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ABSTRACT

In this thesis, the main aim is to study stabilization problems in the contex of linear

and nonlinear Schrödinger equations. These include both boundary and internal stabi-

lization problems. We also get a new result on a stabilization problem for Schrödinger

equation with inhomogeneous boundary condition. In this result, we prove the decay

of energy of solutions of the weakly damped Schrödinger equation with inhomoge-

neous Dirichlet boundary condition. We prove that if we impose a decaying condition

on the boundary condition in a reasonable sense then we get stabilization of the en-

ergy. In addition, we observe that decay rate of the boundary function controls the

decay rate of energy of the solutions.

Keywords: Stabilization, exponential stabilization, boundary stabilization, internal

stabilization, linear Schrödinger equation, nonlinear Schrödinger equation, inhomoge-

neous Dirichlet boundary condition, weakly damped Schrödinger equation, localized

damping
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ÖZET

Tezin esas amacı doğrusal ve doğrusal olmayan Schrödinger denklemlerinin çözümlerinin

kararlılaştırılmasının incelenmesidir. Bu çalışma hem sınır hem de iç kararlılaştırma

problemlerini içermektedir. Ayrıca bu çalışmada homojen olmayan sınır koşulu altındaki

Schrödinger denkleminin kararlılaştırılması ile ilgili yeni bir sonuç elde edilmekte-

dir. Bu sonuçta homojen olmayan sınır koşulu altındaki Schrödinger denklemi için

başlangıç sınır değer probleminin çözümünün zamana göre davranışı incelenmekte-

dir. İspat edilmiştir ki, eğer zaman sonsuza yaklaştıkça sınır değer fonksiyonu uygun

manada sıfıra yaklaşıyorsa, incelenen problemin çözümünün enerjisi de zaman sonsuza

yaklaştıkça sıfıra gitmek zorundadır. Buna ek olarak sınır değer fonksiyonunun sıfıra

yaklaşım hızının çözümün enerjisinin sıfıra yaklaşım hızını kontrol ettiği de tespit

edilmiştir.
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Kale for providing constant support for me to be a mathematician.

I am also grateful to Prof. Irena Lasiecka and Prof. Roberto Triggiani for their

worthwhile mathematical discussions with me.
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NOTATION

a.e. almost everywhere

div divergence

X∗ the topological dual of the vector space X

α = (α1, ..., αn) where αi ∈ N and we define |α| =
∑n

i=1 αi

Dα = ∂|α|

∂α1x1...∂αnxn

Ω open subset of Rn

Ω̄ closure of Ω in Rn

∂Ω boundary of Ω, = Ω̄− Ω

B(x0, r) ball of radius r with center x0

C(Ω) continuous functions on Ω

C(Ω̄) uniformly continuous functions on Ω

Ck(Ω) k times continuously differentiable functions on Ω

Ck(Ω̄) = {u ∈ Ck(Ω)|Dαu is uniformly continuous on Ω for |α| ≤ k}

D(Ω) the space of C∞ functions with compact support in Ω

4 =
∑n

i=1
∂2

∂xi
2

∇u = (∂x1u, ..., ∂xnu)

ut = ∂tu = ∂u
∂t

= u′ = du
dt

Lp(Ω) the space of measurable functions u on Ω such that |u|p is integrable, p ∈ [1,∞]

||u||Lp(Ω) = (
∫

Ω
|u|p)1/p, where u ∈ Lp(Ω)

p′ the conjugate exponent of p, that is p′ = p
p−1

for p ∈ [1,∞]

L∞(Ω) the space of measurable functions u on Ω such that there is

a constant C with |u(x)| ≤ C for a.e. x ∈ Ω

||u||L∞(Ω) = inf{C > 0||u(x)| ≤ C a.e.} for u ∈ L∞(Ω)



|| · || = || · ||L2(Ω)

(·, ·) = (·, ·)L2(Ω)

Wm,p(Ω) = {u ∈ Lp(Ω), Dαu ∈ Lp(Ω) for all α ∈ Nm such that |α| ≤ m}

||u||Wm,p(Ω) = (
∑

|α|≤m ||Dαu||pLp(Ω))
1
p for u ∈ Wm,p(Ω)

Wm,p
0 (Ω) the closure of D(Ω) with respect to the norm || · ||Wm,p(Ω)

Hm(Ω) = Wm,2(Ω)

Hm
0 (Ω) = Wm,2

0 (Ω)

Ck([a, b];X) Banach space of m times continuously differentiable functions

u : [a, b] → X with sup norm

Lp([a, b];X) Banach space of measurable functions u : [a, b] → X such that

||u||Lp([a,b];X) <∞

||u||Lp([a,b];X) = (
∫

Ω
||u||pX)1/p, where p <∞

||u||L∞([a,b];X) = ess supt∈[a,b] ||u(t)||X

2
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Chapter 1

INTRODUCTION

The Schrödinger equation, which was first proposed by the famous physicist Erwin

Schrödinger in 1925, is the model which describes the space and time dependence of

quantum mechanical systems. Therefore, this equation helps to predict the future

behavior of a dynamical system. Indeed, Schrödinger equation is interpreted as the

analogous of Newton’s second law and conservation of energy in classical mechan-

ics. In quantum mechanics, we represent a system by means of a complex Hilbert

space where each state of this system corresponds to a unit vector in this Hilbert

space. This vector includes the information of the probabilities of the outcomes of all

measurements on the system. Since the state of a system may change over time, this

vector depends on time. Hence, the Schrödinger equation gives the information about

the rate of change of the state of the system. This equation can be either linear or

nonlinear and may include various kinds of damping terms according to the physical

situation it applies.

