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ABSTRACT

The structure and dynamics of a typical biological system are complex due to strong

and inhomogeneous interactions between its constituents. The investigation of such systems

with classical mathematical tools, such as differential equations for their dynamics, is not

always suitable. The graph theoretical models may serve as a rough but powerful tool in

such cases.

In this thesis, I first consider the network modeling for the representation of the biological

systems. Both the topological and dynamical investigation tools are developed and applied

to the various model networks. In particular, the attractor features’ scaling with system

size and distributions are explored for model networks. Moreover, the theoretical robustness

expressions are discussed and computational studies are done for confirmation.

The main biological research in this thesis is to investigate the transcriptional regulation

of gene expression with synchronously and deterministically updated Boolean network mod-

els. I explore the attractor structure and the robustness of the known interaction network of

the yeast, Saccharomyces Cerevisiae and compare with the model networks. Furthermore, I

discuss a recent model claiming a possible root to the topology of the yeast’s gene regulation

network and investigate this model dynamically.

The thesis also included another study which investigates a relation between folding ki-

netics with a new network representation, namely, the incompatibility network of a protein’s

native structure. I showed that the conventional topological aspects of these networks are

not statistically correlated with the phi-values, for the limited data that is available.
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ÖZETÇE

Tipik bir biyolojik sistemin yapısı ve dinamiği, ögelerinin birbirleri ile homojen olmayan

ve güçlü etkileşimleri sebebiyle karmaşıktır. Dinamik incelemelerde kullanılan türevli den-

klemler gibi klasik diyebileceğimiz matematiksel yöntemler, bu tür karmaşık sistemlerin

incelenmesinde her zaman uygun olmayabilir. Çizge kuramsal modeller ise daha yüzeysel

olsa da bu tür sistemlerin incelenmesi için daha etkili bir yöntem olabilir.

Bu tezde, ilk olarak biyolojik sistemlerin sunumu için ağ modellemesi ele aldım. Topolo-

jik ve dinamik inceleme araçları geliştirilip çeşitli model ağlara uyarlandı. Özelde, model

ağlar için çekici özelliklerinin sistem büyüklüğü ile ölçeklenmesi ve dağılımları incelendi.

Ayrıca, kuramsal dayanıklılık ifadeleri tartışıllıp ve hesaplamalı olarak doğrulukları sınandı.

Bu tezdeki ana biyoloji araştırması, transkripsiyonel gen ifadesinin düzenlenmesinin

eşzamanlı ve deterministik güncellenen Boolyan ağ modeli ile incelenmesi olmuştur. Etk-

ileşim ağı bilinen maya, Saccharomices Cerevisiae’nın çekici yapısını ve dayanıklılığını in-

celedim ve model ağlar ile karşılaştırdım. Ayrıca, mayanın gen ifadesi ağının topolojik

muhtemel temellerini irdeleyen yeni bir modeli tartışdım ve bu modeli dinamik olarak in-

celedim.

Bu tezde ayrıca bir başka ağ modellenmesi olan; asıl protein yapısından elde edilen

bağdaşmaz (incompatibility) ağ ile protein kinetiğinin incelenmesi yer almaktadır. Elim-

izdeki sınırlı veri ile yapılan sınamalarda geleneksel olarak kullanılan belirli topolojik özellikler

ile fi-değerleri arasında bağıntı olmadığını gösterdim.
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PROLOGUE

I remember my scientific interest related to biology at first started in my second year in

physics undergraduate. I was very enthusiastic about arranging a sort of scientific article

reading group with my classmates at that time. For the first of reading I was searching

through the internet for a scientific article that is not very complicated so that our education

let us understand the concepts. By luck I found an article1 about the biology of human

hearing and its mathematical modeling. I was impressed by this marvelous organization in

the ear and made the article be our initiator reading-piece.

Unfortunately, this reading group did not gather for the second time but helped me

understand deeply two important things. The first is that it is not easy and recommendable

to do something ”social” with the physicists. The second and more related to this context

is that biology is not scary as I used to consider, on the contrary, it seems to encompass

many bright inquiries about the nature.

In the following period up to the last grade in undergraduate, my interest in biology

had increased gradually. I remember some of my popular scientific readings at that period:

Schrödinger’s book “What is Life?”, Watson’s book “Double Helix”, Dawkins’ book “Selfish

Gene”, etc.. I had taken some courses related to biology and ecology. At last grade I had

already been sure to pursue in the life sciences in academy.

Then in September 2005, I started my master degree in Computational Sciences and

Engineering program at Koç University. This program has let me appreciate some necessary

knowledge about computation and given a chance to do research in biology. In particular,

I have investigated the protein folding problem and the transcriptional gene regulation in

my thesis. And now I introduce you my studies and research throughout this thesis.

But before passing to the thesis, at this moment, let me ask myself some very basic

questions and present the answers so that you can see where I am standing and where I am

1Unfortunately, I do not remember exact reference.



looking through the biology.

- What is Biology?

For me, the biology is a branch of science which tries to answer the questions gathered

around a very philosophical question: “What is life?”

- How did this branch of science emerge, what is its history in brief?

I think the history of human knowledge on biology has no starting time since every

species must have some information regarding their own and other organisms for surviving

in evolutionary period. However, our knowledge on this history at the preliterate time

is suspicious and mainly relies on the guesses. If we want to have a more concrete idea

emerging from evidences or documents we should go back to Egypt at the era of 3500-1500

BC (at least for the western history). But, for the sake of the reader’s wonder it might

be worthy to mention that people of preliterate ages were able to classify the animals and

plants, to say which plants are/are not toxic, are suitable for some basic medical purposes.

We know that starting from Egypt (3500-1500 BC) the biological knowledge had in-

creased in developed civilizations of the time but merely due to practical needs, i.e. anatomy

and agriculture. Also, it was very mixed with mystery, magic and superstition. As long as I

know, the first examples of what today we call “the scientific studies” (more abstract ques-

tions) regarding the biology belong to ancient Greece. Later, while we see a progress in the

knowledge of living things in Arab-Islam civilizations and in Europe of Renaissance I think

the actual roots of today’s biology belong to Mendel’s genetics and Darwin’s evolution2.

When we come to the 20th century with the development in technology, we witness

many improvements in biology, such as exploring the DNA as a genetic material. Today,

we even decipher the genetic code of many species and possess tremendous data. With an

analogy to physics, biology seems to stand at the point of physics at the beginning of 20th

century.

- How about the methodology of biology?

As a physicist by training, biology seems to be an almost pure empirical discipline to

me, however, especially for the last decades there has been a tremendous flow of scientists

2See References [1, 2] for further readings.
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into the life sciences from other disciplines whose methodology depends mainly upon the

theoretical studies. Therefore, we can interpret this as the methodology of biology is just

in change.

- What are the main difficulties of biology today?

The biological systems, such as cells, are very complex in terms of both structure and

dynamics. In other words, there are many variables that are interacting with many other

variables in time and space. Today’s classical approach in science is limited and it seems to

me as the main difficulty in biology. Moreover, there are tremendous data which are waiting

to be analyzed, however, there seems to be not a unification for collecting and interpreting

these data. That has been at least very confusing and challenging for me while surveying.

- What is the future of biology?

There is of course not a direct answer to this question but it is seen from the avalanche

of scientists on biology that this century will see many developments in the knowledge of

living things.

Murat Tuğrul

Sarıyer, October 2006
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Chapter 1

INTRODUCTION

The development and use of technology have accumulated a vast amount of experimental

information for biology, such as DNA sequences of different species. However, our knowledge

on how a cell works remains largely unexplored [3, 4].

An important component of functional organization in the cell is the regulation of

gene expression. Many interacting gene pairs of some organisms were identified with a

high accuracy [5], especially for the yeast, Saccharomyces Cerevisiae [6]. The networks,

or with a mathematical terminology: graphs [7], serve as a simple but powerful mathe-

matical representation of the regulation of the gene expression, i.e. gene regulation net-

works (GRN). Many topological tools have been developed for the investigation of the

networks [8, 9, 10, 11, 12, 4] and they have been already applied to the yeast and other

GRNs extensively [13, 14, 5].

It is known that the genes of eukaryotes are not always active [15] and their activation

profiles show a very complex dynamical aspect beacuse of the strong and inhomogeneous

interactions. As a consequence, the studying the dynamics of a gene regulation is not

easy with the classical dynamical investigation tools like differential equations. In gene

regulation literature, the deterministically and synchronously updated boolean networks

have been used widely for the dynamical investigations [16, 17]. The boolean model is

based on a 1/0 binary representation of the individuals at discrete time steps. Though such

modelings are approximate [18], it has been shown that some applications predicted the

wild and mutant phenotypes correctly [19, 20, 21].

Another challenge for the dynamics of gene regulation is that the rules (functions) that

govern the interactions are not known in detail, therefore; the statistical approaches with

random functions gain importance. Some experimental studies established some canalazing

behaviors in the regulation functions [22]. Later, it was argued that a subset of canalazing
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functions which was named as the nested canalazing function exists in yeast gene regula-

tion [23]. A very recent study which depended on a logical formalism (AND and OR) claimed

that two subclasses of the nested canalazing functions are dominant in the yeast [24].

Since the size of state space 2N , where N is the number of individuals, is finite quantity

with a boolean approach, a deterministically and synchronously updated dynamics fall into

the state cycles which are called attractors. The attractors are used for investigation of

the dynamics and it is argued that attractors in GRN correspond to some cycles in the

cells such as phenotype [19, 20]. In particular, the number and length of attractors, the

average transient length to the attractors and the basin of attractions are explored. Another

notion for the dynamics is the robustness of the system against the perturbations. There

is a hypothesis related to robustness of the living systems; “Life at the edge of the chaos”

which states that biological systems are to be robust against the perturbations but at the

same time must be able to adapt the environments in order to be successful in evolution

[17, 25, 26].

In order to simulate gene regulation, artificially created network models have been used

in literature, to my knowledge, starting from Kauffman [16]. Many dynamical studies using

the boolean approach have been performed with the model networks. A highly used model

was called “Kauffman Networks” which has N nodes and exactly 2 incoming edges (in this

thesis, this model is the in-NK network with K = 2). For these model networks, it was

believed that the number and length of attractors scale with
√

N with random functions,

but Socolar & Kauffman recently argued that the number of attractors scales faster than

linear [27]. Apart from the attractors, the robustness of in-NK model with random functions

which can be explained analytically by Derrida & Pomeau [28] was extensively studied in

literature [17].

In this thesis, the theoretical background is discussed first and applied to the artificially

constructed model networks; of in-NK type, which has N nodes and exactly K indegree edges

for each node; of in-PL type, which has a power-law indegree distribution and argued to be

found in the natural systems often [17]; of in-EXP type, which has an exponential indegree

distribution as in yeast GRN [13]. Upon investigation with conventional topological tools,

the dynamical investigations take part for those model networks. In order to be able to

compare the results with the literature, the investigations are performed with the structural
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parameter of 〈kin〉 = 2.0 and with the boolean functions parameter p = 0.5, which is the

probability for assigning a gene to be expressed [29]. The distribution of attractor features

show a power-law decay [29, 30]. Also, it is observed that simple random functions produced

larger average values of attractor features for these model networks than other canalazing

types do. Apart from the attractor structures, the robustness was investigated. It is shown

that Derrida’s robustness expression for random functions [28, 17] predicts the robustness

values of the model networks within a finite-size effect.

