[4]

Proof. Let

f = q1g1 + ... + qmgm + r

where g1, ..., gm is a Gröbner basis for I and

f1 = q1g1 + ... + qmgm

where f1 ∈ I. If f = f1 + r = f ′1 + r′ then r − r′ = f ′1 − f1 ∈ I then LT (r − r′) ∈
LT (I) = (LT (g1), ..., LT (gm)). But r, r′ can not be a multiple of LT (g1), ..., LT (gm).

Therefore r − r′ = 0.

Theorem 4.2.2. Suppose {g1, ..., gm} is a Gröbner basis for I. Both f1 and r can be

computed by general polynomial division by {g1, ..., gm} and are independent of order

in which these polynomials are used in the division.[4]

Proof. r is independent of the order so it is uniquely determined and so is f1.

Proposition 4.2.3. If g1, ..., gm are any elements of I such that LT (I) = (LT (g1), ..., LT (gm))

then g1, ..., gm is a Gröbner Basis.[4]
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Proof. We want to show that I = (g1, g2, ..., gm). Let f ∈ I and

f =
m∑

i=1

qigi + r

where r is not divisible by any of the leading terms of {g1, ..., gm}. Since f ∈ I,

LT (f) ∈ LT (I) and also LT (r) ∈ LT (I). But that means r is divisible by any of

LT (gi) where i = 1, ..., m and m ∈ N which shows r = 0. Therefore f is generated

by {g1, ..., gm}.

Next proposition shows that Gröbner Basis exists for every ideal I ⊆ k[x1, x2, ..., xn].

Proposition 4.2.4. The ideal I has a Gröbner Basis.

Proof. As we showed before LT (I) is the ideal generated by leading coefficients of all

elements in the ideal I where LT (I) is a monomial ideal. By Hilbert Basis Theorem

LT (I) is finitely generated i.e.,

LT (I) = (LT (g1), ..., LT (gn))

where n is an positive integer. Hence by Proposition 4.2.3 {g1, ..., gn} is a Gröbner

Basis for I.

Using the tools we obtain from Gröbner Basis Theory, Hilbert Basis Theorem

follows. We will now discuss S-polynomials which take a crucial part in the Gröbner

Basis Theory.

If f1, f2 are two polynomials in F [x1, ..., xn] and M is the monic least common

multiple of the monomial terms LT (f1) and LT (f2) then we can cancel the leading

terms by taking the difference;

S(f1, f2) =
M

LT (f1)
f1 − M

LT (f2)
f2.

Theorem 4.2.5 (Buchberger’s Criterion). Let R = F [x1, ..., xn] and fix a monomial

ordering on R. If I = (g1, ..., gm) is a non-zero ideal in R then G = {g1, ..., gm} is a

Gröbner Basis if and only if S(gi, gj) ≡ 0 modG for 1 6 i < j 6 m.[4]
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The termination of the algorithm follows from Hilbert Basis Theorem.

Proposition 4.2.6. Suppose G = {g1, ..., gn} is a generators of the non-zero ideal I. If

S(gi, gj) is not equivalent to 0 mod G then the ideal (LT (g1), ..., LT (gn), LT (S(gi, gj)))

is strictly larger than the ideal (LT (g1), ..., LT (gn)). Thus Buchberger Algorithm stops

after a finite number of steps.

Proof. Let S(gi, gj) be not equivalent to 0 mod G. Then ∃r ∈ I such that no term in r

is divisible by {LT (g1), ..., LT (gn)} where r is obtained by general polynomial division.

Therefore (LT (g1), ..., LT (gn), LT (S(gi, gj))) is larger than (LT (g1), ..., LT (gn)). Then

we can increase G by appending the polynomial gn+1 = r where G′ = {g1, ..., gn, gn+1}
is still a generating set for I and begin again. If we go on, we will end up with

{LT (g1), ..., LT (gn), LT (gn+1), ...}. And clearly {LT (g1), ..., LT (gn), LT (gn+1), ...} ∈
LT (I). What we will prove is that there exists N ∈ N such that if i 1 N then

LT (gi) is divisible by LT (gj), where j < N. Hilbert Basis Theorem implies that there

are finitely many LT (gi1), ..., LT (gin) that generates LT (I) i.e., every monomial in

{LT (g1), ..., LT (gn), LT (gn+1), ...} is divisible by LT (gi1), ..., LT (gin). Choosing N =

max{i1, ..., in} will do the work.

Example 4.2.7. Suppose I = (g1, ..., gm) is a monomial ideal then by using Buch-

berger’s Criterion to show {g1, ..., gm} is a Gröbner Basis for I. If f ∈ I then by

proposition 4.1.4 each monomial term of f can be written as a multiple of some gi’s

and that shows S(gi, gj) ≡ 0 mod G for i 6= j.

A Gröbner Basis g1, ..., gm for I where each LT (gi) is monic and where LT (gj) is

not divisible by LT (gi) for i 6= j is called minimal Gröbner Basis [4]. Next example

shows minimal Gröbner Basis is not unique but the number of elements and their

leading terms are unique.

Example 4.2.8. Choose lexicographic ordering x > y. Let f1 = x3y − xy2 + 1 and

f2 = x2y2 − y3 − 1. Now check,

S(f1, f2) ≡ x + y = f3 modG
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S(f1, f2) ≡ 0 modG

S(f2, f3) ≡ y4 − y3 − 1 modG

f4 = y4 − y3 − 1 Therefore G′ = f1, f2, f3, f4 is a Gröbner Basis. Also

LT (I) = (x3y, x2y2, x, y4) = (x, y4).

So I = (x + y, y4 − y3 − 1) is another Gröbner Basis.

Previous example shows that Gröbner Basis is not unique.

Definition 4.2.9. A Gröbner Basis for I is called reduced Gröbner Basis if

i) each gi has monic leading term i.e., LT (gi) is monic

ii) no term in gj is divisible by LT (gi) for i 6= j.[4]

Note that if {g1, ..., gm} is a reduced Gröbner basis for I then by definition of

minimal Gröbner Basis it is also a minimal Gröbner Basis.

Proposition 4.2.10. {g1, ..., gm} is a minimal Gröbner basis for I if and only if

{LT (g1), ..., LT (gm)} is a minimal generating set for LT (I).

Proof. Assume F = {LT (g1), ..., LT (gm)} is not a minimal generating set for LT (I).

Let F ′ ∈ F be the minimal generating set. Without lost of generality we can assume

F ′ = F − LT (gi) is the minimal generating set for LT (I). By Proposition 4.2.3

G′ = {g1, ..., gm} − {gi} for some i 6 m is Gröbner Basis for I. g ∈ G then by

Buchberger’s Criterion ∃gk, gj ∈ G where j, k 6= i such that S(gk, gj) = gi but gi is

not in G′ so G′ is not a Gröbner Basis.

For the converse if F = {LT (g1), ..., LT (gm)} is a minimal generating set for LT (I)

by Proposition 4.2.3 G = {g1, ..., gm} is a Gröbner Basis for I. We want to show that

G is the minimal Gröbner Basis. Since F is the minimal generating set there is no

subset of F that generates LT (I), i.e., for any LT (gi) ∈ F , LT (gi) does not divide

LT (gj) for i 6= j. Therefore G is a minimal Gröbner Basis.
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Proposition 4.2.11. Leading terms of the minimal Gröbner Basis for I are uniquely

determined and the number of elements in any two minimal Gröbner Bases for I is

the same.

Proof. Let G = {g1, ..., gt} and H = {h1, ..., hm} where m,n are positive integers. For

h1 ∈ I ∃LT (gi) such that LT (gi) divides LT (h1). Without lost of generality we may

assume i = 1 hence LT (g1) divides LT (h1). Also g1 ∈ I and since H is a Gröbner

Basis for I, ∃LT (hj) such that LT (hj) divides divides LT (h1) but H is a minimal

Gröbner Basis so j = 1. Thus LT (g1) = LT (h1).

By the same way; h2 ∈ I where ∃LT (gi) such that LT (gi) divides LT (h2). Without

loss of generality we may assume i = 2 i.e., LT (g2) divides LT (h2). Also g2 ∈ I where

∃LT (hj) such that LT (hj) divides LT (g2). Hence LT (hj) divides LT (h2) but H is a

minimal Gröbner Basis so j = 2. Thus LT (g2) = LT (h2).

If we proceed that way till all the g′is and f ′is are used, then we will clearly see

that t = m and LT (gi = LT (hi)) i = 1, ..., m.

Next proposition shows that Reduced Gröbner Basis is unique for every ideal

I ⊆ k[x1, x2, ..., xn].

Theorem 4.2.12. There is a unique reduced Gröbner Basis for every I.[4]

Proof. By Proposition 4.2.11 two minimal Gröbner bases have the same number of

elements and the same leading terms. This also holds for two reduced Gröbner Basis.

by definition of reduced Gröbner Basis. Let G = {g1, ..., gm} and G′ = {g′1, ..., g′m}
be two reduced bases for I. By possible rearrangement we may assume LT (gi) =

LT (g′i)=hi for i = 1, ..., m. Now for any fixed i, consider the polynomial fi = gi − g′i.

If fi is nonzero, then since fi ∈ I then it must be divisible by some of the hj. By

definition of a reduced Gröbner Basis hj for j 6= i does not divide any of the terms in

either gi or g′i, hence does not divide LT (fi). But also does not divide LT (fi) since

all the the terms in fi have smaller multi degree. Therefore fi = 0 and gi = g′i for

every i=1,...,m.
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Example 4.2.13. Choose Lex ordering x > y. Let I = (h1, h2, h3) with h1 = x2 +

xy5 + y4, h2 = xy6 − xy3 + y5 − y2 and h3 = xy5 − xy2 ∈ k[x, y]. After doing some

calculations, we will end up with

x2 + xy5 + y4, xy6 − xy3 + y5 − y2, xy5 − xy2, y5 − y2

which is a Gröbner Basis for I. Thus LT (I) = (x2, xy6, xy5, y5). Since y5 divides

xy6 and xy5 we may remove h2 and h3 from the Gröbner Basis and we have G =

{x2 + xy5 + y4, y5 − y2} for I. The second term in the first generator is divisible

by the leading term y5 of the second generator, in order to obtain reduced Gröbner

Basis apply general polynomial division and replace x2 + xy5 + y4 by its remainder

x2 + xy2 + y4 after division by x2 + xy5 + y4. Therefore we are left with the reduced

Gröbner Basis {x2 + xy2 + y4, y5 − y2}. [4]

4.3 Elimination

Let {x1, ..., xn} and {y1, ..., yn} be two set of variables. Assume that monomials in

the x variables and monomials in the y variables are ordered by some monomial

orders <x, <y respectively. We will define a monomial order on the monomials in x, y

variables as follows.

Definition 4.3.1. For X1X2 monomials in the x variables and Y1, Y2 monomials in

the y variables, we define[3]

X1Y1 < X2Y2 ⇐⇒





X1 <x X2

or

X1 = X2 and Y1 <y Y2.

This ordering is called an elimination order with the x variables larger than the y

variables.

Elimination order can be seen as a Lex ordering between two different sets of

variables. Also we do not need to consider the order within the two sets.
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Theorem 4.3.2. Let I be a non-zero ideal of k[y1, ..., yn, x1, ..., xm] and < be an

elimination order with the x variables larger than the y variables. Let G = {g1, ..., gt}
be a Gröbner Basis for this ideal. Then G ∩ k[y1, ..., yn] is a Gröbner Basis for the

ideal I ∩ k[y1, ..., yn].[3]

Proof. Clearly G ∩ k[y1, ..., yn] ⊆ I ∩ k[y1, ..., yn]. Conversely, let 0 6= f(y1, ..., yn) ∈
I ∩ k[y1, ..., yn]. G is a Gröbner Basis for I ∃i such that LT (gi) divides LT (fi). Since

fi is in y variables LT (gi) is in y variables. And also gi is in y variables because of

the elimination order. Therefore gi ∈ G ∩ k[y1, ..., yn].

The ideal I ∩ k[y1, ..., yn] is called the Elimination ideal since the x variables are

eliminated. We will discuss this in the Integer Programming and Polynomial Maps

Sections again.
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Chapter 5

APPLICATIONS OF GRÖBNER BASIS

5.1 The n-Coloring Problem

Ω is a finite graph of size N, set of vertices i ∈ {1, ..., N} and collection of edges

(i, j) connecting vertex i with vertex j. An n-coloring of Ω is an assignment of one of

n-colors to each vertex in such a way that vertices connected by an edge have distinct

colors. Coloring need not be unique.

Our purpose is to find the coloring of graph Ω by using Gröbner Basis. To do

it first we have to represent the rules we are given with polynomials. There are two

ways, in the first way we are going to represent colors as elements from a field and in

the second way we will use root of unities.

Now let F be any field containing at least n elements and S be the set of n-colors.

We will assign xi for each vertex i and represent n colors by choosing elements from

F. The n-coloring of Ω,

xi → αi for each i = 1, ..., N and αi ∈ F.

Therefore the polynomial that represents our first rule which is coloring each vertex

with a color from our set S is

f(x) =
∏
αi∈S

(x− αi).

This is a polynomial in F [x] whose degree is n and roots are the elements from S. For

a special case n = p for some prime number p, by Fermat’s little theorem we have

f(x) = xp − x.

Our second rule is, vertices connected by an edge must have distinct colors. Now

assume xi and xj are two vertices and n = p and they are colored. Therefore f(xi) =
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f(xj) and

xp
i − xi = xp

j − xj

(xi − xj)(x
p−1
i + xp−2

i xj + ... + xp−1
j − 1) = 0.

Let h = (xi − xj) and k = (xp−1
i + xp−2

i xj + ... + xp−1
j − 1). We have three cases;

case1: Let h = 0 and k = 0. That means xi = xj and k becomes k = pxp−1
i −1 = 0.

Thus pxp−1
i ≡ 1 mod p but this can not happen. Therefore this case wont happen.

case2: h = 0 and k 6= 0

case3: h 6= 0 and k = 0

The other cases show that polynomial k is taking value according to the vertices

being connected or not. Hence we can use k for representing our rule. Let’s call

k = g(xi, xj).