In this work, we make a mathematical study of some linear and nonlinear Schrödinger

equations in the context of stabilization. We study decay rates of solutions for different

scenarios which are important from physical point of view. In addition to these, we

get a new result on the weakly damped Schrödinger equation with inhomogeneous

Dirichlet boundary condition.

In Chapter 2, we give a brief reminder for some common mathematical tools that

we will use in the subsequent chapters. These include some calculus facts, various

inequalities, Sobolev spaces, Banach space valued functions, functional analysis and

a brief semigroup theory.

In Chapter 3, we study the asymptotic behavior of solutions of linear Schrödinger
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equation on a bounded domain with sufficiently smooth boundary. We consider both

the boundary stabilization problem and the internal stabilization problem. In the

boundary stabilization problem, in Section 3.1 we prove existence of solutions and

in Section 3.2, we prove exponential decay of solutions in H1−sense by applying a

dissipative boundary control which is indeed the trace of velocity on the boundary.

In the internal stabilization problem, in Section 3.3, we prove exponential decay of

solutions in L2−sense by adding a localized linear damping in the main equation

which is supported only on a small neighborhood of the boundary.

In Chapter 4, we study the long time behaviour of solutions of linearly damped nonlin-

ear Schrödinger equation with homogeneous and inhomogeneous Dirichlet boundary

condition on a bounded domain with smooth boundary. In Section 4.1, we prove

exponential decay of solutions in H1−sense when we use zero boundary condition. In

Section 4.2 and 4.3, we prove a new stabilization result on Schrödinger equation with

inhomogeneous Dirichlet Boundary value. In this result, the equation can be both

linear and nonlinear (with positive signed nonlinearity). We prove that the solutions

of linearly damped Schrödinger equation decays to zero in H1−sense by applying a

decaying Dirichlet control on the boundary. Our result shows that the decay rate of

the solution is at least in the rate of slowest of exponential rate and the decay rate of

the boundary condition.

Our result is not only for the sake of mathematical analysis, but it has also physical

implications. A nonlinear Schrödinger equation with inhomogeneous boundary con-

dition has a physical meaning. For instance, in ionospheric modification experiments

of one space dimension, one directs a radio frequency wave at the ionosphere. At

the reflection point of the wave, a sufficient level of electron plasma waves is excited

to make the nonlinear behavior important. This may be described by the nonlinear

Schrödinger equation with the cubic nonlinear term and a Dirichlet type of boundary

condition, [12]. The possible damping term in the nonlinear Schrödinger equation has

also various physical implications. For instance, one can describe the high frequency

electrostatic plasma oscillations under the presence of a damping, [24]. There are
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two well known plasma heating problems which are approximated by the nonlinear

Schrödinger equation. The first problem is the Langmuir turbulence when the plasma

is assumed in equilibrium with the ponderomotive pressure from the high-frequency

fields. The second problem is a nonlinear stage of the mode-converted wave in the

lower hybrid heating of large tokamaks. When such a wave heats and transfers energy

to particles of the plasma, a dissipation term appears in the nonlinear Schrödinger

equation, which results in the damped equation, [25].

We finish this work in Section 4.4 by briefly listing some open problems based on the

analysis we do in the previous sections. These problems might be of interest for further

research. They ask about the stabilization result in the cases of negative nonlinearity,

localized damping, less smooth boundary condition or nonlinear damping.
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Chapter 2

PRELIMINARIES

This section is a very brief reminder of some mathematical tools for reading the main

chapters more comfortable. We only include the tools which we will need in our

analysis in the main sections. Most results are given without proof since the proofs

can be found in many sources. We may only give the proofs of results which have

particular interest in our analysis.

2.1 Calculus

We refer to [7] for this section which includes basic calculus facts.

Suppose Ω is an open and bounded subset of Rn where n ≥ 1.

Definition 2.1.1. We say ∂Ω is Ck if for each point x0 ∈ ∂Ω there exist r > 0 and

a Ck function γ : Rn−1 → R such that-upon relabeling and reorienting the coordinate

axes if necessary-we have

Ω ∩B(x0, r) = {x ∈ B(x0, r)|xn > γ(x1, ..., xn−1)}.

Likewise, ∂Ω is C∞ if ∂Ω is Ck for k = 1, 2, ...

Definition 2.1.2. (i) If ∂Ω is C1, then along ∂Ω is defined the outward pointing unit

normal vector field ν = (ν1, ..., νn). The unit normal at any point x0 ∈ ∂Ω is ν(x0).

