
ORDER ACCEPTANCE AND SCHEDULING DECISIONS IN

MAKE-TO-ORDER SYSTEMS

by

Zehra Bilgintürk

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

July, 2007

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Zehra Bilgintürk

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Ceyda Oğuz (Advisor)

Assist. Prof. Sibel Salman (Advisor)

Prof. Selçuk Karabatı

Assist. Prof. Metin Türkay

Assist. Prof. Onur Kaya

Date:

To my parents and my fiance

iii

ABSTRACT

In this thesis, we examine simultaneous order acceptance and scheduling decisions in

a make-to-order system. We model the manufacturing environment as a single machine

environment, with a set of orders coming from customers. In this pool of orders, of which

we know the release dates, due dates, processing times, deadlines, sequence dependent setup

times and revenues, manufacturer has to decide on the subset of orders to select, considering

the limited production capacity in order to maximize the profit. The tardiness of orders is

penalized and revenue gained from an order decreases with tardiness, until the deadline, after

which no revenue can be obtained. The problem generalizes some well-known scheduling

problems with the objective of minimizing total tardiness and has the sequence dependent

setup times as a further complicating property, as well as the order acceptance decisions.

One special case of the problem is total weighted tardiness with sequence dependent setups,

which is proven to be strongly NP-hard. As a result, the OAS problem is strongly NP-hard.

In the thesis, first, we give an MILP model for the problem, and solve it with a commercial

solver over a range of generated data sets. We draw some conclusions on the factors making

the problem harder. Next, we propose a heuristic algorithm called ISFAN to solve the

large-size problems. We compare the performance of the algorithm with respect to the

optimal solution, when the problem can be solved optimally, and with several constructive

heuristics we designed. We use upper bounds generated by LP relaxation of the MILP

model for comparison when optimal objective values are not available. LP relaxation bound

is strengthened with valid inequalities that are effective for some instances. By extensive

computational tests, the proposed algorithms are found to provide high quality feasible

solutions, even for large-scale instances, with modest computational effort.

iv

ÖZET

Bu tezde, siparişe dayalı üretim yapan sistemlerde eşzamanlı sipariş kabul ve çizelgeleme

problemi ele alınmıştır. Üretim ortamı müşterilerin sipariş verdiği tek makineli bir ortam

olarak modellenmiştir. Bu problemde üreticinin, gelen siparişlerin üretimine başlanabilecek

zamanları, işleme sürelerini, termin ve son teslim zamanlarını, dizilime bağlı hazırlık za-

manlarını ve her bir siparişin getirebileceği en fazla geliri bildiği varsayılmaktadır. Üretici,

bu siparişlerden oluşan havuzdan belli siparişleri seçip kısıtlı üretim kapasitesini de göz

önüne alarak karını eniyilemelidir. Gecikme, bir siparişten kazanılan gelirin gecikmeyle

orantılı olarak azalması şeklinde cezalandırılmaktadır. Tamamlanma zamanı son teslim

tarihini aşan ürünlerden hiç gelir kazanılamamaktadır. Problem, toplam ağırlıklı gecik-

menin en küçüklendiği, dizilime bağlı hazırlık zamanları ve sipariş kabul kararları içeren

yapısıyla bilinen birçok çizelgeleme probleminin genel halidir. Problemin bir özel du-

rumu polinom zamanda çözülemeyeceği ispatlanmış (NP-zor) toplam ağırlıklı gecikmenin

en küçüklendiği ve dizilime bağlı hazırlık zamanları içeren çizelgeleme problemidir. Bu

nedenle ele aldığımız sipariş kabul ve çizelgeleme (SKÇ) problemi NP-zor’dur. Bu tezde

öncelikle SKÇ problemi için karışık tamsayılı doğrusal programlama modeli verilmekte ve bu

matematiksel model ticari bir çözücü ile çeşitli veri setleri için çözülmektedir. Ayrıca, prob-

lemi zorlaştıran faktörler üzerine çıkarımlarda bulunulmaktadır. Sonrasında, daha büyük

boyutlu problemleri çözebilmek için ISFAN sezgisel algoritması önerilmektedir. ISFAN al-

goritmasının performansı problemin eniyilenebildiği durumlarda en iyi çözümle, diğer du-

rumlarda önerdiğimiz diğer yapısal algoritmalarla karşılaştırılmaktadır. Problemin en iyi

değerini bulamadığımız durumlarda en iyi değere üst sınır olarak karışık tamsayılı doğrusal

modelin doğrusal gevşetilmesi ile elde edilen değerler kullanılmaktadır. Bu üst sınır bazı

durumlarda etkili olan geçerli eşitsizliklerle güçlendirilmiştir. Kapsamlı sayısal testlerde,

önerilen algoritmaların büyük çaptaki problemler için bile makul hesaplama zamanlarında

yüksek kalitede çözümler üretebildiği görülmüştür.

v

ACKNOWLEDGMENTS

First I would like to thank my supervisors Prof. Ceyda Oğuz and Prof. Sibel Salman who

have been a great source of inspiration and who provided the right balance of suggestions,

criticism, and freedom during my thesis studies.

I would like to thank to Prof. Selçuk Karabatı, Prof. Metin Türkay and Prof. Onur

Kaya for taking part in my thesis committee, for critical reading of this thesis and for their

valuable suggestions and comments.

I am also thankful to Seda for being a wonderful homemate and classmate, Dilek, Sibel,

and Kenan for being helpful and joyful officemates, Ayşegül, Can, Burak, Taha, Fadime,

Pınar, Uğur, Ali and Bora for their valuable friendship and Suat for his particular sugges-

tions and comments on my studies.

Last but not the least, I thank my family for providing me a morale support that helps

me in hard days of my research. I am especially grateful to my parents and my fiance for

their patience and understanding. I owe everything I have today to them. Finally I thank

my fiance, Fırat, for encouraging me for my graduate studies, being always near me and

helping me not to lose my hope for the future. I really could not imagine today without

him.

vi

TABLE OF CONTENTS

List of Tables x

List of Figures xii

Nomenclature xiii

Chapter 1: Introduction 1

1.1 Outline of the Thesis . 4

1.2 Contributions to the Literature . 4

Chapter 2: Literature Survey 6

2.1 Total Tardiness and Total Weighted Tardiness Problems (with and without

sequence dependent setups) . 6

2.1.1 Sequence Dependent Setups . 7

2.1.2 Metaheuristic methods applicable to TTSDS problem 8

2.2 Simultaneous Pricing and Scheduling Problems 11

2.3 Simultaneous Order Selection and Scheduling Problems 13

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 18

3.1 Problem Definition . 18

3.2 Connection to the Literature . 20

3.3 The Computational Complexity of the Problem 20

3.4 Mathematical Model . 22

3.5 Finding Upper Bound for the Problem . 26

3.5.1 LP Relaxation . 27

3.5.2 LP Relaxation with Valid Inequalities 27

3.5.3 Lagrangean Relaxation . 28

vii

3.6 Dominance Relations for the Problem . 28

3.6.1 Dominance properties dealing with acceptance decisions 29

3.6.2 Dominance property dealing with sequencing decisions 29

Chapter 4: Heuristic Solution Approaches 31

4.1 Iterative Sequence First- Accept Next(ISFAN) Algorithm 31

4.2 Constructive Heuristics . 33

4.2.1 Dynamic Release First- Sequence Best (d-RFSB) Heuristic 34

4.2.2 Modified ATCS (m-ATCS) Heuristic 35

4.3 MILP Heuristic (MILPH) . 37

4.4 Local Improvement Methods . 38

4.4.1 Order Insertion Algorithm . 38

4.4.2 Order Exchange Algorithm . 39

Chapter 5: Computational Studies 45

5.1 Data Generation . 45

5.1.1 Random Data . 45

5.1.2 Slotnick & Morton’s (S&M) Data . 46

5.2 Computational Experiments . 46

5.2.1 Computational Platform . 46

5.2.2 Upper Bound Comparisons . 46

5.2.3 Experiments with MILP model . 47

5.2.4 Experiments for the ISFAN Algorithm 48

5.2.5 Experiments for d-RFSB and m-ATCS Heuristics 52

5.2.6 Experiments for MILPH . 54

5.2.7 Conclusions on Computational Experiments 55

Chapter 6: Further Studies 74

6.1 Exact Method Development . 74

6.2 Heuristic-Metaheuristic Method Development 79

Chapter 7: Conclusions 81

viii

Bibliography 84

ix

LIST OF TABLES

5.1 The average % improvement of UBLPV I over UBLP for sizes of 10 and 15. . . 58

5.2 The average % improvement of UBLPV I over UBLP for sizes of 20 and 25. . . 59

5.3 The average % improvement of UBLPV I over UBLP for sizes of 50 and 100. . 60

5.4 The average % improvements of UBMILP and UBLPV I over UBLP for sizes

of 10 and 15. 61

5.5 Evaluation of different cooling functions for n=50, τ = 0.3, Tinitial = 800 . . . 63

5.6 % Gap of the ISFAN algorithm results from UBLP for initial temperatures

of 800, 1000 and 1500 for n=50, τ = 0.3, CF = 3 (Compared with UBLP) . . 63

5.7 ISFAN and MILP % deviation comparison from min(UBLPV I , UBMILP) for

the OAS problem with sizes 10 and 15. 65

5.8 CPU time comparison of MILP and ISFAN for the OAS problem with sizes

10 and 15. 66

5.9 ISFAN objective value % deviations from UBLPV I and the correponfing CPU

times for the problem with sizes of 20 and 25. 67

5.10 ISFAN objective value % deviations from UBLPV I and the correponfing CPU

times for the problem with size of 50. 68

5.11 ISFAN, d-RFSB and m-ATCS heuristics comparison for the problem with

sizes of 10 and 15. 69

5.12 ISFAN, d-RFSB and m-ATCS heuristics’ average % deviations from UBLPV I

for the problem with sizes of 20 and 25. 70

5.13 ISFAN, d-RFSB and m-ATCS heuristics’ average % deviations from UBLPV I

for the problems with size of 50. 71

5.14 Number of rejected orders for ISFAN, d-RFSB and m-ATCS heuristics for

n = 50. 71

x

5.15 d-RFSB and m-ATCS heuristics’ average % deviations from UBLPV I) for the

problems with size of 100 . 72

5.16 MILPH gaps from UBLPV I and CPU times for problem sizes of 15 and 20. . 73

xi

LIST OF FIGURES

4.1 Flow chart for ISFAN algorithm. 42

4.2 Flow chart for Insertion algorithm. 43

4.3 Flow chart for Exchange algorithm. 44

5.1 Cooling functions 2, 3 and 4. 62

5.2 Convergence behavior of the ISFAN algorithm at a rejection iteration for a

50-order problem having τ=0.3, R=0.3, initial temperature=800 and cooling

function 3. 64

6.1 Inserting job [i] after job [k]. 76

6.2 Interchanging of positions of jobs [i] and [k]. 77

6.3 Interchanging of positions of adjacent jobs [i] and [i + 1]. 79

xii

NOMENCLATURE

MILP Mixed Integer Linear Programming

OAS Order Acceptance and Scheduling Problem

SA Simulated Annealing

ACO Ant Colony Optimization

TTSDS Total Tardiness Problem with Sequence Dependent Setups

EDD Earliest Due Date

LP Linear Programming

LR Lagrangean Relaxation

UBLP LP Relaxation Bound

UBLPV I LP Relaxation Bound with Valid Inequalities

UBMILP MILP Upper Bound at Termination

PCTSP Prize Collecting Traveling Salesman Problem

S&M Slotnick and Morton

ISFAN Iterative Sequence First- Accept Next Algorithm

CF Cooling Function

d-RFSB Dynamic Release First- Sequence Best Heuristic

m-ATCS Modified Apparent Tardiness Costs with Setups Heuristic

xiii

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

In today’s competitive environment, firms increasingly present more customized and

unique products in order to attract the customers to have a greater share from the market in

which they are players. Additionally, the positive effect of make-to-order working principle

on inventories and on the vulnerability of the firms in case of possible economical crisis

increase the popularity of the make-to-order systems. The success stories of the principle

in the world-wide known firms such as Dell Computers [12] attracted many manufacturing

firms to offer a number of diversified products on demand in recent years.

The companies working on make-to-order operating principle require a high level of deci-

sion making practice and farsightedness since the incoming orders would have no standards

on their features that change the time and the cost parameters. In addition, the customers

may and probably would have constraints on the delivery time of the orders as a further

complicating issue for the decision making process. In a profit maximizing make-to-order

firm, all of these issues must be carefully considered and handled for a feasible and beneficial

decision.

In this study we focus on make-to-order firms, such as a custom-made furniture shop or

a boat builder, which manufacture customized products, and in which the production is ini-

tiated by a customer order. Typically, no work-in-process inventory is carried for this type

of products. The manufacturer gains a revenue if a particular order is accepted and man-

ufactured by using the production resources. Since the main production resource, i.e. the

capacity, is limited, manufacturing one order may delay another one. If there are no dead-

lines, then the manufacturer will just incur some penalty for the orders which are delayed.

If there are deadlines for the orders, such delays may lead to rejecting customer orders. In a

competitive make-to-order environment, a manufacturer should use the capacity efficiently,

Chapter 1: Introduction 2

satisfy the expectations of customers at a high level and gain the maximum revenue from the

incoming orders. Therefore, the manufacturer should find a balance between the revenue

that can be gained from the accepted orders and the cost incurred by manufacturing these

orders. Hence, the question is which orders to accept to maximize the profit considering

the limited production capacity of the firm. Accepting an order whose deadline cannot be

met causes a loss in the reputation of the firm as well as in the revenue. To avoid such

circumstances, the order acceptance decisions should be made very carefully. When high

utilization levels are present, firms accept the orders that will bring high revenues and have

comparably less production capacity requirements only. If an order will be tardy, that is, if

its completion time will exceed its due date, the manufacturer has to sacrifice from some of

its revenue, if this order is accepted.

The scope of this study is restricted to a single machine environment. Single machine

environment is one of the most widely used environments in scheduling literature and it

is easily justified: Consider a multi-machine environment which has a bottleneck machine

significantly influencing the total performance of the system. Then this machine can be

isolated and considered alone as a single machine.

Moreover, in the problem, sequence dependent setup times among the orders to be

processed are present. Setups generalize the work needed on the machine or on the order

before the order becomes available for the main processing. Inspecting materials, cleaning,

dye changes, tool changes are some examples of setups. Although setup times or costs are

negligible or can be taken within the processing time for make-to-stock products, make-

to-order systems require separate consideration of setup times/costs. Inclusion of sequence

dependent setup times increases the hardness of the the underlying scheduling problem.

In this study, we consider the problem from the manufacturer’s point of view and try

to maximize the profit gained from the selected orders. The profit is defined as the total

revenues minus the total weighted tardiness. The manufacturing environment consists of

a single machine with a limited capacity and a set of independent orders O (|O| = n) at

the beginning of the planning period. For each order i ∈ O, we know the data including

the release date ri after which the order is available, the processing time pi, the due date

di up to which order i can be produced without incurring a penalty, the deadline d̄i after

which order i cannot be produced (d̄i ≥ di), the sequence dependent setup time sij which

Chapter 1: Introduction 3

is required when order i is scheduled before order j, and the revenue ei to be gained if the

order is accepted. The revenue ei may also reflect the level of priority or the importance

of order i. The decisions to be made in this environment include determining the set of

accepted orders and the corresponding optimal schedule for this set of orders to minimize

the weighted tardiness. The tardiness of order i is defined as Ti = max{0, Ci − di} where

Ci is the completion time of order i.

As our aim is to maximize the profit gained from the accepted orders, which is defined as

the total revenues minus the total weighted tardiness, our objective function is then defined

by max
∑
i∈A

Ri =
∑
i∈A

(ei−Ti×wi) where A is the set of accepted orders, wi is the weight for

the tardiness of order i and Ri is the profit gained from the accepted order i. The profit Ri

reflects the fact that if an order i is tardy, the customer will receive a discount. However

we note that the early delivery is not penalized as the manufacturer is assumed to have

unlimited capacity for finished product storage. In this setting, the manufacturer has the

right to reject an order that will not be profitable. We will denote this problem as OAS

(Order Acceptance and Scheduling) problem throughout the thesis.

OAS problem is a common real-life problem faced at the production companies as well as

the service companies. One such example to manufacturing companies facing this problem is

a packaging firm that has varying sequence dependent setup times for each order. Companies

working on project basis, such as law, accounting, and consulting firms are the examples of

service companies working on a make-to-order basis that face the OAS problem.

The OAS problem can be stated as a single machine total tardiness scheduling problem

with sequence dependent setup times (TTSDS) when some of the parameters are fixed.

TTSDS problem is important in practice and in scheduling literature, since it is essential

to minimize the total time each order/customer waits to assure customer satisfaction and

retain a good reputation in today’s competitive business environment. Consideration of

sequence dependent setup times increases the reality of the problem for the make-to-order

case.

The objective of the total tardiness problem is to find a schedule that minimizes the

total tardiness of the jobs and is defined as
n∑

i=1
Ti =

n∑
i=1

max{0, Ci − di}, where Ci is the

completion time of order i, and Ti is the tardiness of job i, i = 1, . . . , n [11]. Emmons

[6] was one of the first researchers who studied this problem in the late sixties and from

Chapter 1: Introduction 4

that time on, it has been found attractive to work on by various researchers. Dynamic

programming methods and branch and bound methods were used for solving moderately

small sized problems to optimality [26]. For relatively long time, the important question

whether the total tardiness problem is polynomially solvable or NP-hard remained open.

Finally, the problem was shown to be NP-hard by Du and Leung in 1990 [4]. Due to this

result, reaching optimality in reasonable time limits is impossible for the moment, except

for problems with a very limited number of jobs. However, the total tardiness problem can

be solved in polynomial time under some special settings [11]. Furthermore, we can solve

the problem up to some degree by using some dominance relationships and by combining

them with a branch-and-bound method. When we add the sequence dependent setup times,

the characteristics of the problem change and the dominance relations of the total tardiness

problem become invalid and useless. For this reason, there are many applications of heuris-

tics and metaheuristics for this problem, which yielded quite good results. In the content

of the thesis, the main aim is to find time efficient and high quality solution methods to

maximize the make-to-order manufacturer’s revenues by incorporating the order acceptance

decisions into scheduling decisions.

1.1 Outline of the Thesis

In Chapter 2, we give an extensive literature review for the OAS problem. In this review,

some special cases of the problem and the solution methods proposed for these problems

are also addressed. In Chapter 3, first, we define the OAS problem in detail, and give

information on its hardness. Next, we present our MILP model for the problem. In Chapter

4, we propose a hybrid algorithm, ISFAN, that joins local search procedures, Simulated

Annealing metaheuristic and a rejection rule in it. Next, we give local search methods

and several constructive heuristics for the OAS problem and compare the performances of

each. Finally in Chapter 7, we give our conclusions and mention future study areas on the

problem.

1.2 Contributions to the Literature

In this thesis, we consider an order acceptance and scheduling problem that was not fully

dealt in the literature before. The OAS problem is a hard problem that has many appli-

Chapter 1: Introduction 5

cations in real life. First of all, we developed benchmark data for this problem since no

complete data was available in the literature. Throughout this study, we first formulated a

MILP model for the exact solution of the problem. Since the problem is strongly NP-hard,

we proposed an efficient hybrid metaheuristic algorithm called ISFAN which is much less

time-consuming compared to the exact method. ISFAN algorithm proved to perform very

well for the OAS problem in the computational experiments. Throughout the experiments

with our data and Slotnick and Morton’s data [28], whose problem is a special case for the

OAS, ISFAN is a good performing algorithm in terms of time and solution quality. More-

over, we proposed two very time-efficient constructive heuristics for the problem, dynamic

release-first sequence-best (d-RFSB) algorithm and a modified version of this algorithm

which uses a selection index similar to the ATCS (m-ATCS) algorithm. Both algorithms

perform very well in terms of the solution quality as well as time considerations. m-ATCS

performs the best as n gets larger than 50. Furthermore, we employed two local search

methods, order insertion and order exchange, in each of the algorithms in order to improve

the solutions locally.

Chapter 2: Literature Survey 6

Chapter 2

LITERATURE SURVEY

In this chapter, we investigate the problems that are related to the OAS problem and

give the solution methods proposed for these if applicable.

The papers discussed in this literature survey can be categorized in four subtitles : 1)

studies concerning the total tardiness/ total weighted tardiness problem (with or without

sequence dependent setups), 2) studies concerning the order selection problem, 3) studies

concerning the simultaneous pricing and scheduling problem, 4) studies concerning simul-

taneous order selection and scheduling problem.

2.1 Total Tardiness and Total Weighted Tardiness Problems (with and without

sequence dependent setups)

The total tardiness problems have received great attention in the operations research liter-

ature, and have been studied since 1960s. Koulamas [10] provides an extensive literature

review about the total tardiness problems, and Keskinocak and Tayur [8] give research pa-

pers focusing on different aspects of the problem. Emmons is one of the first researchers who

studied the total tardiness problems. Emmons [6] neglects the job setup times, and consid-

ers the problem of sequencing n jobs on one machine, provided that all jobs are available

at time zero, and their processing times and due dates are known in advance. He proposes

an enumerative algorithm to solve the problem.

