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ABSTRACT

In this thesis we study two distinct mechanisms of phase diffusion in atomic Bose-

Einstein condensates (BEC’s). The first one is studied via a so-called toy-model and

gives a finite life time that the ground state of a Bose-Einstein condensate can remain

coherent. This mechanism, which was before used for coherent states, is generalized

to squeezed and the thermal-coherent states, which we introduce as states having

both coherent and thermal character. Then the recently introduced thin spectrum

formalism is reviewed and applied to BEC’s in order to obtain a decay rate for ex-

citations. Relation of thin spectra with Spontaneous Symmetry Breaking (SSB) is

studied and some expansions on the formalism are made.
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ÖZETÇE

Bu tezde, atomik Bose-Einstein Yoǧunlaşıklarını etkileyen iki faz bozunum mekaniz-

masını inceliyoruz. Bu mekanizmalardan ilkini, Bose-Einstein Yoǧunlaşıklarının temel

durumunun özuyumlu kalabildiǧi sonlu bir ömür öngören ve basit model adı verilen

bir yöntemle araştırdık. Daha önce özuyumlu durumlar için kullanılan bu yöntemi,

sıkıştırılmış-özuyumlu ve termal-özuyumlu durumlara da uyguladık ve bunun için

hem termal hem de özuyumlu özellik taşıyan termal-özuyumlu durumları tanımladık.

Daha sonra, yakın zamanda bulunmuş olan ince spektrum formalizmi hakkında bilgi

verdik ve bu formalizmi atomik Bose-Einstein Yoǧunlaşıklarına uygulayarak uyarılmış

durumlar için bir bozunum hızı elde ettik. İnce spektrumların Kendiliǧinden Simetri

Bozunumu ile ilişkisini inceledik ve bu formalizme birkaç ekleme yaptık.
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tr . The fastest decay (solid line) denotes the result

for a coherent state, while the dashed (dotted) line refers to that of a

squeezed state with ζ = 0.5 (ζ = 0.9). As expected, the choice of a

squeezed state with real parameters α and ζ improves the coherence

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The phase space distributions of the initial states used in Fig. 2.1.

Curves (a), (b) and (c) correspond to ζ = 0.9, ζ = 0.5 and ζ = 0,

respectively. Although all of them should be centered at α = 10, they

are shifted for convenience. . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Time evolution of the Q-function for squeezed-coherent state with α =

10 and ζ = 0.5 for different values of tωtr. Figures (a), (b), (c) and (d)

shows the Q-function distributions for tωtr = 0, tωtr = 0.02, tωtr = 0.10

and tωtr = 0.40. It is seen that as the order parameter decays, the

broken phase symmetry is restored since the Q-function distribution

becomes rotationally symmetric. . . . . . . . . . . . . . . . . . . . . 17

ix



2.4 Decay of the order parameter for the coherent state and squeezed states

of ζ = 0.5, ζ = 0.5i and ζ = −0.5 as a function of tωtr. The solid line is

the coherent state, the dashed line is the squeezed state with ζ = 0.5,

and the dotted ones are the squeezed states with ζ = 0.5i and ζ = −0.5

Only the state with real squeezing parameter has a longer life time than

the coherent state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 The phase space distributions of the initial states used in Fig. 2.4.

Curves (a), (b), (c) and (d) correspond to ζ = 0.5, ζ = 0, ζ = −0.5

and ζ = 0.5i, respectively. Although all of them should be centered at

α = 10, they are shifted for convenience. . . . . . . . . . . . . . . . . 19

2.6 The short time decays for thermal-coherent states. The lines corre-

spond respectively to T = 1000 nK, 100 nK, 10 nK, 1 nK, and 0.001

nK from left to right. The humps are due to the ground degeneracy

E0 = E1. Even as the temperature approaches zero, the state (2.14)

does not approach the ordinary coherent state D(α)|0〉. Instead, it is

a superposition state D(α)(|0〉+ |1〉)/√2. . . . . . . . . . . . . . . . . 20

3.1 The decay of |ρ(red)
od | as a function of t/tc. . . . . . . . . . . . . . . . . 25

4.1 The relative decay of the off diagonal element in equation (4.9) as a

function of t/tc for unit values of parameters. . . . . . . . . . . . . . 28

4.2 Decay of the off diagonal element at T = 10 nK as a function of tωtr.

Dashed line shows the decay in the case of the thermal-coherent occu-

pation and the solid line shows that in the case of the thermal occupation. 30

4.3 Decay of the off diagonal element for T = 100 nK and thermal-coherent

occupation of the zero mode as a function of tωtr. Dashed line shows

the decay in the case of the thermal-coherent occupation and the solid

line shows that in the case of the thermal occupation. . . . . . . . . . 31

x



Chapter 1: Preliminaries 1

Chapter 1

PRELIMINARIES

1.1 Introduction

Towards the end of the first quarter of 20th century, it was proposed that if a macro-

scopic system of indistinguishable bosons is cooled enough, a finite fraction of the

bosons will occupy the same quantum state [1]. Although the first observation of

superfluid Helium was made shortly after their papers [2], it took 70 years for the

cooling and trapping technology to advance enough to obtain Bose-Einstein conden-

sation (BEC) in weakly interacting, dilute atomic gases [3]. Contrary to the case for

liquid Helium, it is quite easy to construct a microscopic theory for dilute gases and

therefore they prove to be an excellent playground to study the quantum nature of

matter. Many interesting phenomena, such as quantized vortices and vortex arrays,

have been studied extensively, both experimentally and theoretically, in such systems.

Shortly after the initial discovery of BEC, it was immediately understood that

a finite sized condensate suffers from quantum phase diffusion [4, 5], an interaction

driven decoherence due to atomic number fluctuations from within the condensate

[6], in addition to the usual decoherence from an imperfect isolation from the envi-

ronment. The reason of this is that Bose-Einstein condensation is a symmetry broken

state, in which the gauge symmetry is spontaneously broken. There is always a finite

probability of tunneling from a ground state to another degenerate ground state, so

the Hamiltonian of the system seeks to restore the broken symmetry.

In this study we study a third source of decoherence, which affects the excitations

on a condensate. This mechanism is related with the presence of a thin spectrum [7],
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which is in turn related to spontaneous symmetry breaking, via the Nambu-Goldstone

Theorem [8]. The idea of thin spectrum and its relation with decoherence have been

proposed recently and is studied extensively for only but one model, namely the Lieb-

Mattis model. Our work, besides giving life times for BEC’s, is the first application

of thin spectrum formalism on another system.

After some preliminary comments, we begin by a review of a toy-model calculation

for various ground-states. We then review the idea of thin spectrum and show its

relation with decoherence for any quantum system. Then we apply this idea to atomic

Bose-Einstein condensates and obtain life times for quasiparticle excitations. Finally

we generalize the idea of thin spectrum to a system with more than one spontaneously

broken symmetries.

