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ABSTRACT

In this thesis, the main aim is to study stabilization problems in the contex of linear
and nonlinear Schrodinger equations. These include both boundary and internal stabi-
lization problems. We also get a new result on a stabilization problem for Schrodinger
equation with inhomogeneous boundary condition. In this result, we prove the decay
of energy of solutions of the weakly damped Schrodinger equation with inhomoge-
neous Dirichlet boundary condition. We prove that if we impose a decaying condition
on the boundary condition in a reasonable sense then we get stabilization of the en-
ergy. In addition, we observe that decay rate of the boundary function controls the

decay rate of energy of the solutions.

Keywords: Stabilization, exponential stabilization, boundary stabilization, internal
stabilization, linear Schrodinger equation, nonlinear Schrodinger equation, inhomoge-
neous Dirichlet boundary condition, weakly damped Schrodinger equation, localized

damping
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OZET

Tezin esas amaci dogrusal ve dogrusal olmayan Schrodinger denklemlerinin ¢oziimlerinin
kararhlastirilmasinin incelenmesidir. Bu ¢alisma hem sinir hem de i¢ kararhlagtirma
problemlerini igermektedir. Ayrica bu ¢alismada homojen olmayan sinir kogulu altindaki
Schrodinger denkleminin kararlilagtirilmas: ile ilgili yeni bir sonug elde edilmekte-
dir. Bu sonug¢ta homojen olmayan sinir kosulu altindaki Schrodinger denklemi icin
baglangi¢ sinir deger probleminin ¢oziimiiniin zamana gore davranisi incelenmekte-
dir. Ispat edilmistir ki, eger zaman sonsuza yaklastikca sir deger fonksiyonu uygun
manada sifira yaklasiyorsa, incelenen problemin ¢oztiimiiniin enerjisi de zaman sonsuza
yaklagtikca sifira gitmek zorundadir. Buna ek olarak sinir deger fonksiyonunun sifira
yaklagim hizinin ¢Ozlimiin enerjisinin sifira yaklagim hizini1 kontrol ettigi de tespit

edilmigtir.
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NOTATION

a.e. almost everywhere

div divergence

X* the topological dual of the vector space X

a = (o, ..., o) where a; € N and we define o] =Y " | o
De = ot g,

Q open subset of R"

0 closure of €2 in R"

o) boundary of 2, = Q —

B(zg,r)  ball of radius r with center x

C () continuous functions on 2

C(Q) uniformly continuous functions on €2

Ck(Q) k times continuously differentiable functions on €

C*(Q) = {u € C*(Q)|D*u is uniformly continuous on 2 for |o| < k}
D(Q) the space of C*° functions with compact support in 2

A = Z:'L:l %

Vu = (Opy Uy ..., O, 1)

Uy zﬁtu:%—;‘:u’:‘fl—?

LP(2) the space of measurable functions v on € such that |u|P is integrable, p € [1, 0]
ullo@) = (f, [ulP)'/?, where u € LP(Q)

P’ the conjugate exponent of p, that is p’ = z% for p € [1, <]
L>(Q) the space of measurable functions u on €2 such that there is

a constant C' with |u(z)| < C for a.e. z € 2
l|u|[ze@) = inf{C > 0||u(z)| < C a.e.} for u € L>(Q)



-1l = llz@

(.7.) = (.’.)LQ(Q)

wmr(Q) = {u € LP(Q), D*u € LP(Q) for all @ € N™ such that |a| < m}
lullwme) = (jaj<m ||Dau||§p(ﬂ))% for u € WmP(Q)

Wo P () the closure of D(£2) with respect to the norm || - |[wmr(0)
H™(Q) = W™2(Q)

Hg'(2) = W(Q)

C*([a,b]; X) Banach space of m times continuously differentiable functions
u: [a,b] — X with sup norm

LP(Ja,b]; X)  Banach space of measurable functions u : [a,b] — X such that
[l a,p:x) < 0

lullzeasixy = (fo [lell%)?, where p < oo

[lull e (apix) = esssuprepqy [[u(t)]]x
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Chapter 1

INTRODUCTION

The Schrodinger equation, which was first proposed by the famous physicist Erwin
Schrodinger in 1925, is the model which describes the space and time dependence of
quantum mechanical systems. Therefore, this equation helps to predict the future
behavior of a dynamical system. Indeed, Schrodinger equation is interpreted as the
analogous of Newton’s second law and conservation of energy in classical mechan-
ics. In quantum mechanics, we represent a system by means of a complex Hilbert
space where each state of this system corresponds to a unit vector in this Hilbert
space. This vector includes the information of the probabilities of the outcomes of all
measurements on the system. Since the state of a system may change over time, this
vector depends on time. Hence, the Schrodinger equation gives the information about
the rate of change of the state of the system. This equation can be either linear or
nonlinear and may include various kinds of damping terms according to the physical
situation it applies.

In this work, we make a mathematical study of some linear and nonlinear Schrédinger
equations in the context of stabilization. We study decay rates of solutions for different
scenarios which are important from physical point of view. In addition to these, we
get a new result on the weakly damped Schrodinger equation with inhomogeneous
Dirichlet boundary condition.

In Chapter 2, we give a brief reminder for some common mathematical tools that
we will use in the subsequent chapters. These include some calculus facts, various
inequalities, Sobolev spaces, Banach space valued functions, functional analysis and
a brief semigroup theory.

In Chapter 3, we study the asymptotic behavior of solutions of linear Schrédinger
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equation on a bounded domain with sufficiently smooth boundary. We consider both
the boundary stabilization problem and the internal stabilization problem. In the
boundary stabilization problem, in Section 3.1 we prove existence of solutions and
in Section 3.2, we prove exponential decay of solutions in H'—sense by applying a
dissipative boundary control which is indeed the trace of velocity on the boundary.
In the internal stabilization problem, in Section 3.3, we prove exponential decay of
solutions in L?—sense by adding a localized linear damping in the main equation
which is supported only on a small neighborhood of the boundary.

In Chapter 4, we study the long time behaviour of solutions of linearly damped nonlin-
ear Schrodinger equation with homogeneous and inhomogeneous Dirichlet boundary
condition on a bounded domain with smooth boundary. In Section 4.1, we prove
exponential decay of solutions in H!—sense when we use zero boundary condition. In
Section 4.2 and 4.3, we prove a new stabilization result on Schrodinger equation with
inhomogeneous Dirichlet Boundary value. In this result, the equation can be both
linear and nonlinear (with positive signed nonlinearity). We prove that the solutions
of linearly damped Schrodinger equation decays to zero in H!—sense by applying a
decaying Dirichlet control on the boundary. Our result shows that the decay rate of
the solution is at least in the rate of slowest of exponential rate and the decay rate of
the boundary condition.

Our result is not only for the sake of mathematical analysis, but it has also physical
implications. A nonlinear Schrodinger equation with inhomogeneous boundary con-
dition has a physical meaning. For instance, in ionospheric modification experiments
of one space dimension, one directs a radio frequency wave at the ionosphere. At
the reflection point of the wave, a sufficient level of electron plasma waves is excited
to make the nonlinear behavior important. This may be described by the nonlinear
Schrodinger equation with the cubic nonlinear term and a Dirichlet type of boundary
condition, [12]. The possible damping term in the nonlinear Schréodinger equation has
also various physical implications. For instance, one can describe the high frequency

electrostatic plasma oscillations under the presence of a damping, [24]. There are
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two well known plasma heating problems which are approximated by the nonlinear
Schrodinger equation. The first problem is the Langmuir turbulence when the plasma
is assumed in equilibrium with the ponderomotive pressure from the high-frequency
fields. The second problem is a nonlinear stage of the mode-converted wave in the
lower hybrid heating of large tokamaks. When such a wave heats and transfers energy
to particles of the plasma, a dissipation term appears in the nonlinear Schrodinger
equation, which results in the damped equation, [25].

We finish this work in Section 4.4 by briefly listing some open problems based on the
analysis we do in the previous sections. These problems might be of interest for further
research. They ask about the stabilization result in the cases of negative nonlinearity,

localized damping, less smooth boundary condition or nonlinear damping.
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Chapter 2

PRELIMINARIES

This section is a very brief reminder of some mathematical tools for reading the main
chapters more comfortable. We only include the tools which we will need in our
analysis in the main sections. Most results are given without proof since the proofs
can be found in many sources. We may only give the proofs of results which have

particular interest in our analysis.

2.1 Calculus

We refer to [7] for this section which includes basic calculus facts.

Suppose €2 is an open and bounded subset of R” where n > 1.

Definition 2.1.1. We say 99 is C* if for each point 2° € 9 there exist r > 0 and
a C* function v : R"' — R such that-upon relabeling and reorienting the coordinate

axes if necessary-we have
QN B(2°,r) ={z € B’ r)|zn > v(z1, ..., Tu1) }.
Likewise, 0 is C* if 0Q is C* for k =1,2, ...

Definition 2.1.2. (i) If 09 is C*, then along O is defined the outward pointing unit
normal vector field v = (11, ...,v,). The unit normal at any point xo € 02 is v(xo).

(ii)For u € C'(Q),
du

— =Vu-v

ov

is called the (outward) normal derivative of u.
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Theorem 2.1.3. (Divergence Theorem) Suppose I' :== 9 is C* and F € C" vector
field on Q). Then, the following identity holds.

/div(F)dm:/ F - vdl.
Q o9

In the following Remark, we give different variations of Divergence Theorem that we
will use in the main section s without pointing out to the particular one we use.

Fy
Remarks 2.1.4. (i) In the above theorem, choosing F' = (0,...,”u ,...,0), where

u € CHQ), we have
/um].dx = / uv;dl.
Q o0

(ii) Taking v := fg in (i) where f,g € C*(Q), we get the integration by parts formula

/uxjvdarz —/uvxjdm—l—/ wov;dl.
Q Q a0

(iii) Taking F := uNwv in the Divergence Theorem where u,v € C*(Q), we have

/uAvdx—l—/VwVvd:U:/ u@dF.
Q Q oq OV

(iv) Taking F:=uG, where u € C*(Q) and G is a C* vector field on 2, we have

/udz’v(G)dx = —/ Vu - Gdr + /uG -vdl.
0 Q r
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2.2 Inequalities

We refer to [7], [17] for this section. We will use the following inequalities throughout
the main chapters.
Young’s Inequality. Let 1 < p,q < oo and % + % = 1. Then,

a? bl

ab < — + — (2.1)
p q

where a,b > 0.