The yeast GRN is dynamically investigated with exploring the attractor and robustness

structures and compared to the model networks. The average and distribution of the yeast

attractor features were compared for different types of functions. It has been seen that the

special subclasses of nested canalazing functions produce high number of attractors and

short length of attractors and transients in the dynamics realizations. Also, it is observed

that the distributions of the number of attractors and entropy are not typical and show

a different profile unobserved before. Li et al. stated that the yeast GRN is robustly

designed [31]. The robustness of the yeast GRN with various functions and p-values is

computed. Morover, the model networks whose degree distributions are similar to the yeast

are compared with the yeast dynamics and it is shown that those networks fail to mimic the

attractor features while predicting the robustness structure correctly. Furthermore, a recent

model, which is called in the thesis as Balcan et al. model, is discussed and some of the the

results were reproduced [32]. It is shown that while Balcan et al. model is very successful

for producing networks that are topologically similar to the yeast, it fails to mimic both

attractor and robustness structures of the yeast GRN.

The thesis also included another study which investigates a relation between folding

kinetics with a new network representation, namely, the incompatibility network of a pro-

tein’s native structure. Starting from the description of the protein and the protein fold-

ing problem, I discuss a novel approach to the problem proposed by my thesis advisor

Assist. Prof. Alkan Kabakçıoğlu and tried to investigate the relation between proteins’s

structure and folding kinetics. I showed that the conventional topological aspects of these

networks are not statistically correlated with the φ-values, for the limited data that is

available.
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Outline: There are 5 chapters in this thesis. Chapter 2 gives the theoretical and com-

putational backgrounds and some applications with model networks. Chapter 3 consists of

topological and dynamical investigation of yeast gene regulation network with a comparison

to exponential and Balcanet al. model networks. Chapter 4 is for the investigation of a new

approach to the protein folding problem. The final part of the thesis includes conclusions

and appendices that contain extra informations.
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Chapter 2

NETWORK MODELING

This chapter is organized as follows: Section 2.1 is an brief explanation of Graph Theory

which is the mathematical roots of networks. Section 2.2 is an overview of conventional

tools for topological analyse of networks and gives some applications with model networks.

Section 2.3 constructs the necessary modeling and tools for dynamics, and applies to model

networks.

2.1 Graph Theory

Considering the dynamics and structure of complex systems, we need better mathematical

tools than ordinary ones, such as differential equations, to deal with these systems [8]. For

such a purpose, networks are used in scientific representation of complex systems.

Figure 2.1: The problem is whether it is possible for a citizen of Königsberg (today’s
Kaliningrad) to start from somewhere in the city and cross the bridges exactly once and
return to initial place.

A more mathematical term for “Network” is “Graph” and all tools of network modeling

can be originated from Graph Theory which is a popular subdiscipline of mathematics at

present. It is believed that the starting point of Graph Theory goes back to 1736: Euler’s

negative proof to the famous Königsberg Bridge Problem (Figure 2.11). Many developments

1The figure is taken from http://www.britannica.com/eb/article-9384377/Konigsberg-bridge-problem.
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in graph theory have been achieved in the previous century with an increasing interest from

other sciences [7].

Here, I emphasize only the fundamental concepts related to my thesis. The definitions

of Graph Theory are given as follows (as adapted from West [7]):

Graph: A graph (or network) G is a triple consisting of a node (or vertex)

set V(G), an edge set E(G), and a relation that associates with each edge two

vertices (not necessarily distinct) called its endpoints.

Figure 2.2: A simple graph (network); numbered objects in the figure are vertices (nodes)
and the arrows are directed edge.

Loop, Adjacent and Neighbor: A loop is an edge whose endpoints are

equal. When the nodes u and v are the endpoints of an edge, they are adjacent

and neighbors, and will be shown as u ↔ v

Path and Cycle: A path is a simple graph whose nodes can be ordered

so that two nodes are adjacent if and only if they are consecutive in the list.

A cycle is a graph with an equal number of nodes and edges whose nodes can

be placed around a circle so that two nodes are adjacent if and only if if they

appear consecutively along the circle.

Subgraph, Connectedness, Cluster: A subgraph of a graph G is a

graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) and the assignment of

endpoints to edges in H is the same as in G. We then write H ⊆ G and say

that ”G contains H”. A graph is connected if each pair of nodes in G belongs

to a path; otherwise, G is disconnected. A cluster is a connected subgraph in

a graph and has no edge to nodes which are not in this subgraph.

Incident, Degree, Isolated node: If node v is an endpoint of edge e, then

v and e are incident. The degree of node v, d(v), is the number of incident
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edges. An isolated node is a node of degree 0.

Directed Graph (or Digraph): A directed graph or digraph G is a

triple consisting of a node set V(G), an edge set E(G), and a function assigning

each edge to an ordered pair of nodes. We say that there is an edge from vi to

vj and show it as vi → vj .

Component, Adjacency Matrix: The components of a graph G are its

maximal connected subgraphs. The adjacency matrix of G, written A(G), is

the n-by-n matrix in which entry Ai,j is the number of edges in G with vi → vj .

Outdegree, Indegree: Indegree of a node v, d(v)in, is the number of edges

into v. Outdegree of v, d(v)out, is the number of edges from v.

2.2 Network Topology

Networks are mathematical objects that represent the real complex systems. In order to

classify the network structures, here I tried to examine the topological properties and quan-

tifiers at first and later gave some examples with model networks.

2.2.1 Topological Properties and Quantifiers

Other than the number of nodes N and of edges N(e), one needs some features for both

comparing and classifying the topologies of networks. Here, I listed some which were used

throughout this thesis. For more detailed readings one can see the review articles [4, 8].

a- Degree Distribution, P (k)

The degree probability distribution is the probability distribution function for finding a

node of network with degree k.

If the network is non-directed then there is only one degree notion, however, if the

network is directed then one can define three different degree distributions. Total-Degree

Distribution, P (ktot): In this case the network is pretended to be non-directed, in other

words, directions of the edges are removed, and the degree distribution is explored. Out-

Degree Distribution, P (kout): In this case, one counts only the edges outgoing from node

and calculate their distribution. In-Degree Distribution, P (kin): In this case, one counts

only the edges incoming to node and calculate their distribution.
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b- Degree-degree correlation, knn(k)

Degree-degree correlation function gives us the average degree of a node which our k-degree

node connects [32, 13].

knn(k) =
∑

k′
k′p(k|k′) (2.1)

where p(k|k′) is the conditional probability that the node with degree k is connected to a

node with degree k′.

c- Clustering Coefficient, Ci

The clustering coefficient of a node is the fraction of the existing triangles including the

node in quest to maximum possible number of triangles including this node [8]. Using the

notation ∆i for the number of triangles including vi and knowing the fact that the maximum

number of triangles is ki(ki−1)
2 , one can state the clustering coefficient of vi Ci as follows:

Ci =
2∆i

ki(ki − 1)
(2.2)

One can define another quantity C(k) which give us the average Ci of the nodes whose

degree is k [32].

C(k) = 〈Ci〉d(vi)=k (2.3)

d- Rich-Club Coefficient, r(k)

One can define N>k as the number of nodes whose degree is greater than k and N(e>k) as

the number of edges between those nodes. Then, rich-club coefficient r(k) [11]:

r(k) =
2N(e>k)

N>k(N>k − 1)
. (2.4)

e- K-core

K-core was proposed by Bollobas [9] as a quantity that reflects hierarchical structuring in

a network. Starting from k = 0, recursively each node whose degree is less than or equal to

k is labeled as the member of this k-core and then pruned with its edges from the network.

This procedure is repeated until no node whose degree is less than k remains.2

2For this topological feature one can use the online tool: http://xavier.informatics.indiana.edu/lanet-vi/,
October 31st 2007
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f- Motifs

”Motifs” have been recently proposed by Milo et al. [10] to capture simple subnetwork

structures in directed networks. Some motifs may appear more frequently in network at

hand.3

g- Shortest Path, sp

Another important feature in the topology of networks is geodesic or shortest path from

one node to another. There might be not a single path from vi to vj in the network and

in this case the smallest length path is called shortest path, spij [8, 12]. One can define a

probability function, P (l), for finding a shortest path of length l. Similarly, one can also

define spi, average shortest path of vi to other nodes in the network.

It should be noted that if two nodes are at different clusters, then their shortest path are

either taken as infinity, or ignored in the calculations as in this thesis. Networks with small

shortest paths are in special attention in literature and are named as Small World[33]

networks [8].

h- Betweenness, bi

Betweenness bi for vi is defined as the total number of shortest paths passing through vi [12].

Therefore, one can define a probability function P (b) for finding a node with betweenness b.

For finding bi I have used Newman’s algorithm given in Reference [12].

2.2.2 Topological Investigations on Some Model Networks

First of all, let me define what kind of model networks were used in this chapter. These

network types were named according to their indegree distributions and this was stressed

by inserting an in- as a prefix to the model name, such as in-XXX network. Although I did

not use in this thesis, one should be aware of other sorts of model topologies, like random

or gaussian.

in-NK Network: In this model, every node has exactly K incoming edges. In-NK

model has been used and investigated widely in literature.

3For this topological tool one can use the free-software mfinder from Uri Alon’s webpage
http://www.weizmann.ac.il/mcb/UriAlon/
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in-Power-Law (in-PL) Network: A network whose degree distribution is given by

power-law, i.e. P (k) ∼ k−α. It has been observed that many complex systems in nature

have a PL behavior in their degree distributions4. Those PL networks found in nature come

with taking the exponents α as shown in Figure 2.3 [17].

Figure 2.3: Histogram shows the distribution of Power-Law exponent of 30 networks found
in nature. Taken from Reference [17]. γ in figure equals to α in my notation.

in-Exponential (in-EXP) Network: A network whose degree distribution is ex-

ponential, i.e P (k) ∼ e−λk. Although to my knowledge many real-life networks are PL

networks, some show an exponential behavior, in particular the gene regulation network of

yeast shown in Figure 3.3.

a- in-NK, in-PL and in-EXP Network Topologies

In order to be able to compare different topologies, some of the properties needed to be

fixed. For the sake of comparison to the network literature, I fixed the number of nodes to

N = 100 and the average indegree to 〈kin〉 ∼= 2.00 so that in-PL exponent α = 2.25 and

in-EXP exponent λ = 0.7 were chosen. Figure 2.4 shows and discuss the correspondence

of exponents to average indegree of in-EXP and in-PL networks. Next, ensembles of 100

model networks of type in-NK, in-PL and in-EXP were created and investigated. The

topological distributions of these ensembles are in Figure 2.5, Figure 2.6 for in-NK networks,

4In literature the term scale-free network is also used for power-law network
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in Figure 2.7, Figure 2.8 for in-PL networks, in Figure 2.9, Figure 2.10 for in-EXP networks.