1.2 Spontaneous Symmetry Breaking

The concept of symmetry is not a new one, and indeed it can be traced back to the first

philosophers. At this point it is instructive to cite Leibniz, speaking of Archimedes:

”But in order to proceed from mathematics to natural philosophy, another principle

is requisite, as I have observed in my Theodicy: I mean, the principle of a sufficient

reason, viz. that nothing happens without a reason why it should be so, rather than

otherwise. And therefore Archimedes being to proceed from mathematics to natural

philosophy, in his book De Aequilibrio, was obliged to make use of a particular case

of the great principle of a sufficient reason. He takes it for granted, that if there be

a balance, in which everything is alike on both sides, and if equal weights are hung

on the two ends of that balance, the whole will be at rest. ’Tis because no reason

can be given, why one side should weigh down, rather than the other. Now, by that

single principle, viz. that there ought to be a sufficient reason why things should be

so, and not otherwise, one may demonstrate the being of God, and all the other parts

of metaphysics or natural theology; and even, in some measure, those principles of

natural philosophy, that are independent upon mathematics: I mean, the dynamical

principles, or the principles of force.”
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Although Leibniz uses the symmetry concept to obtain metaphysical conclusions,

in doing so he outlines the intuitive basics which are related with physical theories.

However, this intuitive ideas had to be revised when it was found that asymmet-

ric states can emerge from symmetric Hamiltonians [9]. In many common physical

systems, the instability of the system’s symmetry is proportional to the number of

degrees of freedom [11]. Therefore, in the thermodynamic limit where N → ∞, it is

possible to have an asymmetric state emerge from a symmetric Hamiltonian so long

as there is an infinitesimal fluctuation; which is always present in quantum physics

due to Heisenberg’s uncertainty principle. This phenomenon is called the spontaneous

symmetry breaking (SSB) and is observed in many subfields of physics. It implies that

quantitative differences may lead to qualitative ones, and therefore ”More is different”

[9].

1.3 Hamiltonian

We consider a homogenous system of indistinguishable bosonic atoms in no external

trapping potential. We denote the state of this system by |n0, n~k1
, n~k2

, ...〉 where n~k

is the number of atoms with wave vector ~k and n0 is the number of atoms with zero

momentum. The annihilation operator a~k, which annihilates a boson with ~k, and its

conjugate are defined as

a~k|..., n~k, ...〉 =
√

n~k|..., n~k − 1, ...〉, (1.1)

a†~k|..., n~k, ...〉 =
√

n~k + 1|..., n~k + 1, ...〉. (1.2)

Their commutation relations are

[a~k, a
†
~k′
] = δ~k,~k′ , (1.3)

[a~k, a~k′ ] = [a†~k, a
†
~k′
] = 0. (1.4)

Unless otherwise necessary, the operator hats on these operators will be omitted.

If there is no interatomic interaction, the energy eigenstates are the plane waves

which have energy E~k = h̄2k2/2m where m is the mass of the atoms. In this case the
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second quantized Hamiltonian is

H =
∑

~k

E~ka
†
~k
a~k. (1.5)

As the gas we consider is dilute and weakly interacting, we assume that there is

only a contact (zero range) interaction between the bosons. Such an interaction can

be represented by a Dirac delta, that is V (~r, ~r′) = uδ(~r − ~r′), where u is a constant,

which is for our case

u =
4πh̄2as

m
(1.6)

with as as the s-wave scattering length. The sign of this constant u determines

whether the interaction is attractive or repulsive. Although it is possible to obtain

meta-stable condensates with attractive interaction (as < 0) too, throughout this

study we consider only repulsive interactions.

Second quantized form of a general two-body potential V (~r, ~r′) is given by

Vsec =
1

2

∫ ∫
Ψ̂†(~r)Ψ̂†(~r′)V (~r, ~r′)Ψ̂(~r′)Ψ̂(~r)ddrddr′ (1.7)

where the field operator Ψ̂(~r) has the expansion

Ψ̂(~r) =
∑

~k

ψ~k(~r)a~k. (1.8)

Here, ψ~k(~r) is the wave function of the ~kth mode and integrals are over the whole d-

dimensional space. Substituting the contact potential into this expression, its second

quantized form is found as

Vsec =
ũ

2

∑

~k,~p,~q

a†~p+~qa
†
~k−~q

a~ka~p (1.9)

in terms of a new interaction constant ũ = u/V where V is the quantization volume.

Including this interaction, the full Hamiltonian becomes:

H =
∑

~k

E~ka
†
~k
a~k +

ũ

2

∑

~k,~p,~q

a†~p+~qa
†
~k−~q

a~ka~p (1.10)

In order to fix the average number of atoms, we also include a chemical potential,

µ, in E~k, that is

E~k =
h̄2k2

2m
− µ. (1.11)
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1.4 Quasiparticles

We consider the ground state |Ψ〉 of a Bose-Einstein condensed system [10]. Since

the interparticle interaction is weak there is macroscopic occupation only in the zero-

momentum state.

Let |Ψ〉 = |N0, N~k1
, N~k2

, ...〉. Then N0 À 1 and N~k 6=0 ∼ 1. Therefore

a0|Ψ〉 =
√

N0|N0 − 1, N~k1
, N~k2

, ...〉, (1.12)

'
√

N0|N0, N~k1
, N~k2

, ...〉, (1.13)

'
√

N0|Ψ〉. (1.14)

This suggests that treating a0 separately might be useful. Also, since N~k 6=0 ¿ N0, it is

possible to omit terms which are 3rd or 4th order in a~k 6=0. The Hamiltonian becomes:

H = Hz +He, (1.15)

Hz =
ũ

2
(n̂2

0 − n̂0)− µn̂0 (1.16)

He =
∑

k 6=0

[(
E~k + 2ũn̂0

)
n̂~k +

ũ

2

(
a†~ka

†
−~k

a0a0 + h.c.
)]

(1.17)

where n̂~k = a†~ka~k. Note that these two parts of the Hamiltonian do not commute with

each other and

[Hz,He] =
ũ2

2

∑

k 6=0

[
a†~ka

†
−~k

(
−n̂0a

2
0 − a2

0n̂0 + a2
0 +

2µ

ũ
a2

0

)
− h.c.

]
. (1.18)

Considering the fact that

[a0, a
†
0] = 1 (1.19)

¿ N0 (1.20)

one might replace a0’s and a†0’s with the c-number
√

N0 and in this way ignore their

non-commutativity:

a0 →
√

N0. (1.21)
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This prescription is called the Bogoliubov approximation and leads to [Hz,He] = 0.