Although the total tardiness problem had been popular in scheduling literature, most

of the studies were on proposing solutions to the problem rather than considering the com-

putational complexity of the problem until 1970s. The proposed methods mainly concen-

trated on finding efficient enumerative algorithms. Lawler’s study [13] is one of the first

researches emphasizing the complexity of the problem. In his study, Lawler proposes a

pseudo-polynomial algorithm for the total tardiness problem where jobs have agreeable

weights (that is, if processing times pi and pj satisfy pi < pj , then weights satisfy wi ≥ wj),

Chapter 2: Literature Survey 7

implying that the total tardiness problem cannot be NP-hard in the strong sense. In ad-

dition, the weighted tardiness problem is proved to be NP-hard in the strong sense in

this study. Even though they could not develop a method outperforming Lawler’s pseudo-

polynomial algorithm [13], Potts and Wassenhove [23] present a well-performing branch and

bound algorithm for this problem in which they use a Lagrangian relaxation method in order

to obtain lower bounds in the subproblems. This relaxation decomposes the problem into

subproblems with weighted total completion time objective. Instead of computationally

time-consuming subgradient optimization technique, authors use a multiplier adjustment

method to compute bounds faster in the relaxation. This method allows calculating fast

bounds as intended, but the resulting bounds are not very tight. The study is important in

the sense that it incorporates diverse tools for verifying dynamic programming dominance

in the tree.

Although the computational complexity of the weighted tardiness problem was deter-

mined, the issue whether the total tardiness problem is NP-hard or not was not resolved

until 1990s. Du and Leung [4] prove that minimizing total tardiness on one machine is

NP-hard in the ordinary sense by reducing a restricted even-odd partition problem to this

problem. Since McNaughton [18] proved that preemption does not decrease the tardiness

of the problem, this proof can be extended to the preemptive case as well. Although the

classical single machine total tardiness problem is NP-hard, the problem can be reduced to

polynomially solvable problems with a set of special settings[11].

2.1.1 Sequence Dependent Setups

In the literature, single machine weighted total tardiness has been studied with setups

which are either sequence dependent or independent. Setups have practical meaning in

make-to-order manufacturing systems, since each order has its own characteristics, and thus

require different setups. In scheduling problems where sequence dependent setup times are

present, the sequence in which the jobs are processed on a machine affects the required

time for completion of that job. Comprehensive literature reviews on setup considerations

in scheduling problems are studied by Allahverdi et al.[1] and by Yang et al.[35]. One

study dealing with impacts of sequence dependent setup times and variation of setup times

in scheduling environments is Kim et al.’s[9]. This study shows that high variation on

Chapter 2: Literature Survey 8

sequence dependent setup times has a negative effect on shop performance in job shop

environments. While the addition of sequence dependent setup times increases the veracity

of the system, it also increases the computational complexity of the underlying problem.

For instance, single machine total weighted tardiness problem with sequence dependent

setups is proven to be NP-hard in the strong sense [14]. A very time-efficient heuristic that

produces high quality solutions and designed for the problems having tardiness objective

is Apparent Tardiness Cost with Setups (ATCS) heuristic [15]. ATCS rule is a modified

version of the ATC rule developed by Vepsalanien and Morton [31] and Ow and Morton

[22]. ATCS rule is a dynamic rule that evaluates the orders/jobs’ priority in the schedule

in terms of processing time, weight, due date, setup time and the current time, and used

for efficiently scheduling the orders.

Since the total tardiness problem with sequence dependent setup times (TTSDS) is NP-

hard, and thus, very hard to solve for large instances; application of metaheuristics is very

common as a solution approach as well as various branch and bound algorithms.

2.1.2 Metaheuristic methods applicable to TTSDS problem

One of the first applications of the metaheuristics to TTSDS problem was by Rubin and

Ragatz [25]. This study leaded many of the researchers to use different metaheuristics for

single machine total tardiness problem with sequence dependent setup times. In the study,

authors design and apply a genetic search for the problem. They use a permutation of

n jobs to represent a solution. Since the aim is to minimize total tardiness, reproduction

scheme is designed so that absolute position of each job is relevant to the total cost of

the schedule. Then, jobs with early due dates should be appearing early in the schedule,

and vice versa. Therefore, a parent should pass along both information on the adjacency

of pairs of jobs and information on the absolute positioning of the jobs for a good repro-

duction. RRX(Rubin Ragatz crossover) is designed and used especially for this problem.

Besides, authors tried different mutation operators while searching the best improving mu-

tation operator. At the early phases, they tried the job exchange method, where two jobs

are interchanged randomly, but this method displayed a slow convergence. Then, they tried

a different mutation operator which tries all possible interchanges of adjacent pairs of jobs

and accepts the interchange if it improves the current schedule, until no improvements are

Chapter 2: Literature Survey 9

obtained. Alternatively, if this operator does not achieve any improvement by adjacent

job exchanges, randomly chosen pair of jobs is swapped. This specially designed mutation

operator, compared to job exchange method, ensures that mutation improves most of the

individual schedules. Although it takes more time to create a generation with this operator,

the convergence progress is found satisfactory. Genetic search was promising since it did

not create solutions too far from the optimal or best-known values, and it used less compu-

tational time than branch-and-bound method did. The study is important in the literature

in the sense that, it encouraged and inspired other researchers to use metaheuristics in

TTSDS problems, and the solution approach had significant computation time advantage

over branch-and-bound algorithms proposed by that time.

Simulated Annealing (SA) method is another well-known and well performing meta-

heuristic algorithm for combinatorial optimization problems. The successful implementa-

tion of SA algorithm motivated researchers to apply this method to TTSDS problem as well

after genetic search application. Tan and Narasimhan [29] propose a simulated annealing

approach to TTSDS problem. Simulated annealing technique found to be outperforming

random search method (which continuously improves objective function and has no proce-

dure to escape from local minima), which outperformed genetic search of Rubin and Ragatz

[25], in all but three out of 18 instances in terms of solution quality. Although random

search method has a better computation time, this advantage is offset by solution quality

of simulated annealing technique described by Tan and Narasimhan [29].

Another metaheuristic efficiently applied to TTSDS problem is ant colony optimization

(ACO). ACO is most successfully applied to TSP problem in the literature because of its

nature, but with some arrangements, it can be used to solve TTSDS problem efficiently as

well. Gagné et al. [7] propose an ACO algorithm for TTSDS problem. In this algorithm, two

distance matrices are used: one for setup times and one for slack times. Setup time matrix is

of size (n+1)×n, where additional column stands for an initial solution. By using the relative

values of setup times and slack times, authors exploit the trade-offs that the algorithm deals.

For each constructed sequence, last job processed during the previous period is taken to be

the initial one in the next sequence construction, to maintain continuity. Authors also

include local improvement methods in ACO algorithm in order to improve the performance

further. One such method, restricted 3-opt model, which has an important aspect of not

Chapter 2: Literature Survey 10

inverting the whole sequence and is quite useful for sequence dependent setup environment;

and random start pairwise interchange (RSPI) method, which comprises inverting each pair

of adjacent jobs in turn. Authors randomly select and use one of these local improvement

methods to improve the route each ant forms in the algorithm. Moreover, authors add a

candidate list formed by cities not yet assigned (orders which are not processed), which

consists of orders having smallest ′cl′ slack times. τij , the trail intensity of edge (i, j), which

gives information on the frequency of using this edge, is initialized as (n × Lnn) − 1 for

each edge where n is the problem size and Lnn is the result of the solution obtained by

any simple and quick method. Authors propose a different look-ahead information idea,

which consists of estimating the probable quality of partial solution by taking the actual

value produced by the present partial solution and adding the consequences of one of the

candidate choices as well as a lower bound on the remaining unfinished part. Performance

of the ACO algorithm is compared with and without look-ahead information in the study.

Although the computation time increases when look ahead information is added, authors

show that, it significantly improves the quality of the solution obtained. ACO algorithm

offers solving the TTSDS problem up to a size encountered in industrial cases. Gagné et

al. [7] tested their algorithm on set of problems generated by Rubin and Ragatz [25] and

on some randomly generated test data. A comparison of the efficiency of four heuristic

techniques developed for TTSDS problem with respect to Ragatz’s algorithm is given by

Tan et al. [30]. Unfortunately, the comparison of the computational times is invaluable

since the nature of the computers used and the nature of the algorithms are different from

each other. From test results, authors concluded that ACO algorithm is competitive in

solution quality and has shorter computation times than the RSPI (Random search with

pairwise interchange) method [30] which is found to be best performing method especially

for large size problems. Resultantly, ACO provides computation time advantages over other

methods particularly for industrial-size problems.

Liao et al. [16] proposed an ACO algorithm for the weighted and unweighted TTSDS

problem. This study incorporates the heuristic information by introducing a new parameter

for the initial pheromone trail to hinder premature convergence. Additionally, local search

runs are set according to the iteration results rather than applying local search at each

iteration unlike the other ACO algorithms. The algorithm is found to be competitive with

Chapter 2: Literature Survey 11

the existing metaheuristics and efficient in computation time.

Miller et al. [20] propose a hybrid genetic algorithm (HGA) for the single machine

scheduling problem in a make-to-stock environment with setup costs where the objective

is to minimize the sum of setup cost, inventory cost and backlog cost each associated by

time. The proposed method combines the standard genetic algorithm with Wagner-Whitin

algorithm used for local improvement and TSP modeling used for sequencing of the jobs.

The algorithm is found to be efficient both in terms of time considerations and solution

quality. HGA is promising for use in make-to-order systems as it outperforms the standard

GA.

2.2 Simultaneous Pricing and Scheduling Problems

When price or cost of a product is affected from the position of the product in the schedule,

simultaneous pricing and scheduling problems arise. When timing of placing an order affects

the cost incurred by the customer (or the price quoted by the manufacturer), placing the

order at the right time has critical value to minimize the customer’s cost. If the delivery

time of the product affects the revenue gained from that product, manufacturer has to

schedule the orders very efficiently to maximize her profit. Therefore, simultaneous pricing

and scheduling problem is an important problem for make-to-order systems from viewpoints

of both manufacturer and the customer.

Webster [32] studies a simple model of make-to-order firm modifying the price and the

capacity to adapt to the market changes. Webster defines the corresponding make-to-order

system so that the price p(t) and the lead time l(t) of an arriving order are known and

they are the determinants of the demand rate at time t. Resultantly, the demand is time-

dependent. In this study, price is defined as net of delivery costs, so it is indirectly related

to the margin and the capacity. Therefore, demand rate is defined as a function of lead

time, margin and capacity. Webster intends to provide insights for pricing, capacity and

lead time policies for make-to-order products. The paper is related to different literature

streams such as how to dynamically price a product over time given the demand and the

capacity, how to quote reasonable lead times in a make-to-order environment given the

demand and the capacity, and connected to queueing literature dealing with capacity given

the demand costs and the performance criteria. The study deals with a problem that was

Chapter 2: Literature Survey 12

not investigated before and the model presented can be used as a base for further study.

Webster provides a range of properties that are used for illustrating policy performance to

help finding policies which can work well in complex real-life systems in the study. This

study relates the pricing and scheduling decisions in one problem, mainly emphasizing on

the capacity decisions.

Charnsirisakskul et al. [2] combine the pricing and scheduling decisions in one model

in their recent study. The authors investigate the problem faced by a manufacturer who

has the ability to set the prices to influence the demand, reject some of the orders, set

the lead times or the due dates for selected orders. Simultaneous pricing, order acceptance,

scheduling and lead time decisions are studied under the assumption of having the flexibility

to charge either equal or different prices to each customer. The main objective in the study

is to provide insights regarding the benefits of the price customization, the lead time, and

the inventory flexibilities in various market settings. The problem is formulated as a mixed

integer program. A multiple price model (pi
j per unit price where manufacturer can charge

for order i) and a single price model (where manufacturer has to select the best single price to

quote to all customers) are considered in the paper. Charnsirisakskul et al. assume a single

machine environment having 100% reliability. Setup times and setup costs between jobs are

neglected and preemption of jobs is allowed. In the problem setting, customer orders differ in

arrival times, demand, quantities, preferred and acceptable due dates and unit production,

holding and tardiness costs. Final prices should be selected from a set of acceptable prices for

each order and the products should be delivered altogether when finished. In this problem,

manufacturer has the option of accepting/ rejecting the customer orders and she can assign

different prices to each of the customers. Once the order is accepted, the manufacturer

decides on the production schedule. The aim of the manufacturer is to maximize the profit

subject to capacity, delivery time and demand constraints. In addition, a special case is

identified, where the manufacturer has a few information about arriving orders that allows

her to start the production of the order before the order commitment time. This case is

generally not applicable for make-to-order systems. For computational issues, two LP-based

rounding heuristics are proposed for the multiple and the single price model. Consequently,

authors evaluate the priority of flexibilities that a manufacturer may choose to have such as

price, inventory and lead time flexibilities. The consideration of the latest acceptable lead

Chapter 2: Literature Survey 13

time is one of the distinctions of this model from the other studies in the literature.

2.3 Simultaneous Order Selection and Scheduling Problems

Research on the order selection problem has grown rapidly in the literature over the past

quarter, parallel to the increasing popularity of the make-to-order environments. Wester et

al. [33] consider a manufacturing environment where different items are produced on a single

machine in batches. The underlying problem is to find acceptance strategies to make good

acceptance decisions where producer has the flexibility of accepting or rejecting an incoming

order. Monolithic, hierarchic and myopic approaches are compared using simple scheduling

techniques in simulation experiments. Poisson arrivals with parameter λj are assumed in

all of the experiments. In the monolithic approach, when a new order is received, schedule

is updated for the orders accepted but not yet processed, including the newest one. In

this approach, performance highly depends on the scheduling procedure. If no lateness

occurs, new schedule is maintained; otherwise incoming order is rejected. In the hierarchic

approach, readily available schedule is used to select the next order to process. A simple

priority rule is used for the next order to be processed in the myopic approach, instead

of forming a detailed schedule. The results indicate that the approaches do not generate

drastic performance changes, and none of the them found to be dominating for every case

to lead better order acceptance decisions.

Duenyas and Hopp [5] investigate the problem of dynamically quoting customer lead

times in a production system where different modeling assumptions are considered. In

the study, given the price, authors examine the cases where capacity is infinite, finite and

processed in FCFS (first-come-first-serve) order, and the case in which jobs are finite and

processed in a sequence other than FCFS order with scheduling considerations. Assuming

the production time function and order placement probabilities to be continuous, authors

derive a closed form expression for the optimal lead time quotation under infinite capacity

assumption. Authors develop optimal control-limit policies for the case where price and

acceptable lead time are fixed. In this setting, the manufacturer is able to reject a job by

offering a lead time exceeding the acceptable latest delivery time for this job. Additional

policies are proposed for the case where firms are free to rival on offered lead times where

customer’s probability of accepting an order depends on the quoted lead time. Finite capac-

Chapter 2: Literature Survey 14

ity is assumed and sequencing is handled with FCFS processing principle for these policies.

When the assumption of sequencing under FCFS processing principle is relaxed, problem

becomes more complex. For this case, authors state the conditions in which processing jobs

in EDD (earliest due date) sequence is optimal for the due-date quoting/order scheduling

process. The research utilizes queuing theory and successfully fits the lead time quoting

process and scheduling into queuing concepts. In addition, the study gives an example on

how to consider order acceptance and scheduling concepts simultaneously in one problem.

Wouters [34] mainly discusses the economic considerations for order acceptance deci-

sions. In the paper, the question how managers can base their order selection decisions

on opportunity cost and incremental cost is resolved. Furthermore, it is shown that the

production planning and control can provide useful information for finding the impact of

current order selection decisions on the planned activities and the planned level of capacity

costs.

Charnsirisaksul et al. [3] study an integrated problem of order selection and scheduling

on a single machine. Unlike Wester et al. [33] who build a trivial suboptimal sequence

and analyze the situation with simulation, Charnsirisaksul et al. [3] give a mixed integer

programming formulation and pursue the optimal acceptance and sequence decisions in a

preemptive environment. The authors assume deterministic demand and neglect the setup

times and setup costs in the problem. In this problem, the manufacturer selects the lead

time for each order. The main objective is to maximize the manufacturer’s profit which

is defined as revenue minus the manufacturing, the holding and the tardiness costs. This

objective is pursued by coordinating the order selection, scheduling and lead time decisions.

Authors determine the appropriate due date negotiation strategies, order acceptance and

scheduling decisions with the numerical study performed. This study primarily concentrates

on comparing the advantages of partial order fulfillment flexibility, inventory flexibility and

lead time flexibility in order to determine efficient strategies. The study develops insights

on the benefits of lead time setting flexibility for the manufacturer, and combines order

selection and scheduling problems into one problem.

Another study concerning order acceptance decisions is by Roundry et al. [24]. In the

problem, the firm has to decide on how to partition the JIT (Just-in-time) shipments into

a number of production batches in a job shop environment. The batch order sizes and the

Chapter 2: Literature Survey 15

batch due dates are determined to constitute the sequence of small JIT shipments. Next,

it is examined whether the capacity is sufficient or not to produce these batches. In the

modeling phase, authors assume that processes are deterministic, and raw material cost

of the product dominates the holding cost. The discrete-time version of the problem is

modeled as a mixed integer program with cost minimization objective and it is shown to

be NP-hard. In the study, authors design and test viable algorithms for the model. In the

problem under consideration, manufacturer starts with a feasible schedule for the current

production load. When a new order is received, a feasible schedule that contains the new

order and all of the orders that were previously accepted is investigated. Authors consider

each machine in isolation, and consider each machine separately for the study. As a result,

the authors prove that, for any machine m, a feasible schedule is present if and only if there

is a feasible schedule that contains the operations in EDD (earliest due-date) order sequence.

By exploiting this property, they tried to determine the flexibility limits: how far left and

right the current operations can be pushed. Next, the heuristic solution approaches are

introduced to obtain good computational results since the problem is found to be NP-hard.

Each approach is experimented on real data as well as on randomly generated data, and

finally, performances of the algorithms are evaluated and compared. The study characterizes

valid feasible schedules for the underlying problem.

In the literature, simulation-based solution approaches are successfully applied to order

acceptance/rejection problems as well. One example is due to Nandi and Rogers [21]. In this

study, simulation is used as an effective tool to give the right decisions on order selection,

that is, whether a specific order should be accepted or not by the manufacturer considering

the limited capacity of the production facility and the profit to be maximized. Nandi and

Rogers propose a simple rule to evaluate both order’s acceptance and rejection cases in the

simulation process: A simulation experiment is run both for the coming order’s acceptance

and rejection scenarios. In these simulation runs, authors assume that no additional orders

arrive until the accepted ones are completed. If the outcome of the first scenario run exceeds

the outcome of the second scenario run by some predefined proportion of the maximum

possible revenue for that order, the order is accepted, otherwise it is rejected. This rule is

customized for the problem in the sense that it uses information from the order itself and

from the status of the shop floor. Although simulation needs simplifying assumptions to

Chapter 2: Literature Survey 16

solve the complex order selection and scheduling problem, the study gives insights on how

a make-to-order manufacturing system can be controlled using simple acceptance rules and

how performance measures are affected by these rules.

A related study on order acceptance and scheduling problem is presented recently by

Slotnick and Morton [28]. In the study, the revenue, the processing time, the due date and

the weights reflecting the importance of the customer/order are assumed to be known in

advance for each order. In this problem setting, customers receive a discount proportional

to the time duration the order is late if the orders are delivered after their due dates. The

paper examines order acceptance decisions where the production capacity is limited, and

where the long-term capacity expansion and the early delivery options are not taken into

consideration. Manufacturing facility is modeled so that there exists a set of orders, and

the decision maker has to choose a subset of orders that results in the highest profit and

determine the corresponding optimal sequence. In the paper, first the problem is considered

by separating order acceptance and sequencing decisions to utilize the solution approach of a

similar problem, weighted lateness [27]. Authors then propose an optimal branch-and-bound

method with an LP relaxation for simultaneous order acceptance-sequencing problems since

the computational results for the separated problem was not promising. For this approach, a

few alternative heuristic methods are also developed since the branch-and-bound method is

usable for a very limited number of orders. In order to improve branch-and-bound solutions

by reducing the search space, authors propose a modified removable set procedure (RSP),

which is developed and applied to the lateness problem before. Slotnick and Morton basically

state that, when some conditions hold, the orders that will be in the optimal set can be

addressed. Authors prove that for a fixed sequence S, RSP remains valid for the weighted

tardiness acceptance problem. Although RSP is valid, in order to exploit the procedure,

one first has to find the optimal sequence to the weighted tardiness problem which is NP-

complete. To deal with this sequencing issue, two dispatch heuristics, Rachamadagu and

Morton heuristic and Montagne’s method, are used. These two methods and a beam search

heuristic are compared with the branch-and-bound method, for the problem size of 10. A

version of beam search that performs well in scheduling problems is used as a benchmark

for the rest of the analysis because the optimal method is intractable for problems of size

20. In this analysis, beam search and Montagne heuristic performs very similar in terms of

Chapter 2: Literature Survey 17

the solution quality, but the latter exhibits a much better computation time. Resultantly,

separating order acceptance and scheduling decisions is proved not to work well for the

simultaneous order acceptance and sequencing problems.

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 18

Chapter 3

ORDER ACCEPTANCE AND SEQUENCING (OAS) PROBLEM

The system under consideration along this thesis is a make-to-order system where each of

the orders has different characteristics such as the maximum revenue that can be gained, the

required processing time to complete a specific order and the required sequence dependent

setup time on the machine for that order. In the problem, as in majority of the make-to-

order systems, products are sophisticated and specially designed for each customer. Thus, no

work-in-process inventory can be carried for the incoming orders. However, it is assumed

that the manufacturer has no inventory holding limit for the completed orders, and she

incurs no holding cost.

The organization of this chapter is as follows: In section 3.1 we give a definition for

Order Acceptance and Sequencing Problem. In section 3.2, we relate the study with the

existing literature. Then in section 3.3, we evaluate the computational complexity of the

problem. Finally, in section 3.4, we introduce our mixed integer linear programming model

and formulation.

