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ABSTRACT

This thesis proposes two video-based traffic analysis systems, one for traffic 

monitoring with fixed cameras, and one for driver warning applications with on-board 

cameras looking outwards from the windshield. In the fixed-camera traffic monitoring 

system, Gaussian Mixture Model (GMM) based background subtraction is applied with a 

new adaptive bounding box size criteria to detect and track vehicles. An automatically 

extracted road mask is used to reduce the computational complexity. Furthermore, a new 

occlusion reasoning algorithm is proposed for robust tracking and counting of vehicles, 

where features such as size and width of the vehicles are used. Proposed system is tested 

under different lighting and weather conditions, such as night and winter recordings.  In the 

driver warning system with on-board camera, host vehicle localization with respect to lane 

marks and vehicle-to-vehicle distance calculation are addressed. A feature based lane mark 

detection scheme with two step aggregation method is proposed. Edge features are used in 

this study, and aggregated into more meaningful structures by a new two-step aggregation 

method. Tracking of the individual lane mark is handled by four Kalman filters for each of 

the lane mark corner. After analyzing the tracking results, two modes are defined for the 

host vehicle: in-lane and passing modes. Reliability of the proposed system is tested for 

host vehicle localization and vehicle-to-vehicle distance on a video sequence including 

both modes. Moreover, a new scene initialization procedure based on global motion 

estimation is used in this study. Experimental results show that the proposed algorithms 

perform well, and they are robust to environmental conditions.
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ÖZET

Bu tezde birbirinden ayrı 2 tane video tabanlı trafik analiz sistemi gerçekleştirilmiştir. 

Birincisi sabit kamera düzeneğinden trafik gözetimi, ikincisi ise araç üstüne yerleşik 

kameradan sürücü uyarı sistemidir. Sabit kamera düzeneği ile trafik izleme sisteminde araç 

tespiti ve takibi için, Gaussian Mixture Model  (GMM) tabanlı arkaplan çıkarımı yöntemi

kullanılmıştır. Yeni öngörülen uyarlamalı kuşatan kutu yöntemi uygulanmıştır. Hesaplama 

karmaşıklığını azaltmak izin otomatik çıkarılan yol maskesi kullanılmıştır. Ayrıca, gürbüz 

araç takibi ve sayımı için araç boyutlarının kullanıldığı yeni bir örtüşme algoritması  

oluşturulmuştur. Önerilen sistem farklı ışıklandırma ve hava durumları için test edilmiştir. 

Araç üstü monte edilmiş kamera yardımıyla sürücü uyarı sistemi için yol şeridinden araç 

lokalizasyonu ve araçlar arası mesafe tespiti uygulamaları ele alınmış, özniteliğe dayalı iki 

adımlı şerit işareti tespiti algoritması gerçekleştirilmiştir. Bu çalışmada kenarlar öznitelik 

olarak kullanılmış ve yeni iki basamaklı gruplama yöntemi ile daha anlamlı yapılara 

kümelenmiştir. Şerit işaretlerinin bireysel takibi, şerit işaretlerinin her köşesine yerleştirilen 

Kalman filtreleri ile yapılmıştır. Takip sonuçlarına dayalı olarak iki tane mod 

tanımlanmıştır: şerit arası modu ve geçiş modu. Öngörülen sistemin güvenirliği iki modu 

da içeren imge dizisi için test edilmiştir. Ayrıca, sistem ilklendirmesi için global hareket 

kestirimi yöntemi kullanılmıştır. Deney sonuçları önerilen algoritmaların düzgün çalıştığını 

ve çevresel etkenlere karşı gürbüz olduğunu göstermektedir. 
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Chapter 1 Introduction 1

Chapter 1

INTRODUCTION

1.1 Motivation

As vehicle population increases, ITS (Intelligent Transportation Systems) becomes more 

significant and mandatory in today’s overpopulated world. Vital problems in transportation 

such as mobility and safety of transportation are considered more, especially in 

metropolitans. ITS mainly aims to obtain safer traffic conditions, comfort in transportation, 

and to increase the road- traffic efficiency by improving the functionality of cars and roads

[1]. For this purpose, information systems for locations, and warning systems for vehicle 

safety have previously been implemented to enhance driver’s ability to sense the surrounding 

environment.

ITS applications can be applied to different areas such as traffic infrastructure 

management and intelligent vehicles [2]. In this thesis, vision-based ITS application is 

considered for road traffic monitoring using static cameras and driver warning systems using 

an onboard camera. In road monitoring application, the video cameras are placed on posts 

above the ground to obtain complete view of the road and passing vehicles. In the driver 

warning application, the on-board camera is placed looking outwards from the windshield. 

Road traffic monitoring aims at the acquisition and analysis of traffic figures, such as 

presence and numbers of vehicles, and automatic driver warning systems are developed 

mainly for localization and safety purposes [3]. Video systems for either traffic monitoring or 
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driver warning normally involve two major tasks of perception: i) estimation of road 

geometry and ii) vehicle and obstacle detection. 

Temporal differencing and background modeling techniques are widely used for vehicle 

and obstacle detection in road traffic monitoring systems. Although background modeling 

techniques provide more reliable results, computational complexity is a trade off that one has 

to consider. Adaptive systems to environmental changes have been proposed, and robust 

tracking algorithms are implemented under various conditions such as occlusion. 2-D and 3-

D algorithms have been implemented to analyse the scene, where robust feature sets are 

used. In order to obtain valid feature sets, most of the studies use close-up static cameras, 

where sufficient number of features can be obtained. It is worth noting that there are less 

number of studies considering road geometry for detecting and tracking of the vehicles. 

Thus, implementing traffic monitoring systems requiring less features for detection/tracking, 

and that can be used for general camera setups is beneficial. 

The Traffic Control Center of Istanbul Municipality collects real-time images using a 

video processor system consisting of 110 cameras of various characteristics. Currently, all of 

the images are displayed at a control room and are monitored by operators to detect any 

incidents such as accidents or unexpected road conditions. In the second chapter of this 

thesis, a feasibility study that can be used to analysis the traffic flow for mentioned purposes 

is implemented.

Automatic driver warning system is another crucial application that used in ITS 

applications. Road geometry and vehicle detection algorithms have been thoroughly 

examined, and different warning applications have been proposed in the literature. Most of 

the vehicle warning systems can be classified into two groups for onboard camera 

applications: feature and model based. In the first group, feature based methods are used. 

This group is mainly derived from detection of edges as features in the image, and 

aggregation of these features into meaningful models [22]-[23]. In general, feature driven 

approaches are highly dependent on the methods used to extract features and they suffer from 
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noise effects and irrelevant feature structures. Lane tracking is predicated on lanes rather than 

lane marks, and priori information about the lane structure is needed for lane model [22]. 

Often in practice the strongest edges are not the road edges, so that the detected edges do not 

necessarily fit a straight-line or a smoothly varying model. The second group is the model 

based methods. In this group, deformable templates are used to describe a scene with a set of 

parameters that fits to the scene model. The road boulders and lane markings are often 

approximated by circular arcs on a flat-ground plane. Model-driven approaches provide 

powerful means for the analysis of road edges and markings. Their main advantage is that the 

lane can be tracked with a statistical technique, thus, false detections are almost completely 

avoided. However, the use of a model has certain drawbacks, such as the difficulty in 

choosing and maintaining an appropriate model for the road structure, the inefficiency in 

matching complex road structures and the high computational complexity [25] - [31].  

To increase transportation safety, to decrease the number of traffic accidents and hence to 

save lives and valuable resources, Drive-Safe project that is supported by the State Planning 

Organizations is currently in progress. The aim of this project is to create conditions for 

prudent driving on highways and roadways with the purposes of reducing accidents caused 

by driver behavior. To achieve these primary goals, critical data is being collected from 

multimodal sensors (such as cameras, microphones, and other sensors) to build a unique 

databank on driver behavior. In the third chapter of this thesis, a feasibility study for a driver 

warning system that is based on the windshield camera recordings is implemented parallel to 

the Drive-Safe project.

Chapter 2 provides a feasibility application for road traffic monitoring system, which 

considers the adaptive blob size method and occlusion of vehicles for robust traffic 

parameters estimation, and can be used in traffic flow analysis. 

Chapter 3 presents a new lane detection and tracking methodology that is robust to 

various environmental conditions for automatic vehicle warning applications. Different cases 
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are discussed for host vehicle motion behavior, and a simple vehicle to vehicle distance 

algorithm is described for safety applications.

The thesis is concluded with a short summary of the performed study in Chapter 4.

1.2 System Overview 

In this thesis we design two separate systems that will be used in traffic monitoring and 

driver warning applications. Innovative approaches are implemented for each system to 

analyse traffic flow and vehicle localization under different environmental cases.

