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ABSTRACT

The aim of this thesis is to analyze single-item inventory models with random supply

and imperfect information in a random environment. We assume that the randomness in

supply is attributed to the random capacity of the producer and/or random availability of

the transporter. Moreover, the random environment which modulates demand, supply and

all cost parameters is modeled as a Markov chain.

In the �rst part of the thesis, we assume that the random environment is fully observed.

Through the �rst model in this part, we analyze the inventory problem with random sup-

ply due to random capacity of the producer and random availability of the transporter.

The optimal policy for single, multiple and in�nite planning periods is shown to be an

environment-dependent base-stock policy. As the second model, we analyze the inventory

problem with �xed ordering cost and random capacity only. And we present a counter ex-

ample showing that environment-dependent (s; S) policy is no longer optimal for this type

of inventory problems.

In the second part of the thesis, we assume that the random environment is only partially

observed. Therefore, we model the random environment by two processes: an unobserved

process which is a Markov chain and observed process which is not necessarily a Markov

chain. In the �rst model of this part, we analyze same inventory problem as the �rst one

in the �rst part; however, the random environment is assumed to be partially observable.

Here, we assume that the random capacity as well as random availability is modulated by

the unobserved (real) environmental process whereas all costs are modulated by observed

environmental process. Then, we present a counter example showing that base-stock policy

is not necessarily optimal for this type of inventory problems. By the second model in this

part, we show that base-stock policy is optimal in single and multiple period settings if the

capacity process is observed as costs. However, for this model, analyzing the in�nite period

problem is not practical because the observed process is not a Markov chain. Therefore, as a

third model, we analyze the same inventory problem using su¢ cient statistics. In this case,
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we show that state-dependent base-stock policy is still optimal in single, multiple and in�nite

period settings. As a fourth model, we analyze inventory problems with unrelaible suppliers

and �xed ordering cost by using su¢ cient statistics. We show that state-dependent (s; S)

policy is optimal for this type of inventory problems if the availability process of supplier

is observable. Finally, we also analyze inventory problems with �nite capacity and random

yield in a partially-observed random environment and show that state-dependent modi�ed

in�ated base-stock policy is optimal in single, multiple and in�nite planning periods.

iv



ÖZET

Bu tezin amac¬rassal çevrede rassal tedarikli, eksik bilgili ve tek ürünlü envanter mod-

ellerini incelemektir. Tedarikteki rassall¬¼g¬n, üreticinin kapasitesindeki rassall¬ktan ve/veya

nakliyecinin varoluşundaki rassall¬ktan kaynakland¬¼g¬n¬ varsay¬yoruz. Ek olarak, talebi,

tedari¼gi ve bütün maliyet parametrelerini etkileyen çevreyi Markov zinciri olarak modelliy-

oruz.

Tezin ilk bölümünde, rassal çevrenin tam olarak gözlendi¼gini varsay¬yoruz. Bu bölümdeki

ilk modelle, rassal kapasiteli üretici ve rassal varoluşlu nakliyeciden kaynaklanan rassal

tedarikli envanter problemini analiz ediyoruz. Tek, çok ve sonsuz planlama periyotlar¬için

optimal envanter politikas¬n¬n çevreye ba¼gl¬temel stok politikas¬oldu¼gu gösteriliyor. ·Ikinci

model olarak, sabit sipari̧s maliyetli ve sadece rassal kapasiteli envanter problemini inceliy-

oruz. Ve bu tür envanter problemleri için çevreye ba¼gl¬ (s; S) politikas¬n¬n art¬k optimal

olmad¬¼g¬n¬gösteren bir örnek sunuyoruz.

Tezin ikinci bölümünde rassal çevrenin yar¬gözlenebilir oldu¼gunu varsay¬yoruz. Bu ne-

denle, rassal çevreyi biri Markov zinciri olan ancak gözlenemeyen ve di¼geri gözlenebilen

ancak Markov zinciri olmayan iki farkl¬ süreci kullanarak modelliyoruz. Bu bölümdeki

ilk modelle rassal çevrenin yar¬ gözlenebildi¼gini varsayarak birinci bölümün ilk modeline

benzer bir envanter problemini analiz ediyoruz. Burada, maliyetlerin gözlenebilir çevre

taraf¬ndan yönlendirildi¼gini varsayarken rassal varoluş gibi rassal kapasitenin de gözlene-

meyen (gerçek) çevre taraf¬ndan yönlendirildi¼gini varsay¬yoruz. Daha sonra bu tür envan-

ter problemleri için temel stok politikas¬n¬n art¬k optimal olmad¬¼g¬n¬ gösteren bir örnek

sunuyoruz. Bu bölümdeki ikinci modelle kapasite süreci maliyetler gibi gözlenebiliyorsa

temel stok politikas¬n¬n tek ve çoklu planlama periyotlar¬ için optimal oldu¼gunu gösteriy-

oruz. Fakat gözlenebilen çevre bir Markov zinciri olmad¬¼g¬için bu modelin sonsuz planlama

periyodu analizini yapmak pratik de¼gil. Bu nedenle üçüncü model olarak ayn¬ envanter

problemini yeterli istatistikleri kullanarak inceliyoruz. Bu durumda, duruma ba¼gl¬ temel
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stok politikas¬n¬n tek, çok ve sonsuz planlama periyotlar¬ için optimal oldu¼gunu gösteriy-

oruz. Dördüncü model olarak da sabit sipari̧s maliyetli ve güvenilir olmayan tedarikçili

envanter problemlerini yeterli istatistikleri kullanarak analiz ediyoruz. Tedarikçinin varoluş

sürecinin gözlenebildi¼gini varsayd¬¼g¬m¬zda duruma ba¼gl¬(s; S) politikas¬n¬n bu tür envanter

problemleri için optimal oldu¼gunu gösteriyoruz. Son olarak yar¬izlenebilir çevrelerde sabit

kapasiteli ve rassal getirili envanter problemlerini inceliyoruz ve duruma ba¼gl¬, de¼gi̧stirilmi̧s

ve art¬r¬lm¬̧s temel stok politikas¬n¬n tek, çok ve sonsuz planlama periyotlar¬ için optimal

oldu¼gunu gösteriyoruz.
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Chapter 1

INTRODUCTION

In an inventory system, there are several sources of uncertainty. In the literature, the

main source of uncertainty is assumed to be the randomness in demand. However, supply

may also be random and this randomness contributes to the uncertainty of an inventory

system. The randomness in the supply side may be attributed to several reasons. If we

think that the supplier is composed of a producer and a transporter, then the supply may

be uncertain because of the randomness in the capacity of producer and/or transporter.

There are several reasons for the randomness in producer�s capacity such as long machine

downtimes due to unplanned maintenance, strikes, seconds and scraps in a production run

and lack of raw material. Not only the capacity of the producer may be random but the

capacity of the transporter may also be random. For example, accidents may cause the

transporter to lose some portion of the produced amount. In addition to accidents, quality

of transportation and environmental factors like temperature and humidity are highly in�u-

ential on the amount delivered by the transporter. Starting from 1960s, many researchers

noticed the impact of supply side on the uncertainty. Karlin (1958 a,b) published the �rst

papers modeling the fact that the quantity received is not necessarily equal to quantity

ordered. Research considering the randomness in supply increased further after late 1970s.

Today, all inventory systems are open to outside e¤ects since we do not live in an isolated

world. In other words, something happening in one part of the world occurs as a reaction to

another in another part of the world. Therefore, assuming a stationary environment is not

realistic. Realistic inventory models must consider the possible e¤ects of changing economic

conditions, market conditions and exogenous environmental factors on both demand and

supply.

Clearly, demand is a¤ected by outside factors. For example, certain basic economic

variables such as GNP, in�ation and interest rate are highly in�uential on demand, i.e.,
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demand increases as GNP increases or demand decreases as in�ation decreases. Moreover,

demand for certain products are subject to signi�cant changes throughout product life

cycle; however, stationary demand environment cannot make use of such information (Song

and Zipkin, 1993). In inventory literature, �rst studies considering �uctuations in demand

environment are Karlin and Fabens (1959) and Iglehart and Karlin (1962). Later, Song and

Zipkin (1993) modeled the outside world as a Markov chain and focused only on demand

side. They assume that demand in successive periods are dependent on a Markov chain

representing the environment. In a related paper, Sethi and Cheng (1997) also incorporate

�uctuating environment into their model using Markov chain approach as Song and Zipkin

(1993). Sethi and Cheng (1997) found the most general setting under which an environment-

dependent (s; S) policy is optimal.

In addition to demand, supply is also sensitive to outside world. For example, there

is a strong relationship between production and weather conditions, and production and

product life cycle. Furthermore, transportation costs are a¤ected by oil price which is

subject to various political and economic factors. Hence, possible e¤ects of environmental

�uctuations on supply and all cost parameters must also be considered. In another paper,

using again Markov chain approach, Song and Zipkin (1996) incorporated the e¤ect of

�uctuating environment on supply into their model. They show that the optimal policy

has the same structure as in standard models, but its parameters change dynamically to

re�ect current supply conditions. In this paper, Song and Zipkin (1996) also analyze the

case where there is a �uctuating environment on which demand, supply and order costs

are dependent. As a result of their analysis, they show that environment-dependent (s; S)

(base-stock) policy is optimal for inventory problems with (without) �xed-ordering cost.

Another paper which considers the possible e¤ect of �uctuating environment on demand,

supply and cost parameters is Özekici and Parlar (1999). They assume that the supplier

is either available or unavailable when the order is given so that ordered amount is either

totally satis�ed or nothing is received by the retailer. In addition, Erdem and Özekici (2002)

extend Özekici and Parlar (1999) and assume that the supplier is always available but its

capacity is random and depends on the state of the environment.

Most inventory models considering random environment assume that observations of the

inventory manager (IM) regarding the true environmental state is perfect. However, this
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is not realistic. In general, observations are incomplete because information available is

limited. Clearly, without perfect information, it is impossible to make perfect observations.

As an example, we can consider an IM. Certainly, the IM must consider every single factor

a¤ecting the environment in order to determine the true environmental state. However,

we are living in a world where everything changes in a second and there are hundreds or

thousands of factors which have some sort of e¤ect on our environment. Therefore, it is

impossible either to be fast enough to follow these rapid changes or to consider every single

detail that are in�uential on our environment. As a result, most observations about the

environment are incomplete. But this is not to say that they are useless. Obviously, they

give some partial information about the environment; however, treating them as perfect is

erroneous. Hence, realistic inventory models must consider the fact that information about

the random environment is imperfect. Models of this type, where the random environment

is represented by a Markov chain and the true state of this Markov chain cannot be observed

directly (however, there is another process which gives partial information about the true

state) are called �Partially Observed Markov Decision Processes� (POMDP). Although

there is an extensive research on POMDPs, there is not much direct application of them in

inventory literature. In a recent paper, Treharne and Sox (2002) assume that the demand

environment is random and it is represented by a Markov chain; however, the state of this

Markov chain is only partially observed. They do not consider the supply side so they

assume that the capacity of the supplier is in�nite. As a result of their analysis in �nite

time horizon, they show that state-dependent base-stock policy is optimal, where the state is

assumed the true environmental state and inventory position. Another paper which applies

the POMDP concept in inventory control is Bensoussan et al. (2005 a). They study three

di¤erent models: information delay, �ltered newsvendor and zero balance walk. As a result

of their analysis, they show that state-dependent base-stock policy is optimal for information

delay model whereas optimal feedback policy is optimal for remaining two models.

This thesis is motivated by the fact that demand, supply and all cost parameters are

a¤ected by the random environment and it is not possible to directly observe the state of

this environment in general. In order to create a more general and realistic inventory model,

we bring these concepts together. This thesis can be divided into two main parts based on

the observation of the random environment. In the �rst part, we assume that the random



Chapter 1: Introduction 4

environment which modulates demand, supply and all cost parameters is directly observable.

On the other hand, the random environment is assumed to be partially observable in the

second part.

The organization of this thesis is as follows. The next part contains a review of relevant

models in the literature and how our models relate to them. Then in Chapter 3, we focus on

inventory problems with random supply in a fully-observed random environment. Next in

Chapter 4, we try to characterize the optimal policy structure for inventory problems with

random supply in random environment with imperfect information. Finally in Chapter 5,

we give a general summary of the thesis and provide some direction on future research.



Chapter 2: Literature Review 5

Chapter 2

LITERATURE REVIEW

The literature on inventory models can be categorized based on the information about

the system. Main body of the literature on inventory models assume that the IMs have

complete information about the system. However, few researchers realized that it is not

possible to have complete information in certain situations; therefore, inventory models

must be modi�ed so that they are applicable when there is not complete information. So

we categorize the literature as inventory models with perfect and imperfect information. In

Section 2.1, we review inventory literature with perfect information. Then, we give a review

of literature about POMDPs and their application on inventory control in Section 2.2.

2.1 Inventory models with perfect information

In this section, we consider the inventory models with random supply and perfect informa-

tion. Yano and Lee (1995) divides inventory literature on random supply into two main

categories: continuous-time models and discrete-time models. Since we consider a discrete-

time model, we present a brief review of the literature on periodic-review random supply

inventory models here. Among others, some of the papers analyzing continuous-time in-

ventory models are Silver (1976), Shih (1980), Kalro and Gohil (1982), Noori and Keller

(1986), Ehrhardt and Taube (1987) and Parlar and Berkin (1991). Detailed analysis of both

discrete and continuous-time random supply inventory models can be found in Yano and

Lee (1995) and recent advances are summarized in Grosfeld-Nir and Gerchak (2004).

We divide the literature on periodic-review random supply inventory models into two

main categories: inventory models in a stationary environment and inventory models in a

random environment. By stationary environment, we mean the case where �uctuations in

environment are not taken into consideration. In a sense, those inventory models assume

that all inventory systems are in an isolated world so that parameters of demand and supply

distributions, and all cost parameters are independent of outside environment. On the other
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hand, by random environment, we mean the case where possible changes in outside world are

considered. In this type of inventory models, the e¤ect of outside world on the parameters

of an inventory system is considered.

Furthermore, we divide the literature on periodic-review random supply inventory mod-

els in stationary and random environment into three subcategories: proportional yield,

random capacity and random supply. Proportional yield inventory models assume that the

supplier delivers a random proportion of ordered quantity. On the other hand, random

capacity inventory models assume that the capacity of supplier is random; therefore, the

supplier can produce all order unless the supplier�s capacity is less than it. Finally, random

supply inventory models contain both random yield and random capacity. In random sup-

ply inventory models, it is assumed that the supplier produces a random amount depending

on its capacity; moreover, the supplier can deliver the retailer a random proportion of the

produced amount.

2.1.1 Inventory models in stationary environment

Research on periodic-review inventory models with random yield in a stationary environ-

ment continues since 1950s. Henig and Gerchak (1990) give a detailed analysis of inventory

problems with random proportional yield. They assume that the amount received by the

retailer is a random proportion of quantity ordered. A detailed analysis of the problem in

single, multiple and in�nite planning periods show that �nonorder-up-to�policy is optimal

under all settings. �Nonorder-up-to� is a policy structure where there is a predetermined

inventory level under which an order is always given; however, unlike the base-stock pol-

icy, this order does not necessarily bring the inventory level up to a constant base-stock

level. Moreover, it increases the inventory level above the predetermined inventory level.

Because of this particular structure of �nonorder-up-to�policy, Zipkin (2000, p.392) calls it

as �in�ated�base-stock policy.

In literature, before characterizing optimal policy structure for inventory problems with

random capacity, many researchers focused on inventory problems with deterministic ca-

pacity constraints. Two of them are Federgruen and Zipkin (1986 a, b) who assume that

the capacity of the supplier is �nite or �xed so that the supplier delivers all of the quantity

ordered by the retailer unless it is more than capacity. Federgruen and Zipkin (1986 a)
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analyze the inventory problem with random demand and �nite capacity according to the

average-cost criterion whereas Federgruen and Zipkin (1986 b) analyze the same problem

according to the discounted cost criterion. As a result of their analysis, Federgruen and

Zipkin (1986 a, b) show that a �modi�ed�base-stock policy is the optimal policy structure.

In such a situation, it is optimal to order up to the critical parameter if the �xed capacity

is su¢ cient, if not, one should order as much as possible. An original study considering

random demand and random capacity is Ciarallo et al. (1994) which is similar to Feder-

gruen and Zipkin (1986 a, b); however, the capacity of supplier is random, not �nite. They

analyze the problem in �nite and in�nite planning periods and show that base-stock policy

is optimal.

Wang and Gerchak (1996) incorporate both random proportional yield and random

capacity into their model. In a sense, it is a combination of both Henig and Gerchak (1990)

and Ciarallo et al. (1994). As a result of their analysis, Wang and Gerchak (1996) prove

that the in�ated base-stock policy is optimal in single, multiple and in�nite period settings

as in Henig and Gerchak (1990).

2.1.2 Inventory models in random environment

A detailed study incorporating the e¤ect of �uctuating environment on supply is Özekici

and Parlar (1999). In their paper, Özekici and Parlar (1999) develop an in�nite horizon,

periodic-review inventory model with unreliable suppliers in a random environment that

a¤ects not only the demand but also the supply and the cost parameters. They assume

that supplier is either available or unavailable at any particular instant so that the retailer

either receives all of its order or receives nothing. They show that an environment-dependent

(s; S) (base-stock) policy is optimal for inventory problems with (without) �xed ordering

cost. We prefer to categorize Özekici and Parlar (1999) as a random availability model since

the supplier is randomly available. Clearly, random availability models are special cases of

random yield models where yield is either 0 or 1.

Another paper considering the e¤ect of changing environment conditions on supply as

well as demand and cost parameters is Erdem and Özekici (2002). They further extend

Ciarallo et al. (1994) to allow random environment and analyze single, multiple and in�nite-

period problems and show that base-stock policy is still optimal when the environment is
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random. In addition, Erdem and Özekici (2002) make a comparison between base-stock

levels of in�nite capacity and random capacity inventory models. They show that base-

stock levels do not change with random capacity in single period whereas they increase

with random capacity in multiple and in�nite periods.

In a recent paper, Gallego and Hu (2004) analyze inventory problems with random pro-

portional yield and �nite capacity constraint in a random environment. They assume that

capacity of the supplier is �nite as in Federgruen and Zipkin (1986 b) and that the retailer

receives a random proportion of amount produced as in Henig and Gerchak (1990). In

addition, as Erdem and Özekici (2002), Gallego and Hu (2004) consider the e¤ect of �uctu-

ating environment on both demand and supply. However, unlike Erdem and Özekici (2002),

they distinguish between demand and supply environments. For this purpose, they use two

Markov chains: one for the demand environment and one for the supply environment. An-

other important di¤erence between Erdem and Özekici (2002) and Gallego and Hu (2004)

is that Gallego and Hu (2004) do not consider the e¤ect of the �uctuating random environ-

ment on cost parameters. As a result of a detailed analysis, Gallego and Hu (2004) show

that modi�ed in�ated base-stock policy is optimal in single, multiple and in�nite horizons.

Models analyzed in the �rst part of this thesis are in this category of inventory literature

since we assume that the environment is random. In particular, the �rst model in the

�rst part is a combination of Özekici and Parlar (1999) and Erdem and Özekici (2002)

since we bring random capacity and random availability concepts together. Moreover, the

second model in the same part can be classi�ed as random capacity model since we analyze

random capacity inventory models with �xed ordering cost. In this respect, this model is an

extension of Erdem and Özekici (2002) since we consider the case where there is economies

of scale.

2.2 Inventory models with imperfect information

The most basic assumption in the main body of inventory literature is that the inventory

system is fully observed. However, this is not the case in several real life situations. For

example, demand may not be observed directly in some cases. In such cases, the sales can be

used to predict the demand. However, sales cannot provide complete information regarding
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the demand process because unmet demand is excluded. Therefore, the demand can only be

partially predicted in this case. In such situations, classical Markov decision process (MDP)

formulation of the inventory problem is not appropriate. A generalization of MDP which

allows uncertainty regarding the state of a Markov process and state information acquisition

is necessary in this case and this is done by POMDP formulation.

POMDP has a wide range of application areas. Among many others, a few of these

application areas are machine maintenance and replacement, human learning and instruc-

tion, medical diagnosis and decision-making, and search for moving objects (Smallwood

and Sondik, 1973). Although there are some researchers studying some form of MDP with

imperfect information (i.e., Dynkin (1965) and Sirjaev (1966)), the �rst explicit POMDP is

developed by Drake (1962). From 1960s onward, �nite horizon POMDPs are formulated in

the stochastic control context. Smallwood and Sondik (1973) were the �rst solving compu-

tational di¢ culties regarding POMDPs. In this study, they assume that the core process

is a �nite-state Markov chain and formulated a �nite-horizon discounted POMDP problem.

In their formulation, the system state is assumed to be the conditional distribution of state

of the core process. By this formulation, they transform a �nite-state POMDP problem

into an in�nite-state MDP problem. Then, they show that the value function is piecewise-

linear in this system state. Moreover, they developed an algorithm which solves POMDP

problems by exploiting special structure of the �nite-horizon value function. Later, Sondik

(1978) formulated discounted in�nite-horizon POMDP problem. In this paper, he showed

that discounted in�nite-horizon POMDP problems can be solved by a generalization of clas-

sical policy iteration technique. Furthermore, he developed an algorithm for solving them.

White (1976) extended POMDP by allowing a semi-Markov core process. In addition, he

developed the algorithm in Smallwood and Sondik (1973) for �nite-horizon POMDPs with

semi-Markov core process. A detailed discussion of papers on POMDPs can be found in

Monahan (1982). Our main concern in this study is not the computational issues regarding

the solution of POMDP problems; however, interested readers are referred to Lovejoy (1991)

for a detailed analysis of algorithmic methods.

Although study of POMDPs have started in 1950s, few researchers applied this concept

in inventory context. To our knowledge, the �rst study which directly applies POMDP

concept in inventory control is Treharne and Sox (2002). In this paper, they assume that
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there are a �nite number of demand states and all cost parameters are independent of

these demand states. Furthermore, they assume that the procurement lead time is positive

and constant. They formulate the �nite-horizon problem by assuming that the system

state is the conditional distribution of true demand state and the inventory position. As a

result of their analysis, they show that a state-dependent base-stock policy is optimal for

�nite-horizon inventory problem. In the remaining of this paper, they compare algorithmic

methods for solving �nite-horizon problem. Another paper applying POMDP concept in

inventory control is Bensoussan et al. (2005 a). In this paper, they analyze three di¤erent

models. In the �rst model, which they call �ltered newsvendor model, they consider the case

where demand is observed via sales. As in Treharne and Sox (2002), they model the real

demand as a Markov process. Since unmet demand is lost, the inventory manager cannot

have exact information about the true demand state. Moreover, they assume that the excess

inventory is salvaged at the end of each period; therefore, their problem is like multi-period

newsvendor problem with partially observed demand. In the second model which they call

zero balance walk model, they focus on the situation where the inventory manager cannot

observe the inventory level due to several reasons. The inventory level is observed only

when there is no physical inventory. Moreover, they assume that unmet demand is lost

and demand has a known distribution. Finally, they show that optimal feedback policy

is optimal for �ltered newsvendor and zero balance walk models. Through the last model,

which they call information delay model, they analyze the case where the inventory manager

cannot observe the current inventory level due to information delay. Instead, he can observe

the inventory level of a prior period. Unlike other models, they assume that unmet demand

is backordered. As a result of their analysis, they show that base-stock policy is optimal for

the information delay model.

Notice that both Treharne and Sox (2002) and Bensoussan et al. (2005 a) consider the

partially observed demand environment only. None of them consider the supply side. In

most real life situations, the supply can only be observed partially so that partially observed

supply environment must also be considered. Therefore, in the second part of this thesis,

we extend Treharne and Sox (2002) by allowing random supply and partial observation of

the supply environment. However, we assume that there is no delay in procurement so that

lead times are zero in all cases. Through our analysis in the second part, we introduce
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the random supply and partially observed supply environment concepts to the inventory

literature.
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Chapter 3

INVENTORY MODELS WITH PERFECT INFORMATION

All systems in real life are in touch with each other; therefore, one thing happening in

one of these systems has an e¤ect on another one. Hence, every inventory system must

also consider this fact. As a result, the �uctuating environment phenomenon must be

incorporated into every inventory model for the sake of a more realistic model. This clearly

increases the complexity of the system; however, it also allows the IMs to be more �exible

and adaptive.

In this part of the thesis, we focus on inventory problems with random demand and

supply in a fully observed random environment. A reason for the randomness of supply is

random capacity. The retailer may or may not receive all of the ordered quantity depending

on the capacity of the supplier; therefore, the quantity received may vary. If we ignore the

randomness in capacity, the supply may still be random due to transportation problems.

Hence, another reason for random supply is randomness in the capacity or availability of

transporter. Therefore, total supply or quantity received by the retailer depends on both

capacity of the supplier and transporter.

The inventory system considered here is composed of two main entities: retailer and

supplier. For the �rst model, we assume that there is no economies of scale and the supplier

is represented by the producer and the transporter. The retailer orders directly from the

producer; however, the producer�s capacity is random so that all retailer order may not be

satis�ed. On the other hand, the transporter is responsible to deliver produced amount;

however, we assume that the transporter is either available or unavailable at any particular

instant. Therefore, the retailer receives either all of the produced amount or receives noth-

ing. For the second model, we model the supplier as an entity which has a random capacity;

moreover, we assume that the supplier is always available and there is �xed ordering cost.

Therefore, amount received by the retailer or total supply in both models is random. More-

over, we represent the �uctuating environment by a Markov chain and assume that both
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demand and supply distributions are modulated by this Markov chain.

A related study in this area is Özekici and Parlar (1999) where an in�nite horizon,

periodic-review inventory model with unreliable suppliers in a random environment is an-

alyzed. They assume that the random environment a¤ects demand, supply and all cost

parameters. As a result of their analysis, they show that environment-dependent base-stock

policy is optimal when there is no �xed cost of ordering. Moreover, they also analyze the

case with �xed ordering cost and show that environment-dependent (s; S) policy is optimal

in this case. Our �rst model in this part analyzes a similar problem as Özekici and Parlar

(1999) since we both consider the random availability and random environment. Moreover,

we also incorporate random capacity into our model whereas Özekici and Parlar (1999)

do not. Furthermore, we analyze single and multiple planning problems as well as in�nite

planning problems.

Another related paper is Erdem and Özekici (2002) where periodic-review inventory

model with available suppliers having random capacity in a random environment is analyzed.

As Özekici and Parlar (1999), they assume that random environment a¤ects demand, supply

and all cost parameters. They analyze single, multiple and in�nite planning period problems

when there is no �xed cost of ordering. They show that the optimal policy structure is

environment-dependent base-stock policy. Their study is also similar to our �rst model since

we both consider the random capacity and random environment. As Erdem and Özekici

(2002), we analyze single, multiple and in�nite planning period problems. However, our

model has an important di¤erence since we also introduce a randomly available transporter

as well as a producer having random capacity into our model.

In our linear cost model, we analyze a discrete-time, single-item, single-location, periodic-

review inventory system with random production capacity and random transporter avail-

ability where demand, supply and all cost parameters are modulated by a Markov chain

representing �uctuating environment. If we consider an inventory system composed of a

retailer, a producer and a transporter, then the supply is random due not only to random

production capacity but also to random transporter availability. In this respect, we incor-

porate random availability and random capacity inventory models. In our �xed cost model,

we study exactly the same model as in linear cost model; however, we now assume that the

supplier is always available but it has random capacity; moreover, there is �xed ordering
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cost.

This part is organized as follows. Section 3.1 includes the discussion on the inventory

models with random capacity and random availability in a random environment which is

fully observed when there is no �xed ordering cost. Next in Section 3.2, we study the same

inventory problem in Section 3.1; however, there is �xed ordering cost in this case. Finally,

in Section 3.3, we summarize the implications of our analysis.

3.1 Linear cost model with random supply

In this section, we assume that Ki = 0 for all i so that there is no �xed ordering cost.

In inventory literature, this assumption of no �xed ordering cost generally leads to the

optimality of base-stock policies which are of a control-limit type speci�ed by a single

number. In our model with environment dependent demand, supply and cost parameters,

the optimality of base-stock policies remains to be valid. However, the base-stock level

depends on the state of the environment.

The remainder of this section is organized as follows. We present our notation and

assumptions in the next section. In Section 3.1.2, we study the problem in a single-period

setting. Then in Section 3.1.3, we develop a general �nite horizon inventory model and

analyze it. Moreover, in Section 3.1.4, we present the results of our analysis for the same

problem in in�nite-horizon. Finally, in Section 3.1.5, we compare the base-stock levels in

multiple and in�nite planning periods for inventory problems with random capacity only

and for inventory problems with random supply.

3.1.1 Model and assumptions

We consider a single product inventory system which is inspected periodically over a plan-

ning horizon of length N . The state of the environment observed at time n is represented by

Zn and we assume that state of environment does not change during a period. In addition,

we assume that Z = fZn; n � 0g is a time-homogeneous Markov chain on a discrete state

space E with transition matrix

P (i; j) = P [Zn+1 = j j Zn = i]:
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And Pn denotes n step transition matrix of Z so that

Pn(i; j) = P [Zn = j j Z0 = i]:

Clearly, P 0 = I so that

P 0(i; j) =

8<: 1 i = j

0 i 6= j
:

If Dn denotes the total demand in period n, then the demand process D = fDn;n � 1g

is modulated by the Markov chain Z so that its conditional cumulative distribution function

is

Mi(z) = P [Dn+1 � z j Zn = i]

for all i and z � 0;moreover, it is di¤erentiable so thatmi is the probability density function

of demand. Therefore, the demand distribution is completely speci�ed by the environment.

Let Cn denote the random capacity of supplier in period n. Then, the capacity process

C = fCn;n � 1g is also modulated by Markov chain Z so that its conditional cumulative

distribution function is

Fi(z) = P [Cn+1 � z j Zn = i]

for all i and z � 0; and it is also assumed to be di¤erentiable so that fi is the probability

density function of capacity. As a result, capacity distribution is also completely speci�ed

by the environment. We suppose that P [Cn+1 > zjZn = i] = 1 � Fi(z) > 0 for all z � 0

which implies that the random capacity has no upper bound so that it is possible to receive

all of ordered quantity.

In our setting, we let Un denote the proportion of produced amount which is received

by the retailer in period n. Then 1 � Un denotes the proportion of produced amount lost

during transportation in period n. Here we assume that either Un = 1 or Un = 0: In

other words, retailer either receives all of what is produced by the supplier, or all of the

produced amount is lost during transportation. Then, an order is immediately delivered

if the capacity is enough and Un = 1. On the other hand, if the capacity is not enough

but Un = 1, then the retailer receives as much as capacity. In the remaining two cases, the

retailer receives nothing. In addition, we assume that capacity Cn and the transportation

yield Un are independent. If xn denotes the inventory level observed at the beginning of
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period n and an order is placed so as to increase the inventory level up to yn � xn, then the

amount received by the retailer is Un+1min fyn � xn; Cn+1g : Therefore, supply is random.

If demand in a period is not satis�ed, then it is completely backlogged in that period and

satis�ed in the next period. As in the demand and capacity structure, we assume that the

transportation yield process or the capacity process of the transporter U = fUn; n � 1g

depends on the environment so that

P [Un+1 = 1 j Zn = i] = ui

for some 0 < ui � 1 and all i: Thus, ui is the probability that the transporter is available

in environment i. Therefore, the reliability of transporter in di¤erent environments is given

by fuig: Notice that ui > 0 for all i; which means that there is always positive probability

for retailer to receive all of what is produced. Otherwise, it is illogical to order.

Moreover, we assume that all cost parameters depend on the state of the environment.

Given that state of environment is i; ci is the purchase cost per item, hi is the holding cost

per item per period, and pi is the shortage cost per item per period. Both holding and

shortage costs are incurred at the end of the period. Moreover, we assume that pi > ci;

hi > ci and ci > 0. And, we assume that all cost parameters are �nite. Finally, we let �

denote periodic discount factor and assume that 0 < � < 1:

3.1.2 Single-period model

Here, we assume that there is only one period so that N = 1: Assuming inventory level at

the beginning of period is x and state of the environment at the beginning of period is i, we

let v0 (i; x) denote the single-period minimum cost function at the beginning of �rst period.

Moreover, we assume that v1 (j; x1) = 0 for all j and x1. Then, v0 (i; x) satis�es

v0(i; x) = miny�xJ0 (i; x; y) (3.1)

for all i and x, where y is the order-up-to level and
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J0 (i; x; y) = ui

Z y�x

0
G0(i; x+ z)dFi (z) + uiG0(i; y) [1� Fi (y � x)]

+ (1� ui)G0 (i; x)� cix (3.2)

G0(i; y) = ciy + L(i; y) (3.3)

L(i; y) = hi

Z y

0
dMi(z)(y � z) + pi

Z 1

y
dMi(z)(z � y): (3.4)

We can easily show that

L0(i; y) =
@L(i; y)

@y
= (pi + hi)Mi(y)� pi (3.5)

L00(i; y) =
@2L(i; y)

@y2
= (pi + hi)mi(y): (3.6)

It is obvious from (3.6) that L is convex in y because L00 is always nonnegative.

Expected cost in a single period is the sum of expected purchase cost, and expected

holding and shortage cost. Let y0 (i; x) denote the optimal order up to level which minimizes

the expected discounted cost in (3.2) when the state of environment is i and inventory level

is x: In addition, let v00 (i; x) denote the �rst derivative of v0 (i; x) with respect to x.

Theorem 1 The optimal ordering policy for the single-period model is an environment-

dependent base-stock policy

y0 (i; x) =

8<: Si0 x � Si0

x x > Si0

(3.7)

where Si0 satis�es

ci + L
0 �i; Si0� = 0

for all � and i. In addition, J0 (i; x; y) is quasi-convex in y for all i and x � y. The optimal

cost is

v0 (i; x) =

8<: J0
�
i; x; Si0

�
x � Si0

L (i; x) x > Si0

(3.8)

for all �; i and x. Moreover, v0 (i; x) is convex in x, limx"1 v00 (i; x) = hi and

limx#�1 v00 (i; x) = �pi for all i:



Chapter 3: Inventory Models with Perfect Information 18

Proof. We need to �nd y � x minimizing J0 (i; x; y). Let us de�ne J 00 and J
00
0 as the �rst

and the second derivatives of J0 with respect to y respectively: Then,

J 00 (i; x; y) = ui [1� Fi (y � x)]
�
ci + L

0 (i; y)
�

(3.9)

J 000 (i; x; y) = ui[1� Fi(y � x)]L00(i; y)�
�
ci + L

0(i; y)
�
fi(y � x) (3.10)

for all y � x: By our assumption, the �rst multiplicand in (3.9); ui [1� Fi (y � x)] > 0 for

all i and x: Hence, whether J0 (i; x; y) is decreasing or increasing depends on the sign of

ci + L
0 (i; y). Let Si0 be the smallest y such that

B0 (i; y) = ci + L
0 (i; y) = 0: (3.11)

Notice that, limy"1B0 (i; y) = ci + hi > 0 and limy#�1B0 (i; y) = ci � pi < 0: Moreover,

B0 (i; y) is continuous and nondecreasing in y since L is convex. Then, this implies that there

exists a �nite Si0 satisfying (3.11). In addition, B0 (i; y) < 0 for y < Si0 and B0 (i; y) � 0 for

y > Si0 since B0 (i; y) is nondecreasing in y:

From (3.10), it is obvious that the �rst term is always nonnegative. Now, consider the

two cases: x � Si0 and x > Si0:

(i) x � Si0 : It is obvious from (3.9) that J 00 (i; x; y) < 0 for all y in
�
x; Si0

�
since

ui [1� Fi (y � x)] > 0 for all i and B0 (i; y) < 0 for all i and y < Si0; therefore,

J0 (i; x; y) is decreasing for all i and y in
�
x; Si0

�
. By (3.9), we can also say that

J 00 (i; x; y) � 0 for all y on
�
Si0;1

�
since ui [1� Fi (y � x)] > 0 for all i and B0 (i; y) � 0

for all i and y � Si0; therefore, J0 (i; x; y) is nondecreasing for all i and y in
�
Si0;1

�
.

In addition, the second term in (3.10) is always nonnegative for y 2
�
x; Si0

�
since

B0 (i; y) < 0 for y < Si0; as a result, (3.10) is nonnegative. Therefore, J0 (i; x; y) is

convex decreasing in y on
�
x; Si0

�
: Moreover, the second term in (3.10) continues to be

nonnegative for y close to Si0; therefore, J0 (i; x; y) is convex nondecreasing for y close

to Si0: However, the second term in (3.10) turns out to be negative for large values of

y > Si0 since limy"1[1�Fi(y�x)] = 0 and limy"1 (ci + L0(i; y)) = ci+hi > 0: Hence,

J0 (i; x; y) is concave nondecreasing for su¢ ciently large values of y � x:

(ii) x > Si0 : It is clear that J
0
0 (i; x; y) > 0 so that J0 (i; x; y) is increasing in y on [x;1) :

In addition, the second term in (3.10) is always nonpositive; however, (3.10) continues
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to be nonnegative for values of y close to Si0: Then, this implies that J0 (i; x; y) is

convex increasing for values of y close to Si0: But for large values of y; (3.10) turns out

to be negative since limy"1[1�Fi(y�x)] = 0 and limy"1 (ci + L0(i; y)) = ci+hi > 0:

Hence, J0 (i; x; y) is concave nondecreasing for su¢ ciently large values of y � x:

This analysis shows that J0 (i; x; y) is a function satisfying all conditions in Lemma 28;

therefore, it is quasi-convex. Hence, y = Si0 is a global minimum of J0 (i; x; y) for x � Si0

and y = x is a global minimum of J0 (i; x; y) for x > Si0. This implies that S
i
0 is the optimal

order-up-to level when x � Si0 and that it is optimal not to order when x > Si0: As a result,

(3.7) gives the optimal ordering policy.

Because base-stock policy in (3.7) is optimal, the optimal cost is

v0 (i; x) =

8<: J0
�
i; x; Si0

�
x � Si0

J0 (i; x; x) x > Si0

which leads to (3.8) since J0 (i; x; x) = L (i; x).

Now, we prove that v0 (i; x) is convex. First, we show that v0 (i; x) is convex for x < Si0

and x > Si0, separately. Then, we show that convexity is not violated at x = Si0.

(i) x < Si0: Using (3.8), the �rst and second derivatives of v0 (i; x) are

v00 (i; x) = ui

Z Si0�x

0
L0(i; x+ z)dFi(z) + (1� ui)L0(i; x)� uici[1� Fi(Si0 � x)]

�uici[1� Fi(Si0 � x)] (3.12)

v000 (i; x) = ui

Z Si0�x

0
L00(i; x+ z)dFi(z) + (1� ui)L00(i; x)

�uifi
�
Si0 � x

� �
ci + L

0(i; Si0)
�
: (3.13)

In (3.13), �rst and second terms are always nonnegative because L is convex and

ui > 0. Moreover, by (3.11), the third term in (3.13) is zero. As a result, (3.13) is

always positive so that v0 (i; x) is convex in x for all x < Si0.

(ii) x > Si0 : Using (3.8), v0 is convex because L is a convex function.