3.1 Problem Definition

The order acceptance and scheduling (OAS) problem is defined as follows: In a single

machine environment, we are given a set of independent orders O, at the beginning of

the planning period. For each order i ∈ O, we have the data including release dates ri,

processing times pi, due dates di, deadlines d̄i which are greater than or at least equal to

due dates, sequence dependent setup times where each element sij is the time that has to be

incurred before order j is processed if order i precedes order j (sij is not necessarily equal

to sji), revenues ei which demonstrate the maximum revenue the manufacturer can gain

from each of the selected orders, and weights wi which are used while the revenue earned

from an order is discounted by the amount of tardiness. If an order i is tardy for Ti units,

the revenue one can gain from an order i decreases by −wi × Ti. The objective of the OAS

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 19

problem is to find the optimal set of the selected orders and the optimal schedule for them

that maximizes the manufacturer’s total revenue, TR.

Suppose we have n orders, independent from each other, which will be processed by a

single machine that can handle only one order at a time. We can define the elements of the

OAS problem as follows:

Given a sequence σs of the selected order set S, we can calculate the completion time

Ci of each order i, i ∈ S. Using the completion time Ci and the due date di of an order, we

can calculate the tardiness of order i, i ∈ S, with the formula max{0, Ci − di}. Let Ti(σs)

be the tardiness of job i, i ∈ S, in sequence σs. Manufacturer can process order i until its

deadline d̄i, but for any time unit beyond the due date of an accepted order, she incurs an

amount of penalty cost. The indirect penalty cost is modeled as follows: As the tardiness

Ti of an order increases, the revenue we can gain from that order decreases with a linear

function. The revenue we gain from the order becomes zero at its deadline. The completion

time Ci of an order cannot exceed its deadline d̄i, and such an order cannot be accepted.

Therefore Ri(σs) denotes the revenue generated from order i, given that its tardiness is

Ti(σs) in the sequence σs, that is Ri(σs) = ei− Ti(σs)×wi. Then, the total revenue gained

from processing orders in S in the sequence σs is TR(σs) =
∑
iεs

Ri(σs).

Intuition for this problem can be given as follows: The due date can be considered as

the latest time preferred by the customer for delivery of his order. As an order becomes

tardy, customer satisfaction from this order begins to decrease. Therefore, the customer

accepts to pay only a discounted amount for his order when the due date is exceeded. The

deadline is the time after which the customer refuses the delivery and to pay for his order.

In this problem setting, if the manufacturer is better off rejecting all of the orders, she

can act so. There is no limit on the number of orders to be accepted. It is assumed that

the production environment does not break down, and the preemption is not allowed. In

addition, the machine can process only one order at a time. All input data are assumed to

be known in advance. Then the order acceptance and scheduling (OAS) problem is to find

the set S, and the sequence σs, when TR(σs) is maximum. That is, the problem can be

defined as max
σs,S⊆O

TR(σs).

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 20

3.2 Connection to the Literature

The study by Webster [32] relates the pricing and scheduling decisions in one problem,

mainly emphasizing on capacity decisions. In OAS problem, we adjust the revenue gained

by the manufacturer from a completed order according to the time it is completed, and

we decide on our total revenue by considering the capacity constraints, and selecting the

appropriate orders for processing. Therefore, total revenue depends on time and capacity

as well as the demanded orders in our model.

The consideration of the latest acceptable lead time is one of the distinctions of the

Charnirisaksul et al. [2] model from the other studies in the literature. Similarly, we have

deadline for each of the customer orders defined as the latest time that the completed order

should be delivered to the customer in the OAS problem. When make-to-order systems

are considered, neglecting the setup times and allowing preemption are the weaknesses of

the problem in Charnsirisakskul et al. [2]. In the OAS problem both of the concepts are

handled.

The order acceptance problem with weighted tardiness objective which Slotnick and

Morton [28] undertake in their study is similar to the OAS problem in the way it is defined.

In addition to generalizing the Slotnick and Morton’s problem, the OAS problem contains

sequence-dependent setup times, release dates and deadlines as distinctive and complicating

issues, which increase the reality of the problem especially when make-to-order systems are

considered.

3.3 The Computational Complexity of the Problem

Obviously, the OAS problem is a combinatorial one, and even for very limited number

of orders, the number of potential solutions is large. The OAS problem generalizes many

well-known scheduling problems. Reduction of the OAS problem to the single machine total

tardiness problem with sequence dependent setup times can be obtained as follows: Suppose

all of the orders in set O will be accepted, and the deadlines are sufficiently large. Further

suppose that the revenues ei, i ∈ O, are fixed to 0, and the weights wi, i ∈ O, are fixed to 1.

Resultantly, the special case becomes a single machine total tardiness problem with sequence

dependent setup times with the objective max
n∑

i=1
−Ti, implying min

n∑
i=1

Ti. Therefore, the

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 21

problem reduces to a single machine scheduling problem with sequence dependent setup

times with the objective of minimizing total tardiness. As mentioned earlier, the single

machine total tardiness problem is proved to be NP-hard [4], and including the sequence

dependent setup times brings more complicating issues to the problem. Hence the OAS

problem is NP-hard.

As well as generalizing many single machine scheduling problems, The OAS problem is

also a generalized form of Prize Collecting Traveling Salesman Problem with Time Windows

(PCTSP with time windows). Reduction to PCTSP with time windows is done as follows:

Suppose the weights wi, i ∈ O, in the OAS problem are fixed to 0 so that the total revenue

does not depend on the amount of tardiness any more. Next, the due dates are set to the

corresponding deadlines, which makes the tardiness concept totally disappear. Since the

due dates and deadlines are the same, we can get rid of the due dates. Therefore, we end

up with a set of jobs having time windows (ri, d̄i) and revenues ei. Let the processing times

of all orders are set to 0. Then, the sequence dependent setup times between jobs are the

same as the distances between the nodes in a TSP problem. Therefore the resulting special

case of the problem is a PCTSP with time windows. A formal definition of the PCTSP

with time windows can be found in [36].

The number of solutions in the solution space for the OAS problem can be calculated in

the following manner: Suppose we have n incoming orders. Further suppose that we have

an acceptance set A that contains i orders. The number of different sequences possible for

this acceptance set is i!. The number of different selections for set A is C(n, i). Therefore

the total number of solutions in the solution space is
n∑

i=1
C(n, i)× i!, including both feasible

and infeasible solutions. This indicates that as i grows, applying an exact algorithm to this

problem will be very time consuming.

A special case of the OAS problem can be obtained by fixing the processing sequence

of the incoming orders. Suppose that S is the sequence that fixes the position of each

order. Let [i] be the order to be scheduled at position i. Therefore, the decision to be made

is whether to accept this order or not. We have 2 different solutions for each order and

hence the total number of solutions in the solution space is 2n, including both feasible and

infeasible solutions. Resultantly, this special case also has an exponentially growing solution

space.

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 22

In the next section we develop a mathematical model for the OAS problem.

3.4 Mathematical Model

We formulate the order acceptance and sequencing problem as a mixed integer problem

below:

Indices:

n: number of orders;

i, j, k: orders;

0, n + 1: artificial orders at the first and the last positions respectively;

Problem Parameters:

O: the set of coming orders;

ri: the release date of order i, i ∈ O;

sk,i: the sequence dependent setup time for order i, given that the immediate predecessor

of order i is order k, i, k ∈ O;

pi: the processing time of order i, i ∈ O;

di: the due date of order i, i ∈ O;

d̄i: the deadline of order i, i ∈ O;

ei: the maximum revenue that can be gained from order i, i ∈ O;

wi: the weight for order i, i ∈ O.

Decision variables:

S: the set of selected orders;

σs: processing sequence of the selected order set S;

Ci: completion time of order i, i ∈ S;

Ti: tardiness of order i, i ∈ S;

Ri: revenue gained from order i, i ∈ S;

TR(σS): The total revenue gained from processing set S, w.r.t. sequence σs;

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 23

yij =





1 if order i precedes order j

0 otherwise

Ii =





1 if order i is selected

0 otherwise

MILP:

max
n∑

i=1

Ri

s.t
n+1∑

j=1,j 6=i

yij = Ii ∀i = 0, ..., n (3.1)

n∑

j=0,j 6=i

yji = Ii ∀i = 1, ..., n + 1 (3.2)

Ci + (sij + pj)× yij + d̄i × (yij − 1) ≤ Cj ∀i = 0, ..., n,∀j = 1, ..., n + 1, i 6= j (3.3)

(rj + pj)× Ij + sij × yij ≤ Cj ∀i = 0, ..., n,∀j = 1, ..., n + 1, i 6= j (3.4)

Ti ≥ Ci − di ∀i = 0, ..., n + 1 (3.5)

Ci ≤ d̄i × Ii ∀i = 0, ..., n + 1 (3.6)

Ti ≤ (d̄i − di)× Ii ∀i = 0, ..., n + 1 (3.7)

Ti ≥ 0 ∀i = 0, ..., n + 1 (3.8)

Ri ≤ ei × Ii − Ti × wi ∀i = 1, ..., n (3.9)

Ri ≥ 0 ∀i = 1, ..., n (3.10)

C0 = 0, Cn+1 = max
i=1,...,n

{d̄i}, ∀i = 1, ..., n (3.11)

I0 = 1, In+1 = 1 (3.12)

Ii ∈ {0, 1}, yij ∈ {0, 1} ∀i = 1, ..., n (3.13)

In this model, we define dummy orders, order 0 and order n + 1, where definitely, order 0

is assigned to the first position, and order n + 1 is assigned to the last position, whatever

the sequence of orders in between is. Artificial orders 0 and n + 1 are available at time

zero, with r0, rn+1, p0, pn+1, d0, d̄0, e0 and en+1 being 0; dn+1 and d̄n+1 being equal to

maximum of deadlines of all jobs. Constraint sets (3.1) and (3.2) enforce that, if an order

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 24

is accepted, this order precedes only one job and, is succeeded by only one job. If it is

not accepted, it does not take place in the sequence. These constraints also prohibit the

preemption of the jobs. Constraint set (3.3) implies that, if order j is preceded by order i,

then the completion time of the order j should be larger than the completion time of order

i plus the sequence dependent setup time between orders i and j, plus the processing time

of order j. If order i does not precede order j in the sequence, Cj ≥ 0 should be the only

limit, and this constraint ensures this outcome. This set of constraints prevents any cycle

formation in the sequence of the orders accepted. Constraint set (3.4) dictates, if an order j

is accepted, and is preceded by order i in the schedule, then the completion time of order j

should be greater than the release date of that order plus the sequence dependent setup time

between orders i and j, plus the processing time of order j; and the completion time of the

order j should be less than its deadline. In case where order i does not precede order j, the

completion time of order j has looser bounds which are given by the release time of order

j and its deadline. In case where order j is not accepted, it will not be in process, hence,

Cj = 0. These constraints enable us to calculate the correct completion times of the orders.

Constraint sets (3.5) and (3.6) are very general constraints and they put bounds on Ci and

Ti. Constraint set (3.7) calculates the maximum tardiness for an accepted order. Constraint

sets (3.8) and (3.10) ensure nonnegativity of Pi and Ti, implied by the definitions of these

decision variables. Constraint set (3.9) calculates the revenue manufacturer can gain, when

order i is accepted and incurs tardiness of Ti. Here, the revenue from an accepted order

decreases as this order becomes tardy and becomes 0 at its deadline. Weight wi is chosen

accordingly to satisfy this assumption. For one unit time of tardiness, revenue decreases by

wi units. wi is calculated by the formula ei/(d̄i−di) for each order i. Constraint sets (3.11)

and (3.12) include some necessary initializations for dummy nodes 0 and n + 1.

A feasible solution to our problem is represented as a chain of orders 0 → O1 → O2 →
· · · → Ol → (n + 1), where Oi represents the order scheduled at position i, in model MILP.

Here, order 0 and order (n + 1) are dummy orders and O1, . . . , Ol are the orders accepted

such that Oi is scheduled as the ith order to be processed.

Proposition 1 A solution to model MILP is a feasible sequence for the OAS problem.

Proof Suppose we have a solution S which is feasible to the model. Let the solution have k

selected orders among the whole set of n orders. Further suppose that this solution has m

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 25

separate cycles. Since we assume that we have cycles in our solution S, we have a sequence

O1 → O2 → · · · → Ol → (n + 1) and additional m cycles formed by k − l orders such as

< Ol+1 → Ol+2 → · · · → Ol+r → Ol+1 >

< Ol+r+1 → Ol+r+2 → Ol+r+1 >

This is the case since by constraint sets (3.1) and (3.2), each selected order except order

0 is preceded by one order, and each selected order except order (n+1) is succeeded by one

order.

Since S is a feasible solution to the model, it should satisfy all of the constraints in

the model. Now let’s pick one of the cycles in solution S, and see whether it satisfies the

constraint set (3.3) in the model shown below:

Ci + (sij + pj)× yij + d̄i × (yij − 1) ≤ Cj , ∀i = 0, . . . , n,∀j = 1, . . . , n + 1, i 6= j (3.14)

Let the cycle under consideration be Ol+1 → Ol+2 → · · · → Ol+r−1 → Ol+r → Ol+1. We

write the constraints for i = p + 1,. . . ,p + r and j = i + 1. For any of the consecutive orders

Ol+i and Ol+i+1 in this cycle, the variable yl+i,l+i+1 = 1. Then the following constraints

should be satisfied:

Cl+1 + sl+1,l+2 + pl+2 ≤ Cl+2 (3.15)

Cl+2 + sl+2,l+3 + pl+3 ≤ Cl+3 (3.16)

...

Cl+r−1 + sl+r−1,l+r + pl+r ≤ Cl+r (3.17)

Cl+r + sl+r,p+1 + pl+1 ≤ Cl+1 (3.18)

Since the setup times sij > 0 and the processing times pi > 0, we have the inequalities

Cl+2 > Cl+1, Cl+3 > Cl+2,. . . , Cl+r > Cl+r−1,Cl+1 > Cl+r to hold. These inequalities can

be given as Cl+1 > Cl+r > Cl+r−1 > · · · > Cl+3 > Cl+2 > Cl+1, where we have Cl+1 > Cl+r

and Cl+r > Cl+1 at the same time. This is a contradiction implying that this cycle is not

feasible to the constraint set (3.1). This will also be valid for any cycle. Therefore, we

conclude that any of the k cycles in solution S violates the constraint set (3.1). As a result,

since we assumed that S satisfies all of the constraints of the model, this is a contradiction.

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 26

Hence, any solution feasible to model MILP contains no cycles and a solution to model

MILP is a feasible sequence for the OAS problem. ¥

Proposition 2 Constraint set (3.3) of MILP model implies ATSP-MTZ subtour elimina-

tion constraints [19].

Proof ATSP-MTZ subtour elimination constraints for the OAS problem can be written as

follows:

Ij ≤ uj ≤ (n− 1)Ij ∀j = 1, . . . , n (3.19)

uj ≥ (ui + 1)− (n− 1)(1− yij) ∀i, j ≥ 1, i 6= j. (3.20)

where we have n orders, u0=0 and the values of uj variables represent the rank-order of the

orders, that is, the value of u1 is the number of order at the first position in the sequence.

Suppose we take any feasible solution to MILP model. Then, we know the values of

decision variables yij ’s, Ii’s, Ci’s, Ti’s and Ri’s for each order i. The corresponding decision

variables for the rejected orders are known to be 0. Suppose Ci variables are ignored for

rejected orders, and the remaining Ci variables which are known to be greater than 0 are

sorted in increasing order. We call this sorted list as Q. Next, we can define uj variables

for all orders where uj = 0 for each of the rejected orders. Index set of Ci variables in Q is

equal to the processing sequence of accepted orders in the solution we take initially. Then,

we can assign uj variables so that, u1=k , where k is the index of the first Ci in Q, u2 = l,

where l is index of the second Ci in Q and so on. Therefore the assigned uj variables satisfy

the constraint sets (3.19) and (3.20). Hence, the constraint set (3.3) of MILP model implies

ATSP-MTZ subtour elimination constraints. ¥

3.5 Finding Upper Bound for the Problem

As mentioned earlier, the OAS problem is NP-hard and we need to develop different methods

to solve the problem for large instances. In this section, we propose 3 methods for generating

upper bounds for the OAS problem.

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 27

3.5.1 LP Relaxation

An easy-to-find upper bound for the OAS problem is the LP relaxation solution of the MILP

model. Major problem in the MILP model is that LP relaxation solution of the problem is

not tight, and hence the calculated upper bounds are large. When we relax the integrality

constraints for both Ii and yij variables in the MILP model and solve the problem, the

resulting problem is easy and yij ’s, the sequencing variables, are divided into many parts

summing up to 1 for each row and each column in the solution. This is because the model

has a tendency in choosing the sequence dependent setup times as small as possible and

setting the completion times small to avoid from being tardy or rejecting some of the orders

because of the deadlines. Resultantly, the model is generally able to accept all of the orders

in the LP relaxation. The upper bound generated in this solution is simply the sum of the

maximum revenues of all orders and named as UBLP in the following sections.

3.5.2 LP Relaxation with Valid Inequalities

In order to improve the LP relaxation upper bound, we first remove the constraint Cn+1 =

max
i=1,...,n

d̄i and we add the following three valid inequalities to the problem:

Cn+1 ≤ max
i=1,...,n

d̄i; (3.21)

Cn+1 ≥ min
i=1,...,n

ri +
∑

i∈O

[(pi + minsetupi)× Ii]; (3.22)

Ci ≥ (ri + minsetupi + pi)× Ii, ∀i = 1, . . . , n; (3.23)

where minsetupi is the minimum sequence dependent setup time for order i in case of

processing it. Valid inequalities (3.21), (3.22) and (3.23) improve the upper bound and

prevent the model to break the variables yij into too many small pieces. When we add the

integrality constraint for Ii’s, the acceptance variables, problem is still easy to solve, and

the bound is further improved or remains the same for the OAS problem. The upper bound

generated by this method is called UBLPV I in the next sections.

We present the % improvements achieved by employing the proposed valid inequalities

in Tables 5.1, 5.2 and 5.3 and analyze the improved cases in detail in Chapter 5, where we

describe the computational experiments.

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 28

3.5.3 Lagrangean Relaxation

An observation on the original model is that the constraint set (3.3) includes the complicat-

ing constraints that undertake the most difficult job: subtour elimination. When we remove

the constraint set (3.3), the model can be solved easily. However, the resulting solution in-

cludes subtours and hence it is infeasible to the original problem. Below, a Lagrangean

relaxation (LR) approach is proposed for the OAS problem where constraint set (3.3) is

relaxed and a penalty term is added to the objective function for violation.

Relaxation is handled as follows: LR problem is formed by multiplying the constraint

set (3.3) with dual variables λij , where λij ≥ 0, and by adding these expressions as penalty

terms to the objective function.

LR:

z(λ) = max(
n∑

i=1

Ri −
n∑

i=0

n+1∑

j=1,j 6=i

λij [(Ci + (sij + pj)× yij + d̄i × (yij − 1))− Cj]) (3.24)

s.t (1), (2), (4)− (13) and λij ≥ 0 ∀i = 0, . . . , n, j = 1, . . . , n + 1

Then, the Lagrangian dual problem is

z∗ = min z(λ)

s.t λ ≥ 0

The problem of applying the Lagrangean relaxation method to the MILP model by

relaxing constraint set (3.3) is that, constraint set (3.3) becomes redundant when yij = 0.

When yij = 0; we end up with additional positive term λij × (Cj −Ci + d̄i) in the objective

function for each (i, j) pair. This results in superoptimal infeasible solutions for the OAS

problem. Hence, we cannot use Lagrangean relaxation method directly for the OAS problem

because of the Big-M problem.

3.6 Dominance Relations for the Problem

Dominance relations are established by using the problem characteristics to make inferences

about the optimal solution of the underlying problem. Researchers use dominance properties

widely in proposing efficient solution methods to the scheduling problems by eliminating

some parts of the solution space, or by characterizing the optimal solutions. In this section,

we propose some dominance properties on order acceptance and sequencing that are designed

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 29

for the OAS problem. The rest of the properties that we developed for order sequencing

decision are discussed in Chapter 6.

Definition 1 Minimum required time for completing order i is equal to C̄i = ri +min
j

sj,i +

pi. The difference between d̄i and C̄i is defined as the slack time of order i, δi.

Property 1 Suppose we have two orders, i and m. If C̄i > d̄m, then order m cannot be

placed after order i.

Now, we present the dominance properties that we applied for the OAS problem. In this

scope, we generate a new sequence S′ by changing some of the order positions in a feasible

sequence S. Next, we decide on which sequence dominates the other one by comparing two

sequences. Note that, in S′, [i] still represents the order index of the ith position in S.

3.6.1 Dominance properties dealing with acceptance decisions

1. Let L be the set of orders in the candidate acceptance list. For each of the orders

l ∈ L, if max
l∈L

d̄l −min
l∈L

rl <
∑
l∈L

(min
k∈J

skl + pl) , then not all of the orders in the set L

can be accepted at the same time. In order to get a feasible set from this set L, one

or more of the orders in set L should be rejected. This property applies to the cases

with two as below:

2. Two-order case of property 1: Assume we have two orders j and k. If max
j,k

(d̄j , d̄k) <

max
j,k

(rj+minsetupj+pj , rk)+pk+minsetupk) and max
j,k

(d̄j , d̄k) < max
j,k

(rk+minsetupk+

pk, rj) + pj + minsetupj) then orders j and k cannot be accepted in the same feasible

schedule.

Additionally, if max
j,k

(d̄j , d̄k) − min
j,k

(rj , rk) < minsetupj + minsetupk + pj + pk, then

order j and order k cannot be accepted in the same feasible schedule.