Now we will discuss our second way. First we let ξ = e
2πi
n ∈ C be nth root of

unity. We represent n-colors by 1, ξ, ξ2, ..., ξn−1 the n- distinct nth root of unity. As

before we let xi, i = 1..n be variables representing the distinct vertices. Each vertex is

to be assigned one of the n colors. This will be represented as follows, f(x) = xn − 1

and for any vertex xi, i = 1, ..., n

f(xi) = xn
i − 1 = 0.

We have a second rule which says vertices which are connected need to have different

color.

To represent it, consider the vertices xi and xj. Since f(xi) = f(xj) we have

xn
i = xn

j . Therefore

(xi − xj)(x
n−1
i + xn−2

i xj + ... + xn−1
j ) = 0.

Let h = (xi− xj) and k = (xn−1
i + xn−2

i xj + ... + xn−1
j ). We have three cases as we

did before;

case1: Let h = 0 and k = 0. That means xi = xj and k becomes k = nxn−1
i = 0

but this can not happen. Therefore this case wont happen.

case2: h = 0 and k 6= 0



Chapter 5: Applications of Gröbner Basis 48

case3: h 6= 0 and k = 0 The other cases show that polynomial k is taking value

according to the vertices being connected or not. Hence we can use k for representing

our rule. Let’s call k = g(xi, xj).

As a result the n-coloring of the graph Ω is equivalent to solving the system of

equations

f(xi) = 0 for i = 1, ..., n

and

g(xi, xj) = 0 for all edges (i, j) ∈ Ω.

By Proposition 3.4.5 that system of equations has a solution, i.e., the graph Ω has

n-coloring, unless the Gröbner Basis for I which is the ideal in F [x1, ..., xN ] generated

by polynomials f(xi) = 0 i = 1, ...N and g(xi, xj) = 0 for all edges (i, j) ∈ Ω.,

is simply {1}.

Example 5.1.1. Consider the 3-coloring of Ω with 8 vertices and edges

(1,3), (1,4),(1,5),(2,4),(2,7),(2,8),(3,6),(3,8),(4,5),(5,6), (6,7),(6,8),(7,8). Now

take F = F3 = {0, 1, 2} and suppose x1 → 0.

f(x) = x(x− 1)(x− 2) = x(x− 1)(x + 1) = x3 − x ∈ F3

and

g(xi, xj) = x2
i + xixj + x2

j − 1.

If

I = ({x1, x
3
i − xi; i = 2, ..., 8, g(xi, xj); for the edges (i, j) ∈ Ω})

= ({x1, x
3
2 − x2, x

3
3 − x3, x

3
4 − x4, x

3
5 − x5, x

3
6 − x6, x

3
7 − x7, x

3
8 − x8, x

2
1 + x1x3 + x2

3 −
1, x2

1 + x1x4 + x2
4 − 1, x2

1 + x1x5 + x2
5 − 1, x2

2 + x2x4 + x2
4 − 1, x2

2 + x2x7 + x2
7 − 1, x2

2 +

x2x8 + x2
8 − 1, x2

3 + x3x6 + x2
6 − 1, x2

3 + x3x8 + x2
8 − 1, x2

4 + x4x5 + x2
5 − 1, x2

5 + x5x6 +

x2
6 − 1, x2

6 + x6x7 + x2
7 − 1, x2

6 + x6x8 + x2
8 − 1, x2

7 + x7x8 + x2
8 − 1})

One can show the reduced Gröbner Basis with respect to the lexicographic monomial

ordering with the help of CoCoA (see appendix B.1) is

{x1, x2, x3 + x8, x4 + 2x8, x5 + x8, x6, x7 + x8, x
2
8 + 2}.
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This result means vertex x1, x2, x6 are colored by 0. Also

x2
8 + 2 = 0, x2

8 = −2

x2
8 ≡ −2 mod 3 =⇒ x8 ≡ 1 mod 3 or x8 = −1 ≡ 2 mod 3

If we assign x8 = 1, then

x3 = −1 ≡ 2 mod 3 x4 = −2 ≡ 1 mod 3

x5 = −1 ≡ 2 mod 3 x7 = −1 ≡ 2 mod 3.

If we assign x8 = 2, then

x3 = −2 ≡ 1 mod 3 x4 = −4 ≡ −1 ≡ 2 mod 3

x5 = −2 ≡ 1 mod 3 x7 = −2 ≡ 1 mod 3.

Therefore there are two different coloring for the graph Ω. If the edge (3,7) is added

that means g(x3, x7) = x2
3 + x3x7 + x2

7 − 1 is added to our basis. Consider the first

coloring of Ω. If x8 = 1, then x3 = 2 and x7 = 2. Hence g(x3, x7) = g(2, 2) = 11 ≡ 2

mod 3 since (2,2) is not a root of g(xi, xj) x8 = 1 is not a solution. Now lets consider

the second coloring where x8 = 2. We found that x3 = 1 and x7 = 1 therefore

g(x3, x7) = g(1, 1) ≡ 2 mod 3. But still (1,1) is not a root of g(xi, xj). Thus Ω is not

3-colorable if the edge (3,7) is added. Since the Gröbner Basis shows that x3 and x7

must have the same coloring. Adding the edge (3,7) makes V (I) = ∅ and G = {1}
Hence by Proposition 3.4.5 graph Ω in not 3-colorable.

Example 5.1.2. Now take F = F5 with four colors 1, 2, 3, 4 ∈ F5, so f(x) = x4 − 1

and we may use g(xi, xj) = x3
i +x2

i xj +xix
2
j +x3

j . One can show that the graph G with

five vertices and nine edges, {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}
can be 4-colored. Since by the help of CoCoA (see appendix B.2) one can show that

the reduced Gröbner Basis for the ideal I, which is generated by f(xi : i = 1, ..., 4)

and g(xi, xj) where (i, j) ∈ Ω, is

{x3
4+x2

4x5+x4x
2
5−1, x4

5−1, x2
3+x3x4+x2

4+x3x5+x4x5+x2
5, x2+x3+x4+x5, x1+x3+x4+x5}
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Clearly 1 is not in the reduced Gröbner Basis. Thus by Proposition 3.4.5 this graph

is 4-colorable. But it is not 3-colorable because by the help of CoCoA (see appendix

B.3)the reduced Gröbner Basis is G = {1}.

Example 5.1.3. The graph Ω with nine vertices and 22 edges

(1, 4), (1, 6), (1, 7), (1, 8), (2, 3), (2, 4), (2, 6), (2, 7), (3, 5), (3, 7), (3, 9),

(4, 5), (4, 6), (4, 7), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 9), (7, 8) is four colorable

up to the permutations of colors (see appendix B.4).

The reduced Gröbner Basis for the ideal I which is generated by polynomials as in

the previous example, is

{x4 + x5 + x6 + x9, x7 − x9, x
3
8 + x2

8x9 + x8x
2
9 + x3

9, x1 − x5, x2 − x5, x5x6 + x2
6 −

x5x8− x2
8 + x6x9− x8x9, x

2
3 + x3x5− x5x8− x2

8 + x3x9− x8x9, x
3
6 + x2

6x9 + x6x
2
9 + x4

9−
1, x2

5 + x5x8 + x2
8 + x5x9 + x8x9 + x2

9} But it is not 3-colorable because by the help of

CoCoA (see appendix B.5)the reduced Gröbner Basis is G = {1}.

5.2 Polynomial Maps

A k−algebra homomorphism is a ring homomorphism

ϕ : k[y1, ...ym] 7−→ k[x1, ...xn]

which is also a k−vector space linear transformation. Such a map is uniquely deter-

mined by

ϕ : yi 7−→ fi,

where fi ∈ k[x1, ...xn], 1 ≤ i ≤ n. That is, if we let h(y1, ...ym) ∈ k[y1, ..., ym], say

h =
∑

α cαyα1
1 , ...yαm

m where cα ∈ k, α = (α1, ..., αm) ∈ Nm, and only finitely many

c′αs are non-zero, then we have

ϕ(h) =
∑

α

cαfα1
1 , ...fαm

m = h(f1, ..., fm) ∈ k[x1, ...xn].

In this section we are going to determine if any given fi ∈ k[x1, ...xn] is in the

Im ϕ or not. In order to do it, first we will use the theory of Elimination to determine
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Ker ϕ or more precisely, a Gröbner Basis for Ker ϕ. And also Im ϕ more precisely an

algorithm to decide whether a polynomial f is in the image of ϕ and a map like ϕ is

surjective or not. Before we start this process we will prove a very useful lemma.

Lemma 5.2.1. Let a1, ..., an, b1, ..., bn be elements of a commutative ring R. Then the

element a1a2...an − b1b2...bn is in the ideal (a1 − b1, ..., an − bn).

Proof. We will use mathematical induction on the index of variables. For n = 1 it is

clear. Now let’s assume that the equation holds for n − 1 variables and prove for n

variables. To do it, we will use

a1a2...an − b1b2...bn = a1(a2...an − b2...bn) + b2...bn(a1 − b1).

By induction hypothesis (a2...an−b2...bn) is in the ideal generated by (a2−b2, ..., an−
bn) and so it is an element of (a1−b1, ..., an−bn) and also a1−b1 ∈ (a1−b1, ..., an−bn).

Therefore a1a2...an − b1b2...bn ∈ (a1 − b1, ..., an − bn).

Theorem 5.2.2. Set K = (y1 − f1, ..., ym − fm) ⊆ k[y1, ..., ym, x1, ..., xn]. Then

Ker(ϕ) = K ∩ k[y1, ..., ym].

Proof. If g ∈ K ∩ k[y1, ..., ym], then

g(y1, ..., ym) =
m∑

i=1

(yi − fi)hi(y1, ..., ym, x1, ..., xn).

If we substitute (f1, ..., fm) instead of (y1, ..., ym) we will end up with

ϕ(g) = g(f1, ..., fm) = 0.

Hence g ∈ Ker ϕ. For the converse, if g ∈ Ker ϕ, g =
∑

α cαyα1
1 ...yαm

m where cα ∈ k,

α = (α1, ..., αm) ∈ Nm and ϕ(g) = g(f1, ..., fm) = 0. Now let

g = g − g(f1, ..., fm)

=
∑

α

cα(yα1
1 ...yαm

m − fα1
1 ...fαm

m )
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By Lemma 5.2.1 g ∈ (y1 − f1, ..., ym − fm) = K. Therefore g ∈ K ∩ k[y1, ..., ym].

Now recall the section about Elimination and Theorem 4.3.2 about the elimi-

nation ideal. We already have the tools to calculate the Gröbner Basis of Ker(ϕ).

First we will calculate the Gröbner Basis for the ideal K = (y1 − f1, ..., ym − fm) ⊆
k[y1, ..., ym, x1, ..., xn] with respect to the elimination order which the x variables larger

than the y variables then we will find the intersection of this Gröbner Basis elements

and k[y1, ..., ym]. The Gröbner Basis for the Ker(ϕ) is G ∩ k[y1, ..., ym]. K acts as an

elimination ideal as we saw in the Theorem 4.3.2

Theorem 5.2.3. Let K = (y1 − f1, ..., ym − fm) ⊆ k[y1, ..., ym, x1, ..., xn] and G be

the reduced Gröbner Basis for K with respect to the elimination order x variables

larger than y variables. Then f ∈ k[x1, ..., xn] is in the image of ϕ if and only if

∃h ∈ k[y1, ..., ym] such that f ≡ h mod G. In this case f = ϕ(h) = h(f1, ..., fm).

Proof. If f ∈ Im ϕ, then ∃g ∈ k[y1, ..., ym] such that f = ϕ(g(y1, ..., ym) = g(f1, ..., fm).

Clearly f − g ∈ k[y1, ..., ym, x1, ..., xn]. Consider,

f(x1, ..., xn)− g(y1, ..., ym) = g(f1, ..., fn)− g(y1, ..., ym)

= g − g(y1, ..., ym).

By lemma 5.2.1 f(x1, ..., xn) − g(y1, ..., ym) ∈ K. Since G is the Gröbner Basis

for K, f(x1, ..., xn) − g(y1, ..., ym) ≡ 0 mod G and that means f ≡ g mod G. Now

g ∈ k[y1, ..., ym], by definition of Gröbner Bases and our elimination order, g ≡ h

mod G where h ∈ k[y1, ..., ym] and therefore f ≡ h ∈ k[y1, ..., ym].

Conversely, if f ≡ h mod G where h ∈ k[y1, ..., ym], then f − g ∈ K. Consider,

f(x1, ..., xn)− h(y1, ..., ym) =
m∑

i=1

gi(x1, ..., xn, y1, ..., ym)(yi − fi)
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where gi ∈ K for i = 1, ..., m. Recall that ϕ(h) = h(f1, ..., fm). If we substitute

(f1, ..., fm instead of (y1, ..., ym) we will end up with,

f(x1, ..., xn)− h(f1, ..., fm) =
m∑

i=1

gi(x1, ..., xn, f1, ..., fm)(fi − fi) = 0

f − ϕ(h) = 0

f = ϕ(h).

Hence f ∈ Im ϕ.

For any given f ∈ k[x1, ..., xn], this theorem gives an algorithm to determine

whether f is in the image or not.

• Find the Gröbner Basis G of K with respect to an elimination order

• Do the reduction of f with respect to G.

• f is in the image of ϕ if and only if f ≡ h mod G where h ∈ k[y1, ..., ym].

Also we can can generalize this theorem and determine if ϕ is onto or not. Next

theorem shows that finding some specific polynomials in G is enough to do that.

Theorem 5.2.4. Let K = (y1 − f1, ..., ym − fm) ⊆ k[y1, ..., ym, x1, ..., xn] and G be

the reduced Gröbner Basis for K with respect to the elimination order x variables

larger than y variables. ϕ is onto if and only if for each i = 1, .., n ∃gi ∈ G such that

gi = xi − hi where hi ∈ k[y1, ..., ym].

Proof. Assume ϕ is onto and without loss of generality assume the order is x1 < x2 <

... < xn. Since ϕ is onto, by previous theorem x1 is in the image and ∃h1 ∈ k[y1, ..., ym]

such that x1 ≡ h′1 mod G. Therefore x1 − h′1 ∈ K. Hence ∃g1 ∈ G such that LT (g1)

divides LT (x1 − h1) = x1. By the elimination order the only terms smaller than x1

are in y variables, therefore g1 = x1 − h1 for some h ∈ k[y1, ..., ym]. Similarly,x2 is

in the image, by Theorem 5.2.3 ∃h2 ∈ k[y1, ..., ym] such that x2 ≡ h′2 mod G. Thus

∃g2 such that LT (g2) divides LT (x2 − h′2) = x2. Since the only terms strictly smaller
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then x2 are the y variables and x1 and G is the reduced Gröbner basis and any term

involving x1 could be reduced by g1 = x1 − h1, we must have g2 = x2 − h2 for some

h2 ∈ k[y1, ..., ym]. We can proceed this way until the xi for i = 1, .., m are consumed.