(iii) x = Si0 : We now show that convexity of v0 is not violated at x = Si0. For v0 to be

convex at x = Si0, the following condition must hold

lim
x"Si0

v00(i; x) � lim
x#Si0

v0(i; x) (3.14)
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and v0 (i; x) must be continuous at x = Si0: Using (3.12),

lim
x"Si0

v0(i; x) = lim
x"Si0

(
ui

Z Si0�x

0
L0(i; x+ z)dFi(z) + (1� ui)L0(i; x)

�uici[1� Fi(Si0 � x)]
)

= uiL
0(i; Si0)Fi(0) + (1� ui)L0(i; Si0)� uici[1� Fi(0)]

= �ci

The last equality follows from (3.11). In addition, using (3.8) and (3.11),

lim
x#Si0

v0(i; x) = �ci:

Therefore, the condition in (3.14) is satis�ed as an equality. Moreover, v0 (i; x) is

continuous at x = Si0 since

lim
x"Si0

v0 (i; x) = lim
x#Si0

v0 (i; x) = J0
�
i; Si0; S

i
0

�
:

As a result, v0 (i; x) is convex in x for all i. Furthermore, using (3.8) and the fact that

limx"1 L0 (i; x) = hi,

lim
x"1

v00 (i; x) = lim
x"1

L0 (i; x) = hi

for all i: And using (3.12) and the fact that limx#�1 L0 (i; x) = �pi,

lim
x#�1

v00 (i; x) = �pi

for all i: This completes our proof.

Theorem 1 implies that the optimal order-up-to level is independent of the initial level

of inventory. Moreover, (3.5) and (3.11) imply that the optimal order-up-to level in single-

period is the minimal Si0 which satis�es

Si0 =M�1
i

�
pi � ci
pi + hi

�
: (3.15)

The optimal policy is to order if current level of inventory x � Si0; and do not order if x >

Si0:

Moreover, it is obvious from (3.15) that the base-stock level is independent of the ca-

pacity distribution Fi and availability probability ui: Hence, for a single-period problem,

the optimal base-stock level will be exactly the same as when there is no random capacity

and/or random availability.
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3.1.3 Multi-period model

In this section, we assume that there are N periods to plan for. We de�ne vn(i; x) as the

expected cost at the beginning of period n + 1 using the optimal policy for the periods

n + 1; n + 2; � � � ; N given that the inventory level is x and the environment is i at the

beginning of period n + 1: Set vN (j; xN ) = 0 for all j and xN ; moreover, assume that

demand in period n + 1 is denoted by D and the periodic discount factor is �: Then, vn

satis�es the dynamic programming equation

vn(i; x) = miny�xJn (i; x; y) (3.16)

for all i and x; where y is the order-up-to level in period n+ 1 and

Jn (i; x; y) = ui

Z y�x

0
Gn(i; x+ z)dFi (z) + uiGn(i; y) [1� Fi (y � x)]

+ (1� ui)Gn (i; x)� cix (3.17)

Gn(i; y) = ciy + L(i; y) + �
X
j2E

P (i; j)EiD [vn+1 (j; y �D)] (3.18)

with L(i; y) given in (3.4).

Let yn (i; x) denote the optimal order-up-to level of the minimization problem in (3.16)

when the state of environment is i and inventory level is x at time n: And let v0n (i; x) denote

the derivative of vn (i; x) with respect to x. In addition, we use the same notation of Section

A.3 in the appendix so that R�m(i; j) =
Pm�1
n=0 �

nPn (i; j) : Finally, we assume that h and p

are holding cost and shortage cost vectors, respectively.

Theorem 2 The optimal ordering policy for N -period model is an environment-dependent

base-stock policy

yn (i; x) =

8<: Sin x � Sin

x x > Sin

(3.19)

where Sin satis�es

ci + L
0(i; Sin) + �

X
j2E

P (i; j)EiD[v
0
n+1(j; S

i
n �D)] = 0

for all � and i. In addition, Jn (i; x; y) is quasi-convex in y for all i and x � y: The optimal

cost is

vn (i; x) =

8<: Jn
�
i; x; Sin

�
x � Sin

L(i; x) + �
P
j2E P (i; j)E

i
D [vn+1 (j; x�D)] x > Sin

(3.20)
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for all �; i and x. Moreover, vn (i; x) is convex in x, limx"1 v0n (i; x) = R�N�nh(i) and

limx#�1 v0n (i; x) = �R�N�np(i) for all i:

Proof. We will prove the theorem by induction. Clearly, by Theorem 1, Theorem 2 is valid

for n = N �1: Now suppose that induction hypothesis holds for times n+1; n+2; :::; N �1.

Next, we will show that Theorem 2 is still valid for time n. For this purpose, let us analyze

the objective function Jn (i; x; y). We de�ne J 0n and J
00
n as the �rst and the second derivatives

of Jn with respect to y respectively: Then,

J 0n (i; x; y) = ui[1� Fi(y � x)]
�
ci + L

0(i; y) + �
X
j2E

P (i; j)EiD[v
0
n+1(j; y �D)]

�
(3.21)

J 00n (i; x; y) = ui [1� Fi(y � x)]
�
L00(i; y) + �

X
j2E

P (i; j)EiD[v
00
n+1(j; y �D)]

�

�uifi(y � x)
�
ci + L

0(i; y) + �
X
j2E

P (i; j)EiD[v
0
n+1(j; y �D)]

�
(3.22)

for all y � x: Note that, by our assumption, ui[1 � Fi(y � x)] > 0 for all i and y � x. Let

Sin be the smallest y such that

Bn (i; y) = ci + L
0(i; y) + �

X
j2E

P (i; j)EiD[v
0
n+1(j; y �D)] = 0: (3.23)

Using Monotone Convergence Theorem (MCT) and the induction hypothesis that

limx"1 v0n+1 (j; x) = R�N�n�1h(j) for all j,

lim
y"1

Bn (i; y) = ci + hi + �
X
j2E

P (i; j)R�N�n�1h(j)

And, using (A.5),

lim
y"1

Bn (i; y) = ci +R
�
N�nh(i) > 0:

Moreover, again using MCT and assumptions that limx#�1 v0n+1 (j; x) = �R�N�n�1p(j) for

all j and ci < pi for all i,

lim
y#�1

Bn (i; y) = ci � pi � �
X
j2E

P (i; j)R�N�n�1p(j):

And, using (A.5),

lim
y#�1

Bn (i; y) = ci �R�N�np(i) < 0:
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Furthermore, Bn (i; y) is continuous and nondecreasing in y since L and vn+1 are convex.

Then, this implies that there exists a �nite Sin satisfying (3.23). In addition, Bn (i; y) < 0

for y < Sin and Bn (i; y) � 0 for y > Sin since Bn (i; y) is nondecreasing in y: Now, we

consider the two cases: x � Sin and x > Sin:

(i) x � Sin : The derivative (3.21) is nonpositive, and (3.22) is nonnegative so that

Jn (i; x; y) is convex decreasing on y 2 [x; Sin): Also (3.21) is nonnegative, and (3.22)

is nonnegative for values of y close to Sin so that Jn (i; x; y) is convex nondecreasing

for y close to Sin on [S
i
n;+1). However, (3.22) is negative for su¢ ciently large values

of y because limy"1[1 � Fi(y � x)] = 0 and limy"1Bn (i; y) > 0 so that Jn (i; x; y)

is concave increasing for su¢ ciently large y on [Sin;+1). Clearly, Sin is the global

minimum and yn(i; x) = Sin is the order-up-to level when x < Sin:

(ii) x > Sin : The derivative (3.21) is nonnegative, and (3.22) is nonnegative for val-

ues of y close to Sin so that Jn (i; x; y) is convex nondecreasing for y close to S
i
n

on (Sin;+1]. However, (3.22) is negative for su¢ ciently large values of y because

limy"1[1 � Fi(y � x)] = 0 and limy"1Bn (i; y) > 0 so that Jn (i; x; y) is concave in-

creasing for su¢ ciently large y on [Sin;+1). Then, x is the global minimum and

yn(i; x) = x is the order-up-to level when x > Sin:

This analysis shows that Jn (i; x; y) is quasi-convex since it satis�es all conditions in

Lemma 28. Therefore, optimal ordering policy is the environment-dependent base-stock

policy de�ned by (3.19). It follows from that the optimal cost is

vn (i; x) =

8<: Jn
�
i; x; Sin

�
x � Sin

Jn (i; x; x) x > Sin

which leads to (3.20) by using (3.17) and (3.18).

Now, we prove that vn (i; x) is convex. First, we show that vn (i; x) is convex for x < Sin

and x > Sin separately. Then, we show that convexity is not violated at x = Sin.
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(i) x < Sin : Using (3.20), the �rst and second derivatives of vn (i; x) are

v0n (i; x) = ui

Z Sin�x

0
G0n(i; x+ z)dFi (z) + (1� ui)G0n (i; x)� ci (3.24)

v00n (i; x) = ui

Z Sin�x

0
G00n(i; x+ z)dFi (z) + (1� ui)G00n (i; x)

�uifi
�
Sin � x

�
G0n(i; S

i
n) (3.25)

where

G0n (i; x) = ci + L
0(i; x) + �

X
j2E

P (i; j)EiD
�
v0n+1 (j; x�D)

�
(3.26)

G00n (i; x) = L00(i; x) + �
X
j2E

P (i; j)EiD
�
v00n+1 (j; x�D)

�
: (3.27)

In (3.25), �rst and second terms are always nonnegative because L and vn+1 are

convex. Moreover, by (3.23), the third term in (3.25) is zero. As a result, (3.25) is

always nonnegative so that vn (i; x) is convex in x for all x < Sin.

(ii) x > Sin :Using (3.20), vn is convex because L and vn+1 are convex functions. Moreover,

for x > Sin; �rst derivative of vn (i; x) is

v0n (i; x) = L0(i; x) + �
X
j2E

P (i; j)EiD
�
v0n+1 (j; x�D)

�
: (3.28)

(iii) x = Sin : We now show that convexity of vn is not violated at x = Sin. For vn to be

convex at x = Sin, the following condition must hold

lim
x"Sin

v0n(i; x) � lim
x#Sin

v0n(i; x) (3.29)

and vn (i; x) must be continuous at x = Sin: Using (3.24),

lim
x"Sin

v0n(i; x) = lim
x"Sin

(
ui

Z Sin�x

0
G0n(i; x+ z)dFi (z) + (1� ui)G0n (i; x)� ci

)
= uiG

0
n(i; S

i
n)Fi(0) + (1� ui)G0n(i; Sin)� ci

= �ci: (3.30)

The last equality follows from (3.23). In addition, using (3.28) and (3.23),

lim
x#Sin

v0n(i; x) = �ci: (3.31)
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Therefore, the condition in (3.29) is satis�ed as an equality. Moreover, vn (i; x) is continuous

at x = Sin since

lim
x"Sin

vn (i; x) = lim
x#Sin

vn (i; x) = Jn
�
i; Sin; S

i
n

�
:

As a result, vn (i; x) is convex for all x. Notice that, by the induction hypothesis,

limx"1 v0n+1 (j; x) = R�N�n�1h(j) for all j: Then, using (3.28) and MCT

lim
x"1

v0n (i; x) = hi + �
X
j2E

P (i; j)R�N�n�1h(j):

And, using (A.5),

lim
x"1

v0n (i; x) = R�N�nh(i):

Moreover, by the induction hypothesis, limx#�1 v0n+1 (j; x) = �R�N�n�1p(j) for all j: Then,

using (3.24) and MCT

lim
x#�1

v0n (i; x) = �pi � �
X
j2E

P (i; j)R�N�n�1p(j):

And using (A.5),

lim
x#�1

v0n (i; x) = �R�N�np(i):

This completes our proof.

By Theorem 2, we see that environment-dependent base-stock policy is still optimal in

multiple periods. And, by (3.23), we see that order-up-to level is independent of initial

inventory level. Moreover, the objective function Jn is quasi-convex as in single-period

model; therefore, Sin satisfying (3.23) is the global minimum.

Using Theorem 2 and (A.2), we get that limx"1 v0n (i; x) = E[
PN�n�1
n=0 �nhZn

���Z0 = i]

and limx#�1 v0n (i; x) = �E[
PN�n�1
n=0 �npZn

���Z0 = i]. These results are intuitively under-

standable. Consider the case where inventory level at time n is very large. Clearly the

inventory level in the remaining periods is also very large so that there are not any stock-

outs. In such a case, increasing inventory level by one means that the retailer holds this

extra unit until the end of the planning horizon. As a result, from time n until time N � 1;

the retailer incurs extra holding cost which depends on the state of environment at that

time. Under discounting, the expected present worth of increase in minimum cost given the

initial state i is E[
PN�n�1
n=0 �nhZn

���Z0 = i]. Similarly, consider the case where inventory

level at time n is negative and very large in absolute value. This implies that the retailer is
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out of stock. In such a case, a unit increase in inventory level implies that the retailer�s in-

ventory level is one more in the remaining periods provided that everything is the same. As

a result, in the remaining periods; the retailer stocks out one unit less compared to previous

case. This implies that the retailer pays pZn less at each period until time N�1: Then, given

initial state i; expected total decrease in the optimal cost is E[
PN�n�1
n=0 �npZn

���Z0 = i]:

Our results for multiple periods agree with those of Erdem and Özekici (2002) which

analyzes the inventory models in a random environment with random supply due to random

capacity of the supplier only. In Erdem and Özekici (2002), it is shown that the recursive

cost function is unimodal and optimal policy is base-stock policy where base-stock level is

independent of current inventory level when there is random capacity and random envi-

ronment. In our model, we incorporate random availability as well and show that results

obtained by Erdem and Özekici (2002) are still valid.

Note that we assume that there is always a positive probability of receiving fully what

we order, i.e., P [Cn+1 > y � xjZn = i] = 1 � Fi(y � x) > 0 for all y � x: However, we can

easily extend our results for the cases where the capacity is not random but limited. It has

been shown by Federgruen and Zipkin (1986 b) that modi�ed base-stock policy is optimal

for inventory problems with random capacity in a certain environment. Moreover, Erdem

and Özekici (2002) analyze limited capacity case in multiple periods, and they show that

environment-dependent modi�ed base-stock policy is optimal when capacity is not random

but �nite. Our analysis indicates us that environment-dependent modi�ed base-stock policy

is still optimal for inventory problems with limited capacity and random availability.

3.1.4 In�nite-period model

In this section, we study in�nite-period inventory problem with transportation yield and

random capacity in a random environment. Here, we show that environment-dependent

base-stock policy is still optimal for in�nite-period problem. In addition, we analyze the

convergence and uniqueness properties of the optimal policy in in�nite periods. By assuming

that k = N�n denotes the number of periods from time n until time N; we use the notation

vn;k for the �nite horizon optimal cost vn in the remaining part of this section: Here, we

show that, as k increases to in�nity, the �nite-horizon optimal cost function v0;k in (3.16)
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converges to the in�nite-horizon optimal cost function v that satis�es

v(i; x) = min
y�x

J (i; x; y) (3.32)

for all i and x; where y is the order-up-to level and

J (i; x; y) = ui

Z y�x

0
G(i; x+ z)dFi (z) + uiG(i; y) [1� Fi (y � x)]

+ (1� ui)G (i; x)� cix (3.33)

G(i; y) = ciy + L(i; y) + �
X
j2E

P (i; j)EiD [v (j; y �D)] (3.34)

with L(i; y) given in (3.4).

For any real valued function f : E�R! R, where R = (�1;+1) ; de�ne the mapping

T as

T f(i; x) = min
y�x

J (i; x; y) (3.35)

where J (i; x; y) is given in (3.33) with

G(i; y) = ciy + L(i; y) + �
X
j2E

P (i; j)EiD [f (j; y �D)] : (3.36)

Using (3.1), T f can be interpreted as the optimal cost function for the one-period prob-

lem where the terminal cost function is �
P
j2E P (i; j)E

i
D [f (j; :)] : Then, T k denotes the

composition of the mapping T with itself k times; that is, for all k � 1

T kf (i; x) = T T k�1f (i; x) (3.37)

with T 0f = f . Using (3.16), we can interpret T kf as the optimal cost function for the

k�period ��discounted problem. Then, using (3.35) and (3.37),

T kf(i; x) = min
y�x

Jk (i; x; y) (3.38)

where Jk is given in (3.33) with G replaced by

Gk(i; y) = ciy + L(i; y) + �
X
j2E

P (i; j)EiD

h
T k�1f (j; y �D)

i
: (3.39)

Let f0 (i; x) = 0 for all i and x: For our analysis in previous sections, we always assume

that the terminal cost function is zero. Suppose that the initial cost function is f0 (i; x)
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so that T 0f(i; x) = f0 (i; x) for all i and x. Then, k�period optimal cost function is

vn;k (i; x) = T kf0 (i; x) for all i and x.

Let f� (i; x) denote the optimal cost over in�nite horizon and let

f1 (i; x) = lim
k"1

T kf0 (i; x) : (3.40)

Notice that f1 is well-de�ned provided we allow the possibility that f1 can take the value

1: Our main aim in this section is to show that the �nite-horizon optimal cost converges

to the in�nite-horizon optimal cost as the length of the planning horizon gets longer. In

other words, we aim to show that f� (i; x) = f1 (i; x) for all i and x. As stated in Bertsekas

(2000 b), it is analytically and computationally important to show that f� (i; x) = f1 (i; x)

because if we know that f� (i; x) = limk"1 T kf0 (i; x), then we can infer the properties of

f� (i; x) from the properties of k�period optimal cost functions T kf0 (i; x) :

Let Zk denote the sets

Zk (i; x; �) = fy � x jJk (i; x; y) � �g (3.41)

for all i and x; � 2 R. According to Proposition 1.7 in Bertsekas (2000 b, p. 148), if we

show that the sets in (3.41) are compact for all i; x and �, then f� (i; x) = f1 (i; x) : By the

following lemma, we accomplish this task.

Lemma 3 Assume that limy"1 Jk (i; x; y) = 1 for all i; x and k: The sets in (3.41) are

compact subsets of the Euclidean space for all i; x and �.

Proof. We need to show that the sets in (3.41) are both bounded and closed in order to

show that they are compact. Let us �rst show that the sets in (3.41) are bounded. Note that

Jk is expected discounted cost when there are k periods until the end of planning horizon.

Therefore, it is exactly the same as Jn in Section 3.1.3 where n = N � k: In multi-period

analysis, we showed that Jk (i; x; y) is nonincreasing for y 2 [x; Sik] and nondecreasing for

y 2
�
Sik;+1

�
: Then, because we assume that limy"1 Jk (i; x; y) =1 for all i; x and k, the

sets fZk (i; x; �)g in (3.41) are bounded for all i; x and �. Moreover, the sets fZk (i; x; �)g

are closed since Jk (i; x; y) is continuous for y � x and it is real-valued. Thus, the sets in

(3.41) are compact subsets of Euclidean space for all i; x and �. This completes our proof.
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One of the cases when our assumption in Lemma 3 is satis�ed is when

limy"1 [1� Fi (y � x)] > 0 for all i and x. Clearly, if limy"1 [1� Fi (y � x)] > 0 for

all i and x; then limy"1 Jk (i; x; y) = 1 since limy"1Gn(i; y) = 1 and ui > 0 for

all i and n. Notice that this is not a restrictive requirement and it is only technically

necessary. However, not all continuous distribution functions satisfy this requirement.

As an example, assuming that the capacity distribution is exponential, cumulative dis-

tribution of capacity is Fi (y � x) = 1 � e��(y�x) where 1=� is mean capacity. Then,

it is obvious that limy"1 [1� Fi (y � x)] = 0 for all i and x. Therefore, for probabil-

ity distributions where limy"1 [1� Fi (y � x)] = 0, we can use approximations such that

limy"1 [1� Fi (y � x)] = " > 0 but it is very small like " = 10�10. In addition, we can also

truncate the distribution Fi at a very large value and use this truncated distribution in place

of Fi. Then, our assumption in Lemma 3 is clearly satis�ed so that the sets fZk (i; x; �)g

are compact.

The following proposition tells that f1 is a �xed point of the mapping T ; moreover,

�nite-horizon optimal cost function converges to the in�nite-horizon optimal cost function.

Proposition 4 The limit f1 is a �xed point of the mapping T so that

f1 (i; x) = T f1 (i; x) (3.42)

for all i and x: Moreover,

f1 (i; x) = f� (i; x) (3.43)

for all i and x: Furthermore, there exists a stationary optimal policy.

Proof. By Lemma 3, the sets in (3.41) are compact subsets of the Euclidean space for

all i; x and �. Then, using Proposition 1.7 in Bertsekas (2000 b, p.148), f1 is a �xed point

of T so that (3.42) is valid and there exists a stationary optimal policy. In addition, notice

that

f0 � T f0 � ::: � T kf0 � ::: � f�

because expected cost per period is nonnegative: From this, we get limk"1 T kf0 (i; x) �

f� (i; x) so that f1 (i; x) � f� (i; x). By (3.42), we know that f1 is a �xed point of T .

Then, by Proposition 1.2 in Bertsekas (2000 b, p.140), we get that f� (i; x) � f1 (i; x). It

follows that f1 (i; x) = f� (i; x) : This completes our proof.
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Notice that Proposition 4 implies also that f1; the optimal cost function that the �nite-

horizon cost function converges, satis�es the Bellman�s equation since f1 (i; x) = T f1 (i; x)

by (3.42). Hence,

f1(i; x) = min
y�x

J (i; x; y) (3.44)

for all i and x; where J (i; x; y) is given in (3.33) with

G(i; y) = ciy + L(i; y) + �
X
j2E

P (i; j)EiD [f1 (j; y �D)] : (3.45)

As stated in Proposition 1.2 in Bertsekas (2000 b, p. 140), f1 is not necessarily the unique

optimal solution to Bellman�s equation because single-period costs are not bounded under

positivity assumption; however, f1 is the smallest �xed point of T since f1 = f�:

Notice that, for a �nite n, k goes to in�nity as N goes to in�nity. Then, above analysis

shows us that, limk"1 v0;k(i; x) = v(i; x): Moreover, v(i; x) satis�es (3.32) and there exists

a stationary optimal policy y (i; x) which minimizes the in�nite-period total cost. However,

notice that Jn (i; x; y) is not bounded for y � x; therefore, v is not necessarily unique.

Then, we take v as the minimal �xed point of (3.32). In other words, if f = T f; then v � f:

Moreover, we also know that the optimal solution v is that �xed point of T which can be

obtained as v = limk"1 T kf0 with f0 = 0.

Assuming i and x are current environmental state and inventory level respectively, we

let y (i; x) denote the optimal order-up-to level of the minimization problem in (3.32): In

addition, let v0 (i; x) denote the derivative of v (i; x) with respect to x. Here, we again use

the same notation of Section A.3 in the Appendix so that R�(i; j) =
P1
n=0 �

nPn (i; j) and

we let h and p denote holding cost and shortage cost vectors respectively.

Theorem 5 The optimal ordering policy for the in�nite-period model is an environment-

dependent base-stock policy

y (i; x) =

8<: Si x � Si

x x > Si
(3.46)

where Si satis�es

ci + L
0(i; Si) + �

X
j2E

P (i; j)EiD[v
0(j; Si �D)] = 0
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for all � and i. In addition, J (i; x; y) is quasi-convex in y for all i and x � y. The optimal

cost is

v (i; x) =

8<: J
�
i; x; Si

�
x � Si

L(i; x) + �
P
j2E P (i; j)E

i
D [v (j; x�D)] x > Si

(3.47)

for all �; i and x. Moreover, v (i; x) is convex in x, limx"1 v0 (i; x) = R�h(i); and

limx#�1 v0 (i; x) = �R�p(i) for all i:

Proof. Since v (i; x) = limk"1 v0;k (i; x) and limit of a convex function is also convex,

v (i; x) is a convex function in x for all i. And, we know by Theorem 2 that limx"1 v00;k (i; x) =

R�kh(i); and limx#�1 v00;k (i; x) = �R�kp(i) for all i. According to Heyman and Sobel

(1984), v0 (i; x) = limk"1 v00;k (i; x) when v0;k is di¤erentiable for all i and x: As a re-

sult, v0 (i; x) = limk"1 v00;k (i; x) for all i and x: Then, limx"1 v0 (i; x) = R�h(i); and

limx#�1 v0 (i; x) = �R�p(i) for all i:

As in single and multiple period models, we need to analyze (3.33) in order to �nd the

optimal base-stock levels in in�nite period. Similarly, we de�ne J 0 to be the �rst derivative

of J with respect to y: Then,

J 0 (i; x; y) = ui[1� Fi(y � x)]
�
ci + L

0(i; y) + �
X
j2E

P (i; j)EiD[v
0(j; y �D)]

�
(3.48)

for all i and y � x: By our assumption, ui[1�Fi(y�x)] > 0 for all i: Then, whether J (i; x; y)

is increasing or decreasing depends on the sign of the expression inside the parenthesis in

(3.48). Moreover, the expression is a nondecreasing function of y since L and v are convex.

Therefore, J (i; x; y) is nonincreasing if (3.48) is nonpositive, and it is increasing otherwise.

Let Si be the smallest y satisfying

B (i; y) = ci + L
0(i; y) + �

X
j2E

P (i; j)EiD[v
0(j; y �D)] = 0: (3.49)

Then, using MCT and the fact that limx"1 v0 (j; x) = R�h(j);

lim
y"1

B (i; y) = ci + hi + �
X
j2E

P (i; j)R�h(j) > 0:

And, using MCT and the fact that limx#�1 v0 (j; x) = �R�p(j);

lim
y#�1

B (i; y) = ci � pi � �
X
j2E

P (i; j)R�p(j) < 0:
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Because limy"1B (i; y) > 0; limy#�1B (i; y) < 0 and B (i; y) is a nondecreasing continuous

function of y, there exists a �nite Si satisfying (3.49). Moreover, by a similar discus-

sion as in Section 3.1.2 and Section 3.1.3, we can show that J (i; x; y) is decreasing for all

y < Si and nondecreasing for all y � Si. Therefore, by Lemma 28, it is quasi-convex.

Then, environment-dependent base-stock policy de�ned in (3.46) is optimal. Using (3.46),

expected optimal discounted cost corresponding to this optimal policy is

v (i; x) =

8<: J
�
i; x; Si

�
x � Si

J (i; x; x) x > Si
(3.50)

for all i and x: Finally, using (3.33) and (3.34), (3.50) becomes exactly the same as (3.47).

This completes our proof.

By Theorem 5, we see that environment-dependent base-stock policy is still optimal

in in�nite period; moreover, base-stock level is independent of the current inventory level.

However, this optimal policy is not necessarily unique but it is stationary.

Moreover, by Theorem 5 and (A.3), we have limx"1 v0 (i; x) = E [
P1
n=0 �

nhZn jZ0 = i]

and limx#�1 v0 (i; x) = �E [
P1
n=0 �

npZn jZ0 = i] : These results are also intuitively under-

standable. If we consider the case where inventory level at time n is very large, it is easy

to see through a similar explanation as in multiple period case that, from time n until time

1; one unit increase in inventory level cause the retailer to incur extra holding cost at each

period. Under discounting, expected present worth of increase in total cost given the initial

state i is E [
P1
n=0 �

nhZn jZ0 = i]. Similarly, if we consider the case where inventory level at

time n is negative and very large in absolute value, the retailer pays pZn less at each period

until time 1 because of unit increase in inventory level: Then, given that initial state is i;

expected total decrease in the optimal cost is E [
P1
n=0 �

npZn jZ0 = i] :

Furthermore, according to the Corollary 1.8 in Ç¬nlar (1975, p. 197), if the state

space E is �nite and � 2 [0; 1), then R� = (I � �P )�1 where I is the identity matrix;

limx"1 v0 (i; x) = (I � �P )�1h(i) and limx#�1 v0 (i; x) = �(I � �P )�1p(i) for all i: There-

fore, if E is �nite, then using the relation in (A.4), we can see that limx"1 v0n;k (i; x) =

(I � �kP k)(I � �P )�1h(i) and limx#�1 v0n;k (i; x) = �(I � �kP k)(I � �P )�1p(i) for all i;

where k = N � n:
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3.1.5 Comparison of base-stock levels

By above analysis, we show that base-stock policy is still optimal for inventory problems

with random supply in a random environment; moreover, we show that base-stock level

depends on the state of the environment. In this section, we further question the e¤ect of

random availability on base-stock levels. In other words, we compare the base-stock levels

for inventory problems with random capacity only in a random environment and base-stock

levels for our model.

As stated earlier, Erdem and Özekici (2002) analyze inventory models with random

capacity and show that base-stock policy is optimal for these kinds of inventory problems.

Therefore, we use base-stock levels in their study for comparison purposes. Let �Sin be the

optimal order-up-to level for state i when there is perfect availability; but, the production

capacity is random. In addition, for technical reasons, we require one further assumption

on demand distribution in this section. We assume that demand distribution Mi is strictly

increasing so that mi (z) > 0 for all z � 0. Then, by (3.6), L is a strictly convex function.

From our analysis in Section 3.1.2, we know that random capacity and/or random avail-

ability have no e¤ect on the base-stock levels in single-period. Erdem and Özekici (2002)

also showed that randomness in capacity has no e¤ect on base-stock levels in single-period.

This clearly implies that base-stock levels for our model and for their model are the same in

single-period. In other words, letting �Si0 denote the base-stock level for inventory problems

with random capacity, we have

�Si0 = Si0 (3.51)

for all i:

First of all, assume that the transporter is always available so that the retailer receives

all of the produced quantity. Since there is only one period, ordering more results in excess

inventory when the producer�s capacity is already su¢ cient to produce �Si0 � x. This means

an increase in the holding cost. Moreover, if the capacity of the producer is not enough

to produce �Si0 � x already, ordering more than �Si0 � x is still illogical since receiving more

than �Si0 � x is impossible. In addition, when there is only one period to plan for and the

transporter is always available, our model reduces to the model considered and solved by

Erdem and Özekici (2002). Then, this implies that �Si0 is the optimal order-up-to level for
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our model in single period when the transporter is always available. Therefore, ordering

less is also illogical.

Next suppose that the transporter is unavailable so that the retailer receives nothing.

In this case, there is no di¤erence between ordering more or less than �Si0 � x since the

retailer does not receive anything. As a result, when there is only one period to plan for, it

is intuitively understandable that the optimal base-stock level is exactly the same as when

there is no random availability. However, this won�t be the case when the planning horizon

consists of multiple periods. The comparison of base-stock levels in multiple and in�nite

period cases will be conducted in the following two subsections.

Base-stock levels in multi-period model

By Erdem and Özekici (2002), we know that environment-dependent base-stock policy is

still optimal in multi-period when there is only random capacity. De�ne �Sin to be the base-

stock level in period n for random capacity only. Again, from Erdem and Özekici (2002),

we know that �Sin satis�es

ci + L
0 �i; �Sin�+ �X

j2E
P (i; j)EiD

�
�v0n+1

�
j; �Sin �D

��
= 0 (3.52)

where

�vn (i; x) =

8>>><>>>:
R �Sin�x
0 Gn(i; x+ z)dFi (z) +Gn(i; �S

i
n)
�
1� Fi

�
�Sin � x

��
�cix

x � �Sin

L (i; x) + �
P
j2E P (i; j)E

i
D [�vn+1 (j; x�D)] x > �Sin

(3.53)

with Gn(i; x) given in (3.18) and vn is replaced by �vn. Moreover, �vn is convex.

The following theorem states that the base-stock level for inventory problems with ran-

dom capacity and availability is always greater than or equal to base-stock level for inventory

problems with random capacity only.

Theorem 6 In the N�period model,

�Sin � Sin (3.54)

for all n and i: Furthermore,

v0n (i; x) � �v0n (i; x) (3.55)
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for all n; i and x.

Proof. The proof proceeds by induction. First, we show that the induction hypothesis

is true for n = N � 1. We know from Section 3.1.2 that �SiN�1 = SiN�1 for all i: Therefore,

(3.54) is valid for n = N � 1. The �rst derivative of �vN�1 (i; x) with respect to x for

x � �SiN�1 = SiN�1 is

�v0N�1 (i; x) =

Z �SiN�1�x

0
L0 (i; x+ z) dFi (z)� ci

�
1� Fi

�
�SiN�1 � x

��
for all i; and the �rst derivative of vN�1 (i; x) with respect to x for x � �SiN�1 = SiN�1 is

given in (3.12) where N = 1. Then, for x � �SiN�1 = SiN�1

v0N�1 (i; x)� �v0N�1 (i; x) = (1� ui)
 
�
Z �SiN�1�x

0
L0 (i; x+ z) dFi (z) + L

0 (i; x)

+ci
�
1� Fi

�
�SiN�1 � x

��!
� (1� ui)

�
ci + L

0 (i; x)
� �
1� Fi

�
�SiN�1 � x

��
: (3.56)

The �rst inequality follows from the fact that L is strictly convex so that

�L0 (i; x+ z) < �L0 (i; x) for z > 0: Notice that �SiN�1 = SiN�1 satis�es (3.11). Then, it fol-

lows that ci+L0 (i; x) � 0 for x � �SiN�1 = SiN�1; therefore, right-hand side of the inequality

in (3.56) is nonpositive for x � �SiN�1 = SiN�1. This implies that v
0
N�1 (i; x) � �v0N�1 (i; x)

for x � �SiN�1 = SiN�1: Moreover, the derivative of �vN�1 (i; x) and vN�1 (i; x) with respect

to x for x > �SiN�1 = SiN�1 is exactly the same, where

v0N�1 (i; x) = �v
0
N�1 (i; x) = L0 (i; x)

for all i: Therefore, (3.55) is valid for n = N � 1:

Now suppose that the hypothesis is true for n+ 1; n+ 2; :::; N � 1 so that �Sjn+1 � Sjn+1

and v0n+1 (j; x) � �v0n+1 (j; x) for all j and x: Next, we prove that it is also valid for n. First

of all, we show that �Sin � Sin: Assume that the converse is true so that �S
i
n > Sin: It follows

that

�
X
j2E

P (i; j)EiD[v
0
n+1(j; S

i
n �D)] � �

X
j2E

P (i; j)EiD[�v
0
n+1(j; S

i
n �D)] (3.57)
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for all i since, by the induction hypothesis, v0n+1 (j; x) � �v0n+1 (j; x) for all j and x: Then, it

follows from (3.57) and (3.23) that

0 � ci + L
0 �i; Sin�+ �X

j2E
P (i; j)EiD[�v

0
n+1(j; S

i
n �D)]

< ci + L
0 �i; �Sin�+ �X

j2E
P (i; j)EiD[�v

0
n+1(j;

�Sin �D)]: (3.58)

The second inequality above comes from the assumptions that �Sin > Sin and L is strictly

convex. However, (3.58) is a clear contradiction to the fact that �Sin satis�es (3.52). Hence,

(3.54) is valid. Finally, we now show that v0n (i; x) � �v0n (i; x) for all i and x. Clearly there

are three cases to be analyzed: x � �Sin � Sin; �S
i
n < x � Sin and �S

i
n � Sin < x:

(i) x � �Sin � Sin : By (3.53), the derivative of �vn (i; x) for x � �Sin is

�v0n (i; x) =

Z �Sin�x

0

�
ci + L

0 (i; x+ z) + �
X
j2E

P (i; j)EiD[�v
0
n+1(j; x+ z �D)]

�
dFi (z)

�ci

�
Z �Sin�x

0

�
ci + L

0 (i; x+ z) + �
X
j2E

P (i; j)EiD[v
0
n+1(j; x+ z �D)]

�
dFi (z)

�ci

=

Z �Sin�x

0
G0n (i; x+ z) dFi (z)� ci

where G0n is exactly the same as in (3.26). The inequality above follows from assump-

tion that v0n+1 (j; x) � �v0n+1 (j; x) for all j and x. Moreover, v0n (i; x) is given in (3.24).

Then, for all i and x � �Sin � Sin;

v0n (i; x)� �v0n (i; x) � ui

Z Sin�x

0
G0n(i; x+ z)dFi (z) + (1� ui)G0n (i; x)

�
Z �Sin�x

0
G0n(i; x+ z)dFi (z)

� ui

Z Sin�x

0
G0n(i; x+ z)dFi (z) + (1� ui)G0n (i; x)

�
Z Sin�x

0
G0n(i; x+ z)dFi (z)

= (1� ui)
 
�
Z Sin�x

0
G0n(i; x+ z)dFi (z) +G

0
n (i; x)

!

� (1� ui)
 
�
Z Sin�x

0
G0n(i; x)dFi (z) +G

0
n (i; x)

!
= (1� ui)G0n (i; x)

�
1� Fi

�
Sin � x

��
(3.59)
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Second inequality comes from the fact that, by (3.23), G0n (i; x) � 0 for all x � Sin and

�Sin � Sin. Moreover, the third inequality follows from the fact that

G0n(i; x) � G0n(i; x + z) for z > 0 and for all x � �Sin � Sin; since L and vn+1 are

convex. Finally, notice that (3.59) is nonpositive since G0n (i; x) � 0 for all x � Sin:

Therefore, v0n (i; x)� �v0n (i; x) � 0 so that (3.55) for all i and x � �Sin � Sin:

(ii) �Sin < x � Sin : From (3.24),

v0n(i; �S
i
n) = ui

Z Sin� �Sin

0
G0n(i; �S

i
n + z)dFi (z) + (1� ui)G0n

�
i; �Sin

�
� ci

< ui

Z Sin� �Sin

0
G0n(i; S

i
n)dFi (z) + (1� ui)G0n

�
i; Sin

�
� ci

= �ci (3.60)

The inequality follows from the fact that G0n(i; x) is increasing and �S
i
n < Sin: And, the

last equality comes from that, by (3.23), G0n(i; S
i
n) = 0 for all i. Then, (3.60) implies

that v0n(i; �S
i
n) < �ci. In addition, by (3.30) and (3.31), we know that v0n(i; Sin) = �ci:

Moreover, v0n(i; x) is increasing since L and vn+1 are convex. This clearly implies

v0n(i; x) � �ci for all i and x in
�
�Sin; S

i
n

�
: Furthermore, we know that �v0n(i; �S

i
n) = �ci

and �v0n(i; x) is increasing since L and �vn+1 are convex. Hence, �v
0
n(i; x) � �ci for all i

and x in
�
�Sin; S

i
n

�
: As a result, v0n(i; x) � �v0n(i; x) so that (3.55) is valid for all i and

x in
�
�Sin; S

i
n

�
.

(iii) �Sin � Sin < x : From (3.20) and (3.53),

v0n (i; x)� �v0n (i; x) = �
X
j2E

P (i; j)
�
EiD[v

0
n+1(j; x�D)]� EiD[�v0n+1(j; x�D)]

�
for all i and x > Sin � �Sin: Notice that v

0
n+1(j; x) � �v0n+1(j; x) for all j and x by

assumption.

Therefore, v0n (i; x)� �v0n (i; x) � 0 so that (3.55) is valid for all i and x > Sin � �Sin: This

completes our proof.

Theorem 6 states that the retailer will order more by increasing the base-stock level if the

transporter is randomly available. If the transporter is always available, it is optimal to order

�Sin�x if the current inventory level in period n is x � �Sin; moreover, E
�
min

�
�Sin � x;Cn

��
is
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the expected amount received by the retailer. But, if the transporter is randomly available,

there is a positive probability of receiving nothing; therefore, the expected amount received

by the retailer is uiE
�
min

�
�Sin � x;Cn

��
. This clearly means that expected amount received

by the retailer decreases with random availability of the transporter. If we continue to order

as the transporter is always available but the capacity of the supplier is random, it is highly

probable that we receive less than the amount produced by the producer. Clearly, this leads

more shortages; as a result, total expected shortage cost increases.