3.6.2 Dominance property dealing with sequencing decisions

Suppose we want to place order m right after order i. Minimum completion time for order i

is C̄i = ri +min
k∈J

sk,i+pi. If max(C̄i, rm)+si,m +pm > d̄m, then order m cannot be scheduled

right after order i. A similar, but looser dominance property is as follows: Suppose we want

Chapter 3: Order Acceptance and Sequencing (OAS) Problem 30

to place order m not right after, but after order i. If max(C̄i, rm) + min
k∈J

sk,m + pm > d̄m,

then order m cannot be scheduled after order i.

These three dominance properties were coded in Java and fed into the MILP model

as additional constraints. Next, both the original MILP model with dominance properties

added and the LP relaxation of the MILP model with dominance properties added were

solved with the data generated as mentioned in Chapter 5. However, the upper bounds for

the original MILP model (UBMILP) and the LP relaxation (UBLP) were not improved for

both of the trials. Therefore, the proposed dominance properties are not useful for the OAS

random data described in detail in Chapter 5, but they are still promising to be used in

other types of data or in an exact algorithm such as branch and bound algorithm.

Chapter 4: Heuristic Solution Approaches 31

Chapter 4

HEURISTIC SOLUTION APPROACHES

As mentioned in Chapter 3, the OAS problem is NP-hard. For this reason, CPLEX is

capable of solving only small size OAS problem instances via MILP model in reasonable

time limits. For industrial-size problems, we need to develop other methods that efficiently

solve the problem requiring considerably small CPU times. Below we present the algorithms

and heuristics developed for the OAS problem.

4.1 Iterative Sequence First- Accept Next(ISFAN) Algorithm

In this section, we describe the ISFAN algorithm for solving the OAS problem. ISFAN

is an iterative heuristic algorithm that uses a rule designed for the OAS problem to give

acceptance-rejection decisions and Simulated Annealing (SA) algorithm concepts to handle

the sequencing of the selected orders. SA is a metaheuristic method that uses thermody-

namic concepts. The reason why we use its ideas in ISFAN is an important aspect in its

nature: it is good at diversifying and less likely to get stuck in the local optimum than

other metaheuristics. Also, SA is proven to be succesful in solving combinatorial optimiza-

tion problems in the literature [29]. Similar to SA algorithm, ISFAN accepts a new solution

even its objective value is worse than before, with a probability given by exp(−δf/T), where

δf is the increase in the objective function value and T is the current temperature. By

this procedure, ISFAN handles the sequencing part of the problem. For order acceptance-

rejection decisions, ISFAN uses the revenue-load ratio which is equal to ej/(pj +minsetupj).

At each ISFAN iteration, first the sequencing of orders is handled with SA and the order

with the lowest revenue-load ratio is rejected at the end of the iteration. The algorithm

is run until a feasible schedule is found. Once a feasible schedule is found for the set of

accepted orders, algorithm tries to find the best schedule for this set. In these attempts to

find the best schedule, local search methods such as the best order exchange and the best

order insertion are applied. Below we give the ISFAN and the local search algorithms in

Chapter 4: Heuristic Solution Approaches 32

detail.

ISFAN Algorithm

Step 1. Read the input data.

Step 2. Set the control parameters:

2.1. Initial temperature (Tmax)

2.2. Set Tcurrent = Tmax

Step 3. Set the parameters:

3.1. Total revenue=0;

3.2. best revenue=0;

Step 4. Construct the initial solution (not necessarily feasible).

4.1. Sequence the jobs in descending order of slacktimej = d̄j − rj − (minsetupj+

pj);

4.2. Calculate the completion time Cj , the tardiness Tj and the gained revenue Rj

for each j.

4.3. Count the number of orders violating their deadlines dj .

4.4. Calculate the best revenue: best revenue=
∑
j

Rj .

Step 5. While number of violating orders > 0 do the following:

5.1. Perform the following SA-based loop ITER times:

5.1.1. Generate two different random integers a1 and a2 between 1 and n (n is the

number of available orders).

5.1.2. Exchange the orders having the indices as a1 and a2.

5.1.3. Calculate Cj ’s, Tj ’s and Rj ’s and the number of violating orders in this new

sequence.

5.1.4. Calculate the total revenue: total revenue=
∑
j

Rj .

5.1.4.1. If (Total revenue > best revenue), accept the new sequence,

best revenue=Total revenue.

5.1.4.2. If (Total revenue ≤ best revenue),

5.1.4.2.1. Calculate the probability of accepting, pr=exp(-(-Total revenue+best

revenue)/Tcurrent).

5.1.4.2.2. Select uniformly distributed random number m, from the interval

(0,1).

Chapter 4: Heuristic Solution Approaches 33

5.1.4.2.2.1. If m < pr, accept the sequence, best revenue=Total revenue.

5.1.4.2.2.2. If m ≥ pr reject the new sequence, and continue with the former

best sequence.

5.1.4.3. Return to Step (5.1.1).

5.1.5. Update the current temperature by using the selected cooling function.

5.1.6. Calculate the revenue-load ratio ratioj = ej/(pj + minsetupj) for violating

orders.

5.1.6. Reject the order having the smallest revenue-load ratio.

5.1.7. Return to Step (4.2) with the new sequence.

5.2. If the number of violating orders=0, i.e., a feasible solution is obtained, perform

the following for ITER1 times:

5.2.1. Generate two different random integers a1 and a2 between 1 and n. (n is

the number of available orders)

5.2.2. Exchange the orders having the indices a1 and a2.

5.2.3. Calculate Cj ’s, Tj ’s and Rj ’s and newrevenue for this new sequence.

newrevenue =
∑
j

Rj

5.2.3.1. If (new sequence is feasible) and (newrevenue > best revenue):

5.2.3.1.1. best sequence=new sequence.

5.2.3.1.2. best revenue= newrevenue.

5.2.3.2. Else, preserve the current best sequence.

The flow chart for the ISFAN algorithm is given in Figure 4.1.

Since ISFAN is a hybrid metaheuristic, the computational complexity of the algorithm

cannot be expressed in terms of O(n) notation. The complexity of ISFAN depends on

many developer-defined parameters such as the number of iterations, number of iterations

without improvement and the initial temperature of the annealing procedure. In the worst

case, ISFAN algorithm may have exponential run time depending on these parameters.

4.2 Constructive Heuristics

In addition to the hybrid-metaheuristic algorithm ISFAN, we propose two constructive

heuristics considering the special characteristics of the problem. Constructive heuristics

are designed for generating high quality solutions in a short time compared to other more

Chapter 4: Heuristic Solution Approaches 34

sophisticated exact or metaheuristic algorithms. Below we describe the procedures for each

of the constructive algorithms.

4.2.1 Dynamic Release First- Sequence Best (d-RFSB) Heuristic

The main idea of the d-RFSB heuristic is to evaluate the availability of the orders by

checking the release dates and deadlines, and then accepting and scheduling the order that

has the highest ei
(pi+spreviousJob,i)

ratio among the available orders. In d-RFSB heuristic,

acceptance decisions are given dynamically. Time is evolved by one unit until an available

order is found. Once an available order is scheduled, the completion time of this order is

calculated and time is evolved up to this time. An unscheduled order whose deadline is

passed is automatically counted as rejected by the heuristic. Hence, the d-RFSB heuristic

has a procedure for accepting the orders rather than rejecting them as in ISFAN algorithm.

Below we give the algorithm for the d-RFSB heuristic.

d-RFSB Algorithm

Step 1. Read the input data.

Step 2. Set the time, tcurrent = 0, previousJob = 0, tempAccept = 0, count = 1,

ratioCount = 1, maxDue = 1, ind = true;

Step 3. while (ratioCount 6= 0), do the following:

3.1. If tcurrent ≥ maxDue, terminate the algorithm.

3.2. Count the number of unscheduled jobs.

3.2.1. if number of unscheduled jobs=0, terminate the algorithm

3.3. Find the maximum due date from the due dates of the set of

unscheduled orders U .

3.4. If ((max(tcurrent, rtempAccept)+spreviousJob,tempAccept+ptempAccept) ≥ maxDue),

terminate the algorithm.

3.5. while (x = true), do the following (while1):

3.5.1. for each order i in set U , if ri ≤ tcurrent and di ≥ tcurrent,

calculate the ratio ratioi = ei
(pi+spreviousJob,i)

, ratioCount = ratioCount + 1;

3.5.2. If ratioCount = 0, tcurrent = tcurrent + 1, x = true; else, x = false;

3.6. while acceptedJob = 0 (while2),

3.6.1. If tcurrent ≥ maxDue, terminate the algorithm,

Chapter 4: Heuristic Solution Approaches 35

3.6.2. Find the order j having the maximum ratio, and assign tempAccept = j,

3.6.3. if ((max(tcurrent, rtempAccept)+spreviousjob,tempAccept+ptempAccept) ≥ maxDue)

break while2;

3.6.4. if (max(tcurrent, rtempAccept)+spreviousJob,tempAccept+ptempAccept ≤ d̄tempAccept),

then do the following assignments:

acceptedJob = tempAccept,

Acceptance[acceptedJob] = 1,

tcurrent = max(tcurrent, rtempAccept) + spreviousJob,tempAccept + ptempAccept,

CompletionacceptedJob = tcurrent,

previousJob = acceptedJob,

sequence[count] = acceptedJob;

count = count + 1;

3.6.5. Else, ratiotempAccept = 0,

AcceptancetempAccept = 1,

tempAccept = 0, break while2;

3.7. ratioCount = 1, x = true, acceptedJob = 0;

3.8. return to while.

The computational complexity of the d-RFSB heuristic is O(n2) since we make at most

n passes in the algorithm, and at each pass, we deal with k−1 orders where k is the number

of unscheduled orders beginning from n.

4.2.2 Modified ATCS (m-ATCS) Heuristic

m-ATCS heuristic uses a slightly modified version of ATCS priority index mentioned in

[15]. m-ATCS heuristic has a similar structure as d-RFSB heuristic. The priority index

that m-ATCS heuristic uses is ei
pi
× exp(max(di−pi−tcurrent,0)

p̄) × exp(−spreviousJob,i

s̄) to select

the order that will be sequenced next. p̄ and s̄ represent the average processing time and

average setup time.

m-ATCS heuristic considers the information on setup times and processing times of

other orders by adding s̄ and p̄ terms to the priority index, and on approximate potential

tardiness’s of orders by the term max(di − pi − tcurrent, 0). Below we give the algorithm for

the m-ATCS heuristic.

Chapter 4: Heuristic Solution Approaches 36

Algorithm

Step 1. Read the input data.

Step 2. Calculate the average processing time and average setup time.

Step 3. Set the time, tcurrent = 0, previousJob = 0, indexCount = 1, tempAccept = 0,

count = 1, maxDue = 1, ind = true;

Step 4. while (indexCount 6= 0), do the following:

4.1. If tcurrent ≥ maxDue, terminate the algorithm.

4.2. Count the number of unscheduled jobs,

4.2.1. if number of unscheduled jobs=0, terminate the algorithm.

4.3. Find the maximum due date from the due dates of the set of unscheduled

orders U .

4.4. If ((max(tcurrent, rtempAccept)+spreviousJob,tempAccept+ptempAccept) ≥ maxDue),

terminate the algorithm.

4.5. while (x = true), do the following (while1):

4.5.1. For each order i in set U , if ri ≤ tcurrent and di ≥ tcurrent,

calculate the index indexi = ei
pi
×exp(max(di−pi−tcurrent,0)

p̄)×exp(−spreviousJob,i

s̄),

indexCount = indexCount + 1;

4.5.2. If indexCount = 0, tcurrent = tcurrent + 1, x = true; else, x = false;

4.6. While acceptedJob = 0 (while2),

4.6.1. If tcurrent ≥ maxDue, terminate the algorithm,

4.6.2. Find the order j having the maximum ratio, and assign tempAccept = j,

4.6.3. if ((max(tcurrent, rtempAccept)+spreviousjob,tempAccept+ptempAccept) ≥ maxDue)

break while2;

4.6.4. if (max(tcurrent, rtempAccept)+spreviousJob,tempAccept+ptempAccept ≤ d̄tempAccept),

then do the following assignments:

acceptedJob = tempAccept,

Acceptance[acceptedJob] = 1,

tcurrent = max(tcurrent, rtempAccept) + spreviousJob,tempAccept + ptempAccept,

CompletionacceptedJob = tcurrent,

previousJob = acceptedJob,

sequence[count] = acceptedJob;

Chapter 4: Heuristic Solution Approaches 37

count = count + 1;

4.6.5. Else, ratiotempAccept = 0,

AcceptancetempAccept = 1,

tempAccept = 0, break while2;

4.7. indexCount = 1, x = true, acceptedJob = 0;

4.8. return to while.

The computational complexity of the m-ATCS heuristic is O(n2) calculated as the com-

plexity of d-RFSB heuristic.

4.3 MILP Heuristic (MILPH)

MILPH is a heuristic method proposed to generate good solutions to the OAS problem. In

MILPH, we feed a sequence (either feasible or infeasible) to the mathematical model and

run the model for a specific amount of time. The resulting solution is a lower bound for the

OAS problem. The sequence is added in the following manner: In addition to the MILP

model, constraint set

yij ≥ Ii + Ij − 1 (4.1)

is added for each pair of consecutive orders in sequence S. This constraint set assures

that if the consecutive orders i and j in input sequence S are both accepted, they have

to be scheduled consecutively in the optimal sequence. If all of the orders are eligible for

acceptance at the same time, then the remaining problem is easy: Given the sequence,

calculate the tardiness and the total profit. Otherwise, if one of each consecutive orders is

rejected, then the remaining problem is again the OAS problem with n/2 orders. In this

case, the remaining orders have no sequencing restrictions among them since the constraint

set (4.1) puts limits on only the consecutive orders in sequence S.

The input sequence for the MILPH is found as follows: First of all, the complicating

constraint set of the model, constraint set (3.3) is relaxed and the model is solved by CPLEX.

If the resulting solution does not contain any subtours, then this sequence is directly input

into the MILP model in which the constraint set (4.1) is added and solved by CPLEX

solver with 1 hour time limit. Otherwise if the solution contains subtours; then subtours

are identified and eliminated. The subtour elimination phase is handled by adding the

Chapter 4: Heuristic Solution Approaches 38

constraints,

∑

i/∈S

Ii − zS ≥ 0; (4.2)

∑

i∈S,j /∈S

yij − zS ≥ 0; (4.3)

zS − Ii ≥ 0, ∀i /∈ S (4.4)

to the MILP model where constraint set (3.3) is relaxed and zS is a binary variable generated

for each subtour elimination iteration. These constraints force each order i such that i /∈ S

to enter S, so that a sequence S that contains all of the orders is formed at the end.

The elimination phase is terminated when a single sequence S of all orders is found. The

sequence S is then fed into the original MILP model by adding the constraint set (4.1) for

all consecutive orders and the problem is solved by CPLEX with 1 hour time limit. Next,

local improvement methods mentioned in Section 4.4 are applied to the resulting solution.

We present the results for the MILPH in Chapter 5.

4.4 Local Improvement Methods

In ISFAN algorithm, orders are rejected one by one in each rejection iteration after a number

of neighborhood moves are performed to improve the current sequence. Once an order is

rejected, there is no procedure for adding that rejected order back to the final solution

in ISFAN algorithm. For this reason, ISFAN may yield to low-quality results when a few

orders are rejected mistakenly. In order to overcome this issue and to improve the solutions

obtained by the ISFAN algorithm, we employ order insertion and order exchange algorithms.

We apply the local improvement methods to d-RFSB, m-ATCS and MILPH heuristics as

well as ISFAN algorithm for a fair comparison of the methods. Below we give the algorithms

for local improvement methods in detail.

4.4.1 Order Insertion Algorithm

The idea of the order insertion algorithm employed in this study is as follows: Given a feasi-

ble sequence of accepted orders, and the set of rejected orders we try to insert these rejected

orders into the existing feasible schedule. Each orders in rejected orders set are inserted in

Chapter 4: Heuristic Solution Approaches 39

each position and the feasible insertion that results in highest revenue is performed. Once

an insertion move is performed, the existing feasible schedule is updated and procedure is

continued until no improvement is achieved. Order insertion method allows us to insert

some rejected orders that improve the current objective function value when added to the

current sequence without violating feasibility. The algorithm steps are given below:

Order Insertion Algorithm

Step 1. Read the initial sequence obtained by the ISFAN algorithm.

Step 2. Read the set of rejected jobs in that solution.

Step 3. While an improvement on the objective value is achieved at the last iteration:

3.1. Perform the following loop for k=number of rejected jobs times:

3.1.1. Perform the following loop for m=number of positions at the initial sequence

times:

3.1.1.1. Insert the ith (i=0,. . . ,k − 1) element of the rejected jobs to the jth

(j=0,. . . ,m− 1) position of the initial sequence.

3.1.1.2. Calculate Cl’s, Tl’s and Rl’s for this new sequence.

3.1.1.3. If (new sequence is feasible) and (newrevenue > best revenue):

3.1.1.3.1. initial sequence=new sequence.

3.1.1.3.2. best revenue= new revenue.

3.2. Update the set of rejected jobs by extracting the inserted job.

3.3. Return to Step 3.

The flow chart for the insertion algorithm is given in Figure 6.1.

The computational complexity of the insertion heuristic is O(n2) since we have n − a

rejected orders to insert to a positions where a is the number of accepted orders, and in the

worst case we have to make (n− a) passes.

4.4.2 Order Exchange Algorithm

In the order exchange algorithm, given a feasible sequence of accepted orders, and the

set of rejected orders we try to exchange these rejected orders by one of the orders in

the existing schedule. Each order in rejected orders set is exchanged by each order in

the existing feasible sequence and the feasible exchange that results in highest revenue is

performed. Once an exchange move is performed, the existing feasible schedule is updated

Chapter 4: Heuristic Solution Approaches 40

and procedure is continued until no improvement is achieved. Order exchange method

allows us to exchange some of the rejected orders that improve the current objective function

value when exchanged with some of the orders currently in the sequence without violating

feasibility. The algorithm steps are given below in detail:

Order Exchange Algorithm

Step 1. Read the initial sequence obtained by the ISFAN algorithm.

Step 2. Read the set of rejected jobs in that solution.

Step 3. While an improvement on the objective value is achieved at the last iteration:

3.1. Perform the following loop for k=number of rejected jobs times:

3.1.1. Perform the following loop for m=number of positions at the initial sequence

times:

3.1.1.1. Exchange the ith (i=0,. . . ,k − 1) element of the rejected orders

with the order at jth (j=0,. . . ,m− 1) position at the initial sequence.

3.1.1.2. Calculate Cl’s, Tl’s and Rl’s for this new sequence.

3.1.1.3 If (new sequence is feasible) and (newrevenue > best revenue):

3.1.1.3.1. initial sequence=new sequence.

3.1.1.3.2. best revenue= newrevenue.

3.2. Update the set of rejected jobs by exchanging the newly added order by the

extracted order.

3.3. Return to Step 3.

The flow chart for the exchange algorithm is given in Figure 4.3.

The computational complexity of the exchange heuristic is O(n2) calculated as the com-

plexity of the insertion heuristic.

The local improvement methods can be applied to existing feasible schedules sequentially

as well as separately. In our test experiments, we found that the best combination of the

local improvement methods is local insertion-local exchange performed consecutively. The

result is not surprising since when an insertion move is performed, we add a new order to

the acceptance list, and potentially increase the total revenue. However, we can add an

order to the list only if we reject another one with the exchange move, thus the exchange

move has a lower potential of increasing the total revenue than the insertion move. Still, if

the exchange moves are performed after the possible insertion moves are performed, we may

Chapter 4: Heuristic Solution Approaches 41

have the possibility of adding a mistakenly rejected order and increase the total revenue.

Hence, we applied the local improvement methods to all of the heuristics’ solutions in this

prespecified order.

We coded the proposed heuristics and tested them on two types of data structure. We

give the results in Chapter 5.

Chapter 4: Heuristic Solution Approaches 42

Input data

Set Control

parameters

ITER1, ITER2

and Tmax

Construct initial

solution

(not necessairly

feasible)

number of

violating

orders>0

Perform order exchange,

calculate C[i], T[i], R[i] and

new revenue

New

revenue>best

revenue

Accept the new sequence,

Best sequence=new sequence

Best revenue=new revenue;

ITER=ITER+1

Calculate probability of

accepting a worse sequence,

pr

Random number

m<pr

Accept the new

sequence;

ITER=ITER+1

Continue with the

current best

sequence;

ITER=ITER+1

Yes

YesNo

Yes
No

ITER<Iteration

limit

Yes

No

Update the

temperature

No

Calculate the

revenue-load ratio

Reject the order

with the smallest

revenue-load ratio

Return the new

sequence

Perform order

exchange,

calculate C[i], T[i],

R[i] and new

revenue.

(New sequence is

feasible)and

 (New revenue>best

revenue)

ITER2<Iteration

limit 2
Yes Yes

Accept the new sequence,

Best sequence=new sequence

Best revenue=new revenue;

ITER2=ITER2+1

No

Return the FINAL

SEQUENCE and

OBJECTIVE

VALUE

Preserve the current best

sequence
No

Figure 4.1: Flow chart for ISFAN algorithm.

Chapter 4: Heuristic Solution Approaches 43

Read the final

sequence and the

set of rejected

ordersobtained by

ISFAN, initialize

k=0

objective value is

improved at the last

iteration

TERMINATENo

Yes

k<number of rejected

jobs

m<number of

positions at the initial

sequence

Yes

Insert the kth job

to mth position,

Calculate C[k],

T[k], and R[k]

Yes

(New sequence is

feasible) and (new

revenue>best revenue)

Initial sequence=new

sequence;

Best revenue=new

revenue;

m=m+1.