(ii)For u ∈ C1(Ω̄),
∂u

∂ν
:= ∇u · ν

is called the (outward) normal derivative of u.
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Theorem 2.1.3. (Divergence Theorem) Suppose Γ := ∂Ω is C1 and F ∈ C1 vector

field on Ω. Then, the following identity holds.∫
Ω

div(F )dx =

∫
∂Ω

F · νdΓ.

In the following Remark, we give different variations of Divergence Theorem that we

will use in the main section s without pointing out to the particular one we use.

Remarks 2.1.4. (i) In the above theorem, choosing F = (0, ...,

Fj︷︸︸︷
u , ..., 0), where

u ∈ C1(Ω̄), we have ∫
Ω

uxj
dx =

∫
∂Ω

uνjdΓ.

(ii) Taking u := fg in (i) where f, g ∈ C1(Ω̄), we get the integration by parts formula∫
Ω

uxj
vdx = −

∫
Ω

uvxj
dx+

∫
∂Ω

uvνjdΓ.

(iii) Taking F := u∇v in the Divergence Theorem where u, v ∈ C2(Ω̄), we have∫
Ω

u4vdx+

∫
Ω

∇u · ∇vdx =

∫
∂Ω

u
∂v

∂ν
dΓ.

(iv) Taking F:=uG, where u ∈ C1(Ω̄) and G is a C1 vector field on Ω, we have∫
Ω

udiv(G)dx = −
∫

Ω

∇u ·Gdx+

∫
Γ

uG · νdΓ.
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2.2 Inequalities

We refer to [7], [17] for this section. We will use the following inequalities throughout

the main chapters.

Young’s Inequality. Let 1 < p, q <∞ and 1
p

+ 1
q

= 1. Then,

ab ≤ ap

p
+
bq

q
(2.1)

where a, b > 0.

Young’s Inequality with ε > 0. Let 1 < p, q <∞ and 1
p

+ 1
q

= 1. Then,

ab ≤ εap + (εp)−q/p
bq

q
(2.2)

where a, b > 0.

In the case, p = q = 2, Young’s inequalities are also called Cauchy’s inequalities.

Hölder’s Inequality. Let 1 ≤ p, q ≤ ∞ and 1
p

+ 1
q

= 1. Then, if u ∈ Lp(Ω), v ∈

Lq(Ω), we have ∫
Ω

|uv|dx ≤ ||u||Lp(Ω)||v||Lq(Ω). (2.3)

Gronwall’s Inequality. If for t ∈ [t0, t1], φ(t) ≥ 0 and ψ(t) ≥ 0 are continuous such

that the inequality

φ(t) ≤ K + L

∫ t

t0

φ(s)ψ(s)ds

holds on [t0, t1] with K and L positive constants, then

φ(t) ≤ Ke
L
R t

t0
ψ(s)ds

(2.4)

on [t0, t1].

Lemma 2.2.1. Let A(t) be a nonnegative continuous function of t satisfying the

inequality

A(t) ≤ C1 + C2A(t)γ

in some interval containing 0, where C1 and C2 are positive constants and γ ≥ 1. If

A(0) < C1 and

C1C
(γ−1)−1

2 < (1− γ−1)γ−(γ−1)−1

,
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then in the same interval

A(t) <
C1

1− γ−1
.

Lemma 2.2.2. Let a, b ≥ 0 and 0 ≤ λ ≤ 1. Then we have the inequality

(a+ b)λ ≤ aλ + bλ. (2.5)

Whenever, λ ≥ 1, then we have the inequality

aλ + bλ ≤ (a+ b)λ. (2.6)

Indeed, for any λ ≥ 0, there exist appropriate constants c1 and c2 depending only on

λ such that the following inequalities hold.

(a+ b)λ ≤ c1(a
λ + bλ) (2.7)

and

aλ + bλ ≤ c2(a+ b)λ. (2.8)
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2.3 Sobolev Spaces

We refer to [3], [7] for this section which includes main definitions and facts on Sobolev

spaces. These spaces are the fundamental spaces for our analysis.

Let Ω ⊂ Rn be a domain with smooth boundary Γ = ∂Ω,m ∈ N, p ∈ [1,∞], p′ = p
p−1

.

Definition 2.3.1.

Wm,p(Ω) := {u ∈ Lp(Ω), Dαu ∈ Lp(Ω) for all α ∈ Nm such that |α| ≤ m}.

Remark 2.3.2. Wm,p(Ω) is a Banach space equipped with the norm

||u||Wm,p(Ω) := (
∑
|α|≤m

||Dαu||pLp(Ω))
1
p .

Definition 2.3.3.

Wm,p
0 (Ω) := D(Ω)||·||Wm,p(Ω) .

Remark 2.3.4. When p = 2, we say Wm,2(Ω) =: Hm(Ω) and Wm,2
0 (Ω) =: Hm

0 (Ω)

where Hm is then a Hilbert space with inner product

(u, v)Hm(Ω) =
∑
|α|≤m

∫
Ω

DαuDβvdx.

Definition 2.3.5. We define W−m,p′(Ω) as the topological dual of Wm,p
0 (Ω).