In most of the traffic monitoring applications, reliable detection and counting of the 

vehicles are the major issues. In previous studies, different approaches have been proposed to 

handle these tasks. Vehicle detection is mainly obtained by comparison of current frame with 

the empty road; therefore the task is equal to how we model the empty road. For this purpose 

temporal differencing [5] and GMM [7-8-15] based modelings are the commonly used 

models for the road. Although, temporal differencing has smaller computational complexity 

compared to GMM [15], adaptation to environment is another important and mandatory issue 

for road modeling. Likewise the complexity; it is a shortcoming of background modality that 

it requires priori information about the scene as described in [7]-[8]. Detection of vehicles is 

mainly implemented by extracting the foreground regions, which is a highly correlated 

procedure with the image geometry. Previous works generally do not consider the image 

geometry. Moreover, to eliminate such effects camera position is selected accordingly or 

airbone cameras are preferred. Subsequently, several vehicle features such as length, width, 

velocity, etc., are extracted for the traffic flow analysis. However, several environmental 

variations will heavily affect the accuracy and robustness of traffic flow analysis. For 

example, occlusions will result in the failure of vehicle detection and further degrade the 

accuracy of vehicle counting. Another important issue in traffic monitoring applications is 

that most of the model based detection, tracking and classification algorithms are 
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implemented for close-up videos, where it is easier to fit a pre-defined vehicle or motion 

model to understand the scene[12]-[15],[18]. Close-up recordings are also used for feature 

based applications such as [9], where at least 4 corner points have to be found on a vehicle as 

features. In all these works, the use of close-up images enables the selection of reliable 

vehicle model and features for tracking and occlusion reasoning algorithms.  It is essential to 

build a traffic monitoring application that is robust to occlusions, and uses only low level 

features such as size for traffic analysis which can be used for non close-up recordings.

Automatic driver warning systems are also studied in this thesis. We implemented a 

feature based lane (and/or lane mark) tracking scheme that low level features are used to 

aggregate into more complex structures. As it is the case in the previously works 

implemented in driver warning systems, edge features are used in this study. Proposed lane 

mark model in this study is similar to the one implemented in [22], where lane marking 

structure is used in both studies. The problem with such a structure is that the feature based 

methods are highly dependent to extracted features, i.e. edges. Most of the previous works 

include the robust line detection algorithms in the presence of shadow edges, then

aggregation of detected lines into lane structures. However, there are only a limited number 

of studies examining the problem as an aggregation problem rather than line detection event. 

Moreover, previously proposed algorithms are built on strict lane structure assumptions, such 

as constant lane width. To reduce false detection and to achieve reliable tracking a novel 

two-step aggregation approach is maintained in this study, which considers the dynamic 

change of the lane structure, as well. The common problem, obtaining reliable features, in 

feature based lane detection methods is handled by this two-step approach Another notable

problem in automatic driver warning systems is that in model based methods, choosing an 

appropriate model for road geometry is a difficult task. In addition, possible matching errors 

can be resulted for simple road structures [28], especially when the lane marks are occupied 

by other vehicles. This matching error is also seen in feature based methods that tread the 

lane marks as single lane. To prevent this error, individual tracking algorithms are 



Chapter 1 Introduction 6

implemented for each lanes present in the scene in this study. One last issue in driver 

warning systems is the initialization of the proposed systems. There are already some 

applications using ROI to narrow detection and tracking region for computational complexity 

purposes. Some applications assume constant search space [32, 34, 43], or adaptive systems 

as in [29, 33] have been presented to restrict the search space for lane detection. Authors of 

[33] implemented a preprocessing step that calculates vanishing point from the all available 

lines. They use vanishing point to restrict the search space for lane detection. All the works 

cited above use the tracked lane parameters that are calculated at the previous frame, but in 

terms of initialization they make some assumptions to detect initial ROI. We implemented a 

novel dynamically updated ROI initialization method, which does not need any specific 

scene assumptions. Our only assumption about the scene is the flatness of the road, which 

provides us freedom in scene analysis. Localization and motion analyse of the host car is 

estimated according to the tracking of lane parameters, where a simple yet efficient vehicle 

to vehicle distance system is implemented in this study.

1.3 Contributions

This thesis study has several contributions to the study areas of traffic monitoring and driver 

warning systems. The contributions to the traffic monitoring applications can be stated as 

follows:

 Introduction of a new traffic monitoring system application working under non close-

up images that uses adaptive bounding box size for detection of vehicles:

In order to achieve reliable extraction of vehicles from detected foreground regions, 

adaptation to image geometry is an important but mostly discarded task in the literature. 

For this purpose a detection algorithm that uses adaptive bounding box size of vehicles 

according to camera position is implemented in this study. 

 Automatic road mask extraction: 



Chapter 1 Introduction 7

For reliable detection of vehicles, GMM based background subtraction scheme is 

followed in this study. To reduce computational complexity of the modeling process, 

road mask is used to constrain the image region, so that other regions will not be 

processed, where road mask is automatically obtained from the motion history of the 

vehicles.

 An innovative robust tracking system for traffic flow analysis under occlusions:

To implement a reliable traffic flow analysis, accuracy of vehicle counting is 

essential. Occlusion related problems will result in the failure of vehicle detection, and 

descent in accuracy of vehicle counting. For this purpose a novel occlusion reasoning 

algorithm is implemented for robust tracking and counting of all vehicles, where easy-

accessed features such as size and width of the vehicles are used.

Moreover, this work aims at to implement a lane detection scheme, which compensates 

the trade off between the feature based methods and model based methods. Considering this 

aim, contributions on the driver warning system can be grouped under three headings.

 A new two-step aggregation approach:

To reduce false detection and to achieve reliable tracking, a novel two-step 

aggregation approach is maintained in this study. In the first step, to increase the number 

of features, line detection constraints are reduced, and lines are aggregated to more 

meaningful line segments, i.e. lane mark boundaries, according to their alignments in the 

scene. In the second step extracted lines are further grouped into lane structures 

according to the defined lane constraints. Lane constraints mainly depend on the lane 

geometry and unlike traditional methods; they are adaptive to imaging geometry that 

does not assume any lane mark model specifications such as constant lane width

 Individual tracking of lane marks:

In this study, despite the previous feature based methods that combine the lane marks 

to form a single lane, or as in lane model approach that tries to fit a template to observed 
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lane, each lane mark in the scene is tracked with four Kalman filters, initialized for each 

corner of the lane mark to reduce possible matching errors. This approach also enables to 

analyse the roads having small radius of curvature by comparing the lane parameters, and 

lane mark changes. Moreover, whole lane curvature can be estimated from the lane mark 

models assigned to the corresponding lane.

 A new ROI extraction method:

In this study, the proposed system initialization is based on the global motion 

estimation of the scene that eliminates the relative motion due to the camera. The only 

assumption in this initialization step is that the road belongs to the estimated region 

defined by the global motion. Further restriction and correction on the ROI will be 

present with the tracked lane marking parameters as similar in traditional approaches.
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Chapter 2

ROAD AND TRAFFIC ANALYSIS FROM FIXED CAMERA

2.1 Introduction 

Traffic congestion is one of the main problems in many metropolises, including the city of 

Istanbul.  Istanbul has over 2.35 million motorized vehicles according to July 2006 figures. 

Any analysis aimed at improving the problems related to congestion and enabling efficient 

transportation within the city requires collection of reliable data.  In order to monitor the 

traffic flow, Istanbul municipality has installed more than 110 video cameras along the major 

arteries in the city [4], and this number is increasing. Hence, it is of interest to digitally 

process and analyze these videos in real-time in order to extract reliable data on traffic flow 

and to detect traffic events. For example, as a result of such video analysis, traffic density in 

major arteries can be estimated and the least congested routes and travel time estimates can 

be computed and transmitted to drivers over cell phones. In addition, the videos may be 

analyzed to automatically detect events such as accidents and traffic violations, as well as 

snow accumulation and other weather conditions. The data may also be used as input for 

traffic models and related planning problems.

In this chapter of the thesis, we propose a new feasibility study that can be used in traffic 

monitoring system applications. Geometry of the scene is accounted for, where adaptive 

bounding box size is used to detect and track vehicles according to their estimated distance 

from the camera. In the remaining part of this section, we will give a brief summary of the 

previous work that appeared in the literature, and our contributions. Then in Section 2, 
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vehicle detection and tracking algorithms are provided. Section 3 presents special 

considerations that include detection and tracking in night time and in snowy environments. 

Experimental results will be presented in Section 4 in this chapter. 

2.1.1 State-of-the-Art 

Several studies exist in the literature on automatic video analysis for vehicle detection and 

tracking. For example, a double-difference operator with gradient magnitude has been used 

to detect vehicles [5]; however, it cannot easily handle interframe luminance variations. 

Optical flow techniques have been used to estimate the motion between subsequent frames 

[6]. Adaptive background subtraction algorithms have been used for vehicle detection, which 

allows changes in lighting and weather conditions [7] [8], but they usually require a priori 

information about the scene without any moving vehicles and have problems with 

occlusions. Authors of the [9] propose a vehicle tracking system which can detect and 

monitor vehicles as they break traffic lane rules. Their proposed tracking scheme is based on 

characteristics of both traffic scene and vehicle, where each vehicle is represented with four 

feature points. In addition, Lipton et al. [10] used maximum-likelihood estimation criteria 

with shape features to classify different targets into vehicles and humans. Furthermore, 

Gupte et al. [11] proposed a region-based approach to track and classify vehicles based on 

the establishment of correspondences between regions and vehicles. In addition, 3-D models 

have been previously implemented such as Sullivan [12], which recover trajectories with 

high accuracy, and classify vehicles into various types like sedan, and hatchback. However, 

this approach requires detailed geometric object models for all detected vehicles on the 

highway. Likewise, 3-D tracking algorithms based on detection of vehicles with probabilistic 

line feature grouping method such as [13] have been previously implemented. In addition, 

Kalman filter has been widely used in automatic traffic monitoring systems. For example, 

Xie et al. [14] use position and size information as state variables to track vehicle positions 
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with different set of features. Similarly, [15] uses Kalman filter for tracking vehicles 

extracted from background models. They implemented a shadow removal algorithm to 

extract the size and linearity features of vehicles for the purpose of categorizing them. 