For the converse, assume xi − hi ∈ G where hi ∈ k[y1, ..., ym], we have xi − hi ≡ 0

mod G. Therefore xi ≡ hi mod G and by Theorem 5.2.3 xi is in the Im ϕ.

Now we will give an easy example to illustrate the idea, we have been dealing.

Example 5.2.5. Let,

ϕ : Q[u, v, w] 7−→ Q[x]

u 7−→ x4 + x

v 7−→ x3

w 7−→ x5.

ϕ is a well defined map. In order to determine if this map is onto or not we are

going to calculate the Gröbner Basis for the ideal K = (u − x4 − x, v − x3, w − x5)

with respect to the elimination order (as we discussed that elimination ordering can

be seen as a Lex ordering), x > u > v > w and with the help of CoCoA (see appendix

B.6) programming. Result is

G = {x− uv2 + uv − u + w2, v5 − w3,−uw + v3 + v2,−uv3 + uw2 + w2,

−u2v + v2w + 2vw + w, u3 − v4 − 3v3 − 3v2 − v}

If we check the Gröbner Basis we will see that we have x− uv2 + uv− u + w2. So

by the Theorem 5.2.4we can say ϕ is onto. Also

x = (ϕ(uv2 + uv − u + w2)) = (x4 + x)x6 − (x4 + x)x3 + x4 + x− x10

shows that the pre-image of x is uv2 + uv − u + w2.
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Now we will extend the above results to quotient rings of polynomial rings. We

will refer this section when we construct a way to determine the solutions of integer

programming problem Case 2(see, next section).

Definition 5.2.6. An k-algebra is called an affine k-algebra if it is isomorphic as a

k-algebra to k[x1, ..., xn]/I for some ideal I of k[x1, ..., xn]

If we consider the mapping ϕ

ϕ : k[y1, ..., ym] 7−→ k[x1, ..., xn]

yi 7−→ fi

k[f1, ..., fn] is an affine k-algebra, since it is isomorphic to k[y1, ..., ym]/ Ker ϕ.

Now, let

ϕ : k[y1, ..., ym] 7−→ k[x1, ..., xn]/I

yi 7−→ fi + I

where I is an ideal of k[x1, ..., xn] and fi ∈ k[x1, ..., xn]. Clearly this map is well-

defined. Next we will show that Ker ϕ = K ∩ k[y1, ..., ym].

Theorem 5.2.7. If K = (I, y1 − f1, ..., ym − fm) ⊆ k[y1, ..., ym, x1, ..., xn], then

Ker(ϕ) = K ∩ k[y1, ..., ym].

Proof. If g′ ∈ K ∩ k[y1, ..., ym], then

g′(y1, ..., ym) =
m∑

i=1

(yi − fi)hi(y1, ..., ym, x1, ..., xn) + w(y1, ..., ym, x1, ..., xn).

where

w(y1, ..., ym, x1, ..., xn) =
∑

j

cj(y1, ..., ym, x1, ..., xn)d(x1, ..., xn)
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hi, ci ∈ k[y1, ..., ym, x1, ..., xn] and d ∈ I. If we substitute (f1, ..., fm) instead of

(y1, ..., ym) we will end up with

ϕ(g′) = g′(f1, ..., fm) + I = w + I = 0.

Hence g ∈ Ker ϕ. For the converse, if g ∈ Ker ϕ, g =
∑

α cαyα1
1 ...yαm

m where cα ∈ k,

α = (α1, ..., αm) ∈ Nm and ϕ(g) = g(f1, ..., fm) = 0. Now let

g = g − g(f1, ..., fm)

=
∑

α

cα(yα1
1 ...yαm

m − fα1
1 ...fαm

m )

By Lemma 5.2.1 g ∈ (y1 − f1, ..., ym − fm) ⊆ K. Therefore g ∈ K ∩ k[y1, ..., ym].

Theorem 5.2.8. Let K = (I, y1−f1, ..., ym−fm) ⊆ k[y1, ..., ym, x1, ..., xn] and G be the

reduced Gröbner Basis for K with respect to the elimination order x variables larger

than y variables. f ∈ k[x1, ..., xn] is in the image of ϕ if and only if ∃h ∈ k[y1, ..., ym]

such that f + I ≡ h mod G.

Proof. If f + I ∈ Im ϕ, then ∃g ∈ k[y1, ..., ym] such that f + I = ϕ(g(y1, ..., ym)) =

g(y1, ..., ym). Clearly f(x1, ..., xn)− g(f1, ..., fm) ∈ k[y1, ..., ym, x1, ..., xn]. Consider,

f(x1, ..., xn)−g(y1, ..., ym) = g(f1, ..., fm)−g(y1, ..., ym)+(f(x1, ..., xn)−g(f1, ..., fm))

By Lemma 5.2.1 f(x1, ..., xn) − g(y1, ..., ym) ∈ K. Since G is the Gröbner Basis

for K, f(x1, ..., xn) − g(y1, ..., ym) ≡ 0 mod G and that means f ≡ g mod G. Now

g ∈ k[y1, ..., ym], by definition of Gröbner Bases and our elimination order, g ≡ h

mod G where h ∈ k[y1, ..., ym] and therefore f + I ≡ h ∈ k[y1, ..., ym].

Conversely, if f ≡ h mod G where h ∈ k[y1, ..., ym], then f − h ∈ K. Consider,

f(x1, ..., xn)−h(y1, ..., ym) =
m∑

i=1

gi(x1, ..., xn, y1, ..., ym)(yi−fi)+w(y1, ..., ym, x1, ..., xn).
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where

w(y1, ..., ym, x1, ..., xn) =
∑

j

cj(y1, ..., ym, x1, ..., xn)d(x1, ..., xn)

gi, cj ∈ k[y1, ..., ym, x1, ..., xn] and d ∈ I. If we substitute (f1, ..., fm) instead of

(y1, ..., ym) we will end up with

f − h(f1, ..., fm) = f − ϕ(h(y1, ..., ym)) ∈ I.

Hence ϕ(h) = f + I.

Theorem 5.2.9. Let K = (I, y1 − f1, ..., ym − fm) ⊆ k[y1, ..., ym, x1, ..., xn] and G

be the reduced Gröbner Basis for K with respect to the elimination order x variables

larger than y variables. ϕ is onto if and only if for each i = 1, .., n ∃gi ∈ G such that

gi = xi − hi where hi ∈ k[y1, ..., ym].

Proof. Assume ϕ is onto and without loss of generality assume the order is x1 < x2 <

... < xn. Since ϕ is onto by Theorem 5.2.8, x1+I is in the image and ∃h′1 ∈ k[y1, ..., ym]

such that x1 ≡ h′1 mod G. Therefore x1 − h′1 ∈ K. Hence ∃g1 ∈ G such that LT (g1)

divides LT (x1 − h′1) = x1. By the elimination order the only terms smaller than x1

are in y variables, therefore g1 = x1−h1 for some h1 ∈ k[y1, ..., ym]. Similarly,x2 + I is

in the image, by the previous theorem ∃h′2 ∈ k[y1, ..., ym] such that x2 ≡ h′2 mod G.

Thus ∃g2 such that LT (g2) divides LT (x2 − h′2) = x2. Since the only terms strictly

smaller then x2 are the y variables and x1 and G is the reduced Gröbner basis and

any term involving x1 could be reduced by g1 = x1 − h1, we must have g2 = x2 − h2

for some h2 ∈ k[y1, ..., ym]. We can proceed this way until the xi for i = 1, ..,m are

consumed. For the converse, assume xi − hi ∈ G where hi ∈ k[y1, ..., ym], we have

xi − hi ≡ 0 mod G. Therefore xi ≡ hi mod G and by Theorem 5.2.8 xi is in the

Im ϕ.

5.3 Integer Programming

In this section we will use a great deal deal of the theory that is developed at the

previous section. Our main aim is to calculate a solution for the following equation
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system given,

a11σ1 + a12σ2 + ... + a1mσm = b1

a21σ1 + a22σ2 + ... + a2mσm = b2

...

an1σ1 + an2σ2 + ... + anmσm = bn

.

which minimizes the ”cost function”

c(σ1, ..., σm) =
m∑

j=1

cjσj

where aij’s and bi’s are integers and (σ1, ..., σm) ∈ Nm is the solution of the system.

First we will ignore the ”cost function” when solving this equation system.

We want to convert this problem into a polynomial mapping problem and the

solutions of this polynomial mapping problem into the integer programming problem.

Well, we will discuss this in two cases. In the first case we will restrict ourselves where

all aij’s and bi’s are positive integers which is an relatively easier case. The second

case is the case where all aij’s and bi’s are just integers.

CASE 1:

In this case we will just consider the integer programming problem where all

aij’s and bi’s are positive integers. First we will introduce a new variable for each

equation, say x1, ..., xn and a new variable for each unknown σi, say y1, ..., ym. We will

now represent each equation as follows,

xai1σ1+ai2σ2+...+aimσm
i = xbi

i

for i = 1, ..., n. Hence the system becomes,

xa11σ1+a12σ2+...+a1mσm
1 ...xan1σ1+an2σ2+...+anmσm

n = xb1
1 ...xbn

n .

And also we can write,

(xa11
1 xa21

2 ...xan1
n )σ1 ...(xa1m

1 xa2m
2 ...xanm

n )σm = xb1
1 ...xbn

n .

Now is the time to use our new represented variables yis. (xai1
1 xai1

2 ...xai1
n ) for i = 1, ..m

can be viewed as the image of yi for i = 1, ..m under the following map,
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ϕ : k[y1, ..., ym] 7−→ k[x1, ..., xn]

yi 7−→ xai1
1 xai1

2 ...xai1
n

Therefore xb1
1 ...xbn

n becomes the image of yσ1
1 ...yσm

m under ϕ. Hence there exists

a solution (σ1, ..., σm) ∈ Nm of this integer programming problem if and only if

xb1
1 ...xbn

n ∈ Im ϕ and if it is in the image then xb1
1 ...xbn

n = ϕ(yσ1
1 ...yσm

m ). By Theorem

5.2.3 xb1
1 ...xbn

n ∈ Im ϕ if and only if xb1
1 ...xbn

n ≡ h mod G where h ∈ k[y1, ..., ym]. But

there are more things that we should prove, since we want h to be a monomial(power

product of y′is). Now recall the construction of the ideal K in the previous section,it

is generated by differences of two monomials(power products). Therefore Buchberger

Algorithm (construction of S-polynomials) forces the Gröbner basis G to consist of

differences of two monomials(power products). Since reduction of a power product by

differences of power products gives a power product. xb1
1 ...xbn

n ≡ h mod G, therefore

h is a power product. Thus we have ”Algorithm” to solve this problem.

1)Calculate the Gröbner Basis with respect to the elimination order where x

variables are larger than the y variables, for the ideal K.

2)Look for h where xb1
1 ...xbn

n ≡ h mod G if h is not in k[y1, ..., ym] then this

means this problem does not have a solution if h ∈ k[y1, ..., ym] and h = yσ1
1 ...yσm

m ,

then (σ1, ..., σm) ∈ Nm is a solution of the system.

Let us give an example to show this method.

Example 5.3.1.

3σ1 + 2σ2 + σ3 = 10

4σ1 + 3σ2 + σ3 = 4
.

Now we are looking for the pre-image of x10
1 x4

2 where

ϕ : Q[y1, y2, y3] 7−→ Q[x1, x2]

y1 7−→ x3
1x

4
2

y2 7−→ x2
1x

3
2

y3 7−→ x1x2
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Clearly K = (y1 − x3
1x

4
2, y2 − x2

1x
3
2, y3 − x1x2) ∈ Q[x1, x2, y1, y2, y3]. The Gröbner

Basis for K (see appendix B.7)is,

G = {y3 − x1x2, y2 − x2y
2
3, x1y2 − y3

3, y1 − y2y3}.

One can see that G does not contain elements like x1 − h1 and x2 − h2 where hi ∈
Q[y1, y2, y3]. By Theorem 5.2.4 this means ϕ is not an onto map. Clearly this does

not mean x10
1 x4

2 is not an element of Im ϕ. But in this case x10
1 x4

2 ≡ x6
1y

4
3 mod G and

x6
1y

4
3 is not an element of Q[y1, y2, y3]. Therefore this system does not have a solution.

In the following case we will discuss a general solution method for the integer

programming problem.

CASE 2: In this case we will consider the same problem without any constraints

on aij’s and bi’s. But that means we have negative exponents on the x variables and

this is the main problem if we want to work with the polynomial ring k[x1, ..., xn].

To deal with this problem, we will first introduce a new variable w where one can

consider w = 1/x1, ..., xn and then work in the ring k[x1, ..., xn, w]/I where I =

(x1...xnw − 1). We want to convert negative integers to a non-negative ones to work

with the polynomial rings. To do it, first we will choose non-negative integers a′ij and

αj for each j = 1, ..., m and i = 1, ..., n such that for each j we have,

(a1j, ..., anj) = (a′1j, ..., a
′
nj) + αj(−1, ...,−1).

So the coset

x
a1j

1 ...xanj
n + I = x

a′1j

1 ...x
a′nj
n wαj + I.

Similarly, use β instead of α

xb1
1 ...xbn

n + I = x
b′1
1 ...xb′n

n wβj + I.