I found out that in general, the topological features of in-EXP networks are between

in-NK and in-PL networks’.
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Figure 2.4: a-) shows the correspondence of PL exponent to 〈kin〉 both for the computational
and analytical for N = 100, 200, 300 (from bottom to top). It is seen that deviation is at
an important level for comp. and anal. cases. Computational results are used in this
thesis. b-) shows the correspondence of EXP exponent to 〈kin〉 both for the computational
and analytical for N = 100, 200, 300 (from bottom to top). It is seen that deviation has
little effect comparing to PL case. Computational results are used in this thesis. c-)
Indegree prob. distribution of computational and analytical cases for PL exponent α = 2.25
N = 100; this study shows that the difference of computational and analytical cases comes
from the contribution of kin = 1 in the sum. d-) Indegree distribution of computational
and continuous analytical cases for EXP exponent α = 0.7 N = 100; comparing the PL
case, the contribution of kin = 1 to sum is small so it does not deviate from analytical case.
See Appendix A for analytical 〈kin〉 expressions.
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Figure 2.5: 100 in-NK (N = 100, K = 2) networks were created. Their topological features
were investigated and averaged. Figure shows the corresponding; a-) indegree probability
distribution, b-) outdegree probability distribution, c-) totaldegree probability distribution
and d-) degree-degree correlation.
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Figure 2.6: 100 in-NK (N = 100, K = 2) networks were created. Their topological features
were investigated and averaged. Figure shows the corresponding; a-) rich-club coefficient,
b-) clustering coefficient distribution, c-) average shortest path prob. distribution and d-)
betweenness prob. distribution.
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Figure 2.7: 100 in-PL (N = 100, α = 2.25, 〈kin〉 = 2.0) networks were created. Their
topological features were investigated and averaged. Figure shows the corresponding; a-
) indegree probability distribution, b-) outdegree probability distribution, c-) totaldegree
probability distribution and d-) degree-degree correlation. It should be noted that x−2.25

function was drawn in order to help the reader and is not a fitting.

Figure 2.8: 100 in-PL (N = 100, α = 2.25, 〈kin〉 = 2.0) networks were created. Their
topological features were investigated and averaged. Figure shows the corresponding; b-
) clustering coefficient distribution, c-) average shortest path prob. distribution and d-)
betweenness prob. distribution.
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Figure 2.9: 100 in-EXP (N = 100, λ = 0.7, 〈kin〉 = 2.0) networks were created. Their
topological features were investigated and averaged. Figure shows the corresponding; a-
) indegree probability distribution, b-) outdegree probability distribution, c-) totaldegree
probability distribution and d-) degree-degree correlation. It should be noted that x−0.7

function was drawn in order to help the reader and is not a fitting.
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Figure 2.10: 100 in-EXP (N = 100, λ = 0.7, 〈kin〉 = 2.0) networks were created. Their
topological features were investigated and averaged. Figure shows the corresponding; a-)
rich-club coefficient, b-) clustering coefficient distribution, c-) average shortest path prob.
distribution and d-) betweenness prob. distribution
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2.3 Network Dynamics

For the investigation of dynamics in networks the Boolean model with synchronously and

deterministic update was used. In this model, each node vi has a node state σi(t) at a

particular time t where σi(t) is either 1 (on) or 0 (off). The network state S(t) is the

set of individual node states: S(t) = {σ1(t), σ2(t), .., σN (t)}. σi(t + 1) is determined by the

Boolean Function Bi of the node vi. Bi depends on only to indegree neighbors of the

node vi. It should be noted that in the case of zero indegree, σi is fixed to either to 1 or 0

for every t.

σi(t + 1) =





Bi(σi,1(t), σi,2(t), .., σi,kin(t)), kin > 0

0 or 1 (fixed), kin = 0
(2.5)

where σi,j is the node state of jth in-neighbor of vi and kin is the indegree of vi.

During the dynamics, the node states {σi(t)} are collected at time step t and inserted

into each Boolean Function synchronously. The output of Bi is assigned to the σi(t+1) for

time t+1.

σi,1(t) σi,2(t) ... σi,kin(t) σi(t + 1)

0 0 ... 0 0 1 ... 1

0 0 ... 1 0 0 ... 1

. . ... . . . ... 1

1 1 ... 0 0 0 ... 1

1 1 ... 1 0 0 ... 1

Table 2.1: An example of the ruletable expression for Bi where vi has kin indegree nodes.

Let me explain these processes by constructing a table which includes all possible com-

bination of incoming nodes’ states and assigns an output to them for a particular node

state. Such a table is called Ruletable as shown in Table 2.1. If there is kin incoming

nodes, then there are 2kin input combinations, i.e 2kin rows in the ruletable. The output of

each combination is either 1 or 0, which makes 22k
in different ways to construct the output
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column5. Before the dynamics starts, a ruletable out of 22kin possibilities is chosen for each

node, so that dynamics runs deterministically. I used the term network realization for

one network topology with its all assigned ruletables (functions) in this thesis.

2.3.1 Some Boolean Function Types

Although in many systems we may know the interacting pairs of individuals very well, we

have usually little information about which rules govern the dynamics, as in gene regulation

networks [23]. In other words, we do not know which combination out of 22kin to choose

in the ruletable for each vi. However, we are able to shape the structure of the Boolean

Functions. I use 4 types of these random function structures found in literature.

a- Simple Random Function, RF

A function type whose each input combination (each row in the ruletable) is assigned to an

output value of 1 with a probability p.

b- Canalyzing Random Function, CF

A Canalyzing Random Function has at least one canalyzing input variable, such that for at

least one certain canalyzing value of that variable, the output value is fixed [23, 25].

Bi(σi,1, .., σi,j , .., σi,kin) =





si σi,j = sj

Bi(σi,1, .., sj , .., σi,kin) σi,j 6= sj

(2.6)

where jth in-neighbor is the canalyzing node with sj as the canalyzing value and si as the

canalazing output. As in RF only one parameter p is used whenever an output value is

needed to be determined. It is should be mentioned that Bi(σi,1, .., sj , .., σi,kin) in Exps. 2.6

is considered to be RF.

c- Nested Canalyzing Random Function, NCF

Having investigated the Harris et al.’s work on gene regulation [22], Kauffman et al. have

proposed a new function type known as Nested Canalyzing or Hierarchically Canalyzing

5For a better understanding of the magnitude, 22kin
= 4, 16, 256, 65536, 4294967296 for K = 1, 2, 3, 4, 5,

respectively.
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function which is argued to be found in the biological systems [23]. In this type, there is a

canalazing order in input nodes and the output is determined by first node at its canalyzing

value [23] is given:

Bi(σi,1, .., σi,j , .., σi,kin) =





si,1 σi,1 = s1

si,2 σi,1 6= s1 ∧ σi,2 = s2

... ...

si,j σi,1 6= s1 ∧ σi,2 6= s2 ∧ ... ∧ σi,j = sj

... ...

si,kin σi,1 6= s1 ∧ σi,2 6= s2 ∧ ... ∧ σi,kin = skin

si,kin σi,1 6= s1 ∧ σi,2 6= s2 ∧ ... ∧ σi,kin 6= skin

(2.7)

where P(si,j=TRUE)=P(sj=TRUE)= exp(−2jα)
1+exp(−2jα)

j=1,2..,kin and j is numbered with respect

to the canalyzing order.

In this thesis, the definition of NCF is modified for the sake of consistency. Firstly, a p

parameter as in above functions were adapted. Secondly, the last statement in Exps. 2.7 in

determining the output was altered. Instead of using si,kin , the output value was determined

again by using p.

d- Special Subclasses of Nested Canalyzing Random Function, SNCF

After the proposition of Nested Canalyzing Functions (NCF) by Kauffman et al. [23], Nikole-

jewa et al. presented “a new minimal logical expression” for all NCFs [24] as follows,

σi = Bi(σi+1, σi+2, ..., σi+kin−1, σi+kin)

= σΘ
i+1

⊙
(σΘ

i+2

⊙
(...

⊙
(σΘ

i+kin−1

⊙
σΘ

i+kin
)...))

(2.8)

where
⊙

represents either AND or OR logical function, i.e.
⊙ ∈ {∧,∨} and σΘ is for

possible negation of σ, i.e. σΘ ∈ {σ, σ}
They classified the NCFs according to the possible chances for

⊙
. Upon investigation

of Harris et al. data [22]6 they have found that gene regulatory rules are mainly governed

by two subclasses of NCF [24]:

σΘ
i+1 ∧ (σΘ

i+2 ∧ (... ∧ (σΘ
i+kin−1 ∧ σΘ

i+kin
)...)) (2.9)

6Nikolejewa et al. have noted in their paper that they have taken the data from Harris by private
communication
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and

σΘ
i+1 ∧ (σΘ

i+2 ∧ (... ∧ (σΘ
i+kin−1 ∨ σΘ

i+kin
)...)) (2.10)

with 66.39% and 29.41% probability of occurrence, respectively.

In this type of function p is not a free parameter and depends on the topology. It

is easy to calculate p analytically for in-NK model topologies: p≈ (2/3) × (1/2K) +

(1/3) × (3/2K) = 1.66 × 2−K [24]. For instance, for K = 1, 2, 3, 4, 5, 6, one finds p =

0.83, 0.41, 0.21, 0.10, 0.05, 0.03, 0.01, respectively. Figure 2.11 shows the validity of this for-

mula for in-NK model where K > 1 and presents also p values for other topologies.
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Figure 2.11: p value investigation of Special Subclasses of Nested Canalyzing Random
Function for model networks. The analytical expression for in-NK networks is 1.66× 2−kin

and it is seen that it predicts correctly for kin > 1. For other types, p-values are obtained
from this figure in this thesis.

2.3.2 Dynamical Properties and Quantifiers

In order to compare the dynamics of various networks, one needs quantitative measures.

Here I provide quantities related to two notions: Attractor and Robustness.

a- Attractor

Remembering that each node state can be either 1 or 0, the size of state space is 2N .

Once the network realization (network topology and ruletables) are fixed, the dynamics is

deterministic. In other words, if one chooses a network state Si at time t in 2N states, s/he
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arrives at exactly one network state at next time step t+1. Also, since 2N is a finite number,

at most after traversing all the states, the dynamics starts to fall in a cycle (Figure 2.12).

Such a cycle is called attractor and it is an important feature of the boolean dynamics.

Figure 2.12: A simple network of 3 nodes is shown on the left. Its realization with ruletables
shown in Table 2.2 produces two attractor as shown on the right.

σ1(t) σ1(t + 1) σ1(t) σ3(t) σ2(t + 1) σ1(t) σ2(t) σ3(t) σ3(t + 1)

0 0 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0

1 0 0 0 1 0 0

1 1 0 0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Table 2.2: The ruletables of the nodes in the network shown in Figure 2.12.