Various methods have been suggested which manage occlusions in literature. In [16] 

authors propose to track vehicles as a set of parts to resolve partial occlusions. To fulfill the 

tracking purpose a specific segmentation method is proposed, which make use of active 

contours. The goal is to obtain parts that are the most suitable for a gradient-based tracking 

algorithm. However, presented results show only occlusions for cars that move out of the 

field of view and only for one car at a time. The authors in [17] propose a technique for 

removing outliers from the trajectories of feature points fitting a subspace and removing 

those points that have large residuals. They generate and track features through the entire 

video stream using the KLT algorithm, then apply the RANSAC method to detect trajectories 

that does not follow the rigid movement constraint. In [18] tracking is performed by template 

matching, with a probabilistic model based on a robust error norm. Matching is performed by 

finding the image region that yields the maximum likelihood with respect to the calculated 

probability distribution. Templates are matched by translation, rotation and scaling 

parameters; during occlusions, a pixel is regarded as an outlier if the measurement error 

exceeds a predefined threshold. Templates cannot be updated during occlusion, so it is 

necessary to detect when overlapping ends. This algorithm can manage complete occlusions, 

but it cannot withstand severe occlusions lasting more than 25 frames, due to wrong Kalman 

filter estimation. In [19] authors proposed an occlusion robust method based on Spatio-

Temporal Markov Random Field Model. Each frame is divided in blocks of 8 × 8 pixels and 

the feature correlation between blocks of consecutive images is performed by exploiting 

motion vectors for each block. In order to determine which object a block belongs to, a 

complex minimization problem must be solved. The authors of the [20] proposed a method 

that categorizes vehicles into specific classes by introducing a linearity feature in vehicle 
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representation. They implemented an algorithm that detects lane-dividing lines which 

enables to handle vehicle occlusions caused by shadows.

2.2 Video Analysis for Vehicle Detection and Tracking

Video cameras were first introduced to traffic management for roadway monitoring by 

transmitting closed-circuit television imagery to a human operator for interpretation. Present-

day traffic management systems utilize digital video processing to automatically analyze the 

scene of interest and extract information for traffic monitoring. A video processor typically 

consists of one or more cameras, a microprocessor-based computer for digitizing and 

analyzing the imagery, and software for interpreting the images and converting them into 

traffic flow data. The Traffic Control Center of Istanbul Municipality collects real-time 

images using a video processor system consisting of 110 cameras of various characteristics. 

Currently, all of the images are displayed at a control room and are monitored by operators to 

detect any incidents such as accidents or unexpected road conditions.

Video processors can typically classify vehicles by their length and report vehicle density 

and speed for each class and lane. Video processors that track vehicles may also have the 

capability to register turning movements and lane changes. Vehicle density and link travel 

time are potential traffic parameters that can be obtained by analyzing data from a series of 

image processors installed along a section of roadway.  

2.2.1 Vehicle Detection

In order to distinguish moving vehicles from the static background, we model the 

background scene with GMM (Gaussian Mixture Modeling) as in [21]. Each pixel color is 

modeled by a mixture of K Gaussian distributions with specified weight parameters (K is 

some number from 3 to 5) over a time interval. The weight parameter of a certain mixture is 



Chapter 2: Road and Traffic Analysis From Fixed Camera 13

the data proportion that is accounted for by the corresponding distribution. The idea for 

moving object detection lies in the wider color characteristic of moving objects due to 

different reflecting surfaces during the movement. Since steady objects form tight color 

clusters, the rule to decide whether a new pixel belongs to the background or the foreground 

is based on the variance of this pixel in comparison to the background model. That is, the 

color value of every pixel is checked to decide whether it matches the GMM or not. A pixel 

color value that is less than 2.5 standard deviations from the mean of any of the K 

distributions is decided to belong to the background. If a match occurs, then that mixture 

(weight parameter, mean and covariance) is updated with the new pixel color value; if no 

match occurs then a new mixture model is created with the mean at that pixel value and an 

initially high variance value. The Least probable (smallest weighted) distribution is replaced 

with the new model with a small weighting. 

It is important to adapt the background model to small changes such as brightness variations 

or new entries to the background. For this purpose, an online update algorithm is used. The 

probability of observing a certain pixel value for a channel (a vector for R-G-B channels, or a 

scalar value for a single Gray level channel) after t frames is given as 

  , , ,
1

( , , )
K

t i t t i t i t
i

P X w X 


   (2.1)

where wi,t  is the weighting parameter of the thi  Gaussian mixture. Here, µi,t and ∑it represent 

the mean value and covariance matrix, respectively, of the ith Gaussian distribution computed 

from ‘n’ channel pixel value history. In our implementation we set n=3. Distributions are 

ordered in descending probabilities according to their time interval in the scene. For 

background modeling, the first T among K Normal distributions are used. The number T is 

found from
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1
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n

n i
i

T w thr


  (2.2)

where the parameter thr represents the minimum portion of the data required to form a 

background model. 

Difference images are formed by subtracting the current frame from the background 

model in each channel. By thresholding each channel (difference images), three binary

channels are obtained. By intersecting these foreground images, which belong to different 

channels, a final single channel binary foreground image is obtained. Then, the foreground 

objects are detected and labeled using connected component analysis with adaptive blob size, 

where the blob size varies according to the position of the blob in the picture and imaging as 

explained below.

2.2.2 Adaptive Blob Size Fitting

For a fixed camera configuration, in imaging geometries where the road is along the z-axis of 

the camera, vehicles further away from the camera are expected to be smaller in size; hence 

are modeled by smaller blobs as shown in Figure 2.1. The adaptation of the blob size 

depends on the relative position of the camera with respect to the road. First, a mask of the 

road is extracted from vehicle trajectories to reduce the search space (Figure 2.2). This mask 

is also used to fit a cubic road equation that approximates the road curvature (for example the 

highway in Figure 2.3).

The relative road equation that is seen in Figure 2.3 is calculated from estimated center 

strip by fitting a second or higher order curve. Experimentally, we observed that a fourth

order curve equation fits better to road curvature. The road equation enables us to 

approximate the values of size threshold for vehicle detection, and parameters such as the 

relative pixel speed. These parameters can later be used to estimate traffic flow, and give 
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information about imaging geometry without having camera calibration parameters. 

Moreover, by setting an upper threshold value for blob sizes gives priori information about 

anomaly cases such as occlusion and traffic congestion. Bounding rectangles are fitted to 

each detected blob, and the centers of the rectangles are marked as the vehicle position 

(Figure 2.3).

Figure 2.1: Adaptation of blob sizes. For a fixed camera set-up, blob size of a vehicle is 

approximated using its distance from the camera position.
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Figure 2.2: Mask of the road is extracted from the vehicle positions and their trajectories.

Figure 2.3: Road equation, shown as the orange curve, is extracted from the mask of 

detection region.
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2.2.3 Vehicle Tracking

In each frame, each detected vehicle is represented with a two-state Kalman filter, based on 

the constant-velocity motion model

1 , 1

1 , 1

t t x t

t t y t

x x v T

y y v T
 

 

  

  
(2.3)

where T denotes the frame capture rate of the acquisition system. Velocities in vertical and 

horizontal directions are represented with vx and vy. Here xt and, yt denote the center of mass 

of the rectangles. The state-space model is formulated with state st and observation zt as:

1t t t

t t t

s F s G u

z H s o
    
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The process noise ut and the measurement noise ot are assumed to be uncorrelated, with zero-

mean white Gaussian distributions and corresponding covariance matrices Q and R as in 

[12]. Moreover, the rectangle center that is obtained by foreground segmentation is used as 

the observation, z, for the Kalman filter.

In order to decide if an observed vehicle position belongs to one of i) a previously 

existing vehicle, ii) a new incoming vehicle, or iii) a missing vehicle that occluded in the 

previous frames, we use the Euclidean distance between the optical flow estimate of the ith

vehicle’s center position (It,i) and the observed vehicles’ position at time t (θt). We denote 

this distance by δ(It,i, θt). Decision varies according to the vehicles’ positions in the imaging 

geometry. Since displacement would be higher for closer pixel locations, a higher threshold 

value is used for those regions.

The goal of optical flow calculation is to find the location v = u+d in the frame at time 

t+1 for an image point u = [ux uy]
T at time t, such that the windowed image regions centered 

at locations u and v, respectively It(u) and It+1(v), are “similar”. The vector d = [dx dy]
T is 

called the pixel motion or the optical flow vector at u. Similarity is defined in the mean 

square sense, and d is the vector that minimizes the residual function

    
2

1 ,,),()(  







 

xx

xx

yy

yy

wu

wux

wu

wuy
yxttyx dydxIyxIddd  (2.5)

where wx and wy  are integers that define the search neighborhood for optical flow 

calculation. For each match of observed vehicle position with optical flow estimate of an 

existing vehicle, matched vehicles’ Kalman filter is updated with the observed vehicle 

position.
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2.2.4 Occlusion Reasoning

Different cases are studied by relating observed rectangle centers with optical flow results. 