Now consider,

ϕ : k[y1, ..., ym] 7−→ k[x1, ..., xn]/I

yi 7−→ x
a′i1
1 x

a′i1
2 ...x

a′i1
n wαi + I
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Therefore x
b′1
1 ...x

b′n
n wβj + I becomes the image of yσ1

1 ...yσm
m under ϕ.Hence we can

say there exists a solution (σ1, ..., σm) ∈ Nm of this integer programming problem

if and only if x
b′1
1 ...x

b′n
n wβj + I ∈ Im ϕ and if it is in the image then x

b′1
1 ...x

b′n
n wβj =

ϕ(yσ1
1 ...yσm

m ). By Theorem 5.2.8 x
b′1
1 ...x

b′n
n wβj +I ∈ Im ϕ if and only if x

b′1
1 ...x

b′n
n wβj +I ≡

h mod G where h ∈ k[y1, ..., ym]. As in the previous case there are extra things that

we should prove, since we want h to be a monomial(power product of y′is). Recall

the construction of the ideal K in the Polynomial Mapping section,it is generated by

differences of two monomials(power products). Therefore as in Case1 xb1
1 ...xbn

n wβj ≡ h

mod G, h is a power product. Thus the ”Algorithm” solve this integer programming

problem here is similar to the one in case1 to,

1)Calculate the Gröbner Basis for K with respect to the elimination order where

x variables are larger than the y variables and where K = (I, yi − fi : i = 1, ..,m).

2)Look for h, where x
b′1
1 ...x

b′n
n wβj + I ≡ h mod G if h is not in k[y1, ..., ym] then

this means this problem does not have a solution if h ∈ k[y1, ..., ym] and h = yσ1
1 ...yσm

m ,

then (σ1, ..., σm) ∈ Nm is a solution of the system.

Let us give an example to show this method.

Example 5.3.2.

2σ1 + σ2 − 3σ3 + σ4 = 4

−3σ1 + 2σ2 − 2σ3 − σ4 = −3
.

First we will convert the negative exponents of x into a positive ones.

(2,−3, 0) = (5, 0, 1) + 3(−1,−1,−1), x2
1x
−3
2 + I = x5

1w + I

(1, 2, 0) = (1, 2, 0) + 0(−1,−1,−1), x1x
2
2 + I = x1x

2
2 + I

(−3,−2, 0) = (0, 1, 1) + 3(−1,−1,−1), x−3
1 x−2

2 + I = x2w + I

(1,−1, 0) = (2, 0, 1) + (−1,−1,−1), x1x
−1
2 + I = x2

1w + I

(4,−3, 0) = (7, 0, 1) + 3(−1,−1,−1), x4
1x
−3
2 + I = x7

1w + I
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We will look for the pre-image of x7
1w + I where I = (x1x2w− 1) and the map is,

ϕ : Q[y1, y2, y3, y4] 7−→ Q[x1, x2, w]/I

y1 7−→ x5
1w + I

y2 7−→ x1x
2
2 + I

y3 7−→ x2w + I

y4 7−→ x2
1w + I

Clearly K = (x1x2w−1, y1−x5
1w, y2−x1x

2
2, y3−x2w, y4−x2

1w) ∈ Q[x1, x2, w, y1, y2, y3, y4].

We used CoCoa to determine the Gröbner Basis and also to do the division algo-

rithm in order to find the pre-image of x7
1w + I (see appendix B.8). The result was

x7
1w + I ≡ y2

2y3y
5
4 ∈ Q[y1, y2, y3, y4]. Therefore a solution of this problem is (0, 2, 1, 5).

Now we will go back to the original problem and find a solution that minimizes the

”cost function”,c(σ1, ..., σm) =
∑m

j=1 cjσj. First we will define a term order,

Definition 5.3.3. A monomial order <c on the y variables is said to be compatible

with the cost function c and the map ϕ if

ϕ(yσ1

1 ...yσm
m ) = ϕ(y

σ′1
1 ...y

σ′m
m )

and

c(σ1, ..., σm) = (σ′1, ..., σ
′
m)

}
=⇒ yσ1

1 ...yσm
m <c y

σ′1
1 ...yσ′m

m .

Proposition 5.3.4. Let G be a Gröbner Basis for K with respect to the elimination

order x and w variables larger than the y variables and order <c on the y variables

compatible with the cost function c and the map ϕ. If x
b′1
1 ...x

b′mwβ

m ≡ yσ1

1 ...yσm
m mod G

then (σ1, ..., σm) is a solution which minimizes the cost function.

Proof. Let x
b′1
1 ...x

b′m
m wβ ≡ yσ1

1 ...yσm
m mod G and (σ1, ..., σm) be a solution of the

system. Now assume there is another solution (σ′1, ..., σ
′
m) such that

∑m
j=1 cjσ

′
j <

∑m
j=1 cjσj. Since they are both solutions

ϕ(yσ1
1 ...yσm

m ) = ϕ(y
σ′1
1 ...yσ′m

m ) = x
b′1
1 ...xb′m

m wβ + I
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yσ1
1 ...yσm

m − y
σ′1
1 ...y

σ′m
m ∈ Ker ϕ ⊆ K. Hence yσ1

1 ...yσm
m − y

σ′1
1 ...y

σ′m
m ≡ 0 mod G. Since

yσ1
1 ...yσm

m >c y
σ′1
1 ...y

σ′m
m by tour assumption, LT (yσ1

1 ...yσm
m − y

σ′1
1 ...y

σ′m
m ) = yσ1

1 ...yσm
m . But

yσ1
1 ...yσm

m is reduced with respect to G, and therefore yσ1
1 ...yσm

m − y
σ′1
1 ...y

σ′m
m can not

reduce to 0 by G.
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Chapter 6

BORDER BASES

In this chapter we will discuss another bases which we can apply to the problems

where Gröbner Basis don’t give the kind of results we want or we need a better(faster)

algorithm than Buchberger’s Algorithm. This is described as the theory of border

bases of zero-dimensional polynomial ideals[11]. We will discuss the advantages and

disadvantages of using Gröbner Bases or Border Bases on examples at chapter eight.

We will start this chapter by giving the notations and definitions we will use through

the rest of the thesis.

Let k be a field and R = k[x1, ..., xn]. We will denote the set of monoid terms in

R with Tn. Also we have T n
1 .Tn

1 ....Tn
1 = (Tn)k = Tn

k .

Definition 6.0.5. Let I be an ideal of R if R/I is a finite dimensional vector space

then I is called a zero-dimensional ideal.

Definition 6.0.6. A non-empty set of terms O ⊆ Tn is called an order ideal if t ∈ O,

then t′ ∈ O or every t′ dividing t. The border of O is the set of the terms

∂O = Tn
1 .O\O = (x1O ∪ ... ∪ xnO)\O

and the first border closure of O is ∂O = O ∪ ∂O. For every k > 1, we inductively

define the (k+1)st border ∂k+1O = ∂(∂kO) and the (k+1)st border closure ∂k+1O =

∂kO ∪ ∂k+1O. We let ∂0O = ∂0O = O. [8]
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Let us give an example to visualize the idea.

Example 6.0.7. Let O = {1, x, y} ⊆ Tn. Clearly O is a order ideal with border

∂O = {x2, y2, xy}. In the diagram disks represent the elements of the order ideal and

the circles represent the elements of the border.

- x

6
y

r rr

r

b

b

b

Next proposition shows the properties of the border of an order ideal.

Proposition 6.0.8. Let O be an order ideal.

i)For every k > 1, we have disjoint union ∂kO = ∪k
i=0∂

iO. Consequently, we have

a disjoint union Tn = ∪∞i=0∂
iO.

ii)For every k > 1, we have ∂kO = Tn
k .O\Tn

<k.O.

iii) A term t ∈ Tn is divisible by a term in ∂O if and only if t ∈ Tn\O.

Proof. i)By definition of border we have

∂O = Tn
1O ∪O = O ∪ ∂O

∂2O = ∂O ∪ Tn
1∂O = ∂O ∪ Tn

2O = ∂O ∪ ∂2O = 0 ∪ ∂O ∪ ∂2O
∂3O = ∂2O ∪ Tn

1∂
2O = ∂2O ∪ Tn

3O = ∂2O ∪ ∂3O = 0 ∪ ∂O ∪ ∂2O ∪ ∂3O
. . .

∂kO = ∂k−1O ∪ Tn
1∂

k−1O = ∂k−1O ∪ Tn
kO = ∂k−1O ∪ ∂kO = 0 ∪ ∂O ∪ ∂2O ∪ ... ∪ ∂kO

Therefore

∂kO = 0 ∪ ∂O ∪ ∂2O ∪ ∂3O ∪ ... ∪ ∂kO =
k⋃

i=0

∂iO.

And clearly Tn = ∪∞i=0∂
iO.
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ii) From the definition of border basis we know that

∂k+1O = ∂(∂kO) = Tn
1∂

kO\∂kO

and also

∂k+1O = ∂kO ∪ ∂k+1O.

As a consequence of these ∂k+1O = ∂k+1O\∂kO. We also have ∂k+1O = Tn
k+1O

and ∂kO = Tn
k . Therefore ∂k+1O = Tn

k+1.O\Tn
kOO.

iii) Let t ∈ Tn and t 6= 0. Assume t is divisible by t′′ ∈ ∂O. That is t′′ ∈ Tn\O. If

t ∈ O, then since O is an order ideal t′′ ∈ O. But then t′′ ∈ ∂O ∩ O = ∅. Therefore

t ∈ Tn\O. For the converse assume t ∈ Tn\O. If t ∈ Tn\O = ∪∞i=0∂
iO\O, then

there exists k ∈ N such that t ∈ ∂kO\O = Tn
k∂O\O. Therefore ∃t′′ ∈ ∂O such that

t = t′t′′.

The properties of border of the order ideal lead us to measure the ”distance” of a

term from an order ideal. To do this we define indO(t) = min{k > 0 : t ∈ ∂kO} for

every term t ∈ Tn ,which is unique, and call it the index of t with respect toO. Given a

non-zero polynomial f = c1t1+...+csts ∈ R where c1, ..., cs ∈ k\{0} and t1, ..., ts ∈ Tn,

we order the terms in the support of f such that indO(t1) > indO(t2) > ... > indO(ts).

Then we call indO(f) = indO(t1) the index of f.[8]

Now we will prove a useful lemma and then we will show the properties of the

index.

Lemma 6.0.9. For any f, g ∈ R we have Supp(f + g) ⊆ Supp(f) ∪ Supp(g).

Proof. Let f =
∑n

i=1 citi and g =
∑n′

j=1 c′jt
′
j where c′j, ci ∈ k, n, n′ ∈ N and t, t′ ∈ Tn.

If we take the sum, we will have

f + g =
∑

t∈Tn

(
∑
i:ti=t

ci +
∑

j:tj=t

c′j)t.

Therefore Supp(f + g) ⊆ Supp(f) ∪ Supp(g).
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Proposition 6.0.10. Let O ⊆ Tn be an order ideal.

i) For a term t ∈ Tn, the number k = indO(t) is the smallest natural number such

that t = t′t′′ with t′ ∈ Tn
k and t′ ∈ O.

ii)Given two terms t, t′′ ∈ Tn we have indO(tt′) 6 deg(t) + indO(t′).

iii)For a non-zero polynomials f, g ∈ R such that f +g 6= 0, we have the inequality

indO(f + g) 6 max{indO(f), indO(g)}.
iv)For a non-zero polynomials f, g ∈ R, we have the inequality

indO(fg) 6 min{deg(f) + indO(g), deg(g) + indO(f)}

Proof. i)Let k = indO(t). Then

t ∈ ∂kO = ∂(∂k−1O)

= Tn
1∂

k−1O\∂k−1O
= Tn

kO\∂k−1O
= Tn

kO\ ∪k−1
i=0 ∂iO.

Therefore there exists t′ ∈ Tn
k and t′′ ∈ O such that t = t′t′′. Since k is unique it is

the smallest number that satisfy the previous equation.

ii)Let indO(tt′) = k. Then

tt′ ∈ Tn
kO\∂k−1O = Tn

k−1∂O\∂k−1O = .... = Tn
1∂

k−1O\∂k−1O.

Let deg(t) > m, m ∈ N. Then tt′ ∈ Tn
m∂k−mO\∂k−1O and indO(t′) = k−m. Therefore

k = indO(tt′) 6 indO(t′) + deg(t).

iii)Let tf ∈ Supp(f) and tg ∈ Supp(g). And recall lemma 6.0.9.

indO(f + g) = max{indO(t) : t ∈ Supp(f + g)}
6 {indO(t) : t ∈ Supp(f) ∪ Supp(g)}
6 max{indO(tf ), indO(tg)}
= max{indO(f), indO(g)}
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iv) Clearly we have Supp(fg) ⊆ {tf tg : tf ∈ Supp(f), tg ∈ Supp(g)}.

indO(fg) = max{indO(tf tg) : tf tg ∈ Supp(fg)}
6 {indO(tf tg) : tf ∈ Supp(f), tg ∈ Supp(g)}
6 min{indO(tf ) + deg(tg), indO(tg) + deg(tf )}

Example 6.0.11. Let O = {1, x, x2, y} ⊆ Tn. Clearly O is a order ideal with border

∂O = {x3, xy, y2, x2y} and ∂2 = {x4, x2y2, xy2, x3y, y3}. In the diagram disks repre-

sent the elements of the order ideal and the circles represent the elements of the first

and stars represent the elements of the second border.

- x
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r r r

r

r

b

b

b

∗

∗

∗∗
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If we consider index as an order, we will have a problem with multiplication. Since

x2 ∈ O, indO(x2) = 0 and since xy ∈ ∂O, indO(xy) = 1. We have

indO(x2) < indO(xy).

If we multiply x2 and xy with x2, we will end up with

indO(x2x2) = indO(x2xy) = 2.

That example implies that index is not compatible with multiplication. However it

is not compatible with multiplication, it allows us to measure a distance of term from

the order ideal and also it gives a partial ordering on the set of the terms. Therefore

it allows us to introduce a new algorithm that takes place of the Division Algorithm

which uses term ordering.
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6.1 The Border Division Algorithm

Before giving the algorithm we will a give the definition of O−border prebasis which

took an essential part in the Border division algorithm.

Definition 6.1.1. Given an order ideal O ⊆ Tn with border ∂O = {b1, ..., bυ}, a set

of polynomials {g1, ..., gυ} be an O−border prebasis if the polynomials have the form

gi = bi −
∑µ

i=1 αijti where αij ∈ k for 1 6 i 6 µ and ti ∈ O. [8]

Proposition 6.1.2 (The Border Division Algorithm). Let O = {t1, ..., tµ} be an order

ideal, let ∂O = {b1, ..., bυ} be its border, and let {g1, ..., gυ} be an O−border prebasis.

Given a polynomial f ∈ R, consider the following instructions.