But, if we increase order-up-to level to Sin > �Sin so that the order is more than the cer-

tainly available transporter case, the expected amount received by the retailer is

uiE
�
min

�
Sin � x;Cn

��
: Then, this will reduce the expected shortages so that total cost

of shortages will be less. In addition, ordering more also increases the expected inventory

leftover. However, this inventory leftover can be used to reduce shortages in later periods

due to random availability. Hence, ordered quantity must be increased when the transporter

is randomly available.

Base-stock levels in in�nite-period model

Erdem and Özekici (2002) also show that the optimal policy in in�nite period setting for

inventory models with random capacity only in a random environment is still environment-

dependent base-stock policy. Let us denote the base-stock level in this model by �Si: Then,

�Si satis�es

ci + L
0(i; Si) + �

X
j2E

P (i; j)EiD[�v
0(j; Si �D)] = 0 (3.61)

and the optimal cost is

�v (i; x) =

8<:
R �Si�x
0 G(i; x+ z)dFi (z) +G(i; �S

i)
�
1� Fi

�
�Si � x

��
� cix x � �Si

L (i; x) + �
P
j2E P (i; j)E

i
D [�v (j; x�D)] x > �Si

(3.62)

with G(i; x) is given in (3.34) where y is replaced by x and v is replaced by �v: Moreover, �v

is convex.

The following theorem states that the base-stock level for inventory problems with ran-

dom capacity and availability is always greater than or equal to base-stock level for inventory

problems with random capacity only.
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Theorem 7 In the in�nite-period model,

�Si � Si (3.63)

for all i:

Proof. Here, we again use vn;k in place of vn: Then, by Theorem 4, we know that

v (i; x) = limk"1 v0;k (i; x) and �v (i; x) = limk" 1 �v0;k (i; x) for all i and x: Then, this clearly

implies that v0 (i; x) = limk"1 v00;k (i; x) and �v
0 (i; x) = limk"1 �v

0
0;k (i; x) : Moreover, by The-

orem 6, we know that v00;k (i; x) � �v00;k (i; x) for all i and x.

To prove that �Si � Si, assume that the converse is true so that �Si > Si: Then, by (3.49),

0 = ci + L
0 �i; Si�+ �X

j2E
P (i; j)EiD[v

0(j; Si �D)]

� ci + L
0 �i; Si�+ �X

j2E
P (i; j)EiD[�v

0(j; Si �D)]

< ci + L
0 �i; �Si�+ �X

j2E
P (i; j)EiD[�v

0(j; �Si �D)]: (3.64)

The �rst inequality in (3.64) follows from the fact that v0 < �v0. And, the last inequal-

ity comes from the fact that �Si > Si and L is strictly convex and �v is convex so that

L0
�
i; Si

�
< L0

�
i; �Si

�
and �v0(j; Si � D) � �v0(j; �Si � D): However, (3.64) is a clear contra-

diction to the fact that �Si satis�es (3.61). Therefore, �Si � Si for all i: This completes our

proof.

3.2 Fixed-cost model with random capacity

Özekici and Parlar (1999) showed that an environment-dependent (s; S) policy is optimal for

inventory problems with randomly available suppliers and �xed ordering cost in a random

environment. In other words, when the supplier produces either all of the ordered quantity

or none of the ordered quantity, an environment-dependent (s; S) policy is optimal. Here, we

question whether an environment-dependent (s; S) policy is still optimal when the supplier

is always available but has random capacity.

In this section, we study the inventory model with �xed ordering cost and random

capacity in a random environment. Here, we assume that Un = 1 for all n � 0 so that

ui = 1 for all i and there is no loss during transportation. Moreover, we assume that Ki > 0
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so that there is �xed cost of ordering: Using notations and assumptions in Section 3.1.1,

we formulate the problem and present a counter example showing that (s; S) policy is not

necessarily optimal in multiple periods.

Here we assume that the length of the planning horizon is N and we also assume that

the expected optimal discounted cost at the beginning of period N + 1, vN (j; xN ) = 0 for

all j and xN . Assuming state of environment and inventory level at time n are i and x

respectively, minimum cost function satis�es

vn(i; x) = miny�xfKi�(y � x) + Jn (i; x; y)g (3.65)

where y is order-up-to level in period n+ 1, �(z) is the indicator function which is equal to

1 only if z > 0 and 0 otherwise, and

Jn (i; x; y) =

Z y�x

0
Gn(i; x+ z)dFi (z) +Gn(i; y) [1� Fi (y � x)]� cix (3.66)

Gn(i; y) = ciy + L(i; y) + �
X
j2E

P (i; j)EiD [vn+1 (j; y �D)] (3.67)

with L as given in (3.4).

The analysis of the problem in (3.65) is more di¢ cult because of the complex structure

of the cost function. Hence, we study the problem in multi-period setting via numerical

examples and show that the environment dependent (s; S) policy is not necessarily optimal.

Remark 1 The optimal ordering policy for the N -period model with �xed ordering cost is

not necessarily an environment-dependent (s,S) policy.

Example 1 We assume that the environment has two states so that E = f1; 2g, where state

1 represents a �good� environment and state 2 represents a �bad� environment. Moreover,

we assume that environment changes state according to the transition matrix

P =

24 0:9 0:1

0:1 0:9

35 :
All distributions and parameters depend on the state of the environment.

Demand distribution is assumed to be Poisson with mean � = [10; 5] and it is truncated at

[22; 13] : In other words, we assume that the maximum demand can be at most 22 in the good

state and 13 in the bad state. In addition, capacity distribution is assumed to be geometric
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Figure 3.1: Optimal order-up-to levels (if initial state is good)

with probability of failure q = [0:9; 0:8]. Demand and capacity distributions are Poisson and

geometric in both states with the given parameters. We assume that both � and q change by

the state of the environment so that we ensure nonstationarity of probability distributions.

We have computed the optimal policy with � = 0:95, c = [1; 2] ; h = [3; 6] ; p = [9; 18]

and K = [10; 20] : Moreover, everything gets worse in bad environmental state, i.e., cost

parameters double, demand and capacity decrease.

For N = 2 and given parameters, we solve the minimization problem in (3.65) via

backward recursive dynamic programming. As the solution algorithm, we used value iteration

algorithm. The value iteration algorithm is coded in MATLAB and is run for N = 2. The

results are shown in Figure 3.1 and Figure 3.2:

From Figure 3.1, it is obvious that an (s; S) policy is optimal for both periods if the

initial state of environment is good. Figure 3.1 (b) shows that if the state of environment in

the last period is good, it is optimal to order up to 11 if the inventory level in the last period

is less than or equal to 7 so that s11 = 7 and S
1
1 = 11. In addition, Figure 3.1 (a) shows that

when the state of environment in the last period is good, it is optimal to order up to 17 if

the initial inventory level is less than or equal to 12 so that s10 = 12 and S
1
0 = 17.

However, the optimality of (s; S) is violated if the initial state of the environment is bad
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Figure 3.2: Optimal order-up-to levels (if initial state is bad)

as shown in Figure 3.2. From Figure 3.2 (b), it is clear that (s; S) policy is still optimal

in the last period if the state of environment in the last period is bad. And it is optimal to

order up to 6 in the last period when the state of environment is bad and inventory level is

less than or equal to 1 so that s21 = 1 and S
2
1 = 6: But (s; S) policy is no more optimal for

the �rst period if the initial state of environment is bad as shown in Figure 3.2 (a) where

there are multiple s20 and multiple S
2
0 . This result is similar to the result obtained by Gallego

and Wolf (2000).

Another observation from Figure 3.1 (b) and Figure 3.2 (b) is that s and S values are

environment-dependent. For example, s11 = 7 and s21 = 1: This counter example shows us

that (s; S) is not an optimal policy structure for inventory problems with �xed ordering cost,

random capacity and random demand in a random environment. Moreover, it is obvious

from Figure 3.2 (a) that there does not exist a fairly simple optimal policy structure for

those problems.
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3.3 Summary of results

The aim of our study in Section 3.1 is to characterize the optimal policy structure for

inventory problems with random capacity and random availability in a random environment.

The state of environment follows a time-homogenous Markov chain which a¤ects all the

costs and the distribution of demand and supply. The results in single, multiple and in�nite

planning periods show that base-stock policy is optimal; however, order-up-to levels depend

on the state of the environment. Our results are similar to several studies in the literature

where demand, supply and the environment are random. For example, Özekici and Parlar

(1999) prove that an �environment-dependent� base-stock policy is optimal for a similar

problem when there is randomly available supplier, i.e., proportional yield is either 0 or 1; in

a random environment. In addition, Erdem and Özekici (2002) show that the environment-

dependent base-stock policy is still optimal when the supplier is always available but has

random capacity. In all of these models, the ordering cost is linear in quantity ordered and

there is no �xed cost of ordering.

Our study considers an inventory system with a producer having random capacity and

a transporter which is randomly available. Therefore, our study is a combination of both

Özekici and Parlar (1999) and Erdem and Özekici (2002). First, we try to �nd out how ran-

domly available transporter in a random environment a¤ects the optimal policy structure.

As a result of our analysis, we see that environment-dependent base-stock policy is still

optimal. Erdem and Özekici (2002) show that environment-dependent base-stock policy

is optimal for random capacity inventory models in a random environment. We introduce

randomly available transporter to this model and see that an environment-dependent base-

stock policy is still optimal.

Next, we analyze how the randomly available transporter a¤ects base-stock levels. For

this purpose, we compare the base-stock levels in Erdem and Özekici (2002) and in this

study. As a result of our analysis, we see that randomly available transporter has no

e¤ect on base-stock levels in single period. However, base-stock levels in multiple and

in�nite planning periods increase because of randomly available transporter. Through a

similar analysis, Erdem and Özekici (2002) show that base-stock levels in multiple and

in�nite planning periods increase compared to in�nite capacity case; however, they stay
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the same in a single period. Therefore, we can claim that base-stock levels in multiple and

in�nite planning periods increase compared to in�nite capacity case for inventory models

with randomly available transporter and producer having random capacity in a random

environment. However, base-stock levels in single planning period stay the same.

Here, we should note that the optimal policy may change due to the supply structure.

If we assume that the producer has random capacity and the transporter delivers a random

proportion (between 0 and 1) of the produced amount, then it is highly probable that

environment-dependent in�ated base-stock policy is optimal as in Wang and Gerchak (1996).

In Section 3.2, we extend our study in Section 3.1 by introducing �xed cost of ordering

and assuming that the transporter is always available. In general, the optimal policy struc-

ture for inventory models with �xed ordering cost is an (s; S) policy. Therefore, it may be

expected that the optimal policy would be environment-dependent (s; S) policy when there

is �xed ordering cost. However, we show via a counter example that environment-dependent

(s; S) policy is not necessarily optimal for inventory problems with �xed ordering cost and

random capacity in a random environment. This result is consistent with similar studies

in the literature. For example, Shaoxiang and Lambrecht (1996) show that modi�ed (s; S)

policy is not optimal even in a stationary environment when the capacity of the producer

is �nite. Since introduction of �xed ordering cost into our model is more general compared

to the case in Shaoxiang and Lambrecht (1996), we can expect that environment-dependent

(s; S) policy is not optimal. Actually, we show this through a numerical example. Shaoxi-

ang and Lambrecht (1996) partially characterize the optimal solution for inventory problems

with �xed capacity and �xed ordering cost in a stationary environment. They show that

there is a point x below which it is optimal to order and there is another point y above

which it is optimal not to order. However, they cannot de�ne what to do in between x

and y: They prefer to call this policy structure as x� y band. In a related paper, Gallego

and Wolf (2000) de�ne possible actions in between x and y: However, this is still a partial

characterization of optimal policy structure. Therefore, further research can aim to make a

full characterization of the optimal policy in this case.
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Chapter 4

INVENTORY MODELS WITH IMPERFECT INFORMATION

In the previous part, our main assumption is that the IM has full information about the

inventory system. For example, we assume that the IM knows the state of environment so

that availability probability, demand and capacity distributions are all known. In addition,

we further assume that the IM observes the inventory level perfectly. However, it is not

possible to observe the real environmental process as well as the inventory level in many

situations.

First of all, the real environmental process a¤ecting the demand and supply is not always

perfectly observed. As stated in Chapter 1, observations regarding the true environmental

state is not perfect because of the limited data that is available. As a result, the state that

we observe using available data may not be the real one. However, it de�nitely gives some

information regarding the true state. In such cases, we can make use of our observations to

make inferences about the real environmental process. Let us make the concept of partial

observation clear by considering our previous models. In our previous models, we represent

the random environment by a Markov chain and assume that costs, demand and supply

depend on states of this Markov chain. In a sense, via demand and supply distributions,

we incorporate the random environment into our model. As for any distribution function,

observed data is used to compute supply and demand distributions that are speci�c to

di¤erent environmental states. Through data, we �nd distribution type as well as its pa-

rameters. However, computed distributions and their parameters are only estimates about

the real distribution function. If we recall the correspondence between distribution types

and environmental states, we can think computed distribution as observed state and the

real distribution as true state. Most of the time, computed distributions (observed environ-

mental states) are not true, but they give some information regarding the real distributions

(true environmental state). Therefore, full observation or perfect information assumption is

erroneous and misleading. To create more general and realistic models, we must incorporate
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into our models the fact that our observations are partial. This complicates the formulation

of the problem; however, it also enables IM to take more �exible and adaptive decisions.

In inventory models with perfect information, we also assume that the inventory level

is fully observed. However, there are many real life situations where this is not possible.

For example, inventories are frequently misplaced and/or stolen. Moreover, it is not always

possible to notice these misplaced or stolen inventories. Therefore, they are unobservable

for the IM. In such cases, real inventory is only partially observed through the observed

inventory level. In addition, spoilage and production yield may also cause the di¤erence

between observed and real inventory levels. Interested readers are referred to Bensoussan

et al. (2004, 2005 b) for a detailed explanation of the factors leading partial observation of

inventory level.

In this part of the thesis, we analyze �ve di¤erent models. The �rst model analyzes

exactly the same problem as the �rst model in the �rst part. However, we now assume that

the random environment is partially observed whereas the inventory level is fully observed.

Therefore, there is another process which gives partial information about the Markov chain

representing the real environment. In addition, the �rst model assumes that demand, pro-

ducer�s capacity and transporter availability are modulated by the real environment whereas

all costs are dependent on the observed environment. Then, in the second model, we an-

alyze exactly the same problem as in the �rst model. However, we now assume that the

producer�s capacity is modulated by the observed environment. Notice that the state of

our system in the �rst two models is assumed to consist of all observations until current

time and the current inventory level. As the length of the planning horizon gets longer, the

state space of our system increases without bounds. Therefore, the in�nite period problem

cannot be analyzed using this setting.

Instead, we change our formulation in the third model and assume that our system state

is the conditional distribution of the true environmental state and the inventory level at

the current time. This change enables us to analyze single, multiple and in�nite planning

period problems. There are two related studies in this area. In the �rst study, Treharne

and Sox (2002) analyze inventory problems with partially observed demand in �nite-horizon.

Treharne and Sox (2002) and our third model are similar since we both assume that the

demand environment is random and partially observed. However, our model is di¤erent in
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several respects. First of all, we assume that supply and all cost parameters are modulated

by random environment. In addition, we study in�nite-horizon problem; however, they

consider �nite-horizon problem only. Finally, they assume that there is a constant lead

time in delivery while we assume that the delivery is instantaneous. Second related study is

Bensoussan et al. (2005 a) which analyze three di¤erent models: �ltered newsvendor, zero

balance walk and information delay. Filtered newsvendor and our third model are similar

since we both assume that the demand environment is random and partially observed.

However, they are di¤erent in several respects. Firstly, we assume that the inventory level

is perfectly observable whereas Bensoussan et al. (2005 a) assume that it is only partially

observable in all three models. Secondly, they do not consider supply side as Treharne and

Sox (2002) while we incorporate the randomness in supply into our model. Finally, we

assume that all cost parameters are environment-dependent while Bensoussan et al. (2005

a) consider stationary cost parameters.

In the fourth model, we assume that the supplier is either available or unavailable at

any particular instant; however, its capacity is in�nite. In this model, we assume that

demand is dependent on the true environmental state while availability process of supplier

and all cost parameters are modulated by the observed environment. Here, we still use the

same formulation as in the third model so that the state of our system is the conditional

distribution of real environmental state and current inventory level. Moreover, we also

assume that the �xed ordering cost is positive. Our fourth model is very much related with

Özekici and Parlar (1999). However, we extend it by assuming that the random environment

is partially observable.

Finally, in the last model, we analyze inventory problems with �nite capacity and ran-

dom proportional yield in a partially-observed random environment. In this model, we also

assume that the system state is the current inventory level and the conditional distribution

of real environment. Our last model is very similar to Gallego and Hu (2004) since we both

assume that demand is random and environment dependent. Moreover, we both assume

that the supply is random due to �xed supplier capacity and proportional random yield,

and it is environment-dependent. However, we assume that there is only one environment

modulating both demand and supply whereas they assume that supply and demand envi-

ronments are di¤erent. In addition, they assume that demand and supply environments are
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fully observed whereas we relax this assumption and assume that random environment is

only partially observed. Furthermore, we assume that all costs are environment dependent

whereas their cost parameters are stationary.

This part is organized as follows. In the next section, we present our hidden Markov

model, notation and assumptions. Then, in Section 4.2, we show via a numerical example

that state-dependent base-stock policy is not necessarily optimal for inventory problems

when the capacity of supplier is modulated by the real environment. However, in Section

4.3, we relax our assumption and assume that the capacity is modulated by the observed

environment. In this section, we analyze single and multiple planning period problems

only. In order to analyze in�nite planning period problem, we change our formulation and

use su¢ cient statistics in the remaining part of the thesis. We show in Section 4.4 that

conditional distribution of true environment is a su¢ cient statistic for the past history

of observed environment. Then, in Section 4.5, we reformulate our problem in Section

4.3 using su¢ cient statistics. After that, using su¢ cient statistic formulation, we study

inventory problems with unreliable suppliers and �xed ordering cost in Section 4.6. In

Section 4.7, we consider inventory problems with �xed capacity and random proportional

yield in a partially observed random environment. Finally, in Section 4.8, we summarize

main results of our analyses in the second part.

4.1 Hidden Markov model (HMM)

The main focus of this section is on imperfect information available to determine optimal

inventory policy in a stochastically changing environment. We let Zn denote the state of

the stochastic environment at time n, and assume that Z = fZn; n = 0; 1; 2; 3; : : :g is a

Markov chain with some time-dependent transition matrix Qn(a; b) = P [Zn+1 = bjZn = a]

and �nite state space F = fa; b; c; :::g. The states of the environment are not observable and

the Markov chain Z is hidden. This implies that information available to IMs is not perfect.

The imperfect observations on the state of the environment are given by an observation

process Y = fYn; n = 0; 1; 2; 3; : : :g with some �nite state space E = fi; j; :::g where Yn is

the information available at time n. The environment evolves according to the unobserved

process Z whose states depend on various economic and other factors; however, IMs can
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only see the observed process Y . Hence, they base their decisions on what they observe.

It is clear that the observed process Y is not necessarily a Markov chain and the state

of the stochastic environment Z at any time depends on all of the past observations of

Y . The relationship between the two processes Y and Z is made formal by enlarging the

state spaces E and F so that En+1 = E � E � � � � � E = f(i0; i2; � � � ; in) : im 2 Eg and

Fn+1 = F� F� � � � � F = f(a0; a1; a2; � � � ; an) : am 2 Fg: Then let �Yn = (Y0; Y1; Y2; � � � ; Yn)

denote past observations of process Y until time n and �{n = (i0; i1; i2; � � � ; in) 2 En+1

denote the realizations of these observations. And let �Zn = (Z0; Z1; Z2; � � � ; Zn) denote the

true state of the environment until time n and �an = (a0; a1; a2; � � � ; an) 2 Fn+1 denote the

realizations of this unobserved process Z: The information available to the IM at time n is

�{n since he can only observe the process Y . We assume that the probabilistic evolution of

Y depends purely on the state of Z such that

P [Yn = ijZn = a] = En(a; i) (4.1)

independent of all previous states of Z and Y in any period n. Borrowing the terminology

that is commonly used in signal processing, the matrix En is often called the emission

matrix. In signal processing, Z represents a process that emits signals such that if the nth

signal is a, then it emits i with probability En(a; i):

Simple probabilistic arguments give

On(�{n; a) = P
�
Zn = aj �Yn = �{n

�
=

P
�bn�12Fn P [Z0 = b0]E0(b0; i0)Q0(b0; b1) � � �Qn�1(bn�1; a)En(a; in)P
�bn2Fn+1 P [Z0 = b0]E0(b0; i0)Q0(b0; b1) � � �Qn�1(bn�1; bn)En(bn; in)

(4.2)

for n � 1, while

O0(i0; a) = P [Z0 = ajY0 = i0] =
P [Z0 = a]E0(a; i0)P

b02F P [Z0 = b0]E0(b0; i0)
(4.3)

for n = 0: To simplify our notation, de�ne

	kn (a; j) = P
�
Yn+k = jjZn = a; �Yn = �{n

�
= P [Yn+k = jjZn = a]

=
X

bn+1;:::;bn+k2F
Qn(a; bn+1):::Qn+l�1(bn+k�1; bn+k)En+l(bn+k; j): (4.4)
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for k � 1. We use 	n instead of 	kn when k = 1. The evolution of Y is now described

probabilistically by

P kn (�{n; j) = P
�
Yn+k = jj �Yn = �{n

�
=
X
a2F

On(�{n; a)	
k
n (a; j) : (4.5)

And we use Pn instead of P kn when k = 1. Clearly, P
0
n = I so that

P 0n(�{n; j) =

8<: 1 in = j

0 in 6= j
: (4.6)

for all �{n and j: Furthermore,

P k+1n (�{n; j) = P
�
Yn+k+1 = jj �Yn = �{n

�
=

X
l2E

P
�
Yn+1 = lj �Yn = �{n

�
P
�
Yn+k+1 = jj �Yn = �{n; Yn+1 = l

�
=

X
l2E

Pn (�{n; l)P
k
n+1((�{n; l) ; j): (4.7)

First equality follows from the de�nition of P kn in (4.5). After conducting simple probabilistic

operations, we get second equality. The �nal equality follows from the de�nitions of Pn and

P kn+1 in (4.5).

Note that fPng and fOng matrices can easily be determined once the transition matrices

fQng, emission matrices fEng and the initial distribution of the true state of the environ-

ment are known. It is also clear that the the next true state of the economy, as well as the

next observation, both depend on all of the past observations. Moreover, we assume that

fQngand fEng are time-dependent for single and multiple period analyses; however, they

are time-homogenous for in�nite period model so all time subscripts vanishes in in�nite

period analysis.

For a nonnegative function g; we note that

E

"
m�1X
k=0

�kg (Yn+k)

����� �Yn = �{n
#
=

m�1X
k=0

�kE
�
g (Yn+k)j �Yn = �{n

�
=

m�1X
k=0

�k
X
j2E

P kn (�{n; j)g (j)

=
X
j2E

"
m�1X
k=0

�nP kn (�{n; j)

#
g (j)

=
X
j2E

R�n;m(�{n; j)g (j) = R�n;mg (�{n) (4.8)



Chapter 4: Inventory Models with Imperfect Information 51

where we de�ne R�n;m(�{n; j) =
Pm�1
k=0 �

kP kn (�{n; j) for all �{n and j: If we consider g (j) as

the reward obtained when the observed state is j, then R�n;mg (�{n) is the expected total

discounted reward obtained during m transitions when all observations until time n is �{n.

Using a similar terminology as in Ç¬nlar (1975), R�n;mg can be called ��potential of g

during �rst m transitions starting at time n. Similarly, R�n;m is called ��potential matrix

of Y during �rst m transitions starting at time n. Notice that Y is not a Markov chain;

therefore, we cannot directly use results obtained by Ç¬nlar (1975) regarding �nite transition

��potential matrices and functions.

For our analyses in the remaining sections, we need the relationship between total ex-

pected discounted reward from time n until the end of planning horizon and the total

expected discounted reward from time n+1 until the end of the planning horizon. In other

words, we need to �nd how R�n;mg is related to R
�
n+1;m�1g: By (4.8), we know that

R�n;mg(�{n) =
X
j2E

R�n;m(�{n; k)g(k)

= g(in) +
X
j2E

"
m�1X
k=1

�kP kn (�{n; j)

#
g(j)

= g(in) +
X
j2E

m�2X
k=0

�k+1

"X
l2E

Pn(�{n; l)P
k
n+1 ((�{n; l) ; j)

#
g(j)

= g(in) + �
X
l2E

Pn(�{n; l)

24X
j2E

m�2X
k=0

�kP kn+1 ((�{n; l) ; j) g(j)

35
= g(in) + �

X
j2E

Pn(�{n; j)R
�
n+1;m�1g(�{n; j) (4.9)

for all �{n. We get the second equality after we substituted R�n;m(�{n; k):We then get the third

equality by changing the index of inside summation in second line. Then using (4.7), we

get the fourth equality. Finally, the last equality comes from the de�nition of R�n+1;m�1g.

Let, as in Section 3.1.1, Dn and Cn denote the total demand and the random capacity

of the supplier in period n, respectively: Here we assume that both demand and capac-

ity of the producer are observed. However, their distributions depend on the unobserved

state of environment. Hence, the demand process D = fDn;n � 1g and capacity process

C = fCn;n � 1g are modulated by the Markov chain Z. Conditional cumulative distribu-
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tion functions of demand and capacity are

Ma(z) = P [Dn+1 � z j Zn = a]

and

Fa(z) = P [Cn+1 � z j Zn = a]

for a 2 F and z � 0; respectively. Moreover, we assume that they have probability density

function ma and fa. Furthermore, we suppose that P [Cn+1 > zjZn = a] = 1�Fa(z) > 0 for

all z � 0 which implies that the random capacity has no upper bound so that it is possible

to receive all of ordered quantity.

As in Section 3.1.1, let Un denote the proportion of produced amount which is received

by the retailer in period n, where we again assume that either Un = 1 or Un = 0: As in the

demand and capacity structure, we assume that availability of transporter at period n is

observed, but the availability process U = fUn; n � 1g depends on unobserved environment

so that

P [Un+1 = 1 j Zn = a] = ua

for some 0 � ua � 1 and all a: If
P
a2F uaOn (�{n; a) = 0; then ua = 0 for all a; how-

ever, ordering is meaningless in such a case since nothing is received. In addition, ifP
a2F uaOn (�{n; a) = 1; then ua = 1 for all a. But this is the case of total availability and is

not the main concern in this study. Therefore, we assume that 0 <
P
a2F uaOn (�{n; a) < 1

for all �{n and n � 0 which is not a restrictive assumption because of the reasons explained

above.

Again, we let xn denote the inventory level observed at time n. In each period, the

information available to the retailer regarding the true state of the environment is the past

observations of Y: Then information vector for the retailer at time n is �Yn = �{n: Given xn

and �{n, the IM decides on the optimal order quantity, and this quantity brings the inventory

level up to yn � xn. We assume that there is no delay in delivery so that an order is

immediately delivered provided that the producer�s capacity is su¢ cient and transporter is

available. If the transporter is available, but the producer�s capacity is not su¢ cient, then

an amount equal to the capacity is delivered. However, if the transporter is not available,

then nothing is received. Hence, amount received at time n is Un+1min fyn � xn; Cn+1g
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and the supply is random. If demand in a period is not satis�ed, then it is completely

backlogged in that period and satis�ed in the next period. Thus, the system equation for

our problem is

Xn+1 = Xn + Un+1min fy(�{n; Xn)�Xn; Cn+1g �Dn+1

for n � 0. Note that fUng, fCng and fDng all depend on the unobserved process Z.

Obviously, all current cost parameters are observed by the IM. Therefore, we assume

that all cost parameters depend on the observed environment Y . Given that the state of

observed environment is i in period n; Ki is the �xed cost per order, ci is the purchase cost

per item, hi is the holding cost per item per period, and pi is the shortage cost per item per

period. Both holding and shortage costs are incurred at the end of the period. Furthermore,

we assume that pi > ci and ci > 0. Moreover, we assume that all cost parameters are �nite

so that they are bounded. Finally, we let � denote periodic discount factor and assume that

0 < � < 1:

4.2 Linear cost model with unobserved capacity

In this section, as in Section 3.1, we assume that Ki = 0 so that there is no �xed ordering

cost. However, now, we assume that the random environment is only partially observable.

Moreover, we assume that demand, capacity and availability processes are all modulated

by the unobserved process Z while all cost parameters are modulated by the observed

environmental process Y: In this section, we show via a numerical example that base-stock

policy is not necessarily optimal. The counter example presented in this section shows that

base-stock policy is not optimal even for the single-period problem.

We �rst give the formulation of the single-period problem. There is only one period to

plan for so that N = 1; moreover, v1 (�{1; x1) = 0 for all �{1 and x1: Take i0 = i and a0 = a.

Assuming inventory level at the beginning of period is x; the single-period minimum cost

function at the beginning of the �rst period satis�es

v0(i; x) = miny�xH0 (i; x; y) (4.10)
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for all i and x; where y is the order-up-to level and

H0 (i; x; y) =
X
a2F

O0(i; a)J0 (i; a; x; y) (4.11)

J0 (i; a; x; y) = ua

Z y�x

0
G0(i; a; x+ z)dFa (z) + uaG0(i; a; y) [1� Fa (y � x)]

+ (1� ua)G0 (i; a; x)� cix (4.12)

G0(i; a; y) = ciy + L(i; a; y) (4.13)

L(i; a; y) = hi

Z y

0
(y � z)dMa(z) + pi

Z 1

y
(z � y)dMa(z): (4.14)

Then �rst and second derivatives of L(i; a; y) with respect to y are

L0(i; a; y) = (pi + hi)Ma(y)� pi (4.15)

L00(i; a; y) = (pi + hi)ma(y): (4.16)

Notice that (4.16) is always nonnegative so that L(i; a; y) is a convex function in y:

Remark 2 The optimal ordering policy for the single-period problem in (4.10) is not nec-

essarily an environment-dependent base-stock policy.

Example 2 We assume that both observed and unobserved environments has two states

so that E = f1; 2g and F = f1; 2g, where state 1 represents a �good� environment and

state 2 represents a �bad� environment. Moreover, we suppose that P [Z0 = 1] = 0:66 and

P [Z0 = 2] = 0:34: Furthermore, the emission matrix for the �rst period is

E0 =

24 0:65 0:35

0:45 0:55

35 :
Then, using (4.3),

O0 =

24 0:7371 0:2629

0:5526 0:4474

35 :
Demand distribution is assumed to be Poisson with mean � = [10; 50] and truncated

at [22; 75] : In addition, capacity distribution is assumed to be geometric with probability

of failure q = [0:99; 0:8] so that P [C = k] = pqk�1. We assume that � and q change by

the state of the unobserved environment Z so that demand and capacity distributions are

modulated by real environment. In addition, we suppose that the availability process is also
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Figure 4.1: Optimal order-up-to levels

modulated by the real environment so that u = [0:57; 0:43]: We have computed the optimal

policy with c = [1; 2] ; h = [3; 6] and p = [9; 18] : We assume that cost parameters change

with the state of the observed process Y so that they are known to the IM.

We solved the single-period minimization problem in (4.10) with the given parameters

and the results are shown in Figure 4.1. Figure 4.1 (a) shows the optimal order-up-to levels

for each inventory level x when the observed state of environment is good whereas Figure 4.1

(b) shows the optimal order-up-to levels for each inventory level x when the observed state

of environment is bad. From Figure 4.1 (a) and (b), it is obvious that there is a critical

inventory level under which we always order and over which we do not order. For example,

this critical inventory level is 13 if the observed environmental state is good and it is 19 if

the observed state is bad. Moreover, it is also obvious that the optimal order-up-to levels are

constant up to a certain inventory level (i.e., optimal order-up-to level is 15 up to x = 3

(x = �1) if the observed environmental state is good (bad). However, it is clear that the

optimal order-up-to levels are not constant in between those two critical inventory levels and

they change with varying level of inventory.

Finally, we can generalize the same remark for multiple and in�nite period problems.

Therefore, base-stock policy is not necessarily optimal in multiple and in�nite period settings



Chapter 4: Inventory Models with Imperfect Information 56

for inventory problems with real environment modulated demand, capacity and availability

processes and observed environment modulated cost parameters.

4.3 Linear cost model with observed capacity

In this section, as in Section 4.2, we assume that Ki = 0 and the random environment

is only partially observable. The demand and availability processes are modulated by the

unobserved environmental process Z. However, we assume that the capacity process C is

modulated by observed environmental process Y . In addition, the random capacity has no

upper bound so that P [Cn+1 � zjYn = i] = 1 � Fi(z) > 0 for all z � 0: The remainder of

this section proceeds as follows. In Section 4.3.1, we analyze the problem in single period

and present our results. Next, in Section 4.3.2, we extend the planning horizon and analyze

the same problem in multi-period setting.

4.3.1 Single-period model

Here we assume that there is only one period to plan for so that N = 1; moreover,

v1 (�{1; x1) = 0 for all �{1 and x1: Take i0 = i and a0 = a. Assuming inventory level at

the beginning of period is x; the single-period problem is given by (4.10)-(4.14) where Fa is

replaced by Fi in (4.12).

Let y0 (i; x) denote the optimal order up to level which minimizes the expected discounted

cost in (4.11), where Fa is replaced by Fi; when observed state is i and inventory level is

x:In addition, let v00 (i; x) denote the �rst derivative of v0 (i; x) with respect to x.

Theorem 8 The optimal ordering policy for the single-period model is a state-dependent

base-stock policy

y0 (i; x) =

8<: Si0 x � Si0

x x > Si0

(4.17)

where Si0 satis�es X
a2F

O0(i; a)ua
�
ci + L

0(i; a; Si0)
�
= 0

for all i. In addition, H0 (i; x; y) is quasi-convex in y for all i and y � x. The optimal cost
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incurred by this policy is

v0(i; x) =

8<: H0
�
i; x; Si0

�
x � Si0P

a2FO0(i; a)L(i; a; x) x > Si0

(4.18)

for all i and x. Furthermore, v0(i; x) is convex in x; limx"1 v00 (i; x) = hi; and

limx#�1 v00 (i; x) = �pi for all i:

Proof. We need to �nd y � x minimizing H0. We denote �rst and second derivatives of

H0 with respect to y by H 0
0 and H

00
0 , respectively. Then,

H 0
0 (i; x; y) = [1� Fi (y � x)]

X
a2F

O0(i; a)ua
�
ci + L

0(i; a; y)
�

(4.19)

H 00
0 (i; x; y) = [1� Fi(y � x)]

X
a2F

O0(i; a)ua
�
L00(i; a; y)

�fi(y � x)
�
ci + L

0(i; a; y)
��

(4.20)

for all y � x: Note that 1�Fi (y � x) > 0 for all i and y � x; therefore, whether H0 (i; x; y)

is decreasing or increasing depends on the sign of the summation in (4.19). Let Si0 be the

smallest y satisfying

B0 (i; y) =
X
a2F

O0(i; a)ua
�
ci + L

0(i; a; y)
�
= 0: (4.21)

Notice that
P
a2FO0(i; a)ua > 0 for all i by our assumption. This implies thatO0(i; a)ua > 0

at least for an a: Then, ci + L0(i; a; y) so that B0 (i; y) is nondecreasing since L is a con-

vex function. Therefore, B0 (i; y) < 0 for all y < Si0 and B0 (i; y) � 0 for y � Si0:

In addition, limy"1B0 (i; y) = (hi + ci)
P
a2FO0(i; a)ua > 0 and limy#�1B0 (i; y) =

� (pi � ci)
P
a2FO0(i; a)ua < 0 since

P
a2FO0(i; a)ua > 0 by our assumption: Then, it

follows that there exists �nite Si0 satisfying (4.21).

From (4.20), it is obvious that the �rst term is always nonnegative. Now, consider the

two cases: x � Si0 and x > Si0:

(i) x � Si0 : The second term in (4.20) is always nonnegative for y 2
�
x; Si0

�
since

B0 (i; y) < 0 for y < Si0; as a result, (4.20) is nonnegative. Therefore, H0 (i; x; y) is

convex decreasing for all y in
�
x; Si0

�
: In addition, (4.20) continues to be nonnegative

for y > Si0 but very close to S
i
0; therefore, H0 (i; x; y) is convex nondecreasing for y
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close to Si0: However, (4.20) turns out to be negative for large values of y > Si0 since

limy"1[1�Fi(y�x)] = 0 and limy"1 (ci + L0(i; a; y)) = ci+hi > 0: Hence, H0 (i; x; y)

is concave nondecreasing for su¢ ciently large values of y � x:

(ii) x > Si0 : The second term in (4.20) is always nonpositive; however, (4.20) continues to

be nonnegative for values of y � x and close to Si0: Then, this implies that H0 (i; x; y)

is convex nondecreasing for values of y close to Si0: But for large values of y; (4.20)

turns out to be negative since limy"1[1�Fi(y�x)] = 0 and limy"1 (ci + L0(i; a; y)) =

ci + hi > 0: Hence, H0 (i; x; y) is concave nondecreasing for su¢ ciently large values of

y � x:

This analysis shows that H0 (i; x; y) is quasi-convex since it satis�es all conditions in

Lemma 28. Therefore, y = Si0 is a global minimum of H0 (i; x; y) for x � Si0 and y = x is

the global minimum of H0 (i; x; y) for x > Si0. This implies that S
i
0 is the optimal order-

up-to level when x � Si0 and that it is optimal not to order when x > Si0: As a result,

(4.17) gives the optimal ordering policy. Because base-stock policy in (4.17) is optimal, the

optimal cost is

v0(i; x) =

8<: H0
�
i; x; Si0

�
x � Si0

H0 (i; x; x) x > Si0;

which leads to (4.18) since H0 (i; x; x) =
P
a2FO0(i; a)L (i; a; x) :

Now we prove that v0(i; x) is convex. First, we show that v0(i; x) is convex for x < Si0

and x > Si0, separately. Then we show that convexity is not violated at x = Si0.

(i) x < Si0: Using (4.18), the �rst and second derivatives of v0(i; x) are

v00(i; x) =
X
a2F

O0(i; a)

�
ua

Z Si0�x

0

�
ci + L

0(i; a; x+ z)
�
dFi(z)

+ (1� ua)L0(i; a; x)� ci
�

(4.22)

v000 (i; x) =
X
a2F

O0(i; a)

�
ua

Z Si0�x

0
L00(i; a; x+ z)dFi(z) + (1� ua)L00(i; a; x)

�fi
�
Si0 � x

�
ua
�
ci + L

0(i; a; Si0)
��

: (4.23)
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In (4.23), the �rst and second sums are always nonnegative because L is convex.

Moreover, the last sum in (4.23) is zero by (4.21). As a result, (4.23) is always

nonnegative so that v0(i; x) is convex for all x � Si0.

(ii) x > Si0: Using (4.18), v0 is convex because L is a convex function and sum of convex

functions is also convex.