(However, note that instead of
√

N0, one could use eiθ
√

N0 for any real θ. By choosing

θ = 0 we explicitly break the phase symmetry.) The excitation Hamiltonian is now

He =
∑

k 6=0

[
(Ek + 2uρ0)n̂~k +

uρ0

2
(â†~kâ

†
−~k

+ h.c.)
]

(1.22)

where we have defined ρ0 = N0/V .

According to the usual Bogoliubov theory, a0’s in Hz are replaced by
√

N0 too.

This corresponds to ignoring the quantum nature of the condensate mode. However,

since we have assumed a0|Ψ〉 =
√

N0|Ψ〉, the condensate mode must have some phase

characteristic and hence shall have nonzero number fluctuations. (The results of

various interference experiments achieved by BEC’s support this reasoning.) Indeed,

the toy model calculations of chapter 2 will show that the zero mode decoheres in

time and therefore its quantum nature is important. For this reason we don’t make

the Bogoliubov replacement for the zero mode Hamiltonian. The total Hamiltonian

is

H =
ũ

2
(n̂2

0 − n̂0)− µn̂0 +
∑

k 6=0

[
(Ek + 2uρ0)n̂~k +

uρ0

2
(â†~kâ

†
−~k

+ h.c.)
]
. (1.23)

The excitation HamiltonianHe and zero-mode HamiltonianHz now commute with

each other. However, the price paid is that the total number operator N̂ =
∑

~k n̂~k

no longer commutes with the total Hamiltonian and the theory is no longer number-

conserving.

The excitation Hamiltonian (1.22) has off-diagonal terms a−~ka~k and a†~ka
†
−~k

. We

seek to find a canonical transformation to define new operators b~k such that

He =
∑

k 6=0

εkb
†
~k
b~k + constants (1.24)

where ε~k are some constants. Such a transformation has been developed by Bogoliubov

[12]. Let

a~k = u~kb~k + v~kb
†
−~k

(1.25)
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with real u~k, v~k and u~k = u−~k, v~k = v−~k. Imposing the canonical commutation

relations [b~k, b
†
~k′

] = δ~k~k′ and [b~k, b~k′ ] = [b†~k, b
†
~k′

] = 0 implies u2
~k
− v2

~k
= 1. So one can

parameterize them as u~k = cosh ξ~k and v~k = sinh ξ~k. Equating right hand sides of

equations (1.22) and (1.24) it is easy to find that

tanh 2ξ~k =
ρ0u

E~k + 2uρ0

(1.26)

and

ε~k =
√

(E~k + 2uρ0)2 − (uρ0)2. (1.27)

Now that the Hamiltonian has become of the form (1.24) we have a group of non-

interacting bosons with energies ε~k. These bosons are called the quasiparticles and

the corresponding operators b~k and b†~k are called the quasiparticle operators.

The gaplessness condition, ε~k → 0 when ~k → 0, can be used to find the chemical

potential. It gives µ = uρ0.

1.5 Coherent and Squeezed-Coherent States

In this section we briefly review the properties of single-mode coherent [13] and

squeezed states. A wider discussion can be found in many textbooks in the field

of quantum optics [14].

The coherent state |α〉 is defined as the right eigenstate of the annihilation oper-

ator:

a|α〉 = α|α〉. (1.28)

It is easy to prove that such an eigenstate exists for every complex number α. But

since a is not Hermitian, coherent states are not also left eigenstates a. Indeed, no left

eigenstate of the annihilation operator exists since the Fock space is bounded from

below but not from above.

Using the defining equation (1.28), Fock state expansion of |α〉 is found as

|α〉 = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n〉. (1.29)
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Coherent states can also be obtained by acting on the ground state by the ’dis-

placement’ operator D(α):

D(α) = exp(αa† − α∗a) (1.30)

|α〉 = D(α)|0〉 (1.31)

D(α) is a unitary operator, therefore D†(α)D(α) = I where I is the identity operator.

It also satisfies D†(α) = D(−α) and

D(α1)D(α2) = e(α1α∗2−α∗1α2)/2D(α1 + α2). (1.32)

Every coherent state is a minimum uncertainty state with equally distributed

quadrature variances. This is the reason that they are the most classical quantum

states and are also called the ’quasi-classical’ states [15]. They do not form an ortho-

complete basis but rather an over-complete basis:

〈α1|α2〉 = e−|α1−α2|2/2e(α∗1α2−α1α∗2)/2 6= δ2(α1 − α2) (1.33)

I =
1

π

∫
|α〉〈α|d2α (1.34)

It is possible to construct orhto-complete bases by using one dimensional subspaces

of α space; for example by using α’s lying on a straight line [16] or a circle [17].

The single mode unitary squeeze operator is defined as

S(γ) = e
γ
2
ââ− γ∗

2
â†â† , (1.35)

and we introduce the squeezed-coherent state in terms of it:

|α, γ〉 = D(α)S(γ)|0〉 (1.36)

An alternative definition S(γ)D(α)|0〉 is also common in literature but it leads to

states of the same form since

D(α)S(γ) = S(γ)D(α′+), (1.37)

S(γ)D(α) = D(α′−)S(γ), (1.38)
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α′±(γ) = µα± να∗, (1.39)

µ = cosh |γ|, (1.40)

ν =
γ

|γ| sinh |γ|. (1.41)

Henceforth we use the definition given in equation (1.36).

The two Hermitian quadratures x = (a + a†)/2 and p = i(a− a†)/2 have unequal

variances in a squeezed state. The difference between the arguments of complex

parameters α and γ determine which quadrature is squeezed and which quadrature

is stretched. In order to illustrate this fact better, we plot the Q-function of the

squeezed state [18],

Q(β, β∗) =
sech|γ|

π
exp

{
−1

2

(|α|2 + |β|2) + β∗αsech|γ|
}

exp

{
−1

2

[
eiγ/|γ|(β∗2 − α∗2) + e−iγ/|γ|(β2 − α2)

]
tanh |γ|

}
,

(1.42)

for various values of γ in figure 1.1.

For future reference, we give the Fock state expansion of |α, γ〉 [19]:

|α, γ〉 =
∞∑

n=0

An(α, ζ)|n〉

= (1− |ζ|2)1/4e−
(α+ζα∗)α∗

2

∞∑
n=0

√
ζn

2nn!
Hn

(
α + ζα∗√

2ζ

)
|n〉 (1.43)

Here, Hn is the n-th order Hermite polynomial, and a new parameter

ζ = γ
tanh |γ|
|γ| (1.44)

is defined for notational convenience.