Remark 2.3.6. Similarly, we say H−m(Ω) := W−m,2(Ω) = (Hm
0 (Ω))∗

Theorem 2.3.7. (Trace Theorem) Assume Ω is bounded and ∂Ω is C1. Then there

exists a bounded linear operator

T : W 1,p(Ω) → Lp(∂Ω)

such that

(i) Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω)

and

(ii) ||Tu||Lp(∂Ω) ≤ C||u||W 1,p(Ω) for each u ∈ W 1,p(Ω), with the constant C = C(p,Ω).
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Theorem 2.3.8. Suppose Ω is a bounded domain in Rn (n ≥ 1) with a boundary

Γ = ∂Ω of class C3. Then there exists a positive constant C > 0 such that for any

function u ∈ H1(Ω) which vanishes on a part of the boundary Γ1 that has a non-empty

interior in Γ, we have the inequality

||u||L2(Ω) ≤ C||∇u||L2(Ω). (2.9)

Proof: Suppose the above inequality does not hold. Then for all m > 0 there is a

function um ∈ H1(Ω) which vanishes on Γ1 satisfies

||um||L2(Ω) > m||∇um||L2(Ω).

Without loss of generality we can choose um (just take um

||um||L2(Ω)
instead of um) so

that

||um||L2(Ω) = 1. (2.10)

So, we have

||∇um||L2(Ω) → 0 as m→∞. (2.11)

Since,

||um||H1(Ω) = (||um||2L2(Ω) + ||∇um||2L2(Ω))
1/2,

(2.10) and (2.11) imply that (um) is bounded in H1(Ω). Since, H1(Ω) is compactly

embedded in L2(Ω), there exists a subsequence (umj) of (um) which converges to some

u0 in L2(Ω).

So, using (2.10) we have that

||u0||L2(Ω) = 1. (2.12)

Note that ∫
Ω

u0φxi
dx = lim

j→∞

∫
Ω

umjφxi
dx = − lim

j→∞

∫
Ω

umjxi
φdx = 0

for all φ ∈ C(∞)
c (Ω). Hence, u0 ∈ H1(Ω) with ∇u0 = 0.

Hence ||∇u0||L2(Ω) = 0 which means u0 is constant, but we know u0 is zero on some

part of the boundary, hence u0 is zero everywhere. This contradicts the result given

in (2.12). Hence, our assumption is wrong, so (2.9) must hold.�
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Theorem 2.3.9. (Gagliardo-Nirenberg Inequality) Let Ω be a bounded domain with

∂Ω in Cm, and let u be any function in Wm,r(Ω) ∩ Lq(Ω), 1 ≤ r, q ≤ ∞. For any

integer j, 0 ≤ j < m, and for any number θ in the interval j/m ≤ θ ≤ 1, set

1

p
=
j

n
+ θ(

1

r
− m

n
) + (1− θ)

1

q
.

If m− j − n
r

is not a nonnegative integer, then

||Dju||Lp(Ω) ≤ C||u||θWm,r(Ω)||u||1−θLq(Ω). (2.13)

If m − j − n
r

is a nonnegative integer, then (2.13) holds for θ = j
m

. The constant C

depends only on Ω, r, q,m, j, θ.
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2.4 Banach Space Valued Functions

We refer to [21] for this section.

Consider a Banach space X and let p ∈ [1,∞),−∞ < a < b <∞. Then we make the

following definitions and remarks.

Definition 2.4.1. Lp((a, b); X) is said to be the space of Lp functions from (a, b) to

X with the norm

||u||Lp((a,b);X) := (

∫ b

a

||u(t)||pXdt)
1
p .

Remark 2.4.2. Lp((a, b); X) equipped with its norm becomes a Banach space.

In the case, p = ∞, we make the following definition.

Definition 2.4.3. L∞((a, b); X) is said to be the space of measurable functions from

(a, b) to X which are essentially bounded, i.e.,

||u||L∞((a,b);X) := sup
t∈(a,b)

ess||u(t)||X <∞.

Remark 2.4.4. L∞((a, b); X) is also a Banach space.

Remark 2.4.5. We also define continuous (and continuously differentiable) functions

valued in Banach spaces as Ck([a, b]; X) with the norm

||u||Ck([a,b];X) :=
k∑
i=0

max
t∈[a,b]

||d
iu

dti
(t)||X,

which is again a Banach space.
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2.5 Functional Analysis

We refer to [2], [4], [5], [6], [18], [19], [22], [23] for this section. We will need the

following various definitions and results in the main chapters.

Theorem 2.5.1. (The Banach Fixed Point Theorem) Let (E,d) be a complete metric

space and let f : E → E be a mapping such that there exists k ∈ [0, 1) satisfying

d(f(x), f(y)) ≤ kd(x, y) for all (x, y) ∈ E × E. Then there exists a unique point

x0 ∈ E such that f(x0) = x0.

Definition 2.5.2. Let X be a Banach space. We say a sequence {xn}∞k=1 ⊂ X con-

verges weakly to x ∈ X, written

xn ⇀ x,

if

φ(xn) → φ(x)

for each linear bounded functional φ ∈ X∗.