(iii) x = Si0 : Finally we show that convexity of v0 is not violated at x = Si0. For v0 to be

convex at x = Si0, the following condition must hold

lim
x"Si0

v00(i; x) � lim
x#Si0

v00(i; x) (4.24)

and v0(i; x) must be continuous at x = Si0. Using (4.22),

lim
x"Si0

v00(i; x) = lim
x"Si0

(X
a2F

O0(i; a)

�
ua

Z Si0�x

0

�
ci + L

0(i; a; x+ z)
�
dFi(z)

+ (1� ua)L0(i; a; x)� uaci
�)

=
X
a2F

O0(i; a)
�
uaFi(0)

�
ci + L

0(i; a; Si0)
�
+ L0(i; a; Si0)

�uaci + L0(i; a; Si0)
�

=
X
a2F

O0(i; a)L
0(i; a; Si0):

The last equality follows from (4.21). Moreover, from (4.18),

lim
x#Si0

v00(i; x) =
X
a2F

O0(i; a)L
0(i; a; Si0):

Then it follows that limx"Si0 v
0
0(i; x) = limx#Si0 v

0
0(i; x) so that (4.24) is satis�ed. Finally,

v0(i; x) is continuous at x = Si0 since

lim
x"Si0

v0(i; x) = lim
x#Si0

v0(i; x) =
X
a2F

O0(i; a)L(i; a; S
i
0):

As a result, v0(i; x) is convex in x for all i. Furthermore, using (4.18), MCT and the

fact that limx"1 L0 (i; a; x) = hi,

lim
x"1

v00 (i; x) =
X
a2F

O0(i; a) lim
x"1

L0(i; a; x) = hi
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for all i: Similarly, using (4.22), MCT and the fact that limx#�1 L0 (i; a; x) = �pi,

lim
x#�1

v00 (i; x) = �pi

for all i: This completes our proof.

Theorem 8 shows that a state-dependent base-stock policy is still optimal in single

period for inventory problems with random capacity and random availability in a random

environment if the unobserved environment modulates demand and availability process,

but, not the capacity process. Capacity process and cost parameters are modulated by the

observed environment. Moreover, base-stock level for single-period problem can be obtained

by solving (4.21) for minimum y: From (4.21), it is obvious that the base-stock level must be

decreasing when the availability probability of the transporter is increasing and it depends

on demand distribution since L is dependent on Ma. However, the base-stock level for a

single-period problem is independent of the capacity distribution and the current inventory

level. In other words, the optimal base-stock level for a single-period inventory problem in

a partially-observed random environment is exactly the same as when there is no random

capacity if the capacity is modulated by the observed environment.

Furthermore, from (4.19), it is obvious that base-stock policy is not necessarily optimal if

the capacity process is modulated by the unobserved environment since then 1�Fa (y � x)

would be inside the summation in (4.19) andH0 would have many local minima and maxima.

Moreover, in this case, global minimum of H0 will depend on the current inventory level x:

4.3.2 Multi-period model

In the case with multiple periods, there are N periods to plan for and the dynamic program-

ming equation involves the sum of single period costs in the current period plus the expected

optimal discounted costs from the next period until the end of the planning horizon. We

assume that vN (�{N ; xN ) = 0 for all �{N and xN . Moreover, we suppose that inventory level

at the beginning of period n + 1 is x and demand in period n + 1 is D: Assuming in = i

and an = a; the minimum cost function at time n satis�es

vn(�{n; x) = miny�xHn (�{n; x; y) (4.25)
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for all �{n and x; where y is the order-up-to level in period n+ 1 and

Hn (�{n; x; y) =
X
a2F

On(�{n; a)Jn (�{n; a; x; y) (4.26)

Jn (�{n; a; x; y) = ua

Z y�x

0
Gn(�{n; a; x+ z)dFi (z) + uaGn(�{n; a; y) [1� Fi (y � x)]

+ (1� ua)Gn(�{n; a; x)� cix (4.27)

Gn(�{n; a; y) = ciy + L(i; a; y) + �
X
j2E

	n (a; j)E
a
D [vn+1 ((�{n; j); y �D)] (4.28)

with L(i; a; y) as given in (4.14). Here, EaD denotes the notation that expectation is taken

with respect to the random variable D with distribution Ma.

Let yn (�{n; x) denote the optimal order-up-to level of the minimization problem in (4.25)

given that all of the past observations until time n is �{n, inventory level is x, and the

observed environmental state is i at time n: In addition, let v0n (�{n; x) denote the derivative

of vn (�{n; x) with respect to x. Finally, we assume that h and p are holding cost and shortage

cost vectors, respectively.

Theorem 9 The optimal ordering policy for N -period model is a state-dependent base-stock

policy

yn (�{n; x) =

8<: S�{nn x � S�{nn

x x > S�{nn

(4.29)

where S�{nn satis�es

X
a2F

On(�{n; a)ua

�
ci + L

0(i; a; S�{nn ) + �
X
j2E

	n (a; j)E
a
D

�
v0n+1

�
(�{n; j); S

�{n
n �D

���
= 0

for all �{n. In addition, Hn (�{n; x; y) is quasi-convex in y for all �{n and y � x: The optimal

cost incurred by this policy is

vn (�{n; x) =

8>>><>>>:
Hn (�{n; x; S

�{n
n ) x � S�{nnP

a2FOn(�{n; a)
�
L(i; a; x)

+�
P
j2E	n (a; j)E

a
D [vn+1 ((�{n; j); x�D)]

� x > S�{nn
(4.30)

for all �{n and x. Furthermore, vn (�{n; x) is convex in x; limx"1 v0n (�{n; x) = R�n;N�nh(�{n) and

limx#�1 v0n (�{n; x) = �R�n;N�np(�{n) for all �{n
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Proof. The proof proceeds inductively. First of all, by Theorem 8, we know that

vN�1 (�{N�1; x) is a convex function in x; moreover, base-stock policy is optimal for Nth

period. Therefore, Theorem 9 is satis�ed for time N � 1. Notice that, here, we also

assume that vN (�{N ; xN ) = 0 for all �{N and xN : Next, assume that the induction hy-

pothesis is valid for times n + 1; n + 2; :::; N � 1 so that vn+1 (�{n+1; xn+1) is convex in

xn+1 for all �{n+1, limx"1 v0n+1 (�{n+1; x) = R�n+1;N�n�1h(�{n+1) and limx#�1 v0n+1 (�{n+1; x) =

�R�n+1;N�n�1p(�{n+1) for all �{n+1 2 En+2: We now show that Theorem 9 also holds for time

n.

The value function in period n is given by (4.25) and we need to analyze Hn. We let H 0
n

denote the derivative of Hn with respect to y. Then,

H 0
n (�{n; x; y) = [1� Fi(y � x)]

X
a2F

On(�{n; a)ua

�
ci + L

0(i; a; y)

+�
X
j2E

	n (a; j)E
a
D

�
v0n+1 ((�{n; j); y �D)

��
(4.31)

for all y � x. Note that 1 � Fi(y � x) > 0 for all y � x. Then whether Hn (�{n; x; y) is

increasing or decreasing depends on the sign of the summation in (4.31). Moreover, the

summation is a nondecreasing function of y since L and vn+1 are convex. Then Hn (�{n; x; y)

is nonincreasing if (4.31) is nonpositive, and it is increasing otherwise. Let S�{nn be the

smallest y satisfying

Bn (�{n; y) =
X
a2F

On(�{n; a)ua

�
ci + L

0(i; a; y)

+�
X
j2E

	n (a; j)E
a
D

�
v0n+1 ((�{n; j); y �D)

��
= 0: (4.32)

Notice that, Bn (�{n; y) < 0 so that (4.31) is negative for x � y < S�{nn and it is nonnegative

for x � y � S�{nn since L and vn+1 are convex. Using Monotone Convergence Theorem

(MCT) and the induction hypothesis

lim
y"1

Bn (�{n; y) =
X
a2F

On(�{n; a)ua

�
ci + hi + �

X
j2E

	n (a; j)R
�
n+1;N�n�1h(�{n; j)

�
> 0:

The inequality above follows from our assumptions that are hi > ci > 0 for all i andP
a2FOn(�{n; a)ua > 0 for all �{n: Similarly, using MCT, the induction hypothesis and the
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fact that ci < pi for all i,

lim
y#�1

Bn (�{n; y) =
X
a2F

On(�{n; a)ua

�
ci � pi � �

X
j2E

	n (a; j)R
�
n+1;N�n�1p(�{n; j)

�
< 0:

Moreover, Bn (�{n; y) is continuous and nondecreasing in y since L and vn+1 are convex.

Then, this implies that there exists a �nite S�{nn satisfying (4.32). Now, we consider the two

cases: x � S�{nn and x > S�{nn :

(i) x � S�{nn : Then (4.31) is negative so that Hn (�{n; x; y) is decreasing for y 2 [x; S�{nn ) :

However, (4.31) is nonnegative so that Hn (�{n; x; y) is nondecreasing for y 2 [S�{nn ;+1).

Obviously, S�{nn is the global minimum and yn (�{n; x) = S�{nn is the order-up-to level for

x � S�{nn

(ii) x > S�{nn : Then (4.31) is nonnegative so that Hn (�{n; x; y) is nondecreasing for all

y � x: As a result, no order should be given so that yn (�{n; x) = x.

This analysis shows that Hn (i; x; y) is quasi-convex since it satis�es all conditions in

Lemma 28. Hence, base-stock policy de�ned in (4.29) is the optimal ordering policy. Ap-

plying this optimal policy yields the following minimum cost function

vn (�{n; x) =

8<: Hn (�{n; x; S
�{n
n ) x � S�{nn

Hn (�{n; x; x) x > S�{nn

which leads to (4.30) since

Hn (�{n; x; x) =
X
a2F

On(�{n; a)

�
L(i; a; x) + �

X
j2E

	n (a; j)E
a
D [vn+1 ((�{n; j); x�D)]

�
:

Now we prove that vn(�{n; x) is convex. First, we show that vn(�{n; x) is convex for x < S�{nn

and x > S�{nn , separately. Then we show that convexity is not violated at x = S�{nn .
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(i) x < S�{nn : Using (4.30), the �rst and second derivatives of vn(�{n; x) are

v0n(�{n; x) =
X
a2F

On(�{n; a)

�
ua

Z S�{nn �x

0
G0n(�{n; a; x+ z)dFi (z)

+ (1� ua)G0n(�{n; a; x)� ci
�

(4.33)

v00n(�{n; x) =
X
a2F

On(�{n; a)

�
ua

Z S�{nn �x

0
G00n(�{n; a; x+ z)dFi (z)

+ (1� ua)G00n (�{n; a; x)

�fi
�
S�{nn � x

�
uaG

0
n(�{n; a; S

�{n
n )

�
: (4.34)

where

G0n(�{n; a; x) = ci + L
0(i; a; x) + �

X
j2E

	n (a; j)E
a
D

�
v0n+1 ((�{n; j); y �D)

�
(4.35)

G00n(�{n; a; x) = L00(i; a; x) + �
X
j2E

	n (a; j)E
a
D

�
v00n+1 ((�{n; j); y �D)

�
: (4.36)

In (4.34), the �rst and second sums are always nonnegative because L and vn+1 are

convex. Moreover, the last sum in (4.34) is zero by (4.32). As a result, (4.34) is always

nonnegative so that vn(�{n; x) is convex for all x � S�{nn .

(ii) x > S�{nn : Using (4.30), vn is convex because L and vn+1 are convex, and sum of convex

functions is also convex.

(iii) x = S�{nn : Finally we show that convexity of vn is not violated at x = S�{nn . For vn to

be convex at x = S�{nn , the following condition must hold

lim
x"S�{nn

v0n(�{n; x) � lim
x#S�{nn

v0n(�{n; x) (4.37)
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and vn(�{n; x) must be continuous at x = S�{nn . Using (4.33),

lim
x"S�{nn

v0n(�{n; x) = lim
x"S�{nn

(X
a2F

On(�{n; a)

�
ua

Z S�{nn �x

0
G0n(�{n; a; x+ z)dFi (z)

+ (1� ua)G0n(�{n; a; x)� ci
�)

=
X
a2F

On(�{n; a)
�
uaG

0
n(�{n; a; S

�{n
n )Fi (0)

+ (1� ua)G0n(�{n; a; S�{nn )� ci
�

=
X
a2F

On(�{n; a)

�
L0(i; a; S�{nn )

+�
X
j2E

	n (a; j)E
a
D

�
v0n+1

�
(�{n; j); S

�{n
n �D

���
:

The last equality follows from (4.32). Moreover, from (4.30),

lim
x#S�{nn

v0n(�{n; x) =
X
a2F

On(�{n; a)

�
L0(i; a; S�{nn )+�

X
j2E

	n (a; j)E
a
D

�
v0n+1

�
(�{n; j); S

�{n
n �D

���
:

Then it follows that limx"S�{nn v0n(�{n; x) = limx#S�{nn v0n(�{n; x) so that (4.37) is satis�ed.

Finally, vn(�{n; x) is continuous at x = S�{nn since

lim
x"S�{nn

vn(�{n; x) = lim
x#S�{nn

vn(�{n; x)

=
X
a2F

On(�{n; a)

�
L(i; a; S�{nn )

+�
X
j2E

	n (a; j)E
a
D

�
vn+1

�
(�{n; j); S

�{n
n �D

���
:

As a result, vn(�{n; x) is convex in x for all �{n: Moreover, using induction hypothesis,

(4.30) and MCT

lim
x"1

v0n(�{n; x) = hi + �
X
a2F

On(�{n; a)
X
j2E

	n (a; j)R
�
n+1;N�n�1h(�{n; j)

= hi + �
X
j2E

Pn(�{n; j)R
�
n+1;N�n�1h(�{n; j)

= R�n;N�nh(�{n)

The second equality follows from the de�nition of Pn in (4.5), and the last equality follows

from (4.9). Similarly, using the induction hypothesis, (4.33), and MCT, we can also show
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that

lim
x#�1

v0n (�{n; x) = �R�n;N�np(�{n):

This completes our proof.

By Theorem 9, we see that a state-dependent base-stock policy is still optimal in multiple

periods. However, base-stock levels depend on all past observations regarding the true

state of environment. In addition, from (4.32), it is obvious that the order-up-to level is

independent of current inventory level x. Moreover, the cost function Hn is quasi-convex as

in single-period model; therefore, S�{nn satisfying (4.32) is the global minimum. However, if

the producer�s capacity is modulated by the unobserved environmental process as in Section

4.3.1, the base-stock policy may not be optimal.

Using Theorem 9 and (4.8), we get that limx"1 v0n (�{n; x) = E[
PN�n�1
k=0 �khYn+k

��� �Yn = �{n]
and limx#�1 v0n (i; x) = �E[

PN�n�1
k=0 �kpYn+k

��� �Yn = �{n]: These results are intuitively under-
standable. If we assume that inventory level at time n is very large, inventory level in

the remaining periods is also very large so that there is no stockouts. In this case, one

unit increase on inventory level means that the retailer holds this extra unit until the end

of the planning horizon. Thus, from time n until time N � 1; the retailer incurs extra

holding cost which depends on the state of environment at that time. Under discount-

ing, expected present worth of increase in minimum cost given all past observations �{n is

E[
PN�n�1
k=0 �khYn+k

��� �Yn = �{n]. Similarly, if we suppose that inventory level at time n is

negative and very large in absolute value, this implies that that the retailer is always out of

stock. In such a case, a unit increase in inventory level implies that the retailer�s inventory

level is one more in the remaining periods provided that everything is the same. As a result,

in the remaining periods; the retailer stocks out one unit less compared to previous case.

And this implies that the retailer pays pYn less at each period until time N �1: Then, given

�{n; expected total decrease in the optimal cost is E[
PN�n�1
k=0 �kpYn+k

��� �Yn = �{n]:
Unfortunately, there is a di¢ culty with the dynamic programming formulation above as

the planning horizon gets longer since observations regarding the state of the environment

increases. Therefore, the state space En gets larger. Then, this implies that the dimension of

the state (�{n; xn) increases. When the length of the planning horizon is in�nite, this means

that the dimension of the state space is in�nite. As a result, analyzing in�nite period
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problems with this formulation is very di¢ cult. Therefore, we analyze the same problem by

a di¤erent formulation in the following section. This new formulation enables us to analyze

in�nite-period problem as well as single-period and multi-period problems.

4.4 Su¢ cient statistics

The main problem about our formulation of inventory problem with imperfect information

in Section 4.3 is that the state space is of increasing dimension. A new observation at period

n causes an increase in the dimension of the information vector �Yn: Then, the dimension of

the state (�{n; xn) increases accordingly. This situation clearly creates some problems as the

number of periods increases. Moreover, it is computationally very hard to keep this much

information. Hence, it is necessary to reduce the data. For this purpose, we need a process

of smaller dimension than �Yn: This process must summarize all information embedded in

�Yn. These are known as su¢ cient statistics.

De�ne �an = P
�
Zn = a

�� �Yn � so that �an is the probability that the true state of the
environment at time n is a given all observations until that time. Let the vector �n =�
�an; �

b
n; :::

�
denote the conditional distribution of Zn given �Yn where

P
a2F �

a
n = 1 and

�an � 0 for all a 2 F: Additional information that we obtain at each period is the new state

of the observed process Y . Therefore, information at time n + 1 is information at time n

plus Yn+1 so that �Yn+1 =
�
�Yn; Yn+1

�
: The conditional distribution of the true state of the

environment at time n+ 1 is speci�ed by

gb (Yn+1) = P
�
Zn+1 = b

�� �Yn+1 = � �Yn; Yn+1�� (4.38)

where

gb (j) = P
�
Zn+1 = b

�� �Yn; Yn+1 = j
�

=
P
�
Zn+1 = b; Yn+1 = j

�� �Yn �
P
�
Yn+1 = j

�� �Yn �
=

P
a2F P

�
Zn = a

�� �Yn �P [Zn+1 = b jZn = a ]P [Yn+1 = j jZn+1 = b ]P
a;b2F P

�
Zn = a

�� �Yn �P [Zn+1 = b jZn = a ]P [Yn+1 = j jZn+1 = b ]

=

P
a2F �

a
nQn(a; b)En+1(b; j)P

a;c2F �
a
nQn(a; c)En+1(c; j)

(4.39)



Chapter 4: Inventory Models with Imperfect Information 68

for n � 0: Note that �0 is either known at the beginning or it can be determined from

�b0 =
P [Z0 = b]E0(b; Y0)P
c2F P [Z0 = c]E0(c; Y0)

(4.40)

using the initial observation Y0. This analysis shows that

�bn+1 = gb (Yn+1) (4.41)

after putting (4.38) and (4.39) together. The most important property of (4.41) is that

calculation of conditional distribution of the true state of the environment after time n+ 1

requires only �n; conditional probability of the true state of the environment after time n;

and Yn+1 the new observation on the true state of the environment at time n + 1. There-

fore, �n summarizes the information up to time n and represents a su¢ cient statistic for

the complete past history of �Yn. This result is also stated in Smallwood and Sondik (1973),

Monahan (1982) and Bertsekas (2000 a). Moreover, it is stated in Monahan (1982) that

f�n;n � 0g is a Markov chain. As a result, our problem can be modeled as a completely

observable Markov decision chain, where �n is the state of this Markov chain. The unob-

servable environmental process Z is de�ned on the �nite state space F whereas the Markov

chain � is de�ned on a continuous state space D (F) which is the set of all probability

distributions on F:

Expression in (4.41) is a transformation from �n to �n+1 if the observations �Yn become

�Yn+1 = (�Yn; Yn+1); and the transition function is

Tb (�n jYn+1 ) =
P
a2F �

a
nQn(a; b)En+1(b; Yn+1)P

a;c2F �
a
nQn(a; c)En+1(c; Yn+1)

(4.42)

for n � 0. Then we let T = fTb; b 2 Fg denote the transition vector where
P
b2F Tb = 1 and

Tb � 0 for all b 2 F: Note that �0 is again either known as an initial condition or it can be

found by (4.40). In this case; we assume that P [Z0 = a] is externally speci�ed so that it is

initially known. In practice, P [Z0 = a] can be determined via preliminary analysis of the

unobserved environment. Then, using P [Z0 = a] ; we can determine �0 by (4.40) since we

already know E0.

Like (4.5), the evolution of Y is now described probabilistically by

P kn ((�n; i) ; j) = P
�
Yn+k = j

�� �Yn; Yn = i
�
=
X
a2F

�an	
k
n (a; j) (4.43)
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for k � 1; where 	kn is given in (4.4). Moreover, we use Pn instead of P
k
n when k = 1:

Clearly, P 0n = I so that

P 0n((�n; i) ; j) =

8<: 1 i = j

0 i 6= j
(4.44)

for all �n; i and j. Note that P kn ((�n; i) ; j) is independent of i for k > 0. In addition,

through a similar analysis as in (4.7), we can write the following

P k+1n ((�n; i) ; j) =
X
l2E

Pn ((�n; i) ; l)P
k
n+1((T (�n jl ) ; l) ; j) (4.45)

for all �n; i and j.

Note that fPng can easily be determined once the conditional distribution of true state

of environment f�ng, the transition matrices fQng, emission matrices fEng and the initial

distribution of true state of the environment are known. Here, as in Section 4.1, we assume

that fQng, fEng and f	ng are time-dependent for single and multiple period analyses;

however, they are time-homogenous for in�nite period analysis so all time subscripts vanish.

For a nonnegative function g; we note

E

"
m�1X
k=0

�kg (Yn+k)

����� �Yn; Yn = i

#
=

m�1X
k=0

�kE
�
g (Yn+k)

�� �Yn; Yn = i
�

=
m�1X
k=0

�k
X
j2E

P kn ((�; i) ; j)g (j)

=
X
j2E

"
m�1X
k=0

�nP kn ((�; i) ; j)

#
g (j)

=
X
j2E

R�n;m((�; i) ; j)g (j) = R�n;mg(�; i) (4.46)

where we de�ne R�n;m((�; i) ; j) =
Pm�1
k=0 �

kP kn ((�; i) ; j) for all �; i and j: If we consider g (j)

as the reward obtained when the observed state is j, then R�n;mg (�; i) is the expected total

discounted reward obtained duringm transitions given information vector � and observation

i. Then, R�n;mg can be called ��potential of g during �rst m transitions starting at time n.

Similarly, R�n;m is called ��potential matrix of Y during �rst m transitions starting at time

n. Notice that we cannot directly use results obtained by Ç¬nlar (1975) regarding �nite

and in�nite transition ��potential matrices and functions since Y is not a Markov chain.

Therefore, potential theory of Markov chains must be modi�ed so that it is also applicable

for POMDPs.
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As in Section 4.1, we need the relationship between R�n;mg and R
�
n+1;m�1g since we need

it for our analyses in the following sections. By (4.46), we know that

R�n;mg(�; i) =
X
l2E

R�n;m((�; i) ; l)g(l)

= g(i) +
X
l2E

"
m�1X
k=1

�kP kn ((�; i) ; l)

#
g(l)

= g(i) +
X
l2E

m�2X
k=0

�k+1

24X
j2E

Pn((�; i) ; j)P
k
n+1 ((T (� jj ) ; j) ; l)

35 g(l)
= g(i) + �

X
j2E

Pn((�; i) ; j)
X
l2E

m�2X
k=0

�kP kn+1 ((T (� jj ) ; j) ; l) g(l)

= g(i) + �
X
j2E

Pn((�; i) ; j)R
�
n+1;m�1g(T (� jj ) ; j) (4.47)

for all � and i:We get the second equality after we substituted R�n;m((�; i) ; l): Then, we get

the third equality by changing the index of inside summation in second line. Using (4.45),

we get the fourth equality. Finally, the last equality comes from the de�nition of R�n+1;m�1g.

For in�nite-period analysis, we assume that fQng and fEng are time-homogenous so

that Qn = Q and En = E. Therefore, we obtain simpli�cations that can be made in

in�nite-period analysis. Using (4.43), we can now write

P kn ((�; i) ; j) =
X
a2F

�a	k (a; j) (4.48)

for all �; j; n and k > 0; where

	k (a; j) =
X
b2F

Qk(a; b)E(b; j) (4.49)

for all a and j. However, if k = 0; P kn is given by (4.44). Moreover, we de�ne R
�
ng(�; i) =

limm"1R�n;mg(�; i) for all � and i: It follows from (4.46) that

E

" 1X
k=0

�kg (Yn+k)
�� �Yn; Yn = i

#
=
X
j2E

R�n((�; i) ; j)g (j) = R�ng(�; i) (4.50)

for all � and i; where R�n ((�; i) ; j) =
P1
k=0 �

kP kn ((�; i) ; j) with P
k
n given in (4.44) and
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(4.48). After substituting for P kn , we get

R�n ((�; i) ; j) = I (i; j) +

1X
k=1

�k
X
a2F

�a
X
b2F

Qk(a; b)E(b; j)

= I (i; j) +
X
a2F

�a
X
b2F

" 1X
k=1

�kQk(a; b)

#
E(b; j)

= I (i; j) +
X
a2F

�a
X
b2F

[Q�(a; b)� I (a; b)]E(b; j) (4.51)

for all �; i and j; where I is the identity matrix and Q�(a; b) =
P1
k=0 �

kQk (a; b) for all a

and b: It is obvious from (4.51) that R�n is independent of n: Therefore, we use R
� instead

of R�n in the remaining sections. Note that R
�
n ((�; i) ; j) is a matrix in i; j 2 E for a given

� 2 D (F). Then, by (4.51), R� = I + � (Q� � I)E in matrix notation: Moreover, using

(4.50) and (4.51),

R�g(�; i) = g (i) +
X
a2F

�a
X
b2F

[Q�(a; b)� I (a; b)]
X
j2E

E(b; j)g (j) (4.52)

for all � and i: Note that R�g(�; i) is a vector in i 2 E for a given � 2 D (F) and we can

write

R�g = g + � (Q� � I)Eg

in matrix notation. Notice from (4.52) that expected total reward obtained during in�nite

transitions is the sum of immediate reward in the current state plus the expected total reward

after the �rst transition. Moreover, for a given �; expected reward after �rst transition is

independent of the initial observation i. This is clearly intuitive since observing state j after

�rst transition does not depend on the initial observation if we know the distribution of the

true environmental state. Furthermore, by Corollary 1.8 in Ç¬nlar (1975, p. 197), if the

state space F is �nite and � 2 [0; 1), then Q� = (I ��Q)�1. Since F is �nite and � 2 (0; 1)

in our model, we get from (4.51) that

R�g(�; i) = g (i) + �(I � �Q)�1Eg � �Eg (4.53)

for all � and i: If we use a similar terminology as in Ç¬nlar (1975), then R�g can be called

��potential of g during in�nite transitions. Similarly, R� is called ��potential matrix of Y

during in�nite transitions and its solution is (4.53). Note that � (Q� � I)Eg is a constant

and we can write

R�g(�; i)�R�g(�; j) = g (i)� g (j)
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for any � 2 D (F) :

Our notation and assumption regarding the demand, availability, capacity and costs are

exactly the same as in Section 4.3. However, we now assume that
P
a2F �

aua > 0 for all

�: This assumption requires that ua > 0 for at least one a with �a > 0: Moreover, this

further implies that there is at least one environmental state a with �a > 0 in which there

is positive probability of receiving something such that P [Un+1 = 0 j Zn = a] < 1: Consider

cases where this requirement is not satis�ed so that in all environmental states a with �a > 0

receiving something is impossible so that P [Un+1 = 0 j Zn = a] = 1 and ua = 0. Clearly it

is illogical to order in such situations. Therefore, this requirement is not restrictive. In our

analysis of this section, we frequently refer to our assumption that
P
a2F �

aua > 0 for all

�: This is equivalent to the condition that there is at least one environmental state a with

�a > 0 in which there is positive probability of receiving something: Note that if ua > 0

for all a; then our assumption is trivially satis�ed for all � since
P
a2F �

a = 1 and �a � 0:

Furthermore, ua � 1 for all a since Un is in [0; 1]. This fact together with our assumption

imply that 0 <
P
a2F �

aua � 1 for all �:

4.5 Linear cost model with su¢ cient statistics and observed capacity

As in Section 4.3, we assume that Ki = 0 for all i and the capacity is modulated by the

observed environmental process Y . The remaining of this section proceeds as follows. In

Section 4.5.1, we formulate and analyze the single-period problem and show that state-

dependent base-stock policy is optimal. Next, in Section 4.5.2, we analyze multi-period

problem and show the optimality of the state-dependent base-stock policy. Finally, in

Section 4.5.3, we show that state-dependent base-stock policy is still optimal for in�nite-

period problem.

4.5.1 Single-period model

Here we assume that there is only one period to plan for so that N = 1; moreover,

v1 (�1; i1; x1) = 0 for all �1; i1 and x1: Take i0 = i; a0 = a and �0 = �. Assuming inventory

level at the beginning of period is x; the initial distribution of true state of environment is

� and observed state of environment is i, single-period minimum cost function v0 (�; i; x)
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satis�es

v0(�; i; x) = min
y�x

H0 (�; i; x; y) (4.54)

for all �; i and x; where y is the order-up-to level and

H0 (�; i; x; y) =
X
a2F

�aJ0 (i; a; x; y) (4.55)

J0 (i; a; x; y) = ua

Z y�x

0
G0(i; a; x+ z)dFi (z) + uaG0(i; a; y) [1� Fi (y � x)]

+ (1� ua)G0(i; a; x)� cix (4.56)

G0(i; a; y) = ciy + L (i; a; y) : (4.57)

where L (i; a; y) is given in (4.14). From (4.57), it is obvious that G0 is not a function of �.

This also implies that J0 doesn�t depend on �. Remember that � is either initially known or

can be determined by (4.40). In the latter case, it is obvious from (4.40) that �a = O0 (i; a) :

Therefore, our analysis in Section 4.3.1 is still applicable here. However, the subsequent

analysis is conducted for the case where � is initially known.

The expected cost in a single period is the sum of expected purchase cost, and expected

holding and shortage costs. Let y0 (�; i; x) denote the optimal order-up-to level which mini-

mizes the expected discounted cost in (4.55):In addition, let v00 (�; i; x) denote the derivative

of v0 (�; i; x) with respect to x.

Theorem 10 The optimal ordering policy for the single-period model is a state-dependent

base-stock policy

y0 (�; i; x) =

8<: S�;i0 x � S�;i0

x x > S�;i0 :
(4.58)

where S�;i0 satis�es X
a2F

�aua

�
ci + L

0(i; a; S�;i0 )
�
= 0

for all � and i. In addition, H0 (�; i; x; y) is quasi-convex in y for all �; i and y � x: The

optimal cost incurred by this policy is

v0(�; i; x) =

8<: H0

�
�; i; x; S�;i0

�
x � S�;i0P

a2F �
aL(i; a; x) x > S�;i0

(4.59)

for all �; i and x. Furthermore, v0(�; i; x) is convex in x; limx"1 v00 (�; i; x) = hi; and

limx#�1 v00 (�; i; x) = �pi for all � and i:
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Proof. We need to �nd y � x minimizing H0. We denote �rst and second derivatives of

H0 with respect to y by H 0
0 and H

00
0 , respectively. Then,

H 0
0 (�; i; x; y) = [1� Fi (y � x)]

X
a2F

�aua
�
ci + L

0(i; a; y)
�

(4.60)

H 00
0 (�; i; x; y) = [1� Fi(y � x)]

X
a2F

�a
�
uaL

00(i; a; y)

�fi(y � x)
�
ci + L

0(i; a; y)
��

(4.61)

for all �; i and y � x: Note that 1�Fi (y � x) > 0 for y � x; therefore, whether H0 (�; i; x; y)

is decreasing or increasing depends on the sign of the summation in (4.60). Let S�;i0 be the

smallest y satisfying

B0 (�; i; y) =
X
a2F

�aua
�
ci + L

0(i; a; y)
�
= 0: (4.62)

Notice that, by our assumption,
P
a2F �

aua > 0 for all �: Then, B0 (�; i; y) is nondecreasing

since L is a convex function so that ci+L0(i; a; y) is nondecreasing. Therefore, B0 (�; i; y) <

0 for all y < S�;i0 and B0 (�; i; y) � 0 for y � S�;i0 : In addition, limy"1B0 (�; i; y) =

(hi + ci)
P
a2F �

aua > 0 and limy#�1B0 (�; i; y) = � (pi � ci)
P
a2F �

aua < 0: Then it

follows that there exists �nite S�;i0 satisfying (4.62).

From (4.61), it is obvious that the �rst term is always nonnegative. Now, consider the

two cases: x � S�;i0 and x > S�;i0 :

(i) x � S�;i0 : The second term in (4.61) is always nonnegative for y 2
h
x; S�;i0

�
since

B0 (�; i; y) < 0 for y < S�;i0 ; as a result, (4.61) is nonnegative. Therefore, H0 (�; i; x; y)

is convex decreasing for all y in
�
x; Si0

�
: In addition, the second term in (4.61) continues

to be nonnegative for y close to S�;i0 ; therefore, H0 (�; i; x; y) is convex increasing for

y close to S�;i0 : However, the second term in (4.61) turns out to be negative for

large values of y > S�;i0 since limy"1[1� Fi(y � x)] = 0 and limy"1 (ci + L0(i; a; y)) =

ci + hi > 0: Hence, H0 (�; i; x; y) is concave increasing for su¢ ciently large values of

y � x:

(ii) x > S�;i0 : The second term in (4.61) is always nonpositive; however, (4.61) continues

to be nonnegative for values of y close to S�;i0 : Then, this implies that H0 (�; i; x; y) is

convex increasing for values of y close to S�;i0 : But for large values of y; (4.61) turns out
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to be negative since limy"1[1�Fi(y�x)] = 0 and limy"1 (ci + L0(i; a; y)) = ci+hi > 0:

Hence, H0 (�; i; x; y) is concave nondecreasing for su¢ ciently large values of y � x:

This analysis shows that H0 (�; i; x; y) is quasi-convex since it satis�es all conditions in

Lemma 28. Therefore, y = S�;i0 is a global minimum of H0 (�; i; x; y). This implies that

S�;i0 is the optimal order-up-to level when x � S�;i0 and that it is optimal not to order when

x > S�;i0 : As a result, (4.58) gives the optimal ordering policy.

Because base-stock policy in (4.58) is optimal, the optimal cost is

v0(�; i; x) =

8<: H0

�
�; i; x; S�;i0

�
x � S�;i0

H0 (�; i; x; x) x > S�;i0

which leads to (4.59) since H0 (�; i; x; x) =
P
a2F �

aL (i; a; x) :

Now we prove that v0(�; i; x) is convex in x. First, we show that v0(�; i; x) is convex for

x < S�;i0 and x > S�;i0 separately. Then we show that convexity is not violated at x = S�;i0 .

(i) x < S�;i0 : Using (4.59), the �rst and second derivatives of v0(�; i; x) are

v00(�; i; x) =
X
a2F

�a
�
ua

Z S�;i0 �x

0

�
ci + L

0(i; a; x+ z)
�
dFi(z)

+ (1� ua)L0(i; a; x)� uaci
�

(4.63)

v000 (�; i; x) =
X
a2F

�a
�
ua

Z S�;i0 �x

0
L00(i; a; x+ z)dFi(z) + (1� ua)L00(i; a; x)

�fi
�
S�;i0 � x

�
ua

�
ci + L

0(i; a; S�;i0 )
��

: (4.64)

In (4.64), the �rst and the second summations are always nonnegative because L is

convex. Moreover, the last expression in (4.64) is zero by (4.62). As a result, (4.64)

is always nonnegative so that v0(�; i; x) is convex for all x � S�;i0 .

(ii) x > S�;i0 : Using (4.59), v0 is convex because L is a convex function and the sum of

convex functions is also convex.

(iii) x = S�;i0 : Finally we show that convexity of v0 is not violated at x = S�;i0 . For v0 to

be convex at x = S�;i0 , the following condition must hold

lim
x"S�;i0

v00(�; i; x) � lim
x#S�;i0

v00(�; i; x) (4.65)
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and v0(�; i; x) must be continuous at x = S�;i0 . Using (4.63),

lim
x"S�;i0

v00(�; i; x) = lim
x"S�;i0

(X
a2F

�a
�
ua

Z S�;i0 �x

0

�
ci + L

0(i; a; x+ z)
�
dFi(z)

+ (1� ua)L0(i; a; x)� uaci
�)

=
X
a2F

�a
�
Fi(0)ua

�
ci + L

0(i; a; S�;i0 )
�
+ L0(i; a; S�;i0 )

�ua
�
ci + L

0(i; a; S�;i0 )
��

=
X
a2F

�aL0(i; a; S�;i0 ):

The last equality follows from (4.62). Moreover, from (4.59),

lim
x#S�;i0

v00(�; i; x) =
X
a2F

�aL0(i; a; S�;i0 ):

Then it follows that lim
x"S�;i0

v00(�; i; x) = limx#S�;i0
v00(�; i; x) so that (4.65) is satis�ed.

Finally, v0(�; i; x) is continuous at x = S�;i0 since

lim
x"S�;i0

v0(�; i; x) = lim
x#S�;i0

v0(�; i; x) =
X
a2F

�aL(i; a; S�;i0 ):

As a result, v0(�; i; x) is convex in x for all � and i. Furthermore, using (4.59), MCT

and the fact that limx"1 L0 (i; a; x) = hi,

lim
x"1

v00 (�; i; x) =
X
a2F

�a lim
x"1

L0(i; a; x) = hi

for all � and i: Similarly, using (4.63), MCT and the fact that limx#�1 L0 (i; a; x) = �pi,

lim
x#�1

v00 (�; i; x) = �pi

for all � and i: This completes our proof.

By Theorem 10, we get similar results as in Section 4.3.1. Namely, a state-dependent

base-stock policy is optimal for the su¢ cient statistic formulation of the same problem in

Section 4.3.1. The base-stock level can be obtained by solving (4.62) for minimum y: From

(4.62), it is obvious that the base-stock level for a single-period problem is independent of

capacity distribution and current inventory level. In other words, capacity has no e¤ect on
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the optimal base-stock level for a single-period inventory problem in a partially-observed

random environment.

Similar to Section 4.3.1, it is obvious from (4.60) that a base-stock policy is not nec-

essarily optimal if the capacity process is modulated by the unobserved environment since

then 1�Fa (y � x) would be inside the summation in (4.60) and H0 would have many local

minima and maxima. Moreover, in this case, global minimum of H0 will depend on the

current inventory level x:

If we consider the case where the transporter is always available and the producer has

in�nite capacity so that ua = 1 for all a and Fi = 0 for all i, then it is obvious from (4.56)

that J0 is convex in y since G0 is convex. Then, it follows from (4.55) that H0 is also convex

in y: By following the same line of reasoning in the proof of Theorem 10, we can show that

state-dependent base-stock policy is still optimal; however, notice from (4.62) that optimal

base-stock level does not depend on availability probability. Moreover, the optimal cost

function v0 is still convex. Therefore, our results agree with those of Treharne and Sox

(2002) who analyze inventory models in partially observed random demand environment.