Young’s Inequality with € > 0. Let 1 < p,q < oo and % + é = 1. Then,

ba
ab < ea? + (ep)_q/pg (2.2)

where a,b > 0.

In the case, p = ¢ = 2, Young’s inequalities are also called Cauchy’s inequalities.
Hoélder’s Inequality. Let 1 < p,q < oo and % —{—é = 1. Then, if u € LP(Q),v €
L1(Q), we have

/Q|uv|dx < [l ooy 0]l o) (2.3)
Gronwall’s Inequality. If fort € [to,t1], ¢(t) > 0 and 1 (t) > 0 are continuous such

that the inequality
o0 <K+ L [ olspu(s)ds

holds on [to,t1] with K and L positive constants, then
o(t) < Kt Ja VO (2.4)
on [tg, tl] .

Lemma 2.2.1. Let A(t) be a nonnegative continuous function of t satisfying the
inequality

A(t) < Cr+ GRA(L)

i some interval containing 0, where Cy and Cy are positive constants and v > 1. If

A(0) < Cy and

-1

e B
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then in the same interval
Cy

At) < =

Lemma 2.2.2. Let a,b >0 and 0 < X\ < 1. Then we have the inequality

(a+b)* < a* + b (2.5)
Whenever, A > 1, then we have the inequality

a* + b < (a+ D) (2.6)

Indeed, for any X\ > 0, there exist appropriate constants ¢ and co depending only on

A such that the following inequalities hold.
(a+b)* < ei(a® +0Y) (2.7)

and

a + b < cy(a+ b)) (2.8)



Chapter 2: Preliminaries 10

2.3 Sobolev Spaces

We refer to [3], [7] for this section which includes main definitions and facts on Sobolev
spaces. These spaces are the fundamental spaces for our analysis.

Let 2 C R™ be a domain with smooth boundary I' = 9, m € N,p € [1,00], p' = pL.

Definition 2.3.1.
WmP(Q) :={u € LP(Q), D*u € LP(Q) for all « € N™ such that |a| < m}.

Remark 2.3.2. W™P(Q) is a Banach space equipped with the norm

1
ullwmaiey = (3 1D%ulll, )5

o] <m
Definition 2.3.3.
WP (Q) = T;(Q)Ilﬂwmmm),

Remark 2.3.4. When p = 2, we say W™*(Q) = H™(Q) and WJ*(Q) = HJ*(Q)

where H™ is then a Hilbert space with inner product

(4, ) gy = / D*uDPuvdz.

|| <m

Definition 2.3.5. We define W="""(Q) as the topological dual of W"*(Q).
Remark 2.3.6. Similarly, we say H-™(Q) := W—™%(Q) = (HJ*(Q))*

Theorem 2.3.7. (Trace Theorem) Assume € is bounded and O is C*. Then there

exists a bounded linear operator
T:Wh(Q) — LP(0R)

such that
(i) Tu = ulpq if u € W(Q)NC(Q)

and

(i) ||Tu||ro0) < Cllullwrs) for each uw € W'P(QQ), with the constant C = C(p, Q).



Chapter 2: Preliminaries 11

Theorem 2.3.8. Suppose Q is a bounded domain in R™ (n > 1) with a boundary
' = 09 of class C3. Then there exists a positive constant C > 0 such that for any
function u € HY(Q) which vanishes on a part of the boundary T'y that has a non-empty

interior in I, we have the inequality

Proof: Suppose the above inequality does not hold. Then for all m > 0 there is a

function u,, € H'(Q) which vanishes on T'; satisfies

[tm|z2@) > m|[Vum|L2@)-

Without loss of generality we can choose u,, (just take HUmQITZz(m instead of u,,) so
that
[wml|r20) = 1. (2.10)
So, we have
||Vt ||L2() — 0 as m — oo. (2.11)

Since,

[l ler12) = (lml[Z20) + IVttml[Z2(0)) "2,

(2.10) and (2.11) imply that (u,,) is bounded in H'(Q). Since, H*({) is compactly
embedded in L?(€), there exists a subsequence (u,;) of (u,,) which converges to some
ug in L(92).
So, using (2.10) we have that

||uoll2i) = 1. (2.12)

Note that

/ UoPg,dr = lim [ ;¢ dx = — lim Uy, odr =0
Q

=00 Jo =0 Jo

for all ¢ € C’éoo)(Q). Hence, ug € H'(Q) with Vuy = 0.

Hence ||[Vugl|r2() = 0 which means uq is constant, but we know wuq is zero on some
part of the boundary, hence ug is zero everywhere. This contradicts the result given

in (2.12). Hence, our assumption is wrong, so (2.9) must hold.H
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Theorem 2.3.9. (Gagliardo-Nirenberg Inequality) Let 2 be a bounded domain with
0 in C™, and let u be any function in W™ (Q) N LY(Q), 1 < r,q < oo. For any
integer j, 0 < j < m, and for any number 0 in the interval j/m < 0 < 1, set

)+(1—9)%.

] 1
:l_|_9(_
n r

s[3

1
p

If m — 5 — % is not a nonnegative inleger, then

1D7ull oy < Clul me oyl ull ey (2.13)

If m — j — % is a nonnegative integer, then (2.13) holds for 0 = % The constant C

depends only on 2, r,q,m, 0.
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2.4 Banach Space Valued Functions

We refer to [21] for this section.
Consider a Banach space X and let p € [1,00), —00 < a < b < co. Then we make the

following definitions and remarks.

Definition 2.4.1. L?((a,b);X) is said to be the space of LP functions from (a,b) to
X with the norm

hSA

b
lulzscon = ([ Nty
Remark 2.4.2. L*((a,b); X) equipped with its norm becomes a Banach space.

In the case, p = 0o, we make the following definition.

Definition 2.4.3. L*°((a,b);X) is said to be the space of measurable functions from
(a,b) to X which are essentially bounded, i.e.,
||w|| oo ((ap);x) == sup ess||u(t)||x < oo.
te(a,b)

Remark 2.4.4. L>((a,b);X) is also a Banach space.

Remark 2.4.5. We also define continuous (and continuously differentiable) functions
valued in Banach spaces as C*([a, b]; X) with the norm
k

d'u
el e = D max [|27 @)l

t€la,b]

which 1s again a Banach space.
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2.5 Functional Analysis

We refer to [2], [4], [5], [6], [18], [19], [22], [23] for this section. We will need the

following various definitions and results in the main chapters.

Theorem 2.5.1. (The Banach Fized Point Theorem) Let (E,d) be a complete metric
space and let f : E — E be a mapping such that there exists k € [0,1) satisfying
d(f(z), fly)) < kd(x,y) for all (z,y) € E x E. Then there exists a unique point
xo € E such that f(zo) = xo.

Definition 2.5.2. Let X be a Banach space. We say a sequence {x,}32, C X con-
verges weakly to x € X, written

Tp — X,

P(2n) — o(x)

for each linear bounded functional ¢ € X*.

Definition 2.5.3. Let X be a Banach space. We say ¢ is the weak-* limit of a
sequence ¢, € X* if

for all z € X, and we write

*

P = O

Remark 2.5.4. If X is reflexive weak and weak-* convergence are equivalent. For

example, LP spaces for 1 < p < oo satisfy this. However, in the case p = 0o, we know
from analysis that L'(Q)* = L>®(Q) but L>(Q)* # LY(Q), in fact L>=(Q)* is larger

than L*(Q2). Hence, weak and weak* convergence does not coincide on L™ space.

Theorem 2.5.5. (Banach Alaoglu Theorem) Let X be a Banach space. The closed

unit ball in X* is weak-* compact.

Remark 2.5.6. Fvery strongly convergent sequence is also weakly convergent.
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Definition 2.5.7. An operator A on a real Hilbert space H is called dissipative if
(Az,2)g <0 for all x € D(A).

Definition 2.5.8. An unbounded linear operator A on a Hilbert space H is called
m-dissipative if A is dissipative and A\ — A 1is onto for all A > 0.

Theorem 2.5.9. Let A be an unbounded linear operator on a Hilbert space H. Then

the operator A is m-dissipative if and only if [ — A is onto.

Definition 2.5.10. An operator A on a real Hilbert space H is called monotone if
(9 — x1, Axg — Ax1)g > 0 for all x1, 25 € D(A).

Definition 2.5.11. Let X and Y be two sets and let A : X — Y be a mapping. Then,
the graph of A is G(A) :={(x,y) € X xY :y = Ax}.

Definition 2.5.12. An operator A on a real Hilbert space H is called mazimal

monotone if A is monotone and for any monotone operator B, G(B) C G(A).

Definition 2.5.13. An operator A on a Hilbert space H is called positive if (Azx, x)g >
0 for all x € D(A).

Theorem 2.5.14. (Minty’s Theorem) A monotone map A is maximal if and only if
the map I + A is surjective.

Lemma 2.5.15. Let
X = {u e L*([0,00); Hy(2)) : uy € L*([0,00); H ()},
then bounded subsets in X are relatively compact in L*([0, 00); L*()).

Lemma 2.5.16. Let Q be a bounded subset in R% x Ry, g, and g are functions in
L1(Q) < C where q € (1,00), such that ||gu||Leq) < C and g, — g a.e. in Q. Then,

g, — g weakly in L1(Q)).
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2.6 Semigroup Theory

We refer to [1], [6] for this section.

Let X be a Banach space and u° € X. We consider the general problem

W' (t) = Au(t), Vit € |0,00),
u(0) = u°

where A : D(A) C X — X is a (possibly) unbounded operator and D(A) is a linear
subspace of X. We are looking for solutions u : [0,00) — X, Then, we have the

following definitions and results.

Definition 2.6.1. A family {S(t)}i>0 of bounded linear operators from X into X is
called a strongly continuous semigroup if the conditions

(i) S(0)u’ = u® u® € X,

(i) S(t + s)u’ = S(t)S(s)u’ = S(s)S(t)u’,u’ € X, s, > 0,

(i) limp o || S (#)u® — u|] = 0,u® € X

hold.

We say {S(t) }+>0 is a contraction semigroup if in addition ||S(t)|| < 1 for each t > 0.

Remark 2.6.2. If {S(t)}i>0 is a strongly continuous semigroup on X, then for all

u’ € X, the mapping t — S(t)u’ is continuous.