Definition 2.5.3. Let X be a Banach space. We say φ is the weak-* limit of a

sequence φn ∈ X∗ if

φn(x) → φ(x)

for all x ∈ X, and we write

φn
∗
⇀ φ.

Remark 2.5.4. If X is reflexive weak and weak-* convergence are equivalent. For

example, Lp spaces for 1 < p <∞ satisfy this. However, in the case p = ∞, we know

from analysis that L1(Ω)∗ = L∞(Ω) but L∞(Ω)∗ 6= L1(Ω), in fact L∞(Ω)∗ is larger

than L1(Ω). Hence, weak and weak* convergence does not coincide on L∞ space.

Theorem 2.5.5. (Banach Alaoglu Theorem) Let X be a Banach space. The closed

unit ball in X∗ is weak-* compact.

Remark 2.5.6. Every strongly convergent sequence is also weakly convergent.
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Definition 2.5.7. An operator A on a real Hilbert space H is called dissipative if

(Ax, x)H ≤ 0 for all x ∈ D(A).

Definition 2.5.8. An unbounded linear operator A on a Hilbert space H is called

m-dissipative if A is dissipative and λI − A is onto for all λ > 0.

Theorem 2.5.9. Let A be an unbounded linear operator on a Hilbert space H. Then

the operator A is m-dissipative if and only if I − A is onto.

Definition 2.5.10. An operator A on a real Hilbert space H is called monotone if

(x2 − x1, Ax2 − Ax1)H ≥ 0 for all x1, x2 ∈ D(A).

Definition 2.5.11. Let X and Y be two sets and let A : X → Y be a mapping. Then,

the graph of A is G(A) := {(x, y) ∈ X × Y : y = Ax}.

Definition 2.5.12. An operator A on a real Hilbert space H is called maximal

monotone if A is monotone and for any monotone operator B, G(B) ⊂ G(A).

Definition 2.5.13. An operator A on a Hilbert space H is called positive if (Ax, x)H ≥

0 for all x ∈ D(A).

Theorem 2.5.14. (Minty’s Theorem) A monotone map A is maximal if and only if

the map I + A is surjective.

Lemma 2.5.15. Let

X := {u ∈ L2([0,∞);H1
0 (Ω)) : ut ∈ L2([0,∞);H−1(Ω))},

then bounded subsets in X are relatively compact in L2([0,∞);L2(Ω)).

Lemma 2.5.16. Let Q be a bounded subset in Rn
X × Rt, gµ and g are functions in

Lq(Q) ≤ C where q ∈ (1,∞), such that ||gµ||Lq(Q) ≤ C and gµ → g a.e. in Q. Then,

gµ → g weakly in Lq(Q).



Chapter 2: Preliminaries 16

2.6 Semigroup Theory

We refer to [1], [6] for this section.

Let X be a Banach space and u0 ∈ X. We consider the general problem u′(t) = Au(t), ∀t ∈ [0,∞),

u(0) = u0

where A : D(A) ⊂ X → X is a (possibly) unbounded operator and D(A) is a linear

subspace of X. We are looking for solutions u : [0,∞) → X, Then, we have the

following definitions and results.

Definition 2.6.1. A family {S(t)}t≥0 of bounded linear operators from X into X is

called a strongly continuous semigroup if the conditions

(i) S(0)u0 = u0, u0 ∈ X,

(ii) S(t+ s)u0 = S(t)S(s)u0 = S(s)S(t)u0, u0 ∈ X, s, t ≥ 0,

(iii) limt↘0 ||S(t)u0 − u0|| = 0, u0 ∈ X

hold.

We say {S(t)}t≥0 is a contraction semigroup if in addition ||S(t)|| ≤ 1 for each t ≥ 0.

Remark 2.6.2. If {S(t)}t≥0 is a strongly continuous semigroup on X, then for all

u0 ∈ X, the mapping t→ S(t)u0 is continuous.

Definition 2.6.3. Let {S(t)}t≥0 be a strongly continuous semigroup on X. The in-

finitesimal generator of the semigroup {S(t)}t≥0 is the unbounded operator A, defined

by

Aφ := lim
t↘0

S(t)φ− φ

t

with domain D(A) which is given by

D(A) := {φ| lim
t↘0

S(t)φ− φ

t
exists in X}.

Lemma 2.6.4. If A is the infinitesimal generator of a strongly continuous semigroup

{S(t)}t≥0 on X, then D(A) is dense in X and A is closed.
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Theorem 2.6.5. (Philips’ Theorem) An unbounded linear operator A : D(A) ⊂

H → H where H is a Hilbert space is the infinitesimal generator of a semigroup of

contractions on H if and only if A is m-dissipative in H.

Theorem 2.6.6. If a linear operator A : D(A) ⊂ H → H is the infinitesimal

generator of a strongly continuous semigroup (S(t))t≥0, then for each u0 ∈ D(A),

u(t) = S(t)u0 is the unique solution of the problem u′(t) = Au(t), ∀t ∈ [0,∞),

u(0) = u0

which is from the class C([0,∞);D(A)) ∩ C1([0,∞);H).
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Chapter 3

STABILIZATION OF THE LINEAR SCHRÖDINGER

EQUATION

In this chapter, we review the results (studied in [9]) on the boundary and internal

stabilization of the linear Schrödinger equation in a bounded domain with boundary of

class C3. In addition to these results, we do the proof of the existence and uniqueness

of the solution and give more complete proofs for the stabilization results given in [9].