It is believed that such attractors correspond to some process cycles in the systems, such
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as phenotype in the cells [25, 19]. Mendoza et al. showed the correspondence between some

attractors and known phenotypes in Arabidopsis thaliana by using a similar approach. They

also predicted some mutant phenotypes and confirmed them by experiments [19]. Some

other studies also reported similar conclusions [20, 21]

There are some quantifiers for the attractors in boolean systems. The first one is the

number of attractors Nattr in the network realization. Second one is the number of

network states of an attractor possesses, length of the attractor Lattr. Third one is

the average number of network states to arrive at an attractor, transient to attractor

τattr. The last quantifier is related to the notion of the basin of attraction. The set of

network states which go to a particular attractor is called the basin of attraction of that

attractor. The size of the basin of attraction normalized by 2N is wattr. Recently, Kravitz

and Schumulevich [34] have proposed an entropy h definition for boolean dynamics:

h = −
∑

i

wilnwi (2.11)

and h was used here to compare the basin of attractions of the network realizations.

Attractors were found in this thesis by using a heuristic algorithm (See Appendix B for

more details about attractor finding algorithms.).

b- Robustness

For a system to be sustainable, its dynamics should not be effected drastically in every

intensive or extensive changes, such as errors in individuals or environments. On the other

hand, the dynamical systems like gene regulation should be open to some changes in order

to survive through evolution. These arguments brings a hypothesis called “Life at the edge

of chaos” that states the life systems should be at some where between chaotic and ordered

phases [17, 25, 26].

So, how robust system is a valuable to detect for the dynamics and urges us to quantify

robustness. It is presented here as follows [17]. Consider two network states S(t) and S
′
(t).

Their Hamming Distance HD(t) is the number of nodes that are different in their states

at time t [26, 17]:

HD(t) =
N∑

i=1

| σi(t)− σ
′
i(t) | (2.12)
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Let me define two other quantities which are the overlapping functions at time step

t and t+1, respectively:

x(t) = 1− HD(t)
N

(2.13)

M(x(t)) ≡ x(t + 1) (2.14)

The robustness under small perturbations is measured at the attractor of the system.

In other words, we have

x = limt→∞ x(t) (2.15)

while x → 1−.

Figure 2.13: Robustness criteria [17]

Referring the Figure 2.13, we know M(x) ≥ 0 when x = 0 and assume a monotic

increase in M(x) function. If limx→1−
dM(x)

dx is gerater than 1 then M(x) function crosses

M(x) = x line at some x∗ < 1, which is a stable fixed point other than x = 1. In this

case, the system is forbidden to arrive at x = 1 unless x = 1. If limx→1−
dM(x)

dx is less than

1 then there is no stable fixed point other than x = 1 and two network states S and S
′

converge soon or later. These two cases are named as chaotic, ordered respectively and

the case of limx→1−
dM(x)

dx equals 1 is named as critical transition border/boundary in

the corresponding literature [17, 25, 26].

In sum, with showing the robustness quantity with s,

s = lim
x→1−

dM(x)
dx

(2.16)
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three important phase are summarized as follows,

s < 1 Ordered

s = 1 Critical Boundary

s > 1 Chaotic.

(2.17)

and it is concluded that if s < 1, the system is robust against perturbations while if s > 1,

the system is very sensitive to them [26].

2.3.3 Dynamically Relevant Subnetwork

Some of the nodes are irrelevant to the attractor results due to topology or functions of the

network realization. These nodes only serve as computational challenges and some of the

nodes with their edges can be recursively removed from the network without any general

change in the dynamics [27]. Such nodes were labeled as irrelevant and the rest of the

network/nodes were called the dynamically relevant subnetwork/nodes in this thesis.

Figure 2.14: The subnetwork yielded after pruning recursively the nodes with either zero
outdegree or zero indegree is named dynamically relevant subnetwork and this subnetwork
was used in this thesis during the dynamics runs.

The attractor computations in this thesis were done with a minimal dynamically relevant

subnetwork which is found by use of a procedure which considers only the topology of the
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network to obtain it . The procedure depends on the fact that a node with zero indegree

stays at a fix state all time steps. Also, a node with zero outdegree does not affect any node

in the system although its state may fluctuate. Removing these two types of nodes with

their edges recursively results in the dynamically relevant subnetworks used in this thesis.
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Figure 2.15: The fraction of dynamically relevant nodes to network size N at a-) in-NK,
b-) in-PL and in-EXP networks. For in-NK, the values were found by averaging over
1000, 800, 500, 300, 200 networks of K = 1, 2, 3, 4, 5, respectively. For in-PL and in-EXP, the
values were found over 100, 500 networks, respectively.

Figure 2.15 presents a computational study which investigate the percentage size of the

dynamically relevant nodes in the in-NK, in-PL and in-EXP networks for different 〈kin〉 and

N . Main conclusion of this study is that the percentage of relevant nodes depends only on

the 〈kin〉, not on the network topology.

2.3.4 Dynamical Investigations on Some Model Networks

In order to investigate the dynamics of different model networks and the effect of their

topologies on the dynamics, in-NK, in-PL and in-EXP network ensembles with 〈kin〉 ∼= 2.0

were studied (Figure 2.4 shows that in-PL exponent α = 2.25 and in-EXP exponent λ = 0.7

give 〈kin〉 ∼= 2.00). The reason of choosing 〈kin〉 ∼= 2.0 was its extensively use in related

literature.
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a- Attractors of in-NK, in-PL and in-EXP Model Networks

For distribution of the attractor features, N and p are fixed to 100 and 0.5, respectively.

The reason behind using this p value was to compare the results to literature. However,

since p was fixed, the SNCF whose p is not a free parameter was not used in this part. For

each model type, I used 200 networks with 10 realization for each network in computations.

Attractors were obtained after sampling 1000 initial conditions with the limits of maximum

step and maximum length of an attractor as 1000 and 200, respectively.

The distribution of the number of attractors Nattr, the length of attractor Lattr, transient

τattr and the entropy hattr are shown in Figure 2.16, Figure 2.17, Figure 2.18 and Figure 2.19,

respectively. Apart from the distributions, averages of these features are given in Table 2.3,

Table 2.4, Table 2.5 and Table 2.6, respectively.

I found out that the probability distribution functions for Nattr, Lattr, τattr and hattr in a

network realization with in-NK, in-PL and in-EXP networks and RF, CF and NCF decay as

a power-law function as stated for some topology and function types in References [29, 30].

Also, is was noted that both Nattr and Lattr shows a strange odd-even oscillations in the

distributions which was also stated in Reference [30]. After some discussions, it was con-

sidered that these odd-evenness due to from artificial effects, for instance, the combinations

of 2-, 3-, etc. node partial network states tends to create evenness. Furthermore, it should

be noted that RF gives out considerably greater average values of those features than CF’s

and NCF’s. While the average values were closer to each other with CF and NCF for all

types of topologies, the averages with RF are higher than other for in-NK topology.

I also checked the scaling of the average values of the quantities above with number of

nodes N for random, canalazing and nested canalazing functions with p = 0.5. N were

chosen as 50, 55, 60, 66, 74, 82, 92, 100, 113, 124, 136, 149, 163, 179, 200, 215, 236, 259,

284, 300, 343, 377, 414, 455, 500, 550, 605, 665, 731, 804, 884, 972, 1000 in order to have

a more accurate scaling behavior at small Ns but also to check big Ns. For N ≤ 100, 200

networks were used for all function types. For N > 100, 100 networks for CF and NCF,

and 50 networks for RF were used (RF runs slowly than others). The other parameters

for dynamics were the same with N = 100 case above. The results for 〈Nattr〉, 〈Lattr〉,
〈τattr〉 and 〈hattr〉 scalings with N can be seen in Figure 2.20, Figure 2.21, Figure 2.22 and

Figure 2.23, respectively.
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〈Nattr〉 in-NK in-PL in-EXP

RF 12.00∓ 24.06 5.28∓ 9.49 9.20∓ 21.95

CF 3.97∓ 7.92 3.11∓ 5.06 3.81∓ 6.49

NCF 4.59∓ 11.18 3.54∓ 17.17 2.86∓ 4.69

Table 2.3: The average number of attractors 〈Nattr〉 of model networks for random RF,
canalyzing CF, nested canalyzing NCF functions. For 200 networks with N = 100 and
10 realisations for each network, the attractors were found by initiating from 1000 initials
conditions with limits of 1000 maximum step size and 200 attractor length.
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Figure 2.16: The number of attractors prob. distribution for model networks. RF:
Random Function, CF: Canalazing Function, NCF: Nested Canalazing Function. For 200
networks with N = 100 and 10 realizations for each network, the attractors were found
by initiating from 1000 initials conditions with limits of 1000 maximum step size and 200
attractor length. In order to uncover the artificial odd-even effect as shown in small frame,
the data were binned in 2 units.
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〈Lattr〉 in-NK in-PL in-EXP

RF 11.69∓ 22.36 12.13∓ 71.60 20.15∓ 101.82

CF 3.05∓ 4.39 3.39∓ 23.48 3.77∓ 26.58

NCF 2.98∓ 3.83 2.02∓ 2.60 2.12∓ 1.92

Table 2.4: The average length of attractors of model networks. RF: Random Function, CF:
Canalazing Function, NCF: Nested Canalazing Function. For 200 networks with N = 100
and 10 realizations for each network, the attractors were found by initiating from 1000
initials conditions with limits of 1000 maximum step size and 200 attractor length.
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Figure 2.17: The length of attractors 〈Lattr〉 prob. distribution of model networks. RF:
Random Function, CF: Canalyzing Function, NCF: Nested Canalyzing Function. For 200
networks with N = 100 and 10 realizations for each network, the attractors were found
by initiating from 1000 initials conditions with limits of 1000 maximum step size and 200
attractor length. In order to uncover the artificial odd-even effect as shown in small frame,
the data were binned in 2 units.
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〈τattr〉 in-NK in-PL in-EXP

RF 58.44∓ 164.61 23.52∓ 74.84 35.87∓ 104.79

CF 10.55∓ 5.33 9.63∓ 23.86 10.64∓ 26.70

NCF 10.64∓ 4.68 7.29∓ 3.02 8.35∓ 2.91

Table 2.5: Average transient to attractors of model networks. RF: Random Function, CF:
Canalyzing Function, NCF: Nested Canalyzing Function. For 200 networks with N = 100
and 10 realizations for each network, the attractors were found by initiating from 1000
initials conditions with limits of 1000 maximum step size and 200 attractor length.
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Figure 2.18: Transient to Attractors distribution of model networks. RF: Random
Function, CF: Canalyzing Function, NCF: Nested Canalyzing Function. For 200 networks
with N = 100 and 10 realizations for each network, the attractors were found by initiating
from 1000 initials conditions with limits of 1000 maximum step size and 200 attractor length.
The data were binned in 10 units in order to have clearer distribution.
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〈hattr〉 in-NK in-PL in-EXP