Definition 2.6.3. Let {S(t)}i>0 be a strongly continuous semigroup on X. The in-
finitesimal generator of the semigroup {S(t)}i>0 is the unbounded operator A, defined

by
t\.0 t

with domain D(A) which is given by

D(A) :={9| 1{% w exists in X}.

Lemma 2.6.4. If A is the infinitesimal generator of a strongly continuous semigroup

{S(t)}+>0 on X, then D(A) is dense in X and A is closed.
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Theorem 2.6.5. (Philips’ Theorem) An unbounded linear operator A : D(A) C
H — H where H is a Hilbert space is the infinitesimal generator of a semigroup of

contractions on H if and only if A is m-dissipative in H.

Theorem 2.6.6. If a linear operator A : D(A) C H — H is the infinitesimal
generator of a strongly continuous semigroup (S(t))i>o, then for each u® € D(A),

u(t) = S(t)u® is the unique solution of the problem

W' (t) = Au(t), Vt e |0,00),
u(0) = u°

which is from the class C(]0,00); D(A)) N C*([0,0); H).
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Chapter 3

STABILIZATION OF THE LINEAR SCHRODINGER
EQUATION

In this chapter, we review the results (studied in [9]) on the boundary and internal
stabilization of the linear Schrodinger equation in a bounded domain with boundary of
class C3. In addition to these results, we do the proof of the existence and uniqueness
of the solution and give more complete proofs for the stabilization results given in [9].
Now, suppose (2 is a bounded domain in R” (n > 1) with a boundary I' = 9 of class
C3. Consider the following initial value problem with zero boundary value.
iug + Au =0, in Q x (0,00),
u=0, on I' x (0,00), (3.1)
w(0)=u"  in Q.

Some Properties:
1. For the above problem H' and L? norms of the solutions are conserved.
Multiplying the above equation with w;, taking the real parts and using integration

by parts one gets

0= Re/(i\utP + wAu)dr = Re/ wAudz
Q Q
ou
= —Re Vut Vudr + ta—dr

—Re/QVut Vudr = —5%/ Vu | dr = —§%||VU( )||%2(9)

So, we get

d
@ Vu(®llz =0,
that is ||Vu(t)||r2(q) is constant, which implies

[Vu(®)]| 2@ = VY| 12(0)- (3.2)
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Also multiplying the above equation with u, taking the imaginary parts and using

integration by parts one gets

0= Im/ it + uAu)dr = Re/ usudr — Im/ Vu - Vudx

—I—Im/u—dFdw—Re/Qutudx— §E/| |*dx = 2dt||u(t)||%g(ﬂ).

Hence,

d
e u(t) ey = 0.

that is ||u(t)||%2(m is constant. Therefore, we have
()]l r2@) = [’ z20). (3.3)
Hence, with the zero Dirichlet boundary condition, the system is not dissipative.
2. Solutions of the Schrodinger equation are also solutions of the plate equation
g + N = 0,
because one can write
Uy + Nu = —(i0; — N) (10, + N)u =

From this observation, one can try to solve the stabilization problem for Schrédinger
equation by using the results obtained on plate equation. However, our approach will
be directly to study the Schrodinger equation without using the properties of plate
equation.

Stabilization Problem: To introduce a damping term in a system which ensures
(desirably exponential) decay of solutions in a physically appropriate norm as time
becomes large.

Now, we define,
Lo :={xelmx) v(z)>0}T :={xel;mx) v(z) <0} =T\

where I' =Ty U Ty, m(z) := 2 — 2y (xo € R") and v is the unit outward normal.
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Consider now, the following initial value problem with a non-zero boundary condition

supported on I'.

Z’ut_i_Au:O, inQX(O,OO)7
8_u:_mx.y;p u7OIlF><OaOO7
52 = —(m(x) - w(x))us, on Ty x (0, 00) (3.4)
u=0, on I'y x (0,00),
u(x,0) = u(z), in (2

where the space of initial data is
X={ue H (Q)|u=0onT}.

Multiplying the above equation with ;, integrating by parts and taking the real parts

we get
I _ _ ou _
0 =Re [ [i|lu]” + Auty]de = —Re | Vu-Vudr + Re | —wdl
Q Q r Ov

which implies

%% /Q VulPde = — /Fo(m ) g 2T, (3.5)
where 1 [, |[Vu|?dz =: E(t) is the energy function.
Consider the inner product (u,v)x := Re [, Vu - Vodz on the initial value set X.
Then the norm || - ||x induced by this inner product is equivalent to the classical H!
norm || - ||g1 (g on X since the Poincare inequality (see Theorem 2.3.8)

ullz2) < ClIVul| 2@

is valid for functions in X (in the case I'; has nonempty interior).

The existence (and uniqueness) of the solution of the system (3.4) can be proved by
reducing the problem into a semigroup problem and using the results of the linear
semigroup theory. The proof of existence is not present in [9], but we give a proof in
section 3.1 for the sake of completeness and we will show that there exists a strongly
continuous semigroup of contractions {S(¢)}>0 in X such that u(t) = S(t)u’ is a

solution of (3.4).
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The boundary conditions in this problem indeed play a role of a damping and ensures
the exponential decay (in H'—sense) of the energy which we prove in section 3.2.
One can also conider the linear Schrodinger equation by using a positive damping not
on the boundary but supported in a neighborhood of the boundary. This problem is
called the internal stabilization problem which is defined formally as follows.

Let w C Q be a neighborhood of Ty in Q and a € L>(12) such that

a>0, ae in,

(3.6)
dag >0, a>aga.e. inw
and we consider the following damped Schrodinger equation.
iug + Au+ia(z)u =0, in Q x (0,00),
u =0, on I" x (0,00), (3.7)

u(0) = u?, in Q.

As noted in [9], for any u® € L?*(Q), there exists a unique solution of the system (3.7)

from the class
C([0,00); L*(©2)) N C([0, 00); (H*(2) N H;())). (3.8)
Here we consider the L?(Q)—norm of the solution F'(t),
1 2 1 2
F(t) =5 | [u®)fde = gllu(t)l[z2q). (3.9)
Q

which is shown to be decaying exponentially in section 3.3.
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3.1 Existence and Uniqueness: Boundary Stabilization

Note that, the equation (3.4) is equivalent to the ordinary differential equation

W' (t) = Au(t), Vit e |0,00),
u(0) = u°

where A = i/ with domain D(A) C X defined as follows.

ou _

D(A)::{UEX:AUGX,aV

i(m-v)Au on T}
Now, the operator A =i/ is dissipative, because

(Au,u)x = Re(/Q V(iAu) - Vudzr) = Re(— /Q Au(iAu)dx + i /F Au%df)

= Re(i/ Au@df +z’/ Au@dl“) = Re(z’/ Au(i(m - v)Au)dl') =
To 87/ ry 8V To

—Re(/ (m - )| AufdT) < 0 for all u € D(A).
o

We also have (I — A) : D(A) C X — X is surjective. To see this, let f € X and
consider the equation © — Au = f. Now, define the operator L : X — D(A) C X as
Lt = u if and only if
—Au = iu, in €,
u =0, on I'y,
Su— —(m-v)a, onTy.
Then, u — Au = f = u—illu=f = Li—u=f = u— Lu= —f. Hence, to
prove (I — A) is onto, it is enough to prove that I — L : X — X is onto, but if —L
is monotone, this is equivalent to prove that — L is a maximal monotone operator by

Minty’s Theorem (See Theorem 2.5.14).

First, observe that

(i, — Li)x — Re( /Q Vi - V(=Li)dz) = Re( /Q A(Ta)ids — /F a%‘)adm _

Re(z’/gﬁﬁdxjtfro(m-y)ﬁﬁdF) :/ (m - v)|a|*dl’ > 0.

To
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Hence,

(122 — dh —L(QZQ — dl))X = (122 — dh —LUNQ — ((—Lu}))x > 0.

We conclude that —L is a monotone operator.

Also, since (@, —Lu)x = (—La,u)x, we have (—La,u)x > 0, that is —L is a positive
operator on the Hilbert space X. This implies —L is maximal monotone, since any
positive linear operator on a Hilbert space is maximal monotone (See Examples 1.5-b
in [5]). Now thanks to Minty’s Theorem to say that I — L is onto, hence I — A is
onto. Thus, A is an m-accretive operator.

Then, by Philip’s Theorem (See Theorem 2.6.5), we can say that A is the infinitesimal
generator of a semigroup of contractions (S(¢))i>o on X. Therefore (S(t))i>0 is a
strongly continuous semigroup of contractions and for all u® € D(A), u(t) = S(t)u’

is the unique solution to our problem from the class C([0,00); D(A)) N C([0, 00); X)
(See Theorem 2.6.6).
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3.2 Boundary Stabilization

In this part, the boundary stabilization problem is considered for system 3.4 which
includes dissipative boundary conditions. The problem is solved using the multiplier
techniques. In the end, the exponential decay of the energy of the solution is proved.

We introduce the function

E.(t) == E(t) + ep(t) (3.10)

where
p(t) == Im/gu(;v,t)m(a:) -Vau(z,t)dx

for t > 0. From Poincare inequality, we get
()] < [fu®)llza@|lm - Vu)llzae) < Climlli=@llu(®)|z = C1E()  (3.11)

for each t > 0 where R := ||m||1=(q) and C} := 2RC.

Differentiating p(t) gives
pt) = Im/ wm - Vaudzr + Im/ um - Viugdz.
Q Q
Using the divergence theorem on the vector function uu;m we have
Im/ div(uugm)dx = Im/ utg(m - v)dl.
Q r
Since,
div(uugm) = X7 (uagm),, = X8 ug, wym + X0 u(y) g, m + X8 utymy,

= (Vu-m)a; + (Vag - m)u + nuiy,

we have the equality

Im/ um - Vigdr = Im /(m - v)utydl — Im/ m - Vuuydx — nIm/ utydx
Q r Q Q

= Im/ (m - v)uudl + Im/ m - Vuudx — nIm/ T
To Q Q

Using (3.4) we get
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Im/ utydr = —Re/ Auudr = Re/ Vu - Vudx — Re/ @ﬂdf
Q Q Q r Ov

:/ |Vul*dz + Re/ (m - v)uadl
Q Lo
and

Im/ m - Vuudr = —Re/ m - VuAudzx.
Q Q

We also have

Im [ (m-v)uudl = —Re/ (m - v)iuudl.

o o

Combining the above equalities we get

plt) = 2Re/ m - VuAudr — n/ |Vu|*dr — Re/ (m-v)(i +n)uadl.  (3.12)
0 Q r

0
Now, to get an estimate on the term 2Re fQ m-VuAudzx, we use the following Lemma

(a technical proof is given in [8]).