4.5.2 Multi-period model

In the case with multiple periods, there are N periods to plan for and the dynamic pro-

gramming equation involves the sum of single period costs in the current period plus the

expected optimal discounted costs from the next period until the end of the planning hori-

zon. We assume that vN (�N ; iN ; xN ) = 0 for all �N ; iN and xN . Moreover, we suppose

that inventory level is x, state of environment is i; distribution of true state of environment

is � at time n: The minimum cost satis�es

vn(�; i; x) = miny�xHn (�; i; x; y) (4.66)
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for all �; i and x; where y is the order-up-to level

Hn (�; i; x; y) =
X
a2F

�aJn (�; i; a; x; y) (4.67)

Jn (�; i; a; x; y) = ua

Z y�x

0
Gn(�; i; a; x+ z)dFi (z) + uaGn(�; i; a; y) [1� Fi (y � x)]

+ (1� ua)Gn(�; i; a; x)� cix (4.68)

Gn(�; i; a; y) = ciy + L(i; a; y) + �
X
j2E

	n (a; j)E
a
D [vn+1 (T (� jj ) ; j; y �D)] (4.69)

with L(i; a; y) given in (4.14). Here, EaD again denotes the notation that expectation is

taken with respect to the random variable D with distribution Ma.

Let yn (�; i; x) denote the optimal order-up-to level of the minimization problem in (4.66)

given �; i and x: In addition, we assume that R�n;m((�; i) ; j) =
Pm�1
k=0 �

kP kn ((�; i) ; j) for all

�; i and j and that, for a nonnegative function g, R�n;mg(�; i) is de�ned as (4.46). Finally,

we let v0n (�; i; x) denote the derivative of vn(�; i; x) with respect to x and assume that h

and p are holding cost and shortage cost vectors, respectively.

Theorem 11 The optimal ordering policy for the N -period model is a state-dependent base-

stock policy

yn (�; i; x) =

8<: S�;in x � S�;in

x x > S�;in
(4.70)

where S�;in satis�es

X
a2F

�aua

�
ci + L

0(i; a; y) + �
X
j2E

	n (a; j)E
a
D

�
v0n+1 (T (� jj ) ; j; y �D)

��
= 0

for all � and i. In addition, Hn (�; i; x; y) is quasi-convex in y for all �; i and y � x: The

optimal cost incurred by this policy is

vn(�; i; x) =

8>>>>><>>>>>:
Hn

�
�; i; x; S�;in

�
x � S�;inP

a2F �
a

�
L(i; a; x)

+�
P
j2E	n (a; j)E

a
D [vn+1 (T (� jj ) ; j; x�D)]

� x > S�;in
(4.71)

for all �; i and x. Furthermore, vn(�; i; x) is convex in x; limx"1 v0n (�; i; x) = R�n;N�nh(�; i)

and limx#�1 v0n (�; i; x) = �R�n;N�np(�; i) for all � and i:
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Proof. The proof proceeds inductively. First of all, by Theorem 10, we know that

Theorem 11 is satis�ed for n = N � 1. Now assume that the induction hypothesis is valid

for times n+1; n+2; :::; N � 1 so that vn+1 (�; i; x) is convex in x for all � and i; moreover,

limx"1 v0n+1 (�; j; x) = R�n+1;N�n�1h(�; j) and limx#�1 v0n+1 (�; j; x) = �R�n+1;N�n�1p(�; j)

for all � and j: We now show that Theorem 9 also holds for time n.

The value function in period n is given by (4.66) and we have to analyze Hn. We let

H 0
n (�; i; x; y) denote derivative of Hn (�; i; x; y) with respect to y. Then,

H 0
n (�; i; x; y) = [1� Fi(y � x)]

X
a2F

�aua

�
ci + L

0(i; a; y)

+�
X
j2E

	n (a; j)E
a
D

�
v0n+1 (T (� jj ) ; j; y �D)

��
(4.72)

for all �; i and y � x. Note that 1 � Fi(y � x) > 0 for all y � x. Then, whether

Hn (�; i; x; y) is increasing or decreasing depends on the sign of the summation in (4.72).

Moreover, the summation is a nondecreasing function of y since L and vn+1 are convex.

Then, Hn (�; i; x; y) is nonincreasing if (4.72) is nonpositive, and it is increasing otherwise.

Let S�;in be the smallest y satisfying

Bn (�; i; y) =
X
a2F

�aua

�
ci + L

0(i; a; y)

+�
X
j2E

	n (a; j)E
a
D

�
v0n+1 (T (� jj ) ; j; y �D)

��
= 0: (4.73)

Note that, by our assumption,
P
a2F �

aua > 0 for all �: Then, this implies that Bn (�; i; y)

is nondecreasing since L and vn+1 are convex. Therefore, Bn (�; i; y) < 0 so that (4.72)

is negative for x � y < S�;in and it is nonnegative for x � y � S�;in since L and vn+1 are

convex. Using MCT and the induction hypothesis,

lim
y"1

Bn (�; i; y) =
X
a2F

�aua

�
ci + hi + �

X
j2E

	n (a; j)R
�
n+1;N�n�1h(T (� jj ) ; j)

�
> 0:

The inequality above follows from our assumptions that are hi > ci > 0 for all i andP
a2F �

aua > 0 for all �: Similarly, using MCT and the induction hypothesis,

lim
y#�1

Bn (�; i; y) =
X
a2F

�aua

�
ci � pi � �

X
j2E

	n (a; j)R
�
n+1;N�n�1p(T (� jj ) ; j)

�
< 0:

This inequality comes from our assumptions that are ci < pi for all i and
P
a2F �

aua > 0

for all �: Moreover, Bn (�; i; y) is continuous and nondecreasing in y since L and vn+1 are
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convex. Then, it follows that there exists a �nite S�;in satisfying (4.73). Now, we consider

two cases: x � S�;in and x > S�;in :

(i) x � S�;in : Then (4.72) is negative so that Hn (�; i; x; y) is decreasing for y 2h
x; S�;in

�
: However, (4.72) is nonnegative so that Hn (�; i; x; y) is nondecreasing for

y 2
h
S�;in ;+1

�
. Obviously, S�;in is the global minimum and yn (�; i; x) = S�;in is the

order-up-to level for x � S�;in :

(ii) x > S�;in : Then (4.72) is nonnegative so that Hn (�; i; x; y) is nondecreasing for all

y � x: As a result, no order should be given so that yn (�; i; x) = x.

Furthermore, we can show by a similar discussion as in Section (4.5.1) that Hn (�; i; x; y)

is convex decreasing in y for all y � S�;in ; and it is convex increasing in y for all values of y

greater than S�;in and close to S�;in :We can also show that Hn (�; i; x; y) is concave increasing

in y for su¢ ciently large values of y greater than S�;in : This analysis shows that Hn (�; i; x; y)

is quasi-convex since it satis�es all conditions in Lemma 28. Hence, base-stock policy de�ned

in (4.70) is the optimal ordering policy. The minimum cost function corresponding to this

optimal policy is

vn(�; i; x) =

8<: Hn

�
�; i; x; S�;in

�
x � S�;in

Hn (�; i; x; x) x > S�;in

which leads to (4.71) since

Hn (�; i; x; x) =
X
a2F

�a
�
L(i; a; x) + �

X
j2E

	n (a; j)E
a
D [vn+1 (T (� jj ) ; j; x�D)]

�
:

We now prove that vn(�; i; x) is convex. First, we show that vn(�; i; x) is convex for x < S�;in

and x > S�;in , separately. Then we show that convexity is not violated at x = S�;in .

(i) x < S�;in : Using (4.71), the �rst and second derivatives of vn(i; x) are

v0n(�; i; x) =
X
a2F

�a
�
ua

Z S�;in �x

0
G0n(�; i; a; x+ z)dFi (z)

+ (1� ua)G0n(�; i; a; x)� ci
�

(4.74)

v00n(�; i; x) =
X
a2F

�a
�
ua

Z S�;in �x

0
G00n(�; i; a; x+ z)dFi (z)

+ (1� ua)G00n (�; i; a; x)� fi
�
S�;in � x

�
G0n(�; i; a; S

�;i
n )

�
:(4.75)
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where

G0n(�; i; a; x) = ci + L
0(i; a; x) + �

X
j2E

	n (a; j)E
a
D

�
v0n+1 (T (� jj ) ; j; y �D)

�
(4.76)

G00n(�; i; a; x) = L00(i; a; x) + �
X
j2E

	n (a; j)E
a
D

�
v00n+1 (T (� jj ) ; j; y �D)

�
: (4.77)

In (4.75), the �rst and second sums are always nonnegative because L and vn+1 are

convex. Moreover, the last sum in (4.75) is zero by (4.73). As a result, (4.75) is always

nonnegative so that vn(�; i; x) is convex for all x � S�;in .

(ii) x > S�;in : Using (4.71), vn is convex because L and vn+1 are convex, and sum of convex

functions is also convex.

(iii) x = S�;in : Finally we show that convexity of vn is not violated at x = S�;in . For vn to

be convex at x = S�;in , the following condition must hold

lim
x"S�;in

v0n(�; i; x) � lim
x#S�;in

v0n(�; i; x) (4.78)

and vn(�; i; x) must be continuous at x = S�;in . Using (4.74),

lim
x"S�;in

v0n(�; i; x) = lim
x"S�;in

(X
a2F

�a
�
ua

Z S�;in �x

0
G0n(�; i; a; x+ z)dFi (z)

+ (1� ua)G0n(�; i; a; x)� ci
�)

=
X
a2F

�a
�
uaG

0
n(�; i; a; S

�;i
n )Fi (0) + (1� ua)G0n(�; i; a; S�;in )� ci

�
=

X
a2F

�a
�
L0(i; a; S�;in )

+�
X
j2E

	n (a; j)E
a
D

�
v0n+1

�
T (� jj ) ; j; S�;in �D

���
:

The last equality follows from (4.73). Moreover, from (4.71),

lim
x#S�;in

v0n(�; i; x) =
X
a2F

�a
�
L0(i; a; S�;in )+�

X
j2E

	n (a; j)E
a
D

�
v0n+1

�
T (� jj ) ; j; S�;in �D

���
:

Then it follows that lim
x"S�;in

v0n(�; i; x) = limS�;in
v0n(�; i; x) so that (4.78) is satis�ed.
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Finally, vn(�; i; x) is continuous at x = S�;in since

lim
x"S�;in

vn(�; i; x) = lim
x#S�;in

vn(�; i; x)

=
X
a2F

�a
�
L(i; a; S�;in )

+�
X
j2E

	n (a; j)E
a
D

�
vn+1

�
T (� jj ) ; j; S�;in �D

���
:

As a result, vn(�; i; x) is convex in x for all � and i:Moreover, using induction hypothesis,

(4.71) and MCT

lim
x"1

v0n(�; i; x) = hi + �
X
a2F

�a
X
j2E

	n (a; j)R
�
n+1;N�n�1h(T (� jj ) ; j)

= hi + �
X
j2E

Pn ((�n; i) ; j)R
�
n+1;N�n�1h(T (� jj ) ; j)

= R�n;N�nh(�; i)

The second equality follows from the de�nition of Pn ((�n; i) ; j) in (4.43): And the last

equality follows from (4.47). Similarly, using the induction hypothesis, (4.74), and MCT,

we can also show that

lim
x#�1

v0n(�; i; x) = �R�n;N�np(�; i):

This completes our proof.

Theorem 11 implies that a state-dependent base-stock policy is optimal in multiple

periods for su¢ cient statistics formulation as it is optimal in Section 4.3.2. However, base-

stock levels depend only on the information vector � and the observation i at any time. In

addition, it is obvious from (4.73) that the order-up-to level is still independent of current

inventory level x. The cost function Hn is quasi-convex as in single-period model; therefore,

S�;in satisfying (4.73) is the global minimum. However, as in Section 4.5.1, if the producer�s

capacity is modulated by the unobserved environmental process, base-stock policy may not

be optimal.

If we assume that the transporter is always available and the producer has in�nite

capacity so that ua = 1 for all a and Fi = 0 for all i, we can show by induction that vn is

convex in x. In this case, it is clear from (4.68) that Jn is also convex since Gn is convex.

This further implies that Hn in (4.67) is convex in x. Then, through a similar analysis
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as in the proof of Theorem 11, we can show that a state-dependent base-stock policy is

still optimal for inventory models in a partially observed random demand environment. As

in single-period, our results for multi-period problem still agree with results obtained by

Treharne and Sox (2002) in �nite-horizon.

4.5.3 In�nite-period model

In this section, we formulate and analyze the in�nite-period problem. As stated earlier, we

assume that fQng and fEng are time-homogenous in in�nite-period analysis so that Qn = Q

and En = E for all n: Then, this implies that 	n = 	 is given by (4.49). Using 	, Pn can

be determined from (4.48). Here, we show that the �nite-horizon optimal cost function vn

in Section 4.5.2 converges to the in�nite-horizon optimal cost function v. In addition, we

show that a state-dependent base-stock policy is still optimal and the optimal discounted

cost function of in�nite-horizon problem is convex in inventory level x: By assuming that

k = N � n denotes the number of periods from time n until time N; we use the notation

vn;k for the �nite horizon optimal cost vn in the remaining part of this section: Here, we

show that, as k increases to in�nity, the �nite-horizon optimal cost function v0;k in (4.66)

converges to the in�nite-horizon optimal cost function v that satis�es

v (�; i; x) = min
y�x

H (�; i; x; y) (4.79)

for all �; i and x; where y is the order-up-to level and

H (�; i; x; y) =
X
a2F

�aJ (�; i; a; x; y) (4.80)

J (�; i; a; x; y) = ua

Z y�x

0
G(�; i; a; x+ z)dFi (z) + uaG(�; i; a; y) [1� Fi (y � x)]

+ (1� ua)G(�; i; a; x)� cix (4.81)

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [v (T (� jj ) ; j; y �D)] (4.82)

with L (i; a; y) as given in (4.14). Again EaD denotes the notation that expectation is taken

with respect to the random variable D with distribution Ma.

For any real valued function f : D (F)�E�R! R whereD (F) is the set of all probability

distributions de�ned on state space F, de�ne the mapping T as

T f(�; i; x) = min
y�x

H (�; i; x; y) (4.83)
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for all �; i and x, where H is given in (4.80) with J as given in (4.81) and

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [f (T (� jj ) ; j; y �D)] : (4.84)

Using (4.54), T f can be interpreted as the optimal cost function for the one-period prob-

lem where the terminal cost function is
P
j2E	(a; j)E

a
D [f (T (� jj ) ; j; y �D)] : Then, T k

denotes the composition of the mapping T with itself k times; that is, for all k � 1

T kf (�; i; x) = T T k�1f (�; i; x) (4.85)

with T 0f = f . Using (4.66), we can interpret T kf as the optimal cost function for the

k�period ��discounted problem. Then, using (4.83) and (4.85),

T kf(�; i; x) = min
y�x

Hk (�; i; x; y) (4.86)

where Hk is given in (4.80) with Jk as given in (4.81) with G replaced by

Gk(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD

h
T k�1f (T (� jj ) ; j; y �D)

i
: (4.87)

Let f0(�; i; x) = 0 for all �; i and x: For our analysis in previous sections, we always

assume that the terminal cost function is zero. Suppose that the initial cost function is

f0(�; i; x) so that T 0f(�; i; x) = f0(�; i; x) for all �; i and x. Then, k�period optimal cost

function is vn;k (�; i; x) = T kf0(�; i; x) for all �; i; x and n:

Let f� (�; i; x) denote the optimal cost over in�nite horizon and let

f1 (�; i; x) = lim
k"1

T kf0(�; i; x) (4.88)

for all �; i and x. Notice that f1 is well-de�ned provided we allow the possibility that f1

can take the value1: Our main aim in this section is to show that the �nite-horizon optimal

cost converges to the in�nite-horizon optimal cost as the length of the planning horizon gets

longer. In other words, we aim to show that f� (�; i; x) = f1 (�; i; x) for all �; i and x. As

stated in Bertsekas (2000 b), it is analytically and computationally important to show that

f� (�; i; x) = f1 (�; i; x) because if we know that f� (�; i; x) = limk"1 T kf0 (�; i; x), then we

can infer the properties of f� (�; i; x) from the properties of k�period optimal cost functions

T kf0 (�; i; x) :

Let Zk denote the sets
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Zk (�; i; x; �) = fy � x jHk (�; i; x; y) � �g (4.89)

for all �; i; x and � 2 R. According to Proposition 1.7 in Bertsekas (2000 b, p. 148), if we

show that the sets in (4.89) are compact for all �; i; x and �, then f� (�; i; x) = f1 (�; i; x) :

By the following lemma, we accomplish this task.

Lemma 12 Assume that limy"1Hk (�; i; x; y) =1 for all �; i; x and k: The sets in (4.89)

are compact subsets of the Euclidean space for all �; i; x and �.

Proof. We need to show that the sets in (4.89) are both bounded and closed in order to

show that they are compact. Let us �rst show that the sets fZk (�; i; x; �)g are bounded.

Note that Hk is expected discounted cost when there are k periods until the end of planning

horizon. Therefore, it is exactly the same as Hn in Section 4.5.2 where n = N � k: In

multi-period analysis, we showed that Hk (�; i; x; y) is nonincreasing for y 2 [x; S�;ik ] and

nondecreasing for y 2 [S�;ik ;+1]: Then, because we assume that limy"1Hk (�; i; x; y) =1

for all �; i; x and k, the sets fZk (�; i; x; �)g in (4.89) are bounded for all �; i; x and �.

Moreover, the sets fZk (�; i; x; �)g are closed since Hk (�; i; x; y) is continuous for y � x and

it is real valued. Thus, the sets in (4.89) are compact subsets of Euclidean space for all �;

i; x and �.

One of the cases when our assumption in Lemma 12 is satis�ed is when

limy"1 [1� Fi (y � x)] > 0 for all i and x. Clearly, if limy"1 [1� Fi (y � x)] > 0 for all i and

x; then limy"1 Jk (�; i; a; x; y) =1 since limy"1Gk(�; i; a; y) =1 and
P
a2F �

aua > 0 for

all �; i; a and k. Clearly, this implies that limy"1Hk (�; i; x; y) =1 for all �; i and x. Notice

that this is not a restrictive requirement and it is only technically necessary. However, not

all continuous distribution functions satisfy this requirement. As an example, assuming that

the capacity distribution is exponential, cumulative distribution of capacity is Fi (y � x) =

1�e��(y�x) where 1=� is mean capacity. Then, it is obvious that limy"1 [1� Fi (y � x)] = 0

for all i and x. Therefore, for probability distributions where limy"1 [1� Fi (y � x)] = 0,

we can use approximations such that limy"1 [1� Fi (y � x)] = " > 0 but it is very small

like " = 10�10. In addition, we can also truncate the distribution Fi at a very large value

and use this truncated distribution in place of Fi. Then, our assumption in Lemma 3 is

satis�ed so that the sets fZk (�; i; x; �)g are compact.
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The following proposition shows that f1 is a �xed point of the mapping T ; moreover,

�nite-horizon optimal cost function converges to the in�nite-horizon optimal cost function.

Proposition 13 The limit f1 is a �xed point of the mapping T so that

f1 (�; i; x) = T f1 (�; i; x) (4.90)

for all �; i and x: Moreover,

f1 (�; i; x) = f� (�; i; x) (4.91)

for all �; i and x: Furthermore, there exists a stationary policy.

Proof. By Lemma 12, the sets in (4.89) are compact subsets of the Euclidean space for

all �; i; x and �. Then, using Proposition 1.7 in Bertsekas (2000 b, p. 148), f1 is a �xed

point of T so that (4.90) is valid and there exists a stationary policy. In addition, notice

that

f0 � T f0 � ::: � T kf0 � ::: � f�

because expected cost per period is nonnegative: From this, we get limk"1 T kf0 (�; i; x) �

f� (�; i; x) so that f1 (�; i; x) � f� (�; i; x). By (4.90), we know that f1 is a �xed point of T .

Then, by Proposition 1.2 in Bertsekas (2000 b, p. 140), we get that f� (�; i; x) � f1 (�; i; x).

It follows that f1 (�; i; x) = f� (�; i; x) : This completes our proof.

Notice that Proposition 13 implies also that f1; the optimal cost function that the �nite-

horizon cost function converges, satis�es the Bellman�s equation since f1 (i; x) = T f1 (i; x)

by (4.90). Hence,

f1(�; i; x) = min
y�x

H (�; i; x; y) (4.92)

for all �; i and x; where H is given in (4.80) with J as given in (4.81) and

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [f1 (T (� jj ) ; j; y �D)] : (4.93)

As stated in Proposition 1.2 in Bertsekas (2000 b, p.140), f1 is not necessarily the unique

optimal solution to Bellman�s equation because single-period costs are not bounded under

positivity assumption; however, f1 is the smallest �xed point of T since f1 = f�:

Notice that, for a �nite n, k goes to in�nity as N goes to in�nity. Then, our analysis

shows that limk"1 v0;k(�; i; x) = v(�; i; x): Moreover, v(�; i; x) satis�es (4.79) and there
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exists a stationary optimal policy y (�; i; x) which minimizes the in�nite-period total cost.

However, notice that Hk (�; i; x; y) is not bounded for y � x; therefore, v is not necessarily

unique. Then, we take v as the minimal �xed point of (4.79). In other words, if f = T f

is another solution; then v � f: Moreover, we also know that the optimal solution v is that

�xed point of T which can be obtained as v = limk"1 T kf0 with f0 = 0.

Assuming �; i and x are current information vector, current observed state and current

inventory level respectively, we let y (�; i; x) denote the optimal order-up-to level of the

minimization problem in (4.79). Let v0 (�; i; x) denote the partial derivative of v (�; i; x)

with respect to x. Finally, we again let h and p denote holding cost and shortage cost

vectors respectively.

Theorem 14 The optimal ordering policy for in�nite-period model is a state-dependent

base-stock policy

y (�; i; x) =

8<: S�;i x � S�;i

x x > S�;i
(4.94)

where S�;i satis�es

X
a2F

�aua

�
ci + L

0(i; a; y) + �
X
j2E

	(a; j)EaD
�
v0 (T (� jj ) ; j; y �D)

��
= 0

for all � and i. In addition, H (�; i; x; y) is quasi-convex in y for all �; i and y � x: The

optimal cost incurred by this policy is

v (�; i; x) =

8<: H
�
�; i; x; S�;i

�
x � S�;iP

a2F �
a
�
L(i; a; x) + �

P
j2E	(a; j)E

a
D [v (T (� jj ) ; j; x�D)]

�
x > S�;i

(4.95)

for all �; i and x. Furthermore, v (�; i; x) is convex in x limx"1 v0 (�; i; x) = R�h(�; i) and

limx#�1 v0 (�; i; x) = �R�p(�; i) for all � and i:

Proof. As shown before, v (�; i; x) = limk"1 v0;k(�; i; x): Moreover, by Theorem 11,

v0;k(�; i; x) is convex in x for all � and i. Then, v (�; i; x) is convex because the limit of a

convex function is also convex. In addition, by Theorem 11, limx"1 v00;k (�; i; x) = R�h(�; i)

and limx#�1 v0n (�; i; x) = �R�p(�; i) for all � and i, where R� is given in (4.51): In addition,

since v0;k is di¤erentiable, it follows from Lemma 8-5 in Heyman and Sobel (1984) that
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v0 (�; i; x) = limk"1 v00;k (�; i; x) for all �; i and x: Then, limx"1 v0 (�; i; x) = R�h(�; i) and

limx#�1 v0 (�; i; x) = �R�p(�; i) for all � and i.

We denote the partial derivative of H with respect to y by H 0. Then,

H 0 (�; i; x; y) = [1� Fi (y � x)]
X
a2F

�aua

�
ci + L

0 (i; a; y)

+�
X
j2E

	(a; j)EaD
�
v0 (T (� jj ) ; j; y �D)

��
(4.96)

for all y � x. Note that 1 � Fi(y � x) > 0 for all y � x. Then whether H (�; i; x; y) is

increasing or decreasing depends on the sign of the summation in (4.96). Moreover, the

summation is a nondecreasing function of y since L and v are convex. Then, H (�; i; x; y) is

nonincreasing if (4.96) is nonpositive, and it is increasing otherwise. Let S�;i be the smallest

y satisfying

B (�; i; y) =
X
a2F

�aua

�
ci + L

0 (i; a; y)

+�
X
j2E

	(a; j)EaD
�
v0 (T (� jj ) ; j; y �D)

��
= 0 (4.97)

Note that, by our assumption,
P
a2F �

aua > 0 for all �:: Then, this implies that B (�; i; y) is

nondecreasing since L and v are convex. Therefore, B (�; i; y) < 0 so that (4.96) is negative

for x � y < S�;i and it is nonnegative for x � y � S�;i since L and v are convex. Using

MCT and the fact that limx"1 v0 (�; j; x) = R�h(�; j)

lim
y"1

B (�; i; y) =
X
a2F

�aua

�
ci + hi + �

X
j2E

	(a; j)R�h(T (� jj ) ; j)
�
> 0:

Similarly, using MCT and the fact that limx#�1 v0 (�; j; x) = �R�p(�; j)

lim
y#�1

B (�; i; y) �
X
a2F

�aua

�
ci � pi � �

X
j2E

	(a; j)R�p (T (� jj ) ; j)
�
< 0:

Hence, there exists a �nite S�;i satisfying (4.97). Moreover, by a similar discussion as in

Section 4.5.1 and Section 4.5.2, we can show that H (�; i; x; y) is decreasing for all y < S�;i

and nondecreasing for all y � S�;i. Therefore, it is quasi-convex. Then, it follows that a

state-dependent base-stock policy in (4.94) is optimal. The optimal cost function through

application of this base-stock policy is

v (�; i; x) =

8<: H
�
�; i; x; S�;i

�
x � S�;i

H (�; i; x; x) x > S�;i
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which leads to (4.95) since

H (�; i; x; x) =
X
a2F

�a
�
L(i; a; x) + �

X
j2E

	(a; j)EaD [v (T (� jj ) ; j; x�D)]
�
:

This completes our proof.

By Theorem 14, we show that a state-dependent base-stock policy is still optimal in

in�nite period as in single and multiple planning periods. At the beginning of each period,

an order is given if an only if the inventory level is less than a particular value S�;i which

depends on current information vector and observed state. However, unlike the multi-period

model, S�;i is independent of the number of period in which we are planning for; therefore,

they are the same in all periods with the same information vector and observed state. Thus,

the optimal solution is stationary whereas it is not necessarily unique.

By Theorem 14, we also show that limx"1 v0 (�; i; x) = R�h(�; i) and

limx#�1 v0 (�; i; x) = �R�p(�; i) for all � and i: Because state space F is �nite and � 2

(0; 1), by 4.53, limx"1 v0 (�; i; x) = hi + �(I � �Q)�1Eh � �Eh and limx#�1 v0 (�; i; x) =

�pi � �(I � �Q)�1Ep+ �Ep for all � and i, since hi and pi are nonnegative and bounded

for all i:

If we assume that the transporter is always available and the producer has in�nite

capacity, then the formulation in (4.79)-(4.82) must be rearranged by assuming ua = 1 for

all a and Fi = 0 for all i: Note that Treharne and Sox (2002) analyze the �nite-horizon

problem only; therefore, inventory models of this type in in�nite-period are not considered

in the literature before. Treharne and Sox (2002) show that the �nite-horizon optimal cost

function is convex. Then, via a similar discussion as in this section, we can show that

in�nite-horizon optimal cost function v is also convex. It follows by (4.82) that G is convex

in y so that both J and H are also convex. Through a similar discussion as in the proof

of Theorem 14, we can show that a state-dependent base-stock policy is optimal in in�nite

planning period for inventory models in a partially observed random environment which

modulates demand only.

4.6 Inventory models with unreliable suppliers

In this section, we assume that the capacity of the supplier is in�nite so that all of order

can be satis�ed. However, the supplier is not always available. Let Un in Section 4.1 denote
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the availability of the supplier at period n instead of availability of transporter. We assume

that Un is either 1 or 0. In other words, the supplier is either available or unavailable. As a

result, the ordered quantity is either totally received or nothing is received. Obviously, this

scenario covers the case where the supplier has in�nite capacity; however, the transporter

is randomly available. Moreover, we assume that the availability process U = fUn; n � 1g

is modulated by the observed environment so that ui is the probability that the supplier is

available when the observed environment is i. Finally, without loss of generality, we assume

that ui > 0 for all i: This is a reasonable assumption since ordering is illogical when ui = 0

so that nothing is received with certainty:

Özekici and Parlar (1999) analyze exactly the same problem in random environment

with perfect information. They show that a state-dependent base-stock policy is optimal

when there is no �xed cost of ordering and that a state-dependent (s; S) policy is optimal

when there is �xed cost of ordering. In this section, we extend the results in Özekici and

Parlar (1999) and assume that the random environment is not fully observed, but, it is only

partially observed.

If we assume that the availability process of supplier is not observable so that Un depends

on the state of the unobserved environment, then our analysis in Section 4.5 obviously covers

the case where there is no �xed cost of ordering so that Ki = 0 for all i. In other words,

the inventory model with random supply due to randomly available suppliers in a partially-

observed random environment is a special case of the inventory model in Section 4.5 where

Fi = 0 for all i since the supplier always has enough capacity. The same analysis as in

Section 4.5 is still applicable in this case. Moreover, similar results will be obtained (i.e.,

state-dependent base-stock policy is still optimal and optimal cost function is still convex)

with one exception, that is the expected discounted cost function H in single, multiple and

in�nite planning periods is not only quasiconvex but also convex.

Moreover, if we assume that the availability process of supplier is observable, some mod-

i�cations in dynamic programming formulations of Section 4.5 are necessary. For example,

if we consider the multi-period problem only, the dynamic programming formulation for ob-

served availability process case is similar to (4.66)-(4.69). However, ua in (4.68) is replaced

by ui since availability process is observable and Fi = 0 for all i since the supplier always

has su¢ cient capacity. Despite these modi�cations, basic results (i.e., a state-dependent
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base-stock policy is optimal and the optimal cost function is convex) of our analysis are still

valid. But note that the expected discounted cost function H is not only quasi-convex but

also convex in this case. Because the analysis in Section 4.5 with simple modi�cations can

be applied, we do not analyze the linear cost model when the availability process of supplier

is observed. In the remaining of this section, we analyze the case where there is a �xed cost

of ordering so that Ki > 0 for all i. In Section 4.6.1, we analyze the �xed-cost model in

single-period. Next, in Section 4.6.2, we study the problem in multi-period case. Finally,

in Section 4.6.3, we analyze the in�nite-period problem.

4.6.1 Single-period model

Here we assume that there is only one period to plan for so that N = 1; moreover,

v1 (�1; i1; x1) = 0 for all �1; i1 and x1: Take i0 = i and a0 = a and �0 = �. We as-

sume that the vinformation vector, observed state of environment and inventory level are

�; i and x at the beginning of the period respectively. Then, the single-period minimum

cost function v0 (�; i; x) satis�es

v0(�; i; x) = miny�x fKi� (y � x) + J0 (�; i; x; y)g (4.98)

for all �; i and x; where � (z) is the indicator function which is equal to 1 only if z > 0 and

0 otherwise, y is the order-up-to level and

J0 (�; i; x; y) = ui
X
a2F

�aG0(i; a; y) + (1� ui)
X
a2F

�aG0(i; a; x)� cix (4.99)

G0(i; a; y) = ciy + L(i; a; y) (4.100)

with L(i; a; y) given in (4.14).

Expected cost in a single period is the sum of expected order cost, and expected holding

and shortage costs. Let y0 (�; i; x) denote the optimal order-up-to level for the minimization

problem in (4.98):

Theorem 15 The optimal ordering policy for single-period model is a state-dependent (s; S)

policy

y0 (�; i; x) =

8<: S�;i0 x � s�;i0

x x > s�;i0

(4.101)
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where S�;i0 is the smallest value that satis�es

ci +
X
a2F

�aL0
�
i; a; S�;i0

�
= 0

and s�;i0 � S�;i0 satis�es

ui
X
a2F

�aG0

�
i; a; s�;i0

�
= Ki + ui

X
a2F

�aG0

�
i; a; S�;i0

�
for all � and i. In addition, J0 (�; i; x; y) is Ki�convex in y for all �; i and x: The optimal

cost incurred by this policy is

v0 (�; i; x) =

8>>><>>>:
ui
P
a2F �

aG0

�
i; a; s�;i0

�
+(1� ui)

P
a2F �

aG0(i; a; x)� cix
x � s�;i0

P
a2F �

aG0(i; a; x)� cix x > s�;i0

(4.102)

for all � and i. Moreover, v0 (�; i; x) is continuous and Ki�convex in x for all � and i.

Proof. We denote �rst and second derivatives of J0 with respect to y by

J 00 (�; i; x; y) = ui
X
a2F

�a
�
ci + L

0 (i; a; y)
�

(4.103)

J 000 (�; i; x; y) = ui
X
a2F

�aL00 (i; a; y) (4.104)

for all �; i; x and y. Notice that ui > 0 for all i: In addition, L00 � 0 since L is convex. As a

result, J 000 � 0 so that J0 (�; i; x; y) is convex in y: Moreover, by part (a) of Lemma 29, we

know that every convex function is also Ki�convex for Ki � 0: Therefore, J0 is Ki�convex

in y for all �; i and x: In addition, J0 is continuous in y for all �; i and x since every convex

function is also continuous.

By (4.99), limjyj"1 J0 (�; i; x; y) = +1: Furthermore, J0 is continuous. Then, by part

(d) of Lemma 29; there exist scalars s�;i0 and S�;i0 with s�;i0 � S�;i0 satisfying four conditions

in part (d) of the same lemma. Clearly, by (i) of part (d) of Lemma 29, S�;i0 minimizes J0.

Then, the �rst order optimality condition must be satis�ed at y = S�;i0 so that

ci +
X
a2F

�aL0
�
i; a; S�;i0

�
= 0: (4.105)

In addition, by (ii) of part (d) of Lemma 29, s�;i0 satis�es

J0

�
�; i; x; s�;i0

�
= Ki + J0

�
�; i; x; S�;i0

�
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or

ui
X
a2F

�aG0

�
i; a; s�;i0

�
= Ki + ui

X
a2F

�aG0

�
i; a; S�;i0

�
: (4.106)

Together with (iii) and (iv) of part (d) of Lemma 29, we can claim that a state-dependent

(s; S) policy

y0 (�; i; x) =

8<: S�;i0 x � s�;i0

x x > s�;i0

is the optimal policy. From (4.105) and (4.106), it is clear that both s�;i0 and S�;i0 depend

on the current information vector and current state of environment; however, they are

independent of the current inventory level. Then, the optimal cost incurred by this policy

is

v0 (�; i; x) =

8<: Ki + ui
P
a2F �

aG0(i; a; S
�;i
0 ) + (1� ui)

P
a2F �

aG0(i; a; x)� cix x � s�;i0P
a2F �

aG0(i; a; x)� cix x > s�;i0

which leads to (4.102) by using (4.106).

In addition, the right and left derivatives of v0 at x = s�;i0 are

lim
x"s�;i0

v00 (�; i; x) =
X
a2F

�aL0
�
i; a; s�;i0

�
� ui

X
a2F

�a
�
ci + L

0
�
i; a; s�;i0

��
and

lim
x#s�;i0

v00 (�; i; x) =
X
a2F

�aL0
�
i; a; s�;i0

�
for all � and i: Notice that lim

x"s�;i0
v00 (�; i; x) � lim

x#s�;i0
v00 (�; i; x) because, by (4.105),P

a2F �
a (ci + L

0 (i; a; x)) < 0 for all �; i and x < S�;i0 ; and ui > 0 for all i: Then it follows

that the left derivative of v0 at s
�;i
0 is greater than the right derivative at the same point.

This clearly implies that v0 is not convex at x = s�;i0 :

Finally, we now show that v0 (�; i; x) is continuous and Ki�convex in x for all � and i.

We must verify that for all z � 0; b > 0; and x; we have

Ki + v0 (�; i; x+ z) � v0 (�; i; x) +
z

b
[v0 (�; i; x)� v0 (�; i; x� b)] : (4.107)

We distinguish three cases:

Case 1: x > s�;i0 : If x�b > s�;i0 , then in this region of values of z; b and x, v0, by (4.102),

is the sum of a convex function and a linear function; therefore, it is convex. Then, by part
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(a) of Lemma 29, v0 is Ki�convex and (4.107) holds if x� b > s�;i0 . If x� b � s�;i0 ; then in

view of (4.102) we can write the condition (4.107) after some simpli�cation as

Ki +
X
a2F

�aG0 (i; a; x+ z) �
X
a2F

�aG0 (i; a; x)

+ui

�z
b

�X
a2F

�a
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
+(1� ui)

�z
b

�X
a2F

�a

� [G0 (i; a; x)�G0 (i; a; x� b)] : (4.108)

Now, if x is such that
P
a2F �

a
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
� 0; then we have

Ki + ui
X
a2F

�aG0 (i; a; x+ z) � Ki + ui
X
a2F

�aG0

�
i; a; S�;i0

�
= ui

X
a2F

�aG0

�
i; a; s�;i0

�
� ui

X
a2F

�aG0 (i; a; x)

� ui
X
a2F

�aG0 (i; a; x) + ui

�z
b

�X
a2F

�a

�
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
: (4.109)

The �rst inequality follows from (i) of part (d) of Lemma 29 and the fact that S�;i0 is optimal

x of the minimization problem in (4.98). The next equality follows from (4.106). The third

and the last inequalities follow from the fact that
P
a2F �

a
a

h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
� 0:

Moreover, because G0 (i; a; x) is convex and the sum of convex functions is also convex,

(1� ui)
P
a2F �

aG0 (i; a; x) is convex so that

(1� ui)
X
a2F

�aG0 (i; a; x+ z) � (1� ui)
X
a2F

�aG0(i; a; x)

+ (1� ui)
�z
b

�X
a2F

�a
h
G0 (i; a; x)

�G0 (i; a; x� b)
i

(4.110)

By summing (4.109) and (4.110), we get (4.108). If
P
a2F �

a
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
�

0; (4.107) and (4.108) hold. If x is such that
P
a2F �

a
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
> 0; then
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we have

Ki + ui
X
a2F

�aG0 (i; a; x+ z) � ui
X
a2F

�aG0 (i; a; x)

+ui

 
z

x� s�;i0

!X
a2F

�a
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
because ui

P
a2F �

aG0 (i; a; x) is convex, it is alsoKi�convex. Note that 0 < x�s�;i0 � b andP
a2F �

a
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
> 0: Then, it follows that

Ki + ui
X
a2F

�aG0 (i; a; x+ z) � ui
X
a2F

�aG0 (i; a; x)

+ui

�z
b

�X
a2F

�a

�
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
: (4.111)

By summing (4.110) and (4.111), we get (4.108). If
P
a2F �

a
h
G0 (i; a; x)�G0

�
i; a; s�;i0

�i
>

0; (4.107) and (4.108) also hold.

Case 2: x � x+ z � s�;i0 : In this region, by (4.102), the function v0 is sum of a convex

function and a linear function; therefore, v0 is convex. Then, by part (a) of Lemma 29, it

is also Ki�convex.

Case 3: x < s�;i0 < x+z: For this case, in view of (4.102), we can write condition (4.107)

as

Ki +
X
a2F

�aG0 (i; a; x+ z) � ui
X
a2F

�aG0

�
i; a; s�;i0

�
+ (1� ui)

X
a2F

�aG0 (i; a; x)

+ (1� ui)
�z
b

�X
a2F

�a

� [G0 (i; a; x)�G0 (i; a; x� b)] : (4.112)

Notice that ui
P
a2F �

aG0 (i; a; x) is convex and, by part (a) of Lemma 29, it is alsoKi�convex.