1.5.1 Quasiparticle Vacuum and Multimode Squeezing

The unitary multi-mode squeeze operator is defined as [20]

S(~r) = exp

[
1

2

∑

k 6=0

(
r~ka

†
~k
a†−~k

− h.c.
)]

. (1.45)
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~r is a vector whose components r~k determine the amount of squeezing in ~kth mode.

The sum is over whole space so each ~k appears twice. Hence

S(~r)a~kS
†(~r) = exp

[
r~ka

†
~k
a†−~k

− h.c.
]
a~k exp

[
r∗~ka−~ka~k − h.c.

]
. (1.46)

Using the Taylor expansions of hyperbolic functions and the Baker-Hausdorff Lemma

[21]

eGAe−G =
A

0!
+

[G, A]

1!
+

[G, [G,A]]

2!
+ ... (1.47)

which is valid for anti-hermitian G, it is trivial to show that

S(~r)a~kS
†(~r) = cosh r~ka~k − sinh r~ka

†
−~k

, (1.48)

= b~k (1.49)

for real ~r. Hence it is seen that Bogoliubov transformation can be achieved by using

the multi-mode squeeze operators.

The ground state |Ψ〉 has no excitations. It is the quasiparticle vacuum, therefore

bk|Φ〉 = 0, (1.50)

= SakS
−1|Φ〉 (1.51)

akS
−1|Φ〉 = 0, (1.52)

|Φ〉 = S|vac〉. (1.53)

Thus it is seen that the quasiparticle vacuum |Φ〉 is in fact a squeezed vacuum of

particles with nonzero k.



Chapter 1: Preliminaries 11

ζ = 0

0 10 20

−5

0

5 ζ = 0

0 10 20

−5

0

5 ζ = 0

0 10 20

−5

0

5

ζ = 0.5

0 10 20

−5

0

5 ζ = 0.5i

0 10 20

−5

0

5 ζ = −0.5

0 10 20

−5

0

5

ζ = 0.9

0 10 20

−5

0

5 ζ = 0.9i

0 10 20

−5

0

5 ζ = −0.9

0 10 20

−5

0

5

ζ = 0.95

0 10 20

−5

0

5 ζ = 0.95i

0 10 20

−5

0

5 ζ = −0.95

0 10 20

−5

0

5

Figure 1.1: Contour plots for Q-functions of various squeezed states with α = 10
and different ζ’s. Q-function is defined in terms of the system’s density matrix ρ as
Q(β, β∗) = 1

π
〈β|ρ|β〉. The horizontal axis corresponds to Re(β) and the vertical one

to Im(β).
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Chapter 2

TOY MODEL CALCULATIONS

In this chapter we consider the ground state |Ψ〉 of a Bose-Einstein condensed

system in more detail. The Bogoliubov prescription (1.21) entails that the zero mode

annihilation operator has a nonzero expectation value in the ground state:

〈Ψ|a0|Ψ〉 =
√

N (2.1)

which is a fact related with the broken global phase symmetry. Henceforth we fo-

cus our attention only to the zero momentum mode (zero-mode) and omit the ’0’

subscripts unless otherwise necessary.

The zero-mode ground state, which we denote by |gr〉, cannot simply be a Fock

state, since in that case 〈gr|a|gr〉 would be equal to zero. A natural candidate which

carries this required characteristic of a broken phase symmetry would be a coherent

state. The time evolution of a coherent state under the zero mode Hamiltonian

H =
ũ

2
(n̂2 − n̂)− µn̂ (2.2)

is studied before [22, 23] and it is found that since a coherent state is not an energy

eigenstate, it suffers phase collapse [4, 5]. In this section we first review this calculation

and then consider two other states, namely squeezed and thermal-coherent states.

2.1 Toy Model for Coherent Zero-Mode Occupation

We consider a variational, symmetry breaking ground state, a coherent state satisfying

a|α〉 = α|α〉. Minimization of the mean free energy 〈α|H|α〉 fixes |α| ' √
N where

we assume that there are N atoms in the condensate.
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As the order parameter for BEC in this case, we use the expectation value of the

annihilation operator. In the Heisenberg picture, the operator a(t) is

a(t) = e
i
h̄
Hta e−

i
h̄
Ht. (2.3)

In terms of the eigenenergy En = ũ
2
(n2 − n) − µn defined through H|n〉 = En|n〉 for

the nth Fock state |n〉, one can easily calculate

〈α|a|α〉 =
√

N exp
(
N [e−

i
h̄

ũt − 1]
)

e
i
h̄

µt, (2.4)

whose short time behavior is found to be

〈α|a|α〉 =
√

Ne
i
h̄

µte−i Nũ
h̄

te−
Nũ2

2h̄2 t2 , (2.5)

i.e., revealing an exponential decay [4, 5]. At longer time scale it turns out that

〈α|a|α〉 revives due to discrete and thus periodic nature of the exact time evolution

(2.4).

The short time decay defines a collapse-time proportional to tc ∼ h̄/
√

Nũ. The

ratio of the revival time tr required for the order parameter scales as tr/tc =
√

N

and becomes infinite in the thermodynamic limit, that is when N → ∞, V → ∞
with N/V fixed. In order to get an estimate of this tc, we introduce characteristic

length scale for the harmonic trap potential as aho =
√

h̄/(Mωtr) in terms of the

harmonic trap frequency ωtr. Denoting the density of condensed atom numbers in the

quantization volume as ρ = N/V , we find

tc =

√
N

4πNeff

1

ωtr

, (2.6)

where we have defined Neff = ρa2
hoas. Assuming a typical situation of current experi-

ments with N ∼ 106, as = 10 nm, aho = 1 µm, and ρ = 1021 m−3, we get tc ' 10/ωtr.

For a magnetic trap with ωtr = 100 Hz, this amounts to tc ∼ 10−1 seconds, clearly

within the regime to be confirmed and studied experimentally [6].

2.2 Toy Model for Squeezed-Coherent Zero-Mode Occupation

We now consider a squeezed-coherent state |α, γ〉 = D(α)S(γ)|vac〉 as the zero-mode

occupation [24]. As already mentioned, the arguments of γ and α determine which
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quadrature is squeezed. In particular, if both γ and α are real, then the state is a

number squeezed state, with the uncertainty in atom number reduced at the cost of

higher uncertainty in the conjugate phase variable. We expect such a state to have

a longer life time since the phase collapse speed is generally proportional to ∆N ,

which is smaller in this case, as have recently observed experimentally [25, 26]. A

wide phase distribution, on the other hand, makes the squeezed state more similar

to a Fock state which has a uniform phase distribution, and is less influenced by the

decoherence effect due to the U(1) symmetry breaking field because of the reduced

number fluctuations.