Occlusion of multi-vehicles is classified into two categories: occlusion of vehicles and split 

of occluded vehicles. In each frame, a log is used to keep track of the points, whether they 

are new observations or observations correspond to existing vehicles, including their 

occlusion status in terms of occluded frame number. Figure 2.8 and 2.9 illustrates the 

occlusion and split case consequently. The following steps are used to match an observed 

rectangle center with an existing vehicle and track them. In each frame:

1. For each optical flow estimate of vehicle center, rectangle centers are matched according 

to their Euclidean-distance δ(It,i, θt) as explained below.

a. If the distance δ(It,i, θt) is below the threshold, an exact match occurs and the current 

Kalman filter (Kt,i) is corrected with matched rectangle center (θt).

b. If the mean-square distance is above the threshold, there appears a split of an 

occluded vehicle. Kalman filter belonging to the split object is corrected with its 

prediction. In case of vehicles entering the scene, new Kalman filters are initialized at 

step 2.

c. If the distance is above the threshold and two different optical flow estimates match 

with the same rectangle center, occlusion case is valid for the objects. A new Kalman 

filter is initialized at step 2 and prediction values are used as observations for the 

occluded objects’ Kalman filter.

d. If there is no match, i.e., distance is too high for the optical flow of a vehicle (It,i), the 

vehicle’s Kalman filter is corrected with its prediction since there is not enough 

observation for the existing vehicle. 

2. A new Kalman filter is initialized for each unmatched rectangle center.
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By keeping a log table, split objects’ centers and their corresponding Kalman filters can 

be removed; also tracking for occluded vehicles for a desired frame period can be possible.  

Also for the no match case, vehicles that are no longer in the scene can be detected and it is 

possible to estimate a traffic flow from the acquired data. Figure 2.7 represents the algorithm 

result, where detected vehicles are shown by rectangles while tracked positions are shown by 

dots. Rectangle colors differ according to vehicles positioned lane. Yellow dot is used for 

tracked vehicles and blue dot for newly entered vehicle into the scene. White line indicates 

the boundary of inbound and outbound lanes for counting.

In order to count passing vehicles, we define a boundary on the image for each outbound 

and inbound lane to form a region of interest as in Figure 2.7. When we detect that the 

position of a tracked vehicle gets out of this region in terms of pixel values, the counting 

algorithm increases the vehicle count by 1 for the corresponding lane. 

2.3 Special Considerations

In order to create a robust, adaptive tracking system that can handle environmental and 

lighting changes, the proposed algorithm is tested under different video scene conditions 

such as night time and weather condition

2.3.1 Night Time 

For night time recordings, a simple modification is applied to the algorithm. To reduce 

lighting effects, a higher threshold is set for the bounding blob size and a smaller threshold is 

set for difference images (Figure 2.4).
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Figure 2.4: The white solid line represents the lower limit of the tracking boundary whereas 

yellow dots represent tracked vehicles and blue rectangles are detected vehicles.

2.3.2 Weather Conditions

The algorithm is further improved with histogram and bounding box size constraints to 

handle weather conditions such as snow accumulation. To eliminate non-vehicles, histogram 

of every detected rectangle’s background model is calculated. A vehicle or non-vehicle 

decision is made based on the intensity distribution of the background model for the 

corresponding rectangle. Moreover, height to width ratio of detected rectangles gives 

information about the classification of detected objects such as: human, truck, or small 

vehicle.  

An example can be seen in Figures 2.5 and 2.6, where the moving pedestrians are eliminated 

with the improvement in the algorithm.  
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Figure 2.5: Tracking result without any improvement.

Figure 2.6: Tracking result with histogram information. The moving pedestrians are 

eliminated
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2.4 Results

In this section we present the results from an initial investigation of the proposed algorithm’s 

effectiveness by implementing it on several video recordings taken at different time periods 

in a day.   Images of a two sided highway with resolutions 640 by 480 in Camlica, Istanbul 

are taken by a stationary camera at 2 different time periods: (CM1) beginning at 12.01 pm 

and (CM2) at 4.00 pm. The algorithm is implemented with C++ on a PC with 2.20 GHz 

speed, 2.00GB Ram, and AMD Athlon(tm) 64x2 Dual Core Processor 4200++ under 

Windows OS. In this platform our implementation processes 1000 frames in 357 seconds. 

The algorithm runs at 3 fps at real time, with the use of extracted road mask, algorithm 

improves to 9 fps. To run the algorithm in real time applications, resolution should be 

reduced to 480 by 320. In this resolution although detection and tracking are handled 

correctly, occlusion reasoning algorithm has some decision errors. In Table 2.1 we report the 

number of departing vehicles counted by the proposed algorithm, and by inspection of the 

video scenes in order to measure the effectiveness of the algorithm.

Table 2.1: Average Counts of Tracked Vehicles.

Duration of Video in 
Frames CM1(A) CM1(I) error CM2(A) CM2(I) error
1380 (1) 55-44 54-56 1-12 47-31 50-42 3-11

2760 (2) 51-65 54-66 3-1 59-65 60-60 1-5

4140 (3) 43-51 53-56 10-5 37-60 57-70 20-10

5520 (4) 31-56 34-61 3-5 57-53 61-48 4-5

6900 (5) 43-67 50-46 7-21 55-50 65-42 10-8

8280 (6) 53-43 66-52 13-9 58-56 65-46 7-10

9660 (7) 50-65 66-67 16-2 60-62 59-52 1-10

AVG 47-56 54-58 7.6-7.8 53-54 59-51 6.5-8.4

SUM 326-391 377-404 53-55 373-377 417-360 46-59

%error 14-13 11-16

Std 5.65-6.93 6.75-2.5
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Table 2.1 gives the number of vehicles departing from the scene in one minute time 

intervals. During each minute of the video 1380 frames exist. Cameras used in this work 

operate at 23 frames per second; hence each row of the table corresponds to approximately a 

one-minute time interval. In the columns, (A) represents the counts calculated by the 

algorithm and (I) represents the inspection counts. The two numbers in each column are the 

counts of the number of departing vehicles in both directions of traffic, separately. For 

example, during the time period CM1, the algorithm counted the number of vehicles 

departing in both directions during the first minute of the video and found 55 vehicles in the 

inbound lanes and 44 vehicles in the outbound lanes (Figure 2.4). 

In Figure 2.7 a sample algorithm output can be seen, where yellow dots are used for 

detected vehicles; whereas pink dots are used for tracked but not detected vehicles. Extracted 

road boundaries are drawn with red lines and the region determined with the purple lines is 

the ROI that used for tracking. Lastly, white line indicates the boundary of inbound and 

outbound lanes for counting.
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Figure 2.8: Occlusion decision. Occluded vehicles end rectangle center is represented with 

green dots. 
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Figure 2.9: Split decision. Vehicles that are split and their previous position are detected as 

white dots.  
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Chapter 3

ROAD AND TRAFFIC ANALYSIS FROM ON-BOARD VIDEO

3.1 Introduction 

In order to improve the vehicle safety, extensive studies have been implemented in collision 

avoidance, lane keeping and road departure warning, vision enhancement, driver condition 

monitoring and safety-impacting in-vehicle technology integration areas [22]. Different 

approaches are taken into consideration for describing the motion of a host vehicle for on-

board camera systems. A desirable onboard ITS system has to have some crucial features. 

First of all, it must robustly handle environmental conditions and dynamic changes, i.e. 

shadow, and illumination changes. Then, it must have a high reliability for safety 

applications, therefore it has to be robust to vehicle and camera motion, moreover in order to 

achieve real time processing, system needs faster processing.

In the third chapter of the thesis, we will develop a reliable lane-mark tracking and 

vehicle-to-vehicle distance calculation scheme that is robust to environmental conditions and 

dynamical changes. Lane-mark tracking includes the localization of the road, the 

determination of the relative position between vehicle and road, and the analysis of the 

vehicle’s motion. Vehicle-to-vehicle distance is mainly based on localizing possible vehicles 

on the host vehicle’s path. Robustness is mainly obtained by a lane-mark model with the 

global motion estimation part as an initialization step. In the remaining part of this chapter, 

we will give a brief summary of the relevant previous researches, and our contribution. 

Section 3.2 provides necessary information about the global motion estimation. Section 3.3 

describes the line detection procedure. Lane mark model creation is presented in Section 3.4. 
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Lane tracking and matching algorithm is given in Section 3.5. Section 3.6 outlines the 

decision fusion procedure, whereas in Section 3.7 system performances and obtained results 

are presented. 

3.1.1 State-of-the-Art

In ITS applications, lane detection is widely used. There have been many applications [22]-

[44] that have previously been applied in the literature for lane detection and most of them 

can be classified in to two groups for onboard camera applications.

In the first group, feature-based methods are used. This group is mainly based on the 

detection of edges as features in the image, and aggregation of these features in to 

meaningful models. Detection of edges is mainly handled by Canny edge detection. Most of 

the previous work use different gradient operators to extract edge information with the 

magnitude and orientation. Aggregation algorithms are used to combine edge features into 

meaningful lane structures. The Road Markings Analysis (ROMA) system is based on 

aggregation of the gradient direction at edge pixels in real-time [22]. To detect edges that are 

possible markings or road boundaries, it employs a contour following algorithm based on the 

range of acceptable gradient directions. Authors of the [23] implemented a lane mark 

detection system that searches pre-defined road regions for horizontal illumination changes. 