Then, we have

Ki + ui
X
a2F

�aG0 (i; a; x+ z) � ui
X
a2F

�aG0

�
i; a; s�;i0

�
(4.113)

by (iv) of part (d) of Lemma 29. Moreover, convexity of (1� ui)
P
a2F �

aG0 (i; a; x) implies

(4.110). Then, by summing (4.110) and (4.113), we get (4.112). As a result, (4.107) holds

for case 3. Finally, for all three cases, v0 is Ki�convex in x.
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We only need to check v0 (�; i; x) at x = s�;i0 for continuity. Note that v0 (�; i; x) is

continuous at s�;i0 because

lim
x"s�;i0

v0 (�; i; x) = lim
x#s�;i0

v0 (�; i; x) =
X
a2F

�aG0(i; a; s
�;i
0 )� cis

�;i
0 :

This completes our proof.

By Theorem 15, we show that v0 is Ki�convex so that (4.107) is valid. Note that

(4.107) is still valid if we use Ki=ui instead of Ki in the left hand side of this equation since

Ki=ui > Ki for ui 2 (0; 1) : This clearly implies that v0 (�; i; x) is also (Ki=ui)�convex in

x for all � and i. In addition, we show by Theorem 15 that a state-dependent (s; S) policy

continues to be optimal in single-period for inventory problems with unreliable suppliers in

a partially observed random environment. However, s and S now depend not only on the

current state of observed environment but also on the current information vector.

Notice also that the analysis in this section is still valid when the availability of supplier

is modulated by the unobserved process. Then, ua denotes the probability of the supplier

being available when state of unobserved environment is a. In this case several modi�cations

in J0 and in the proof of Theorem 15 are necessary. For example, ua and (1� ua) will be

inside the summation in (4.99). Then, the proof must be rearranged for new J0 accordingly.

However, the basic results in Theorem 15 are still valid. Moreover, our analysis is also valid

when the cost parameters and supplier availability probabilities are constant so that they

are independent of observation process Y and unobserved process Z.

4.6.2 Multi-period model

Suppose that there are N periods to plan for and the dynamic programming equation

involves the sum of expected single period costs in the current period plus the expected

optimal discounted costs from the next period until the end of the planning horizon. We

assume that vN (�N ; iN ; xN ) = 0 for all �N ; iN and xN . The distribution � of the true state

of environment, the state i of the observed environment and inventory level x at any time

are given; moreover, demand in period n+ 1 is D: Then, the minimum cost satis�es

vn(�; i; x) = miny�x fKi� (y � x) + Jn (�; i; x; y)g (4.114)
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for all �; i and x; where y is the order-up-to level and

Jn (�; i; x; y) = ui
X
a2F

�aGn(�; i; a; y) + (1� ui)
X
a2F

�aGn(�; i; a; x)� cix (4.115)

Gn(�; i; a; y) = ciy + L(i; a; y) + �
X
j2E

	n (a; j)E
a
D [vn+1 (T (� jj ) ; j; y �D)](4.116)

with L(i; a; y) given in (4.14). Here, EaD again denotes the notation that expectation is

taken with respect to the random variable D with distribution Ma.

In this section, we show that a state-dependent (s; S) policy is still optimal; however, this

requires an additional assumption on �xed-ordering costs fKig and availability probabilities

fuig : In particular, we assume that�
Ki

ui

�
� �

X
j2E

	n (a; j)

�
Kj

uj

�
(4.117)

for all i; a and n, where 	n is given by (4.4): One of the special cases satisfying the condition

in (4.117) trivially is when the �xed ordering costs and availability probabilities are constant.

In this case, Ki = K and ui = u for all i: This is possible only when the outside environment

has no e¤ect on the �xed ordering costs and the availability of supplier, and this may be true

in stationary environments. A less restrictive case is when Ki=ui is equal to some constant

�K for all i. In this case, individual Ki and ui values may be di¤erent but their ratios must

be constant for all i: In addition, this case also covers the case where �xed ordering costs and

availability probabilities are constant. Note that the condition in (4.117) is quite restrictive

since it must be satis�ed for all a and n. However, the condition in (4.117) may not be too

restrictive when we have a time-homogenous model so that Qn = Q, En = E and 	n = 	

as given in (4.49). As shown by the following example, if we assume that fQng and fEng

are time-homogenous, we can �nd many values of Ki and ui which satisfy the condition in

(4.117) .

Example 3 Suppose that both observed and unobserved environments have two states so

that E = f1; 2g and F = f1; 2g, where state 1 represents a �good� environment and state

2 represents a �bad� environment. In addition, we suppose that fQng and fEng are time-

homogenous and

Q =

24 0:65 0:35

0:43 0:57

35 , E =

24 0:47 0:53

0:4 0:6

35
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so that

	 =

24 0:45 0:55

0:43 0:57

35 :
Moreover, we assume that �xed ordering cost vector is K = [34; 10], the availability prob-

ability vector is u = [0:6; 0:25] and the discount factor is � = 0:8: Using these values, we

can easily compute (K=u) = [50:67; 40] and �	(K=u) = [37:94; 37:73] : Then, it now follows

that condition (4.117) is satis�ed.

Let yn (�; i; x) denote the optimal order-up-to level for the minimization problem in

(4.114):

Theorem 16 Suppose that the assumption in (4.117) is valid. Then, the optimal ordering

policy for N -period model is a state-dependent (s; S) policy

yn (�; i; x) =

8<: S�;in x � s�;in

x x > s�;in
(4.118)

where S�;in is the smallest value that satis�esX
a2F

�aGn
�
�; i; a; S�;in

�
�
X
a2F

�aGn (�; i; a; y)

and s�;in � S�;in satis�es

ui
X
a2F

�aGn
�
�; i; a; s�;in

�
= Ki + ui

X
a2F

�aGn
�
�; i; a; S�;in

�
for all �; i and y. In addition, Jn (�; i; x; y) is continuous and Ki�convex in y for all �; i

and x: The optimal cost incurred by this policy is

vn (�; i; x) =

8>>><>>>:
ui
P
a2F �

aGn

�
�; i; a; s�;in

�
+(1� ui)

P
a2F �

aGn(�; i; a; x)� cix
x � s�;in

P
a2F �

aGn(�; i; a; x)� cix x > s�;in

(4.119)

for all �; i and x. Moreover, vn (�; i; x) is continuous and (Ki=ui)�convex in x for all �

and i.

Proof. The proof proceeds by induction. We know by Theorem 15 that Theorem 16

is valid for n = N � 1. Now assume that Theorem 16 is valid for n + 1; n + 2; :::; N � 1:
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Therefore, vn+1 (�; j; x) is (Kj=uj)�convex and continuous in x for all � and j: Next, we

show that Theorem 16 holds also for time n:

First of all, notice that, by part (c) of Lemma 29, EaD [vn+1 (T (� jj ) ; j; y �D)] is also

(Kj=uj)�convex in y and that, by part (b) of Lemma 29,

�
X
j2E

	n (a; j)E
a
D [vn+1 (T (� jj ) ; j; y �D)]

is
h
�
P
j2E	n (a; j) (Kj=uj)

i
�convex in y for all a and n: By our assumption (4.117), it is

also (Ki=ui)�convex. In addition, because L is convex in y and ciy is linear in y; it follows

from (4.116) that Gn is (Ki=ui)�convex in y: Together with part (b) of Lemma 29, this

also implies that Jn in (4.115) is Ki�convex in y for all �; i and x: Moreover, Jn in (4.115)

is continuous in y for all �; i and x because it is sum of continuous functions.

Notice that limjyj"1 Jn (�; i; x; y) = +1; moreover, Jn is continuous and Ki�convex

in y for all �; i and x. Then, there exist scalars s�;in and S�;in with s�;in � S�;in satisfying

four conditions in part (d) of Lemma 29 where S�;in is the smallest minimizer of Jn: Using

(4.115), this implies that S�;in satis�es
P
a2F �

aGn

�
�; i; a; S�;in

�
�
P
a2F �

aGn (�; i; a; y) for

all �; i and y: Moreover, using the fact that Jn (�; i; x; y) is Ki�convex in y; s�;in � S�;in can

be computed by solving

ui
X
a2F

�aGn(�; i; a; s
�;i
n ) = Ki + ui

X
a2F

�aGn(�; i; a; S
�;i
n ) (4.120)

for all � and i. Together with (iii) and (iv) of part (d) of Lemma 29, we can claim that a

state-dependent (s; S) policy de�ned as

yn (�; i; x) =

8<: S�;in x � s�;in

x x > s�;in

is optimal. The optimal cost incurred by this policy is

vn(�; i; x) =

8<: Jn

�
�; i; x; s�;in

�
x � s�;in

Jn (�; i; x; x) x > s�;in :

which leads to (4.119) by using (4.115) and (4.120).

We now show that vn is (Ki=ui)�convex in x. For this to be true, we must verify that

for all z � 0; b > 0; and x; we have
Ki

ui
+ vn (�; i; x+ z) � vn (�; i; x) +

z

b
[vn (�; i; x)� vn (�; i; x� b)] : (4.121)
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First of all, notice thatGn in (4.116) is (Ki=ui)�convex in y: Then, ui
P
a2F �

aGn(�; i; a; x)

is Ki�convex so that it satis�es

Ki + ui
X
a2F

�aGn(�; i; a; x+ z) � ui
X
a2F

�aGn(�; i; a; x)

+ui

�
z

x� s�;in

�X
a2F

�a

�
h
Gn(�; i; a; x)�Gn(�; i; a; s�;in )

i
(4.122)

for all z � 0 and x > s�;in ; and (1� ui)
P
a2F �

aGn(�; i; a; x) is
�
Ki

�
1
ui
� 1
��
�convex so

that it satis�es

Ki

�
1

ui
� 1
�
+ (1� ui)

X
a2F

�aGn(�; i; a; x+ z) � (1� ui)
�X
a2F

�aGn(�; i; a; x)

+
�z
b

�X
a2F

�a [Gn(�; i; a; x)

�Gn(�; i; a; x� b)
�

(4.123)

for all z � 0; b > 0; and x:

Again, we distinguish three cases:

Case 1: x > s�;in : If x�b > s�;in , then in this region of values of z; b and x, vn, by (4.119),

is sum of a (Ki=ui)�convex function and a linear function; therefore, it is (Ki=ui)�convex.

Then, by part (b) of Lemma 29, vn is (Ki=ui)�convex and (4.121) holds if x� b > s�;in . If

x� b � s�;in ; then in view of (4.119) we can write (4.121) after some simpli�cation as

Ki

ui
+
X
a2F

�aGn(�; i; a; x+ z) �
X
a2F

�aGn(�; i; a; x)

+ui

�z
b

�X
a2F

�a
h
Gn(�; i; a; x)�Gn(�; i; a; s�;in )

i
+(1� ui)

�z
b

�X
a2F

�a

� [Gn(�; i; a; x)�Gn(�; i; a; x� b)] : (4.124)

Notice that x > s�;in so that (4.122) is applicable here; moreover, x � b � s�;in so that

x� s�;in � b: Then, if x is such that
P
a2F �

a
h
Gn(�; i; a; x)�Gn

�
�; i; a; s�;in

�i
> 0; we have
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together with (4.122) that

Ki + ui
X
a2F

�aGn(�; i; a; x+ z) � ui
X
a2F

�aGn(�; i; a; x)

+ui

�z
b

�X
a2F

�a

�
h
Gn(�; i; a; x)�Gn(�; i; a; s�;in )

i
(4.125)

Then, by summing (4.125) and (4.123), we get (4.124). So if x� b � s�;in and x is such thatP
a2F �

a
h
Gn(�; i; a; x)�Gn

�
�; i; a; s�;in

�i
> 0; (4.121) and (4.124) hold.

However, if x is such that
P
a2F �

a
h
Gn(�; i; a; x)�Gn

�
�; i; a; s�;in

�i
� 0; then we have

Ki + ui
X
a2F

�aGn(�; i; a; x+ z) � Ki + ui
X
a2F

�aGn(�; i; a; S
�;i
n )

= ui
X
a2F

�aGn(�; i; a; s
�;i
n )

� ui
X
a2F

�aGn(�; i; a; x)

+ui

�z
b

�X
a2F

�a

�
h
Gn(�; i; a; x)�Gn(�; i; a; s�;in )

i
: (4.126)

The �rst inequality follows from (i) of part (d) of Lemma 29 and the fact that S�;in is opti-

mal x to the minimization problem in (4.114). The second equality follows from (4.120). The

third and the last inequalities follow from the fact thatP
a2F �

a
h
Gn(�; i; a; x)�Gn

�
�; i; a; s�;in

�i
� 0: Then, if we sum (4.123) and (4.126), we get

(4.124). So if x�b � s�;in and x is such that
P
a2F �

a
h
Gn(�; i; a; x)�Gn

�
�; i; a; s�;in

�i
� 0;

(4.121) and (4.124) also hold.

Case 2: x � x + z � s�;in : In this region, by (4.119), the function vn is sum of a

(Ki=ui)�convex function and a linear function; therefore, vn is (Ki=ui)�convex.

Case 3: x < s�;in < x+ z: For this case, in view of (4.119), we can write (4.121) as

Ki +
X
a2F

�aGn(�; i; a; x+ z) � ui
X
a2F

�aGn(�; i; a; s
�;i
n ) + (1� ui)

X
a2F

�aGn(�; i; a; x)

+ (1� ui)
�z
b

�X
a2F

�a

� [Gn(�; i; a; x)�Gn(�; i; a; x� b)] : (4.127)
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Notice that ui
P
a2F �

aGn (�n; i; a; x) is Ki�convex since
P
a2F �

aGn (�n; i; a; x) is

(Ki=ui)�convex. Then, we have

Ki + ui
X
a2F

�aGn(�; i; a; x+ z) �
X
a2F

�auiGn(�; i; a; s
�;i
n ) (4.128)

by (iv) of part (d) of Lemma 29 and (4.120) since s�;in < x + z. Moreover, we know

that (1� ui)
P
a2F �

aGn (�; i; a; x) satis�es (4.123). Then, by summing (4.123) and (4.128),

we get (4.127). As a result, (4.121) holds for case 3. Finally, for all three cases, vn is

(Ki=ui)�convex in x for all � and i.

We need to check vn(�; i; x) at x = s�;in for continuity. Note that vn(�; i; x) is continuous

at s�;in because

lim
x"s�;in

vn(�; i; x) = lim
x#s�;in

vn(�; i; x) =
X
a2F

�aGn(�; i; a; s
�;i
n )� cis�;in :

This completes our proof.

By Theorem 16, we get similar results as Özekici and Parlar (1999) who analyze exactly

the same problem as ours but the environment is fully-observed. We show that an (s; S)

type inventory control policy is still optimal in multi-period setting for inventory problems

with unreliable suppliers in a partially-observed random environment. However, when the

environment is partially-observed, both s and S depend not only on the observed state but

also on the information vector at the same time. This implies that, for inventory problems

with unreliable suppliers, observing the random environment partially does not a¤ect the

type of optimal control policy but it a¤ects the parameters of that policy.

In Theorem 16, we assume that fKi=uig satis�es (4.117) for all i; a and n: This assump-

tion clearly implies that

�
Ki

ui

�
� �

X
j2E

Pn ((�; i) ; j)

�
Kj

uj

�
(4.129)

for all �; i and n: Notice that (1=ui) is the expected number of orders until a successful one

so that there is a replenishment. Then, (Ki=ui) is the actual expected cost incurred per

successful order if the observed state is i. By (4.129), this implies that the actual �xed cost

of ordering in any environment is greater than or equal to the actual expected discounted

�xed cost of ordering that will be incurred if the order is given after one more period. If we
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consider the �xed costs only, this is an important reason for the IM not to give an order at

the beginning of a period, but to wait one more period to pay less in expectation. This is

the fundamental motivation behind (s; S) inventory control policies.

Note that we always assume that cost parameters and demand distribution only depend

on the observed environmental state; but, they may also be dependent on time. For example,

Sethi and Cheng (1997) assume that all costs depend on both time and environmental

state so that Kn;i denotes the �xed ordering cost at time n when environmental state is i:

However, they assume that environment is fully observed, and the supplier is always available

with in�nite capacity. By allowing partial observation and randomly available supplier, we

can extend Sethi and Cheng (1997). If we assume that costs, availability of supplier and

demand distribution depend on both time and the observed environment, then formulation

of the extended model in multiple periods will be the same as in (4.114)-(4.116). The only

di¤erence would be that the cost parameters and availability probability of supplier now

depend on the time as well. Notice also that L should be replaced by

Ln (i; a; y) = hn;i

Z y

0
(y � z)dMn+1;a(z) + pn;i

Z 1

y
(z � y)dMn+1;a(z)

for all i; a and n. However, Theorem 16 and its proof are still valid in this case if we assume

that �
Kn;i

un;i

�
� �

X
j2E

	n (a; j)

�
Kn+1;j

un+1;j

�
for all i; a and n. This is clearly true when �xed ordering costs and availability probability

are constants. Another case is when �xed ordering costs are nonincreasing in time and the

availability of the supplier increases as time increases. Fixed ordering costs and the supplier

availability may be nonincreasing and nondecreasing respectively due to the learning curve

e¤ect. In such a situation, Kn;i � Kn+1;j and un;i � un+1;j for all i; j and n. Then, this

implies that (Kn+1;j=un+1;j) � (Kn;i=un;i) for all i; j and n so that the condition in (4.117)

is satis�ed.

4.6.3 In�nite-period model

In this section, we formulate and analyze the in�nite-period problem. As we stated earlier,

fQng and fEng matrices are assumed to be time-homogenous in in�nite-period analysis so
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that Qn = Q, En = E and 	n = 	 as given in (4.49). Then, we show that the �nite-horizon

solution in Section 4.6.2 converges to the in�nite-horizon solution. In other words, we show

that a state-dependent (s; S) policy is still optimal and optimal discounted cost function is

Ki�convex. By assuming that k = N � n denotes the number of periods from time n until

time N; we use the notation vn;k for the �nite horizon optimal cost vn in the remaining

part of this section: Here, we show that, as k increases to in�nity, the �nite-horizon optimal

cost function v0;k in (4.114) converges to the in�nite-horizon optimal cost function v that

satis�es

v(�; i; x) = min
y�x

fKi� (y � x) + J (�; i; x; y)g (4.130)

for all �; i and x; where y is order-up-to level and

J (�; i; x; y) = ui
X
a2F

�aG(�; i; a; y) + (1� ui)
X
a2F

�aG(�; i; a; x)� cix (4.131)

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [v (T (� jj ) ; j; y �D)] (4.132)

with L (i; a; y) given in (4.14). Again EaD denotes the notation that expectation is taken

with respect to the random variable D with distribution Ma.

For any real valued function f : D (F)�E�R! R whereD (F) is the set of all probability

distributions de�ned on state space F, we de�ne the mapping T as

T f(�; i; x) = min
y�x

fKi� (y � x) + J (�; i; x; y)g (4.133)

where J (�; i; x; y) is given in (4.131) with

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [f (T (� jj ) ; j; y �D)] : (4.134)

Using relations in (4.98), T f can be interpreted as the optimal cost function for the one-step

problem where
P
j2E	(a; j)E

a
D [f (T (� jj ) ; j; y �D)] is the terminal cost function: Then,

T k denotes the composition of the mapping with itself k times; that is, for all k � 1

T kf (�; i; x) = T T k�1f (�; i; x) (4.135)

with T 0f = f . Using (4.114), we can interpret T kf as the optimal cost function for

the k�period ��discounted problem given information vector �. Then, using (4.133) and

(4.135),

T kf(�; i; x) = min
y�x

fKi� (y � x) + J (�; i; x; y)g (4.136)
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where J is given in (4.131) with G replaced by

Gk(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD

h
T k�1f (T (� jj ) ; j; y �D)

i
: (4.137)

Let f0 (�; i; x) = 0 for all � and x: For our analysis in previous sections, we always

assume that the terminal cost function is zero. Suppose that the initial cost function is

f0 (�; i; x) so that T 0f(�; i; x) = f0 (�; i; x) for all �; i and x. As a result, k�period optimal

cost function is vn;k (�; i; x) = T kf0 (�; i; x) for all �; i; x and n.

Let f� (�; i; x) denote the optimal cost over in�nite horizon and let

f1 (�; i; x) = lim
k"1

T kf0 (�; i; x) (4.138)

for all �; i and x. Notice that f1 is well-de�ned provided we allow the possibility that

f1 can take the value 1: Our main aim in this section is to show that the �nite-horizon

optimal cost converges to the in�nite-horizon optimal cost as the number of periods in-

creases. In other words, we aim to show that f� (�; i; x) = f1 (�; i; x) for all �; i and x: As

stated in Bertsekas (2000 b), it is analytically and computationally important to show that

f� (�; i; x) = f1 (�; i; x) because if we know that f� (�; i; x) = limk"1 T kf0 (�; i; x), then we

can infer the properties of f� (�; i; x) from the properties of k�period optimal cost functions

T kf0 (�; i; x) :

Let Zk denote the sets

Zk (�; i; x; �) = fy � x jKi� (y � x) + Jk (�; i; x; y) � �g (4.139)

for all �; i; x and � 2 R. According to Proposition 1.7 in Bertsekas (2000 b, p. 148), if we

show that the sets in (4.139) are compact for all �; i; x and �, then f� (�; i; x) = f1 (�; i; x) :

Hence, by the following lemma, we accomplish this task.

Lemma 17 The sets in (4.139) are compact subsets of the Euclidean space for all �; i; x

and �:

Proof. We need to show that the sets in (4.139) are both bounded and closed in order to

show that they are compact. Note that Jk is expected discounted cost when there are k peri-

ods until the end of planning horizon. Therefore, it is exactly the same as Jn in Section 4.5.2

where n = N � k: In multi-period analysis, we show that Jk is continuous and Ki�convex;
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moreover, limy"1 Jk (�; i; x; y) = 1 for all �; i; x and k. Hence, the sets fZk (�; i; x; �)g

in (4.139) are bounded for all �; i; x and �. Moreover, the sets fZk (�; i; x; �)g are closed

since Jk (�; i; x; y) is continuous for y � x and it is real valued. Thus, the sets in (4.89) are

compact subsets of Euclidean space for all �; i; x and �.

The following proposition shows that f1 is a �xed point of the mapping T ; moreover,

�nite-horizon optimal cost function converges to the in�nite-horizon optimal cost function.

In addition, this proposition shows that there is a stationary optimal policy.

Proposition 18 The limit f1 is a �xed point of the mapping T so that

f1 (�; i; x) = T f1 (�; i; x) (4.140)

for all �; i and x: Moreover,

f1 (�; i; x) = f� (�; i; x) (4.141)

for all �; i and x: Furthermore, there exists a stationary optimal policy.

Proof. By Lemma 17, the sets in (4.139) are compact subsets of the Euclidean space for

all �; i; x and �. Then, using Proposition 1.7 in Bertsekas (2000 b, p. 148), f1 is a �xed

point of T so that (4.140) is valid, and there exists a stationary optimal policy. In addition,

notice that

f0 � T f0 � ::: � T kf0 � ::: � f�

because expected cost per period is nonnegative: From this, we get limk"1 T kf0 (�; i; x) �

f� (�; i; x) so that f1 (�; i; x) � f� (�; i; x). By (4.140), we know that f1 (�; i; x) is a

�xed point of T . Then, by Proposition 1.2 in Bertsekas (2000 b, p. 140), we get that

f� (�; i; x) � f1 (�; i; x). It follows that f1 (�; i; x) = f� (�; i; x) : This completes our proof.

Notice that Proposition 18 implies also that f1 satis�es the Bellman�s equation since

f1 (�; i; x) = T f1 (�; i; x) by (4.140). Hence,

f1 (�; i; x) = min
y�x

fKi� (y � x) + J (�; i; x; y)g (4.142)

for all � and x; where J (�; i; x; y) is given in (4.131) with G replaced by

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [f1 (T (� jj ) ; j; y �D)] : (4.143)
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As stated in Proposition 1.2 in Bertsekas (2000 b, p. 140), f1 is not necessarily the unique

optimal solution to the Bellman�s equation because single-period costs are not bounded

under positivity assumption; however, f1 is the smallest �xed point of T since f1 = f�:

Notice that, for a �nite n; k goes to in�nity as N goes to in�nity. Then, above analysis

shows that limk"1 v0;k(�; i; x) = v(�; i; x): Moreover, v (�; i; x) satis�es (4.130) and there

exists a stationary optimal policy y (�; i; x) which minimizes the in�nite-period total cost.

However, notice that J (�; i; x; y) is not bounded for y � x; therefore, v (�; i; x) is not

necessarily unique. Then, we take v (�; i; x) as the minimal �xed point of (4.130). In other

words, if f = T f; then v � f: Moreover, we also know that the optimal solution v is that

�xed point of T which can be obtained as v = limk"1 T kf0 with f0 = 0.

Here we will also show that state-dependent (s; S) policy is optimal for in�nite-horizon

problem. However, this requires a similar assumption as in (4.117). We assume that

Ki

ui
� �

X
j2E

	(a; j)
Kj

uj
(4.144)

for all i and a; where 	 is given by (4.49). As in multi-period case, this assumption is also

satis�ed when the �xed ordering costs and availability probabilities are constant.

Let y (�; i; x) denote the optimal order-up-to level for the minimization problem in

(4.130).

Theorem 19 Suppose that assumption (4.144) is valid. Then, the optimal ordering policy

for in�nite-period model is a state-dependent (s; S) policy

y (�; i; x) =

8<: S�;i x � s�;i

x x > s�;i
(4.145)

where S�;i is the smallest value that satis�es

X
a2F

�aG
�
�; i; a; S�;i

�
�
X
a2F

�aG (�; i; a; y)

and s�;i � S�;i satis�es

ui
X
a2F

�aG
�
�; i; a; s�;i

�
= Ki + ui

X
a2F

�aG
�
�; i; a; S�;i

�
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for all �; i and y. In addition, J (�; i; x; y) is continuous and Ki�convex in y for all �; i

and x: The optimal cost incurred by this policy is

v (�; i; x) =

8>>><>>>:
ui
P
a2F �

aG
�
�; i; a; s�;i

�
+(1� ui)

P
a2F �

aG(�; i; a; x)� cix
x � s�;i

P
a2F �

aG(�; i; a; x)� cix x > s�;i

(4.146)

for all �; i and x. Moreover, v (�; i; x) is continuous and (Ki=ui)�convex in x for all � and

i.

Proof. As shown before, v (�; i; x) = limk"1 v0;k(�; i; x) for all �; i and x: The limit of a

continuous function is also continuous. Hence, v is continuous since v0;k is continuous for all

k. Moreover, by Theorem 16, v0;k(�; i; x) is (Ki=ui)�convex in x for all � and i. Therefore,

for all z � 0; b > 0; and x; we have

Ki

ui
+ v0;k (�; i; x+ z) � v0;k (�; i; x) +

z

b
[v0;k (�; i; x)� v0;k (�; i; x� b)] :

for all �; i and x. After taking limit of both sides as k goes to in�nity in above inequality,

we get
Ki

ui
+ v (�; i; x+ z) � v (�; i; x) +

z

b
[v (�; i; x)� v (�; i; x� b)] (4.147)

since v (�; i; x) = limk"1 v0;k(�; i; x) for all �; i and x: Then, (4.147) implies that v (�; i; x)

is (Ki=ui)�convex in x for all � and i.

Moreover, by part (c) of Lemma 29, EaD [v (T (� jj ) ; j; y �D)] is (Kj=uj) �convex in y

and that, by part (b) of Lemma 29,

�
X
j2E

	(a; j)EaD [v (T (� jj ) ; j; y �D)]

is
h
�
P
j2E	(a; j) (Kj=uj)

i
�convex in y for all a. By our assumption (4.144), it is also

(Ki=ui)�convex. Now, because L is convex in y and ciy is linear, thus convex, in y; it

follows from (4.132) that G is (Ki=ui)�convex in y. Together with part (b) of Lemma

29, this also implies that J in (4.131) is Ki�convex in y for all �; i and x: Moreover, J

is continuous in y since v and L are continuous, and sum of continuous functions is also

continuous.

Note that J is continuous and Ki�convex in y for all �; i and x; moreover,

limjyj"1 J (�; i; x; y) =1: Then, there exist scalars s�;i and S�;i with s�;i � S�;i satisfying
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four conditions in part (d) of Lemma 29. S�;i is the smallest minimizer of J: Using (4.131),

S�;i satis�es
P
a2F �

aG
�
�; i; a; S�;i

�
�
P
a2F �

aG (�; i; a; y) for all �; i and y. Moreover,

using the fact that J is Ki�convex in y; s�;i � S�;i can be computed by solving

ui
X
a2F

�aG(�; i; a; s�;i) = Ki + ui
X
a2F

�aG(�; i; a; S�;i) (4.148)

for all �; i and x. Together with (iii) and (iv) of part (d) of Lemma 29, we can claim that

state-dependent (s; S) policy de�ned

y (�; i; x) =

8<: S�;i x � s�;i

x x > s�;i

is optimal. The optimal cost incurred by this policy is

v (�; i; x) =

8<: J
�
�; i; x; s�;i

�
x � s�;i

J (�; i; x; x) x > s�;i:

which leads to (4.146) by using (4.131) and (4.148).

Clearly, v (�; i; x) is continuous in x for all x � s�;i and x > s�;i separately since it is

the sum of continuous functions. Moreover, v (�; i; x) is continuous at x = s�;i because

lim
x"s�;i

v (�; i; x) = lim
x#s�;i

v (�; i; x) =
X
a2F

�aG(�; i; a; s�;i)� cis�;i:

Therefore, v (�; i; x) is continuous and (Ki=ui)�convex function in x for all � and i. This

completes our proof.

By Theorem 19, we get similar results as in single-period and multi-period models. This

clearly implies that results obtained by Özekici and Parlar (1999) are valid in in�nite period

so that state-dependent (s; S) policy is optimal. But, as in single and multiple planning

periods, s and S depend on both current observed state and information vector. However,

they are independent of number of the current period that we are planning for; therefore,

they are the same in all periods with the same information vector and observed state.

Moreover, we show that multi-period optimal cost function converges to the in�nite-period

optimal cost as the length of planning period gets longer.

By Theorem 19, we show that state-dependent (s; S) policy is still optimal in in�nite-

horizon for inventory problems with random availability and �xed ordering cost in a partially
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observed random environment. Our results agree with those obtained by Sethi and Cheng

(1997). They show that state and time dependent (s; S) policy is optimal in in�nite-

horizon for inventory problems with available supplier having in�nite capacity in a random

environment where all costs depend on both environmental state and time. However, in

our model, optimal policy is independent of time since we assume that costs, availability

probability and demand distribution are only environment-dependent (not time dependent).

Our model can be extended by considering time-dependence as well. But, this extension is

not so trivial as in the multi-period case. In this case, extra attention must be paid since

multi-period cost function may not converge due to time-dependence.

4.7 Inventory models with �nite capacity and random yield

In this section, we consider a discrete time, single product, single location, periodic-review

inventory model with �nite production capacity and random proportional yield where the

demand process, supply process and all cost parameters are modulated by a partially-

observed environment. As in Section 3.1, we assume that the inventory system is composed

of a retailer, a producer and a transporter. However, we assume that the producer has

a �nite or �xed capacity; moreover, the transporter can deliver a random proportion of

produced quantity. And we assume as in Section 3.1 that there is a random environment in

which demand, supply and all cost parameters depend. Markov modulated demand, supply

and costs are analyzed by many researchers, like Özekici and Parlar (1999), Erdem and

Özekici (2002), and Gallego and Hu (2004), among many others. We analyze exactly the

same inventory problem in Gallego and Hu (2004); however, our main contribution is that

the Markov modulated environment is not fully observed, it is only partially observed.

The remainder of this section is organized as follow. In Section 4.7.1, we introduce our

notation and the basic model, and state our assumptions. In Section 4.7.2, we analyze the

single-period problem. Section 4.7.3 focuses on the multi-period problem. In Section 4.7.4,

we study the in�nite-period problem.
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4.7.1 Models and preliminaries

We consider a single product inventory system which is inspected periodically over a plan-

ning horizon of length N . As before, we let Z = fZn; n = 0; 1; 2; 3; : : :g and Y = fYn; n =

0; 1; 2; 3; : : :g denote the state of real and observed environmental processes respectively.

Our assumptions and notations regarding Z and Y processes are exactly the same as in

Section 4.1.

As stated in Section 4.1, the state of the real environment Z at any time depends on all

of the past observations of Y . Therefore, we need �Yn to make inferences regarding the true

state of the real environment Z at time n. However, as the number of period gets longer,

dimension of �Yn increases without bounds. Therefore, we use su¢ cient statistics which are

measures that summarize all information embedded in �Yn. From Section 4.4, we know that

the distribution �n of the true state of the environment at time n given all observations

until that time is a su¢ cient statistic for �Yn: In this section, our assumptions and notations

regarding the information vector �n and its transition vector T (�n jj ) are exactly the same

as in Section 4.4. Therefore, interested readers are referred to this section for a detailed

description and analysis.

We letDn denote the total demand in period n andMa denote the conditional cumulative

distribution function of demand when unobserved environment is a: However, unlike in

previous sections, we assume in this section that Ma is increasing (not only nodecreasing).

Furthermore, we assume that there is a maximum �nite inventory capacity A:

Moreover, we let xn and yn denote the inventory level and order-up-to level at time n

respectively. At each time n, the inventory level xn is checked and order yn � xn, if any,

is placed from an outside supplier which is delivered instantaneously. During the period,

demand is realized and unsatis�ed demand is backlogged. We assume that some proportion

of order quantity is lost. We de�ne Un 2 [0; 1] to be the proportion of the produced amount

which is received by the retailer in period n: Clearly supply or amount received by the

retailer at time n is random and equal to Un+1min fA; yn � xng : As for demand process,

we assume that realizations of yield process U = fUn;n � 1g is also observable. However, its

distribution depends on the real environmental process Z: Then, the conditional cumulative
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distribution function of the proportional yield is

Fa(u) = P [Un+1 � u j Zn = a]

and Fa is assumed to be di¤erentiable so that it has probability density function fa. We

de�ne �a = E [Un+1jZn = a] to be the mean value of proportional yield when real environ-

mental state is a and we de�ne ��� =
P
a2F �

a�a for any � 2 D (F) : Here, we assume that

��� > 0 for all �: This assumption requires that �a > 0 for at least an a with �
a > 0: More-

over, this further implies that there is at least one environmental state a with �a > 0 in which

there is positive probability of receiving something such that P [Un+1 = 0 j Zn = a] < 1:

Consider cases where this requirement is not satis�ed so that in all environmental states

a with �a > 0 receiving something is impossible so that P [Un+1 = 0 j Zn = a] = 1 and

�a = 0. Clearly it is illogical to order in such situations. Therefore, this requirement is not

restrictive. In our analysis of this section, we frequently refer to our assumption that ��� > 0

for a given �: This is equivalent to the condition that there is at least one environmental

state a with �a > 0 in which there is positive probability of receiving something: Note that

if �a > 0 for all a; then our assumption is trivially satis�ed for all � since
P
a2F �

a = 1 and

��� =
P
a2F �

a�a > 0: Furthermore, �a � 1 for all a since Un is in [0; 1]. This fact together

with our assumption imply that 0 < ��� � 1 for all �:

In addition, we de�ne

�a (�) =
�a�aP
a2F �

a�a
(4.149)

for all a. Moreover, using (4.149); we denote

M�(z) =
X
a2F

�a (�)Ma (z) (4.150)

to be a mixture of the cumulative distribution functions fMag since
P
a2F �a (�) = 1 for all

�. Finally, our assumptions and notations regarding the cost parameters and the discount

factor are exactly the same as in Section 4.1.

4.7.2 Single-period model

Here we assume that there is only one period to plan for so that N = 1; moreover,

v1 (�1; i1; x1) = 0 for all �1; i1 and x1: Assuming inventory level at the beginning of pe-

riod is x; the initial distribution of true state of environment is �; and observed state of
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environment is i, single-period minimum cost function v0 (�; i; x) satis�es

v0(�; i; x) = min
x�y�x+A

H0 (�; i; x; y) (4.151)

for all �; i and x; where y is the order-up-to level and

H0 (�; i; x; y) =
X
a2F

�aJ0 (i; a; x; y) (4.152)

J0 (i; a; x; y) =

Z 1

0
G0 (i; a; x+ u(y � x)) dFa(u)� cix (4.153)

G0 (i; a; y) = ciy + L (i; a; y) (4.154)

where L (i; a; y) is given in (4.14). Notice that L is a strictly convex function in y since

we assume that demand distribution Ma is increasing. In addition, from (4.153), it is

obvious that J0 is not a function of �. Remember that � is either initially known or can be

determined by (4.40).

The following lemma, which is similar to the one in Gallego and Hu (2004), is useful

in demonstrating the strict convexity of cost functions. The proof can be conducted as in

Gallego and Hu (2004) by using the fact that function � is strictly convex in this case. If e

and y are column vectors, then e0y is the inner product of these vectors.

Lemma 20 Let � : R �! R be strictly convex, then for any constant vector e 2 Rn and

any scalar d;  (y) = � (e0y � d) : Rn �! R is also strictly convex.

Moreover, we use the following lemma to prove the convexity of optimal cost function.

Therefore, we state and prove it here.

Lemma 21 Assume that g is a function of x and u: Then,"X
a2F

�a
Z 1

0
uL00 (i; a; g (x; u)) dFa(u)

#2
�

"X
a2F

�a
Z 1

0
L00 (i; a; g (x; u)) dFa(u)

#

�
"X
a2F

�a
Z 1

0
u2

�L00 (i; a; g (x; u)) dFa(u)
#

(4.155)

for all �; i and x:
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Proof. First of all, notice that dFa(u) = fa (u) du for all a since we assume that Fa is

di¤erentiable: It is clear thatX
a2F

�a
Z 1

0
ukL00 (i; a; g (x; u)) fa(u)du =

Z 1

0
uk

 X
a2F

�aL00 (i; a; g (x; u)) fa(u)

!
du:

for all �; i; x and integer k � 0. Then, using this fact for k 2 f0; 1; 2g ; condition (4.155)

becomes"Z 1

0
u

�X
a2F

�aL00 (i; a; g (x; u)) fa(u)

�
du

#2
�

"Z 1

0

�X
a2F

�aL00 (i; a; g (x; u)) fa(u)

�
du

#

�
"Z 1

0
u2
�X
a2F

�a

�L00 (i; a; g (x; u)) fa(u)
�
du

#
: (4.156)

Moreover, for any two integrable nonnegative functions h and t, Cauchy-Schwarz inequality

implies that �Z b

a
h (u) t (u) du

�2
�
Z b

a
h2 (u) du

Z b

a
t2 (u) du: (4.157)

Then, after substituting h (u) =
hP

a2F �
aL00 (i; a; g (x; u)) fa(u)

i1=2
and t (u) = uh (u) in

(4.157); we get (4.156). As a result, condition (4.155) is satis�ed.