In order to understand the essence of the above discussion, we choose to follow

similar arguments as with the coherent state considered previously. We will study

the time evolution of the single mode state |α, γ〉 subject to the same U(1) gauge

symmetric Hamiltonian (2.2). For notational convenience we define

ζ = γ
tanh(|γ|)
|γ| . (2.7)

The Fock state expansion of the squeezed state in terms of this new variable is [19]

|α, γ〉 =
∞∑

n=0

An(α, ζ)|n〉 (2.8)

= (1 + |ζ|2)1/4e−
(α+ζα∗)α∗

2

∞∑
n=0

√
ζn

2nn!
Hn

(
α + ζα∗√

2ζ

)
|n〉, (2.9)

where Hn is the n-th order Hermite polynomial. In the limit x →∞, Hn(x) behaves

like 2nxn. Hence the squeezed state approaches a coherent state when ζ → 0. The

corresponding expectation value for a(t) now takes the form

〈α, γ|a(t)|α, γ〉 =
∞∑

n=0

√
n + 1A∗

nAn+1e
i
h̄
(En−En+1)t, (2.10)

where the complex nature of An(α, ζ) makes the analytic evaluation of this expression

nontrivial. We therefore resort to numerical studies. First we consider the time

evolution of (2.10) for α = 10 at ζ = 0.5 and 0.9 respectively. The results as shown

in Fig. 2.1 clearly display squeezing in the radial (N) direction due to a wide phase
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Figure 2.1: The comparison of the short time decay character for a coherent state
condensate with that for a squeezed state at ζ = 0.5 and ζ = 0.9. The parameters
used are as = 10nm, aho = 1 µm, n = 1021 m−3, but now for N = 100. In this case,
the dimensionless time is in units of h̄/ũ becomes h̄/ũ = ω−1

tr . The fastest decay (solid
line) denotes the result for a coherent state, while the dashed (dotted) line refers to
that of a squeezed state with ζ = 0.5 (ζ = 0.9). As expected, the choice of a squeezed
state with real parameters α and ζ improves the coherence time.

distribution in the azimuthal direction. This consequently improves the coherence

time for the condensate, which is approximately of the same order of magnitude here.

More generally, our discussions can reach beyond the choices of real parameters

α and ζ. Consequently different results may be expected, as we illustrate the com-

parisons between a coherent state and squeezed states with ζ = 0.5, ζ = 0.5i, and

ζ = −0.5 in Fig. 2.4. We see that the last two choice of the squeezing parameters

lead to reduced coherence times, a result that again can be reasonably understood in

terms of the increased uncertainty in the atom number as it causes faster collapse.
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Figure 2.2: The phase space distributions of the initial states used in Fig. 2.1. Curves
(a), (b) and (c) correspond to ζ = 0.9, ζ = 0.5 and ζ = 0, respectively. Although all
of them should be centered at α = 10, they are shifted for convenience.

2.3 Toy Model for Thermal-Coherent Zero-Mode Occupation

To extend the above discussions to finite temperature systems, we now introduce

the thermal-coherent state, which possesses both a thermal character and a phase.

Consider the following density matrix for a thermal state

ρth = e−βH

=
∑

n

e−βEn |n〉〈n|, (2.11)

where β = 1/kBT , kB is the Boltzmann constant and T is the temperature. In

this state (2.11), H is the Hamiltonian operator excluding the chemical potential,

H = ũ(a†a†aa − a†a)/2. En is redefined, corresponding to H|n〉 = En|n〉. ρth is a

mixed state that has a a thermal character but not a definite phase. Therefore the
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Figure 2.3: Time evolution of the Q-function for squeezed-coherent state with α = 10
and ζ = 0.5 for different values of tωtr. Figures (a), (b), (c) and (d) shows the Q-
function distributions for tωtr = 0, tωtr = 0.02, tωtr = 0.10 and tωtr = 0.40. It is seen
that as the order parameter decays, the broken phase symmetry is restored since the
Q-function distribution becomes rotationally symmetric.

expectation value of a is zero:

〈a〉 = Tr (aρth) , (2.12)

= 0. (2.13)

In order to introduce a coherent component and also to change the mean number

of atoms, we can make use of the displacement operator

ρ = D(α)ρthD
†(α). (2.14)

This state we shall call a thermal-coherent state, whose properties can be conveniently
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Figure 2.4: Decay of the order parameter for the coherent state and squeezed states
of ζ = 0.5, ζ = 0.5i and ζ = −0.5 as a function of tωtr. The solid line is the coherent
state, the dashed line is the squeezed state with ζ = 0.5, and the dotted ones are
the squeezed states with ζ = 0.5i and ζ = −0.5 Only the state with real squeezing
parameter has a longer life time than the coherent state.

studied with the aid of the generalized coherent or displaced number states [27]

D(α)|n〉 = |n, α〉

=
∞∑

n=0

e−
1
2
|α|2

√
n!

m!
αm−nLm−n

n (|α|2)|m〉

=
∞∑

n=0

Cm(n, α)|m〉, (2.15)

where Ll
k is the generalized Laguerre Polynomial. The thermal-coherent density ma-
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Figure 2.5: The phase space distributions of the initial states used in Fig. 2.4. Curves
(a), (b), (c) and (d) correspond to ζ = 0.5, ζ = 0, ζ = −0.5 and ζ = 0.5i, respectively.
Although all of them should be centered at α = 10, they are shifted for convenience.

trix now becomes

ρ =
∞∑

n=0

e−βEnD(α)|n〉〈n|D†(α)

=
∞∑

n=0

e−βEn |n, α〉〈n, α|

=
∑

nmm′
e−βEnCm(n, α)C∗

m′(n, α)|m〉〈m′|, (2.16)

with which we can again consider the time evolution of the expectation value of a(t),

〈a(t)〉 =
∑

nmm′k

e−βEnCm(n, α)C†
m′(n, α)〈k|m〉〈m′|e i

h̄
Htae−

i
h̄
Ht|k〉, (2.17)

calculated according to 〈a(t)〉 = Tr (ρa(t)). In the end, we find

〈a(t)〉 =
∑
nm

e−βEnCm+1(n, α)C∗
m(n, α)

√
m e−

i
h̄
(Em+1−Em)t. (2.18)
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In general, the phase factors will interfere destructively in the above. The thermal

distribution weight e−βEn determines how many different terms contribute. This

implies that the temperature definitely leads to a reduced coherence time for the

state. Figure 2.6 illustrates the results from a numerical calculation for 100 atoms

at various temperature scales, including some that are in fact not experimentally

relevant.
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Figure 2.6: The short time decays for thermal-coherent states. The lines correspond
respectively to T = 1000 nK, 100 nK, 10 nK, 1 nK, and 0.001 nK from left to right.
The humps are due to the ground degeneracy E0 = E1. Even as the temperature ap-
proaches zero, the state (2.14) does not approach the ordinary coherent state D(α)|0〉.
Instead, it is a superposition state D(α)(|0〉+ |1〉)/√2.
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Chapter 3

THIN SPECTRUM FORMALISM

3.1 Introduction

By thin spectrum we refer to a group of states, whose energy spacings are so low

that they are not controllable in any experiment. In many-body systems, quite often

there exist a spectrum with level spacing inversely proportional to the system size.