In [24], detection and classification of the lanes are obtained by frequency analysis, where

the lane mark type is recognized by Fourier analysis. 

In general, feature driven approaches are highly dependent on the methods used to extract 

features and they suffer from noise effects and irrelevant feature structures. Often in practice 

the strongest edges are not the road edges, so that the detected edges do not necessarily fit a 

straight-line or a smoothly varying model. Shadow edges can appear quite strong, highly 

affecting the line tracking approach. Unlike model-based methods, it is difficult to apply 
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statistical techniques for lane tracking. However all the characteristics that are present in the 

image are subject to found.

The second group is the model-based methods. In this group, deformable templates are 

used to describe a scene with a set of parameters that fits to the scene model. The road 

boulders and lane markings are often approximated by circular arcs on a flat-ground plane.

The authors of the [25] and [26] use a spline-based model that describes the perspective 

effect of parallel lines, considering simultaneously both-side borders of the road lane.  For 

small to moderate curvatures, a circular arc is approximated by a second-order parabola, 

where parameters have to be estimated. The estimation can be performed on the image plane 

[27] or on the ground plane [28] after the appropriate perspective mapping. An extension of 

the work in [27] is applied detecting arrow signs [29], where the hyperbola-pair lane 

boundary model is used. The 3D model of the road can also be used in modeling the road 

parameters through differential equations that relate motion with spatial changes. Such 

approaches using state variable estimation (Kalman filtering) are developed in [30], where 

the road model consists of skeletal lines pieced together from clothoids (i.e. arcs with 

constant curvature change over their run length). A vehicle elimination method is defined in 

[31], where color information is used to extract lane marks, and size, motion, and shape 

information is used to robustly detect lane marks in the presence of a similar colored vehicle 

as the lane mark.  

Model-driven approaches provide powerful means for the analysis of road edges and 

markings. Their main advantage is that the lane can be tracked with a statistical technique, 

thus, false detections are almost completely avoided. However, the use of a model has certain 

drawbacks, such as the difficulty in choosing and maintaining an appropriate model for the 

road structure, the inefficiency in matching complex road structures and the high 

computational complexity. Comparison of various lane-position detection and tracking 

techniques can be seen in Table 3.1 obtained from [32].
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Moreover, there is a division between methods that treat the lane boundaries as straight 

lines and methods that consider them as more general curves [33], especially parabolic 

curves, approximating circular arcs, using a deformable template approach. Both methods 

assume a parabolic curve in the 3D world. The advantage of assuming a parabolic curve on 

the road plane rather than in the image plane is that in the Euclidean world, one can assume 

that all parabolic lane boundaries in the ground plane have approximately the same curvature 

and have parallel tangents at their x intercepts. The main problem with such an approach is 

that usually the lane boundary seems to be almost linear at the lower part of the image, and 

there is only a relatively small area below the horizon where the lane seems to be curved. 

However, as the image curve is inversely proportional to the z-coordinate, it is clear that the 

area near the horizon is more sensitive to noise. An alternative approach would be to detect 

the parabolic curves directly on the image plane. However, in such a case, one needs to solve 

simultaneously for three independent parameters.

Object detection applications have already been investigated in many of the previous

works. Different approaches have been implemented according to the isolation method used 

to extract the moving object from background region. One of the most popular used

approaches in object detection is the edge based detection [35]-[42]. In [35], this edge 

detection is applied to single images to detect the edge structure of even still vehicles. Also, 

morphological edge-detection algorithms are used in [36] for their superior performance. 

Alternatively, the edges can be grouped together to form the vehicle’s boundary as in [37] 

and [38]. The algorithm must identify relevant features (often line segments) and define a 

grouping strategy that allows the identification of feature sets, each of which may correspond 

to an object of interest (e.g. potential vehicle or road obstacle). Authors of [39] define a 

system that is based on the search for areas with a high vertical symmetry in multi-resolution 

images; symmetry is computed using different sized boxes centered on all the columns of the 

interest areas. All the columns with high symmetry are analyzed to get the width of detected 

objects. Horizontal edges are examined to find the base of the vehicle in the individuated 
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area. The aim is to find horizontal lines located below an area with sufficient amount of 

edges. To improve the shape of object regions [40] and [41] employ the Hough transform to 

extract consistent contour lines and morphological operations to restore small breaks on the 

detected contours. In [42], they use color information and shape features based on edges in 

three directions (horizontal, vertical and diagonal), they build statistical models of vehicle 

appearance in each feature space. Then, the potential target location is found in each feature 

space using the mean-shift algorithm.
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Table 3.1: Comparison of various lane-position detection and tracking techniques.
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3.2 Global Motion Estimation

In dynamic scene analysis, the use of motion models has been proven efficient and 

convenient in applications such as optic flow computation, motion segmentation, detection of 

independent moving objects, object tracking, or camera motion estimation. To analyse the 

dynamic content of the scene, it is important to correctly segment moving objects according 

to their motion characteristics. In the case of static camera, different algorithms have been 

efficiently implemented; however in all the works, the solution is devoted to the rather 

simple situation of a static camera. It may even be reduced to intensity temporal change 

detection. Hence, in a mobile camera configuration, every pixel may have experience a 

global motion, a resulted non-compensated background model by [21] would not be adequate 

or a calculated motion vector field as in [44] would be more complex to classify the moving 

region. Therefore mentioned algorithms can not be used for mobile camera configuration.

Moreover, to detect the moving objects it there are several requirements. Firstly, the 

distinction between apparent motion which only depends on movement of the camera should 

be determined. Secondly, apparent motion, arises from the relative movement of an 

independently moving object should be determined. In other words, first it is necessary to 

recover the motion due to camera movement as a global motion, then, to perform detection 

and tracking. Additionally, in order to consider the dominant motion as the 2D motion due to 

camera movement, it has to be assumed that the projections of the static components of the 

scene occupy the main part of the image (with the additional condition that they supply 

image spatial intensity gradient information [45]), and the projections of moving objects 

occupy only a minor part of the image [46]. Moreover, in the global motion model, one of 

the following assumptions is expected to hold. Either the camera is only rotating, or the 

depth variation in the scene is limited compared to the distance between camera and objects, 

or the visible surfaces of the static world are approximately located in the same 3D plane 

such as the planar road in our case. In these cases, it can be assumed that the 2D apparent 
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motion (due to camera motion) of the static background can be modeled by a 2D parametric 

motion model and can be considered as the dominant motion. Such a motion model is 

estimated from frame to frame, and then used in a warping procedure to compute a 

compensated sequence in which the background is supposed to appear as static. Thus, non-

static regions in this sequence can be considered as moving objects.

In this study, to cancel the effect of camera motion on moving objects’ apparent motion, 

a parametric motion model that can estimate global motion under global illumination 

changes that implemented in [47] is used. To model the global motion Motion2D, which is a 

multi-platform object-oriented library, is used.

3.2.1 Motion Model

The parametric motion model can be represented with a matrix notation which is linear with 

respect to the n motion parameters. 

   
    .A

u p
V p B p A

v p

 
  
 

(3.1)  

where p is an image position (x, y) of a point, VA(p) is the flow vector at point p, B is a 

matrix whose form depends on the selected parametric motion model, and lastly A is the 

motion parameter vector that defines the dominant motion of the whole image.

In this study, since affine motion parameters efficiently define motion, and are occasion 

of low level complexity, 6-parameter affine model is used. This model can cover several

kinds of motion such as translation, rotation, scaling, and deformation. It is defined at pixel p 

= (x, y) as:
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 
 

1 2 3

4 5 6

.
u p a a x a y

v p a a x a y

    
      

(3.2)

In this model

  1 0 0 0
,

0 0 0 1

x y
B p

x y

 
  
 

and

 1 2 3 4 5 6 .
T

A a a a a a a

For each point p, instantaneous temporal variation of the intensity of the moving 

projected point along its planar trajectory S (p,t), in other words, total derivative of intensity 

function I is calculated. 

   , , .
dI

S p t p t
dt

 (3.3)

This equation can be rewritable partially with respect to spatial gradient  ,t
x yI I I 


, 

temporal derivative (It) of the intensity function, and  ,tV dx dt dy dt


flow vector 

function. 

         , , , , , .t

dI
S p t p t V p t I p t I p t

dt
   

 
(3.4)
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Normally, one expects the total derivative of intensity function, S(p,t),  to be equal to 0, 

however considering the global illumination changes, S(p,t) is set to a constant, therefore  a 

new variable is introduced to model, and Equation 3.3 becomes,

   , , .
dI

S p t p t
dt

   (3.5)

Applying this equation to 3.4 and calling it the residual function, ri, yields

       , , , ,i tr V p t I p t I p t S p t   
 

(3.6)

            x y tI p u p I p v p I p     (3.7)

Finally replacing V


with AV


 result in

,ir    (3.8)

where

 
 

       

,

, ( ), ,1 .

t t

t

t

x y

A

I p and

p I p I p I p B p



 

  

 

  

(3.9)
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To estimate parameter , error (square of residual) function

   22
i

p W p W

E r  
 

     (3.10)

 is minimized according to , where W denotes the whole image in our case since our aim is 

to detect moving objects. For tracking purposes a ROI can be defined around the moving 

objects.