Lemma 3.2.1. If n < 3, p,¢ € V are real valued functions such that Ny € L*(2)
and
I

ot —(m-v) on Ty,

then

2/Agpm-V<p§ (n—Z)/ \Vgplzdx+2/%m-V@dF—/(m-y)]VgOPdF.
Q Q r ov r

Since, u is a complex valued function, there exist real valued functions u; and uy such
that v = u; + tus.
Hence,

Re(m - VuAu) = m - Vuy Auy +m - VugAus.

Therefore, using Lemma 3.2.1, we get

2Re/ m - VuAudr = 2/ m - V(ug Aug +m - VugAug)dz
Q Q
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0 0
<(n-2) /(|Vu1|2 + | Vug|*)dz + 2/(ﬂm -Vuy + Eh P Vus)dl
QO r ov ov

—/F(m~1/)(|Vu1|2+ ([Vus[2)dT

_ (n—Z)/ |Vu|2dx—|—2Re/?m~VﬂdF—/(m-u)|Vu!2dF. (3.13)
Q r ov

Since, u = 0 on I'; x (0,00), we have Vu = g“y on I'y x (0,00). Using this and

inserting (3.13) into (3.12) we get the inequality

plt) < —2/ |Vul*dz — Re/ (m - v)[2u(m - Vi) + |[Vul® + (i + n)ui]dl
Q To

+Re/ (m-y)|@|2dF—/ (m - v)|Vul*dl =
Iy v Iy

_2/9 |Vul*dz — Re /Fo(m V) [2us(m - Va) + |Vul* + (i + n)ut,)dD (3.14)

(3.5), (3.10) and (3.14) imply that
E(t) < —4eE(t)—Re/ (m-v)[|ue]* + 2eus (m - Vi) + €| Vul® + e(i +n)uiy]dl. (3.15)
To

Note that, Vo € V, the Poincare inequality (2.9) and the trace inequality in H'({2)
imply

/ (m-0)|oPdl < 8 / Voltda,
Ty Q

VYo € V, and for some 3 > 0.

From this inequality and Young’s inequality we get

‘/m v)(n + i)utidl’| < ﬂn +1)/(m V) ug|? dF+ (m - v)|ul|*dx
o

1)

1
(n® + 1)/1“ (m - v)|ug|*dl + 3 /Q |Vul*dz. (3.16)

Again using Young’s inequality on 'y x (0, 00) we also have that
|2u;m - V| < R*u|* + |Vul?. (3.17)

Inserting (3.16) and (3.17) into (3.15) we get

n?+1)3

E/(t) < —3¢E(t) — Re /F (m - )1 — (B2 + . )] g L
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Since m-v > 0 on I'g, for 0 < e < ¢ := we have

2
2R?+(n?+1)3?

E/(t) < —3¢E(t). (3.18)
Using (3.10) and (3.11),

E(t)=E(t) +ep(t) < E(t) + eC1E(t) = (1 + €Ch)E(t)

which implies

—3€
E > —3eF(1). 1
D) 2 () (319)

From (3.18) and (3.19), we have

El(t) < —CqeE ()

where Cy = ﬁ This implies

E.(t) < E(0)e" >,

Replacing E.(t) with E(t) + ep(t) and E.(0) with E(0) + ep(0) and using (3.11), for

all sufficiently small ¢ we get

(1—€eCE() < (1+€C)E(0)e " = E(t) < 14' 621
— O

E(0)e
which shows that the energy F(t) decreases exponentially, provided that I'; has non-
empty interior in [' and n < 3.

Hence, we conclude with the following theorem.

Theorem 3.2.2. Suppose 2 C R™ (1 <n < 3) is a bounded domain with boundary T
of class C3, o € R™ is a fized point such that int(T'y) # 0. Then there exist positive

constants C,~ such that

E(t) <CE(0)e ", Vt € R,.
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3.3 Internal Stabilization

In this section we solve the internal stabilization problem.
Multiplying the system (3.7) by @, integrating by parts and taking the imaginary

parts we get

0=1Im / (iuu + ulAu + javu)dr =
0

Re/autdx—lm/Vﬂ-Vudx—i—Im/a%dFjLIm/ia]u\zdx:
Q Q r ov Q

1d
5%4’“‘26@4‘/{2‘”“’26@-

Hence, the function F' defined by identity (3.9) satisfies

F(t) = — /Q aluf?dz, (3.20)

or we can compute
to t
/ F'(t)dt = F(ty) — F(t;) = —/ /a|u|2da;dt (3.21)
t t Jo

where ty > t; > 0. Thus, one can conclude that the L?*(Q)—norm is non-increasing,
but (3.21) or (3.20) may not imply any decay at a first glance, because if u is zero on
the neighborhood of the boundary where damping is supported we may not conclude
stabilization, but we will prove that this is really not the case. Indeed, our aim is
to prove a stronger result which is to show that L*(£2)—norm of the solution has an
exponential decay.
In order to prove the exponential decay of the solutions of the Schrodinger equation,

it is enough to prove the inequality

T
F(T) < Co/ /a\u!dedt, (3.22)
0o Ja

for a time 7' > 0 and a positive constant Cj, because if (3.22) holds, then using (3.21)

we have

F(T) - F(0) < —/0 /Qa|u|2dxdt < ;—OlF(T)
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which implies

Co
F(T) <
T=1vq

The fact that (3.23) implies the exponential decay of the L?(£2)—norm of the solution

F(0). (3.23)

is noted but not proved in [9]. Now, we show this for the completeness. Note that

(3.23) implies
Co
I = IS g < Tl e

that is .
[S(T)u ||L2(Q < Co
HUOHL2(Q) 1+ 0y

Now, using this we observe that

b ||S(T)u0||%2(9)< Co
020 NUll72@)  — 14 Co

1S(T)II* =

Since, %o < 1 and T > 0, there exists a v > 0 such that —£o_

—~T .
v Tt = e 7. Taking

1+C

logarithm of both sides, we get v = %ln(l + C—O). Hence, we now have
I1S(D)]F < e

For any large ¢, there exist k € N and 0 < ¢ < T such that t = kT + . From this

equality, we observe that k > % — 1. Now, from the semigroup property we have
S(t) = S(kT +1) = S(t)S(T)*,
which implies
IS@I* = ISET +HII* = [1SESD)MI* < [ISOIP|IS(T)II*
< ISOIPISTIP = ST < e < e TE = T = (14 ),

0

Hence,
1. -
1S’ = [Ju®)|* < (1+ 50)6 "2,

that is
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However, as we noted in the earlier lines, for this estimate to be true, we still need to

prove (3.22). To prove this, we first consider the problem

i+ N =0, inQx(0,00),
0(0)=u"  in Q.

Then, we define the function z := u — ¢ where u is the solution of the system (3.7)

and ¢ is the solution of the system (3.24). Then z satisfies the following problem.

ize + ANz = —ia(x)u, in Q x (0,00),
2z =0, on I' x (0, 00), (3.25)
z(0) =0, in Q.

First note that from (3.23), we have

1
F(T) < F(0) = 5Hvﬂuizm). (3.26)

On [[u°|[72(qy, We have the estimate given in the following proposition given in [10].

Proposition 3.3.1. Let w C Q be a neighborhood of Ty in Q. Then, for T > 0, there
is a constant Cy = C1(T") > 0 such that

T
||u0||%2(9) SCl/O /]<p|2dxdt (3.27)

where @ is the solution of the system (3.24).

Now, using (3.26), (3.27) and (3.6) we have

F(T)<1|| 02 <O1 ! ||2ddzs<c1 ' | dadt
=g/l i@ =7 0 wgp ! ~ 2a9 Jy Qagp !

T
< [0 [ allup + |2Plaode <
ap Jo Ja

c, [ Cyllall g T
¢ / / afuf2dzar + Clll=@ / [2(8) . (3.29)
ao Jo Jq Qo 0

Now, we will prove a Schrodinger estimate (3.29), which is stated in [9] without proof.

Multiplying (3.25) by Z, integrating by parts and taking the imaginary parts, we have
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Im/[iztz + zAz]dx = —Im/ iauzdr =
Q Q

Re/ztidx—lm/VZ-VzdaH—Im/Z%dF: —Re/auédm:
Q Q r Ov Q

Re/ zizdx = —Re/ auzdx.
Q Q

Since, (|2|%); = (22); = 212 + 22 = 2Re(2), that is Re(z2) = £(|2|*);, we have

Re/ztzdx— ——/ |22 dx = —Re/auzdx:>
Q Q

d 9 / B
—z(®)||52/0y = —2Re | auzdzx.
SO i

Integrating from 0 to ¢, we have

/—II ()2 ds = [12(0)[Z2) — [12(0)|[Z2) = 121720

T T
- —2Re/ /auzda:dsg 2(/ /|au\2dxd3)1/2(/ /\z|2dwds)1/2.
0 Jo o Jo o Jo

Hence, we have

T
1/2
220 <mmmpm@ﬂxA 125)] 2 g s)

< 2l|aul| 2@x o) VT2l oo 072202 -

This is true for each t, hence we have
1211 01220y < 2Matl|z2@x 0, VT N2l 20,3220

which implies

T
HZ||L°°(O,T;L2(Q)) S 2ﬁ‘|au‘|L2(QX(O,T)) S 2\/T||a||Loo(Q)/ /a‘u|2dl’dt (329)
0 Q

Inserting (3.29) into (3.28) we have

o, [T 2TVTC||al|? - T
< —1/ /a|u|2d:pdt—|— el (Q)/ /a|u|2dxdt
@ Jo Jo Qo 0o Jo
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Qo

2TVTC||all? . T T
_ Gy el | [ alupasie =y [ [ alufas
Qg 0 JO 0 JQ

where

Qo (%)

C(T) = (

Hence, we have just proved (3.22), which gives us the exponential decay of the L*({)-

norm of the solution.

Hence, we conclude with the following theorem.