Yes

No:

k=k+1

Update the set of

rejected jobs by

extracting the

inserted job

No:

m=m+1

No

Figure 4.2: Flow chart for Insertion algorithm.

Chapter 4: Heuristic Solution Approaches 44

Read the final

sequence and the

set of rejected

ordersobtained by

ISFAN, initialize

k=0

objective value is

improved at the last

iteration

TERMINATENo

Yes

k<number of rejected

jobs

m<number of

positions at the initial

sequence

Yes

Exchange the kth element of

the rejected orders with the

order at position m at the

initial sequence.

Calculate C[k], T[k], and R[k]

Yes

(New sequence is

feasible) and (new

revenue>best

revenue)

Initial sequence=new

sequence;

Best revenue=new

revenue;

m=m+1.

Yes

No:

k=k+1

No

Update the set of

rejected jobs by

extracting the

inserted job

No:

m=m+1

Figure 4.3: Flow chart for Exchange algorithm.

Chapter 5: Computational Studies 45

Chapter 5

COMPUTATIONAL STUDIES

We performed computational experiments to analyze the performance of the the pro-

posed algorithms. In this chapter, we first describe the random data generation phase of the

experiments since the OAS problem is not studied before in the literature, and hence there

is no available data library for use in our computational experiments. Next, the data of a

special case, Slotnick & Morton’s data [28], is described. In Section 5.2, the computational

experiments are discussed in detail.

5.1 Data Generation

5.1.1 Random Data

In order to test the proposed model and the heuristics, random test instances are generated

varying in parameter values and problem sizes. The following problem parameters are

integer numbers which were generated randomly from a uniform distribution in the following

intervals; release dates ri: [0,pT × τ] where pT is the total processing time of all orders and

τ is the tardiness factor, processing times pi: [1,20], sequence dependent setup times sij :

[1,10], and revenues ei: [1,20]. The due dates are generated so that for each order i, due

date di is in the interval of (pT +max
j

sij + ri)× [1− τ −R/2, 1− τ +R/2] and integer where

R represents the due date range respectively. The deadlines are generated from the formula

d̄i=di + R× pi. The weight wi is calculated by the formula wi=ei/(d̄i− di). In this setting,

revenue gained from an order i becomes 0 at its deadline d̄i. The values used for τ and R

are 0.1, 0.3, 0.5, 0.7 and 0.9. For each possible combination of τ and R, 10 instances were

generated and the average results are reported.

In this study, τ = {0.1, 0.3, 0.5} have been found compatible with R = {0.1, 0.3, 0.5, 0.7, 0.9},
and a total of 3×5×10=150 test instances are generated for these parameter combinations

for each n. Similarly, τ = 0.7 is compatible with R = {0.5, 0.7, 0.9}, and hence 3 × 10=30

instances are generated for each n. Finally, τ = 0.9 is compatible only with R = 0.9,

Chapter 5: Computational Studies 46

and therefore 10 instances are generated for each n for τ = 0.9, R = 0.9 combination.

Resultantly, the number of the test instances for each n is 190, which sums up to 1140

for 6 different n values where n = 10, 15, 20, 25, 50, 100. The results of the computational

experiment are presented in Section 5.2.

5.1.2 Slotnick & Morton’s (S&M) Data

The S& M data is taken from the authors, which exist for only the problem sizes of 10

and 20. In S&M data, the weights and the processing times were generated from a uniform

distribution (0, 1), then adjusted by a constant, in order to vary the difficulty of the problem

in terms of profit margin and order size. Revenue was randomly generated from a lognormal

distribution with an underlying normal distribution with mean 0 and standard deviation

1. Due dates were generated from a uniform distribution, adjusted to the magnitude of

processing times in a particular problem.

5.2 Computational Experiments

5.2.1 Computational Platform

All of the runs throughout these computational experiments are performed on a workstation

with an Intel Xeon processor, 3.40 Ghz speed, and 8 GB of RAM.

In MILP, LP relaxation, LP relaxation with valid inequalities and MILPH runs, we have

used ILOG CPLEX 10.0 and Java API of ILOG CPLEX Concert Technology. Time limit is

3600 seconds for CPLEX runs except for the runs with S&M data whose time limit is 600

seconds. All of the solution methods developed within the scope of this thesis are coded in

Java.

5.2.2 Upper Bound Comparisons

In Section 3.5, we propose three methods for finding an efficient upper bound for the OAS

problem. However, the third method, Lagrangean relaxation, does not work well with

the OAS problem. Below in Tables 5.1, 5.2 and 5.3, we compare LP relaxation bound

(UBLP) and LP relaxation bound strengthened with valid inequalities (UBLPV I) for n ∈
{10, 15, 20, 25, 50, 100}. In Tables 5.1, 5.2 and 5.3, we see that valid inequalities strengthen

Chapter 5: Computational Studies 47

the upper bound by 1 to 2% on the average. In addition, we observe that while there are

minimal or no improvements for τ = 0.1, 0.3 cases; the improvements are noticeable for

τ = 0.5, R = 0.1 case (7 to 12% on the average) and τ = 0.7, R = 0.5 case (3 to 7% on

the average). We can conclude that valid inequalities have more potential to strengthen

the UBLP for the instances having τ large and R small with this evidence. Since the

highest improvement is achieved when τ = 0.5, R = 0.1 case is tested, we can arrive at the

conclusion that as the ratio between τ and R increases, the likelihood of the UBLPV I to

improve increases. τ = 0.3, R = 0.1 and τ = 0.7, R = 0.5 cases also support this conclusion.

As it is obvious from Tables 5.1, 5.2 and 5.3 that UBLPV I dominates the UBLP , we use

UBLPV I for measuring the heuristic algorithms’ performances in the following sections.

5.2.3 Experiments with MILP model

For each (n, τ, R) parameter combination, we solved 10 instances of the OAS problem,

generated randomly as explained above. The comparison of upper bounds generated by

MILP (UBMILP) and LP relaxation with valid inequalities (UBLPV I) can be found in

Table 5.4 for n=10, 15. We reported the maximum, minimum and average deviations of

MILP objective function values from the UBLPV I and the CPU times in Tables 5.7 and

5.8 for n=10, 15. From the CPU time results in Table 5.8, it is seen that the hardest

problem instances for MILP are generated when τ = 0.1 and R = 0.1, 0.3, and τ = 0.3 and

R = 0.1, 0.3. It is still possible to solve the OAS problem when τ = 0.5, 0.7 and 0.9 when

n = 10. For the problem sizes above 15, it is impossible to find the optimal solution within

the time limit of 3600 seconds in this setting. In addition, when we keep τ constant, and

increase R, we see that the problem becomes easier for the MILP for τ = 0.1 and 0.3. This

is because when τ = 0.1 or 0.3, orders are unlikely to be tardy in the optimal schedule, so

the rejection decision is not easy. However, as R grows, the due dates of the orders become

looser, and this brings a scheduling flexibility to the system which makes the OAS problem

easier. UBMILP in Table 5.7 is defined as the upper bound that MILP model has reached

at its termination point. Below in Table 5.8, we see that MILP model with CPLEX solver

is not capable of solving the OAS problem for sizes n > 15 except for a very limited number

of cases in the prespecified time limit.

Chapter 5: Computational Studies 48

5.2.4 Experiments for the ISFAN Algorithm

Experimental Design for the ISFAN Algorithm

In order to make the best use of the ISFAN algorithm, we fixed the best algorithm parameter

values experimentally.

One of the most important parameters of Simulated Annealing (SA)-based algorithms is

the initial temperature. Initial temperature should be chosen carefully so that the system

temperature does not approach to 0 too quickly to prevent early convergence, or too slowly

to prevent spending CPU time unnecessarily. For the initial temperature, we examined the

effect of five different temperatures, 600, 800, 1000, 1200 and 1500.

Identifying the appropriate cooling function is another important aspect of SA-based

algorithms. A badly-chosen cooling function can cool the system very quickly and hence

the results become poor due to early convergence or very slowly and therefore, the algorithm

spends more CPU time even if it successfully converges to a good objective value at an early

stage. The cooling functions that we tested are:

1. Ti+1 = Ti × α, where α ∈ (0, 1) and i is the iteration number,

2. Ti = Tinitial × (TN
Tinitial

)
i
N , where N is the maximum number of iterations and TN is

the final temperature,

3. Ti = Tinitial − iA, A = ln(Tinitial−TN)
ln(N) ,

4. Ti = Tinitial × exp(−A2
i), A = (1

N2) ln(Tinitial
TN

).

We examined the effect of these four functions that differ in shape and parameters. Since

the first cooling function is a frequently used one, the shape for this function is not given.

The graphs for the cooling functions 2, 3 and 4 are presented in Figure 5.1. We present

the average deviations of the ISFAN objective function values from the UBLP for 50-order

instances that have τ=0.3, and initial temperature=800 as ISFAN parameters with differ-

ent cooling functions tested in Table 5.5. Since similar behaviors are observed with other

combinations of the parameter values, the tables for these combinations are omitted. Resul-

tantly, we chose the cooling function 3 (CF3) as it had the least average deviation from the

Chapter 5: Computational Studies 49

upper bound. These experiments also show that the algorithm is robust to cooling function

selection since the gaps were different by around 1-2 % in each cooling function.

We present the results for initial temperatures 800, 1000 and 1500, combined with the

cooling function 3 in Table 5.6. It is observed that the least % deviations are achieved when

Tinitial = 800. Since this behavior is observed with other combination of the parameter

values and thus the example is representative, we excluded the graphs for other parameter

combinations. As a result, we chose 800 as ISFAN’s initial temperature.

Additionally, we tested different initial sequences for the ISFAN algorithm. It is observed

that the quality of the initial sequence does not affect the final solution and the required

CPU time of the ISFAN algorithm.

Finally we examined the convergence behavior of the ISFAN algorithm in each rejection

iteration to determine the maximum number of neighborhood operation iterations. We

present the results of neighborhood operations for a rejection iteration of a 50-order problem

having τ=0.3, initial temperature=800 and cooling function 3 in Figure 5.2. As shown in

the figure, the results do not achieve stability until at least 3.5 millions of neighborhood

operations have been reached. After that point, the results of the experiment show that,

dramatic improvements may still be achieved when the maximum number is increased to

5 millions. Although the required CPU time is not very significantly affected when this

number is increased for example for a couple of millions, it is rare that the objective function

is improved after 5 millions of iterations. Similar behaviors are observed with all other

combinations of parameter values. Hence the maximum number of neighborhood operations

in a rejection iteration is fixed to 5 millions in the ISFAN algorithm.

Computational Results of ISFAN Algorithm with Random Data

The first part of this computational study compares the performance of ISFAN with re-

spect to the MILP model’s objective values for n = 10 and 15. Local improvement meth-

ods, insertion and exchange, are applied to ISFAN solutions sequentially, and the max-

imum, minimum, and average % deviation of the ISFAN objective function value from

the min(UBMILP , UBLPV I) bound in Table 5.7 and the corresponding CPU times for the

ISFAN algorithm are presented in Table 5.8.

The results of the experiments in Table 5.8 confirm that, as τ increases, the problem gets

Chapter 5: Computational Studies 50

less time consuming for the MILP, but more time consuming for the ISFAN algorithm. This

is because the time-consuming part of the ISFAN algorithm is the rejection part. Namely,

as more orders are rejected, ISFAN algorithm needs more CPU time. The reverse is true

for MILP: As more orders are rejected, the search space is narrowed, and thus the optimal

solution is found more quickly.

We found that the ISFAN objective function values are competitive with the MILP

objective function values for n = 10 and 15 which can be observed from the average per-

centage deviations displayed in Table 5.7. ISFAN algorithm is clearly a fast and an efficient

metaheuristic for n = 10 and 15 since it generated gaps of 6% on the average where MILP

generates gaps of 8% on the average.

As it is not possible to obtain reasonable solutions by solving the MILP for the OAS

problem when n > 15, we compared the performance of the ISFAN with respect to an upper

bound in the second part of the computational study for n ∈ {20, 25, 50}. Since ISFAN

becomes time consuming when n = 100, we did not run ISFAN for the data where n ≥ 50.

An easy to compute upper bound is the bound that is obtained by relaxing the integrality

restrictions, UBLP . However, as mentioned in Section 3.5, UBLP is dominated by LP

relaxation bound with valid inequalities, UBLPV I . Hence, we used the UBLPV I to evaluate

the performance and to calculate the gaps of the ISFAN algorithm. For each parameter

combination of the problem, we solved 10 instances generated randomly as described in

Section 5.1.1 and reported the results. We present the maximum, the minimum, and the

average % deviation of the ISFAN objective function values from UBLPV I for n > 15, and

the corresponding CPU times in Tables 5.9 and 5.10. UBLPV I bound is observed to be

relatively tight when tardiness factor τ is equal to 0.1 and 0.3 for n=10 (average ISFAN-LP

gaps are around 1% and 9%, respectively).

UBLPV I bound calculation solution times are not included in the table since the problem

is solved within maximum of 3–4 seconds when n = 50.

We can make the following further observations from the results presented in Tables 5.7,

5.8, 5.9 and 5.10:

• The CPU times of ISFAN are reasonable even for large-size problem instances.

• The average % deviations of ISFAN solutions from the upper bounds are below 21%

Chapter 5: Computational Studies 51

in all cases. The average optimality gap is only 9% when all cases are considered.

Hence, the performance of the algorithm with respect to the objective function value

side is good.

• The observation we made for small-size problem instances regarding the difficult prob-

lem cases is not clear as in Tables 5.7 and 5.8 because when we analyze the CPU times

of ISFAN, we cannot see much difference depending on different cases. However, we

observe that the average % deviation of the difficult cases for small-size problems is

also large in Table 5.7. When we examine % deviation results for different n values

in Tables 5.7, 5.9 and 5.10, we see that the differences among the average % devia-

tions for different cases are not so large. Hence, we may conclude that for large-size

problems, the difficulty of the problem remains the same for different R values.

• We observe that as τ increases, the problem gets more difficult for the ISFAN algo-

rithm. This can be explained as follows: As, τ , the tardiness factor, increases, the

time window for each order gets narrower, and hence the probability of being tardy

increases for each order. Therefore, more of the orders are rejected when τ is large

compared to when it is small. Since the most time-consuming part of the ISFAN is

the rejection part, ISFAN requires more time for the instances having large τ .

• When we increase the problem size from 25 to 50, the optimality gap increases slightly,

from 10% to 12%. Therefore the ISFAN algorithm is not dramatically affected from

the size of the problems.

Overall we can say that ISFAN is an efficient solution method for the OAS problem even

for large-size problems as its average % deviation from the UBLPV I is below 21% in all

cases, and 9% on the average.

Computational Results of MILP and ISFAN algorithm for S&M Data

As mentioned earlier in Chapter 2, Slotnick and Morton [28] study a special case of the

OAS problem. 100 S&M instances for each of n = 10 and 20 problems were provided by

the authors. We arranged the ISFAN algorithm and the original MILP model to handle

this special case in order to evaluate if MILP and ISFAN work for this special data. The

Chapter 5: Computational Studies 52

ISFAN and MILP objective functions’ values are compared to the UBMILP at termination.

Original MILP model was run for 10 minutes for each 10-order and 20-order problems. Since

the MILP model is solvable for all 10-order problems optimally by CPLEX in 10 minutes,

ISFAN algorithm was run for 20-order problems only. Average CPU time that CPLEX

needed to solve the MILP for 10-job problems is 186.05 seconds whereas the average CPU

time is 6154.12 seconds in [28]. Although this huge difference can be attributed to the

evolution of computers, the result shows that MILP model solves the instances generated

by SM data efficiently for n = 10.

Slotnick and Morton have also applied beam search using Vogel bound, Vogel heuristic

and assignment heuristic to the S&M problem. Beam search algorithm with assignment

bound and assignment heuristic dominated other methods, hence we used beam search al-

gorithm with assignment bound and assignment heuristic to measure our methods’ perfor-

mances. We observe the followings for the case when n = 20: 12% of the 20-order problems

are solved optimally in 10 minutes time limit with MILP. % deviation from the UBMILP is

less than 15% for 46% of the problems. Average % deviation of 100 instances of n = 20 size

from UBMILP is 20% for MILP. ISFAN algorithm was also run for these problems. ISFAN

solved 31% of the problems optimally. Average CPU time needed for the ISFAN algorithm

for n = 20 is 31 seconds. The average CPU time for Slotnick and Morton’s beam search

algorithm with assignment bound is 8474 seconds and the corresponding average optimality

gap is 2.4% when compared to UBMILP . Average gap between UBMILP and the ISFAN

objective function value is 4.7%, which shows that the ISFAN algorithm solves this special

case efficiently with respect to time and objective function value considerations.

5.2.5 Experiments for d-RFSB and m-ATCS Heuristics

Computational Results of d-RFSB and m-ATCS Heuristics for Random Data

The constructive heuristics d-RFSB and m-ATCS are tested on the same problems gener-

ated for the tests of MILP model. Local improvement methods, insertion and exchange, are

applied to both of the methods after the algorithms were run. In Tables 5.11, 5.12, 5.13, and

5.15, we present % deviation of the algorithms from the UBLPV I for n ∈ {10, 15, 20, 25, 50, 100}.
Since the required runtime is very small (varying in 0 to 5 seconds interval) for both d-RFSB

and m-ATCS heuristics, the CPU times are not reported.

Chapter 5: Computational Studies 53

In Tables 5.11 and 5.12, we see that the ISFAN algorithm performs better than both

d-RFSB and m-ATCS algorithms when n= 10, 15, 20 and 25. However, time requirement

for ISFAN increases as the problem size increases. We can make the following further

observations from Tables 5.11, 5.12 and 5.13:

• The average % deviation from the upper bound is below 23% in all cases for d-RFSB

heuristic and below 26% in all cases for m-ATCS heuristic where n ≤ 50. Therefore,

both of the constructive algorithms generate good solutions in a very short time.

• d-RFSB heuristic and m-ATCS heuristic are prone to have significantly larger devi-

ations than ISFAN algorithm for small n. As n gets larger, % deviations from the

upper bound become closer for all of the three methods.

• Although both of the algorithms perform similarly in the tests for n ≤ 25, when

n=50, m-ATCS heuristic dominates the ISFAN and d-RFSB heuristic. This can be

attributed to two main reasons:

– Because the m-ATCS heuristic index includes information on release dates, process-

ing times and setup times to the order selection process, it potentially generates

more efficient solutions. However, this property is compensated by ISFAN’s

neighborhood moves for n < 50.

– As the problem size increases, ISFAN needs more neighborhood operations to

reach better solutions, however the number of neighborhood moves is fixed for

all sizes.

For the problem sizes greater than 50, m-ATCS heuristic is promising since it generates

better objective value % deviations from UBLPV I than d-RFSB heuristic for n = 100.

• When τ = 0.1, gaps are smaller in all of the methods since fewer orders are rejected

and the bound is considerably tighter in τ = 0.1 case. This evidence shows that all of

the proposed algorithms are good at sequencing the orders.

• % deviations of the d-RFSB and m-ATCS heuristics from the UBLPV I values are

independent of the problem size. While deviations are 8% for both of the algorithms

for n = 10, 12 and 9% deviations are calculated respectively when n = 50.

Chapter 5: Computational Studies 54

As a representative experiment, we present and compare the number of rejected jobs for

each three algorithms for n = 50 in Table 5.14. It is observed that the heuristic that rejects

the least number orders is m-ATCS algorithm (9 rejected orders) on the average. Although

this result agrees with our previous results stating that m-ATCS heuristic dominates other

heuristics for large n, the number of rejected orders does not necessarily imply that a

heuristic is the clear winner of a comparison since our revenues, ei for each i, takes different

values in [1,20] interval.

Since the required time for ISFAN algorithm increases as n increases, we only ran d-

RFSB and m-ATCS heuristics for the case when n = 100. The results for this experiment

are presented in Table 5.15. It is observed that both of the heuristics perform well for large

n. The average % deviation of d-RFSB heuristic is 11% while it is 7% for m-ATCS heuristic

for n = 100. Therefore for n = 100, m-ATCS heuristic dominates d-RFSB heuristic on

the average % deviations from UBLPV I . This domination can be attributed to m-ATCS

heuristic’s index. It includes more information on the OAS problem to the heuristic’s

procedures. An improved version of the d-RFSB heuristic may generate better solutions for

the OAS problem.

Computational Results of d-RFSB and m-ATCS Heuristics for S&M Data

We arranged d-RFSB and m-ATCS heuristics to solve the S&M data and evaluate the

performances of the heuristics. In the computational experiments, it is observed that m-

ATCS heuristic solved the 56% of the 20-job problems optimally while the corresponding

value for the Slotnick and Morton’s best performing heuristic (assignment heuristic) is 44%.

However the average % deviation from the UBMILP has been found as 3.9% for the m-ATCS

heuristic and 10.87% for the d-RFSB heuristic while the average % deviation is 2.4% for

the assignment heuristic. The required times for the assignment heuristic, the m-ATCS and

d-RFSB heuristics are competitive. Therefore, m-ATCS heuristic can efficiently be applied

to S&M problem to obtain optimal or near-optimal solutions.

5.2.6 Experiments for MILPH

MILPH method has MILP model solved by CPLEX solver with a sequence that contains all

of the jobs as input as mentioned in Section 4.3. In addition, local improvement methods,

Chapter 5: Computational Studies 55

insertion and exchange, are sequentially applied to the solutions of MILPH. Due to solving

the MILP model in it, MILPH is promising for small size problems only. We limit our

MILPH runs for order sizes of 15 and 20 since for n > 20, MILPH becomes very time

consuming for the OAS problem instances.