RF 1.30∓ 1.10 0.88∓ 0.86 1.17∓ 1.00

CF 0.65∓ 0.78 0.58∓ 0.71 0.68∓ 0.75

NCF 0.71∓ 0.81 0.43∓ 0.72 0.48∓ 0.68

Table 2.6: Average values of the entropy of model networks. RF: Random Function, CF:
Canalyzing Function, NCF: Nested Canalyzing Function. For 200 networks with N = 100
and 10 realizations for each network, the attractors were found by initiating from 1000
initials conditions with limits of 1000 maximum step size and 200 attractor length.
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Figure 2.19: Entropy hattr distribution of model networks. RF: Random Function, CF:
Canalazing Function, NCF: Nested Canalazing Function. For 200 networks with N = 100
and 10 realizations for each network, the attractors were found by initiating from 1000
initials conditions with limits of 1000 maximum step size and 200 attractor length. The
data were binned in 0.2 units in order to have clearer distribution.
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I found out that for in-NK network with RF; 〈Nattr〉 scales with a fitting N0.53, 〈Lattr〉
scales with a fitting N0.87, 〈τattr〉 scales with a fitting N1.04. For a long time 〈Nattr〉 and

〈Lattr〉 scalings were considered as
√

N [25] until Socolar & Kauffman published Refer-

ence [27] which states that 〈Nattr〉 scales with faster than linear. With this study I have

shown that
√

N scaling is valid for Nattr while fails for Lattr. Also, it should be noted that

for CF and NCF, scalings are very small comparing to RF which might be considered as

desirable for the biological systems.
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Figure 2.20: The scaling with N of the average number of attractors for RF,CF,NCF with
p = 0.5.
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Figure 2.21: The scaling with N of the average length of attractors for RF,CF,NCF with
p = 0.5.
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Figure 2.22: The scaling with N of transients to attractors for RF,CF,NCF with p = 0.5.
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Figure 2.23: The scaling with N of the average entropy for RF,CF,NCF with p = 0.5.
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b- Robustness of in-NK, in-PL and in-EXP Topologies

Numerical studies have yielded that in-NK model networks of K = 2 with random functions

have privileged dynamical aspects than others, i.e. small, less number of attractors and at

the boundary between chaotic and order phase [16]. Derrida & Pomeau were the first to

give an analytical argument for why there is a such critical K value [28]. Later, Aldana

generalized the argument for other type of topologies and gave more pedagogic expression

[17].

Consider x(t) which was discussed in robustness expression. One can define two sets

A(t) and B(t) such that A(t) is the set of nodes whose incoming edges come only from the

nodes whose states are the same in the S(t) and S
′
(t) and B(t) is vice versa.

G = {v1, v2, ..vN}
A(t) =

{
vi, vj : (vj → vi)

∧
(σj(t) = σ′j(t))

}

B(t) = G−A(t)

(2.18)

Then we can express,

M(x(t)) =
∞∑

kin=1

P (kin){ [x(t)]kin

︸ ︷︷ ︸
prob. of A(t)︸ ︷︷ ︸

Contribution from A(t)

+ (1− [x(t)]kin)︸ ︷︷ ︸
prob. of B(t)

× (p2 + (1− p)2)︸ ︷︷ ︸
prob. the same output︸ ︷︷ ︸

Contribution from B(t)

}, (2.19)

=
∞∑

ki=1

P (kin){−[x(t)]kin(2p2 − 2p) + (2p2 − 2p + 1)}. (2.20)

If we take the derivative of the both sides with respect to x(t) and use the fact that
∑∞

kin=1 P (kin) = 1,

dM(x(t))
dx(t)

= (2p2 − 2p)
∞∑

ki=1

kin[x(t)]kin−1P (kin). (2.21)

Remembering
∑∞

kin=1 kinP (kin) = 〈kin〉 and Eq. 2.16, one finds;

lim
x(t)→1−

dM(x(t))
dx(t)

= lim
x(t)→1−

〈kin〉x(t)〈kin〉−1(2p2 − 2p) (2.22)

= 2p(p− 1)〈kin〉. (2.23)

I tried to examine the validity of Formula 2.23 for in-NK, in-PL and in-EXP net-

works with the simple random function (RF) by comparing the analytical and computa-

tional results. Especially, the critical chaotic-ordered boundary, s = 1, was checked. The
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robustness computations were done for different sets of p ∈ {0.0, 0.01, 0.02, ..., 0.49, 0.50}
and corresponding parameters for 〈kin〉: for in-NK, K ∈ {1, 2, ..., 5, 6}; for in-PL, α ∈
{1.60, 1.65, 1.70, ..., 2.45, 2.5} and for in-EXP, λ ∈ {0.30, 0.35, ..., 0.95, 1.0}. For the analyt-

ical expression (Eq.2.23), the relations between 〈kin〉 with α, λ were yielded by consulting

the Figure 2.4. The results can be seen in Figure 2.24, in Figure 2.25 and in Figure 2.26 for

in-NK, in-PL and in-EXP networks, respectively.

I found out that robustness values, especially the critical boundary, match with the

analytical values (Formula 2.23) for in-NK Model. The analytical expression also predicted

the robustness values of in-PL and in-EXP networks but not as in-NK networks’ case. I

saw that matching for these networks gets better while N is increased which concluded as

finite-size effect. In short, Expression 2.23 is successful for predicting the robustness of the

networks for simple random functions.

I also checked the variation of the robustness for all types of functions (RF, CF, NCF,

SNCF). Again, each network topology was set to 〈kin
∼= 2.0〉 and N = 100. Each robustness

value for corresponding 〈kin〉 parameter and p was yielded by using the following parameters:

100 random initials conditions for each 10 network realizations for each 10 networks. As

it can be seen in Figure 2.27, canalazing and nested canalazing functions resulted in more

ordered robustness values than simple random and special subclasses of nested canalazing

functions for all types of networks.
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Figure 2.24: Analytical(− − −) and computational(+ + +) the robustness values were
compared for in-NK model with N = 100 for each K ∈ {1, 2, .., 6} and p ∈
{0.0, 0.01, .., 0.49, 0.50} for simple random functions. For each K, p, 10 networks and for
each network 10 realization were constructed and the robustness was calculated starting
from 100 initials conditions of each realization. Here, s=1 corresponds the critical border
for transition from ordered to chaotic regimes. It seems that Derrida’s results matches the
s=1 border.
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Figure 2.25: As in previous figure, the computational and analytical robustness was com-
pared for in-PL networks with N = 100, α = 1.7, 1.75, .., 2.5 and p ∈ {0.0, 0.01, .., 0.49, 0.50}
for simple random functions. For each α, p, 10 networks and for each network 10 realization
were constructed and the robustness was calculated starting from 100 initials conditions of
each realization. The computational and analytical results are close to each other, it was
seen with bigger N values, the matching got closer which concludes a finite-size effect.
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Figure 2.26: As in previous figure, the computational and analytical robustness
was compared for in-EXP networks with N = 100, λ = 0.3, 0.35, .., 1.0 and p ∈
{0.0, 0.01, .., 0.49, 0.50} for simple random functions. For each λ, p, 10 networks and for
each network 10 realization were constructed and the robustness was calculated starting
from 100 initials conditions of each realization. As in previous case, it was seen with bigger
N values, the matching got closer which concludes a finite-size effect.
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Figure 2.27: Figure shows the robustness values of the a-)in-NK, b-)in-PL and c-)in-EXP
networks of 〈kin〉 ∼= 2.0 and N = 100, p ∈ {0.0, 0.02, .., 0.50} for RF: Simple Random, CF:
Canalazing, NCF: Nested Canalazing and SNCF: Special Subclasses Nested Canalazing
Functions. SNCF robustness results and corresponding p values for in-NK, in-PL and in-
EXP are 0.99∓ 0.05, 0.93∓ 0.05, 0.92∓ 0.05 and 0.42, 0.44, 0.39, respectively.
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Chapter 3

GENE REGULATION

This chapter is organized as follows: Section 3.1 introduces the gene regulation concept

in biology. Section 3.2 gives the yeast gene regulation network (GRN) with the topological

and dynamical investigations. Section 3.3 compares the yeast GRN with model networks

whose indegree probability distribution is exponential. Section 3.4 emphasizes a recently

proposed model which produce networks that are topologically similar to yeast GRN and

discusses this model dynamically.

Figure 3.1: The DNA is considered to fulfill three main function in the life systems: 1-)
storage, 2-) heritage and 3-) expression of the genetic information in the cells [2]

3.1 Introduction

To my knowledge, the most recent scientific definition of ”gene” (Figure 3.11) was proposed

by Gerstein et al.: ”A gene is a union of genomic sequences encoding a coherent set of

potentially overlapping functional products.” [35]. Genes in prokaryotes are always active

and express their coded information into functional elements unless they are repressed by

1Taken from http://en.wikipedia.org/wiki/Gene
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outside factors. However, at a particular time genes of eukaryotes (in Reference [15] it is

stated as 2-15%) are generally inactive and need to be activated, therefore, one can talk

about regulation of gene expression in eukaryotes [15].

There are different types of regulation of gene expression data depending of how it is

detected. In this study, I used the transcriptional GR since the data used at this thesis

was supplied by monitoring the levels of transcription materials, i.e. mRNA. For the details

of experiments to yield the data, see References [6, 3, 36].

Figure 3.2: A brief explanation of the gene regulation process used in the thesis [32].

The transcriptional regulation of gene expression, or in short, the gene regulation is

modeled as follows: Each gene on the DNA possesses two main regions. The first is the

promoter region (PR) and the second is genetic codes that are transcribed. In order

to activate/inhibit the transcription, the necessary conditions need to be hold at the PRs.

Although these conditions are more complex, they are simplified as existence/absence of

transcription factors (TFs) that are unique proteins bind the PRs. When the conditions

hold, the gene is activated/inhibited for transcription depending on the rules of this specific

gene. The products of these processes could be either the functional proteins or TFs (See

Figure 3.2 for a simple scatching of the GR process [32]). More details about gene regulations

can be found in References [15, 3].

My main aim in this part of the thesis is to both topologically and dynamically investi-

gate the yeast gene regulation by using the network tools introduced in Chapter 2.
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3.2 The Example at Hand: Saccharomyces Cerevisiae (Yeast)

Saccharomyces Cerevisiae or the yeast is a unicellular eukaryotic microorganism. Its gene

regulation data [6] was used in this thesis since it is one of the mostly studied organism.

The data was retrieved from YEASTRACT2 database [37]. When the data was taken it

was including 4252 genes (146 of them are TFs) with 12541 interactions.

3.2.1 Topology of the Yeast Gene Regulation Network

My investigations for some conventional topological features of the yeast GRN can be seen

in Figure 3.3 and Figure 3.4. Previously, Guelzim et al. have topologically investigated the

yeast GRN and stated an exponential decay in the indegree distribution with an exponent

λ = 0.45 [13]. However, my indegree distribution was fitted to an exponential decay with

an exponent λ = 0.38 ∓ 0.01 by using GNUPLOT3 with ignoring kin = 0. The reason of

this difference might be due to that my fitting was done by at first taking log of y-values

and then fitting to a linear function. I also did a direct fitting resulting in λ = 0.46∓ 0.01

exponential decay which is is almost the same as Guelzim et al.’s. Another detailed studies

for topological examination of yeast can be found in References [32, 5].