Theorem 3.3.2. Suppose @ C R" (n > 1) is a bounded domain with boundary T
of class C®, 2y € R™, w C Q a neighbourhood of Ty and a € L>(Q) satisfying (3.6).

Then there exist positive constants C,~ such that

F(t) < CF(0)e " Vt € R,.
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Chapter 4

STABILIZATION OF THE NON-LINEAR
SCHRODINGER EQUATION

We consider the following Schrodinger equation,

iy — Au+ f(|u|*)u +iau = 0 in Q x (0, 00), (4.1)
with initial data and (inhomogeneous) boundary condition

u=Q on I' x (0, 00),

0 o (4.2)

where a is a strictly positive constant and 2 C R™ (n > 1) is a bounded domain with
sufficiently smooth boundary I' and f(|u|?) = g|u[? where p > 0, g > 0, u® € H'(Q),
Qe C3(T x [0,00)) and u°(z) = Q(z,0) on I in the sense of traces.

The existence of solution of the nonlinear equation (4.1)-(4.2) (without the damping
term iau) have already been considered by Strauss and Bu in [11] with g > 0 in which
case a solution exists for all p € (0,00) and by Bu, Tsutaya, and Zhang in [12] with
the same nonlinear term, but with ¢ < 0 in which case the solution exists at least
for p € (0,2]. There are also some earlier results due to Bu [14] and Carroll and
Bu [15] considering only the corresponding 1—dimensional equations. In addition,
the corresponding nonlinear damped equation with homogenous boundary condition
(i.e., @ = 0) was considered by Tsutsumi in his paper [13]. We will first review this
homogeneous case in the next section before solving the inhomogeneous boundary
value problem.

However, the stabilization problem of these strictly inhomogeneous Dirichlet bound-

ary value problems with a damping term has not been addressed as far as we know,
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so we will consider the stabilization problem of the damped linear and nonlinear
Schrodinger equations with inhomogeneous Dirichlet boundary condition. There are
a number of techniques to prove stabilization for PDEs, we will use a direct method
of multipliers. See for example Zuazua and Machtyngier [9]. Our main objective is
to get H!'-stabilization of solutions under the assumption that the boundary function

decays in the sense of a reasonable norm.
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4.1 Existence and Stabilization: Homogenous Boundary Condition

In this section we consider the damped nonlinear Schrodinger equation with zero
boundary condition, i.e.,
iug — Au+ f(lul)u+iau=0 inQ x (0,00),
uw=0 on I x (0, 00), (4.3)
u(0) = u’ in €,
where a > 0, C R" is a bounded domain with smooth boundary 0€2. In addition,
we assume the nonlinearity f is a function from the class C?(R, ) with |f(s)| < CsP/?

(p > 0) for all s € Ry. Then, we have the following existence and stabilization result.

Theorem 4.1.1. Consider p € (0,00) if n =1,2 and p € (0, ﬁ) if n >3, then
(i) If p € (0,3), then for any u® € Hj (), there is a solution u € L*([0, 00); Hj ()

to problem (4.3) with exponential decay rate
u(@®)[| a3 @) < Ce ™

where b can be any arbitrary positive number < a.

(it) If p > %, then there is a constant M > 0 such that if u’ € H () with 4] 20y <
C, then there is a solution u € L*°(]0,00); HY(2)) to problem (4.3) with exponential
decay rate

u(®)| a1 < Ce .

In the remaining part of this section, we will prove both the existence and the stabi-
lization results. Now, let w; € H}(2) N H*(Q) be a complete orthonormal basis in
L*(Q) satisfying
—Aw; = \w; in Q,
w; =0 on 0.
Let’s define u,,(t) = > 7", gjm(t)w; where gj,(t) are found by the solution of the

(4.4)

following system of ordinary differential equations.
i (), w5) + (= Dum(t), wy) + (f ([t (8 um(t), w;)
Fia(um(t), w;) =0 je(l,..,m), (45)
U (0) = tom = Y7%, Gjm(0)w; on 0f)
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where ug,, — u® strongly in H*().

By the theory of ODE’s there is a unique solution w,, of the problem (4.5) on some
interval [0, t,,). Our aim is to prove convergence of the approximate solutions u,, to
a solution u of the problem (4.3). To achieve this, we will first prove some uniform
estimates on u,, independent of time and m. For the time being assume that wu,,
is valid for the whole time interval, the remaining part of this section will readily
formalize this.

We multiply (4.5) by g;m(t), then
it (8), Gim (D)w;) + (= Dtin (£), gjm ();)

A ([ () i (8), g (H)w;) + 1a(m(t), gjm (E)w;) = 0.
We sum in 7,

t), Z gim()w;) + (= LDup (t) Z gjm(t)w;)
j=1

+(f(|um(t)‘2 Zgym w;) + ia (U (t Zg]m
= ity (), U (8)) + (= Lttg (£), i (8) + (f ([t (8) [* )21 (£), 1 (1))
+ia(wy,(t), un(t)) = 0. (4.6)

Taking the imaginary part and using the divergence theorem, we have

d
Zllen @1 = =2alfum ().

2at and integrating in time, we get

Multiplying this with e
[lum ()1 = €72 Juom] [ (4.7)

However taking the real part of (4.6) and again using the divergence theorem we have

iUy (1) i (1)) — i (t), 1, (1)) + 2]Vl [* + 2 /Q F([um () [um(6)[*dz = 0. (4.8)
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Multiplying (4.5) by g7,,(t), we have
i (8), G (D) w5) + (=Dt (£), G () w5)

+(f ([t ()10 (), G (D)10) + 0 (113 (£), gy (H)10) = 0.

We sum in 7, hence we have

U/ (t>7 Z g;m (t)wj Aum Z gjm w]
j=1

+(f<|um(t)‘2 Zg]m w] + Za um Zg]m w]

= l(ulm(t)7u:n(t)) + (_Aum( )7um(t))
F(f (Jtm () )t (), 17, (1)) + G0 (1), 1, (£)) = 0. (4.9)

Taking the real part of (4.9) and using the divergence theorem, we have

d . .

IVl + /Q F([um|?)dz) = ali(uy, (), un(t)) — i(wn(t), u), (¢)))
where F' is the antiderivative of f, i.e.,

- /0 flr)dr

Now, using (4.8), we have

%(I\WmHQJr/QF(Ium|2)dfC)=—2a(HVU|!2+/Qf(lum(t)l2)|um(t)l2dfc)-

Integrating this in time, we have,

(HvumHQLQ(Q) +/§2F(|um|2)dl‘) e = ||vum0||L2 +/S2F(|um0|2)dx

/ / (Jtm|?) = f(|tm|?)|tum|?)dzds. (4.10)

Now, taking j = 0,m = 1,r = ¢ = 2 in the Gagliardo-Nirenberg inequality (2.3.9)

and using Poincare inequality since u,,, € H}(£2), in particular we have

lumllzrr2) < ClV ]’ luml' .
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where
1

p+2
Now, since F(s) = [ f(s)ds, we get

1 0
2 n

F(s)| = | / f(s)ds| < / f(s)lds < C / o/2qs — Ot

which implies

|F(s%)| < CsP*2,

Using this and (4.7) we have

‘/QFOum’Q)d%L\/Q(F(]um]Q) — ([t |?) [t |?) dt]
< M|Jul[ZF2 < M|Vt [P [t || SO+

Now, consider the case p € (0, %) In this case, we have

np n n n

0<6= = < = <1
2p+2) 201+3) 2(1+3%) n+2
and
0<9(p+2)=”2—p<2.

Hence, we can use Young’s inequality and right hand side of (4.11) is dominated by

§||Vum|[? + Cse™rat

2—n)p+4)

for some 0 € (0,1) and p = 24 =y - Hence, using (4.10) we have

¢
(1 = 0)|| Vi ||?e® < Cse®Mat 4 Oy + 2a5/ ||V, (s)][2e***ds
0

t
+2aC's / e(—Has g
0

where Cy = Cy(|[u°]|m1(q)) is a constant with

Co > ||Vt ooy + | / F(Jumol?)dal
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for all m, such a constant exists since we took the sequence u,,q strongly converging

to u® in H'—sense. Note that 2 — u < 0, hence we have

2a6 [*
[ Vt,|[2e* < C + a 5/ [V, (s)||?e**ds.
—0 Jo

1

Now, using Gronwall’s inequality, we have

2ad t

[V, ||?e*™ < Cei=s

which implies
(26—1)a

[Vu,,|| < Ce =5

Hence, taking ¢ so small, we have the desired stabilization result.

Now, we consider the case p = %. Then, we have
Op+2) =2

and
(1=0)p+2)=p
Suppose that we have the fact that ||umo|| < ()7, Then, (4.11) gives

1
| [ Fllunyis| < 5190l
Q

and

1
| / (F(ul?) — F(Qunl?) )] < |9 2=

Combining these with (4.10) we have

t
[V, ||*e*® < 2C, + 4Ma / e |V, (s)|[2€2% ds.
0

Then, by Gronwall’s inequality,
Hvum’ |2 < QCoeante4Ma fg e~ Psds < C«eant

which is the desired stabilization result.
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Now, we consider the case p > 2. Then using (4.10) we have

[Vt ($)]1P(1 = Col [V ||"H272) %

t
< Co+ 2aC'2/ 2|V, | |/ PH2) e~ (1= 0+ 2)as g (4.12)
0
where Cy := M |[tmol| 1 ~?@+2) and Cj as before. Now, assume that ||[u°]| (o) chosen
so that
np — _ 7q
Cy < np2iC min{n, 2}

_ 4 1
where ¢ = i = T3

Now, we claim that for each ¢, we have the stabilization

result

2np
Vu,,(t)]|? < Che 2,
[Vun (B < 7 Cor

To prove this claim, let’s define

2np

I:i={t>0:]|Vu,t)|]* < — 4006_2at}.
Then, I # (), because otherwise
V()P > 2 Gy~
m = o —4 0

for all ¢ and since p > 2, we have 2= > 1 and hence |[Vu,(t)||* > 2Cy which is a
p

contradiction since we already know ||Vu,,(#)||?> < Cy. Hence, I # (), so now by the

continuity of norm, we know that I is a nonempty open interval. Now, let

tmaz = sup{t} < occ.
tel

Now, if ,,,. = 0o we are done. If not, taking the Wth powers, for [0, t,40], We

have
2np
Y, (t 0(p+2)—2 < C —2at\60(p+2)—2
V()] (2 Coe ™)
2np np—4 . ol 1
21 N = ——. 4.13
np — 4 2np21CY min{n, 2} 2C, (4.13)