1. Let f1 = f2 = ... = fυ = 0, c1 = ... = cµ = 0 and h = f.

2.If h = 0 then return (f1, ..., fυ, c1, ..., cµ) and stop.

3.If indO(h) = 0 then find c1 = ... = cµ ∈ k such that h = a1c1 + ... + aµcµ and

return (f1, ..., fυ, c1, ..., cµ) and stop.

4. If indO(h) > 0 then let h = a1h1 + ... + ashs with a1, ..., as ∈ k\{0} and

h1, ..., hs ∈ Tn such that indO(h1) = indO(h1). Determine the smallest label i ∈
{1, ..., υ} such that h1 factors as h1 = t′bi with a term t’ of degree indO(h) − 1.

Subtract a1t
′gi from h, add a1t

′ to fi and continue with step 2.

This algorithm returns a tuple (f1, ..., fυ, c1, ..., cµ) ∈ Rυ × kµ such that

f = f1g1 + ... + fυgυ + c1t1 + ... + cµtµ

and deg(fi) 6 indO(f)−1 for all i ∈ {1, ..., υ} with figi 6= 0. This representation does

not depend on the choice of the term h1 in step D4. [8]

Proof. The instructions can be executed since in step 3 the fact that indO(h) =

0 implies support of h is in O. In step 4 we write h as a linear combination of

terms and at least one of them, say h1, has to have index k = indO(h) > 0. By

Proposition6.0.10a), there is a factorization h1 = t ti with t ∈ Tn
k and ti ∈ O, and

there is no such factorization with a term t of smaller degree. Since k > 0, we can

write t = t′xj for some t′ ∈ Tn and j ∈ {1, ..., n}. Then we have deg(t′) = k− 1, and
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the fact that t has the smallest possible degree implies xjti ∈ ∂O. Thus we see that

h1 = t′(xjti) = t′bk for some bk ∈ ∂O.

This algorithm terminates after finitely many steps. In order to show it we will

first check the subtraction h−a1t
′gi in step 4. By definition of the prebasis elements,

we have

h− a1t
′gi = a1h1 + ... + ashs − a1t

′bi + a1t
′

µ∑

k=1

αkitk

where αki ∈ k for k = 1, ..., µ. We had indO(h1) = k with the highest index and

a1h1 = a1t
′bi. Therefore h is replaced by the terms with of the form t′tl ∈ ∂k−1O

which have smaller index. Therefore this algorithm terminates after finitely many

steps, since there are only finitely many terms of smaller or equal index.

To prove the correctness of the equation, we will show

f = h + f1g1 + ... + fυgυ + c1t1 + ... + cµtµ

is invariant of the algorithm. A polynomial is only changed at step 4. There the

subtraction h − a1t
′gi is compensated by the addition (fi + a1t

′)gi. The constants

c1, ..., cµ are only changed in step 3 in which h is replaced by the expression c1t1 + ...+

cµtµ. when the algorithm stops, we have h = 0. This proves the stated representation

of f.

And also this representation does not depend on the choice of h1 in step 4 since

h1 is replaced by terms of strictly smaller index. Thus the reduction of several terms

of a given index in h, in step 4 do not interfere with one another and the final result

is independent of the order in which they are taken care of. [8]

Although Step 4 of the algorithm does not force us to choose the label i minimally

in h1 = t′ti, we do this in order determine the representation of h uniquely. Therefore

the result depends on the numbering of the elements of the border of the order ideal

O.

Now we will give an example to show how this Border Division Algorithm works.

Example 6.1.3. Let R = Q[x, y] and let O = {1, x, y}. Then the first border ∂O =

{x2, xy, y2}, where b1 = x2, b2 = xy, b3 = y2 second border ∂2O = {x3, xy2, x2y, y3}
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and the third border ∂3O = {x4, x3y, x2y2, xy3, y4}. Let the O-border prebasis be G =

{x2 − x, xy− 1, y2} where g1 = x2 − x, g2 = xy− 1, g3 = y2. We apply border division

algorithm to the polynomial f = x2y2 + xy2 + y

1) Let f1 = f2 = f3 = 0 and c1 = c2 = c3 = 0 as well as h = f.

2) indO(h) = 3 we have h1 = x2y2 = t′(xjti) where xj ∈ {x, y} and ti ∈ O and

deg(t′) = 2. Hence we have three options

case1) If t′ = x2, then we have h1 = x2(y2) where y2 = b3 and the label i = 3.

case2) If t′ = y2, then we have h1 = y2(x2) where x2 = b1 and the label i = 1.

case3) If t′ = xy, then we have h1 = xy(xy) where xy = b2 and the label i = 2.

We will choose the label i minimally in order to determine this step of the algorithm

uniquely which implies we set h1 = y2b1. As you will see that the result will depend

on the numbering of the elements. Thus we let f1 = y2 and

h = x2y2 + xy2 − y2(x2 − x).

2)The terms in the support h is 2xy2 + y. We have indO = 2, and t′ = x or

t′ = y. As we did previously we will choose the minimal label. Setting t′ = x will make

h = xb3 and t′ = y will make h = yb2. Hence we set h = yb2 and f2 = 2y. The terms

in the support of h are 3y ∈ O.

3) indO = 0, we have y = t3 and c3 = 3.

Therefore the result is

f = y2g1 + 2yg2 + 0g3 + 3t3.

Let us fix G = (g1, ..., gυ) which makes the result of the Border Division Algorithm

unique. So for an order ideal O = {t1, ..., tµ} and f ∈ R by the border division

algorithm we will have f = f1g1 + ... + fυgυ + c1t1 + ... + cµtµ. Then c1t1 + ... + cµtµ =

NRO,G is called the normal O-remainder and it represent the same residue class with

f modulo (g1, ..., gυ).
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6.2 Existence and Uniqueness of Border Basis

Definition 6.2.1. Let G = {g1, ..., gυ} be an O−border prebasis, let G be the tuple

(g1, ..., gυ) and let I ⊆ R be an ideal containing G. The set G or the tuple G called an

O-border basis of I if one of the following equivalent conditions is satisfied.[11]

a)The residue classes O = {t1, ..., tµ} form a k−vector space basis of R/I.

b)We have I ∩ 〈O〉k = 0.

c)We have R = I ⊕ 〈O〉k.

Proposition 6.2.2. Let G be an O-border basis of an ideal I ⊆ R. Then the ideal I

is generated by G.

Proof. By definition (g1, ..., gυ) ⊆ I. For the converse we will use border division

algorithm. Let f ∈ I and apply border division algorithm to f we will end up with

f = f1g1 + ... + fυgυ + c1t1 + ... + cµtµ

where fi ∈ R and ci ∈ k and {t1, ..., tµ} = O. Since G ⊆ I, f1g1 + ... + fυgυ ∈ I. Since

f ∈ I c1t1 + ... + cµtµ ∈ I ∩ 〈O〉k = {0}. Therefore I = (g1, ..., gυ).

For a given f ∈ R, recall that the remainder of the General Polynomial Division

was not unique, unless we use Gröbner Basis. And also the result of the Border

Division Algorithm was not unique. But similar to the General Polynomial Division,

the result of the Border Division Algorithm is unique if we use the element of the

Border Basis.

Definition 6.2.3. Let k be a field R = k[x1, ..., xn] a polynomial ring, I ⊆ P an

ideal of R and k′ ⊆ k be a subfield of k. I is defined over k′ if there exists elements

k′[x1, ..., xn] which generate I as an ideal of R. k′ is called a field of definition of I if

I is defined over k′ and there exists no proper subfield k′′ ⊂ k such that I is defined

over k′′.

Proposition 6.2.4. Let O = {t1, ..., tµ} be an order ideal,∂O = {b1, ..., bυ} be its

border, let I ⊆ R be a zero-dimensional ideal and assume that the residue classes of

the elements of O form a k−vector space basis of R/I.
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a)There exists a unique O-border basis of I.

b)Let G be an order prebasis whose elements are in I. Then G is the O-border

basis of I.

c)Let k′ be the field of definition of I. Then the O-border basis of I is contained

in k′[x1, ..., xn].

Proof. a)By definition of border ∂O = TnO\O, i.e., bi are not elements of 〈O〉k which

forms a k−vector space of R/I, and bi ∈ R/I, hence they are linearly dependent.

Therefore bi can be written as bi = gi +
∑µ

j=1 αijtj and so gi = bi −
∑µ

j=1 αijtj ∈ I

with tj ∈ O and αij ∈ k\{0}. Then G = {g1, ..., gυ} is an O-border prebasis of I

which also implies G is a O-border basis of I since O forms a vector space basis for

R/I. Now we will prove the uniqueness. Assume there exists another O-border basis

G′ = {g′1, ..., g′υ}. There exists an index i ∈ {1, ..., υ} such that g′i = bi −
∑µ

j=1 α′ijtj

where αij′ 6= αij. Then 0 6= gi − g′i ∈ I with

Supp(gi − g′i) = tj∈O.

Therefore gi − g′i ∈ I ∩ 〈O〉k = 0, i.e., G = G′.

b) G = {g1, ..., gυ} is a O−border prebasis where G ⊆ I. Since the elements of

O forms a k−vector space basis for R/I, G is a O−border basis and by part a) it is

unique.

c) Let R′ = k′[x1, ..., xn], I ′ = R′ ∩ I and σ be a a given term ordering. If G is

a Gröbner basis of I ′ with respect to the term order σ, then G generates the ideal I ′

and the the set I ′ generates I since k′ is the field of definition of I. Therefore G is the

Gröbner Basis of I, too. And by definition of Gröbner Basis LT{I} = LT{I ′}, and

this implies Tn\LT{I} = Tn\LT{I ′} with respect to the σ. Therefore dim(R′/I) =

dim(R/I). The elements of O is contained in R′ and they are linearly independent.

Let G′ be a O-border basis of I ′. Then G′ is a O-border prebasis and G′ ⊆ I. By part

b) G′ is O-border basis of I.
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Chapter 7

GRÖBNER BASIS VERSUS BORDER BASIS

The main reason the border basis is introduced was to get rid of the difficulties

that is caused by the Buchberger Algorithm where the number of S-polynomials is

getting so large and to keep the advantages that Gröbner basis has. Therefore, we can

find similar and different properties between border bases and Gröbner basis. Hence

we can characterize border bases similar to characterizations of Gröbner basis. And

also additionally we will find a totally different characterization of border bases from

Gröbner Basis.

7.1 Characterization of Border Bases That is Similar to The Charac-

terization of Gröbner Bases

Proposition 7.1.1. Let G = {g1, ..., gυ} be a O-border prebasis where O = {t1, ..., tµ}
is an order ideal of a zero-dimensional ideal I that is genarated by G and ∂O =

{b1, ..., tυ} is the border. G is a O-border basis if and only if the equivalent conditions

are satisfied.

i) For every f ∈ I\{0} there exists f1, ..., fυ ∈ R such that f = f1g1 + ... + fυgυ

and deg(fi) 6 indO(f)− 1 where fi 6= 0.

ii)For every f ∈ I\{0} there exists polynomials f1, ..., fυ ∈ R such that f =

f1g1 + ... + fυgυ and max{deg(fi) : i ∈ {1, ..., υ}, fi 6= 0} = indO(f)− 1.

Proof. i) Assume G is a O-border basis of I then we will show i holds. By border

division algorithm we have f = f1g1 + ...+fυgυ + c1t1 + ...+ cµtµ where ti ∈ O, gi ∈ G

and deg(fi) 6 indO(f) − 1 for every i = {1, ..., υ}. Therefore 0 = c1t1 + ... + cµtµ ∈
I ∩ 〈O〉k, i.e., c1 = ... = cµ = 0.
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ii) We have indO(figi) < deg(fi) + indO(gi) where gi = bi −
∑µ

i=1 αijti. Since

bi ∈ ∂O, indO = 1. Hence

indO(figi) 6 deg(fi) + indO(gi) = deg(fi) + 1 < indO(f).

That implies deg(fi) < indO(f)−1. Also we have indO(f+g) 6 max{indO(f), indO(g)}
which implies

indO(f) = indO(f1g1 + ... + fυgυ) 6 max{indO(figi) : i = 1, ..., υ}.

Therefore there is at least one i ∈ {1, ..., υ} such that max{deg(fi) : i ∈ {1, ..., υ}, fi 6=
0} = indO(f)− 1.

iii) Now we will assume ii) holds and we will prove that G is O−border basis for

I by showing I ∩〈O〉k = {0}. Assume ∃f such that f ∈ I ∩〈O〉k. So we can represent

f as follows, f = c1t1 + ... + cµtµ and also we have f = f1g1 + ... + fυgυ. From ii)

max{deg(fi) : i = 1, ..., υ} = indO(f)− 1 = max{indO(ti) : i = 1, ..., µ} = −1.

Therefore fi = 0 for every i = 1, ..., υ and cj = 0 for every j = 1, ..., µ, i.e., f = 0.

Definition 7.1.2. Given f ∈ R, we write f = a1u1 + ... + asus with coefficients

a1, ..., as ∈ k\{0} and terms u1, ..., us ∈ Tn satisfying indO(u1) > ... > indO(us).

a) The polynomial BFO(f) =
∑

{i:indO(ui)=indO(f)} aiui ∈ R is called the border

form of f with respect to O. For f = 0, we let BFO(f) = 0.

b)Given an ideal I ⊆ R, the ideal BFO(I) = (BFO(f) : f ∈ I) is called the border

form ideal of I with respect to O.

Proposition 7.1.3. The set G is an O−border basis of I if and only if the following

equivalent conditions are satisfied.

i)For every f ∈ I, Supp(BFO(f)) ⊆ Tn\O
ii)BFO(I) = (BFO(g1), ..., BFO(gυ)) = (b1, ..., bυ).

Proof. First we will assume G is a border basis and then prove i) by showing the

support of BFO(f) does not contain any elements in O. Suppose ∃f ∈ I such that



Chapter 7: Gröbner Basis Versus Border Basis 76

Supp(BFO(f)) contains a term in O, then by definition of border form every term is

in O, i.e., f = c1t1 + ... + cµtµ but G is a border basis and that forces f = 0 since

c1t1 + ... + cµtµ ∈ I ∩ 〈O〉k = {0}.
Then we will assume i) and prove ii). For any gi ∈ G we have gi ∈ I, and

bi = BFO(gi) ∈ BFO(I). For the converse, let f ∈ I where BFO(f) ∈ BFO(I), i.e.,

BFO(f) = a1f1 + ...+anfn where indO(fi) = indO(f) where fi ∈ Tn\O. Therefore by

Proposition 6.0.8 f ′is are divisible by bi∂ ∈ O, for every i = 1, ..., n and that implies

BFO(f) ∈ (b1, ..., bn).