MILPH generates an average of 12% and 13% deviations from UBLPV I for 15-order and

20-order problems respectively. We give a summary of numerical experiments for MILPH

method in Table 5.16.

As observed from Tables 5.11, 5.12 and 5.16, the MILPH is dominated by ISFAN, d-

ATCS and m-ATCS heuristics with respect to CPU time and objective function value con-

siderations.

5.2.7 Conclusions on Computational Experiments

In this chapter, we performed computational experiments to compare the results obtained

by solving the model using CPLEX 10.0 and the results of the proposed heuristics.

We explain the random data generation procedure used in creating our test instances

in Section 5.1. Next, we solve these instances using MILP model by CPLEX 10.0 with one

hour CPU time limit using the generated data, and we observed that MILP is not solvable

for n >15. We also relaxed the integrality restrictions on yij variables in MILP and solved

the relaxed model by CPLEX. We used the resulting LP bound to evaluate the results

obtained from solving the MILP. The corresponding % deviations of MILP solutions from

the min(UBLP , UBMILP) bound can be found in Table 5.7’s righthand side and CPU times

obtained by solving MILP can be found in Table 5.8’s righthand side. It’s observed from

Table 5.8 that when τ and R are small and close to each other, the problem is harder to

solve with the MILP model. The reason might be that when τ is small, the orders are not

spread to different parts of the time line. Hence, both the rejection and the sequencing

decisions are difficult since many orders are available at a time. To strengthen the upper

bound, we added valid inequalities to the relaxed MILP model, and showed that UBLPV I

improves the UBLP 0 to 12% on the average. When we compare the improvements of

UBLPV I and UBMILP bounds in Table 5.4, it’s found that UBLPV I has higher average %

improvements on the LP relaxation values on the average (UBLPV I improvement is 2% and

UBMILP improvement is 1% on the average).It is observed that the largest improvements

Chapter 5: Computational Studies 56

are achieved when τ = 0.5 and R = 0.1. Hence UBLPV I has the most improvement potential

for τ large and R small. As discussed earlier, when τ is large, more orders are expected

to be tardy. In addition, when R is small, due dates of the orders are close to each other,

and there is more possibility of clashes. Therefore, more orders are expected to be rejected

when τ is large and R is small. Valid inequalities efficiently identify such cases and improve

the bounds more.

Next, we proposed our simulated annealing-based algorithm ISFAN. In order to find

the best algorithm parameters, we performed an experimental design. As a result of the

experiments, we find that the best combination of parameters is reached when initial tem-

perature=800, cooling function=3 and number of iterations in simulated annealing phase is

five millions. In addition we performed local search (insertion and exchange of the orders)

to improve the results obtained by ISFAN.

ISFAN is found to be a good performing hybrid metaheuristic in the computational

experiments. Even when n = 50, it produces efficient solutions (average % deviation from

UBLPV I bound is 12%) in less than 10 minutes of CPU time on the average. We observed

that the problem gets harder for ISFAN when tardiness factor, τ , is large. This is because

when τ is large, more orders are rejected in optimal sequence. Since the rejection operation

is identified as the most time-consuming part of the ISFAN, more rejection causes greater

CPU times.

We also ran the ISFAN algorithm for the S&M data. It solved these problems efficiently,

especially in terms of CPU time. ISFAN required 31 seconds for solving an S&M problem

of size 20 on the average. The average % deviation of ISFAN solutions from UBLPV I bound

is 4.7% and ISFAN solved 31% of the solutions optimally.

We further proposed two constructive heuristics, d-RFSB heuristic and m-ATCS heuris-

tic, in Chapter 4 for the problem. Both of the heuristics are tested on the random data

and the results are also improved by local search as in ISFAN. The constructive heuristics

performed very well in terms of CPU time. For n ≤ 50, ISFAN dominated d-RFSB and

m-ATCS algorithms, however for n = 100, m-ATCS heuristic is proved to be the best per-

forming method. Hence, m-ATCS heuristic has more potential to perform well for larger-size

problems.

d-RFSB and m-ATCS heuristics are also tested on S&M data. While m-ATCS heuristic

Chapter 5: Computational Studies 57

solves 56% of the S&M data of size 20, the best method proposed by Slotnick and Morton

[28] solves 44% of the problems optimally. The average % deviation from UBLPV I values is

3.9% for the m-ATCS heuristics while the best method in [28] results in average % deviation

of 2.4%. Hence, the m-ATCS heuristic is an efficient method to solve the S&M problem

when CPU time and average % deviations are considered simultaneously.

Finally we tested MILP heuristic with the generated random data. MILPH is dominated

by ISFAN, d-RFSB and m-ATCS heuristics.

In Chapter 6, we give possible directions for future study, and our preliminary studies

for these directions.

Chapter 5: Computational Studies 58

Table 5.1: The average % improvement of UBLPV I over UBLP for sizes of 10 and 15.

UBLP vs. UBLPV I

n τ R Max Min Average

10 0.1 0.1 3% 0% 1%
0.3 0% 0% 0%
0.5 0% 0% 0%
0.7 1% 0% 0%
0.9 0% 0% 0%

0.3 0.1 13% 1% 5%
0.3 2% 0% 1%
0.5 3% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.5 0.1 27% 5% 12%
0.3 16% 1% 7%
0.5 10% 0% 3%
0.7 5% 0% 1%
0.9 1% 0% 0%

0.7 0.5 13% 1% 7%
0.7 7% 0% 2%
0.9 6% 0% 1%

0.9 0.9 21% 0% 6%

Avg 7% 0% 2%

15 0.1 0.1 3% 0% 1%
0.3 0% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.3 0.1 5% 1% 2%
0.3 2% 0% 1%
0.5 3% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.5 0.1 20% 5% 11%
0.3 9% 1% 4%
0.5 4% 0% 1%
0.7 1% 0% 0%
0.9 0% 0% 0%

0.7 0.5 11% 1% 4%
0.7 10% 0% 2%
0.9 1% 0% 0%

0.9 0.9 5% 0% 1%

Avg 4% 0% 2%

Chapter 5: Computational Studies 59

Table 5.2: The average % improvement of UBLPV I over UBLP for sizes of 20 and 25.

UBLP vs. UBLPV I

n τ R Max Min Average

20 0.1 0.1 2% 0% 1%
0.3 0% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.3 0.1 5% 2% 3%
0.3 2% 0% 1%
0.5 1% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.5 0.1 16% 8% 10%
0.3 12% 2% 5%
0.5 5% 0% 2%
0.7 1% 0% 0%
0.9 0% 0% 0%

0.7 0.5 8% 1% 5%
0.7 11% 0% 3%
0.9 1% 0% 0%

0.9 0.9 4% 0% 2%

Avg 3% 1% 2%

25 0.1 0.1 1% 0% 0%
0.3 0% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.3 0.1 3% 0% 2%
0.3 1% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.5 0.1 12% 5% 8%
0.3 5% 1% 3%
0.5 2% 0% 1%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.7 0.5 6% 2% 3%
0.7 2% 0% 1%
0.9 2% 0% 0%

0.9 0.9 5% 0% 2%

Avg 2% 0% 1%

Chapter 5: Computational Studies 60

Table 5.3: The average % improvement of UBLPV I over UBLP for sizes of 50 and 100.

UBLP vs. UBLPV I

n τ R Max Min Average

50 0.1 0.1 1% 0% 0%
0.3 0% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.3 0.1 3% 1% 2%
0.3 0% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.5 0.1 8% 5% 7%
0.3 7% 2% 3%
0.5 2% 0% 1%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.7 0.5 5% 2% 4%
0.7 1% 0% 0%
0.9 0% 0% 0%

0.9 0.9 1% 0% 1%

Avg 2% 0% 1%

100 0.1 0.1 1% 0% 0%
0.3 0% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.3 0.1 3% 1% 2%
0.3 1% 0% 0%
0.5 0% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.5 0.1 9% 5% 7%
0.3 3% 1% 2%
0.5 1% 0% 0%
0.7 0% 0% 0%
0.9 0% 0% 0%

0.7 0.5 5% 2% 4%
0.7 1% 0% 0%
0.9 0% 0% 0%

0.9 0.9 1% 0% 1%

Avg 1% 1% 1%

Chapter 5: Computational Studies 61

Table 5.4: The average % improvements of UBMILP and UBLPV I over UBLP for sizes of
10 and 15.

% Improvements

UBLP vs. UBMILP UBLP vs. UBLPV I

n τ R Max Min Average Max Min Average

10 0.1 0.1 0% 0% 0% 3% 0% 1%
0.3 1% 0% 0% 0% 0% 0%
0.5 0% 0% 0% 0% 0% 0%
0.7 0% 0% 0% 1% 0% 0%
0.9 4% 0% 0% 0% 0% 0%

0.3 0.1 0% 0% 0% 13% 1% 5%
0.3 19% 0% 5% 2% 0% 1%
0.5 9% 0% 3% 3% 0% 0%
0.7 7% 0% 2% 0% 0% 0%
0.9 13% 0% 3% 0% 0% 0%

0.5 0.1 33% 11% 22% 27% 5% 12%
0.3 35% 6% 20% 16% 1% 7%
0.5 27% 3% 12% 10% 0% 3%
0.7 25% 2% 11% 5% 0% 1%
0.9 21% 0% 7% 1% 0% 0%

0.7 0.5 34% 13% 25% 13% 1% 7%
0.7 24% 4% 16% 7% 0% 2%
0.9 16% 2% 7% 6% 0% 1%

0.9 0.9 38% 6% 21% 21% 0% 6%

Average 16% 2% 8% 7% 0% 2%

15 0.1 0.1 0% 0% 0% 3% 0% 1%
0.3 0% 0% 0% 0% 0% 0%
0.5 0% 0% 0% 0% 0% 0%
0.7 0% 0% 0% 0% 0% 0%
0.9 0% 0% 0% 0% 0% 0%

0.3 0.1 0% 0% 0% 5% 1% 2%
0.3 0% 0% 0% 2% 0% 1%
0.5 0% 0% 0% 3% 0% 0%
0.7 0% 0% 0% 0% 0% 0%
0.9 0% 0% 0% 0% 0% 0%

0.5 0.1 0% 0% 0% 20% 5% 11%
0.3 0% 0% 0% 9% 1% 4%
0.5 0% 0% 0% 4% 0% 1%
0.7 0% 0% 0% 1% 0% 0%
0.9 0% 0% 0% 0% 0% 0%

0.7 0.5 24% 0% 11% 11% 1% 4%
0.7 4% 0% 1% 10% 0% 2%
0.9 0% 0% 0% 1% 0% 0%

0.9 0.9 30% 0% 16% 5% 0% 1%

Average 3% 0% 1% 4% 0% 2%

Chapter 5: Computational Studies 62

Figure 5.1: Cooling functions 2, 3 and 4.

Chapter 5: Computational Studies 63

Table 5.5: Evaluation of different cooling functions for n=50, τ = 0.3, Tinitial = 800

CF1 CF2 CF3 CF4

R Max Min Average Max Min Average Max Min Average Max Min Average

0.1 28% 19% 24% 29% 18% 24% 29% 20% 24% 30% 20% 24%
0.3 26% 16% 21% 26% 17% 21% 26% 17% 20% 26% 15% 20%
0.5 26% 17% 22% 25% 18% 22% 24% 15% 21% 26% 17% 22%
0.7 25% 16% 22% 27% 18% 22% 28% 15% 22% 30% 16% 23%
0.9 34% 14% 27% 31% 16% 26% 30% 16% 24% 34% 17% 25%

Average 28% 16% 23% 28% 17% 23% 27% 16% 22% 29% 17% 23%

Table 5.6: % Gap of the ISFAN algorithm results from UBLP for initial temperatures of
800, 1000 and 1500 for n=50, τ = 0.3, CF = 3 (Compared with UBLP)

Tinitial=800 Tinitial=1000 Tinitial=1500

R Max Min Average Max Min Average Max Min Average

0.1 29% 20% 24% 29% 19% 25% 29% 20% 24%
0.3 26% 17% 20% 25% 15% 21% 25% 16% 21%
0.5 24% 15% 22% 28% 16% 22% 25% 17% 22%
0.7 28% 15% 22% 27% 16% 22% 28% 17% 22%
0.9 30% 16% 24% 34% 15% 26% 34% 18% 26%

Avg 27% 17% 22% 29% 16% 23% 28% 18% 23%

Chapter 5: Computational Studies 64

30000
1700000

4970000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

Number of iterations

O
b

je
c
ti

v
e
 v

a
lu

e

Figure 5.2: Convergence behavior of the ISFAN algorithm at a rejection iteration for a
50-order problem having τ=0.3, R=0.3, initial temperature=800 and cooling function 3.

Chapter 5: Computational Studies 65

Table 5.7: ISFAN and MILP % deviation comparison from min(UBLPV I , UBMILP) for the
OAS problem with sizes 10 and 15.

% Deviation of ISFAN % Deviation of MILP

n τ R Max Min Average Max Min Average

10 0.1 0.1 14% 0% 6% 10% 0% 2%
0.3 13% 0% 3% 6% 0% 1%
0.5 6% 0% 1% 3% 0% 1%
0.7 4% 0% 0% 4% 0% 0%
0.9 9% 0% 1% 3% 0% 0%

0.3 0.1 24% 2% 10% 9% 2% 5%
0.3 10% 0% 4% 3% 0% 0%
0.5 5% 0% 2% 0% 0% 0%
0.7 6% 0% 2% 0% 0% 0%
0.9 7% 0% 1% 0% 0% 0%

0.5 0.1 20% 0% 8% 0% 0% 0%
0.3 9% 0% 3% 0% 0% 0%
0.5 9% 0% 4% 0% 0% 0%
0.7 19% 0% 6% 0% 0% 0%
0.9 18% 0% 3% 0% 0% 0%

0.7 0.5 12% 0% 4% 0% 0% 0%
0.7 9% 0% 4% 0% 0% 0%
0.9 14% 0% 6% 0% 0% 0%

0.9 0.9 16% 0% 4% 0% 0% 0%

Avg 12% 0% 4% 2% 0% 1%

15 0.1 0.1 8% 1% 4% 22% 3% 13%
0.3 12% 0% 3% 22% 2% 11%
0.5 5% 0% 1% 17% 0% 7%
0.7 6% 0% 1% 33% 0% 5%
0.9 4% 0% 1% 20% 0% 5%

0.3 0.1 11% 1% 6% 41% 4% 23%
0.3 8% 2% 6% 42% 13% 26%
0.5 8% 1% 4% 38% 8% 20%
0.7 6% 1% 3% 38% 5% 22%
0.9 16% 0% 6% 36% 0% 17%

0.5 0.1 28% 5% 14% 49% 18% 33%
0.3 20% 11% 15% 34% 6% 24%
0.5 22% 8% 15% 45% 12% 26%
0.7 22% 3% 10% 33% 4% 19%
0.9 20% 0% 6% 44% 0% 15%

0.7 0.5 27% 2% 11% 31% 0% 7%
0.7 25% 6% 14% 30% 5% 16%
0.9 16% 1% 9% 19% 2% 11%

0.9 0.9 34% 0% 8% 26% 0% 4%

Avg 16% 2% 7% 33% 4% 16%

Chapter 5: Computational Studies 66

Table 5.8: CPU time comparison of MILP and ISFAN for the OAS problem with sizes 10
and 15.

CPU Time (ISFAN) CPU Time (MILP)

n τ R Max Min Average Max Min Average

10 0.1 0.1 32.75 13.91 21.95 3600.00 7.53 2828.35
0.3 23.19 13.88 15.11 3600.00 0.10 2312.69
0.5 32.25 13.89 15.82 3600.00 0.08 724.40
0.7 32.16 13.94 15.81 3600.00 0.08 660.57
0.9 23.16 14.00 14.97 3600.00 0.06 409.16

0.3 0.1 42.61 23.94 36.00 3600.00 3600.00 3600.00
0.3 50.38 14.81 27.35 3600.00 946.13 1960.58
0.5 32.28 14.03 21.52 3016.41 399.97 1294.52
0.7 32.70 13.98 18.05 2361.50 23.41 708.04
0.9 32.95 14.02 17.03 785.01 0.66 228.34

0.5 0.1 63.28 43.13 54.81 237.39 20.20 120.92
0.3 59.66 33.27 45.93 339.52 41.59 105.54
0.5 52.39 14.11 34.69 829.91 8.61 198.93
0.7 41.88 23.25 30.82 450.95 3.66 148.47
0.9 33.28 14.02 22.57 303.50 9.47 97.38

0.7 0.5 68.70 32.73 52.32 15.30 0.08 3.48
0.7 50.78 23.80 38.76 162.56 5.42 51.50
0.9 32.48 14.00 21.88 180.11 14.33 52.16

0.9 0.9 70.47 32.14 45.66 13.13 0.22 4.30

Avg 42.49 20.04 29.00 1783.96 267.45 816.28

15 0.1 0.1 48.19 26.67 35.50 3600.00 3600.00 3600.00
0.3 36.89 15.84 26.46 3600.00 3600.00 3600.00
0.5 31.64 15.86 19.91 3600.00 0.89 3240.09
0.7 40.14 15.94 19.62 3600.00 15.29 2515.50
0.9 33.69 16.02 18.93 3600.00 0.31 2791.46

0.3 0.1 59.75 39.06 49.56 3600.00 3600.00 3600.00
0.3 59.30 28.58 45.74 3600.00 3600.00 3600.00
0.5 47.69 27.42 34.98 3600.00 3600.00 3600.00
0.7 47.06 16.75 34.45 3600.00 3600.00 3600.00
0.9 55.66 16.24 36.39 3600.00 6.42 3240.64

0.5 0.1 103.69 61.84 86.85 3600.00 3600.00 3600.00
0.3 96.61 49.06 72.23 3600.00 3600.00 3600.00
0.5 76.44 49.80 64.61 3600.00 3600.00 3600.00
0.7 69.44 30.63 50.41 3600.00 3600.00 3600.00
0.9 78.27 22.27 41.08 3600.00 2998.09 3521.96

0.7 0.5 99.17 66.17 78.20 3600.00 803.82 2435.55
0.7 91.06 51.42 68.03 3600.00 3600.00 3600.00
0.9 63.50 31.30 51.88 3600.00 3600.00 3600.00

0.9 0.9 123.97 67.94 84.48 3600.00 76.33 1709.82

Avg 66.43 34.15 48.38 3600.00 2479.01 3297.63

Chapter 5: Computational Studies 67

Table 5.9: ISFAN objective value % deviations from UBLPV I and the correponfing CPU
times for the problem with sizes of 20 and 25.

% Deviation of ISFAN ISFAN CPU Time

n τ R Max Min Average Max Min Average

20 0.1 0.1 16% 2% 6% 78.75 47.36 62.37
0.3 8% 2% 5% 58.67 40.23 48.05
0.5 6% 1% 3% 54.75 31.28 42.34
0.7 5% 0% 2% 55.55 29.66 37.51
0.9 4% 0% 1% 43.58 18.67 33.33

0.3 0.1 13% 2% 8% 95.88 69.19 85.63
0.3 12% 5% 9% 100.49 68.19 79.72
0.5 12% 4% 7% 81.38 57.02 68.71
0.7 16% 2% 8% 93.63 45.14 73.70
0.9 17% 1% 8% 124.17 42.94 66.59

0.5 0.1 26% 10% 15% 142.13 110.52 125.72
0.3 22% 9% 16% 131.33 98.78 116.30
0.5 23% 8% 16% 156.20 82.61 109.41
0.7 14% 5% 10% 103.59 55.20 89.73
0.9 18% 2% 10% 134.63 55.84 90.79

0.7 0.5 23% 15% 18% 149.00 122.67 133.68
0.7 20% 14% 17% 120.17 99.08 113.51
0.9 24% 5% 14% 113.08 89.16 98.93

0.9 0.9 25% 13% 18% 142.99 101.56 119.04

Average 16% 5% 10% 104.21 66.58 83.95

25 0.1 0.1 11% 2% 5% 106.47 61.31 75.99
0.3 8% 1% 4% 87.50 48.41 64.43
0.5 10% 2% 4% 63.67 35.14 51.87
0.7 8% 0% 3% 75.50 33.89 51.03
0.9 3% 0% 2% 68.45 20.48 41.38

0.3 0.1 13% 3% 8% 121.33 97.88 111.68
0.3 13% 5% 8% 123.86 89.55 102.28
0.5 9% 3% 6% 101.56 82.92 91.60
0.7 13% 4% 8% 125.41 78.63 94.97
0.9 16% 4% 7% 134.64 64.72 98.39

0.5 0.1 19% 7% 12% 199.50 149.19 164.54
0.3 29% 9% 16% 180.27 145.05 157.89
0.5 21% 11% 16% 180.19 122.91 148.72
0.7 24% 4% 12% 175.55 107.27 140.73
0.9 15% 3% 8% 145.80 91.92 123.17

0.7 0.5 25% 11% 18% 197.23 169.17 185.33
0.7 27% 10% 17% 175.63 144.81 165.48
0.9 20% 4% 12% 155.86 128.48 142.04

0.9 0.9 37% 12% 21% 260.14 151.58 196.01

Average 17% 5% 10% 140.98 95.96 116.19

Chapter 5: Computational Studies 68

Table 5.10: ISFAN objective value % deviations from UBLPV I and the correponfing CPU
times for the problem with size of 50.