These states with vanishing energy difference in the thermodynamic limit are beyond

experimental reach and therefore constitute a thin spectrum. The effect of a thin

spectrum on the partition function and decoherence has been studied in Ref. [28] and

more extensively in Ref. [7], both in the context of Lieb-Mattis Model [29]. What

Wezel et. al. have found in Ref. [7] is that the thin spectrum in Lieb-Mattis Model

leads to decoherence of excitations in a time scale proportional to tc ∼ Nh̄/kBT where

N is the number of spins. They also claimed that this time scale, being independent

of the details of the system, should be valid for other kind of systems too. One of the

main results of this theses will be to prove that quasiparticles in BEC’s decay with

this rate, a result supporting their claim.

In this section, we review the ideas developed in [7], which use two quantum

numbers: n and m, to denote the thin spectrum and ordinary states (elementary

excitations) respectively. The system is initially prepared at m = 0, that is the

ground state of the system. However, as the thin spectrum distribution cannot be

manipulated, it will be a thermal one. This leads the initial state of the system to be

ρ(t = 0) = Z−1
∑

n

e−βE
(n)
0 |0, n〉〈0, n|, (3.1)

where H|m,n〉 = E
(n)
m |m,n〉. Z is the partition function, Z =

∑
n exp (−βE

(n)
0 ).

An elementary (observable) excitation can be created by a unitary transformation
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|0, n〉 → ∑
m Cm|m,n〉, where

∑
m |Cm|2 = 1. After the system is excited in this

manner, the density matrix becomes

ρ = Z−1
∑

nmm′
e−βE

(n)
0 CmC∗

m′|m,n〉〈m′, n|, (3.2)

which, after time evolution, evolves to

ρ(t > 0) =
∑

nmm′

e−βE
(n)
0

Z
e−

i
h̄
(E

(n)
m −E

(n)

m′ )tCmC∗
m′|m,n〉〈m′, n|. (3.3)

When it is observed, the details of this density matrix cannot be seen since the thin

spectrum is assumed to be beyond experimental reach. Therefore, only the reduced

density matrix, which is obtained by taking the trace of ρ over the thin spectrum

states, is observed. We define the thin spectrum state |jthin〉 by 〈jthin|m,n〉 = δj,n|m〉
where |m〉 denotes the ordinary observable state of a system. This then allows us to

compute the reduced system density matrix:

ρ(red) =
∑

j

〈jthin|ρ(t > 0)|jthin〉

=
∑

mm′n

e−βE
(n)
0

Z
e−

i
h̄
(E

(n)
m −E

(n)

m′ )tCmC∗
m′|m〉〈m′|. (3.4)

While the diagonal elements ρ
(red)
mm = |Cm|2 experience no time evolution, the off

diagonal elements suffer a phase collapse unless E
(n)
m −E

(n)
m′ is independent of n. For a

two state system (m = 0, 1), the off-diagonal elements will decay at a rate ∆Ethin/Ethin

with ∆Ethin = E
(n)
1 − E

(n)
0 and Ethin = E

(n)
0 [7].

3.2 Continuous Symmetry Breaking and the Goldstone theorem

The Nambu-Goldstone Theorem [8] dictates the existence of a gapless mode whenever

a continuous symmetry is broken spontaneously. For a ferromagnetic material, this

mode is the long wavelength spin waves [30]. For a crystalline structure when the

translational symmetry is broken, the Nambu-Goldstone mode (NGM) is the over-

all motion of the crystal [7]. For an atomic condensate, where the BEC leads to
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the breaking of the gauge symmetry, the corresponding gapless mode induces phase

displacement of the condensate [5, 31].

Consider a diagonal Hamiltonian, which may corresponds to normal mode excita-

tions with different ω’s,

H =
∑

k

h̄ωkb
†
kbk, (3.5)

where bk is the annihilation operator for the k-th mode. As usual, the bosonic com-

mutation relations are assumed [bk′ , b
†
k] = δk,k′ and [bk, bk′ ] = [b†k, b

†
k′ ] = 0. If there is a

broken symmetry, motion along the axis of this symmetry will experience no restoring

force and hence the Hamiltonian of this mode will have the form p2/2I rather than

a†a, where p is the corresponding momentum operator and I is the corresponding

inertia parameter. Hence, the Hamiltonian becomes

H =
1

2I
p2 +

∑

k

h̄ωkb
†
kbk. (3.6)

The Hamiltonians for both a crystal [7] and a condensate [5] can be shown to take

this form. In both cases the inertia parameter I depends on the total atom number

N and either diverges or vanishes in the thermodynamic limit when N →∞.

The relationship between the Nambu-Goldstone Theorem and the thin spectrum is

that each NGM guarantees the existence of a thin spectrum, since the corresponding

momentum p can take arbitrarily small values. Therefore p is always capable of giving

rise to thermal fluctuations below the experimental precision and every NGM leads

to decoherence.

3.3 Explicit Calculation for the Sample Hamiltonian

The Hamiltonian (3.6) is quite common therefore it is useful and instructive to study

its collapse explicitly. We denote the state of the system as |p, {Nk}〉. The two sets

of quantum numbers p and {Nk} denote thin and elementary excitations respectively.

For simplicity, we assume that both p and k are one dimensional quantities. Further-

more only two different states of the system are considered in order to use it as a
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qubit. Assume that the elementary excitation which brings the system from {Nk} to

{N ′
k} has an corresponding energy ε. In general, such an excitation may also change

the inertia factor I of the p term. For example, an interstitial excitation changes the

total mass of the crystal [7]. Similarly, an excitation inside an atomic condensate

can change its peak density, which determines the inertia factor in front of the phase

coordinate [5, 32]. Such a change is necessary for our mechanism of phase diffusion

to occur. We assume that the inertia parameter changes from I to I(1 + δ), where δ

is small compared to 1. The off-diagonal element in equation (3.4) evolves in time as

ρ
(red)
od = Z−1

[∑
p

e−βE
(p)
0 e−

i
h̄
(E

(p)
1 −E

(p)
0 )t

]
C1C

∗
0 , (3.7)

where E
(p)
0 = p2/2I and E

(p)
1 = ε + p2/2I(1 + δ). Upon substituting this we find

ρ
(red)
od = Z−1e−

i
h̄

εt

[∑
p

e−( β
2I
− i

2h̄
δ
I
t)p2

]
C1C

∗
0 . (3.8)

Since p is continuous, its summation becomes an integral, so

ρ
(red)
od = Z−1e−

i
h̄

εt

√
π

2

1√(
β
2I
− 2 i

h̄
δ
I
t
)C1C

∗
0 , (3.9)

= (const.)
1√

1− 4itδ/βh̄
, (3.10)

and

|ρ(red)
od |2 = (const.)