Now, using this and (4.12), we have

t
V(8|2 < 2Co + 4aCl / 25|, || /D)= (1=0) 020 g
0
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Now, we define

A(T) = sup ||V (t)][262

te[0,7]
where T' € [0, tyaz)-

Then, using (4.13), we have

9(p+2) 0(p+2)

T
4
A(T) < 2Cy + 4aC,A(T) 2 / e "ds < 2C) + 502A(T) 2
0

Since we know that, 6(p + 2) > 1, by Strauss’s inequality we have

9(p+2)

- 2np

2 _

A(T) < 0(p+2)—2 Co =
2

Co.

np —4
This implies, t,,.. € I, hence I is both open and closed, therefore I = R, that is
tmaez Must be equal to co. Hence, we have the desired stabilization result for the case
p > 4/n, too.
By this stabilization result, we see that
||Um||L°°([0,oo);H3(Q)) <C (4.14)
and
‘||um|pum"LOO([O,OO);L(p+2)/(P+1)(Q)) <C. (4.15)
Also, by (4.5), taking any w = 3%, ajw; € Hy(Q) with [Jwl|g1q) = 1, we have
it (1), w) + (=Lt (t),w) + (f ([ (8) ) (8), w) + @ (um(t), w) = 0
which implies
i(ty, (), 0) + (Vi (), V) + (f ([t (8)* )t (1), w) + ia(um(t), w) = 0.

This gives,

lurOll-1@) = sup i), (1), w)] < |[Vun(®)]]| + Cllun (@)% < C

HwHHé(Q)Zl

by (4.14) and (4.15). Hence, we have

||u;n||L°°([0,oo);H*1(Q)) <C. (4.16)
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Hence, by (4.14), (4.15) and (4.16), we can assume that
Uy, — u weakly* in L°([0, 00); Hy(£2)),
[t [Py, — g weakly* in L([0, 00); L/ 0+ (),
ul . — u weakly* in L>([0,00); H™ (1))

where ¢ is indeed equal to |u[Pu by Lemma 2.5.15 and Lemma 2.5.16. Hence, this

concludes the existence part.
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4.2 Existence: Inhomogeneous Boundary Condition

In this section, we will prove the existence of the solutions of the damped Schrodinger
equation with inhomogeneous boundary condition, the proof is similar to the proof for
the undamped problem given in [11]. The equation that we are concerned is formally

given as follows.

iug — Au+ f(|u*)u+iau =0, in Qx (0,00),
u=Q, on I' x (0,00), (4.17)
u(0) = u?, in €.

Here, 2 C R™ (n > 1) is a bounded domain with sufficiently smooth boundary T,
a > 0 is a positive constant, and f(s) = gs? where ¢ > 0,p > 0. Note that when
g = 0, we have the corresponding damped linear equation and when g > 0 we have the
corresponding nonlinear damped equation with positive sign. One can also consider
the stabilization problem when the nonlinearity has negative sign, i.e., g < 0 problem,
but we omit such a discussion.
Multiplying the equation (4.17) with @, taking the imaginary parts and integrating

by parts, we have

Im/[iutu —alAu+ f(|ul?)ua + iaui)ds
Q
; )

:Re/utuda:—l—lm/Vu-Vudx —Im/u@dF+Im/f(|u|2)|u|2da:
Q Q r v Q

+/ alul*dz = 0.
Q

1d
Re/ wudr = ——/ lu|*da,
we get the L2-identity

d 3}
—/ |u|2d$:2lm/u—udf‘—2a/ |u|?dx
dt Q r 8V Q

= ZIm/ Q(Vu - v)dl — Za/ |u|*da,
r Q

Since we have
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that is

d

EHU(t)H%Q(Q) = —2a||u(t)||%2(m + 2Im/FQ(Vu -v)dl. (4.18)

Multiplying the above identity with e2%

and integrating over time, we get the identity

t
|ull720) = e 72| |[u||72(0) + 2¢**'Im / 2 /F Q(Vu - v)dl'ds. (4.19)
0

After multiplying the equation (4.17) with @, taking the real parts and integrating

over {2, we obtain
Re/[iutﬁ — uAu + glulPut + iauu]dzr = 0.
Q

Integrating by parts we get,

0
———

Re/iutudx+/ |Vu|2dx—Re/ua—udf+/g|u|p+2dx+Re/ia|u|2dx:0.
Q Q r v Q Q

Hence, we have

Re/iutudx: —Re/iutudx = —/(|Vu|2—|—g|u|p+2)dx—|—Re/Q(Vu-y)dF. (4.20)
9 0 0 r

Multiplying the main equation (4.17) with @, taking the real parts and integrating

by parts, we have

Re/[z’utat — wAu + glulPuty + iauty)de =0
Q

0
—_——N—

:>Re/z’|ut|2dx—|—Re/Vu-Vutdx—Re/ut@dF+Re/g|u|puutdx
Q Q roov Q
—HLRe/ wugdr = 0.
Q

In the above, we can use the equalities

1 d 1d
Pouiiy] = ——— — |q|P12 Vu- Vil = =—|Vul?
Re[|u|Pu,] 2 t\u! and Re[Vu - Vi 5 t’ ul”.

Hence, using (4.20) we get the (energy) identity

2
%/QOVUF + ]Tg2|u|p+2)dx = 2Re/rut?df - 2aRe/Qiuutdx

14



Chapter 4: Stabilization of the Non-Linear Schrédinger Equation 45

— 9 . _ 2 p+2 _ ) .
_2Re/FQt(Vu v)dl 2a(/ﬂ(|Vu| + glulPT)dx Re/FQ(Vu v)dl),

that is
d 2 2 2 2
E(HVUHLQ(Q)—}_ QF(|UI )dx) + 2a(||Vul|72q) + QF(|UI )dz) =

ZRG/F(Qt +aQ)(Vu - v)dl + 2a/9(F(|u|2) — glulPt?)dx, (4.21)

where

2
F(lu]?) = —L jufr+,
p+2

Multiplying (4.21) with e and integrating over time, we get the identity

OWMEQ+LFWWMW“ﬂWM@@+LFWWMr

t t

+2Re/ 62a8/(Qt—l-aQ)(Vu-y)dFds—l—Qa/ 62“5/(F(|u|2)—g|u|p+2)dxds. (4.22)
0 r 0 Q

Since, I' is of class C*°, there exists a smooth vector field ¢ : R® — R™ such that

q|r = v, which is the outward unit normal vector field.

Now, we have the equality
Utl_txj — ﬂtum]. = (uﬂmj)t — (Ul_tt)xj.

Multiplying this by g;, we obtain

Qj(utﬂacj - atuxj) = qj (uam‘j)t - %(uat)x] = (%uax])t - (QJuﬂt)l‘J + (q])x]uat

Integrating this equality on €2, we get

V2

d J
/qj(utam]. — Uplly;) = —/qjuﬂxjdx — / viq; v dl + /(qj)m].uﬂtdx. (4.23)
Q dt Jo r Q

On the other hand, using the main equation, we can also write

Q5 (Uplly, — Uslly,) = qj{ZiIm(utﬂxj)} = ¢;{2iIm [(—iAu +iglulPu — au)ﬂxj]}
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= ¢;{—2iRe(Auty,, ) + 2igRe(|u| utl,,) — 2ialm(ut,,)}

= ¢{—2Re Y [(ta, Ua))a,, — Us,, ls,a,,] + 20gRe(|uPu,,) — 2ialm(uil,, )}

m=1

n

= —2iRe Z[(qu:vmﬂ:vj)zm - (qj)xmul'mﬂl'j] + Z[i(qﬂuwm’?)x]’ - i(Qj>zj|uwm|2]+

m=1 m=1

. 2g

i e, = (@) "] = 2ialm (i)

Integrating this equality over €2, we obtain

/ qj(upliy; — Uy, )dx = —2iRe Z / qjUs,, Ug; Vi dl' + 2iRe Z/ (qj)xmuxmﬁmjdx
Q m=1 r m=1 Q

. 2 . 2 : +2
—|—sz:1/qu\uxm| yde—sz:l/ﬂ(qj)xjmmm\ dx+zp+2/rqj|u|1” v;dl’

2
' _52/(qj)xj|u|p+2dx—2ia1m/uuxjdx. (4.24)
p Q Q

—1

Using (4.23) and (4.24) together and adding the terms corresponding to j = 1,...,n,

we have

d _
E/Qu(q-Vu)aM—/FQQtdFjL/Quut(divq)dx

- —2@'/ lv - Vul?dl + 2i Z / (qj)xmummﬂmjdx—i—i/ |Vu|2dD
r Q r

m,j=1

. . . 29 . 29 . 9
—i [ (divg)|Vul*dx + i / w|PT2dl — i / divg)|ulP?dx
[ ivauas+ i [ uprzar -2 | @ivg

_Qi&ImZ/uaxjdx. (4.25)
=179

Now, we multiply (4.17) by (divg)u and integrate on €2, which gives
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0= /(zut — Au+ glu|Pu + iau)u(divg)dr =
Q
i/(dz’vq)utﬂdx + /(divq)|Vu|2dx + / w(V(divg) - Vu)dx
Q Q Q

—/(divq)ﬂ@df—i-/g(divq)|u|p+2dx—I—ia/(divq)|u|2dx.
r v Q Q

Multiplying the above identity with —i, taking the complex conjugate, we have

/Q utly(divg)dr = i /F (Vi - v)Q(divg)dl — i /Q (divg)|Vu|*dx

—i/Qu(V(divq) -Vau)dr — z‘/ﬂg(divq)]u\p“dx - a/g(divq)]u\zdx. (4.26)

Using this in (4.25) we get the following identity

d

a /. u(q - Vu)dr — /F QQdl + i /F(Vﬁ - V)Q(divg)dl

—i/ uw(V(divg) - Vu)dx — z/ g(divg)|uP?dx — a/(dz’vq)|u|2d9€
0 Q Q

= —2@'/ lv - Vul?dl + 2i Z / (qj)xmuxmﬂxjdx—l—i/ |Vu|?dl
r 0 r

m.j=1

29 o .29 : i : - _
P /F |ulPT=dl" — Zp 9 Q(dwq)|u|p dx — QWIm; i Ul d. (4.27)

Now, let My be a constant such that |Q)] < Mg. Then, let’s define the following

+1i

truncated version f; of the nonlinear term f as

where we take k > Mg. Now, consider the following truncated system
™ — Au® 4 Fe([u® 2 u® 4 jqu® =0, in Q x (0, 00),
u® = Q. on T x (0,00), (4.28)
u®(0) = u®, in Q.
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It is easy to see that for any k the mapping u — fi(Ju|?)u is globally Lipschitz.
Also since k > Mg, we have fy(|Q*) = f(|Q]?).
Now, we choose some @ € C3(Q x [0, 00)) such that

Q|F = Q)
AQlr = FIQP)Q +iQ; + iaQ.