The yeast GR network includes 4252 nodes/genes with 12541 directed edges/interactions

(average degree is 2.95). 146 of those genes are TFs and there are 403 interactions between

TFs (average degree is 2.76). Dynamically relevant subnetwork of yeast GRN consists of 82

TFs and 254 interactions (average degree is 3.10).

Comparing the artificial networks, the fraction of dynamically relevant nodes to the

number of nodes in yeast GRN is very low (82/4252 ∼= 2%). As shown in Figure 2.14, the

artificial model networks with the same indegree distributions show a fraction of 85− 90%.

Figures 3.3 and 3.4 also show the topological features of dynamically relevant subnetwork

of the yeast GRN and one can state the topologies are similar. This specialties of yeast

GRN might be crucial in its dynamics in real case.

2www.yeastract.com

3http://www.gnuplot.info/
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bility distribution b-) outdegree probability distribution, c-) total degree probability dis-
tribution and d-) degree-degree correlation
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Figure 3.4: Yeast GR actual and dynamically relevant sub- network’s a-) richclub coefficient
b-) clustering coefficient, c-) shorthest path probability distribution (Binned in 1.0 units)
and d-) betweenness probability distribution (for actual network it is shown in big frame
with binned in 100 units, for dynamically relevant subnetwork it is shown in small frame
with binned in 10 units.).
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3.2.2 Dynamics of the Yeast Gene Regulation Network

Although the interacting pairs are known very well, the rules governs the interactions in

the yeast gene regulation are not identified in detail yet. For this reason, I used the 4 types

of random functions introduced in Chapter 2; simple random function (RF), canalazing

random function (CF), nested canalazing random function (NCF) and special subclasses of

nested canalazing random function (SNCF) with a statistical approach for investigations.

In order to investigate and compare the attractors of Yeast GRN for all function types,

one needs to fix the p value. SNCF for dynamically relevant subnetwork of actual Yeast GRN

gives out an effective p-value p = 0.27∓0.05, therefore, I used this p value as the parameter

for other type of functions, too. 2000 network realization were done for investigation. For

each realization, attractors were explored by starting from 1000 random initial conditions.

In the dynamics, the maximum 1000 steps and the maximum attractor length 200 limits

were set. The distributions and averages of the number of attractors Nattr, the length of

attractor Lattr, transient τattr and the entropy hattr can be seen in Figure 3.5 and Table 3.1.

First of all, it should be noted that Nattr and hattr distribution are not decreasing for all

functions, especially SNCF type shows a not ordinary profile. This type of the distribution

was not observed while studying with model networks in Chapter 2 and should be discussed

further. Secondly, the averages with SNCF type shows a significant difference with other

types. As it is seen in Table 3.1, it has a big 〈Nattr〉 while having small 〈Lattr〉 and 〈τattr〉
which might be desirable in biological systems [25]. As a conclusion to the attractor results,

SNCF type seems to be very appropriate for the dynamics of the yeast gene regulation and

should be continued to be investigated.

I also obtained the robustness for each p ∈ {0.00, 0.01, .., 0.50} of RF,CF and NCF, and

for p = 0.27 of SNCF. 10 dynamics realization and for each realization 1000 random initial

conditions were created and as explained in chapter 2, dynamics were runned for 10 × N

steps (N = 82 in this case) in order to be able to achieve an attractor. After these steps,

robustness was measured numerically and averaged for all values. The results can be seen

in Figure 3.6.

It is shown that for p = 0.27 (attractor statistics was done at this p-value) RF functions

at the chaotic side near critical boundary while others are at the ordered side. Also, it

seems that the Derrida’s Exp.2.23 predicts RF results quite well. The results also shows
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〈Nattr〉 〈Lattr〉 〈τattr〉 〈hattr〉
RF 430.78∓ 263.78 8.82∓ 13.45 18.33∓ 15.86 5.40∓ 1.10

CF 222.77∓ 201.04 3.77∓ 3.12 8.48∓ 3.99 4.48∓ 1.20

NCF 221.15∓ 209.14 2.84∓ 1.93 6.68∓ 2.36 4.45∓ 1.27

SNCF 538.72∓ 212.18 3.40∓ 2.77 7.84∓ 3.50 5.96∓ 0.61

Table 3.1: Average values of the number of attractors Nattr, the length of attractor Lattr,
transient τattr and the entropy hattr of Yeast GRN for RF: Random Function, CF: Cana-
lyzing Function, NCF: Nested Canalyzing Function, SNCF: Special Subclasses of Nested
Canalyzing Function. For the details of the study, see the caption of Figure 3.9.
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Figure 3.5: Distribution of attractor features of Yeast for Random Function (RF), Can-
alyzing Function (CF), Nested Canalyzing Function (NCF) and Special Subclasses of
Nested Canalyzing Function (SNCF); a-) number of attractors Nattr probability distri-
bution (Binned in 10 units) b-) length of attractor Lattr probability distribution (Binned
in 2 units), c-) transient to attractor τattr probability distribution (Binned in 10 units),
d-) entropy hattr probability distribution (Binned in 0.2 units). Attractors were found with
starting from 1000 initial conditions of each 2000 network realizations with maximum steps
and maximum Lattr limits as 1000 and 200, respectively. For RF, CF and NCF, p was fixed
to 0.27 which is the p of SNCF for yeast.
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subnetwork, 3.1.

that although SNCF and CF gives the same robustness value for the attractor investigation

paramater p = 0.27, they could produce different attractor structures. In other words, there

might be no direct relation between attractor and robustness structure.
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3.3 in-EXP Model Networks for Yeast GR

To my knowledge Kauffman is the first who used the model networks to elucidate the gene

regulation [16]. He used in-NK networks4 for modeling the gene regulations. However, in

order to compare the dynamics of the yeast, I used 100 in-EXP networks with this exponent

since indegree of yeast GRN was an exponential decay with exponent 0.38. I set N = 94

for the sake of achieving a similar number of nodes of the dynamically relevant subnetwork

of yeast, N = 82 (See Figure 2.14 in Chapter 2 for fractions of dynamically relevant nodes

to system size for model networks.).

3.3.1 Topological Investigation

Before passing to the dynamics, let me compare the topological features of this model net-

works with yeast dynamically relevant subnetwork’. Figure 3.7 and 3.8 show the investiga-

tions. It can be seen that out- and total-degree distributions and degree-degree correlations

resemble that of yeast dynamically relevant subnetwork while others are different.

3.3.2 Dynamical Investigation

Similar to Yeast’s case, the dynamics was investigated for p = 0.27. It should be noted that

the p-value for SNCF is found to be p = 0.27 which is the same as Yeast’s. In dynamics,

100 networks, for each network 10 network realization and for each network realization 100

initial conditions were created. Again maximum 1000 steps and 200 attractor length were

set. The distributions and averages can be found in Figure 3.9 and Table 3.2.

Robustness was also studied for each p ∈ {0.0, 0.02, .., 0.50} for RF, CF and NCF, and p =

0.27 for SNCF. The robustness was computed by averaging over 100 networks, 10 dynamics

realization for each network and 1000 random initial conditions for each realization. The

results are in Figure 3.10.

The yeast and in-EXP model networks produce different attractors features while show

similar robustness profiles. The main conclusion of that part is that the model networks

which are constructed by knowing only indegree distributions and the network size fail for

attractor features predictions while win for robustness.

4K = 2 case is also known as Kauffman networks in gene regulation literature
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Figure 3.7: in-EXP Model Yeast Network’s a-) indegree probability distribution b-) outde-
gree probability distribution, c-) total degree probability distribution and d-) degree-degree
correlation
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〈Nattr〉 〈Lattr〉 〈τattr〉 〈hattr〉
RF 5.15∓ 5.17 68.29∓ 216.64 101.73∓ 221.50 0.93∓ 0.70

CF 2.87∓ 3.50 4.31∓ 32.04 11.83∓ 32.34 0.53∓ 0.63

NCF 1.90∓ 1.88 2.07∓ 2.37 7.06∓ 3.06 0.31∓ 0.52

SNCF 3.94∓ 5.65 3.70∓ 4.56 11.99∓ 6.55 0.69∓ 0.79

Table 3.2: Average values of attractor features of in-EXP Model Yeast GRN. RF: Random
Function, CF: Canalyzing Function, NCF: Nested Canalyzing Function, SNCF: Special
Subclasses of Nested Canalyzing Function. For the details of the study, see the caption of
Figure 3.9.
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Figure 3.9: Attractor investigation of in-EXP Model Yeast Networks for Random Function
(RF), Canalyzing Function (CF), Nested Canalyzing Function (NCF) and Special Subclasses
of Nested Canalyzing Function (SNCF); a-) Number of Attractors Distribution (binned in
2 units), b-) Length of Attractors Distribution (binned in 2 units) c-) Transient time
distribution (binned in 10 units), d-) Entropy distribution (binned in 0.1 units). Attractor
were found by starting from 100 initial conditions for each realizations. 10 realizations were
done for each of 100 networks. The limits for maximum step size and length of attractors
were 1000 and 200, respectively. p of the functions were 0.27
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3.4 A Model: Root of the Yeast Gene Regulation Network Topology

Starting from some previous studies [38, 39], Balcan et al. have arrived at a novel model

produces the complex networks whose topological properties resemble that of the yeast gene

regulation network [32].

3.4.1 Description of Model

The model is initiated with a starting fixed number of genes. Next, each gene is assigned to

be Transcription Factor(TF) coding gene with a probability p. The numbers are opti-

mized as 6000 genes at the beginning and p = 200/6000 for determining TFs by consulting

available actual Yeast data [37].

The model then assigns two types of random binary sequences, i.e. 110100... The former

is to all genes being called Prometer Sequence, PS and the latter is to only TF coding

ones being called Regulatory Sequence, RS. Thus, TF coding genes should have two

labels where the others have only one.

Figure 3.11: Regulatory sequence distribution of yeast [32]

The most important part in assigning these random binary sequences is determining the

lengths of the sequence attached to genes. The RS lengths are taken from a distribution

yielded from a study of Harbison [40] as shown in Figure 3.11. However, there is no available

distribution for the PR lengths; therefore, authors have assumed that the distribution obeys
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the power-law with P (l) ∼ l−1.1. This assumption was based on the investigation of the

intergenic portions of the DNA and the result of P (l) ∼ l−1−µ where µ is applicable in

0.0 < µ < 2.0 [41]. Morover, again referring the Harbison study [40] which argues that the

most of the likelyhood for determining a TF binding site occurs in a 250 bps window on the

DNA, they bounded l with the expression lmax − lmin + 1 = 250 where lmin is taken to be

pick-value of RS distribution.

After assigning the sequences, a directed edge is placed from TF coding gene (RS) to

gene (PS), if and only if a RS is fully inside a PS. These processes can be runned several

times and an ensemble can be created.