  .ˆ arg min E


   (3.11)

3.2.2 Robust Multiresolution Estimation

Since displacement of point p is given as 

 . ,Ap V p t   (3.12)

if the time interval between successive frames is taken 1, then displacement of the point p is 

equal to flow vector  AV p  at point p. When the displacements between two frames are too 

large, the motion constraint equation (3.7) is no longer valid. The use of multiresolution 

algorithm enables to handle such large motions. Consider the model based displaced frame 

difference:

( ) ( ( ). , 1) ( , )DFD p I p B p A t I p t      (3.13) 

To estimate the dominant motion model between successive images It and It+1, a robust 

gradient based multiresolution estimation [47] is used. For robustness, M-estimation criterion
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[49] with a hard-redescending estimator is applied. The goal of the robust estimation is to 

find the parameter set ̂which best fits the model M(p, ) to observations Y, when data X

deviates from the statistical error distribution, meaning when data X is outlier. Thus, the 

estimated parameter vector is given by:

     ,ˆ arg min arg min
tp W

DFD p CE  



 

    (3.14)

where the error measure E is formulated as:

    , ,
tp W

DFD p CE  


  (3.15)

and  x is the Tukey, Talwar, Cauchy or Welsh biweight function which is bounded for high 

values of x and C is a scale parameter to be set. Since our aim is to detect the moving objects, 

the estimation support Wt consists of the whole image. The minimization is embedded in a 

multiresolution and incremental scheme based on the Gauss-Newton method. At each 

incremental step k (at a given resolution level, or from a resolution level to a finer one), we 

have:

ˆ
k k    (3.16)

which also implies that

ˆ
k kA A A   (3.17)

ˆ
k    (3.18)
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here ˆ
k is the current estimate of the parameter vector .  Then, a linearization of  DFD p

around ˆ
k is performed, leading a residual function  

k
r p  which is linear with respect 

to k :

     1 1ˆ ˆ
ˆ( ) . ( ) ( ) ( )

kk kk
t k t t kA AAr p I p V p V p I p V p I p          

   
(3.19)

where  1tI p


 represents the spatial gradient of the intensity function I at image position at 

point p, and at time t+1. At each step, the increment value k is estimated by minimizing 

the error function 

    , .
t

kk
p W

E r p C 


   (3.20)

Since residual function defined in Equation 3.19 is linear with increment value k , 

applying iteratively reweighted least squares (IRLS) method to Equation 3.20

straightforwardly manner will result to convert this M-estimation problem into an equivalent 

weighted least-squares problem. Since, ˆ
k can not be too far from the solution, 0 can be 

taken as an initial value for the increment value k . As a result, minimization of   E 

becomes minimization of Equation 3.20 which is equivalent to minimizing of

   2. ,
k

t

k i
p W

E w r p


   (2.21)

where

  
 

.k

k

i

r p
w

r p

 


 (2.22)
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 This estimation procedure allows getting a robust and accurate estimation of the 

dominant motion model between two images as seen in Figure 3.1.c, and in our case as

background apparent motion. Estimating global motion is the initialization step for the 

subsequent steps.

One way of obtaining moving regions in a dynamic camera setup is to threshold the 

motion estimation error. By taking absolute frame difference of current processing image 

with the back-warped image that obtained from global motion estimation and by thresholding 

them, we labeled moving regions of the scene according to dominant motion (i.e. background 

apparent motion) as shown in Figure 3.2. Thresholding is handled in mean sense, that is to 

say, for every pixel, mean of the 3x3 matrix which is centered at the pixel is subtracted to 

decide whether the pixel belongs to the background apparent motion or not. The benefit of 

using local thresholding in mean sense instead of global thresholding is to reduce the global 

motion estimation errors. Since global motion estimation uses bilinear interpolation, at strong 

edge regions some errors occur due to the compensation. Therefore, using local thresholding 

in mean sense instead of using global version helps to reduce this effect. Morphological 

operations are applied to connect and extend the moving regions.  By applying a connected 

component algorithm with a minimum size constraint and a polynomial fitting algorithm 

[50], these moving regions are approximates to polygonal curves as seen in Figure 3.3. This 

helps us to represent moving regions parametrically rather than as an image mask. To 

initialize a ‘Region of Interest’ (ROI), and lane mark model parameters we assume that the 

road lays complementary part of this moving region which satisfies the lane mark model 

constraints defined in Section 3.4.2. 
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Figure 3.1:

a) top left: frame at t, b) top right: frame at t+1, and c) bottom: back-warped image.
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Figure3.2: Thresholding in local mean sense.

Figure 3.3: Approximation of global motion regions to polynomial curves.
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3.3 Line Detection

Line detection is a multi-step procedure that performs consecutive application of Canny edge

detection [51] and Hough transform [52]. Strong edges are determined by Canny edge 

detection method, and then they are used to look for line segments which exist in the whole 

image by Hough transform. 

3.3.1 Canny Edge Detection

The aim of the Canny operator can be stated as good detection (ability to find all edges), 

good localization (minimal error while positioning edges), and single response for a single 

edge. To fulfill these objectives, the edge detection process can be summarized as the 

following stages.

 We want to find the maxima of the partial derivative of the image function I

in the direction orthogonal to the edge direction, and to smooth the signal along the 

edge direction. Thus Canny's operator looks for the maxima of 

  
2

2
, ( , ) ,G x y I x y

n





(3.23)

where,

,
G I

n
G I

 

 

(3.24)

and
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2 2

22

1
exp

22

x y
G 

 
  

 
(3.25)

However, many implementations of the Canny edge detector in fact approximate 

this process firstly by convolving the image with a Gaussian to smooth the signal, and 

then looking for maxima in the first partial derivatives of the resulting signal (using 

masks similar to the Sobel masks). Thus we can convolve the image with 4 masks, 

looking for horizontal, vertical and diagonal edges. The direction producing the 

largest result at each pixel point is marked. Record the convolution result and the 

direction of the edge at each pixel. 

 Perform non-maximal suppression. Any gradient value that is not a local peak 

is set to zero. The edge direction is used in this process.

 Threshold these edges to eliminate `insignificant' edges. Canny introduced the 

idea of thresholding hysteresis. This involves having two different threshold values, 

usually the higher threshold being 3 times the lower. Any pixel in an edge list that has 

a gradient greater than the higher threshold value is classed as a valid edge point. Any 

pixels connected to these valid edge points that have a gradient value above the lower 

threshold value are also classed as edge points. That is, once you have started an edge 

you do not stop it until the gradient on the edge has dropped considerably.

The result of the Canny edge detection algorithm can be seen in Figure 3.5. 

3.3.2 Hough Transform

The Hough transform is a standard tool in image analysis which allows recognition of global 

patterns in an image space by recognition of local patterns (ideally a point) in a transformed 

parameter space. The basic idea of this technique is to find curves that can be parameterized 

like straight lines, polynomials, circles, etc., in a suitable parameter space. Duda and Hart
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[53] suggested a more convenient way of representing lines, where they use parametric 

notation. With the length  , and the orientation of   with respect to x-axis  all lines can be 

represented as:

   cos sinx y    (3.26)

By using the Equation 3.26, mapping all the points on the line in Cartesian coordinate 

system to polar Hough parameter system results in curves that intersects at a specific polar 

coordinate   and  . This point to curve mapping is Hough transformation for lines. 

Representations of a line in Cartesian coordinate and Hough parameter systems can be seen 

in 3.4.a-b respectively.

Mapped coordinates are recorded in a two-dimensional histogram. The higher count 

number for a specific bin in this two-dimensional histogram states that, there exists a line 

whose parameters are   and   that corresponds to the counted bin. To set line length, and to 

determine end points of the line a search algorithm, which runs from an edge-image pixel to 

each direction along the found line, is implemented. The contribution of all counts from 

detected line to two-dimensional histogram is excluded, and the end point selection 

algorithm runs for other line segments. To reduce search space, [54] introduced a 

probabilistic Hough transform method that processes only a proportion of the pixels in the 

edge image. A trade off in the Hough transform is complexity and validity. To reduce 

complexity probabilistic Hough transform is used. To obtain more valid lines (i.e. no gaps 

along the line segment) an algorithm runs at the preprocessing step that combine or separate 

detected lines, and a smaller angle ( ) and a distance (  ) resolution is set. In Figure 3.6, 

detected lines are plotted on the real image with white lines. 
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

    






  

 

Figure 3.4: a) 3 points on a straight line in the original coordinate plane.

b) 3 curves in the polar Hough parameter plane coinciding at the line parameters ( 0 )

and (  ).