We remark that v®) := 4 —Q converts the problem (4.28) into the following problem

that has homogeneous boundary condition.

ivﬁk) — Av® g = f(v(k), Q), inQx (0,00),
v =, on T x (0,00), (4.29)
v™(0) = v° = u® — Q(0), in Q,
where

F®,.Q) = — (o™ + Q) (0™ + Q) — iQ; + AQ — iaQ.

Now, let Uy(t) = e~** be the evolution operator for the free Schrodinger equation,
i.e., a group of unitary operators on Hj(€2). Then, we can write the system (4.29)

alternatively as an integral equation as follows.
t
oM (t) = Uy(t)v™(0) +/ Uo(t — 7) fu(T)dr = No®)(t)
0

Now, looking at the Hj(€2) norm of the above identity on each [0,7], we get the

inequality

t
INVE @)1y < ||U(k)(O)HH01(Q)+/O [1£e(0™(5), Q)13 (0 ds

t
< ||v<k>(o)||H3(Q) + Ck/ ||U<k>(s)\|Hé(Q)ds + Cir. (4.30)
0

We also have

INo®) () — Nw™® Oz @) < lv*)(0) — w(k)(O)HHg(Q)

+/Hﬁ@w+QWWW+Q%JMWW+QWWW+QN%@%
0
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t
< |lv™®(0) — w(k)(o)||Hé(Q) + (Jk/ I[0®)(s) — w<k>(3)||H3(Q)ds. (4.31)
0

We define the space

B = {v € C([0,To); Hy() : [Jvlloompsmyey < ¢ v(0) =u” —Q(0)}

where Ty == 10, and ¢* := 2(Crr + ||v°|| 1) + |Q(0)|m1(ey). Then, A is a con-
traction on B by (4.30) and (4.31). Hence, there is a unique solution v*) in B to the
problem (4.29) in [0, Ty] which implies there is a unique solution u® = v® + Q to
the problem (4.28) in [0, Tp).

Now, if u®) € C(]0,T]; H'(£2)) is a solution, we want to extend it to the whole positive
time interval, therefore, we need a uniform bound on |[u® (£)||z1(q)-

First note that replacing u by u®) the identities (4.22) and (4.27) take the forms

(1722 ) + / Fo(ju® 2)dz) e = || V| [3(q) + / Fy(ju’)dx
Q Q

t
—I-QRe/ 62“8/(6_2,5 +aQ)(Vu® . v)dl'ds
0 r

t
—i—2a/ 62“8/(Fk(]u(k)|2) —fk(]u(k)\z)]u(k)\Q)dxds. (4.32)
0 Q

and

d _
p /Q u® (q - Va™)dx — /F QQudl +i /F (Va™ - v)Q(divg)dl

i / u® (Y (divg) - Va™)dz — i / (divg) fu([u® 2)[u® Pdz — / (divg) [u® [2da
Q Q Q

- —2@'/ v - Vul?dl + 2i Z / (qj)wmumuxjdx—l—z’/ |Vu|2dT
r Q r

m,j=1

2

+i—2d /|u|p+2df—i/(divq)Fk(|u(k)|2)dx—QiaImZ/uﬂmjdx. (4.33)
+2Jr Q oo

p
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Since v™® is constant on the boundary I', we have that Vo®*) = agf) v, ie., Vo is in

the direction of the outward unit normal. Hence, the tangential component of Vv(*)
on the boundary is zero. Thus, using the definition of v®), we have

0

——— N B
Vut) . A=vo® . A4VQ - A=VQ- A

where A is the unit tangential vector, so the dot product with A gives the tangential

components. Hence, we can write
VU = [Vu® - 4 [Vu® - AP = [Vul - 1 [VQ - AP (4.34)

Substituting (4.34) into (4.33), integrating over time, and taking the absolute values,

we get the estimate

t t
/ /|V-Vu(k)|2dfd7§/ /|V©-Ay2drdr+|/u<k>(q-va<k>)d:¢\
0 JIU 0 JIU Q

t t B
+\/u0(q-vu°)da:\+/ /IQQt|dFdT+c/ /|(V-Vu(k))Q|dFdT
Q 0o JI 0o JI
t t
+c / / ™| Vu®|dzdr + ¢ / / \Vu®) 2dzdr
0 Q 0 Q
t t t
T / / u® Pdadr + o / / QP*2dTdr + ¢ / / Fe(u®P)dedr.  (4.35)
0 JQ 0o JI 0 JOQ

Hence, we have

t
0

t
C/ (||U(k)||%2(ﬂ) + ||Vu(k)||%2(g) + Fi([u®]?))dr (4.36)
0

where ¢ is a constant which does not depend on time and which may have different

values at each place it is used.

t
J? = / / IVu®) . p|2dldr.
0 JIT

Now, let’s define
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Then, we can write (4.36) in compact form J? < A%, where A? is the sum of all the

terms in the right hand side of (4.36). Taking square root of both sides, we get
J < A. (4.37)
Now, let’s define
Gt) = [ (P + [V + Fu((u® ) d,
Then, we can write
A? = et e(|[u®[ L2y + IVu®[72q)
+e /;(Hu(k)\l%z(m + Va2 + Fr(|u™?))dr
< et el gy + IVa ey + [ Al P)ie)

t
+C/O (™ [720) + V@2 + Fi(ju®?))dr

that is,
¢
A* <c+cG+ c/ Gdr. (4.38)
0

Now, from the mass identity (4.19), using Holder’s Inequality we have

t
[0y = o + 267 [ [ Q7 )arar
0 r

t 1 [t 1
< c+ce—2at(/ e4m||@||§2(r)d¢)2(/ /\Vu(k)-y|2dFdr)2,
0 0 N

that is,
Hu(k)H%?(Q) <c+ecl (4.39)

Now, using the energy identity (4.32) and Holder’s Inequality, we have

Hvu(k)H%z(g)—i‘/Fk(lu(k)|2)dl’—||Vu0|]i2(9)e_2“t+e_2at/Fk(|u0\2)dx
Q Q

¢
+26_2atRe/ e /(Qt +aQ)(Vu® - v)dldr
0 r

t
202! / / Fel[aPR) — fu([u® P)lu® ?)dwdr
0 Q
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t 1 i 1
< et e ( [ QI + Q) ([ [ 1908 vparan)’
0 0

¢ t
+Ce_zat/ 62‘”/ Fk(|u(k)|2)dxd7 <c+cd+ c/ Gdr,
0 Q 0

that is
t
V)| 2400, + / Fe(lu®P)de < o+ ] + ¢ / Gdr. (4.40)
Q 0

Summing (4.39) and (4.40), we obtain

t
G = [lu® By + [V 22y + / Fu(lu® )z < e+ e + / Gdr.  (441)
0

We observe that, (4.37), (4.38), the inequality (2.5) and Young’s Inequality imply
that

t t
J§A§c+0\/5—l—q// Gdr§c+c@+c/ Gdr (4.42)
0 0

Inserting (4.42) into (4.41) and using Young’s Inequality on c¢v/G, we obtain
t t
G’Sc—i-C\/E—i-c/ GdT:>G§c+c/ Gdr. (4.43)
0 0

Now using Gronwall’s Inequality in (4.43), we have G < e and hence J < . Now,
(4.40) and positivity of Fy, implies ||u® (¢)||g1(q) is bounded for bounded T'. Hence,
now we can extend u*) to [0, 00) so that u* will be in C([0,T]; H'(Q)) for each T

and for some constant C'r, we will have

sup Hu(k)(t)||H1(Q) < (Cp.
te[0,T]

Since, C7 is independent of k, for T = 1 we have a weakly™ convergent subse-

quence u'" of u® in L*([0,1]; H*()), and similarly a weakly* convergent subse-

quence u” of u{® in L>([0,2]; H*(€)), etc. Hence, choosing the diagonal sequence

u,&k), we have a function u € Lg° ([0, 00]; H'(2)) such that u,(f) converges weakly*
to u in L>([0,T]; H*(Q)) for each T, call this again u*). Now, boundedness of

Jo Fre(|u®]?)dz implies boundedness of fi(Ju®)|[*)u™ in L>([0,T]; L' + L?). Since,
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u™ = —iAu® +ifi(Ju® 2)u®, uM e L°([0, T); L' + H'). Using relative compact-
ness lemma and Cantor’s diagonalization again, there is a subsequence again called
u® without loss of generality, that converges to u almost everywhere on  x [0, c0).
Hence, we also have fi,(|u®|?)u®) converges a.e. to f(|u|?)u. Again boundedness
of [, Fi(|u®|?)dz and Egoroff’s Theorem imply fi(|u®[*)u® converges to f(|ul*)u
uniformly in L*(Q') for any bounded €' C € x [0, 00). Therefore, we conclude that u
(0, 00]; ' (©) ) I72(0)).

is a solution and from the class L.

Hence, we conclude with the following theorem

Theorem 4.2.1. There exists a solution u of the system given in (4.17) from the

class L52.([0,00); HY(Q) N LPT2(QY)) for all p € (0, 00).

loc
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4.3 Stabilization: Inhomogeneous Boundary Condition

In this section, we will prove the H'-stabilization of the damped nonlinear equation
with inhomogeneous boundary condition for which we have proved the existence result
in Section 4.2.