3.4.2 Topological Investigation (Reproduction of Some Results)

Balcan et al. represented in their study that their model creates networks whose topological

properties resembles to the actual yeast GRN. I reproduced some of the investigations found

in the article [32] as shown in Figure 3.12 in order to be able to elucidate the model. Apart

from these topology features, they also stated a similarity in K-core structure. In general,

the model seems to be very successful for producing the similar topologies. Only topological

dissimilarity they found is a detail difference in motifs.

I also found a detail mistake in the article which can empower the results. The average

number of TFs of the model networks were stated as 202 ∓ 14 in the article, however,

according to my computations it was 167 ∓ 14 which is closer to actual number of TFs in

the yeast: 146.

3.4.3 Dynamical Investigation of Model

My aim at this part of the thesis is to investigate the Balcan et al. model networks in order

to detect whether they are also similar with respect to dynamics as they do w.r.t. topology.

For the dynamical investigation 100 Balcan et al. model networks were used. As previous

cases, investigations were done with using dynamically relevant subnetworks which are found

to have 36 ∓ 15 nodes. Comparing to the actual yeast case (N = 82), the dynamically

relevant nodes are very less in number. Next, both the attractors and robustness were

calculated by starting from 100 initial conditions for each of 10 network realization for

each network. For finding attractor, the limits for the maximum length of attractor and
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Figure 3.12: Some reproductions of Balcan et al. models’ results; a-) indegree prob. dist., b-
)outdegree prob. dist., c-)total-degree prob. dist., d-)degree-degree correlation, e-)clustering
coefficient, f-)richclub coefficent. x- and y-values of the data of corresponding network were
multiplied/divided by the average degree.

maximum step size were set to 200 and 1000, respectively. The p value for RF,CF and

NCF were set to p = 0.27 while p of SNCF was found to be 0.30. The results for attractor

features are shown in Table 3.3 and Figure 3.13. The results for robustness is in Figure 3.14.

As a result, Balcan et al. model networks failed to mimic the yeast. The results for the

average and distributions resemble in-EXP yeast model except that the attractor averages

for random functions are considerably bigger. Also, the robustness values for Balcan et al.

model networks seems to be successful for NCF and SNCF whereas do not give appropriate

results for RF and CF. I consider that weak part of the model is that it does not produce

a network having as much dense dynamical core as the yeast. This could be related to

dissimilarities they stated for the motifs. Balcan et al. model may be enhanced with

considering the dynamcally relevant subnetwork procedure used in this thesis.
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〈Nattr〉 〈Lattr〉 〈τattr〉 〈hattr〉
RF 3.14∓ 3.51 4.28∓ 8.48 10.31∓ 12.28 0.57∓ 0.62

CF 2.09∓ 2.54 2.04∓ 2.16 5.47∓ 3.28 0.35∓ 0.52

NCF 1.44∓ 0.77 1.47∓ 1.01 4.68∓ 2.03 0.21∓ 0.36

SNCF 4.36∓ 7.95 3.30∓ 3.85 9.02∓ 5.07 0.74∓ 0.78

Table 3.3: Average values of attractor features of Balcan et al. Model Networks. RF:
Random Function, CF: Canalyzing Function, NCF: Nested Canalyzing Function, SNCF:
Special Subclases of Nested Canalyzing Function. For details, see the captions of Figure 3.13.
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Figure 3.13: Probability distributions for attractor features of Balcan et al. Model Net-
works. RF: Random Function, CF: Canalyzing Function, NCF: Nested Canalyzing Func-
tion, SNCF: Special Subclasses of Nested Canalyzing Function. 100 model Balcan et al.
networks and for each network, 10 realizations were created. Attractors were found by
starting from 100 initials conditions for each realization where p = 0.27 was set for the
functions.
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Figure 3.14: Robustness investigation of Model Yeast GRN with comparison to Actual
Yeast; a-), b-), c-). Also it should be noted that for Special subclasses of Nested Canalyzing
Functions, robustness measure is 0.83∓ 0.08 where for Yeast it is 0.78.
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Chapter 4

PROTEIN FOLDING

This chapter is organized as follows: Section 4.1 summarizes the protein folding problem

in biology. Section 4.2 introduces a new approach to the problem by networks. Section 4.3

gives the investigations on protein Serine Proteinase Inhibitor. Section 4.4 emphasizes the

results for other proteins.

4.1 Introduction

Living organisms consist of five types of organic compounds: carbohydrates, lipids, nucleic

acids, vitamins and proteins. Among these organic compounds, the protein has a privileged

place due to its functionality, in the cells [42]. Because of this importance, proteins have

been studied highly for decades.

Figure 4.1: The structure of protein Serine Proteinase Inhibitor (PDB ID: 2CI2)

A protein is a chain of aminoacids which are bound to the neighbors in the chain by

covalent interactions. The natural amino acids are 20 types and the number of amino acids

in a protein can vary from 20 to 3000. The amino acid sequence is determined by responsible

gene on the DNA. The DNA sends the necessary information to ribosomes via mRNA and

they use mRNA to produce the proteins. After this process in ribosomes, this linear chain
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immediately folds and becomes more compact in 3D shape named as the native structure.

This structure is crucial for the functionality of proteins in the cell. The sequence of the

amino acids in a protein is unique for this protein and is called the primary structure of

the protein [42, 2]. Both the primary and native structures of proteins are available in a

free-database: Protein Data Bank (PDB)1 [43].

4.1.1 The Folding Problem

Since the native structure of a protein mainly affects its functionality in the cell, elucidating

the mechanism from primary structure to native structure has been one of the leading tasks

in protein studies [44]. Shortly, the protein folding problem is about finding out the

“native” structure of protein from known and unique primary sequence (Figure 4.2). A

more detailed review regarding to the protein folding can be found in Reference [44].

Figure 4.2: The Protein Folding Problem

4.1.2 The Quantifier for Protein Folding

φ-value, φi: To my knowledge, φ-value is the only experimental analysis of two-state folding

proteins [44]. Two-state folding means that the folding occurs at first from unfolding state

(U) to transition state (TS) and next, from transition state to folded state (F). In this

analysis a particular aminoacid i is mutated to another aminoacid type which is generally

Alanine [44]. Later, φi is determined by using the experimental Gibbs-Free energies of

mutant and wild-type protein according to Eq. 4.1 [45]:

φi =
∆Gwild−type

TS−U −∆Gmutant
TS−U

∆Gwild−type
N−U −∆Gmutant

N−U

. (4.1)

1http://www.pdb.org
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4.2 A New Approach to the Protein Folding

Before getting into new approach, let me define the network of a protein, G(P). Each

aminoacid of the protein is a node of G(P) and an edge is assigned to each pair of nodes in

G(P) if and only if the real distance between aminoacids in native structure of the protein

is less and equal to a certain threshold distance, rthr. One should be aware that G(P) is

also named as contact network (map) in literature [46, 47]

Figure 4.3: Definition of incompatibility networks

Consulting the literature [47, 46] and after some trials, I fixed the threshold distance as

rthr = 6.5 Å. Also, I prohibited the edges between the aminoacid i and j if |i− j| ≤ 3.

New approach starts with a definition of another network from G(P) which is named as

incompatibility network: IG(P) [48]. For definition of IG(P), let me refer to Figure 4.3.

In this figure, a protein is extended like a linear chain and starting from vi and finishing at

vk a half circle is drawn if an edge eik exists between vi and vk in G(P). In incompatibility

network IG(P); eik in G(P) is defined as a node vik and an edge between vik and vjl is

attached if their half circles in the figure are crossed [48].

Such incompatibility networks have been studied as a tool for understanding mRNA

[49] functionality [48] such as determining important regions of mRNA, etc. [50, 51, 52, 53].

Here my aim was to apply this concept to proteins.
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Figure 4.4: Network of protein 2CI2, i.e. G(CI2)

4.3 Example at hand: Serine Proteinase Inhibitor CI-2 (PDB ID:2CI2)

Serine Proteinase Inhibitor (PDB ID: 2CI2) [54] is a simple two-state folding protein with

65 aminoacids. It has been highly studied in literature and this is the main reason to be

chosen in this thesis. A ribbon structure of protein 2CI2 is shown in Figure 4.1.

φ-value analysis of 2CI2 can be found in Reference [45]. However, I used an extended

φ-value data of 2CI2 (Figure 4.6-b ) and some other proteins (in Appendix C) found by a

private communication with Prof. Michele Vendruscolo.

1 10 100
k

0.001

0.01

0.1

1

P(
k)

G(2CI2)
IG(2CI2)

Figure 4.5: Degree probability distribution of normal (G) and incompatible (IG) network
of protein 2CI2.
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G and IG of 2CI2 are constructed as explained above. G(2CI2) can be seen in Figure 4.4.

However, since the figure of IG(2CI2) was not clear due to high number of edges and nodes,

it was not inserted here.
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Figure 4.6: The comparison of φ-values and topological features of normal network for 2CI2,
G(2CI2); a-) degree of node i, b-) φ-values of 2CI2, c-) node i’s average shortest distance
to other nodes, d-) betweenness of node i

The degree probability distributions of G(2CI2) and IG(2CI2) are given in Figure 4.5.

Other topological features related to nodes are explored for the sake of seeking a correlation

to corresponding φ-values (Figure 4.6 and Figure 4.7). When a similarity is seen by visual

inspection, a statistical analysis is done in order to understand possible correlation. For the

explanation of the statistical analysis, let me say xis are the candidates for being signals to

φi-values. I calculated the original root mean square deviation (RMSD) by
√∑

i (φi − xi)2.

Later, many times I shuffled the φi to have new φ-values sets and each time I calculated

another RMSD with new set of φi which gave me a distribution of RMSD at the end. If the
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original RMSD was in the first deviation part of this distribution, xis lost its candidateship

for a signal. With this method, it was concluded that no correlation between topological

features and φ-values of 2CI2 exists.
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Figure 4.7: The comparison of φ-values and topological features of incompatibility network
for 2CI2, IG(2CI2); a-) degree of node i, b-) φ-values of 2CI2, c-) node i’s average shortest
distance to other nodes, d-) betweenness of node i

4.4 Other Proteins

Apart from 2CI2, other proteins (2PTL, 1SHF, 1TEN and 1APS) are also studied, however,

no correlation to φ-values was seen for the limited data that is available. The φ-value data

of the proteins retrieved are given in Appendix C.
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Chapter 5

CONCLUSIONS & FURTHER RESEARCH

Gene regulations are an important functional organization of the cells. Activation of the

genes in eukaryotes has a dynamical structures. Because of the complexity of the systems,

rough but powerful models: networks are used for both topological and dynamical inves-

tigations of the gene regulation. In particular, the boolean networks with synchronously

updates are studied as generic models for the dynamical investigations. Although the in-

dividuals with interactions in the gene regulations are well established in literature, the

functions that govern the activation of a gene are not fully understood. For this reason,

different types of random functions are used in the studies, i.e. simple random, canalyzing,

nested canalyzing and special subclasses of nested canalyzing functions.