1√
1 + 16t2δ2/β2h̄2

. (3.11)

Thus the off diagonal term decays in a time

tc ∼ h̄/kBTδ, (3.12)

as seen in Figure 3.1.

To apply the above result to an atomic BEC, we consider the relevant temperature

scale at T ∼ 100nK and assume that a particular observable excitation have δ ∼ 10−1.

In this case we see that tc ∼ 10−3 seconds, less than the life times of many observed
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Figure 3.1: The decay of |ρ(red)
od | as a function of t/tc.

ground states. We can also try to obtain an approximation to the coherence time of

the condensate ground state. Taking the atom number as N ∼ 106, if the ground

state is assumed a coherent state, than the number fluctuations is of the order of

∆N =
√

N . The inertia parameter I is proportional to I ∼ N2/5 [5, 32] in the

Thomas-Fermi limit, which gives δ =
[
(N + ∆N)2/5 −N2/5

]
/N2/5 = 2∆N/5N , or

δ ∼ 10−3. Substituting this in we find tc ∼ 10−1 seconds, much larger than for the

excited state as to be expected. Furthermore, the result for the ground state life time

is in agreement with our previous toy model calculation for the coherent state.
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Chapter 4

EXCITATION LIFE TIME IN BOSE-EINSTEIN

CONDENSATES

4.1 Thermal Occupation

We now use the thin spectrum formalism of the preceding section to study in detail

the life times of quasiparticles in atomic BEC’s. We again consider the zero mode

Hamiltonian

Hz =
ũ

2
(n̂2

0 − n̂0)− µ0n̂0. (4.1)

The ground state of such a system will be a number state |N0〉 with N0 = µ0V/u0+1/2.

We assume that although N0 and V may fluctuate, their ratio ρ0 is always constant

as in the thermodynamic limit. In this case, Hz becomes

Hz =
u0ρ0

2N0

(n̂2
0 − n̂0)− µ0n̂0. (4.2)

Substituting µ0 = u0ρ0 − u0ρ0/2N0 we get

H =
u0ρ0

2N0

n̂2
0 − ρ0u0n̂0 +He. (4.3)

Now, we consider a state with n atoms in the condensate mode and m quasi-

particle excitations at a certain, single k mode, while all other modes are empty. We

will denote such a state by |n, m〉

n̂0|n, m〉 = n|n,m〉, (4.4)

n̂k′|n, m〉 = mδk,k′ |n,m〉. (4.5)

In the regime h̄2k2/2m À ρ0u0, one can assume that each quasi-particle excitation

reduces the number of condensate atoms by one. In this case, the energy of this state
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can be written as

H|n, m〉 = E(n)
m |n,m〉

=

[
u0ρ0n

2

2(N0 −m)
− u0ρ0n + mω

]
|n,m〉, (4.6)

where we simply denote ω = ωk.

Assume the system can be initially prepared with no quasi-particle excitation at

all, but is in a Boltzmann weighted distribution over the states |n, 0〉, i.e.,

ρ(t = 0) ∝
∑

n

e−βE
(n)
0 |n, 0〉〈n, 0|. (4.7)

This state will allow us to study the number fluctuations due to unknown nonzero

temperature constituents that make up the occupations of the thin spectrum [7]. The

summation index can take any positive integers and therefore the summation should

be over 0 ≤ n < +∞. However, we note that the maximum of E
(n)
0 is at N0 À 1 and

it becomes extremely small for small values of n, we can extend the summation to be

over the full range −∞ < n < +∞ and replace it with an integral in the continuous

limit as down in the following.

Excitation of a quasi-particle brings each |n, 0〉 to |n, 1〉, the off diagonal element

of the resulting state will evolve according to

ρod(t > 0) ∝
∫ ∞

−∞
e−βE

(n)
0 e−

i
h̄
(E

(n)
1 −E

(n)
0 )tdn

∝
∫ ∞

−∞
e(−βu0ρ0/2N0+itu0ρ0/2h̄N2

0 )n2+βρ0u0ndn

∝ √
π

exp
(

β2ρ2
0u2

0

2βu0ρ0/N0−2itu0ρ0/h̄N2
0

)
√

βu0ρ0/2N0 − itu0ρ0/2h̄N2
0

, (4.8)

which gives

|ρod(t)|2 ∝
exp

(
β3N3

0 u0ρ0

β2N2
0 +t2/h̄2

)
√

β2 + t2/h̄2N2
0

, (4.9)

after omitting terms with only a phase factor. Although the denominator and the

numerator have quite different forms, we find that both decay in a time proportional
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Figure 4.1: The relative decay of the off diagonal element in equation (4.9) as a
function of t/tc for unit values of parameters.

to tc ∼ h̄N0/kBT . This is the same result that Wezel et. al. have found for a crystal

[7]. The decay of this function is plotted in Fig. 4.1 for unit values of parameters.

For an atomic Bose-Einstein condensate, the relevant parameters are N0 ∼ 106 −
108 and T ∼ 10−8 − 10−7 K. These then lead tc ∼ 102 − 105 seconds, which is a time

much larger than both theoretical and observed ground state life time. However, this

is the life time for a single quasi-particle excitation, i.e., for m = 1. It is easy to

show that the collapse time is inversely proportional to m for not too large m values.

An easily tractable excitation should have m ∼ N0 and this gives tc ∼ 10−4 − 10−3

seconds, much smaller than both the observed and expected ground state life times.

The study of temperature dependence for the damping rates of Bogoliubov exci-

tations of any energy has been carried out before using perturbation theory and a
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linear temperature was found [33], surprisingly coinciding with the linear dependence

found here based on the decoherence of the thin spectrum. Our result clearly would

make a quantitative contribution to the total decay of the quasiparticles, although we

note that our calculation is limited only to the single-particle excitation regime as we

have used εk = Ek À u0ρ0. In the phonon branch corresponding to the low-lying col-

lective excitations out of a condensate, more complicated temperature dependencies

may occur [34]. In contrast to damping mechanisms based upon excitation collision

processes in the condensate, the thin spectrum caused decay rate shows no system

specific dependencies, apart from the dependencies on temperature and the number

of atoms. It is independent of the interatomic interaction strength or the scattering

length, as well as independent of the quasiparticle spectrum. This is due to the fact

that thin spectrum emerges as a result of a global symmetry breaking in a quantum

system so that local properties of the system do not contribute to the associated decay

rate.