Let’s first define the following multiplier function

p(t) = Im/ﬂu(a:,t)h(m) -Vau(z,t)d.

where h(z) is a sufficiently smooth real vector field and H(x) be the n x n matrix

- __ Oh;
J T Ozt

with entries H;

Differentiating p(t) gives
pt) = Im/ﬂuth -Vaudz + Im/ﬂuh - Vigdz.
Using the divergence theorem on the vector function uwu;h we have
Im/gdiv(uuth)dx = Irn/ruut(h -v)dl.
Since,
div(uugh) = X1 (vagh),, = X0 uy, wh + X0 u(y) g, h + X0 utghy,

= (Vu-h)a, + (Vg - h)u + div(h)udy,

we have the equality
Im/ uh - Viude = Im/(h - v)utdl — Im/ h - Vuudr — Im/ div(h)utidz.
Q r Q Q

Now using (4.17), we get
—Im/ div(h)uutdx:Im/div(h)uutd:p = —Re/ div(h)u(iug)dz
Q Q Q
= —Re/ div(h)u(Au — f(|ul*)u — iau)dx
Q

— Re /Q div(h)aAuds + /Q div(h) f(|u[?)|ul2dz
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~ Re /Q Y (div(h)) - Vuda + /Q div(h) (|u[?)|ul2dz — Re /F (div(h)i)(Vu - v)dT

= / div(h)|Vu|*dz + Re/ uV(div(h)) - Vudz
Q Q

+ /Q div(h) f(|u*)|ul*dx — Re/r(div(h)u)(Vu -v)dl’

We also have

—Im/ h - Vuu,dr = Im/ h - Vuuwdr = —Re/ h - Vuiudr
Q Q Q
—Re/ h-Vi(Au — f(|u]*)u — iau)dz
Q

= —Re/ h - VuAudz + Re / (h - Va) f(Jul*)udx + Re/ iau(h - Vu)dx
Q Q Q

Hence, combining all above we have

pt) = —ZRe/

h - VuaAudz + 2Re/
Q

iau(h - Vii)dz + 2Re / (h - Va) f(Ju2)udz
Q Q

—l—/gdiv(h)\VuFdx—i—Re/QﬂV(div(h))-Vudx+/Qdiv(h)f(]u\z)]u|2dx

“Re / (div(h)i) (V- v)dl + Tm / (h - v)utiydl.

Now, note that we have

—2Re/ h - VuAudr = 2Re/ Vu-V(h-Vau)dr — QRe/(Va -h)(Vu - v)dl’
0 Q

T

= 2Re/(HVu) -Vaudzr + / h-V(|Vul|?)dzx — 2Re/(Vu -h)(Vu - v)dl
0 0 r
= 2Re/(HVu) -Vaudr — / div(h)|Vu|*dz + /(h V)| Vul*dl
0 0 r

9Re / (Vi - h)(Vu - v)dT"

Note that we also have,

QRe/Q(h-Vu)fﬂu]Q)udx:/FF(|Q\2)h-l/dF—/Qdiv(h)F(\u]Q)dx

Hence, rewriting p/(t), we have

p'(t) = 2Re /

(HVu) - Vudz +/
Q

(h - v)|Vul|?dl’ — 2Re/(vu -h)(Vu - v)dl

r
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26

+2Re/ iau(h - Vu)dx + Re/
Q

Q r

avaﬁmh».vump-Re/(ﬁmhmxvu.mdr

Hmﬁ@wﬂ%ﬁ+£ﬂ@ﬂhmﬁ—£ﬁWﬂﬂMﬂ—ﬂMWWMm

Let’s define

QW[ = Q) + Qe Fay + 1Q)[T32 1y

Now, let’s define
G(t) = |[ullp oy + / F(luf?)dz.

Then by (4.18) and (4.21), we have

G'(t) = —24G(t) + 2a / (F([uf?) — F(uf?)uf?)dz

+2Re /F((a —)Q + Q) (Vu - v)dl' < —2aG(t) + 2Re /F((CL —1)Q + Q) (Vu - v)dr,

since

F(lul*) = f(Jul*)[ul* < 0.

Hence, we have

G'(t) < —2aG(t) + 2Co([|Q()] L2y + Qe (D) L2V - V|2

802 €
< —2aG(t) + —(HQ( MZzmy + Qe[ Z2ry) + 1lVu- V|72

8C? €
< —2aG(t) + OHQ( )\|§+Z||VU'VH%2(F)

where € > 0 is a constant to be chosen later.

Note that we have

()] < u(®)|| 2@l [k - Vut)]|z2@) < w2 lhle @)l [Vult)|] 22 @)

()12 + ol Loe @ Vu®)llZ2)

l\')l»—l

(1 + Al oo @) (Ju®)[Z2) + [[Vu(®)][72(0))-

[\Dlr—t

Hence, we have

()] < CLG(t)

(4.44)



Chapter 4: Stabilization of the Non-Linear Schrédinger Equation 57

where C := 3(1+ A7 o0 (0))-
Then, choosing h so that h|r = v we have the following estimate on p'(t),
p(t) < Collu®)l[fn o)
HIVUllZay = 20V |72y + CsllQ 2|V - vl 2y
HIQ 2y Qe ()| z2(r) +/FF(|Q|2)CZF+C4/Q|F(|U|2) = f(jul)|uf*|dz

Now, suppose that Q(z,t) be such that Q|r = Q. We remark that v := u — Q con-

verts the problem (4.17) into the following problem that has homogeneous boundary

condition.
vy — Av +dav = f(v,@), in 2 x (0, 00),
v =0, onI" x (0,00), (4.45)
v(0) = u® — Q(0), in €,
where
f0,Q) = =f(lv+ QP)(v+ Q) — Qi + AQ — iaQ.
Since v is constant on the boundary I', we have that Vv = %V, i.e., Vo is in the

direction of the outward unit normal. Hence, the tangential component of Vv on the
boundary is zero. Thus, using the definition of v, we have

O ~ ~
Vu-A=V0 - A+VQ-A=VQ- A

where A is the unit tangential vector, so the dot product with A gives the tangential

components. Hence, we can write
Vul?> = |Vu-v]? + |[Vu- AP = |Vu-v]? + [VQ - A? = |Vu - v]2 4 |[VAQ|>.  (4.46)

on the boundary.

Using (4.46) into the estimate above we derived for p/(t), we obtain,
p'(t) < Caollu()||3 o

—[IVu - VL) + IVAQW)L2(ry + CallQO 22y [V vl 12y
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HIQM 2y Q)| 2(ry +/FF(\Q|2)dF+C4/Q!F(|UI2) = f(ul?)|uf*|dz.
Hence, we have
!/ / €
G'(t) +ep'(t) < (Coe = 2a)G(t) = ZlIVu- vl

Cie
2
2a

Hence, choosing a fixed € € (0, 0—5), we have

+(e+ ==+ 8CH)IQW)I]5-

Gi(t) < =CsG(t) + Crl|Q)]]5.
Since, we have |p/(t)] < C1G(t)
G(t) =G(t) +ep(t) < G(t) + eC1G(t) = (1 4 €C1)G(2)

which implies

G.(t) > —CsG(2). (4.47)

Therefore,

Gi(t) < —CsGe(t) + Cr QI3

where Cy = % This implies

t

G(t) < G (0)e " + C7ecgt/ e1Q(s)||2ds.
0

Replacing G(t) with G(t) + ep(t) and G.(0) with G(0) + ep(0) and using (4.44), for

€ chosen sufficiently small we get
t
(1—€eC)G(t) < (1+€eC)G(0)e " + C5e_cst/0 e|Q(s)||2ds

1 t
S G < 114 G o / £55%(|Q(s)]2ds
1 - 601 0

—Cgt
<1 eC’lG(O)e +

t
= G(t) < G(0)e %" + C7e_CSt/ e |Q(s)||2ds).
0
Hence, we conclude with the following theorem.

Theorem 4.3.1. Let u be a solution of the system given in (4.17) and assume that

limt_wo ||Q(t)||b = 0, then hmt_wo ||u(t)||(H1(Q)mLp+2(Q)) = 0.
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Note that this theorem implies
lim || Vu(t)] () = 0
which implies the decay of the energy of the solutions.

Remark 4.3.2. (A remark on the rate of decay) Note, that in the above system,
the decay rate of b-norm of Q) plays a fundamental role in the decay rate of the energy,
because for example if () decays exponentially, we get exponential stabilization, or if
Q decays polynomially, we get at least a polynomial stabilization. However, if the
decay rate of Q) is faster than exponential such as super exponential, this does not

necessarily make energy to decay faster than exponential, because of the exponential

term G(0)e~ st
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4.4 Open Problems

In this section we briefly list some open problems based on the analysis we do in
the previous sections of this study. These problems might be of interest for further
research.

Stabilization under Negative Nonlinearity

In Section 4.3, we prove that the energy of solutions of the weakly damped nonlinear
Schrodinger equation with inhomogeneous boundary condition decays to zero as time
goes to infinity under the assumption that the boundary condition decays to zero
in a reasonable sense. However, one of the assumptions we make is the sign of the
nonlinearity in the equation. We assume that the nonlinearity has positive sign,
that is the equation is attractive. However, there are also physical situations which
yield the same equation with negative signed nonlinearity, that is the equation is
repulsive. Therefore it is also interesting to consider the stabilization problem for the
same equation with negative signed nonlinearity. The mathematical motivations to
consider this problem can be the decay of solutions of the weakly damped nonlinear
Schrodinger equation with homogeneous boundary condition and the existence result
for the Schrodinger equation with inhomogeneous boundary condition with negative
signed nonlinearity which is done in [12] for p < 2.

Stabilization with Localized Damping

In Section 3.3, we prove that the solutions of the linear Schrodinger equation decay
to zero in L?—sense in the case the equation contains a linear damping term which is
supported only a small neighborhood of the boundary. Therefore, a natural question
is also to ask for a similar stabilization result for the nonlinear equation with some
localized damping, even in the case of homogeneous boundary condition.
Stabilization with Less Smooth Boundary Condition

Note that in Section 4.3, another assumption that we make is the smoothness of the
boundary condition. We assume that the boundary condition @ is from the class
of functions C3(92 x (0,00)). Hence, a new question we can ask is the stabilization

problem with a boundary condition at a lower regularity, for example one can consider
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the case where Q € H!.

Stabilization with Nonlinear Damping

In Section 4.3, we consider the equation with a weak linear damping. However, there
are also some physical situations where the equation is driven by a nonlinear damping
instead of a linear damping. Hence, another question that we might consider for
further analysis can be the stabilization result for the nonlinear Schrédinger equation

with nonlinear damping.
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