Now, suppose Ω is a bounded domain in Rn (n ≥ 1) with a boundary Γ = ∂Ω of class

C3. Consider the following initial value problem with zero boundary value.
iut +4u = 0, in Ω× (0,∞),

u = 0, on Γ× (0,∞),

u(0) = u0, in Ω.

(3.1)

Some Properties:

1. For the above problem H1 and L2 norms of the solutions are conserved.

Multiplying the above equation with ūt, taking the real parts and using integration

by parts one gets

0 = Re

∫
Ω

(i|ut|2 + ūt4u)dx = Re

∫
Ω

ūt4udx

= −Re

∫
Ω

∇ūt · ∇udx+

∫
Γ

ūt
∂u

∂ν
dΓ

= −Re

∫
Ω

∇ūt · ∇udx = −1

2

d

dt

∫
Ω

|∇u|2dx = −1

2

d

dt
||∇u(t)||2L2(Ω).

So, we get
d

dt
||∇u(t)||L2(Ω) = 0,

that is ||∇u(t)||L2(Ω) is constant, which implies

||∇u(t)||L2(Ω) = ||∇u0||L2(Ω). (3.2)
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Also multiplying the above equation with ū, taking the imaginary parts and using

integration by parts one gets

0 = Im

∫
Ω

(iutū+ ū4u)dx = Re

∫
Ω

utūdx− Im

∫
Ω

∇ū · ∇udx

+Im

∫
Ω

ū
∂u

∂ν
dΓdx = Re

∫
Ω

utūdx =
1

2

d

dt

∫
Ω

|u|2dx =
1

2

d

dt
||u(t)||2L2(Ω).

Hence,
d

dt
||u(t)||2L2(Ω) = 0,

that is ||u(t)||2L2(Ω) is constant. Therefore, we have

||u(t)||L2(Ω) = ||u0||L2(Ω). (3.3)

Hence, with the zero Dirichlet boundary condition, the system is not dissipative.

2. Solutions of the Schrödinger equation are also solutions of the plate equation

utt +42u = 0,

because one can write

utt +42u = −(i∂t −4)(i∂t +4)u = 0.

From this observation, one can try to solve the stabilization problem for Schrödinger

equation by using the results obtained on plate equation. However, our approach will

be directly to study the Schrödinger equation without using the properties of plate

equation.

Stabilization Problem: To introduce a damping term in a system which ensures

(desirably exponential) decay of solutions in a physically appropriate norm as time

becomes large.

Now, we define,

Γ0 := {x ∈ Γ;m(x) · ν(x) > 0},Γ1 := {x ∈ Γ;m(x) · ν(x) ≤ 0} = Γ\Γ0

where Γ = Γ0 ∪ Γ1, m(x) := x− x0 (x0 ∈ Rn) and ν is the unit outward normal.
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Consider now, the following initial value problem with a non-zero boundary condition

supported on Γ0.



iut +4u = 0, in Ω× (0,∞),

∂u
∂ν

= −(m(x) · ν(x))ut, on Γ0 × (0,∞),

u = 0, on Γ1 × (0,∞),

u(x, 0) = u0(x), in Ω

(3.4)

where the space of initial data is

X = {u ∈ H1(Ω)|u = 0 on Γ1}.

Multiplying the above equation with ūt, integrating by parts and taking the real parts

we get

0 = Re

∫
Ω

[i|ut|2 +4uūt]dx = −Re

∫
Ω

∇u · ∇ūtdx+ Re

∫
Γ

∂u

∂ν
ūtdΓ

which implies
1

2

d

dt

∫
Ω

|∇u|2dx = −
∫

Γ0

(m · v)|ut|2dΓ, (3.5)

where 1
2

∫
Ω
|∇u|2dx =: E(t) is the energy function.

Consider the inner product (u, v)X := Re
∫

Ω
∇u · ∇v̄dx on the initial value set X.

Then the norm || · ||X induced by this inner product is equivalent to the classical H1

norm || · ||H1(Ω) on X since the Poincare inequality (see Theorem 2.3.8)

||u||L2(Ω) ≤ C||∇u||L2(Ω)

is valid for functions in X (in the case Γ1 has nonempty interior).

The existence (and uniqueness) of the solution of the system (3.4) can be proved by

reducing the problem into a semigroup problem and using the results of the linear

semigroup theory. The proof of existence is not present in [9], but we give a proof in

section 3.1 for the sake of completeness and we will show that there exists a strongly

continuous semigroup of contractions {S(t)}t≥0 in X such that u(t) = S(t)u0 is a

solution of (3.4).
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The boundary conditions in this problem indeed play a role of a damping and ensures

the exponential decay (in H1−sense) of the energy which we prove in section 3.2.