4.2 Thermal-Coherent Occupation

We now generalize the above idea to a thermal-coherent occupation of the zero-mode.

The initial density matrix in this case becomes

ρ(0) = Z−1
∑

n

e−βE
(n)
0 D(α)|n, 0〉〈n, 0|D†(α)

= Z−1
∑

nmm′
e−βE

(n)
0 Cm(n, α)C∗

m′(n, α)|m, 0〉〈m′, 0|. (4.10)

The system is now brought into a superposition of no quasi-particle and one quasi-

particle state, i.e., |n, 0〉 → (|n, 0〉+ |n, 1〉)/√2. After further time evolution, the state

becomes

ρ(t) = Z−1
∑

nmm′

∑

kk′=0,1

e−βE
(n)
0

2
Cm(n, α)C∗

m′(n, α)

e−
i
h̄
(E

(m)
1 −E

(m′)
0 )t|m, k〉〈m′, k′|,

(4.11)
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giving rise to the reduced density matrix and its off diagonal element below

ρ(red) = Z−1
∑

nl

∑

kk′=0,1

e−βE
(n)
0

2
|Cl(n, α)|2e− i

h̄
(E

(l)
k −E

(l)

k′ )t|k〉〈k′|, (4.12)

ρ
(red)
od = Z−1

∑

nl

e−βE
(n)
0 |Cl(n, α)|2

2
e−

i
h̄
(E

(l)
1 −E

(l)
0 )t. (4.13)
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Figure 4.2: Decay of the off diagonal element at T = 10 nK as a function of tωtr.
Dashed line shows the decay in the case of the thermal-coherent occupation and the
solid line shows that in the case of the thermal occupation.

Figures 4.2 and 4.3 show the early time decay at temperatures of 10 nK and

100 nK respectively. It is seen that the decay time for a thermal occupation, which

we have studied in the preceding section, exhibits strong temperature dependence;

whereas the decay time for the thermal-coherent occupation is not very much changed

by temperature. Therefore, we conclude that for a thermal-coherent occupation, the

main reason for the decay of the off diagonal element is the decay of the zero mode
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Figure 4.3: Decay of the off diagonal element for T = 100 nK and thermal-coherent
occupation of the zero mode as a function of tωtr. Dashed line shows the decay in the
case of the thermal-coherent occupation and the solid line shows that in the case of
the thermal occupation.

distribution. However, if there is solely thermal occupation, no decay of the zero

mode occurs and the off diagonal element decays only due to the temperature.

4.3 Excitation Phase Collapse due to Multiple Broken Symmetries

A system may have more than one spontaneously broken symmetries. For example, in

addition to a broken gauge symmetry, the formation of vortices breaks the rotational

symmetry of a condensate in a spherically symmetric trap [35]. Rotational symmetry

can also be broken for a multi-component [36] or a spinor condensate [37]. When more

than one continuous symmetries are broken, there will exist more than one gapless

modes, each with its own thin spectrum. In this section, we briefly consider the effect

of more than one thin spectrum.
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Consider a general effective Hamiltonian with two gapless modes

H = α1p
2
1 + α2p

2
2 + α12p1p2 +

∑

k

h̄ωkb
†
kbk, (4.14)

which after a canonical transformation, reduces to

H = α′1p
′
1
2
+ α′2p

′
2
2
+

∑

k

h̄ωkb
†
kbk. (4.15)

Without loss of generality we use this form of the Hamiltonian and henceforth omit

the primes. The observable state will be denoted by n, and an easy extension leads to

H|n, p1, p2〉 = E
(p1,p2)
n |n, p1, p2〉 with E

(p1,p2)
n = E

(0,0)
n +α1p

2
1+α2p

2
2. More generally, the

primary excitation may affect both inertia terms in the two thin spectra, which may

themselves be coupled, i.e., α1 = α1(n, p2) and α2 = α2(n, p1). Expanding around the

small p1 and p2 , we find around pj = 0

E(p1p2)
n = E(0,0)

n + [α1(n, 0) + α′1(n, 0)p2 + ...] p2
1+

[α2(n, 0) + α′2(n, 0)p1 + ...] p2
2

(4.16)

E(p1p2)
n ' E(0,0)

n + α1(n, 0)p2
1 + α2(n, 0)p2

2 (4.17)

up to the second orders in pj. Thus we can safely ignore the inertia terms’ depen-

dence on other’s thin excitations to the first approximation and let α1(n, p2) = α1(n).

Instead of (3.7) we now find

ρ
(red)
od = Z−1

[∑
p1p2

e−βE
(p1,p2)
0 e−

i
h̄
(E

(p1,p2)
1 −E

(p1,p2)
0 )t

]
C1C

∗
0 . (4.18)

Upon substituting the approximate forms for the Ejs, we find

ρ
(red)
od = Z−1e−βE

(0,0)
0 e−

i
h̄
(E

(0,0)
1 −E

(0,0)
0 )t

∑
p1,p2

e−
i
h̄
[α1(1)−α1(0)]p2

1te−
i
h̄
[α2(1)−α2(0)]p2

2te−β[α1(0)p2
1+α2(0)p2

2]C1C
∗
0 ,

(4.19)

ρ
(red)
od = (const.)e−t/t

(1)
c e−t/t

(2)
c . (4.20)

Thus, we see that the collapse due to different thin spectra do not influence each other

severely. They combine to give a resulting decay with a simple single decay time

tc =

(
1

t
(1)
c

+
1

t
(2)
c

)−1

. (4.21)
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Chapter 5

CONCLUSIONS

Based on a toy model calculation for the decoherence dynamics of a coherent

ground state condensate, we have generalized the calculations of the dephasing times

to cases of a squeezed-coherent ground state as well as a thermal-coherent ground

state. The numerical results for a squeezed ground state reveal that phase fluctuations

increases its coherence lifetime, whereas temperature increases always decrease the

lifetimes for ground state quantum coherence.

The dynamics of thin spectrum is shown to lead to decoherence, not just on the

ground state, but on quasi-particle excitations, or rather on superpositions of exci-

tations. We have introduced simple approximations that allowed for the calculations

of the decoherence lifetime of the condensate ground state as well as its coherence

excitations. These calculations make possible the discussion of temperature effects

in terms of the thermal and thermal-coherent occupations of the ground state zero

mode. We find that the lifetimes for these two cases are of the same order of mag-

nitude, although the lifetime for the latter shows a weak dependence on temperature

whereas that of the former displays a strong dependence. This difference may be used

to experimentally test whether the thermal-coherent ground state is a good model for

the BEC ground state, however the lack of precise experimental data precludes such

a possibility for the time being.
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