(a)

(b)
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Figure 3.5: Result of the Canny Edge Detection

Figure 3.6: Result of the Hough Transform
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3.4 Line Aggregation and Lane Mark Model

3.4.1 Line Aggregation

To track robustly the detected lanes, a preprocessing step in each frame is needed. The 

purpose of this step is to select the possible lines lying in the ROI determined by the lane 

mark model parameters which is initialized at the global motion estimation step. Other than 

ROI, a slope constraint is set, such that the lines having a range of angle from 25 to 85 

degrees with the x-axis are processed for the lane mark model. Additionally, to reduce 

combination errors occurred at the line detection step (3.3.2), a classification algorithm that 

combine or separate interacted lines in the ROI according to lines’ positions and alignments 

is implemented at this preprocessing step. Due to imaging geometry, distance vectors having 

same magnitudes may imply two different cases. As shown in Figure 3.7, a distance vector 

( 1,2d


) positioned at a higher z-coordinate position may imply two distinct lines belonging to 

two consecutive collinear lanes, whereas a distance vector at a lower coordinate position 

( 2,3d


)implies that it can be resulted from the same line in a lane mark due to edge detection 

errors. For this purpose an adaptive decision algorithm is implemented such that distance 

vectors between consecutive lines having similar slopes are calculated, and  the change in the 

magnitude of these vectors are parameterized with respect to the vectors’  positions (  ,x yP ). 

To parameterize this change a second order polynomial is fitted in a similar way that 

previously applied in Section 2.2.1.1. Distance vector’s position is assumed as the mid-point 

of consecutive lines’ end and start positions: 

 
, , , ,

,

-
, ,

2 2
i S j E i S j E

i j

x x y y
P

 
  
 

(2.27)
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where i  and j  are the interacted lines, and are assumed to be lined up at an increasing z-

direction orientation while deciding lines’ start and end points.  

Figure 3.7: Line aggregation algorithm is based on the position of the distance vectors.

1  represents the first line, and 1,2d represents the distance vector between the first and 

second lines.

z-direction

 1S 1,Sx , y

 2,E 2,Ex , y



2,3d


1,2d

 2,S 2,Sx , y

1

2

3

 3,E 3,Ex , y
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3.4.2 Lane Mark Model

In order to robustly track lanes, a lane mark model based on relative positions of interacted 

lines is defined. This model is based on that, two lines having similar geometrical 

characteristics, i.e. slope, length, can form a lane mark. First, lines having same slope signs 

and meaningful shift vectors are compared. Then, triangular inequality criterion is used to 

form lanes.

To find the magnitude of the shift vector 


 between parallel (or nearly parallel) lines we 

used point to line distance where it is given as:

0 0
2

.
.

1

a x b y

a


 





(2.28)

where, ‘a’ is the slope of the line, ‘b’ is the line constant parameter, ‘ v


’ is the line 

normal, and  0 0,x y is the coordinate of the point.    

Figure 3.8: Point to line distance.

Distance between lines ‘end’ and ‘start’ positions is calculated for each interacted lines. 

The condition to decide whether two lines form a lane mark or they are consecutive lines 

y = ax+b

 0 0x , y

v



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belonging to consecutive lanes is their lengths. As represented in the left side of the Figure 

3.9, it is expected that the lines in a lane mark obey the triangular inequality, such that:

2 3 2,3 ,l l D 
  

(2.29)

and the lines belonging to consecutive lanes do not obey the above inequality, such that:

1 3 1,3 .l l D 
  

(2.30)

In this equation il


 represents the length of the ith line ‘ i ’, and i,j


D  represents the 

distance between the end-point of ith line and the start-point of jth line. 

Obtained lanes are represented with its center line and this line’s slope. Center line is 

calculated from the side (left and right) lines by averaging line coordinates. 
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3.5 Lane Mark Tracking and Matching

The purpose of the previous section is to obtain lanes that satisfy lane mark constraints in 

each frame. Tracking of these lanes is essential to describe the motion of the host vehicle and 

easier than the tracking of arbitrary lines that scatter across the image. 

For each lane marks in the left and right sides of the road, four Kalman filters is 

initialized for the corners of the lane marks in a similar way that explained in Chapter1. Each 

lane mark is tracked with their left and right (end, start) points as shown in Figure 3.10. This 

way, a robust tracking system that can handle unwanted cases such as, temporary changes or 

errors due to misclassification or noise is being implemented.

In each frame, matching is based on the lane mark centers C Cx , y of the predicted lane 

mark with the observed lane mark for each side of the road. Matched lanes’ parameters, i.e. 

left and right (start, end) points, are updated, and other parameters are recalculated, i.e. lane 

slope. Finally, Kalman filters of unmatched lanes are updated with their prediction values. 

Figure 3.10: Lane mark model. Each lane mark is composed of 2 similar, i.e. slope, and 

length, line and represented with their mean values. 

 L,S L,Sx , y

 L,E L,Ex , y  R,E R,Ex , y

 R,S R,Sx , y

 C Cx , y
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3.6 Decision Fusion 

Tracking lanes in both sides of the road gives some important information about the scene 

and motion. First, relative motion of a vehicle can be estimated from the lane mark model 

parameters, i.e. overtake. Second, the relative distance of a vehicle to left or right lane mark 

can be calculated from the lane mark angles with respect to x-axis. For a non-rotating camera 

setup where camera is mounted nearly at the center of vehicle width (or mounted at a known 

position), it is possible to estimate the position of a vehicle by comparing image center with 

the estimated road center along the x-axis. Also, relative position of the vehicle on the road 

can be determined from the lane mark lengths. A higher length value for the right lane mark 

implies that vehicle is traveling at the nearest lane to the road boundary. Moreover, to reduce 

search space, a ‘Tracking Zone’ (TZ) is created by intersecting the ROI with the area that lies 

between left and right lanes. Lastly, vehicle-to-vehicle distance is calculated by founding the 

nearest lines that belongs to the TZ, by searching from the bottom of the image to vanishing 

point (intersection point of lanes). 

Two modes are created to analysis vehicle motion: i) in-lane mode and, ii) overtake 

mode. In the in-lane mode, vehicle to vehicle distance is processing, and in each frame, it is 

checked that whether overtake mode is started or not. Vehicle to vehicle distance is 

implemented in this mode. In the overtake mode, vehicle motion is defined according to lane 

mark slopes, and checked whether end of overtake is reached or not.
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Figure 3.11: Vehicle to vehicle distance is performed through the z-axis.
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3.6.1 In-Lane Mode

In this mode, vehicle to vehicle distance is calculated by weighted line count for a floating 

box that scans the TZ of image through the z-direction. Since it is expected to obtain more 

edges at more textured regions, counting of parallel lines with respect to lateral in the ROI 

gives information about transition from road (relatively more flat, end constant intensity 

region) to vehicle. To eliminate the effect of unexpected edge occurrences along the z-

direction in the TZ, count of the vehicles is weighted for the ith box with a weighting

parameter wi where

1
.i

iL iR

w
x x




(3.31)

Here iLx and iRx represents the left and right coordinates of the TZ for the ith box 

location. By weighting the counts with a higher weight parameter, small line occurrences are 

not taken into account. 

3.6.2 Passing Mode

This mode is used to decide when the vehicle starts to overtake, and when it finishes passing. 

To do such a work, after initialization with global motion estimation, the slopes of left and 

right lanes are recorded. By comparing lane mark slopes in each frame with the initial slope, 

whether a vehicle is traveling between the lanes (in-lane mode) or passing, can be 

determined. Start of left-passing is set to ‘+’10 degrees of difference between initial left 

slope with the left lane mark’s slope. Similarly, end of left-passing is found if the angle 

difference is smaller than 5 degrees. On the contrary, for right-passing same procedure is 

applied for a difference sign taken as ‘-’. 
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3.7 Results

Images of a high way with 3 lanes in Istanbul are used to test proposed algorithm. Images 

were obtained using an onboard camera with input image resolutions of 640 by 480. 

Algorithms are implemented in C++, and experiments are conducted on a PC with AMD 

Athlon(tm) 64x2 Dual Core Processor 4200++ , 2.20 GHz speed, and 2.00 GB Ram under 

Windows OS. Under these conditions, implementation process 300 frames over 33 seconds. 

In the experimental studies, test criterions are set to vehicle to vehicle distance, and host

vehicle positioning. Test set is composed of 250 frames, and 150 of them are detected as in

passing mode. The rest are labeled as in-lane mode, and vehicle to vehicle distance is 

calculated on these images.

3.7.1 Vehicle to vehicle distance calculation

Since counting with floating box is performed for fixed segments along z-direction, distance 

is measured in multiples of 10 pixels. The leading vehicle is detected by observing the first 

floating box whose corresponding line count is higher than an occupancy threshold. Search 

for such a box is performed from the bottom of the image to vanishing point in TZ as 

mentioned in Section 3.6.1. Table 3.2 presents the calculated distance errors in box segments 

with respect to inspection values. Numbers in the columns indicate the displacement errors, 

and signs represent the direction of these errors, i.e. ‘-1’ indicates, an estimation error of 1 

segment (10 pixel) nearer from the leading vehicle. Increase in the error is mostly resulted 

from line detection step. Previously mentioned assumption in Section 3.6.1 - increase in edge 

numbers at transition from road to vehicle along the z-direction, is not satisfied for these 

frames. ‘+’ error for 2 and 3 is mostly resulted from failure of this assumption. Algorithm 

founds a further floating box instead of the inspected one.
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Table 3.2: Distance calculation performance of the proposed algorithm.