And finally, we will assume ii holds and prove G is a border basis by showing

I ∩ 〈O〉k = {0}. Suppose there exists f ∈ I ∩ 〈O〉k, then f can be represented as

follows, f = c1t1 + ... + cµtµ. That implies BFO(f) ∈ O. Therefore BFO(f) is not

divisible by any bi∂ ∈ O. But this contradicts BFO(I) = (b1, ..., bυ) unless f = 0.

Let f ∈ R be a polynomial, let t ∈ Supp(f) be a multiple of a border term t = t′bi

and c ∈ k be the coefficient of t in f. Then h = f − ct′gi doe not contain the term

t anymore. We say that f reduces to h in one step using gi and write f
G−→ h. The

reflexive, transitive closure of the relations
gi−→, i ∈ {1, ..., υ}, is called the rewrite

relation associated to G and is denoted by
G−→ . The equivalence relation generated

by
G−→ is denoted by

G←→ .[11]

Example 7.1.4. Let R = Q[x, y] and O = {1, x, x2}. Then ∂O = {y, xy, x2y, x3} and

the O−order prebasis is G = {y, xy + y, x2y, x3 + 1}, where g1 = y, g2 = xy + y, g3 =

x2y, g4 = x3 + 1 The following chain of reductions,

x3y
g4−→ y

g2−→ x3y,

can be repeated infinitely and that implies
G−→ is not Noetherian.

Proposition 7.1.5. Let
G←→ be the rewrite equivalence relation associated to an

O−border prebasis G = {g1, ..., gυ}, and let f1, f2, f3, f4 ∈ R

a)If f1
G←→ f2 and f3

G←→ f4 then f1 + f3
G←→ f2 + f4.
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b)If f1
G←→ f2 then f1f2

G←→ f2f3.

c)We have f1
G←→ f2 if and only if f1 − f2 ∈ (g1, ..., gυ)

Proof. a) First we will show for any f1
gi−→ f2 implies f1 + f3

gi−→ f2 + f3 where

gi ∈ G. If f1
gi−→ f2, then f2 = f1 − at′gi and f2 + f3 = f1 + f3 − at′gi where a ∈ k

and t′ ∈ Tn. If t′gi is not a factor of any t ∈ Supp(f3) then we are done. If it is not

the case, ∃t ∈ Supp(f3) such that t = a′t′gi. We have two cases, If a′ = −a, then

f1 + f3 = f2 + f3 + at′gi = f2 + f3 − at′gi, then we can choose f4 = f2 + f3. If a′ 6= a,

then f1+f3 = f2+f3+at′gi = f2+f3+a′t′gi. Hence f1+f3 = f2+f3+(a−a′)t′gi = f4.

This holds for any gi so we have, f1
G←→ f2 implies f1 + f3

G←→ f2 + f3. Hence, if

f1
G←→ f2 and f3

G←→ f4, then we have f1 + f3
G−→ f2 + f3 and f2 + f3

G←→ f4 + f2.

Since this is an equivalence relation, we have f1 + f3
G←→ f2 + f4.

b)We will first show, if f1
G←→ f2, then tαf1

G←→ tαf2 for any t ∈ Tn. If f1
gi−→ f3,

then f2 = f1−at′gi where gi ∈ G t′ ∈ Tn and for any t ∈ Supp(f1) if t = t′gi t vanishes.

For tαf2 = tαf1− tαt′gi, clearly tαt′ ∈ Supp(tf1) and tαt′ vanishes . Therefore we have

tαf1
G←→ tαf2, and this holds for every tα ∈ Tn, and by previous result we have

f1f3
G←→ f2f3 where f3 =

∑n
i=1 aiti for ai ∈ k and ti ∈ Tn.

c) If f1
G←→ f2, then f2 = f1 − a1g1 − ...− aυgυ and f1 − f2 = a1g1 − ...− aυgυ ∈

(g1, ..., gυ) where ai ∈ k.

For the converse f1 − f2 = a1g1 − ...− aυgυ ∈ (g1, ..., gυ) then we have f1
g1−→ fα1

where fα1 = f1 − a1g1 = f2 + a2g2 − ... − aυgυ and if we proceed this way we will

end up with f1
g1−→ ...

gυ−→ fαυ and fαυ = f1 − a1g1 − a2g2 − ... − aυgυ = f2, i.e.,

f1
G←→ f2.

Proposition 7.1.6. The set G is an O−border basis of I if and only if the following

are equivalent

i)For f ∈ R, we have f
G−→ 0 if and only if f ∈ I.

ii) If f ∈ I is reducible with respect to
G−→, we have f = 0.

iii)For every f ∈ R, there exists an element h ∈ R such that f
G−→ h and h is

irreducible with respect to
G−→ . The element h is uniquely determined.

iv)The rewrite relation
G−→ is confluent.
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Proof. First we will assume G is a border basis and prove i. Let f ∈ R, if
G−→ 0, then

f
gi−→ fi −→ ...

gυ−→ 0. That implies f ∈ (g1, ..., gυ) = I, i.e., f ∈ I. For the converse,

let f ∈ I apply border division algorithm we have f = f1g1+...+fυgυ+c1t1+...+cµtµ.

Since f ∈ I and G is a border basis c1t1 + ... + cµtµ = 0. Therefore f
G−→ 0.

Now we will show i implies ii. Assume f ∈ I, which implies f
G−→ 0 by i). If f is

irreducible f = c1t1 + ... + cµtµ, then c1t1 + ... + cµtµ = 0, i.e., f = 0.

We will assume ii holds and prove iii, that is f
G−→ h = NRO,G(f). Let f ∈ R

and apply border division algorithm we will end up with f
gi−→ NRO,G(f) which is

irreducible so there exists NRO,G(f) and f = f1g1 + ... + fυgυ + NRO,G(f). If we have

f
gi−→ h irreducible, we have f = f ′1g1 + ... + f ′υgυ, where fi, f

′
i ∈ R for i = {1, ..., υ}.

Hence NRO,G(f)−h ∈ I and also since they are both irreducible NRO,G(f)−h ∈ 〈O〉k.
Since G is a border basis, I ∩ 〈O〉k = {0} and NRO,G(f) = h.

Assume (iii) holds, and let f1
G−→ f2 and f1

G−→ f3 where f1, f2, f3 ∈ R. Also

by definition of normal form we have f2
G−→ NRO,G(f2) and f3

G−→ NRO,G(f3) where

both NRO,G(f3),NRO,G(f2) are irreducible. That implies f1
G−→ NRO,G(f3) and f1

G−→
NRO,G(f2). By previous result we have NRO,G(f2) = NRO,G(f3). Let NRO,G(f2) =

NRO,G(f3) = f4 Therefore f2
G−→ f4 and f3

G−→ f4.

Finally we will show if iv holds G is a border basis. Let f1, ..., ft ∈ R such

that f = f1 and ft = 0 and for i ∈ {1, ..., t − 1} either we have f
G−→ fi+1 or

fi+1
G−→ fi. Now choose the largest index l ∈ {1, ..., t − 2} such that fl+1

G−→ fl.

Then fl+1
G−→ 0 and also we have fl+1

G−→ fl by iv) we have fl −→ 0. Now reduce

the sequence to f = f1, ..., fl, 0. If we proceed this way we will end up with f −→ h,

where h ∈ 〈O〉k and h = 0 i.e., f ∈ (g1, ..., gυ) and also by Proposition 7.1.5 c) f ∈ I

and I ∩ 〈O〉k = {0}.
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7.2 Characterization of Border Bases That is Totally Different From

the Characterization of Gröbner Bases

Definition 7.2.1. Let O = {t1, ..., tµ} be an order ideal, ∂O = {b1, ..., bυ} be its

border, and G = {g1, ..., gυ} an O−border prebasis with

gj = bj −
µ∑

m=1

αmjtm for 1 6 j 6 υ.

For 1 6 r 6 n, define the rth formal matrix Xr = (ξr
kl) by

ξ
(r)
kl =





δki if ti = xrtl

αkj if bj = xrtl

Example 7.2.2. Let O = {1, x, y} where t1 = 1, t2 = x and t3 = y. Then ∂O =

{x2, xy, y2} where b1 = x2, b2 = xy, b3 = y2 and the prebasis gi = bi −
∑µ

i=1 αijti

where αij ∈ k for 1 6 i 6 µ and ti ∈ O, G = {x2 + x + y, xy + y, y2 + x + 1} where

g1 = x2 + xy + y = b1 − α21t2 − α11t1; α21 = −1, α11 = −1

g2 = xy + y = b2 − α32t3; α32 = −1

g3 = y2 + x + 1 = b3 − α23t2 − α13t1; α23 = −1, α13 = −1

By the definition of first formal matrix, X = (ξ
(1)
kl ) by

ξ
(1)
kl =





δki if xtl = ti

αkj if xtlbj

Now we will calculate xti for every ti ∈ O.

l = 1, xt1 = x = t2

l = 2, xt2 = x2 = b1

l = 3, xt3 = xy = b2.

k = 1, ξ
(1)
11 = δ12 ξ

(1)
12 = α11 ξ

(1)
13 = α12

k = 2, ξ
(1)
21 = δ22 ξ

(1)
22 = α21 ξ

(1)
23 = α22

k = 3, ξ
(1)
31 = δ32 ξ

(1)
32 = α31 ξ

(1)
33 = α32



Chapter 7: Gröbner Basis Versus Border Basis 80

X =




δ12 α11 α12

δ22 α21 α22

δ32 α31 α32


 =




1 −1 0

0 −1 0

0 0 −1




Now we are going to construct Y therefore we will calculate yti for every ti ∈ O.

ξ
(2)
kl =





δki if ytl = ti

αkj if ytlbj

l = 1, yt1 = y = t3

l = 2, yt2 = yx = b2

l = 3, yt3y
2 = b3.

k = 1, ξ2
11 = δ13 ξ

(2)
12 = α12 ξ

(2)
13 = α13

k = 2, ξ2
21 = δ23 ξ

(2)
22 = α22 ξ

(2)
23 = α23

k = 3, ξ2
31 = δ33 ξ

(2)
32 = α32 ξ

(2)
33 = α33

Y =




δ13 α12 α13

δ23 α22 α23

δ33 α32 α33


 =




0 0 −1

0 0 −1

1 −1 0




What multiplication matrices do is, when we multiply an element in 〈O〉k by inde-

terminate (in our case it is x or y) if the result is in the border, they keep the result

in 〈O〉k. If G is an O−border basis for a zero dimensional ideal , then O is a k-vector

space basis of R/I, and each matrix formal multiplication matrices defines k−linear

maps,

ϕx : R/I 7−→ R/I

t1 7−→ xt1 = x = t2

t2 7−→ xt2 = x2 = b1 = ξ
(1)
12 t1 + ξ

(1)
22 t2 + ξ

(1)
23 t3

t3 7−→ xt3 = xy = b2 = ξ
(1)
13 t1 + ξ

(1)
23 t2 + ξ

(1)
33 t3
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and

ϕy : R/I 7−→ R/I

t1 7−→ yt1 = y = t2

t2 7−→ yt2 = xy = b2 = ξ
(2)
12 t1 + ξ

(2)
22 t2 + ξ

(2)
23 t3

t3 7−→ yt3 = y2 = b3 = ξ
(2)
13 t1 + ξ

(2)
23 t2 + ξ

(2)
33 t3

Clearly the map ϕx is multiplication by x and the map ϕy is multiplication by y.

Therefore the formal multiplication matrices have to commute, as follows,

XY =




0 −1 0

1 −1 0

0 0 −1







0 0 −1

0 0 −1

1 −1 0


 =




0 0 1

0 0 1

−1 1 0


 .

YX =




0 0 −1

0 0 −1

1 −1 0







0 −1 0

1 −1 0

0 0 −1


 =




0 0 1

0 0 1

−1 1 0


 .

Also v = c1t1+...+cµtµ ∈ 〈O〉k are encoded as column vectors (c1, ..., cµ)tr ∈ kµ and

xrv is represented as Xr(c1, ..., cµ)tr . In our example the first column of X represents

xt1 = t2 as,

X (0,1,0)tr =




δ12

δ22

δ32


 =




0

1

0


 .

Proposition 7.2.3. G is a border basis if and only if the formal multiplication ma-

trices commute, i.e.,if and only if XrXs = XsXr for all r, s ∈ {1, ..., n}[11]
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Definition 7.2.4. Let bi, bj ∈ ∂O be two distinct border terms.

i)The border terms bi and bj are called next-door neighbours if we have bi = xkbj

for some k ∈ {1, ..., n}.
ii) The border terms bi and bj are called across-the-street neighbours if xkbi = xlbj

for some k, l ∈ {1, ..., n}.
iii)The border terms bi and bj are called neighbours if they are next-door neigh-

bours or across-the-street neighbours.[8]

When we discussed Buchberger Criterion previous chapters we mentioned that the

crucial idea in Buchberger Criterion is S−polynomials. Now we will prove Buchberger

Criterion for Border basis analog of Buchberger’s criterion in order to that we will

define S−polynomials of two distinct elements gi, gj ∈ G is defined by

S(gi, gj) = (lcm(bi, bj)/bi)gi − (lcm(bi, bj)/bj)gj.

Proposition 7.2.5 (Buchberger Criterion for Border Bases). The O−border prebasis

G is an O−border basis if and only if one of the following equivalent conditions are

satisfied.

i)For all 1 6 i 6 j 6 υ, the S−polynomial S(gi, gj) reduces to 0 via
G−→ .

ii)For all neighbours bi and bj, the S−polynomial S(gi, gj) reduces to 0 via
G−→ .

7.3 Border Division Algorithm

Lemma 7.3.1. Let d ∈ N, L = Tn
6d, V be a k−vector subspace of 〈L〉k such that

(V + x1V + ... + xnV ) ∩ 〈L〉k = V, let {v1, ..., vr} be a k−basis of V, and let σ be a

degree compatible term ordering. Consider the following sequence of instructions.