% Deviation of ISFAN ISFAN CPU Time

n τ R Max Min Average Max Min Average

50 0.1 0.1 9% 4% 6% 292.13 233.69 257.77
0.3 8% 3% 6% 280.19 211.73 245.42
0.5 7% 2% 4% 259.81 161.17 218.67
0.7 7% 2% 4% 297.64 171.30 218.87
0.9 8% 0% 5% 278.83 32.28 207.44

0.3 0.1 16% 8% 11% 423.00 327.30 377.20
0.3 14% 8% 11% 399.59 341.41 368.95
0.5 15% 6% 10% 435.86 332.00 382.55
0.7 17% 7% 10% 421.63 340.36 378.14
0.9 13% 7% 10% 464.28 329.16 397.48

0.5 0.1 19% 14% 16% 603.30 522.75 560.50
0.3 22% 15% 19% 575.73 503.63 551.24
0.5 28% 14% 20% 613.77 521.19 549.99
0.7 20% 12% 16% 631.45 500.91 556.58
0.9 23% 9% 14% 587.08 482.17 531.93

0.7 0.5 24% 12% 19% 709.05 656.34 682.72
0.7 22% 15% 17% 677.66 623.20 650.23
0.9 19% 9% 13% 669.66 577.66 623.37

0.9 0.9 21% 11% 15% 737.83 668.48 706.32

Avg 16% 8% 12% 492.55 396.67 445.55

Chapter 5: Computational Studies 69

Table 5.11: ISFAN, d-RFSB and m-ATCS heuristics comparison for the problem with sizes
of 10 and 15.

% Deviation from min(UBLPV I , UBMILP)

ISFAN Heuristic d-RFSB Heuristic m-ATCS Heuristic

n τ R Max Min Average Max Min Average Max Min Average

10 0.1 0.1 14% 0% 6% 13% 4% 7% 29% 2% 9%
0.3 13% 0% 3% 16% 2% 6% 9% 0% 3%
0.5 6% 0% 1% 12% 0% 5% 28% 0% 4%
0.7 4% 0% 0% 11% 0% 5% 9% 0% 2%
0.9 9% 0% 1% 20% 0% 10% 5% 0% 0%

0.3 0.1 24% 2% 10% 21% 5% 13% 28% 3% 14%
0.3 10% 0% 4% 17% 0% 8% 22% 0% 8%
0.5 5% 0% 2% 28% 6% 14% 28% 0% 8%
0.7 6% 0% 2% 12% 1% 7% 13% 0% 7%
0.9 7% 0% 1% 29% 1% 13% 24% 0% 7%

0.5 0.1 20% 0% 8% 15% 0% 5% 19% 0% 7%
0.3 9% 0% 3% 29% 0% 11% 38% 0% 15%
0.5 9% 0% 4% 21% 3% 7% 30% 0% 12%
0.7 19% 0% 6% 18% 3% 8% 28% 1% 14%
0.9 18% 0% 3% 27% 0% 9% 20% 0% 10%

0.7 0.5 12% 0% 4% 15% 0% 4% 21% 0% 5%
0.7 9% 0% 4% 24% 0% 8% 16% 0% 6%
0.9 14% 0% 6% 10% 0% 6% 21% 0% 9%

0.9 0.9 16% 0% 4% 18% 0% 7% 23% 0% 10%

Average 12% 0% 4% 19% 1% 8% 22% 0% 8%

15 0.1 0.1 8% 1% 4% 13% 2% 8% 9% 2% 5%
0.3 12% 0% 3% 13% 1% 6% 13% 1% 6%
0.5 5% 0% 1% 9% 0% 5% 20% 0% 4%
0.7 6% 0% 1% 13% 1% 6% 39% 0% 5%
0.9 4% 0% 1% 12% 1% 4% 12% 0% 2%

0.3 0.1 11% 1% 6% 16% 4% 10% 16% 4% 9%
0.3 8% 2% 6% 22% 5% 12% 23% 6% 11%
0.5 8% 1% 4% 21% 6% 13% 23% 1% 7%
0.7 6% 1% 3% 21% 3% 12% 15% 0% 6%
0.9 16% 0% 6% 28% 1% 11% 24% 0% 10%

0.5 0.1 28% 5% 14% 26% 8% 18% 34% 8% 23%
0.3 20% 11% 15% 28% 11% 22% 36% 8% 23%
0.5 22% 8% 15% 26% 12% 23% 35% 11% 19%
0.7 22% 3% 10% 37% 10% 22% 26% 3% 14%
0.9 20% 0% 6% 23% 6% 14% 32% 0% 10%

0.7 0.5 27% 2% 11% 34% 0% 14% 29% 0% 15%
0.7 25% 6% 14% 30% 7% 17% 42% 10% 22%
0.9 16% 1% 9% 27% 4% 13% 24% 1% 14%

0.9 0.9 34% 0% 8% 33% 0% 10% 33% 2% 10%

Average 16% 2% 7% 23% 4% 13% 26% 3% 11%

Chapter 5: Computational Studies 70

Table 5.12: ISFAN, d-RFSB and m-ATCS heuristics’ average % deviations from UBLPV I

for the problem with sizes of 20 and 25.

% Deviation from UBLPV I

ISFAN Heuristic d-RFSB Heuristic m-ATCS Heuristic

n τ R Max Min Average Max Min Average Max Min Average

20 0.1 0.1 16% 2% 6% 21% 2% 8% 20% 1% 8%
0.3 8% 2% 5% 9% 4% 7% 17% 2% 8%
0.5 6% 1% 3% 17% 2% 8% 11% 0% 5%
0.7 5% 0% 2% 12% 0% 7% 6% 0% 3%
0.9 4% 0% 1% 19% 4% 9% 6% 0% 2%

0.3 0.1 13% 2% 8% 14% 4% 9% 26% 2% 11%
0.3 12% 5% 9% 17% 7% 11% 17% 6% 10%
0.5 12% 4% 7% 18% 4% 12% 25% 4% 10%
0.7 16% 2% 8% 29% 8% 15% 21% 1% 9%
0.9 17% 1% 8% 25% 2% 16% 20% 1% 9%

0.5 0.1 26% 10% 15% 25% 13% 19% 42% 16% 23%
0.3 22% 9% 16% 29% 8% 20% 29% 17% 23%
0.5 23% 8% 16% 35% 11% 21% 34% 10% 20%
0.7 14% 5% 10% 21% 7% 15% 25% 4% 11%
0.9 18% 2% 10% 33% 4% 17% 24% 2% 10%

0.7 0.5 23% 15% 18% 27% 13% 20% 34% 16% 26%
0.7 20% 14% 17% 24% 14% 19% 35% 11% 23%
0.9 24% 5% 14% 26% 9% 18% 24% 9% 14%

0.9 0.9 25% 13% 18% 30% 11% 21% 30% 10% 21%

Average 16% 5% 10% 23% 7% 14% 23% 6% 13%

25 0.1 0.1 11% 2% 5% 12% 2% 7% 11% 3% 6%
0.3 8% 1% 4% 6% 1% 3% 9% 0% 4%
0.5 10% 2% 4% 9% 1% 5% 20% 1% 5%
0.7 8% 0% 3% 13% 2% 6% 5% 0% 2%
0.9 3% 0% 2% 20% 1% 8% 2% 0% 0%

0.3 0.1 13% 3% 8% 14% 6% 9% 13% 5% 9%
0.3 13% 5% 8% 16% 7% 11% 15% 4% 9%
0.5 9% 3% 6% 13% 4% 8% 14% 2% 7%
0.7 13% 4% 8% 22% 8% 15% 8% 2% 4%
0.9 16% 4% 7% 22% 7% 13% 16% 0% 7%

0.5 0.1 19% 7% 12% 20% 8% 13% 27% 10% 20%
0.3 29% 9% 16% 28% 8% 19% 29% 11% 19%
0.5 21% 11% 16% 29% 10% 17% 35% 8% 17%
0.7 24% 4% 12% 23% 11% 17% 21% 7% 13%
0.9 15% 3% 8% 23% 7% 13% 21% 2% 9%

0.7 0.5 25% 11% 18% 27% 11% 20% 28% 17% 21%
0.7 27% 10% 17% 23% 11% 17% 26% 11% 18%
0.9 20% 4% 12% 23% 6% 15% 21% 2% 11%

0.9 0.9 37% 12% 21% 32% 14% 22% 32% 13% 24%

Average 17% 5% 10% 20% 7% 13% 19% 5% 11%

Chapter 5: Computational Studies 71

Table 5.13: ISFAN, d-RFSB and m-ATCS heuristics’ average % deviations from UBLPV I

for the problems with size of 50.

% Deviation from UBLPV I

ISFAN Heuristic d-RFSB Heuristic m-ATCS Heuristic

n τ R Max Min Average Max Min Average Max Min Average

50 0.1 0.1 9% 4% 6% 6% 3% 4% 10% 3% 5%
0.3 8% 3% 6% 7% 2% 4% 9% 2% 4%
0.5 7% 2% 4% 6% 1% 4% 9% 0% 3%
0.7 7% 2% 4% 8% 2% 5% 6% 0% 2%
0.9 8% 0% 5% 9% 2% 6% 2% 0% 1%

0.3 0.1 16% 8% 11% 12% 5% 8% 22% 5% 11%
0.3 14% 8% 11% 13% 7% 10% 19% 5% 11%
0.5 15% 6% 10% 13% 7% 10% 15% 3% 6%
0.7 17% 7% 10% 18% 9% 12% 17% 0% 4%
0.9 13% 7% 10% 18% 5% 12% 8% 0% 3%

0.5 0.1 19% 14% 16% 16% 10% 14% 21% 12% 17%
0.3 22% 15% 19% 21% 15% 18% 26% 13% 18%
0.5 28% 14% 20% 25% 13% 20% 31% 7% 16%
0.7 20% 12% 16% 26% 13% 16% 17% 4% 11%
0.9 23% 9% 14% 21% 11% 14% 16% 2% 8%

0.7 0.5 24% 12% 19% 21% 12% 17% 22% 13% 18%
0.7 22% 15% 17% 27% 12% 16% 17% 11% 14%
0.9 19% 9% 13% 24% 7% 13% 17% 3% 9%

0.9 0.9 21% 11% 15% 22% 10% 16% 26% 14% 19%

Average 16% 8% 12% 16% 8% 12% 16% 5% 9%

Table 5.14: Number of rejected orders for ISFAN, d-RFSB and m-ATCS heuristics for
n = 50.

Number of rejected orders out of 50 orders

ISFAN Heuristic d-RFSB Heuristic m-ATCS Heuristic

n τ R Max Min Avg Max Min Avg Max Min Avg

50 0.1 0.1 11 7 9.1 10 6 7.6 8 5 7
0.3 10 6 8.2 7 3 6 7 4 5.5
0.5 7 5 6.1 7 3 5 7 2 4.2
0.7 9 4 6.4 9 3 5.7 3 0 1.7
0.9 7 0 5.4 7 2 5.6 4 0 0.7

0.3 0.1 15 11 13.4 14 9 11.4 14 10 11.1
0.3 16 11 12.4 13 10 11.2 12 8 9.3
0.5 13 10 11.2 13 6 9.8 9 5 7.1
0.7 12 8 9.5 11 6 9.1 10 2 5
0.9 11 8 9.4 12 6 9 4 0 1.9

0.5 0.1 21 17 18.2 19 16 17.5 19 15 16.9
0.3 19 16 17.1 19 13 15.8 19 12 16.3
0.5 20 13 16.5 19 13 15.3 16 11 13.2
0.7 17 11 13.6 18 8 12.5 12 6 9
0.9 15 9 12 13 9 10.8 10 2 6.3

0.7 0.5 19 15 17.2 20 15 16 18 12 16.4
0.7 17 12 14.8 18 11 14.2 15 11 11.8
0.9 17 8 11.8 17 8 11.4 14 5 8.9

0.9 0.9 18 13 15 17 11 14 17 12 14.4

Avg 14 10 12 14 8 11 11 6 9

Chapter 5: Computational Studies 72

Table 5.15: d-RFSB and m-ATCS heuristics’ average % deviations from UBLPV I) for the
problems with size of 100

d-RFSB Heuristic m-ATCS Heuristic

n τ R Max Min Avg Max Min Avg

100 0.1 0.1 4% 2% 3% 12% 3% 6%
0.3 6% 2% 4% 9% 2% 3%
0.5 6% 2% 4% 4% 1% 2%
0.7 6% 2% 5% 4% 0% 1%
0.9 9% 3% 6% 1% 0% 0%

0.3 0.1 12% 6% 9% 13% 6% 8%
0.3 11% 7% 9% 15% 4% 7%
0.5 12% 7% 10% 8% 3% 4%
0.7 16% 9% 11% 9% 2% 4%
0.9 15% 8% 12% 5% 1% 2%

0.5 0.1 18% 12% 14% 20% 12% 15%
0.3 18% 12% 16% 21% 8% 13%
0.5 21% 14% 18% 14% 8% 11%
0.7 21% 13% 17% 13% 5% 9%
0.9 18% 10% 14% 6% 1% 4%

0.7 0.5 22% 13% 17% 19% 11% 15%
0.7 18% 11% 14% 13% 9% 11%
0.9 19% 10% 13% 14% 5% 9%

0.9 0.9 15% 10% 13% 19% 10% 14%

Avg 14% 8% 11% 12% 5% 7%

Chapter 5: Computational Studies 73

Table 5.16: MILPH gaps from UBLPV I and CPU times for problem sizes of 15 and 20.

% Deviation of MILPH MILPH CPU Time

n τ R Max Min Average Max Min Average

15 0.1 0.1 14% 1% 7% 4.42 0.52 1.65
0.3 15% 2% 7% 3600.02 0.33 362.24
0.5 9% 0% 4% 5.36 0.23 1.55
0.7 14% 0% 4% 7.13 0.33 2.52
0.9 9% 1% 5% 11.59 0.75 3.97

0.3 0.1 22% 5% 13% 765.66 0.67 80.92
0.3 20% 7% 14% 18.98 1.38 5.72
0.5 15% 1% 8% 60.03 0.58 10.58
0.7 13% 3% 9% 17.28 1.13 4.32
0.9 16% 4% 9% 7.67 0.97 2.99

0.5 0.1 28% 8% 18% 74.83 2.66 20.14
0.3 20% 13% 16% 18.72 2.34 7.39
0.5 29% 13% 20% 59.94 2.02 12.30
0.7 21% 3% 12% 11.86 0.67 4.56
0.9 23% 7% 13% 43.06 0.52 7.15

0.7 0.5 37% 10% 21% 8.91 0.34 1.73
0.7 26% 7% 17% 31.84 0.50 4.67
0.9 22% 4% 15% 426.41 0.36 44.70

0.9 0.9 34% 12% 23% 1.64 0.31 0.72

Average 20% 5% 12% 272.39 0.87 30.52

20 0.1 0.1 17% 2% 9% 2093.00 2.89 263.26
0.3 12% 5% 7% 3600.03 4.51 393.91
0.5 16% 2% 6% 3600.03 2.70 733.46
0.7 11% 2% 5% 3600.03 3.45 737.14
0.9 15% 2% 6% 3600.03 2.50 519.27

0.3 0.1 18% 4% 11% 3600.13 38.86 1005.15
0.3 16% 5% 11% 1191.72 3.38 453.98
0.5 20% 5% 10% 1441.64 36.41 533.22
0.7 21% 4% 13% 1731.63 10.55 856.38
0.9 21% 2% 11% 2212.00 8.33 500.22

0.5 0.1 31% 12% 20% 3600.09 394.91 2816.86
0.3 33% 12% 21% 3601.44 261.84 2280.36
0.5 33% 9% 18% 3600.05 8.27 1011.80
0.7 17% 9% 14% 1092.84 22.31 341.04
0.9 24% 4% 15% 3600.03 10.02 763.90

0.7 0.5 24% 16% 20% 287.61 2.02 38.97
0.7 25% 9% 16% 3600.03 13.58 458.20
0.9 21% 7% 16% 3600.03 6.08 479.72

0.9 0.9 27% 18% 21% 3600.03 4.61 378.65

Average 21% 7% 13% 2802.76 44.06 766.60

Chapter 6: Further Studies 74

Chapter 6

FURTHER STUDIES

In this study, we propose a mathematical model and several heuristics in order to solve

the OAS problem which are verified to work efficiently. In this chapter, we give possible

directions for future study, and preliminary results for these directions. First, an exact

method is mentioned, and next, the ways to develop an efficient heuristic or metahuristic

are described.

6.1 Exact Method Development

As a further study, a branch and bound algorithm that is specially designed for the OAS

problem may be developed to solve larger problem instances exactly. As we discussed earlier,

the OAS problem is NP-hard and thus solution space grows exponentially, which makes the

exact solution methods are not promising to solve large size problems. However, an efficient

problem-specific branch and bound algorithm may increase the limit of the solvable size to

20-orders. Below, we present several dominance properties mainly on order sequencing that

can be used in a branch and bound algorithm to eliminate certain non-optimal branches of

the tree. First, we introduce additional notation which will be used in dominance relations:

J : the set of all orders, J = 0, 1, 2, ..., n + 1, where 0 and n + 1 are artificial orders;

K: the partial sequence starting with the artificial order 0, corresponding to a node at

level k in the research tree, in which orders in the first k + 1 positions have been fixed.

J(K): the set of orders in the partial schedule K,

U(K): the set of unscheduled orders, given the partial schedule K,

C(K): the completion time of the last order in K,

S: a full feasible schedule.

1. Dominance property that apply to partial schedules:

Suppose we have a partial schedule K, where k orders are scheduled and where [j]

denotes the order scheduled at the jth position in this partial schedule. Suppose further

Chapter 6: Further Studies 75

that we want to add an order from the set U(K) to the current schedule K.

Let C[k] be the completion time of the order scheduled at position k, and s[k,u] be the

setup time required to schedule order u right after the order at position k, [k]. If ∃ u such

that C[k] + s[k,u] + pu > d̄u; then adding this order u to the partial sequence is infeasible

since deadline of job u is violated. Hence, we can prune this branch.

2. Dominance properties to determine the first and the last elements of the optimal schedule:

(a) Determining the first order: Suppose we have an order j satisfying dj < min
i∈J,i6=j

ri.

Since rj + s0,j + pj > dj by data generation, there exists an optimal schedule, where j is

the first job to be processed.

(b) Determining the last order: Suppose we have an order j satisfying rj > max
i∈J,i6=j

d̄i.

Since rj +maxsetupj + pj > dj by data generation, there exists an optimal schedule, where

j is the last job to be processed.

3. Dominance properties that apply to full schedules:

Dominance properties proposed in this section are the modified versions of the dominance

properties proposed in [17]. We extend these dominance properties to apply on the OAS

problem.

Theorem 1 If ∃i, [i] ∈ S such that n1 is the number of jobs from the job at position i to job

at position k, n2 is the number of jobs from the job at position u to the job at the last position,

and ∆T is the change of the total tardiness, ∆1 = s[i−1][i+1] − s[i−1][i] − s[i][i+1] − p[i] ≤ 0,

∆2 = s[i−1][i+1] + s[k][i] + s[i][u] − s[i−1][i] − s[i][i+1] − s[k][u] ≤ 0, ∆T = n1∆1 + n2∆2 + C[k] −
C[i−1] + s[k][i] − s[i−1][i] ≤ 0, release date constraints are satisfied for all jobs in schedule

S′ and deadline constraint of job [i] is satisfied in S′; then the schedule S′ dominates the

schedule S.

Proof Consider a feasible schedule S as shown in Figure 6.1. We form another schedule,

S′, by inserting job [i] after job [k]. Until the end of processing job [i − 1], Ts = Ts′ and

Cs = Cs′ . In this part, since each order is completed at exactly the same time in S′ as it is

in S, the release date and the deadline of any order are satisfied; and C[i−1] = C ′
[i−1].

Since the orders in the [i + 1]st to the [k]th position are processed at different times in

schedules S and S′, we need to compare the completion times C[j] and C ′
[j] for these orders.

C[i+1] = C[i−1] + s[i−1][i] + w[i] + s[i][i+1] + p[i+1] and C ′
[i+1] = C[i−1] + s[i−1][i+1] + p[i+1] for

order [i + 1]. Therefore, since the triangular inequality is assumed to be satisfied among

Chapter 6: Further Studies 76

S ... i-1 i i+1 ... k-1 k u ...

S' ... i-1 i+1 ... k-1 k i u ...

Figure 6.1: Inserting job [i] after job [k].

setup times, C ′
[i+1] ≤ C[i+1]. [i + 1]st job is completed at an earlier time in schedule S′

then it is in schedule S. This relationship applies to all orders up to [k]. This condition

provides that all orders from [i + 1] up to and including order [k] are completed at ∆1 time

units earlier in schedule S′ than they are in schedule S. This also ensures that deadlines

of orders from order [i + 1] up to and including order [k] are satisfied and the tardiness of

these orders in schedule S′ cannot be greater than the tardiness of these orders in schedule

S. The tardiness gain is (n1 − 1)∆1.

Now consider the orders scheduled after order [u]. Because we have ∆2 ≤ 0, C[u] ≥ C ′
[u].

Then, each of the orders scheduled after [u] are completed at ∆2 time units earlier in

schedule S′ than they are in schedule S including order [u]. So, the change in the tardiness

is ∆2 for each of these orders. This ensures that deadlines of the orders from the order [u]

up to and including the order at last position are satisfied. The tardiness gain is n2∆2.

Now in order to dominate S, gain of the tardiness by scheduling orders [i + 1] to [k]

at earlier positions should be greater than the additional tardiness incurred by order [i]

by positioning it at a later position. Let the required time to complete the part of the

schedule separately from order [i + 2] up to [k] including order [k] be F where F includes

setup time for order [i + 2]. The value of F is the same for both S and S′. Since T ′[i] =

C[i−1] + s[i−1][i+1] + p[i+1] + F + s[k][i] + p[i] − d[i] and T[i] = C[i−1] + s[i−1][i] + p[i] − d[i],

T ′[i] − T[i] = s[i−1][i+1] + p[i+1] + F + s[k][i] − s[i−1][i]. We can write F explicitly as F =

C[k] − C[i−1] − s[i−1][i] − p[i] − s[i][i+1] − p[i+1]. When we plug the explicit form of F in the

inequality, we get T ′[i] − T[i] = C[k] −C[i−1] + ∆1 + s[k][i] − s[i−1][i]. The additional tardiness

incurred by placing the order [i] at a later position is C[k] − C[i−1] + ∆1 + s[k][i] − s[i−1][i].