Expected cost in a single period is the sum of expected purchase cost, and expected

holding and shortage costs. Let y0 (�; i; x) denote the optimal order-up-to level for the

minimization problem in (4.151):

Theorem 22 The optimal ordering policy for the single-period model is a state-dependent

modi�ed in�ated base-stock policy

y0 (�; i; x) =

8>>><>>>:
x+A x < s�;i0

y�;i0 (x) s�;i0 � x < S�;i0

x x � S�;i0

(4.158)

where y�;i0 (x) ; S�;i0 and s�;i0 are unique y values which satisfyX
a2F

�a
Z 1

0
u
�
ci + L

0 (i; a; x+ u(y � x))
�
dFa(u) = 0X

a2F
�a�a

�
ci + L

0 (i; a; y)
�
= 0

X
a2F

�a
Z 1

0
u
�
ci + L

0 (i; a; y + uA)
�
dFa(u) = 0
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for all � and i respectively: Moreover; y�;i0 (x) is nonincreasing in x with

limx#�1 y�;i0 (x) =1 for all � and i: In addition, x � y�;i0 (x) � x+A for all x 2
h
s�;i0 ; S�;i0

�
with y�;i0

�
s�;i0

�
= s�;i0 +A and y�;i0

�
S�;i0

�
= S�;i0 : The cost function H0 (�; i; x; y) is strictly

convex in (x; y) for all � and i; and the optimal cost is

v0 (�; i; x) =

8>>><>>>:
P
a2F �

a
R 1
0 (ciuA+ L (i; a; x+ uA)) dFa(u) x < s�;i0

H0

�
�; i; x; y�;i0 (x)

�
s�;i0 � x < S�;i0P

a2F �
aL (i; a; x) x � S�;i0

(4.159)

for all �; i and x: Furthermore, v0(�; i; x) is convex in x; limx"1 v00 (�; i; x) = hi and

limx#�1 v00 (�; i; x) = �pi for all � and i:

Proof. We need to �nd x � y � x + A minimizing H0. Note that G0 (i; a; y) is strictly

convex in y for all i and a since L is strictly convex. Then, it follows by Lemma 20

that G0 (i; a; x+ u(y � x)) is also strictly convex in (x; y) for all i; a and u 2 [0; 1] : This

clearly implies that J0 is strictly convex in (x; y) because strict convexity is preserved by

expectation. Finally, H0 is strictly convex in (x; y) since sum of strictly convex functions

is also strictly convex. In addition, we denote partial derivative of H0 with respect to y by

H 0
0. Then,

H 0
0 (�; i; x; y) =

X
a2F

�a
Z 1

0
u
�
ci + L

0 (i; a; x+ u(y � x))
�
dFa(u) (4.160)

for all �; i; x and y:

We de�ne y�;i0 (x) to be the y value minimizing H0 (�; i; x; y) without the constraint

x � y � x+A: By the �rst order optimality condition, y�;i0 (x) satis�es

X
a2F

�a
Z 1

0
u
�
ci + L

0
�
i; a; x+ u(y�;i0 (x)� x)

��
dFa(u) = 0 (4.161)

for all �; i and x: Note that H 0
0 is increasing, limy#�1H 0

0 (�; i; x; y) = (ci � pi) ��� < 0

and limy"1H 0
0 (�; i; x; y) = (ci + hi) ��� > 0. This together with the fact that H0 is

strictly convex imply that y�;i0 (x) satisfying (4.161) is �nite and unique. We now show

that limx#�1 y�;i0 (x) = 1: Suppose that limx#�1 y�;i0 (x) < 1: Then, left-hand side of

(4.161) goes to (ci � pi) ���; which is strictly less than 0 since ��� > 0 by our assumption, as

x goes to �1: This is a contradiction and limx#�1 y�;i0 (x) =1 for all � and i:
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Next, we show that y�;i0 (x) is nonincreasing in x: Suppose that there exist x1 < x2 such

that H 0
0

�
�; i; x1; y

�;i
0 (x1)

�
= H 0

0

�
�; i; x2; y

�;i
0 (x2)

�
= 0 with y�;i0 (x1) < y�;i0 (x2) : This

clearly implies that x1 + u(y�;i0 (x1) � x1) < x2 + u(y�;i0 (x2) � x2) for all u 2 [0; 1] : This

further implies that L0
�
i; a; x2 + u(y

�;i
0 (x2)� x2)

�
> L0

�
i; a; x1 + u(y

�;i
0 (x1)� x1)

�
for all

i and a since L0 is increasing: Then, using (4.160) and our assumption that ��� > 0, it follows

that

H 0
0

�
�; i; x2; y

�;i
0 (x2)

�
> H 0

0

�
�; i; x1; y

�;i
0 (x1)

�
= 0

for all � and i: However, notice that this is a clear contradiction to the de�nition of y�;i0 (x2) :

In other words, condition in (4.161) is not satis�ed for
�
x2; y

�;i
0 (x2)

�
pair. Therefore, y�;i0 (x)

is nonincreasing in x: Furthermore, after di¤erentiating (4.161) with respect to x and making

some simpli�cations, we get

@y�;i0 (x)

@x
=

P
a2F �

a
R 1
0

�
u2 � u

�
L00
�
i; a; x+ u(y�;i0 (x)� x)

�
dFa(u)P

a2F �
a
R 1
0 u

2L00
�
i; a; x+ u(y�;i0 (x)� x)

�
dFa(u)

� 0 (4.162)

for all � and i: Note that the denominator in (4.162) is always positive since L00 > 0 and,

by our assumption, ��� > 0. In addition, the numerator of the same equation is nonpositive

since u2�u � 0 for u 2 [0; 1] and L00 > 0: As a result, inequality in (4.162) is valid. Note that

(4.162) is, in general, not a constant; moreover, it implies also that y�;i0 (x) is nonincreasing

in x: Then, it follows that y�;i0 (x) has the structure in Figure 4.2.

Notice that y�;i0 (x) satisfying (4.161) is not necessarily a feasible solution for the problem

in (4.151) since it may also be less than x or greater than x + A. However, as shown in

Figure 4.2, a feasible order-up-to level is bounded above by the line y = x + A and below

by line y = x. Suppose that S�;i0 is the smallest inventory level at which it is optimal not

to order so that y�;i0
�
S�;i0

�
� S�;i0 = 0. Then, for x = S�;i0 ; (4.161) becomesX
a2F

�a�a

�
ci + L

0
�
i; a; S�;i0

��
= 0 (4.163)

for all � and i. In addition, (4.163) implies the followingX
a2F

�a�aL
0
�
i; a; S�;i0

�
= �ci��� < 0: (4.164)

Note that, by our assumption, �a > 0 for at least one a with �a > 0; moreover, L0 is

increasing in y; limy"1 L0 (i; a; y) = ci and limy#�1 L0 (i; a; y) = �pi for all i and a: Hence,



Chapter 4: Inventory Models with Imperfect Information 117
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Figure 4.2: State-dependent modi�ed in�ated base-stock policy

(4.164) further implies that S�;i0 is �nite and unique. Moreover, uniqueness of S�;i0 is also

obvious from Figure 4.2 since line y = x can cross the curve y�;i0 (x), which is nonincreasing,

at most at one point. Next, let us assume that x = s�;i0 is the largest inventory level at which

it is optimal to order as much as the �nite capacity A, as a result, y�;i0
�
s�;i0

�
= s�;i0 + A:

Using (4.161), s�;i0 satis�es

X
a2F

�a
Z 1

0
u
�
ci + L

0
�
i; a; s�;i0 + uA

��
dFa(u) = 0 (4.165)

for all � and i. Then, from (4.165), it follows that

X
a2F

�a
Z 1

0
uL0

�
i; a; s�;i0 + uA

�
dFa(u) = �ci��� < 0: (4.166)

Notice that ��� > 0 by our assumption; moreover, L
0 is increasing in y; limy"1 L0 (i; a; y) =

ci and limy#�1 L0 (i; a; y) = �pi for all i and a: Thus, s�;i0 is also �nite and unique as S�;i0 :

Similarly, uniqueness of s�;i0 can easily be veri�ed from Figure 4.2 since line y = x+ A can

intersect the curve y�;i0 (x) at most at one point. Notice that s�;i0 � S�;i0 since y�;i0 (x) is

nonincreasing in x: Now consider the three cases: x < s�;i0 ; s�;i0 � x < S�;i0 and x � S�;i0 :

(i) x < s�;i0 : Note that y�;i0 (x) is nonincreasing in x; therefore, y�;i0 (x) � y�;i0 (s
�;i
0 ) =

s�;i0 +A for all x < s�;i0 : It follows that y�;i0 (x) > x+A for all x < s�;i0 : Moreover, we
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know also that H0 is strictly convex in y and y
�;i
0 (x) is the unique minimizer of this

strictly convex function. Then, this clearly implies that H0 is decreasing for values of

y in [x; y�;i0 (x)): If the production capacity was in�nite, ordering up to y�;i0 (x) would

be optimal. However, the order quantity is limited by A and ordering up to y�;i0 (x)

requires an order of y�;i0 (x) � x > A. In this case, ordering as much as the �xed

capacity A is optimal since H0 (�; i; x; y) is decreasing for values of y in [x; x+A) and

x+ A is the minimum that can be attained. Therefore, optimal order-up-to level for

all x < s�;i0 is y0 (�; i; x) = x+A:

(ii) s�;i0 � x < S�;i0 : Note that y�;i0 (x) is nonincreasing in x; therefore, s�;i0 + A �

y�;i0 (x) � S�;i0 for values of x in [s�;i0 ; S�;i0 ): Then it follows that x � y�;i0 (x) � x+ A

for s�;i0 � x < S�;i0 . This further implies that the global minimum y�;i0 (x) is attainable.

Therefore, optimal order-up-to level is y0 (�; i; x) = y�;i0 (x) for values of x in [s�;i0 ; S�;i0 ):

(iii) x � S�;i0 : Note that y�;i0 (x) � y�;i0 (S
�;i
0 ) = S�;i0 since y�;i0 (x) is nonincreasing in x:

This clearly implies that y�;i0 (x) � x: Ordering a negative amount is not possible;

therefore, it is not possible to attain the global minimum y�;i0 (x) if x � S�;i0 : However,

strict convexity of H0 implies that it is increasing for all y 2 [x;1) : As a result,

optimal policy is not to order if inventory level is greater than or equal to S�;i0 so that

y0 (�; i; x) = x:

In conclusion, the optimal ordering policy is given by y0 (�; i; x) in (4.158) as shown in

Figure 4.2. Notice that y0 (�; i; x) = y�;i0 (x) for all x in [s�;i0 ; S�;i0 ) and y
�;i
0 (x) is nonincreas-

ing in x: Moreover, y�;i0 (S
�;i
0 ) = S�;i0 by de�nition. Then, it follows that y0 (�; i; x) � S�;i0

for all x in [s�;i0 ; S�;i0 ):

The minimum cost function corresponding to the optimal policy in (4.158) is

v0 (�; i; x) =

8>>><>>>:
H0 (�; i; x; x+A) x < s�;i0

H0

�
�; i; x; y�;i0 (x)

�
s�;i0 � x < S�;i0

H0 (�; i; x; x) x � S�;i0

which leads to (4.159) since

H0 (�; i; x; x+A) =
X
a2F

�a
Z 1

0
(ciuA+ L (i; a; x+ uA)) dFa(u)
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and

H0 (�; i; x; x) =
X
a2F

�aL (i; a; x)

for all �; i and x.

Now, we prove that v0 (�; i; x) is convex in x. First, we show that v0 (�; i; x) is convex

for x < s�;i0 ; s�;i0 � x < S�;i0 and x � S�;i0 separately. Then, we show that convexity is not

violated at x = s�;i0 and x = S�;i0 :

(i) x < s�;i0 : Using (4.159), �rst and second derivatives of v0(�; i; x) are

v00(�; i; x) =
X
a2F

�a
Z 1

0
L0(i; a; x+ uA)dFa(u) (4.167)

v000 (�; i; x) =
X
a2F

�a
Z 1

0
L00(i; a; x+ uA)dFa(u) (4.168)

for all �; i and x. Notice that v000 (�; i; x) in (4.168) is always positive since L is a

strictly convex function. This implies that, for x < s�;i0 ; v0 (�; i; x) is convex in x for

all � and i:

(ii) s�;i0 � x < S�;i0 : Using (4.152) and (4.159), the �rst derivative of v0(�; i; x) is

v00(�; i; x) =
X
a2F

�a
Z 1

0

�
1 + u

�@y�;i0 (x)

@x
� 1
��

�
�
ci + L

0
�
i; a; x+ u

�
y�;i0 (x)� x

���
dFa(u)� ci

=
�@y�;i0 (x)

@x
� 1
�X
a2F

�a
Z 1

0
u
�
ci + L

0(i; a; x+ u
�
y�;i0 (x)� x

��
dFa(u)

+
X
a2F

�a
Z 1

0
L0(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u)

=
X
a2F

�a
Z 1

0
L0(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u) (4.169)

for all �; i and x. We get the second equality in (4.169) after we make some math-

ematical simpli�cations. Then, using (4.161), we get the third equality in the same
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equation. Moreover, after di¤erentiating v00 (�; i; x) in (4.169) one more time, we get

v000 (�; i; x) =
X
a2F

�a
Z 1

0
L00(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u)

+
�@y�;i0 (x)

@x
� 1
�X
a2F

�a
Z 1

0
uL00(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u)

=

(X
a2F

�a
Z 1

0
L00(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u)

�
X
a2F

�a
Z 1

0
u2L00(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u)

�
�X
a2F

�a
Z 1

0
uL00(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u)

�2)
.�X

a2F
�a
Z 1

0
u2L00(i; a; x+ u

�
y�;i0 (x)� x

�
dFa(u)

�
(4.170)

� 0

for all �; i and x. Note that the second equality in (4.170) is gathered by substituting

(4.162) in the �rst equality of the same equation. Notice also that the denominator

of (4.170) is always positive since L00 > 0 and, by our assumption, ��� > 0. In

addition, by Lemma 21, the numerator of (4.170) is also nonnegative. Therefore, for

s�;i0 � x < S�;i0 ; v0 (�; i; x) is convex in x for all � and i:

(iii) x � S�;i0 : Using (4.159), �rst and second derivatives of v0(�; i; x) are

v00(�; i; x) =
X
a2F

�aL0(i; a; x) (4.171)

v000 (�; i; x) =
X
a2F

�aL00(i; a; x) (4.172)

for all �; i and x. It is clear that v000 (�; i; x) is always positive since L is strictly convex.

Then, it follows that, for x � S�;i0 ; v0 (�; i; x) is convex in x for all � and i:

(iv) x = s�;i0 : Here, we show that convexity of v0(�; i; x) is not violated at x = s�;i0 . For

v0 to be convex at x = s�;i0 ; the following conditions must hold:

lim
x"s�;i0

v00 (�; i; x) � lim
x#s�;i0

v00 (�; i; x) (4.173)
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and v0 must be continuous at x = s�;i0 : Firstly, by (4.167) and (4.169),

lim
x"s�;i0

v00 (�; i; x) = lim
x#s�;i0

v00 (�; i; x) =
X
a2F

�a
Z 1

0
L0(i; a; s�;i0 + uA)dFa(u)

for all � and i so that condition (4.173) is satis�ed. Secondly, by (4.159),

lim
x"s�;i0

v0 (�; i; x) = lim
x#s�;i0

v0 (�; i; x) =
X
a2F

�a
Z 1

0

�
ciuA+ L

�
i; a; s�;i0 + uA

��
dFa(u)

for all � and i; as a result, v0 (�; i; x) is continuous at x = s�;i0 : Then, it follows that

v0 (�; i; x) is convex at x = s�;i0 :

(v) x = S�;i0 :We now show that v0(�; i; x) is also convex at x = S�;i0 . Similarly, for v0 to

be convex at x = S�;i0 condition (4.173) must also be satis�ed at x = S�;i0 ; moreover,

v0 must be continuous at at x = S�;i0 : Note by (4.169) and (4.171) that

lim
x"S�;i0

v00 (�; i; x) = lim
x#S�;i0

v00 (�; i; x) =
X
a2F

�aL0(i; a; S�;i0 )

for all � and i so that condition (4.173) is satis�ed at x = S�;i0 : Moreover, by (4.159),

lim
x"S�;i0

v0 (�; i; x) = lim
x#S�;i0

v0 (�; i; x) =
X
a2F

�aL(i; a; S�;i0 )

for all � and i; therefore, v0 is continuous at x = S�;i0 : Hence, v0 (�; i; x) is convex at

x = S�;i0 for all � and i:

Finally, using (4.15), (4.167) and MCT;

lim
x#�1

v00 (�; i; x) =
X
a2F

�a lim
x#�1

L0 (i; a; x) = �pi

for all � and i: Similarly, using (4.15), (4.171) and MCT,

lim
x"1

v00 (�; i; x) = hi

for all � and i: This completes our proof.

Given �; i and x; y0 (�; i; x)�x is the optimal amount of inventory to order and y0 (�; i; x)

is the optimal order-up-to level. Federgruen and Zipkin (1986 b) studied �nite capacity

problems in stationary environment for the �rst time. Their results are similar to ours
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except that optimal order-up-to level in our policy depends on inventory level, information

vector and state of the observed environment as well. There, the optimal policy (modi�ed

base-stock) orders a positive amount if the initial inventory level is less than a critical level

S and no order is given otherwise. Moreover, there is another critical level s < S over which

optimal order-up-to level is constant and equal to S, and below which it is optimal to order

as much as the �nite capacity A: Since they do not assume proportional yield, the optimal

order-up-to level is independent of initial inventory level.

Later, Henig and Gerchak (1990) study inventory problems with random proportional

yield in stationary environment and our results are similar to theirs in some respect. They

show that it is optimal to order only if the inventory level is below a critical level S and

it is optimal not to order otherwise. In addition, their optimal order-up-to level decreases

with current inventory level and always stays above S. Since they did not assume �nite

capacity, their ordering quantity is arbitrary. On the other hand, we assume �nite capacity

and partially observed random environment. Hence, the policy has a second critical level

and all critical levels depend on inventory level, information vector and state of observed

environment.

Recently, Gallego and Hu (2004) show that the optimal policy is a combination of both

modi�ed and in�ated base-stock policies for problems with �nite capacity and random

yield in a fully observed random environment. They prefer to use the term �modi�ed

in�ated�base-stock for this type of policies. Speci�cally, they show that there is an inventory

level S (above) below which it is optimal (not) to order. They also show that there is

another inventory level s < S below which order quantity is constant and equal to the

�nite capacity. Furthermore, when the inventory level is between s and S; order-up-to level

decreases with inventory level and is above S: Finally, they show that both s and S depend

on the environmental state. By Theorem 22, we get similar results as Gallego and Hu

(2004). However, all critical levels and order-up-to level depend also on current information

vector � since we assume partially observed random environment.

Moreover, by Theorem 22, we show that S�;i0 satis�es (4.163). Then, using (4.15),

(4.149), (4.150) and (4.163), it follows that S�;i0 satis�es

M�

�
S�;i0

�
=
X
a2F

�a (�)Ma

�
S�;i0

�
=
pi � ci
pi + hi

(4.174)
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Figure 4.3: State-dependent modi�ed base-stock policy

for all � and i. From (4.149) and (4.174), it is obvious that S�;i0 depends on the mean of

proportional yield U: In addition, we show by (4.162) that the optimal order-up-to level is

decreasing in x for all �; i and x 2 [s�;i0 ; S�;i0 ). This implies that the optimal policy is not

a modi�ed base-stock policy but a modi�ed in�ated base-stock policy. However, if U = 1

with probability 1 in all environments; then (4.162) becomes 0 so that optimal order-up-to

level is independent of inventory level when x is in [s�;i0 ; S�;i0 ): As a result, optimal ordering

policy is modi�ed base-stock and has the form shown in Figure 4.3. On the other hand,

if we assume that there is no capacity limitation so that A = 1, then the line y = x + A

in Figure 4.2; which is bounding y�;i0 (x) from above, will cross x and y axes at minus and

plus in�nity respectively. As a result, optimal policy has the form as shown in Figure 4.4.

In this type of policy, it will always be optimal to order if the inventory level is below S�;i0

and the optimal order-up-to level is y�;i0 (x) : Optimal policy structure for inventory models

with random proportional yield is, in general, in this form and called by Zipkin (2000) as

in�ated base stock policy.

4.7.3 Multi-period model

In the case with multiple periods, there are N periods to plan for and the dynamic pro-

gramming equation involves the sum of single period costs in the current period plus the
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Figure 4.4: State-dependent in�ated base-stock policy

expected optimal discounted costs from the next period until the end of the planning hori-

zon. We assume that vN (�N ; iN ; xN ) = 0 for all �N ; iN and xN . Moreover, we suppose

that inventory level is x, state of the environment is i; distribution of true state of the

environment is � at time n: The minimum cost satis�es

vn(�; i; x) = min
x�y�x+A

Hn (�; i; x; y) (4.175)

for all �; i and x; where y is the order-up-to level and

Hn (�; i; x; y) =
X
a2F

�aJn (�; i; a; x; y) (4.176)

Jn (�; i; a; x; y) =

Z 1

0
Gn (�; i; a; x+ u(y � x)) dFa(u)� cix (4.177)

Gn (�; i; a; y) = ciy + L(i; a; y)

+�
X
j2E

	n (a; j)E
a
D [vn+1 (T (� jj ) ; j; y �D)] (4.178)

with L(i; a; y) given in (4.14). Here, EaD again denotes the notation that expectation is

taken with respect to the random variable D with distribution Ma. We use G0n and G
00
n to
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denote �rst and second derivatives of Gn with respect to y respectively: Then,

G0n (�; i; a; y) = ci + L
0(i; a; y) + �

X
j2E

	n (a; j)E
a
D

�
v0n+1 (T (� jj ) ; j; y �D)

�
(4.179)

G00n (�; i; a; y) = L00(i; a; y) + �
X
j2E

	n (a; j)E
a
D

�
v00n+1 (T (� jj ) ; j; y �D)

�
(4.180)

for all �; i; a and y:

As Lemma 21, we use the following lemma to prove the convexity of optimal cost function

in multi-period. However, we skip the proof since it follows exactly the same line of reasoning

as the proof of Lemma 21.

Lemma 23 Assume that g is a function of x and u: Then,"X
a2F

�a
Z 1

0
uG00n (�; i; a; g (x; u)) dFa(u)

#2
�

"X
a2F

�a
Z 1

0
G00n (�; i; a; g (x; u)) dFa(u)

#

�
"X
a2F

�a
Z 1

0
u2G00n (�; i; a; g (x; u)) dFa(u)

#
for all �; i and x:

Let yn (�; i; x) denote the optimal order-up-to level of the minimization problem in

(4.175) given �; i and x: Finally, we let v0n (�; i; x) denote the derivative of vn(�; i; x) with

respect to x; and assume that h and p are holding cost and shortage cost vectors respec-

tively. In addition, we recall that R�n;m((�; i) ; j) =
Pm�1
k=0 �

kP kn ((�; i) ; j) for all �; i and j

and that, for a nonnegative function g, R�n;mg(�; i) is de�ned as in (4.46).

Theorem 24 The optimal ordering policy for N -period model is a state-dependent modi�ed

in�ated base-stock policy

yn (�; i; x) =

8>>><>>>:
x+A x < s�;in

y�;in (x) s�;in � x < S�;in

x x � S�;in

(4.181)

where y�;in (x) ; S�;in and s�;in are unique y values which satisfyX
a2F

�a
Z 1

0
uG0n (�; i; a; x+ u(y � x)) dFa(u) = 0X

a2F
�a�aG

0
n (�; i; a; y) = 0

X
a2F

�a
Z 1

0
uG0n (�; i; a; y + uA) dFa(u) = 0
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for all � and i respectively. Moreover; y�;in (x) is nonincreasing in x with

limx#�1 y�;in (x) =1 for all � and i: In addition, x � y�;in (x) � x+A for all x 2
h
s�;in ; S�;in

�
with y�;in

�
s�;in
�
= s�;in +A and y�;in

�
S�;in

�
= S�;in : The cost function Hn (�; i; x; y) is strictly

convex in (x; y) for all � and i; and the optimal cost is

vn (�; i; x) =

8>>><>>>:
P
a2F �

a
R 1
0 Gn (�; i; a; x+ uA) dFa(u)� cix x < s�;in

Hn

�
�; i; x; y�;in (x)

�
s�;in � x < S�;inP

a2F �
aGn (�; i; a; x)� cix x � S�;in :

(4.182)

for all �; i and x: Furthermore, vn(�; i; x) is convex in x, limx"1 v0n (�; i; x) = R�n;N�nh(�; i)

and limx#�1 v0n (�; i; x) = �R�n;N�np(�; i) for all � and i:

Proof. The proof proceeds inductively. By Theorem 22, we know that Theorem 24

is satis�ed for n = N � 1. Assume that the induction hypothesis is valid for times

n + 1; n + 2; :::; N � 1 so that vn+1 (�; i; x) is convex in x for all � and i; moreover,

limx"1 v0n+1 (�; j; x) = R�n+1;N�n�1h(�; j) and limx#�1 v0n+1 (�; j; x) = �R�n+1;N�n�1p(�; j)

for all � and j: Then, using (4.179), MCT and the induction hypothesis; we get

lim
y"1

G0n (�; i; a; y) = ci + hi + �
X
j2E

	n (a; j)R
�
n+1;N�n�1h(T (�j j) ; j) (4.183)

> 0

lim
y#�1

G0n (�; i; a; y) = ci � pi � �
X
j2E

	n (a; j)R
�
n+1;N�n�1p(T (�j j) ; j) (4.184)

< 0

for all i and a: We now show that Theorem 24 also holds for time n.

Note that Gn (�; i; a; y) is strictly convex in y for all �; i and a since L is strictly convex

and vn+1 is convex. Then it follows from Lemma 20 that Gn (�; i; a; x+ u(y � x)) is strictly

convex in (x; y) for all �; i; a and u 2 [0; 1] : As a result, Jn is also strictly convex in (x; y)

because expectation preserves the strict convexity. Finally, it follows that Hn is strictly

convex since sum of strictly convex functions is also strictly convex. In addition, we use H 0
n

to denote partial derivative of Hn with respect to y. Hence,

H 0
n (�; i; x; y) =

X
a2F

�a
Z 1

0
uG0n (�; i; a; x+ u(y � x)) dFa(u) (4.185)

for all �; i; x and y:



Chapter 4: Inventory Models with Imperfect Information 127

Suppose that y�;in (x) is the y value minimizing Hn without the constraint x � y � x+A:

Because Hn is strictly convex in y; using (4.185), y
�;i
n (x) satis�es

X
a2F

�a
Z 1

0
uG0n

�
�; i; a; x+ u(y�;in (x)� x)

�
dFa(u) = 0 (4.186)

for a given �; i and x: Using (4.185), induction hypothesis and (4.184), we get

lim
y#�1

H 0
n (�; i; x; y) = (ci � pi) ��� � �

X
j2E

X
a2F

�a�a	n (a; j)R
�
n+1;N�n�1p(T (� jj ) ; j) < 0

for all �; i and x: Similarly, using (4.185), induction hypothesis and (4.183), we get

lim
y"1

H 0
n (�; i; x; y) = (ci + hi) ��� + �

X
j2E

X
a2F

�a�a	n (a; j)R
�
n+1;N�n�1h(T (� jj ) ; j) > 0

for all �; i and x: Then, it follows that there exists a �nite y�;in (x) satisfying (4.186).

Furthermore, strict convexity of Hn implies that y
�;i
n (x) is unique: We now show that

limx#�1 y�;in (x) =1: Suppose that limx#�1 y�;in (x) <1: Then, using (4.185) and MCT,

lim
x#�1

H 0
n

�
�; i; x; y�;in (x)

�
=

X
a2F

�a
Z 1

0
u lim
x#�1

G0n
�
�; i; a; x+ u(y�;in (x)� x)

�
dFa(u)

= (ci � pi) ��� � �
X
j2E

X
a2F

�a�a	n (a; j)R
�p(T (�j j) ; j) < 0

for all � and i: The �rst equality is gathered by MCT. If we assume that limx#�1 y�;in (x) <

1, then limx#�1
h
x+ u(y�;in (x)� x)

i
= �1 for all �; i and u 2 [0; 1] : Then, using (4.184),

we get the second equality. However, we assume that pi > ci for all i: This implies that

limx#�1H 0
n

�
�; i; x; y�;in (x)

�
< 0: But, this is a clear contradiction and limx#�1 y�;in (x) =1

for all � and i:

Next, we show that y�;in (x) is nonincreasing in x: Suppose that there exist x1 < x2 such

that H 0
n

�
�; i; x1; y

�;i
n (x1)

�
= H 0

n

�
�; i; x2; y

�;i
n (x2)

�
= 0 with y�;in (x1) < y�;in (x2) : This

clearly implies that x1 + u(y�;in (x1) � x1) < x2 + u(y�;in (x2) � x2) for all u 2 [0; 1] : This

further implies that G0n
�
�; i; a; x2 + u(y

�;i
n (x2)� x2)

�
> G0n

�
�; i; a; x1 + u(y

�;i
n (x1)� x1)

�
for all �; i and a since L0 is increasing and v0n+1 is nondecreasing. Then, using (4.185) and

our assumption that ��� > 0, it follows that

H 0
n

�
�; i; x2; y

�;i
n (x2)

�
> H 0

n

�
�; i; x1; y

�;i
n (x1)

�
= 0
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for all � and i: However, notice that this is a clear contradiction to the de�nition of y�;in (x2) :

Therefore, y�;in (x) is nonincreasing in x: Furthermore, after we di¤erentiate (4.186) with

respect to x, we get

@y�;in (x)

@x
=

P
a2F �

a
R 1
0

�
u2 � u

�
G00n

�
�; i; a; x+ u(y�;in (x)� x)

�
dFa(u)P

a2F �
a
R 1
0 u

2G00n

�
�; i; a; x+ u(y�;in (x)� x)

�
dFa(u)

� 0: (4.187)

Notice that denominator in (4.187) is always positive since G00n > 0 and, by our assumption,

��� > 0. On the other hand, numerator of the same equation is nonpositive since u
2 � u �

0 for u 2 [0; 1] and G00 > 0: As a result, inequality in (4.162) is valid and y�;in (x) is

nonincreasing in x: Therefore, y�;in (x) has a similar structure as y�;i0 (x) in Figure 4.2.

Obviously y�;in (x) satisfying (4.186) may not be a feasible solution for the problem in

(4.175). But, a feasible order-up-to level must satisfy x � y � x+A: If S�;in is the smallest

inventory level at which it is optimal not to order, then, for x = S�;in ; (4.186) becomesX
a2F

�a�aG
0
n

�
�; i; a; S�;in

�
= 0: (4.188)

Note that, by our assumption, �a > 0 for at least one a with �a > 0; moreover, G0n is

increasing in y; and limy"1G0n (�; i; a; y) > 0 and limy#�1G0n (�; i; a; y) < 0 by (4.183) and

(4.184). Hence, S�;in satisfying (4.188) is �nite and unique. We next assume that s�;in is the

largest inventory level at which ordering as much as �nite capacity A is optimal so that

y�;in
�
s�;in
�
= s�;in +A. Then, s�;in satis�es

X
a2F

�a
Z 1

0
uG0n

�
�; i; a; s�;in + uA

�
dFa(u) = 0 (4.189)

for all �; i and a: Using exactly the same line of reasoning that we did for S�;in , we can

show that s�;in is also �nite and unique: Note that y�;in (x) is nonincreasing in x: This clearly

implies that s�;in � S�;in for all � and i: Now, as in single-period model, we consider the three

cases: x < s�;in ; s�;in � x < S�;in and x � S�;in .

(i) x < s�;in : Note that y�;in (x) > y�;in (s
�;i
n ) = s�;in + A for all x < s�;in since y�;in (x) is

nonincreasing in x: As a result, y�;in (x) > x+A for all x < s�;in : Since the production

capacity is limited by A, ordering up to y�;in (x) is not possible when x < s�;in . In

addition, Hn is a strictly convex function whose unique minimizer is y
�;i
n (x) ; therefore,
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it is decreasing for values of y in [x; y�;in (x)): Hence, ordering as much as the �xed

capacity A is optimal for x < s�;in . Thus, optimal order-up-to level for all x < s�;in is

yn (�; i; x) = x+A:

(ii) s�;in � x < S�;in : Note that y�;in (x) is nonincreasing in x; therefore, s�;in +A � y�;in (x) >

S�;in for values of x in [s�;in ; S�;in ): This implies that x < y�;in (x) � x + A because x

is in [s�;in ; S�;in ). Then it follows that the global minimum y�;in (x) is attainable. As a

result, optimal order-up-to level is yn (�; i; x) = y�;in (x) :

(iii) x � S�;in : Note that y�;in (x) � S�;in since y�;in (x) is nonincreasing in x: This clearly

implies that y�;in (x) � x because x is greater than or equal to S�;in : As a result, global

minimum y�;in (x) is not attainable since ordering a negative amount is not possible.

However, Hn is increasing for all y 2 [x;1) since it is strictly convex and y�;in (x) � x:

Therefore, it is optimal not to order so that yn (�; i; x) = x if the inventory level is

greater than or equal to S�;in :

As a result, yn (�; i; x) in (4.181) is the optimal ordering policy and has a similar form

as y0 (�; i; x) in Figure 4.2. Notice that yn (�; i; x) = y�;in (x) for all x in [s�;in ; S�;in ) and

y�;in (x) is nonincreasing in x; moreover, y�;in (S
�;i
n ) = S�;in by de�nition. Then, it follows that

yn (�; i; x) � S�;in for all x in [s�;in ; S�;in ):

If we apply the optimal policy in (4.181), then the optimal cost becomes

vn (�; i; x) =

8>>><>>>:
Hn (�; i; x; x+A) x < s�;in

Hn

�
�; i; x; y�;in (x)

�
s�;in � x < S�;in

Hn (�; i; x; x) x � S�;in

which leads to (4.182) since

Hn (�; i; x; x+A) =
X
a2F

�a
Z 1

0
Gn (�; i; a; x+ uA) dFa(u)� cix

and

Hn (�; i; x; x) =
X
a2F

�aGn (�; i; a; x)� cix

for all �; i and x where Gn is given in (4.178).
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Now, we prove that vn (�; i; x) is convex in x. First, we show that vn (�; i; x) is convex

for x < s�;in ; s�;in � x < S�;in and x � S�;in separately. Then, we show that convexity is not

violated at x = s�;in and x = S�;in :

(i) x < s�;in : Using (4.182), the �rst and second derivatives of vn(�; i; x) are

v0n(�; i; x) =
X
a2F

�a
Z 1

0
G0n(�; i; a; x+ uA)dFa(u)� ci (4.190)

v00n (�; i; x) =
X
a2F

�a
Z 1

0
G00n(�; i; a; x+ uA)dFa(u) (4.191)

for all �; i and x. Notice that v00n (�; i; x) in (4.191) is always positive since G is a

strictly convex function. This implies that, for x < s�;in ; vn (�; i; x) is convex in x for

all � and i:

(ii) s�;in � x < S�;in : Using (4.176) and (4.182), the �rst derivative of vn(�; i; x) is

v0n(�; i; x) =
�@y�;in (x)

@x
� 1
�X
a2F

�a
Z 1

0
uG0n

�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)

+
X
a2F

�a
Z 1

0
G0n
�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)� ci

=
X
a2F

�a
Z 1

0
G0n
�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)� ci (4.192)

for all �; i and x. After we make some simpli�cations, we get the second equality in

(4.192). Then, using (4.186), we get the third equality in the same equation. Moreover,
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using (4.192), we get

v00n (�; i; x) =
X
a2F

�a
Z 1

0
G00n
�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)

+
�@y�;in (x)

@x
� 1
�X
a2F

�a
Z 1

0
uG00n

�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)

=

(X
a2F

�a
Z 1

0
G00n
�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)

�
X
a2F

�a
Z 1

0
u2G00n

�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)

�
�X
a2F

�a
Z 1

0
uG00n

�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)

�2)
.�X

a2F
�a
Z 1

0
u2G00n

�
�; i; a; x+ u

�
y�;in (x)� x

��
dFa(u)

�
(4.193)

� 0

for all �; i and x. Note that the second equality in (4.193) is gathered by substituting

(4.187) in the �rst equality of the same equation. Clearly the denominator of (4.193)

is always positive since G00n > 0 and, by our assumption, ��� > 0. In addition, by

Lemma 23, the numerator of (4.193) is nonnegative. Therefore, for s�;in � x < S�;in ;

vn (�; i; x) is convex in x for all � and i:

(iii) x � S�;in : Using (4.182), the �rst and second derivatives of vn(�; i; x) are

v0n(�; i; x) =
X
a2F

�aG0n(�; i; a; x)� ci (4.194)

v00n (�; i; x) =
X
a2F

�aG00n(�; i; a; x) (4.195)

for all �; i and x. Notice from (4.195), it is clear that v00n (�; i; x) is always positive

since Gn is a strictly convex function. Then, it follows that, for x � S�;in ; vn (�; i; x)

is convex in x for all � and i:

(iv) x = s�;in : Here, we show that convexity of vn(�; i; x) is not violated at x = s�;in . For

vn to be convex at x = s�;in ; the following conditions must hold:

lim
x"s�;in

v0n (�; i; x) � lim
x#s�;in

v0n (�; i; x) (4.196)
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and vn must be continuous at x = s�;in : Firstly, by (4.190) and (4.192),

lim
x"s�;in

v0n (�; i; x) = lim
x#s�;in

v0n (�; i; x) =
X
a2F

�a
Z 1

0
G0n(�; i; a; s

�;i
n + uA)dFa(u)� ci

for all � and i so that condition (4.173) is satis�ed. Secondly, by (4.182),

lim
x"s�;in

vn (�; i; x) = lim
x#s�;in

vn (�; i; x) =
X
a2F

�a
Z 1

0
Gn(�; i; a; s

�;i
n + uA)dFa(u)� cis�;in

for all � and i; as a result, vn (�; i; x) is continuous at x = s�;in : Then, it follows that

vn (�; i; x) is convex at x = s�;in :

(v) x = S�;in :We now show that vn(�; i; x) is also convex at x = S�;in . Similarly, for vn to

be convex at x = S�;in ; condition (4.173) must also be satis�ed at x = S�;in ; moreover,

vn must be continuous at at x = S�;in : Note by (4.192) and (4.194) that

lim
x"S�;in

v0n (�; i; x) = lim
x#S�;in

v0n (�; i; x) =
X
a2F

�aG0n(�; i; a; S
�;i
n )� ci

for all � and i so that condition (4.173) is satis�ed at x = S�;in : Moreover, by (4.182),

lim
x"S�;in

vn (�; i; x) = lim
x#S�;in

vn (�; i; x) =
X
a2F

�aGn(�; i; a; S
�;i
n )� ciS�;in

for all � and i; therefore, vn is continuous at x = S�;in : Hence, vn (�; i; x) is convex at

x = S�;in for all � and i:

Finally, using (4.179), (4.190); MCT and the induction hypothesis, we get

lim
x#�1

v0n (�; i; x) =
X
a2F

�a lim
x#�1

G0n (�; i; a; x)� ci

= �pi � �
X
j2E

"X
a2F

�a	n (a; j)

#
R�n+1;N�n�1p(�; j)

= �pi � �
X
j2E

Pn ((�; i); j)R
�
n+1;N�n�1p(�; j)

= �R�n;N�np(�; i):

for all � and i: We get the second equality by (4.184). Then, we get the third equality

by (4.43). The last equality is gathered from (4.47). Similarly, using (4.194), MCT and

induction hypothesis, we get

lim
x"1

v0n (�; i; x) = R�n;N�nh(�; i)
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for all � and i: This completes our proof.