One can also conider the linear Schrödinger equation by using a positive damping not

on the boundary but supported in a neighborhood of the boundary. This problem is

called the internal stabilization problem which is defined formally as follows.

Let ω ⊂ Ω be a neighborhood of Γ0 in Ω and a ∈ L∞(Ω) such that a ≥ 0, a.e. in Ω,

∃a0 > 0, a ≥ a0 a.e. in ω
(3.6)

and we consider the following damped Schrödinger equation.
iut +4u+ ia(x)u = 0, in Ω× (0,∞),

u = 0, on Γ× (0,∞),

u(0) = u0, in Ω.

(3.7)

As noted in [9], for any u0 ∈ L2(Ω), there exists a unique solution of the system (3.7)

from the class

C([0,∞);L2(Ω)) ∩ C1([0,∞); (H2(Ω) ∩H1
0 (Ω))′). (3.8)

Here we consider the L2(Ω)−norm of the solution F (t),

F (t) :=
1

2

∫
Ω

|u(t)|2dx =
1

2
||u(t)||2L2(Ω), (3.9)

which is shown to be decaying exponentially in section 3.3.
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3.1 Existence and Uniqueness: Boundary Stabilization

Note that, the equation (3.4) is equivalent to the ordinary differential equation u′(t) = Au(t), ∀t ∈ [0,∞),

u(0) = u0

where A = i4 with domain D(A) ⊂ X defined as follows.

D(A) := {u ∈ X : 4u ∈ X,
∂u

∂ν
= −i(m · ν)4u on Γ0}.

Now, the operator A = i4 is dissipative, because

(Au, u)X = Re(

∫
Ω

∇(i4u) · ∇ūdx) = Re(−
∫

Ω

4ū(i4u)dx+ i

∫
Γ

4u∂ū
∂ν
dΓ)

= Re(i

∫
Γ0

4u∂ū
∂ν
dΓ + i

∫
Γ1

4u∂ū
∂ν
dΓ) = Re(i

∫
Γ0

4u(i(m · ν)4ū)dΓ) =

−Re(

∫
Γ0

(m · ν)|4u|2dΓ) ≤ 0 for all u ∈ D(A).

We also have (I − A) : D(A) ⊂ X → X is surjective. To see this, let f ∈ X and

consider the equation u − Au = f . Now, define the operator L : X → D(A) ⊂ X as

Lũ = u if and only if 
−4u = iũ, in Ω,

u = 0, on Γ1,

∂u
∂ν

= −(m · ν)ũ, on Γ0.

Then, u − Au = f ⇒ u − i4u = f ⇒ Lũ − ũ = f ⇒ ũ − Lũ = −f . Hence, to

prove (I − A) is onto, it is enough to prove that I − L : X → X is onto, but if −L

is monotone, this is equivalent to prove that −L is a maximal monotone operator by

Minty’s Theorem (See Theorem 2.5.14).

First, observe that

(ũ,−Lũ)X = Re(

∫
Ω

∇ũ · ∇(−Lũ)dx) = Re(

∫
Ω

4(Lũ)ũdx−
∫

Γ

∂(Lũ)

∂ν
ũdΓ) =

Re(i

∫
Ω

ũ¯̃udx+

∫
Γ0

(m · ν)ũ¯̃udΓ) =

∫
Γ0

(m · ν)|ũ|2dΓ > 0.
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Hence,

(ũ2 − ũ1,−L(ũ2 − ũ1))X = (ũ2 − ũ1,−Lũ2 − ((−Lũ1))X > 0.

We conclude that −L is a monotone operator.

Also, since (ũ,−Lũ)X = (−Lũ, ũ)X, we have (−Lũ, ũ)X > 0, that is −L is a positive

operator on the Hilbert space X. This implies −L is maximal monotone, since any

positive linear operator on a Hilbert space is maximal monotone (See Examples 1.5-b

in [5]). Now thanks to Minty’s Theorem to say that I − L is onto, hence I − A is

onto. Thus, A is an m-accretive operator.

Then, by Philip’s Theorem (See Theorem 2.6.5), we can say that A is the infinitesimal

generator of a semigroup of contractions (S(t))t≥0 on X. Therefore (S(t))t≥0 is a

strongly continuous semigroup of contractions and for all u0 ∈ D(A), u(t) = S(t)u0

is the unique solution to our problem from the class C([0,∞);D(A)) ∩ C1([0,∞); X)

(See Theorem 2.6.6).
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3.2 Boundary Stabilization

In this part, the boundary stabilization problem is considered for system 3.4 which

includes dissipative boundary conditions. The problem is solved using the multiplier

techniques. In the end, the exponential decay of the energy of the solution is proved.

We introduce the function

Eε(t) := E(t) + ερ(t) (3.10)

where

ρ(t) := Im

∫
Ω

u(x, t)m(x) · ∇ū(x, t)dx

for t ≥ 0. From Poincare inequality, we get

|ρ(t)| ≤ ||u(t)||L2(Ω)||m · ∇u(t)||L2(Ω) ≤ C||m||L∞(Ω)||u(t)||2X = C1E(t) (3.11)

for each t ≥ 0 where R := ||m||L∞(Ω) and C1 := 2RC.