Chapter 6: Further Studies 77

Then the change of the total tardiness is ∆T = (n1− 1)∆1 + n2∆2 + T ′i −Ti, which is equal

to n1∆1 + n2∆2 + C[k] − C[i−1] + s[k][i] − s[i−1][i], where ∆1 ≤ 0 and ∆2 ≤ 0.

Therefore, Ts′ ≤ Ts and the schedule S′ dominates the schedule S. ¤

S ... i-1 i i+1 ... k-1 k u ...

Part 0 Part 1 Part 2

S' ... i-1 k i+1 ... k-1 i u ...

Figure 6.2: Interchanging of positions of jobs [i] and [k].

Theorem 2 If ∃i, [i] ∈ S,such that n1 is the number of jobs from the job at position i to job

at position k, i.e. [i],. . . ,[k], n2 is the number of jobs from the job at position u to the job

at the last position, i.e. [u],. . . ,[last position] and ∆T is the change of the total tardiness,

∆1 = s[i−1][k] +p[k] +s[k][i+1]−s[i−1][i]−p[i]−s[i][i+1] ≤ 0, ∆2 = s[i−1][k] +s[k][i+1] +s[k−1][i] +

s[i][u]−s[i−1][i]−s[i][i+1]−s[k−1][k]−s[k][u] ≤ 0, ∆1 +s[i−1][k] +s[k−1][i]−s[i−1][i]−s[k−1][k] ≤ 0,

∆1(n1 − 1) + ∆2n2 + s[i−1][k] + s[k−1][i] − s[i−1][i] − s[k−1][k] ≤ 0, the deadline constraint of

order [i] is satisfied and if the release date constraints are satisfied for all orders beginning

from order k, that is, if the constraints:

Ci−1 ≥ rk, Ck ≥ ri+1, . . ., Ck−2 ≥ rk−1, Ck−1 ≥ ri, . . .

are not violated, then the new schedule S′ formed by exchanging orders [i] and [k] dominates

the existing schedule S.

Proof Consider a feasible schedule S. We construct another schedule S′ by exchanging

the positions of orders at positions [i] and [k] as in Figure 6.2. In the new schedule, we

assume that release date constraints are satisfied, that is, completion time of each order

should be greater than or equal to the release date of its immediate successor. In such a

schedule S′, we will have three parts:

In Part 0: Ts = Ts′ and Cs = Cs′ . In this part, since each order is completed at exactly

the same time in S′ as it is in S, the release dates and the deadlines of all orders are satisfied.

Chapter 6: Further Studies 78

In Part 1: In this part, the completion time of each order [l] has a change of ∆1 ≤ 0, so

T ′[l] ≤ T[l], for indexes i + 1 ≤ l ≤ k − 1. Since none of the orders are completed at a later

time due to ∆1 ≤ 0, deadline constraints are satisfied in Part 1. The gain of tardiness for

each of the orders between [i + 1] and [k− 1], including [i + 1] and [k− 1] is ∆1 time units.

Then, the total gain of tardiness is (n1 − 2)∆1 in part 1.

In Part 2: Change of completion time of order [u] is ∆2. Since ∆2 ≤ 0, we have

Cu ≥ C ′
u, which ensures that deadline constraints are not violated in this part. Therefore,

any sequence comprised of all the jobs in U(K) can be scheduled earlier in S′ in part 2.

That is, Ts′ ≤ Ts. Gain of tardiness by scheduling jobs [u], . . . ,[lastposition] in part 2 is

∆2n2. Then the total gain of tardiness in part 1 and part 2 is ∆1(n1 − 2) + ∆2n2.

The change of tardiness caused by interchanging [i] and [k]:

T ′[i] − T[i] + T ′[k] − T[k] = ∆1 + s[i−1][k] + s[k−1][i] − s[i−1][i] − s[k−1][k] ≤ 0.

Finally, the total change of tardiness of schedule S′:

∆T = Ts′,Part0 + Ts′,Part1 + Ts′,Part2 − Ts,Part0 − Ts,Part1 − Ts,Part2 + ∆1(n1 − 2) + ∆2n2

which is equal to ∆1 + s[i−1][k] + s[k−1][i] − s[i−1][i] − s[k−1][k] + ∆1(n1 − 2) + ∆2n2, where

∆1 ≤ 0 and ∆2 ≤ 0.

Therefore, the new schedule S′ dominates the existing schedule S. ¤

Theorem 3 If ∃i, [i] ∈ S,such that n1 is the number of jobs from the job at position i+2 to

the job at last position , i.e. [i + 2],. . . ,[lastposition], if ∆1 = s[i−1][i+1] + p[i+1] + s[i+1][i] −
s[i−1][i], ∆2 = s[i−1][i+1] − s[i−1][i] − p[i] − s[i][i+1] ≤ 0, ∆3 = s[i−1][i+1] + s[i+1][i] + s[i][i+2] −
s[i−1][i]−s[i][i+1]−s[i+1][i+2] ≤ 0, ∆1 +∆2 +n1∆3 ≤ 0 and release date of each job is satisfied

in the new schedule, then the new schedule S′ formed by exchanging the adjacent orders [i]

and [i + 1] dominates the existing schedule S.

Proof Consider a feasible schedule S. We construct another schedule S′ by exchanging

the positions of adjacent orders at positions [i] and [i + 1] as in Figure 6.3. In the new

schedule, we assume that release date constraints are satisfied, that is, completion time of

each order should be greater than or equal to the release date of its immediate successor.

In such a schedule S′, we will have three parts:

In Part 0: Ts = Ts′ and Cs = Cs′ . In this part, since each order is completed at exactly

the same time in S′ as it is in S, the release date and the deadline of any order are satisfied.

(Part 0 ends after processing of (i− 1)st job).

Chapter 6: Further Studies 79

S ... i-1 i i+1 ... k-1 k u ...

Part 0 Part 1 Part 2

S' ... i-1 i+1 i ... k-1 k u ...

Figure 6.3: Interchanging of positions of adjacent jobs [i] and [i + 1].

In Part 1: The extra tardiness incurred by order [i] by positioning it to i+1st position is

∆1 = s[i−1][i+1] +p[i+1] +s[i+1][i]−s[i−1][i]. The tardiness of [i+1] cannot increase, because it

is completed at an earlier time than it is in schedule S. The gain of tardiness by scheduling

[i + 1] to the ith position is ∆2 = s[i−1][i+1] − s[i−1][i] − p[i] − s[i][i+1].

In Part 2: The completion time of order [i+2] has a change of ∆3 = s[i−1][i+1]+s[i+1][i]+

s[i][i+2] − s[i−1][i] − s[i][i+1] − s[i+1][i+2] ≤ 0 in S′. Then, each of the orders scheduled after

[i + 2] are completed at ∆3 time units earlier in schedule S′ than they are in schedule S

including order [i + 2]. Since order [i + 2] is not completed at a later time in S than it is in

S′ , deadline constraint of [i + 2] and the deadlines of all other orders coming after [i + 2]

are also satisfied. Total gain of tardiness in part 2 is n1∆3.

Then, the change of total tardiness by exchanging the orders [i] and [i + 1] is ∆T =

∆1 + ∆2 + n1∆3.

In the light of these data, we can summarize that Ts = Ts′ in part 0, and Ts ≥ Ts′ in

parts 1 and 2. Therefore, schedule S′ dominates schedule S. ¤

6.2 Heuristic-Metaheuristic Method Development

In this thesis we developed one hybrid metaheuristic (ISFAN), two constructive heuristics (d-

RFSB and m-ATCS heuristics), and one MILP model based heuristic (MILPH) for finding

efficient solutions to the OAS problem. ISFAN, d-RFSB and m-ATCS heuristics are proved

to perform well in certain cases. For instance, ISFAN performs well on the average when n ≤
50, and m-ATCS performs well when n is large enough (i.e. n > 50). An idea for an efficient

heuristic method development may be to combine the strengths of the proposed heuristics.

Chapter 6: Further Studies 80

This combining issue may be handled by assigning a probability for each heuristic, and

select the heuristics according to these probabilities for each instance.

Another approach may be using population based algorithms for the OAS problem. A

metaheuristic such as Genetic algorithm (GA) may help combining two existing sequences’

good parts and may yield a better sequence overall. Of course, any population algorithm

requires a good representation of individuals. Currently, there is no population based al-

gorithm developed and applied to simultaneous order acceptance and scheduling problems.

This is because defining the elements of the population based algorithms appropriately is

not an easy task.

As mentioned in Section 3.3, the OAS problem has a structure similar to TSP. The pre-

vious studies in the literature indicates that Tabu Search (TS) works well for TSP compared

to other metaheuristics. Therefore an appropriately defined TS algorithm has a potential

to improve the solutions found by the methods proposed in this thesis. The main challenge

for the mentioned metaheuristics GA and TS is to have a proper design that will take the

characteristics of the OAS problem into account. Hence we will consider this avenue as one

of our future directions.

Chapter 7: Conclusions 81

Chapter 7

CONCLUSIONS

In this thesis, we study the simultaneous order acceptance and single machine scheduling

problem (OAS). The OAS problem that is undertaken throughout this study is a problem

that is faced by make-to-order firms which produce or offer unique and customized prod-

ucts/services. In the OAS, we need to give two tough decisions: which orders to accept,

and how to sequence the accepted orders. The revenues gained from each of the orders

are affected from each order’s weighted tardiness. Therefore, total revenue gained by the

manufacturer is time-dependent since the tardiness amounts depend on completion times.

Throughout this thesis, we first define the OAS problem and examine the complexity of

the problem. We show that the OAS problem is strongly NP-hard, as it can be reduced to

the total weighted tardiness problem. Since the problem has not studied before to the best

of our knowledge, no test data was available. However, Slotnick and Morton [28] studies

a special case of the problem. Hence, we generated the OAS data randomly. We used

parameters such as tardiness factor and due date range coefficients to obtain different types

of instances.

We proposed a mixed integer linear programming model (MILP) for the OAS problem

and solved it by CPLEX 10.0 solver. As it was expected, we observed that MILP is able

to solve the OAS problem up to a very limited size, only when n ≤ 15, in one-hour CPU

time limit on our computational platform. It is observed that when the tardiness factor

is small, the MILP model is harder to solve. The reason might be that, as this factor

gets larger, more orders are rejected, hence size of the sequencing problem decreases. We

developed new heuristic methods that work for larger instances. In order to compare and

measure the performances of the newly designed methods we needed to develop upper

bounds. An easy-to-find upper bound is the LP relaxation bound of the MILP model,

where integrality restrictions on the sequencing variables are relaxed. It’s observed that,

the LP relaxation solution divides the orders into small partitions, and behaves as if we

Chapter 7: Conclusions 82

have unlimited number of parallel machines in the system. Hence the completion times of

orders can not be calculated correctly and for this reason, no orders are rejected in the

LP relaxation solution. Therefore, the LP relaxation can not provide tight bounds for the

cases in which many orders should be rejected. In order to strengthen this upper bound,

we forced the relaxed model to reject at least some of the orders by means of three valid

inequalities. When these valid inequalities are added to the LP relaxation, the upper bound

improves by 2% on the average. In some cases, the improvement is significant. For example

for tardiness factor= 0.5 and due date range= 0.1, the average % improvement is 11% for

15-order problems. When the tardiness factor is large, more orders are expected to be tardy.

In addition, when due date range is small, due dates of the orders are close to each other.

Therefore, more orders are rejected when tardiness factor is large and due date range is

small, and the valid inequalities may detect orders to be rejected. It is observed that the

largest number of rejections occur for the cases where tardiness factor is large and due date

range is small, on the average when solved by the proposed heuristics. When tardiness

factor is small and due date range is large, the number of rejected orders are small. We

can conclude that when there is a high potential for improving the bound by rejecting some

orders, the LP relaxation of MILP model with valid inequalities improves the upper bound

better.

We developed several heuristics to solve the large size instances. We proposed a hybrid

metaheuristic algorithm that uses simulated annealing concepts in sequencing decisions and

the revenue-load ratio to decide on which orders to reject in the order acceptance decisions.

We named this algorithm ISFAN. We employed local search algorithms, order insertion and

order exchange to improve the results of ISFAN. ISFAN is able to solve 50-order problems in

less than 10 minutes on the average in our test problems. However, the CPU time increases

as n gets larger. The most time consuming part of ISFAN is found to be the rejection

iteration which includes finding a local optimal sequence for the set of non-rejected orders

by SA. Hence, as the number of required rejection iterations increase, the required CPU

time for ISFAN increases. It was also observed that order insertion and order exchange

improve the ISFAN results up to 20% for 50-order problems. Overall, ISFAN is found to be

a good performing heuristic by our computational experiments.

As alternatives to the static ISFAN algorithm, we developed two dynamic constructive

Chapter 7: Conclusions 83

heuristics, d-RFSB and m-ATCS heuristics. These heuristics differ from ISFAN in the

following way: In ISFAN, we initially accept all of the orders, and reject one at each rejection

iteration. In these dynamic heuristics, we have no accepted orders at the beginning, and

by checking the availability of orders and the machine, and the feasibility of sequencing

the order in a prespecified position, we accept one order at a time. To decide on which

order to accept and sequence next, we use two different rules for each of the heuristics.

These constructive heuristics may give better decisions on sequencing and order selection,

compared to ISFAN, they use more information such as the sequence dependent setup time

as we know which order is scheduled last. The objective function of the OAS problem is

dependent on weighted tardiness of orders, and hence indirectly relates to time. Therefore

giving the acceptance and sequencing decisions dynamically and adjusting them according to

the time generates better results for larger instances of the OAS problem. The d-RFSB and

m-ATCS heuristics are fast and produce high quality solution solutions. m-ATCS algorithm

dominates both d-RFSB and ISFAN heuristics for n ≥ 50. This is because ISFAN requires

larger numbers of neighborhood operations as the problem size increases.

Finally, we developed a MILP heuristic in which we relax the constraint set (3.3) and

solve the MILP model accordingly. As a result we end up with a solution that may consist

of subtours. We eliminate these subtours and get a single tour by adding the constraints

(3.21), (3.22) and (3.23). We then feed the single tour to the MILP model by means of

inequalities and solve the model using CPLEX 10.0. The MILP heuristic did not perform

well in terms of time and objective value considerations.

To summarize the contributions we made to the literature, we defined and considered

simultaneous order acceptance and scheduling problem that was not dealt in the literature

before. Since the problem is newly defined, we developed the benchmark data that is

required for the computational tests. We showed that the OAS problem is strongly NP-

hard, and proposed valid inequalities to improve the upper bound. We also proposed four

methods, ISFAN, d-RFSB, m-ATCS and MILP heuristics in addition to developing a mixed

integer linear programming model. ISFAN and the constructive algorithms, d-RFSB and

m-ATCS heuristics, performed well both for the OAS problem and its special case (S&M

problem) in the computational experiments. Finally, we presented future study directions

and our findings including several dominance properties that may be used in these studies.

Bibliography 84

BIBLIOGRAPHY

[1] A. Allahverdi, J.N.D. Gupta, and T. Aldowaisan. A review of scheduling research

involving setup considerations. Omega, International Journal of Management Science,

27:219–239, 1999.

[2] K. Charnsirisakskul, P. Griffin, and P. Keskinocak. Pricing and scheduling decisions

with lead-time flexibility. European Journal of Operational Research, 171:153–169,

2006.

[3] K. Charnsirisaksul, P. Griffin, and P. Keskinocak. Order selection and scheduling with

leadtime flexibility. IIE Transactions, 36:697–707, 2004.

[4] J. Du and J.Y.T. Leung. Minimizing total tardiness on one machine is NP-hard.

Mathematics of Operations Research, 15:483–495, 1990.

[5] I. Duenyas and W.J. Hopp. Quoting customer lead times. Management Science,

41(1):43–57, 1995.

[6] H. Emmons. One-machine sequencing to minimize certain functions of job tardiness.

Operations Research, 17:701–715, 1969.

[7] C. Gagne, W. Price, and M. Gravel. Comparing an ACO algorithm with other heuris-

tics for the single machine scheduling problem with sequence-dependent setup times.

Journal of the Operational Research Society, 53:895–906, 2002.

[8] P. Keskinocak and S. Tayur. Handbook of Quantitative Supply Chain Analysis: Mod-

eling in the E-Business Era., chapter Due date management policies, page 485553.

International Series in Operations Research and Management Science. Kluwer Acad-

emic Publishers, Norwell, MA, 2004.

Bibliography 85

[9] S.C. Kim and P.M. Bobrowski. Scheduling jobs with uncertain setup times and sequence

dependency. Omega, International Journal of Management Science, 25(4):437–447,

1997.

[10] C. Koulamas. The total tardiness problem: review and extensions. Operations Research,

42:1025–1041, 1994.

[11] C. Koulamas. Polynomially solvable total tardiness problems: Review and extensions.

Omega, International Journal of Management Science, 25(2):235–239, 1997.

[12] K.L. Kreamer, J. Dedrick, and S. Yamashiro. Refining and extending the business

model with information technology: Dell computer corporation. The Information So-

ciety, 16:5–21, 2000.

[13] E.L. Lawler. A ‘pseudopolynomial’ algorithm for sequencing jobs to minimize total

tardiness. Annals of Discrete Mathematics, 1:331–342, 1977.

[14] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Deterministic and Stochastic

Scheduling, chapter Recent developments in deterministic sequencing and scheduling:

a survey, pages 35–73. Reidel, Dordrecht, 1982.

[15] Y.H. Lee, K. Bhaskaran, and M. Pinedo. A heuristic to minimize the total weighted

tardiness with sequence dependent setups. IIE Transactions, 29:45–52, 1997.

[16] C. Liao and H. Juan. An ant colony optimization for the single-machine tardiness

scheduling with sequence-dependent setups. Computers and Operations Research,

34:1899–1909, 2007.

[17] X. Luo and C. Chu. A branch-and-bound algorithm of the single machine schedule

with sequence-dependent setup times for minimizing maximum tardiness. European

Journal of Operational Research, 180(1):68–81, 2007.

[18] R. McNaughton. Scheduling with deadlines and loss functions. Management Science,

6:1–12, 1959.

Bibliography 86

[19] C. Miller, A. Tucker, and R. Zemlin. Integer programming formulations and travelling

salesman problems. Journal of the Association for Computing Machinery, 7:326–329,

1960.

[20] D.M. Miller, H. Chen, J. Matson, and Q. Liu. A hybrid genetic algorithm for the single

machine scheduling problem. Journal of Heuristics, 5:437–454, 1999.

[21] A. Nandi and P. Rogers. Using simulation to make order acceptance/rejection decisions.

Simulation, 80(3):131–142, 2004.

[22] P.S. Ow and T.E. Morton. The single machine early/tardy problem. Management

Science, 35(2):177–191, 1989.

[23] C.N. Potts and L.N. Van Wassenhove. A branch and bound algorithm for the total

weighted tardiness problem. Operations Research, 33(2):363–377, 1984.

[24] R. Roundry, D. Chen, P. Chen, and M. Cakanyildirim. Capacity-driven acceptance of

customer orders for a multi-stage batch manufacturing system: models and algorithms.

IIE Transactions, 37:1093–1105, 2005.

[25] P.A. Rubin and G.L. Ragatz. Scheduling in a sequence dependent setup environment

with genetic search. Computers and Operations Research, 22:85–99, 1995.

[26] L. Schrage and K. Baker. Dynamic problem solution of sequencing problems with

precedence constraints. Operations Research, 26:444–449, 1978.

[27] S.A. Slotnick and T. E. Morton. Selecting jobs for a heavily loaded shop with lateness

penalties. Computers and Operations Research, 23(3):131–140, 1996.

[28] S.A. Slotnick and T. E. Morton. Order acceptance with weighted tardiness. Computers

and Operations Research, 34(10):3029–3042, 2007.

[29] K.C. Tan and R. Narasimhan. Minimizing tardiness on a single processor with sequence

dependent setup times: A simulated annealing approach. Omega, International Journal

of Management Science, 25(6):619–634, 1997.

Bibliography 87

[30] K.C. Tan, R. Narasimhan, P.A. Rubin, and G.L. Ragatz. A comparison of four methods

for minimizing total tardiness on a single processor with sequence-dependent setup

times. Omega, International Journal of Management Science, 28:313–326, 2000.

[31] A.P.J. Vepsalainen and T.E. Morton. Priority rules for job shops with weighted tardi-

ness costs. Management Science, 33(8):1035–1047, 1987.

[32] S. Webster. Dynamic pricing and lead-time policies for make-to-order systems. Decision

Sciences, 33(4):579–599, 2002.

[33] W. Wester, J. Wijngaard, and M. Zijm. Order acceptance strategies in a production-to-

order environment with setup times and due-dates. International Journal of Production

Research, 30:1313–1326, 1992.

[34] M.J.F. Wouters. Relevant cost information for order acceptance decisions. Production

Planning and Control, 8(1):2–9, 1997.

[35] W.H. Yang and C.J. Liao. Survey of scheduling involving setup times. International

Journal of Systems Science, 30(2):143–155, 1999.

[36] R.B. Yehuda, G. Even, and S.(M.) Shahar. On approximating a geometric prize-

collecting traveling salesman problem with time windows. Journal of Algorithms, 55:76–

92, 2005.