1)Write L = {l1, ..., ls} such that l1 >σ l2 >σ ... >σ ls.

2)For i = 1, ..., r, write vi = ai1l1 + ... + aisls with aij ∈ k. Form the matrix

V = (aij) ∈ Matr,s(k).

3)Using row operations, transform V into row echelon form. Call the result W .

4)Let O be the set of terms in L corresponding to the columns of W in which no

row W has its first non-zero entry. Return O and stop.
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This algorithm computes an order ideal O ⊆ L such that the residue classes of the

terms in O form a k−vector space basis of 〈L〉k/V [11],[9].

Proof. The procedure is finite.Thus we prove correctness. The terms in O are linearly

independent modulo V because a non-trivial element in 〈O〉k∩V would correspond to

a row of W whose first non-zero position is in a column corresponding to a term of O.

To prove that O is an order ideal, it suffices to show that li ∈ L\O and tli ∈ L imply

tli ∈ L\O for all t ∈ Tn. Given a term li ∈ L\O, there exists a vector v ∈ V which

corresponds to the row of W whose first non-zero entry is in position i. Thus we have

li = LTσ(v). Now let lj = tli ∈ L for some t ∈ Tn. Then we see that lj = LTσ(tv).

Since σ is degree compatible, it follows that all elements of Supp(tv) are in L. Hence

the term lj corresponds to a column of the matrix W in which one of its rows has its

first non-zero entry. Thus we have tli ∈ L\O. [11]

Proposition 7.3.2 (Border Division Algorithm). Let I ⊆ R be a zero-dimensional

ideal generated by a set of non-zero polynomials f1, ..., fs, and let σ be a degree com-

patible term ordering. Consider the following sequence of instructions.

1)Let V0 ⊆ R be the k−vector subspace generated by {f1, ..., fs}.
2) Let d = max{deg(t) : t ∈ Supp(f1) ∪ ... ∪ Supp(fs)} and L = Tn

6d.

3)For i = 0, 1, ... compute Vi+1 = (Vi + x1Vi + ... + xnVi) ∩ 〈L〉k until Vi+1 = Vi.

4)Using the lemma, compute an order ideal O ⊆ L such that the residue classes

of the terms in O form a k−vector space basis of 〈L〉k/Vi.

5)Check whether ∂O ⊆ L. If this is not the case, increase d by one, replace L by

Tn
≤d, replace V0 by Vi, and continue with step 3.

6)Let O = {t1, ..., tµ} and ∂O = {b1, ..., bυ}. For j = 1, ..., υ, compute the rep-

resentation bj =
∑µ

i=1 αijti of bj ∈ 〈L〉k/Vi in terms of the basis {t1, ..., tµ} and let

gj = bj −
∑µ

i=1 αijti. Then let G = {g1, ..., gυ}, return the pair (O, G), and stop.

This algorithm returns the pair (O, G) where O is an order ideal and G is an

O−border basis of I. [11]
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Proof. Since Vi ⊆ Vi+1 for i > 0 and since dimk(〈L〉k) < ∞, the sequence V0 ⊆ V1 ⊆ ...

is eventually stationary. Thus step 3) involves only finitely many computations. To

show that the loop in step 4) and 5)is finite, we have to prove that we eventually have

O ⊆ L. Let σ be a degree compatible term ordering on Tn, and let H = {h1, h2, ..., hs′}
be the reduced Gröbner basis of I with respect to σ. For j = 1, ..., s′, there is a

representation hj = pj1f1 + ... + pjsfs with pjk ∈ R. Let d = max{deg(pjkfk) : j ∈
{1, ..., s}}. By construction, we have H ⊆ Vi after step 3) has been performed for

L = Tn
6d. Now we apply the algorithm of the lemma. It follows that none of the

leading terms LTσ(hj) is contained in O. Thus we have O ⊆ Tn\LTσ{I} and the

number of the elements in O is smaller than the dimk(R/I). Therefore it suffices to

repeat the loop until d is larger than its dimension in order to force O ⊆ L and

finiteness follows.

Next we prove the correctness. When the loop in step 3)-5) finishes we have

∂O ⊆ L. Hence step 6) can be performed and yields G ⊆ Vi ⊆ I. By construction,

the set G is an O−border prebasis. Given two neighbours bj, bk ∈ ∂O, corresponding

S−polynomial S(gj, gk) −
∑υ

l=1 clgl has its support in O. Since this polynomial is

contained in Vi and O represents a k−vector space basis of 〈L〉k/Vi, it follows that

S(gj, gk) −
∑υ

l=1 clgl = 0. Consequently, the S−polynomial S(gj, gk) reduces to zero

via
G−→, and Buchberger’s Criterion for Border Bases proves that G is an O−border

basis of the ideal.

Finally we show (g1, ..., gυ) = I. The inclusion ′ ⊆′ was already observed above.

For j = 1, ..., s, we have fj ∈ V0 ⊆ Vi ⊆ 〈L〉k. Every term in 〈L〉k\O is a multiple

of one of the terms b1, ..., bυ. Therefore we can use
G−→ to reduce fj to an element in

〈O〉k. But that element is also contained in Vi, and hence it is zero. In other words,

we have fj ∈ (g1, ..., gυ). [11]

7.4 Application

In this section we will do some applications and mention some of the crucial properties

of border basis and compare it with Gröbner Basis.
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Let k be a field where R = k[x1, ..., xn], O be a order ideal (c1, ..., cs) be the

minimal generating set for Tn\O which we also call corners of Tn\O. Let I be a zero

dimensional ideal which has an O−border basis G and {g1, ..., gs} be the elements in

the border basis corresponding to {c1, ..., cs}. Let J = (g1, ..., gs) and there exists a

term ordering σ such that LTσ(gi) = ci where i = 1, ..., s.

First we will show that dimk(R/I) = dimk(R/J). Clearly J ⊆ I since {g1, ..., gs} ∈
I. We have (c1, ..., c(s)) = Tn\O and (c1, ..., c(s)) ⊆ ∂O and therefore {g1, ..., gs} is a

O−border prebasis for J since gi = ci−
∑µ

j=1 αijti, for i = 1, ..s. Also G is a O−border

basis therefore I ∩ 〈O〉k = {0} and J ⊆ I, implies J ∩ 〈O〉k = {0}. Hence O is a

k−vector space basis for R/I and R/J and dimk(R/I) = dimk(R/J).

Now we will show for Oσ(I), an order ideal Tn\LTσ{I} we have O = Oσ(I).

Macaluay Basis theorem implies that for ideal I if we denote the set of terms in

Tn\LTσ{I} by Oσ(I), the residue classes of the elements of Oσ(I) defines k−vector

space basis for R/I. And also O forms a k−vector space basis for R/I since G is a

O−border basis. Hence dim(Oσ(I)) = dim(O). Let t 6= 0 and t ∈ Tn\Oσ(I). Then

t is not an element of Oσ(I), t ∈ LTσ{I} ⊆ I. This implies t is not an element

of O since I ∩ 〈O〉k = {0}. Hence Oσ(I) ⊆ O and Oσ(I) = O by previous result

dimk(R/I) = dimk(R/J).

Finally we will show the crucial part which is, the set {g1, ..., gs} is the reduced

Gröbner basis of I. Let us show the reduced Gröbner Basis by Gσ. Notice that

{c1, ..., cs} ∈ ∂O. By definition of reduce Gröbner basis, an element from the re-

duced Gröbner basis has the form ci − hi where LTσ{gi} = ci and ci ≡ hi mod Gσ

where hi ∈ Tn\LTσ{I}. Therefore hi ∈ 〈O〉k = 〈Oσ(I)〉k. But this is the form of an

element in the Oσ(I)−border basis G′. Hence G′ is the reduced Gröbner basis.

Let us give an example that we can apply border basis algorithm,discuss the advan-

tages of using it rather than Buchberger’s Algorithm and show the border basis that

is calculated by Border Basis Algorithm contains reduced Gröbner Basis concretely.

Example 7.4.1. Let R = Q[x, y]. Apply border basis algorithm to I = {x2 − xy +

y2, x3 − x2y, x2y − xy2, xy2 − y3, x3 + y3}. By 7.3.2,
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1)Let V0 = 〈f1, f2, f3, f4, f5〉Q = 〈x2−xy+y2, x3−x2y, x2y−xy2, xy2−y3, x3+y3〉Q
2)Let d = 3 and L = {x3, x2y, xy2, y3, x2, xy, y2, x, y, 1}.
3)V1 = 〈V1 +xV1 +yV1〉Q∩〈L〉Q = 〈f1, f2, f3, f4, f5, xf1, yf1〉Q = 〈x2−xy+y2, x3−

x2y, x2y−xy2, xy2− y3, x3 + y3, x3−x2y +xy2, x2y−xy2 + y3〉Q. Since deg(xifj) > 3,

xi ∈ {x, y} and j = 2, 3, 4, 5. Therefore V1 = V2.

4)Now we will form the matrix,

V =




∗ x3 x2y xy2 y3 x2 xy y2 x y 1

f1 0 0 0 0 1 −1 1 0 0 0

f2 1 −1 0 0 0 0 0 0 0 0

f3 0 1 −1 0 0 0 0 0 0 0

f4 0 0 1 −1 0 0 0 0 0 0

f5 1 0 0 1 0 0 0 0 0 0

xf1 1 −1 1 0 0 0 0 0 0 0

yf1 0 1 −1 1 0 0 0 0 0 0




Notice that the original matrix is the matrix that is separated by the lines. The

extra parts are only for to representing the notion. V is not in echelon form, we will

find the row echelon form of it.

W =




x3 x2y xy2 y3 x2 xy y2 x y 1

1 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 -1 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




By the step 4 of the lemma7.3.1 O will be the set of the terms in L corresponding
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to the columns of W in which no row of W has its first non zero entry. Therefore we

let O = {1, x, y, y2, xy}.
5)∂O ∈ L.

6) ∂O = {x2, x2y, xy2, y3} and O−border basis is G = {g1, g2, g3, g4} where g1 =

x2y − xy + y2 = f1, g2 = xy2 = xf1 − f2, g3 = x2y = yf1 − f4, g4 = y3 = f1 − 2f4.

G = {x2y − xy + y2, xy2, x2y, y3.} Let Gσ be the reduced Gröbner basis and G′ be

Gröbner Basis of I. I we calculate G′ we will have G′ = {x2− xy + y2, xy2− y3,−y3}
and the reduced Gröbner Basis (see appendix B.9) will be Gσ = {y3, x2−xy+y2, xy2}.
As we noted, Gσ ⊆ G.

The difference between Buchberger Algorithm and Border Basis Algorithm is, the

Border Basis Algorithm requires only terms up to degree 3 but during the Buchberger

Algorithm we came across to terms with larger degree as in x4y2 and x3y2. Therefore

we end up with terms with degree 6 that has to be reduced. But Border Basis Algorithm

avoids from redundant calculations that Buchberger Algorithm has.

If we start with a zero dimensional ideal I, we know that exists an order ideal. The

order ideal that we calculate with Border Basis Algorithm is actually Oσ(I) which

corresponds to Tn\LTσ{I} where σ is the given order. Therefore the border basis

associated to Oσ(I) contains the reduced Gröbner Basis. But we can find other order

ideals O 6= Oσ(I) and border basis associated to them ,that may not contain reduced

Gröbner Basis, with some nice properties. One of those nice properties we will discuss

in this thesis is symmetry.

Let R = k[x1, ..., xn] and A ⊆ R. We say that A is invariant under the action of of

the symmetric group(or A is symmetric) if f(x1, ..., xn) ∈ A then f(xπ(1), ..., xπ(n)) ∈ A

for every permutation π of {1, ..., n}.[11] We will use π(f(x1, ..., xn)) = f(xπ(1), ..., xπ(n)).

Let O = {t1, ..., tµ} be an order ideal in Tn, and let I ⊆ R be a zero-dimensional ideal.

Assume that the residue classes or the elements form a k−vector space basis of R/I

and both O and I are symmetric. Since O form a k−vector space basis G is a

O−border basis where ∂O = {b1, ..., bυ} andG = {g1, ..., gυ}. And any element gi ∈ G
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has the form

gi = {bi −
µ∑

j=1

αijti}

where
∑µ

j=1 αijti} ∈ 〈O〉k. Clearly π(gi) ∈ I and π(
∑µ

j=1 αijti}) ∈ 〈O〉k since I and

O are both symmetric. What about π(bi) ∈ ∂O? For any bi ∈ ∂O, bi = xjti 6= 0

for xj ∈ {x1, ..., xn} and ti ∈ O. Assume π(bi) = π(xjti) is not an element of the

border. Then π(xjti) ∈ O and since O is symmetric π−1(π(xjti)) = xjti ∈ O. But

that implies xjti ∈ O ∩ ∂O which contradicts the definition or border and implies

border is symmetric. Therefore π(gi) = π({bi) − π(
∑µ

j=1 αijti)} forms an element in

a O−border prebasis say G′ and since the residue classes of the elements of O forms

k−vector space G′ is border basis and by uniqueness G = G′. As a result we can

say if the zero-dimensional ideal and the order ideal are both symmetric, then the

O−border basis is symmetric.

Finally we will show another disadvantage of Gröbner Basis over Border Basis in

an example.

Example 7.4.2. Let R = C[x, y], f1 = 1
4
x2 + y2 − 1 and f2 = x2 + 1

4
y2 − 1,

I = (f1, f2) and let Oσ(I) be the order ideal Tn\LTσ{I} with respect to the term

order σ =DegLex. Then LTσ(I) = (x2, y2) and Oσ(I) = {1, x, y, xy} and the border

∂Oσ(I) = {x2, x2y, xy2 − 4
5
x, y2 − 4

5
}. The border basis

G = {x2 − 4

5
, x2y − 4

5
y, xy2 − 4

5
x, y2 − 4

5
},

and the reduced Gröbner Basis of I is,

Gσ = {x2 − 4

5
, y2 − 4

5
}.

Now let I∗ = (1
4
x2 + y2 + εxy − 1, x2 + 1

4
y2 + εxy − 1).