Distance From the Inspection Values

Total Frame 

Number
Exact match

1

+           -

2

+           -

3

+            -

99 76 8 8 4 - 3 -

3.7.2 Decision of Passing and Vehicle Localization

To obtain the relative position of the host vehicle on the image, positions of the left and right 

lanes are used over 100 frames. Since camera parameters are not present, rather than real 

position, relative position of the estimated road center is compared with the inspection 

values. The root mean square error (RMSE) of a frame sequence, consisting of 45 frames in 

in-lane mode, is found as 8,0854 pixels, whereas  with the addition of 55 frames in passing 

mode this error increase to 12,003 pixels. Here, the RMSE is taken as:

 
RMSE( )

n

i i
i=1

x y

x, y =
n


(3.32)

where the observation count n is taken as 45 and 100 for the two RMSE calculation and the 

estimated lane mark position x, and inspection values y are represented as

1
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Figure 3.12: Result of the distance algorithm. Yellow line indicates the leading vehicle 

position, where green lines indicate the founded horizontal lines in the TZ.

In Figure 3.13, in order to visualize the position of the host vehicle, a horizontal magenta 

bar having a length of the estimated road width at that location is placed at the bottom of the 

image. Centers of the road and image are marked with red and green dots consecutively. To 

set a reference, initial position of the road center is represented with a black line. Green dot 

above the image represents the mode, i.e. green for in-lane, red for passing. 
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Figure 3.13: Frame number 43.

 Initial frame of the sequence is shown in Figure 3.14, and overall algorithm results are 

shown in Figure 3.15, where yellow and red lines are right and left lane mark’s boundaries 

consequently, and black line between them represents the lane mark model. Red dot at the 

top of the image shows the passing mode, and black dot represents the side of the passing, 

i.e. ‘left’ or ‘right’. For the below example, passing is ‘left’.   
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Figure 3.15:

a) Frame 43, before the start of passing

b) Frame 44, the start of passing.
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Chapter 4

CONCLUSION

In both traffic monitoring, and automatic driver warning systems, mainly two major tasks of 

perception is pointed: i) estimation of the road geometry and ii) vehicle and obstacle 

detection. In the traffic monitoring systems, different methods have been proposed in the 

previous studies, but there have been few studies considering the road geometry as in this 

thesis. Temporal frame differencing and background modeling algorithms are implemented 

for foreground extraction in the literature. Although temporal differencing algorithms are 

well suited real-time applications, most of the previous implemented applications use 

probabilistic models to the model background. The reason for this choice is that adaptation to 

environmental changes such as illumination variations is necessary for outdoor applications. 

As a result, the second point to question is the trade off between the computational 

complexity and efficiency of the model used in the detection systems. Another important 

issue is the feature dependency of the proposed algorithms, where nearly all model based 

application proposed in literature based on the valid feature selection. Image oriented, 

discriminant and reliable feature sets such as texture, color, edge, etc.., are extensively used 

in the detection and tracking systems to analyse the scene. Previously proposed systems 

handle most of the problems such as occlusion. However, most of them are implemented for 

close-up recordings.

After considering the outlined issues above, in this study we performed a feasibility study 

of a road monitoring system where adaptive bounding box size is used to detect and track 

vehicles according to their estimated distance from the camera. Automatically detected road 
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mask is used to improve system performance, and an occlusion reasoning algorithm is 

implemented based on the vehicle motion. The cameras used in this study are positioned at a 

high location which enables a good view of the road; however it is not sufficient to 

implement a model-based recognition algorithm for the objects on the road due to the low 

quality of videos.

 Another crucial issue that we mainly focused in this thesis study is the system 

performance under different environmental conditions such as night time recordings and 

snowy weather. Firstly, video recordings including different time intervals in a day are used 

to test overall system performance. Secondly, night time images are used to test under

extreme illumination variations, and snowy surrounding images are used for detection under 

different weather conditions.  It has to be noted that cameras used in this work operate 23 

frames per second and our overall performance is tested for 7 minutes of video recordings 

that are taken at 2 different time periods, and image resolution is 640 by 480. Winter 

recordings are obtained from the web site of “The Fakultät für Informatik”. Video resolution 

used in the weather condition tests is 768 by 576 and frame rate is 30 frame-per-seconds. 

The results we obtained in this study illustrate that, the implemented algorithm works 

robustly under different environmental conditions, and proposed bounding size strategy fit 

the vehicles well for monitoring applications. However, it is seen that, the tracking algorithm 

underestimates the count of the vehicles in general; the intuition behind this fact is that for 

long durations occluded vehicles are assigned as a single vehicle. By extending the tracking 

time of vehicles, these results can be further improved. The reason for the high difference in 

algorithm and inspection results at 5th and 7th intervals of CM1 is due to the environment 

conditions. The proposed algorithm is implemented for stationary setups but cameras are 

affected from environmental factors such as wind. Moreover, since proposed model forces to 

assign a Kalman filter to every new bounding box (rectangle) and keeps the other objects’ 

Kalman filters, problems with tracking mostly occur due to foreground segmentation. For 

example, in over 4500 frames there are only 4 tracking errors due to the nature of the 
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adaptive bounding box size in CM1; small objects in high threshold regions are omitted 

while implementing connected-component analysis. On the other hand, 29 vehicles’ tracking 

is lost only in the left lane of the highway in 4500 frames in CM2. This is the result of 

assigning foreground regions to background due to the high similarity between the objects 

and the background modeling for low quality images. Moreover, counting strategy needs 

modifications, since false detections yield the estimated count values higher than the original 

inspection values in some intervals. To prevent this shortcoming, counting can be performed 

for the whole image or in a large box, rather than a small region. But this approach requires 

the knowledge of counted vehicles history, since counted vehicles must be excluded from the 

total count to prevent recount. Because every vehicle is assigned with a Kalman filter, the 

tracking of a vehicle along the road is possible for the proposed algorithm, but tracking and 

recording the history of all vehicles in a scene will increase the computational complexity.

To reduce the computational complexity, extracted road mask is used to determine 

modeling region. Addition of the road mask improves the speed of the system by a multiple 

of three (9 fps). Moreover, by reducing the resolution to 480x320, we obtain near real time 

operation (22 fps), but there occurs some errors in occlusion reasoning algorithm at this 

resolution.

In the third chapter of the thesis, we try to point out the trade off between the two major 

methods, feature and model based, which are commonly used in automatic driver warning 

applications. To compensate feature extraction errors, an innovative two-step aggregation 

method that reduces the false detections is proposed in our study. The first step is the reliable 

aggregation of lines into meaningful lane components. Then the second step aggregation is 

used for lane mark formation. Moreover, a partial tracking approach is followed for host 

vehicle motion analyse, where lane markings are tracked rather than the whole lane. Lastly, a 

new initialization step is proposed in this work that eliminates the global motion to detect 

planar regions on the scene. We assume that the road is planar, and belongs to the global 

motion estimated region.    
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To test the proposed automatic warning application, a video data base obtained for drive-

safe [55] applications is used. In our study, video sequence composed of 250 frames is used 

to validate the proposed system. Processed video is recorded at 29 fps, and having resolution 

640 by 480. Test criteria are the relative distance of the inspected road center to algorithm 

result.  Proposed algorithm operates in image plane and the distances are calculated in pixels. 

Calculations based on the relative distances. Moreover, we assume that the error in road 

center estimation is proportional to the error in vehicle localization. The RMSE of the 

proposed algorithm is calculated for both in-lane and passing mode. The results show that 

proposed algorithm can also estimate the position of the vehicle with in a % 1.25 error

margin. In order to represent camera orientation, initial position of the estimated road center 

is marked with black color in Figure 3.13. Further improvements can be made on the 

proposed system with the introduction of camera parameters, where yaw and pitch angle can 

be considered, too. 

Proposed driver warning system could not be used for real time applications currently. 

Therefore, to reduce the computational complexity, single frame approach is maintained. 

Despite the correctly performed detection, tracking errors occur due to the constant velocity 

assumption used in Kalman filter states. Constant acceleration model is used for state 

variables to prevent this problem, however the tracking errors were observed in this model, 

too. With the introduction of camera parameters, proposed warning system can be 

implemented for the two planes accordingly. Thence, robust detection can be performed in 

the image plane, and a more adaptive tracking can be performed in the road plane. Also using 

constant acceleration model with the speed data that is obtained by the tachometer enables 

more accurate tracking of lane marks. These are the issues should be further investigated.   

After the localization test, another test is applied for the vehicle to vehicle distance 

calculation on the proposed system. In this test, a host vehicle traveling between the lanes is 

tracked for 100 frames, and distance between the host and targeted vehicle is calculated. 

Then, algorithm results are compared with the inspection values. Since the proposed method 



Chapter 4: Conclusion 68

calculates the distance in terms of segments, results are tabulated with respect to error in 

segment numbers. It is seen from the test that the algorithm tends to make (+) errors; 

meaning estimated vehicle position is further away from the targeted vehicle. The reason of 

obtaining (+) error is mainly due to the line detection inaccuracy. Although algorithm 

directed to find more edges and lines by setting a smaller resolution at edge detection step, 

and using smaller accumulator threshold for Hough transform consequently, the observation 

is not sufficient at the road to vehicle transition. To prevent this shortcoming, algorithm can 

be extended to a more complex one by adding new features, such as histograms. One 

possible solution is the histogram calculation in the floating box. Since flat road assumption 

is valid contemporarily, the histogram information can be used to detect road to vehicle 

transitions by detecting peak values in the histogram of the box. 
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