Having fixed the network structures and the functions, the boolean dynamics possesses

the state cycles called attractors which is the main feature of the dynamics to quantify.

In particular, the number of attractors, the length of the attractors, the transient length

to attractors and basin of attractions are studied for understanding the boolean dynamics.

It has been argued that the attractors correspond to some cell cycles in living organisms.

Moreover, the robustness of a system is studied as an important property of biological

system as “Life at the edge of chaos” hypothesis argues.

In this thesis, the model networks were introduced and investigated both in topology

and dynamics. It has been shown that the fraction of dynamically relevant nodes to system

size only depends on the average indegree 〈kin〉 not on the topology type. The attractor

features were explored for the network realization parameters 〈kin〉 = 2.0 and p = 0.5 which

are discussed widely in literature. The distributions show power law decays for model net-

works. Average values of simple random functions are considerably bigger than canalyzing

and nested canalyzing functions. Another important investigation was the scaling of the

attractor features with the system size. I have shown that 〈Nattr〉, 〈Lattr〉 and 〈τattr〉 of

in-NK networks (50 < N < 1000, 〈kin = 2.0〉) and simple random functions(p = 0.5) scale
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with N0.53, N0.87 and N1.04, respectively. The result for the number of the attractor ver-

ifies
√

N theorem while refutes for the length of the attractors. Also, N0.53 scaling result

refutes the recent study of Kauffman which argues that the scaling of the mean number of

attractors is faster than linear. Apart from attractor studies, the robustness of the model

networks was studied. It is shown that for all types of the topologies with simple random

function, Derrida’s expression s = 2p(1− p)〈kin〉 is valid with a finite-size effect.

The yeast gene regulation network was investigated dynamically with a boolean ap-

proach. For the sake of comparison in attractor features for all function types, p was set to

0.27 which is the output p value for the special subclasses of the nested canalyzing functions

(SNCF) for the yeast GRN. The results show that SNCF are successful for the optimization

of maximising the number of attractors and minimising the attractor lengths and transients

which might be a desirable property for a biological system. Also, the distributions of the

attractor features were observed with a nontypical distribution behavior for the number of

attractors and the entropy. These distributions are not decreasing for all function types,

especially for SNCF. As an important contribution, it was seen that SNCF type may be

crucial to elucidate the actual dynamics of the yeast gene regulation. Moreover, the yeast

GRN was compared with model networks whose indegree distributions decay similarly. The

results show that yeast’s attractor distributions and averages are not like model networks.

But, it is observed that the robustness structures are similar. As a conclusion, it is seen

that to know only the indegree distribution is not enough to produce attractor features

of the yeast GRN while being very successful for the robustness behavior. As an another

contribution, a recent model: Balcan et al. model was discussed and it has been shown

that it produces the similar topological networks of the yeast. However, dynamical analyses

of this model networks established that the model is not successful at producing neither

the attractor nor robustness structures. The main reason of this might be due to that Bal-

can et al. model networks have low number of dynamically relevant nodes (N = 36 ∓ 15)

comparing to actual yeast’s (N = 82).

At the last part of the thesis, a relation between the protein folding kinetics and a new

network approach, incompatibility networks was asked. I have shown that no relation exists

between some topological tools and known φ-values for the limited data of some proteins.
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Further Research: Mean attractor features were studied and the results contradict with

Kauffman et al.. An extended study which includes also SNCF and other p-values can be

done a further work.

In the Appendix B, I discussed some finding attractor algorithms where I pointed a

novel algorithm. I believe this algorithm would enhance the related research considerably

and should be applied with a low-level programming language such as C++.

The SNCF type has been shown to give different results for the yeast GRN. It should be

noted that this type of function is also very time-efficient since it uses a logical formalism

(AND and OR functions). All these make me consider that only SNCF type can be used

for a further the yeast attractor investigation.

I also saw the success of the Balcan et al. model for producing the similar topologies. I

believe that this model can be enhanced for the dynamical successes also with a consideration

of the dynamically relevant subnetworks used in this thesis and motifs in the literature.

Apart from the gene regulation part, I consider that the study I have done should be

repeated when there is richer φ-value data of the other proteins.
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Appendix A

ANALYTICAL EXPRESSION FOR 〈KIN〉

For in-NK networks we have exactly kin edges going into each node, therefore, 〈kin〉 =

kin. However, for in-EXP and in-PL networks kin values vary for different nodes. The ap-

proximate analytical calculation of 〈kin〉 follows from substituting the sum with an integral:

in-PL:

1 =
∫ kmax

in

kmin
in

A(α)k−αdk (Normalization cond.)

A(α) = 1−α
(kmax

in )1−α−(kmin
in )1−α

(A.1)

〈kin〉 =
∫ kmax

in

kmin
in

A(α)kk−αdk

= A(α) (kmax
in

2−α)−(kmin
in

2−α
)

2−α

(A.2)

in-EXP:

1 =
∫ kmax

in

kmin
in

B(λ)e−λkdk (Normalization cond.)

B(λ) = λ

eλkmax
in −eλkmin

in

(A.3)

〈kin〉 =
∫ kmax

in

kmin
in

B(λ)ke−λkdk

= B(λ) (kmax
in eλkmax

in )−(kmin
in eλkmin

in )
−λ + 1

λ

(A.4)

However, since in real case we have quantized k values, i.e. k=1,2,3,..,N. 〈kin〉 deviates

from the Eqs. A.2 and A.4. Correspondence of exponents of PL and EXP networks to 〈kin〉
for both analytical and actual cases is presented in Figure 2.4. This figure also discuss the

main reason of this deviation.
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Appendix B

FINDING ATTRACTOR ALGORITHMS

Finding all the attractors of a large network is a challenging task. There are mainly two

types algorithms for finding the attractors: exhaustive and heuristic.

An exhaustive kind algorithm is desired solution which finds all attractors. One can

consider two types of exhaustive algorithm. First one is the straightforward method which

starts from each initial network states and finds the attractors. However, since the numbers

of network states (= 2N ) grows exponentially with N , it is computationally infeasible with

the available computers. After some trials I concluded this exact algorithm fails for N > 18.

Second type is a novel algorithm which I have seen during surveying the literature and it

claims to find all attractors of N around 100 [55]. Its main idea is to go back from the

partial network states (a state description includes only 2−, 3−, etc. node sates) and to try

to clarify which partial states are impossible to be found in any attractors of that network

realization. I have scripted this algorithm with using python1 [56] although I did not get

the efficiency stated in the paper [55], mainly because of using a higher level script language

rather than a low level programming language such as C++. Yet, it was more powerful

than straightforward method approximately for 17 < N < 60.

Second approach is the heuristic algorithms which sample from the random initial con-

ditions and finds the algorithms. Since the biological networks in the dynamics of interest

in this thesis are of size N ∼= 85 or more I left the exhaustive algorithms and implemented

a heuristic algorithm.

1Available at http://www.python.org
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Appendix C

φ-VALUES OF SOME PROTEINS

φ-values which are found by private communication with Prof. Michele Vendruscolo are

given in Table C, Table C and Table C.

1bf4 1bk2 1shf2

res. i φi res. i φi res. i φi

3 0.01 3 0.16 4 0.28

14 0 6 0 6 0.18

16 0 18 0.32 18 0.06

26 1 19 0.29 20 0.22

29 0.44 24 0.22 24 0.41

30 0 31 0.25 26 0.15

31 0.43 38 0.26 28 0.71

34 0.3 39 0.48 39 0.86

36 0.25 41 1 41 1

40 0.22 47 0.58 44 0.74

42 0.21 48 0.61 50 0.37

44 0.59 50 0.53 55 0.01

45 0.09 53 0.16

50 0.22

54 0.21

55 0.27

58 0.6

Table C.1: φ-values of 1bf4, 1bk2 and 1shf2.
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2ci2 2ci2 2ptl 2ptl 1aps

res. i φi res. i φi res. i φi res. i φi res. i φi

3 0 42 0.1 4 0.58 31 0.4 11 0.93

4 0.05 43 0.1 5 0.27 32 0.21 13 0.37

7 0.1 44 0.1 6 0.41 33 0.3 17 0.1

8 0.4 48 0.2 7 0.64 34 0.09 20 0.18

9 0.2 50 0.5 8 0.56 35 0.29 22 0.09

13 0.35 51 0.26 9 0.14 36 0.29 29 0.15

15 0.7 52 0.2 10 0.41 37 0.12 30 0.42

16 0.4 53 0.1 11 0.59 38 0 36 0.22

17 1.1 57 0.15 12 0.18 40 0.16 39 0.14

18 0.35 58 0.1 13 0.55 44 0 42 0.37

19 0.7 59 0.1 14 0.79 45 0 45 0.58

21 0.4 61 0.15 15 0.68 48 0.26 47 0.54

22 0.35 62 0.05 17 0.4 49 0.33 51 0.39

23 0.3 64 0.03 19 0.25 51 0.24 54 0.98

25 0.2 20 0.59 52 0 61 0.21

26 0.2 21 0.85 55 0.12 64 0.34

27 0.4 22 0.5 56 0.25 65 0.27

30 0.25 23 0.45 57 0.14 71 0.09

33 0.1 24 0.3 58 0.28 75 0.02

35 0.15 25 0.45 59 0.17 78 0.02

37 0.2 26 0.8 60 0.19 83 0.04

39 0.1 29 0.27 61 0.09 86 0

40 0.3 30 0.08 62 0 89 0.07

94 0.76

Table C.2: φ-values of 2ci2, 2ptl and 1aps.
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1ten 1fmk 1imq

res. i φi res. i φi res. i φi

1 0.04 1 0 7 0.15

4 0.04 2 0.1 13 0.98

7 0.1 3 0.03 15 0.33

9 0.23 4 0.05 16 0.52

17 0.14 5 0 18 0.4

19 0.39 8 0.03 19 0.32

28 0.13 10 0.28 22 0.31

31 0.19 15 0.13 27 0.12

33 0.35 16 0.26 33 0.27

35 0.53 17 0.03 36 0.25

47 0.67 18 0.4 37 0.15

49 0.42 22 0.62 40 0.01

56 0.38 24 0.55 52 0.03

58 0.6 27 0.77 53 0.07

61 0.33 34 0.25 67 0.41

63 0.47 35 0.15 68 0.23

65 0.25 36 0.54 71 0.36

67 0.42 37 1 76 0.37

69 0.54 38 0.08 77 0.37

71 0.29 39 0.95 83 0.31

76 0.21 40 0.72

80 0.03 42 0.86

83 0.21 45 0.68

85 0.08 47 0.56

87 0.11 48 0.71

89 0.11 49 0.24

53 0

Table C.3: φ-values of 1ten, 1fmk and 1imq.
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in İstanbul with full scholarship in September 2005. He worked there as a teaching assistant

of mathematics and physics courses. He graduates in December 2007 with a thesis title The

Structure and Dynamics of Gene Regulation Networks. In February, 2008 he will join the

Institute for Cross-Disciplinary Physics and Complex Systems in Palma de Mallorca for his

PhD degree in physics with an intention to do research in ecology and evolution.