By Theorem 24, we show that the optimal policy has the form in (4.181). This policy

satis�es all necessary properties of an in�ated base-stock policy for x in [s�;in ; S�;in ): Therefore,

it is a state-dependent modi�ed in�ated base-stock policy. This implies that results obtained

by Gallego and Hu (2004) are still valid when the random environment is partially observed.

However, the critical values of the modi�ed in�ated base-stock policy such as y�;in (x) ; s�;in

and S�;in do not only depend on observed state at time n; but they also depend on the

information vector �.

Moreover, it is obvious from (4.187) that optimal order-up-to level for s�;in � x < S�;in

depends on the inventory level x. This clearly implies that modi�ed base-stock policy is not

optimal for inventory problems with �nite capacity and random yield. But, when U = 1 with

probability 1 which is the �nite capacity only case, we get by (4.187) that @y�;in (x) =@x = 0:

As a result, for s�;in � x < S�;in , optimal order-up-to level is independent of inventory level;

moreover, it is equal to S�;in : In this case, optimal order-up-to level in (4.181) turns out to

be

yn (�; i; x) =

8>>><>>>:
x+A x < s�;in

S�;in s�;in � x < S�;in

x x � S�;in

for all � and i: Therefore, the state-dependent modi�ed base-stock policy in Figure 4.3 is

optimal in multi-period if only �nite capacity in a partially observed random environment

is considered.

Furthermore, if we assume that there is no capacity limitation (A =1) but only random

proportional yield, then, using (4.189), s�;in = �1 for all � and i: Note that if we assume

that s�;in > �1, then, using (4.185), we get

lim
A"1

H 0
n

�
�; i; s�;in ; s�;in +A

�
=

X
a2F

�a
Z 1

0
u lim
A"1

G0n
�
�; i; a; s�;in + uA

�
dFa(u)

= (ci + hi) ��� + �
X
j2E

X
a2F

�a�a	n (a; j)R
�h(T (�j j) ; j) > 0

for all � and i: First equality follows from the MCT. Then, using (4.183) and making some

simpli�cations, we get second equality. Notice that right hand side of second equality is

always positive since all terms on the right are positive. However, this is a clear contradiction
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to (4.189). Hence, s�;in = �1 for all � and i when A =1: Then, optimal order-up-to level

in (4.181) becomes

yn (�; i; x) =

8<: y�;in (x) x < S�;in

x x � S�;in

for all � and i. In other words, optimal policy structure in multi-period is state-dependent

in�ated base-stock, which is shown in Figure 4.4, if we assume that there is no capacity

limitation.

4.7.4 In�nite-period model

In this section, we consider the in�nite-period problem. As stated earlier, we assume that

fQng and fEng are time-homogenous in in�nite-period analysis so that Qn = Q and En = E

for all n: Then, this implies that 	n = 	 as given by (4.49). Using 	, Pn can be computed

by (4.48). Here, we show that the �nite-horizon optimal cost function vn in Section 4.5.2

converges to the in�nite-horizon optimal cost function v. In addition, we show that a state-

dependent modi�ed in�ated base-stock policy is optimal when minimizing the expected

discounted costs over an in�nite-horizon. By assuming that k = N �n denotes the number

of periods from time n until time N; we use the notation vn;k for the �nite horizon optimal

cost vn in the remaining part of this section: We show that, as k increases to in�nity, the

�nite-horizon optimal cost function v0;k in (4.175) converges to the in�nite-horizon optimal

cost function v that satis�es

v (�; i; x) = min
x�y�x+A

H (�; i; x; y) (4.197)

for all �; i and x; where y is order-up-to level and

H (�; i; x; y) =
X
a2F

�aJ (�; i; a; x; y) (4.198)

J (�; i; a; x; y) =

Z 1

0
G (�; i; a; x+ u(y � x)) dFa(u)� cix (4.199)

G(�; i; a; y) = ciy + L(i; a; y) + �
X
j2E

	(a; j)EaD [v (T (� jj ) ; j; y �D)] (4.200)

with L (i; a; y) as given in (4.14). Again EaD denotes the notation that expectation is taken

with respect to the random variable D with distribution Ma. As in multi-period analysis,
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we use G0 and G00 to denote �rst and second derivatives of G with respect to y, respectively:

As a result,

G0 (�; i; a; y) = ci + L
0(i; a; y) + �

X
j2E

	(a; j)EaD
�
v0 (T (� jj ) ; j; y �D)

�
(4.201)

G00 (�; i; a; y) = L00(i; a; y) + �
X
j2E

	(a; j)EaD
�
v00 (T (� jj ) ; j; y �D)

�
(4.202)

for all �; i; a and y:

For any real valued function f : D (F)�E�R! R whereD (F) is the set of all probability

distributions de�ned on state space F, we de�ne the mapping T as

T f(�; i; x) = min
x�y�x+A

H (�; i; x; y) (4.203)

for all �; i and x, where H is given in (4.198) with J as given in (4.199) and

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [f (T (� jj ) ; j; y �D)] : (4.204)

Using (4.151), T f can be interpreted as the optimal cost function for the one-period problem

where the terminal cost function is �
P
j2E Pn ((�n; i) ; j)E

a
D [f (T (� jj ) ; j; y �D)] : Then,

T k denotes the composition of the mapping T with itself k times; that is, for all k � 1

T kf (�; i; x) = T T k�1f (�; i; x) (4.205)

with T 0f = f . Using (4.175), we can interpret T kf as the optimal cost function for the

k�period ��discounted problem. Then, using (4.203) and (4.205),

T kf(�; i; x) = min
x�y�x+A

Hk (�; i; x; y) (4.206)

where Hk given in (4.198) with J as given in (4.199) where G is replaced by

Gk(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD

h
T k�1f (T (� jj ) ; j; y �D)

i
: (4.207)

Let f0(�; i; x) = 0 for all �; i and x: In our single-period and multi-period analyses, we

always assume that the terminal cost function is zero. Suppose that the initial cost function

is f0(�; i; x) so that T 0f(�; i; x) = f0(�; i; x) for all �; i and x. Then, k�period optimal cost

function is vn;k (�; i; x) = T kf0(�; i; x) for all �; i; x and n:
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Let f� (�; i; x) denote the optimal cost over in�nite horizon and let

f1 (�; i; x) = lim
k"1

T kf0(�; i; x) (4.208)

for all �; i and x. Notice that f1 is well-de�ned provided we allow the possibility that f1

can take the value 1: If we can show that the �nite-horizon optimal cost converges to the

in�nite-horizon optimal cost as the length of the planning horizon gets longer, then we can

infer the properties of f� (�; i; x) from the properties of k�period optimal cost functions

T kf0 (�; i; x) :

Let Zk denote the sets

Zk (�; i; x; �) = fx � y � x+A jHk (�; i; x; y) � �g (4.209)

for all �; i; x and � 2 R. According to Proposition 1.7 in Bertsekas (2000 b, p. 148), if we

show that the sets in (4.209) are compact for all �; i; x and �, then f� (�; i; x) = f1 (�; i; x)

for all �; i and x: By the following lemma, we accomplish this task.

Lemma 25 The sets in (4.209) are compact subsets of the Euclidean space for all �; i; x

and �.

Proof. Notice that the sets fZk (�; i; x; �)g are bounded since y must be in [x; x+A] ;

which is a bounded interval:Moreover, the sets fZk (�; i; x; �)g are closed since Hn is strictly

convex, so continuous, in y and it is real valued. Thus, the sets in (4.209) are compact subsets

of Euclidean space for all �; i; x and �.

The following proposition shows that f1 is a �xed point of the mapping T ; moreover,

�nite-horizon optimal cost function converges to the in�nite-horizon optimal cost function.

Proposition 26 The limit f1 is a �xed point of the mapping T so that

f1 (�; i; x) = T f1 (�; i; x) (4.210)

for all �; i and x: Moreover,

f1 (�; i; x) = f� (�; i; x) (4.211)

for all �; i and x: Furthermore, there exists a stationary optimal policy.
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Proof. By Lemma 25, the sets in (4.209) are compact subsets of the Euclidean space for

all �; i; x and �. Then, using Proposition 1.7 in Bertsekas (2000 b, p. 148), f1 is a �xed

point of T so that (4.210) is valid and there exists a stationary optimal policy. In addition,

notice that

f0 � T f0 � ::: � T kf0 � ::: � f�

because expected cost per period is nonnegative: From this, we get limk"1 T kf0 (�; i; x) �

f� (�; i; x) so that f1 (�; i; x) � f� (�; i; x). By (4.210), we know that f1 is a �xed point of T .

Then, by Proposition 1.2 in Bertsekas (2000 b, p. 140), we get that f� (�; i; x) � f1 (�; i; x).

It follows that f1 (�; i; x) = f� (�; i; x) : This completes our proof.

Notice that Proposition 26 implies also that f1; the optimal cost function that the �nite-

horizon cost function converges, satis�es the Bellman�s equation since f1 (i; x) = T f1 (i; x)

by (4.210). Hence,

f1(�; i; x) = min
x�y�x+A

H (�; i; x; y) (4.212)

for all �; i and x; where H is given in (4.198) with J as given in (4.199) and

G(�; i; a; y) = ciy + L (i; a; y) + �
X
j2E

	(a; j)EaD [f1 (T (� jj ) ; j; y �D)] : (4.213)

As stated in Proposition 1.2 in Bertsekas (2000 b, p.140), f1 is not necessarily the unique

optimal solution to Bellman�s equation because single-period costs are not bounded under

positivity assumption; however, f1 is the smallest �xed point of T since f1 = f�:

Notice that, for a �nite n, k goes to in�nity as N goes to in�nity. Then, above analysis

shows that limk"1 v0;k(�; i; x) = v(�; i; x): Moreover, v(�; i; x) satis�es (4.197) and there

exists a stationary optimal policy y (�; i; x) for the problem in (4.197). However, notice

that single-period cost and Hn (�; i; x; y) are not bounded; therefore, v is not necessarily

unique. Then, we take v as the minimal �xed point of (4.197). In other words, if f = T f

is another solution; then v � f: Moreover, we also know that the optimal solution v is that

�xed point of T which can be obtained as v = limk"1 T kf0 with f0 = 0.

Assuming �; i and x are current information vector, current observed state and current

inventory level respectively, we let y (�; i; x) denote the optimal order-up-to level to the

minimization problem in (4.197) and let v0 (�; i; x) denote the derivative of v (�; i; x) with

respect to x. Finally, we again let h and p denote holding cost and shortage cost vectors,
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respectively. Moreover, we recall that R�((�; i) ; j) =
P1
k=0 �

kP k0 ((�; i) ; j) for all �; i and j

and that, for a nonnegative function g, R�g(�; i) is de�ned as in (4.52).

Theorem 27 The optimal ordering policy for in�nite-period model is a state-dependent

modi�ed in�ated base-stock policy

y (�; i; x) =

8>>><>>>:
x+A x < s�;i

y�;i (x) s�;i � x < S�;i

x x � S�;i

(4.214)

where y�;i (x) ; S�;iand s�;i are unique y values which satisfy

X
a2F

�a
Z 1

0
uG0 (�; i; a; x+ u(y � x)) dFa(u) = 0X

a2F
�a�aG

0 (�; i; a; y) = 0

X
a2F

�a
Z 1

0
uG0 (�; i; a; y + uA) dFa(u) = 0

for all � and i respectively. Moreover; y�;i (x) is nonincreasing in x with

limx#�1 y�;i (x) =1 for all � and i: In addition, x � y�;i (x) � x+A for all x 2
�
s�;i; S�;i

�
with y�;i

�
s�;i
�
= s�;i + A and y�;i

�
S�;i

�
= S�;i: The cost function H (�; i; x; y) is strictly

convex in (x; y) for all � and i; and the optimal cost is

v (�; i; x) =

8>>><>>>:
P
a2F �

a
R 1
0 G (�; i; a; x+ uA) dFa(u)� cix x < s�;i

H
�
�; i; x; y�;i (x)

�
s�;i � x < S�;iP

a2F �
aG (�; i; a; x)� cix x � S�;i:

(4.215)

for all �; i and x: Furthermore, v(�; i; x) is convex in x, limx"1 v0 (�; i; x) = R�h(�; i) and

limx#�1 v0 (�; i; x) = �R�p(�; i) for all � and i:

Proof. We know that v (�; i; x) = limk"1 v0;k(�; i; x): In addition, by Theorem 24,

v0;k(�; i; x) is convex in x for all � and i. Then, v (�; i; x) is also convex because the limit of

a convex function is also convex. Also we know by Theorem 24 that limx"1 v00;k (�; i; x) =

R�0;kh(�; i) and limx#�1 v0n (�; i; x) = �R�0;kp(�; i) for all � and i: Moreover, since v0;k is

di¤erentiable, it follows from Lemma 8-5 in Heyman and Sobel (1984) that v0 (�; i; x) =
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limk"1 v00;k (�; i; x) for all �; i and x: As a result, limx"1 v0 (�; i; x) = R�h(�; i) and

limx#�1 v0 (�; i; x) = �R�p(�; i) for all � and i. Then, using (4.15) and MCT, we get

lim
y"1

G0 (�; i; a; y) = ci + hi + �
X
j2E

	(a; j)R�h(T (�j j) ; j) > 0 (4.216)

and

lim
y#�1

G0 (�; i; a; y) = ci � pi � �
X
j2E

	(a; j)R�p(T (�j j) ; j) < 0 (4.217)

for all i and a:

Notice that G in (4.200) is strictly convex since L is a strictly convex function and v

is convex. Moreover, Lemma 20 implies that G (�; i; a; x+ u(y � x)) is strictly convex in

(x; y) for all �; i; a and u 2 [0; 1]. In addition, J is also strictly convex in (x; y) because

expectation preserves strict convexity. As a result, H is strictly convex in (x; y) for all �

and i since sum of strictly convex functions is also strictly convex. Furthermore, we let H 0

to denote the partial derivative of H with respect to y: Then, using (4.198),

H 0 (�; i; x; y) =
X
a2F

�a
Z 1

0
uG0 (�; i; a; x+ u(y � x)) dFa(u) (4.218)

for all �; i; x and y:

Let us suppose that y�;i (x) satis�es

X
a2F

�a
Z 1

0
uG0

�
�; i; a; x+ u(y�;i (x)� x)

�
dFa(u) = 0 (4.219)

for all �; i and x: Note that limjyj"1Hn (�; i; x; y) = 1 for all �; i and x: Moreover, using

(4.201), (4.218), MCT, and the induction hypotheses that limx"1 v0 (�; i; x) = R�h(�; i)

and limx#�1 v0 (�; i; x) = �R�p(�; i),

lim
y#�1

H 0 (�; i; x; y) = (ci � pi) ��� � �
X
j2E

X
a2F

�a�a	(a; j)R
�p(T (� jj ) ; j) < 0

and

lim
y"1

H 0 (�; i; x; y) = (ci + hi) ��� + �
X
j2E

X
a2F

�a�a	(a; j)R
�h(T (� jj ) ; j) > 0

for all �; i and x; where R� is given in (4.53): These together with the fact that H is strictly

convex imply that there exists a �nite and unique y�;i (x) satisfying (4.219). In addition,
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we now show that limx#�1 y�;i (x) = 1: Suppose that limx#�1 y�;i (x) < 1. Then, using

(4.218) and MCT,

lim
x#�1

H 0 ��; i; x; y�;i (x)� =
X
a2F

�a
Z 1

0
u lim
x#�1

G0
�
�; i; a; x+ u(y�;i (x)� x)

�
dFa(u)

= (ci � pi) ��� � �
X
j2E

X
a2F

�a�a	(a; j)R
�p(T (�j j) ; j) < 0

for all � and i: The �rst equality is gathered by MCT. If we assume that limx#�1 y�;i (x) <

1, then limx#�1
�
x+ u(y�;i (x)� x)

�
= �1 for all �; i and u 2 [0; 1] : Then, using (4.217),

we get the second equality. However, we assume that pi > ci for all i and ��� > 0 for all

�: This implies that limx#�1H 0 ��; i; x; y�;i (x)� < 0: But, this is a clear contradiction and
limx#�1 y�;i (x) =1 for all � and i:

Next, we show that y�;i (x) is nonincreasing in x: Suppose that there exist x1 < x2

such that H 0 ��; i; x1; y�;i (x1)� = H 0 ��; i; x2; y�;i (x2)� = 0 with y�;i (x1) < y�;i (x2) : This

clearly implies that x1+u(y�;i (x1)�x1) < x2+u(y
�;i (x2)�x2) for all u 2 [0; 1] : This further

implies that G0
�
�; i; a; x2 + u(y

�;i (x2)� x2)
�
> G0

�
�; i; a; x1 + u(y

�;i (x1)� x1)
�
for all �; i

and a since L0 is increasing and v0 is nondecreasing. Moreover, we assume that there is at

least one a with �a > 0 such that there is positive probability of receiving something. Then,

using (4.218), it follows that

H 0 ��; i; x2; y�;in (x2)
�
> H 0 ��; i; x1; y�;in (x1)

�
= 0

for all � and i: However, notice that this is a clear contradiction to the de�nition of y�;i (x2) :

Therefore, y�;i (x) is nonincreasing in x:Moreover, if we di¤erentiate (4.219) with respect to

x, we get

@y�;i (x)

@x
=

P
a2F �

a
R 1
0

�
u2 � u

�
G00
�
�; i; a; x+ u(y�;i (x)� x)

�
dFa(u)P

a2F �
a
R 1
0 u

2G00 (�; i; a; x+ u(y�;i (x)� x)) dFa(u)
� 0 (4.220)

for all �; i and x: Note that denominator of (4.220) is always positive since G is strictly

convex and there exists, by our assumption, at least one a with �a > 0 such that there is

positive probability of receiving something. However, the numerator in the same equation

is nonpositive since u2 � u � 0 and and G00 > 0. This is another way of showing that

@y�;i (x) =@x � 0 so that y�;i (x) is nonincreasing in x:Therefore, y�;i (x) has a similar

structure as y�;i0 (x) in Figure 4.2.
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However, y�;i (x) may not be a feasible solution for our problem in (4.197). In other

words, y�;i (x) is not necessarily in [x; x+A]; moreover, it may also be less than x. If S�;i

is the smallest inventory level at which it is optimal not to order, then, for x = S�;i; (4.219)

turns out to be X
a2F

�a�aG
0 ��; i; a; S�;i� = 0 (4.221)

for all � and i. Note that, by our assumption, �a > 0 for at least one a with �a > 0;

moreover, G0 is increasing in y; and limy"1G0 (�; i; a; y) > 0 and limy#�1G0 (�; i; a; y) < 0

by (4.216) and (4.217). Hence, S�;i satisfying (4.221) is �nite and unique. Moreover, we

assume that x = s�;i is the inventory level at which ordering as much as �nite capacity A

is optimal so that y�;i
�
s�;i
�
= s�;i +A: Then, using (4.219), s�;i satis�es

X
a2F

�a
Z 1

0
uG0

�
�; i; a; s�;i + uA

�
dFa(u) = 0

for all � and i. Via a similar discussion as we did for S�;i, we can show that s�;i is also �nite

and unique: Note that y�;i (x) is nonincreasing in x: This clearly implies that s�;i � S�;i for

all � and i: Now, if we consider three cases as in single and multiple-period analyses, we

see that optimal order-up-to level is x + A; y�;i (x) and x when x < s�;i; s�;i � x < S�;i

and x � S�;i respectively. Therefore, y (�; i; x) in (4.214) is the optimal ordering policy.

Clearly, for s�;i � x < S�;i; y (�; i; x) = y�;i (x) � S�;i since y�;i (x) is nonincreasing in x:

If this optimal policy is applied, the corresponding optimal cost is given by (4.215). This

completes our proof.

By Theorem 27, we show that the optimal policy for �nite capacity and random yield

inventory model in a partially observed random environment is still modi�ed in�ated base-

stock policy, which depends on current information vector and observed state. At the

beginning of each period, an order is given if and only if the inventory level is less than a

particular value which depends on information vector and observed state. However, order

size is not unlimited because of �nite capacity. There is another value, which depends also

on current information vector and observed state, below which it is always optimal to order

as much as �nite capacity. In addition, the order-up-to level depends on inventory level as

well as current information vector and observed state when inventory level is in between

these two particular values. But, all of these critical values, i.e., y�;i (x) ; s�;i and S�;i; are
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independent of the number of period in which we are planning for; therefore, they are the

same in all periods with the same information vector and observed state. Hence, the optimal

solution is stationary whereas it is not necessarily unique.

In addition, by Theorem 27, we also show that limx"1 v0 (�; i; x) = R�h(�; i) and

limx#�1 v0 (�; i; x) = �R�p(�; i) for all � and i: Because the state space F is �nite and

� 2 (0; 1), by (4.53), limx"1 v0 (�; i; x) = hi+�(I��Q)�1Eh��Eh and limx#�1 v0 (�; i; x) =

�pi � �(I � �Q)�1Ep+ �Ep for all � and i, since hi and pi are nonnegative and bounded

for all i:

As in single and multiple period models, the order-up-to level is not independent of

inventory level for s�;i � x < S�;i: But, for �nite capacity only case, (i.e., U = 1 with

probability 1); it is clear from (4.220) that @y�;i(x)=@x = 0: As a result, for s�;i � x < S�;i,

optimal order-up-to level is independent of inventory level; moreover, it is equal to S�;i:

Hence, state-dependent modi�ed base-stock policy is optimal. On the other hand, if we

assume that �nite capacity is in�nite, then via a similar discussion as in multi-period, we

can show that state-dependent in�ated base-stock policy is still optimal in in�nite-period.

4.8 Summary of Results

In this part of the thesis, our main aim is to characterize the optimal policy structures for

inventory problems with di¤erent random supply scenarios in a partially observed random

environment. As in the �rst part of the thesis, the environment follows a Markov chain

which a¤ects demand, supply and costs. However, we assume in this part that the state

of this Markov chain is not fully observed. In this case, there is another process, not

necessarily a Markov chain, which gives partial information about the real environment.

The results regarding di¤erent random supply scenarios show that policy structures that

are optimal in a fully observed random environment are not necessarily optimal when the

random environment is partially observed. Moreover, policies optimal when the capacity

process is observable are no more optimal when the capacity is modulated by the real

environment.

In Section 4.2, we assume that the supply is random because the supply part of the

system is composed of a producer having random capacity and a transporter being randomly
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available. Here, we also assume that both demand and supply depend on the unobserved

environment. In addition, we use current inventory level and all observations until current

time as the state of our system. Through a counter example, we show in the �rst model

that state-dependent base-stock policy is not necessarily optimal in single-period when the

environment is partially observed. We can generalize the same result for multi-period and

in�nite-period problems as well since single-period problem is a special case of both. Next

in Section 4.3, we analyze a similar model as in Section 4.2; however, we assume that the

capacity of the producer is observable. Here, we study single and multiple period problems

and show that a state-dependent base-stock policy is optimal in both cases. Future research

on inventory models with random capacity and random availability in a partially observed

random environment may aim to characterize the optimal policy structure. However, it is

obvious from the structure of expected discounted cost function and �gures in Section 4.2

that the optimal policy structure is not fairly simple.

In Section 4.5, we change our formulation and use conditional distribution of the true

environmental state as a su¢ cient statistic. With this new formulation, the state of our

system becomes current inventory level and the current distribution of real environmental

state. Moreover, this formulation of the problem in Section 4.3 enables us to analyze the

in�nite-period problem as well as single and multiple period problems. As a result of our

analysis, we show that state-dependent base-stock policy is optimal in single, multiple and

in�nite planning periods. Moreover, same results are still applicable if we assume that the

transporter is always available and the producer has in�nite capacity. These results are

similar to those obtained by other researchers in the literature. For example, Treharne and

Sox (2002) use exactly the same formulation as our model in Section 4.5 by assuming that

the producer has in�nite capacity and the transporter is always available. They show that

a state-dependent base-stock policy is optimal.

Certainly, we can extend the model in Section 4.5 by considering the �xed ordering

costs. Normally, we can expect that a state-dependent (s; S) policy is optimal in this case.

However, we know by our analysis in Section 3.2 that a state-dependent (s; S) policy is not

optimal for random capacity models even in a fully observed random environment. This

model is clearly a special case of inventory models with fully observed random capacity and

partially observed availability. Therefore, state-dependent (s; S) policy is not optimal for
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inventory models in Section 3.2 with �xed ordering costs. In this regard, future research may

aim to characterize the optimal policy structure for these inventory models. However, by

Shaoxiang and Lambrecht (1996) and Gallego and Wolf (2000), we know that optimal policy

structure is not simple even when there is no random environment and full observation.

Hence, optimal policy structure for inventory models with �xed ordering cost, fully observed

random capacity and partially observed availability won�t be simple.

In Section 4.6, we assume that the supplier is randomly available and has in�nite ca-

pacity. In this section, we further assume that there is �xed cost of ordering. Moreover, we

use su¢ cient statistic formulation as in Section 4.5 so that state of our system is current

inventory level and current distribution of real environmental state. Finally, as in Özekici

and Parlar (1999), we show that state-dependent (s; S) policy is optimal in single, multiple

and in�nite planning periods if the supplier availability process is observable. During our

analysis, we also observed that state-dependent (s; S) policy is optimal when the availabil-

ity process is unobservable; however, this requires a more restrictive assumption on �xed

ordering costs and availability probabilities. Our model in Section 4.6 can be extended by

assuming random proportional yield. In other words, we can assume that the supplier can

deliver any amount between 0 and the order quantity. We know by Henig and Gerchak

(1990) that in�ated base-stock or nonorder-up-to type of policies are optimal in stationary

environment when we consider random proportional yield only. Therefore, the well-known

(s; S) policy structure may not be optimal when we incorporate random proportional yield

into the model in Section 4.6. In this regard, future research may aim to characterize

the optimal policy structure for the inventory models with �xed ordering cost and random

proportional yield in a partially observed random environment.

Finally in Section 4.7, we again assume that the supplier is composed of a producer

having �nite capacity and a transporter with random transportation yield. Assuming that

the environment is partially observed and using the su¢ cient statistic formulation, we show

that state-dependent modi�ed in�ated base-stock policy is optimal. Similar results are

obtained by Gallego and Hu (2004) that analyze exactly the same inventory model as

ours by assuming that the environment is fully observed. Then, it follows that partial

observation has no e¤ect on the optimal policy structure, but on optimal policy parameters.

For example, parameters of optimal policy in our model depend also on the distribution
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of real environment as well as the state of observed environment. By considering random

capacity, we can extend our model. However, we know from Section 4.2 that state-dependent

base-stock policy is not optimal for inventory models with random capacity and random

availability in a partially observed random environment. Moreover, inventory models with

random capacity and random availability is a special case of inventory models with random

capacity and random yield. Therefore, we can expect that state-dependent base-stock policy

is not optimal for inventory models with random capacity and random proportional yield in

a partially observed random environment. In this regard, future research on these inventory

models must aim to characterize the optimal policy structure.
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Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, our main aim was to discuss inventory models with di¤erent supply sce-

narios in a random environment. These topics are studied in the literature; however, the

setting that we consider in this thesis is the most general until now. Firstly, we assume that

the supply can be random due not only to random proportional yield but also to random

capacity. Considering this fact, we aim to �nd out the circumstances under which well-

characterized inventory policies (i.e., base-stock, (s; S) and in�ated base-stock) are optimal.

Secondly, we consider the fact that it is not always possible to observe the random envi-

ronment fully. Then we aim to �nd the structure of optimal inventory policies for di¤erent

random supply scenarios when the environment is only partially observed.

The underlying assumption of random environment is due to the fact that inventory

systems cannot be isolated from the �uctuating environment. There can be signi�cant in-

terruptions due to exogenous factors that a¤ect not only the demand but also the supply

and the costs. But, in the great majority of existing inventory literature, the source of un-

certainty for the random component is speci�ed by a single distribution function. Moreover,

in the literature, parameters of this distribution are assumed to be constant. Hence, the

environment is assumed to be stationary. Clearly, these inventory models cannot utilize the

information gathered from the environment. Therefore, they are not valid in most real life

situations. In order to create a more realistic model, we introduced a random environment

that follows a time-homogenous Markov chain and a¤ects all costs, distributions of demand

and supply.

Moreover, we also consider the fact that observations regarding the real environment are

not always perfect. Parameters of demand and supply distributions, and distributions by

themselves are de�ned based on the observed data. These observations do not match reality

in most of the time. Under such circumstances, assuming full observation of the random

environment is misleading. For this purpose, we introduced a random process other than
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the Markov chain which represents the random environment in this thesis. Moreover, we

assumed that this new process is observable and it gives partial information about the real

environment. Under this major setting, we divide this thesis into two main parts based on

the observability of the random environment.

In the �rst part of the thesis, we assume that the environment is fully observed and

the supply is random due to random availability and random capacity. Through the �rst

model, we show that environment-dependent base-stock policy is still optimal when there

is a supplier having random capacity and a randomly available transporter. Then, by the

second model, we show that environment-dependent (s; S) policy is no more optimal when

there is random capacity only and �xed ordering cost; moreover, the optimal policy does

not have a simple structure.

In the second part of the thesis, we assume that the environment is only partially ob-

served and supply is random. Main results of this part and the direction of future research

are summarized in Section 4.8. However, if we must restate important points of our analysis,

we should point out that inventory policies that are optimal in fully observed environment

are not necessarily optimal when the environment is partially observed. Moreover, the op-

timal policy structures for random capacity inventory models in fully observed environment

are no more optimal when the environment is partially observed. In other words, optimal

policy structures are not well-de�ned and hard to characterize if the capacity process is

unobservable.

Although inventory system considered in this thesis is the most general in the literature,

further extensions of our models are still possible. For example, we assume in all models

that the unsatis�ed demand is backordered and satis�ed in the next period. Therefore,

a possible extension would be to consider the case where the sales are lost. The future

research may aim to question whether the policies being optimal in backordering case are

still optimal in lost sales case or not. If not, researchers may aim to characterize the optimal

policy structure for lost sales case.

In addition, we consider the retailer side only in our all models. In other words, we

assume that the retailer is the strongest party in the chain. However, we know that this

is not true in some real life situations and the supplier has some incentive on the ordering

quantity. As a result, our models can be extended by considering the supplier side as well. In
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this regard, the future research may aim to characterize types of contracts which coordinate

the chain. An important question in this case would be whether contracts coordinating the

chain in full observation case still coordinate the chain in partial observation case or not.

Furthermore, we analyze the single vendor case in our all models. However, by working

with multiple suppliers, the retailer may want to eliminate additional stockout risk derived

from the producer with random capacity and/or the transporter with random availability.

In this case, the ordered quantity would be diversi�ed among many suppliers. Therefore,

we can extend our models by considering multiple suppliers case. An important research

question in this case would be whether policy structures being optimal in single supplier

case are still optimal when there are multiple suppliers or not. In this regard, future

research may analyze the e¤ect of multiple suppliers on the total order quantity. Through

multiple suppliers analysis, the e¤ect of individual supplier characteristics on orders from

each supplier may also be determined.
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Appendix A

PRELIMINARY CONCEPTS

In this appendix, we review some important concepts for our analyses in this the-

sis. Among many others, the most important concepts are convexity, quasi-convexity,

K�convexity and potential theory. We make use of these concepts frequently. This appen-

dix is organized as follows. In the next section, we give a brief introduction of quasi-convex

functions. In Section A.2, we give the de�nition of K�convexity and present important

properties of K�convex functions. Finally, we present some results on the potential theory

of Markov chains in Section A.3.

A.1 Quasi-convex functions

In general, the expected total discounted cost function is convex for inventory problems

where the base-stock policy is optimal. This is due to the structure of the convex functions.

Namely, a convex function has a minimum (not necessarily unique) to the left of which the

function is nonincreasing and to the right of which the function is nondecreasing. However,

there are other functions which posses this property although they are not convex. Quasi-

convex functions are examples of these types of functions. They are more general than

convex functions. In other words, every convex function is also quasi-convex; however, the

converse is not true.

In this study, expected total discounted cost functions for our di¤erent models are mostly

not convex. However, they will in general be quasi-convex. Therefore, we note the following

de�nition of quasi-convexity since we make use of quasi-convex functions in our proofs.

De�nition 1 We say that a real-valued function f is quasi-convex if, for two points x1 and

x2,

f (�x1 + (1� �)x2) � max (f (x1) ; f (x2))

for 0 � � � 1:
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From this de�nition taken from Bazaraa et al. (1993), a function f is quasi-convex if,

whenever f (x2) � f (x1) ; f (x2) is greater than or equal to f at all convex combinations

of x1 and x2. Therefore, if f increases from its value at a point along any direction, it

must remain nondecreasing along that direction (Bazaraa et al., 1993). In addition, by the

following lemma, we show that a function decreasing on the left of a particular point and

nondecreasing on the right of the same point is quasi-convex.

Lemma 28 Suppose that f is a real-valued continuous function, and there exists an �x such

that f (x) is decreasing in x for all x � �x and f (x) is nondecreasing in x for all x > �x.

Then, f (x) is quasi-convex.

Proof. Suppose that f is a function satisfying the properties in the lemma; but, it is not

quasi-convex. Then, since f is not quasi-convex, there exists either x < �x or x � �x such

that

f (�x+ (1� �)�x) > max (f (x) ; f (�x)) (A.1)

for some 0 � � � 1: Consider the two cases: x < �x and x � �x:

(i) x < �x : It follows from (A.1) that f (�x+ (1� �)�x) > f (x) where �x+ (1� �)�x � x.

However, this is a clear contradiction to the fact that f (x) is decreasing in x for all

x < �x:

(ii) x � �x : Again it follows from (A.1) that f (�x+ (1� �)�x) > f (x) where �x + (1 �

�)�x � x: But this is also a clear contradiction to the fact that f (x) is nondecreasing

in x for all x � �x:

Therefore, f is quasi-convex and this completes our proof.

A.2 K�convex functions

The concept of K�convexity is very important in the analysis of inventory problems with

�xed ordering costs. In general, the cost function for an inventory problem without �xed

ordering cost has a nice structure such that the cost function has a global minimum (not

necessarily unique). However, the structure of the cost function becomes very complex
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when there is �xed cost of ordering. Despite the complex structure of the cost function, op-

timal policy for inventory problems with �xed ordering cost is well-characterized in general.

Mostly (s; S) policy is optimal for these types of problems. Moreover, if the cost function

for inventory problems with �xed ordering cost belongs to a certain class, then (s; S) policy

is certainly optimal. This class of functions are called K�convex functions and introduced

by Scarf (1960) for the �rst time. Scarf (1960) shows that although there are some �uctu-

ations in K�convex functions, these �uctuations are not very much to cause a deviation

from (s; S) policy.

First of all, let us note the de�nition of K�convexity taken from Bertsekas (2000 a, p.

158).

De�nition 2 We say that a real-valued function f is K�convex, where K � 0; if, for all

z � 0; b > 0; and y;

K + f (y + z) � f (y) +
z

b
[f (y)� f (y � b)] :

Some properties of K�convex functions taken from Bertsekas (2000 a, p. 159) are

provided in the following lemma and interested readers are referred to this reference for

details. Notice that part (d) of the following lemma implies the optimality of (s; S) policy

for K�convex cost functions.

Lemma 29

a. A real valued convex function f is also 0�convex and, hence, also K�convex for all

K � 0;

b. If f1 and f2 are K�convex and L�convex (K � 0; L � 0), respectively, then �f1+�f2
is (�K + �L)-convex for all � > 0 and � > 0;

c. If f is K�convex andW is a random variable, then EW [f (y �W )] is also K�convex,

provided that EW [f (y �W )] <1 for all y,

d. If f is a continuous K�convex function and f (y)!1 as jyj ! 1; then there exist

scalars s and S with s � S such that
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i. f (S) � f (y) for all y;

ii. K + f (S) = f (s) < f (y) for all y < s;

iii. f (y) is a decreasing function on (�1; s) ;

iv. f (y) � f (z) +K for all y; z with s � y � z:

A.3 Potential functions

Let Z = fZn;n � 0g be a Markov chain with state space E and transition matrix P; and

let g be a function de�ned on E and taking real values. Suppose that at each time n, we

are given a reward whose amount depends on the state Z is in at that time: if Z is in

state j; then the reward is g(j). Furthermore, assume that all future rewards are being

discounted in such a way that one unit of reward at time n has the present worth of �n.

Here, � is the periodic discount factor taking values in [0; 1] : Markov chain Z visits states

Z0; Z1; Z2; :::; and the rewards received at times 0; 1; 2; :::; have the respective present worths

of g (Z0) ; �g (Z1) ; �2g (Z2) ; :::: Our aim is to �nd expected total discounted reward during

�rst m transitions given the initial state. Then, the expected total discounted return during

the �rst m transitions given initial state i is

E

"
m�1X
n=0

�ng (Zn)

�����Z0 = i

#
=

m�1X
n=0

�nE [g (Zn) jZ0 = i ]

=

m�1X
n=0

�n
X
j2E

Pn (i; j) g (j)

=
X
j2E

"
m�1X
n=0

�nPn (i; j)

#
g (j)

=
X
j2E

R�m(i; j)g (j) = R�mg (i) (A.2)

where R�m(i; j) =
Pm�1
n=0 �

nPn (i; j) for all i and j: Notice that R�m is a matrix, g is the

reward vector and R�mg is the multiplication of matrix R
�
m and vector g: Therefore, R

�
mg is

a vector and R�mg(i) is the ith entry of this vector. However, given the initial state, we may

also aim to �nd expected total discounted reward over in�nite transitions. Clearly, it is the

limit of R�mg where m goes to 1: Therefore, given that the initial state is i; expected total
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discounted return over in�nite transitions is

R�g(i) = E

" 1X
n=0

�ng (Zn)

�����Z0 = i

#
=
X
j2E

R� (i; j) g (j) (A.3)

if the initial state is i; where R�1 is denoted by R�: Ç¬nlar (1975) calls R� and R�g as

��potential matrix of Z and ��potential of g; respectively: A detailed analysis of potential

functions can be found in Ç¬nlar (1975, Chap. 7). As shown in Ç¬nlar (1975, p. 200),

R�mg(i) = R�g(i)� �mPmR�g(i) = (I � �mPm)R�g(i) (A.4)

for all i. This relation is derived using the fact that for someone who looks into the future

after time m, that future looks the same probabilistically as the future after time 0 would

look to someone considering it at time 0 provided that they observe the same state. The

relation between R�mg and R
�
m�1g can be obtained as follows:

R�mg(i) = g(i) + E

"
m�1X
n=1

�ng (Zn)

�����Z0 = i

#

= g(i) + �E

"
m�2X
k=0

�kg (Zk+1)

�����Z0 = i

#

= g(i) + �
X
j2E

P (i; j)E

"
m�2X
k=0

�kg (Zk)

�����Z0 = j

#
= g(i) + �

X
j2E

P (i; j)R�m�1g(j): (A.5)

First equality above follows from (A.2). If we make change of index, then the second equality

is obtained. Via some probabilistic operations, we get the third equality. Finally, the last

equality again follows from (A.2).
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