O = {1, x, y, xy} is an order ideal of both I and I∗ where Oσ(I∗) = {1, x, y, y2}.
The reduced Gröbner Basis, O Border basis,

G∗ = {x2+
4

5
εxy−4

5
, x2y− 16ε

16ε2 − 25
x+

20

16ε2 − 25
y, xy2+

20

16ε2 − 25
x− 16ε

16ε2 − 25
y, y2+

4

5
εxy−4

5
}
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and the reduced Gröbner Basis is

G∗
σ = {x2 − y2, xy +

5

4ε
y2 − 1

ε
, y3 − 16ε

16ε2 − 25
x +

20

16ε2 − 25
y}.

[11]

As seen, a small change made in the reduced Gröbner Basis caused a big change.

However in Border Basis there is an ε succession and if we set ε = 0 we will end up

with the original border basis that we started.
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Chapter 8

CONCLUSION

In this thesis we start with reviewing some commutative algebra. We recover

fundamental theorems of Hilbert such as Hilbert Basis theorem and Nullstellensats

that laid the foundations of commutative algebra. Then we introduce the relatively

modern theory of Gröbner bases which provides indispensable tool for computational

purposes. We go on to introduce two problems that are seemingly unrelated to com-

mutative ring theory. These problems have background in combinatorics and opti-

mization. We establish the link between these problems and the Grobner bases and

demonstrate explicit solutions. These results are made precise in Chapter 6 and sup-

ported by the software (CoCoA) we use, see appendix. Last two chapters are devoted

a trend that has emerged quite recently. Border bases are in some sense a general-

ization of Grobner bases. We present their theory extensively including the essential

(border) polynomial division and construction algorithms that this theory relies on.

We include evidence that suggests that border bases display better combinatorial

behaviors. This enables them to be computed more efficiently.
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Appendix A

A.1

CoCoA Code that calculates the Gröbner Basis,

Define Gbasis(J)

If Type(J)=LIST Then J:=Ideal(J) EndIf;

G:=Gens(J);

H:=[];

For A:=1 To Len(J)-1 Do

For B:=A+1 To Len(J) Do

If Not G[A]-G[B]=0 Then

Append(H,[G[A],G[B]]);

Else

Remove(G, B);

EndIf;

EndFor;

EndFor;

M:=1; While M¡=Len(H) Do

N:=LCM(LT(H[M][1]),LT(H[M][2]));

S:=((N/LT(H[M][1]))*H[M][1])-((N/LT(H[M][2]))*H[M][2]);

Q:=DivAlg(S,G);

M:=M+1;

If Not IsZero(Q.Remainder) Then

For A:=1 To Len(G) Do

Append(H,[Q.Remainder,G[A]]);

EndFor;
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Append(G,Q.Remainder);

EndIf;

EndWhile;

Return G;

EndDefine;
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Appendix B

B.1

R::=Z \(3)[x[1..8]], Lex;

Use R;

I:=Ideal(x1, x
3
2− x2, x

3
3− x3, x

3
4− x4, x

3
5− x5, x

3
6− x6, x

3
7− x7, x

3
8− x8, x

2
1 + x1x3 +

x2
3 − 1, x2

1 + x1x4 + x2
4 − 1, x2

1 + x1x5 + x2
5 − 1, x2

2 + x2x4 + x2
4 − 1, x2

2 + x2x7 + x2
7 −

1, x2
2 + x2x8 + x2

8 − 1, x2
3 + x3x6 + x2

6 − 1, x2
3 + x3x8 + x2

8 − 1, x2
4 + x4x5 + x2

5 − 1, x2
5 +

x5x6 + x2
6 − 1, x2

6 + x6x7 + x2
7 − 1, x2

6 + x6x8 + x2
8 − 1, x2

7 + x7x8 + x2
8 − 1);

GB.Start-GBasis(I);

GB.Step(I);

GB.Complete(I);

I.GBasis;

(x1, x
2
5+x5x6+x2

6−1,−x6−x7−x8,−x3+x7,−x2−x7−x8,−x7−x8, x
2
8−1,−x4−x5)

ReducedGBasis(I);

(x7 + x8, x
2
8 − 1, x4 + x5, x1, x

2
5 − 1, x6, x3 + x8, x2)

B.2

R::=Z\(5)[x[1..5]], Lex;

Use R;

I:=Ideal( x4
1 − 1, x4

2 − 1, x4
3 − 1, x4

4 − 1, x4
5 − 1, x3

1 +x2
1 x3 +x1 x2

3 +x3
3 , x3

1 +x2
1 x4 +

x1 x2
4 +x3

4 , x3
1 +x2

1 x5 +x1 x2
5 +x3

5 , x3
2 +x2

2 x3 +x2 x2
3 +x3

3 , x3
2 +x2

2 x4 +x2 x2
4 +x3

4 , x3
2 +

x2
2 x5 +x2 x2

5 +x3
5 , x3

3 +x2
3 x4 +x3 x2

4 +x3
4 , x3

3 +x2
3 x5 +x3 x2

5 +x3
5 , x3

4 +x2
4 x5 +x4 x2

5 +x3
5 );
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GB.Start-GBasis(I);

GB.Step(I);

GB.Complete(I);

I.GBasis;

( x3
4 + x2

4 x5 + x4 x2
5 + x3

5 , x4
5 − 1,−x2

3 − x3 x4 − x3 x5 − x2
4 − x4 x5 − x2

5 ,−2x2 −
2x3 − 2x4 − 2x5 ,−2x1 − 2x3 − 2x4 − 2x5 )

ReducedGBasis(I);

( x3
4 + x2

4 x5 + x4 x2
5 + x3

5 , x4
5 − 1, x2

3 + x3 x4 + x3 x5 + x2
4 + x4 x5 + x2

5 , x2 + x3 +

x4 + x5 , x1 + x3 + x4 + x5 )

B.3

R::=Z\(3)[x[1..5]], Lex;

Use R;

I:=Ideal( x3
1 − x1 , x3

2 − x2 , x3
3 − x3 , x3

4 − x4 , x3
5 − x5 , x2

1 + x1 x3 + x2
3 − 1, x2

1 +

x1 x4 +x2
4 −1, x2

1 +x1 x5 +x2
5 −1, x2

2 +x2 x3 +x2
3 −1, x2

2 +x2 x4 +x2
4 −1, x2

2 +x2 x5 +

x2
5 − 1, x2

3 + x3 x4 + x2
4 − 1, x2

3 + x3 x5 + x2
5 − 1, x2

4 + x4 x5 + x2
5 − 1 );

GB.Start-GBasis(I);

GB.Step(I);

GB.Complete(I);

I.GBasis;

[-1]

ReducedGBasis(I);

[1]

B.4

R::=Z\(5)[x[1..9]], Lex;

Use R;

I:=Ideal( x4
1 − 1, x4

2 − 1, x4
3 − 1, x4

4 − 1, x4
5 − 1, x4

6 − 1, x4
7 − 1, x4

8 − 1, x4
9 − 1, x3

1 +

x2
1 x4 +x1 x2

4 +x3
4 , x3

1 +x2
1 x6 +x1 x2

6 +x3
6 , x3

1 +x2
1 x7 +x1 x2

7 +x3
7 , x3

1 +x2
1 x8 +x1 x2

8 +
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x3
8 , x3

2 +x2
2 x3 +x2 x2

3 +x3
3 , x3

2 +x2
2 x4 +x2 x2

4 +x3
4 , x3

2 +x2
2 x6 +x2 x2

6 +x3
6 , x3

2 +x2
2 x7 +

x2 x2
7 +x3

7 , x3
3 +x2

3 x5 +x3 x2
5 +x3

5 , x3
3 +x2

3 x7 +x3 x2
7 +x3

7 , x3
3 +x2

3 x9 +x3 x2
9 +x3

9 , x3
4 +

x2
4 x5 +x4 x2

5 +x3
5 , x3

4 +x2
4 x6 +x4 x2

6 +x3
6 , x3

4 +x2
4 x7 +x4 x2

7 +x3
7 , x3

4 +x2
4 x9 +x4 x2

9 +

x3
9 , x3

5 +x2
5 x6 +x5 x2

6 +x3
6 , x3

5 +x2
5 x7 +x5 x2

7 +x3
7 , x3

5 +x2
5 x8 +x5 x2

8 +x3
8 , x3

5 +x2
5 x9 +

x5 x2
9 + x3

9 , x3
6 + x2

6 x7 + x6 x2
7 + x3

7 , x3
6 + x2

6 x9 + x6 x2
9 + x3

9 , x3
7 + x2

7 x8 + x7 x2
8 + x3

8 )

GB.Start-GBasis(I);

GB.Step(I);

GB.Complete(I);

ReducedGBasis(I);

( x7 − x9 , x3
8 + x2

8 x9 + x8 x2
9 + x3

9 , x2
5 + x5 x8 + x5 x9 + x2

8 + x8 x9 + x2
9 , x4 + x5 +

x6 + x9 , x1 − x5 , x2 − x5 , x2
3 + x3 x5 + x3 x9 − x5 x8 − x2

8 − x8 x9 , x3
6 + x2

6 x9 + x6 x2
9 +

x3
9 , x4

9 − 1, x5 x6 − x5 x8 + x2
6 + x6 x9 − x2

8 − x8 x9 )

B.5

R::=Z/(3)[x[1..9]], Lex;

Use R;

I:=Ideal( x3
1 −x1 , x3

2 −x2 , x3
3 −x3 , x3

4 −x4 , x3
5 −x5 , x3

6 −x6 , x3
7 −x7 , x3

8 −x8 , x3
9 −

x9 , x2
1 +x1 x4 +x2

4 −1, x2
1 +x1 x6 +x2

6 −1, x2
1 +x1 x7 +x2

7 −1, x2
1 +x1 x8 +x2

8 −1, x2
2 +

x2 x3 +x2
3 −1, x2

2 +x2 x4 +x2
4 −1, x2

2 +x2 x6 +x2
6 −1, x2

2 +x2 x7 +x2
7 −1, x2

3 +x3 x5 +

x2
5−1, x2

3 +x3 x7 +x2
7−1, x2

3 +x3 x9 +x2
9−1, x2

4 +x4 x5 +x2
5−1, x2

4 +x4 x6 +x2
6−1, x2

4 +

x4 x7 +x2
7 −1, x2

4 +x4 x9 +x2
9 −1, x2

5 +x5 x6 +x2
6 −1, x2

5 +x5 x7 +x2
7 −1, x2

5 +x5 x8 +

x2
8 −1, x2

5 +x5 x9 +x2
9 −1, x2

6 +x6 x7 +x2
7 −1, x2

6 +x6 x9 +x2
9 −1, x2

7 +x7 x8 +x2
8 −1 )

GB.Start-GBasis(I);

GB.Step(I);

GB.Complete(I);

I.GBasis;

[-1]

ReducedGBasis(I);

[1]
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B.6

Use S::=Q[x,u,v,w], Lex;

K:=Ideal( −x4 − x + u,−x3 + v,−x5 + w );

GB.Start-GBasis(K);

GB.Step(K);

GB.Complete(K);

K.GBasis;

( −u3 + v4 + 3v3 + 3v2 + v, u2v − v2w − 2vw − w,−uw + v3 + v2,−uv3 + vw2 +

w2, x− uv2 + uv − u + w2, v5 − w3 )

F:=x;

DivAlg(F,K.GBasis);

Record[Quotients = [0, 0, 0, 0, 1, 0], Remainder = uv2 − uv + u−w2]

B.7

Let y1 = x3, y2 = x4, y3 = x5.

Use R::=Q[x[1..5]], Lex;

K:=Ideal( −x3
1 x4

2 + x3 ,−x2
1 x3

2 + x4 ,−x1 x2 + x5 );

GB.Start-GBasis(K);

GB.Step(K);

GB.Complete(K);

K.GBasis; [ −x1 x2 + x5 ,−x2 x2
5 + x4 , x1 x4 − x3

5 , x3 − x4 x5 ]

F:=x10
1 x4

2 ;

DivAlg(F,K.GBasis);

Record[Quotients = [ −x3
1 x4

2 + x3 ,−x2
1 x3

2 + x4 ,−x1 x2 + x5 ],

Remainder =x6
1 x4

5 ]
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B.8

Let x3 = w, x4 = y1, x5 = y2, x6 = y3, x7 = y4.

Use R::=Q[x[1..7]], Lex;

K:=Ideal( x1 x2 x3 − 1,−x5
1 x3 + x4 ,−x1 x2

2 + x5 ,−x2 x3 + x6 ,−x2
1 x3 + x7 );

GB.StartGBasis(K);

GB.Step(K);

GB.Complete(K);

K.GBasis; [ −x3 +x2
6 x7 ,−x2 +x5 x2

6 x7 ,−x4 +x5 x3
7 ,−x5 x3

6 x2
7 +1, x1 −x5 x2

6 x2
7 ]

F:=x10
1 x4

2 ;

DivAlg(F,K.GBasis);

Record[Quotients = [−x7
1 , 0, 0,−x6

1 x6 x7−x5
1 x7−x3

1 x5 x6 x3
7−x2

1 x5 x3
7−x2

5 x6 x5
7 , x6

1 x2
6 x7 +

x5
1 x6 x7 + x4

1 x7 + x3
1 x5 x2

6 x3
7 + x2

1 x5 x6 x3
7 + x1 x5 x3

7 + x2
5 x2

6 x5
7 ],

Remainder = x2
5 x6 x5

7 ]

B.9

Use S::=Q[x,y], Lex;

K:=Ideal(x2 − xy + y2, x3 − x2y, x2y − xy2, xy2 − y3, x3 + y3);

GB.Start-GBasis(K);

GB.Step(K);

GB.Complete(K);

K.GBasis;

[x2 − xy + y2, xy2 − y3,−y3]

ReducedGBasis(K);

[y3, x2 − xy + y2, xy2]
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bridge University Press ,2003.

[8] A. Kehren, M. Kreuzer, Characterization of Border Basis, Journal of Pure and

Applied Algebra ,196 (2005)251-270.

[9] A. Kehren, M. Kreuzer, Computing of Border Basis, Journal of Pure and Applied

Algebra ,205 (2006)279-295.

[10] M. Kreuzer, L. Robbiano, Computational Commutative Algebra I, Springer-

Verlag Berlin Heidelberg, 2000.

[11] M. Kreuzer, L. Robbiano, Computational Commutative Algebra II, Springer-

Verlag Berlin Heidelberg, 2005.



Bibliography 99

[12] CoCoA Team, CoCoA: a system for doing Computations in Commutative Alge-

bra, Available at http://cocoa.dima.unige.it