Differentiating ρ(t) gives

ρ′(t) = Im

∫
Ω

utm · ∇ūdx+ Im

∫
Ω

um · ∇ūtdx.

Using the divergence theorem on the vector function uūtm we have

Im

∫
Ω

div(uūtm)dx = Im

∫
Γ

uūt(m · ν)dΓ.

Since,

div(uūtm) = Σn
i=1(uūtm)xi

= Σn
i=1uxi

ūtm+ Σn
i=1u(ūt)xi

m+ Σn
i=1uūtmxi

= (∇u ·m)ūt + (∇ūt ·m)u+ nuūt,

we have the equality

Im

∫
Ω

um · ∇ūtdx = Im

∫
Γ

(m · ν)uūtdΓ− Im

∫
Ω

m · ∇uūtdx− nIm

∫
Ω

uūtdx

= Im

∫
Γ0

(m · ν)uūtdΓ + Im

∫
Ω

m · ∇ūutdx− nIm

∫
Ω

uūtdx.

Using (3.4) we get
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Im

∫
Ω

uūtdx = −Re

∫
Ω

4uūdx = Re

∫
Ω

∇u · ∇ūdx− Re

∫
Γ

∂u

∂ν
ūdΓ

=

∫
Ω

|∇u|2dx+ Re

∫
Γ0

(m · ν)utūdΓ

and

Im

∫
Ω

m · ∇uūtdx = −Re

∫
Ω

m · ∇ū4udx.

We also have

Im

∫
Γ0

(m · ν)uūtdΓ = −Re

∫
Γ0

(m · ν)iuūtdΓ.

Combining the above equalities we get

ρ′(t) = 2Re

∫
Ω

m · ∇ū4udx− n

∫
Ω

|∇u|2dx− Re

∫
Γ0

(m · ν)(i+ n)utūdΓ. (3.12)

Now, to get an estimate on the term 2Re
∫

Ω
m ·∇ū4udx, we use the following Lemma

(a technical proof is given in [8]).

Lemma 3.2.1. If n ≤ 3, ϕ, ψ ∈ V are real valued functions such that 4ϕ ∈ L2(Ω)

and
∂ϕ

∂ν
= −(m · ν)ψ on Γ0,

then

2

∫
Ω

4ϕm · ∇ϕ ≤ (n− 2)

∫
Ω

|∇ϕ|2dx+ 2

∫
Γ

∂ϕ

∂ν
m · ∇ϕdΓ−

∫
Γ

(m · ν)|∇ϕ|2dΓ.

Since, u is a complex valued function, there exist real valued functions u1 and u2 such

that u = u1 + iu2.

Hence,

Re(m · ∇ū4u) = m · ∇u14u1 +m · ∇u24u2.

Therefore, using Lemma 3.2.1, we get

2Re

∫
Ω

m · ∇ū4udx = 2

∫
Ω

m · ∇(u14u1 +m · ∇u24u2)dx
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≤ (n− 2)

∫
Ω

(|∇u1|2 + |∇u2|2)dx+ 2

∫
Γ

(
∂u1

∂ν
m · ∇u1 +

∂u2

∂ν
m · ∇u2)dΓ

−
∫

Γ

(m · ν)(|∇u1|2 + (|∇u2|2)dΓ

= (n− 2)

∫
Ω

|∇u|2dx+ 2Re

∫
Γ

∂u

∂ν
m · ∇ūdΓ−

∫
Γ

(m · ν)|∇u|2dΓ. (3.13)

Since, u = 0 on Γ1 × (0,∞), we have ∇u = ∂u
∂ν
ν on Γ1 × (0,∞). Using this and

inserting (3.13) into (3.12) we get the inequality

ρ′(t) ≤ −2

∫
Ω

|∇u|2dx− Re

∫
Γ0

(m · ν)[2ut(m · ∇ū) + |∇u|2 + (i+ n)uūt]dΓ

+Re

∫
Γ1

(m · ν)|∂u
∂ν
|2dΓ−

∫
Γ1

(m · ν)|∇u|2dΓ =

−2

∫
Ω

|∇u|2dx− Re

∫
Γ0

(m · ν)[2ut(m · ∇ū) + |∇u|2 + (i+ n)uūt]dΓ (3.14)

(3.5), (3.10) and (3.14) imply that

E ′
ε(t) ≤ −4εE(t)−Re

∫
Γ0

(m ·ν)[|ut|2 +2εut(m ·∇ū)+ε|∇u|2 +ε(i+n)uūt]dΓ. (3.15)

Note that, ∀ϕ ∈ V , the Poincare inequality (2.9) and the trace inequality in H1(Ω)

imply ∫
Γ0

(m · ν)|ϕ|2dΓ ≤ β

∫
Ω

|∇ϕ|2dx,

∀ϕ ∈ V, and for some β > 0.

From this inequality and Young’s inequality we get

∣∣ ∫
Γ

(m · ν)(n+ i)uūtdΓ
∣∣ ≤ β

2
(n2 + 1)

∫
Γ0

(m · ν)|ut|2dΓ +
1

2β

∫
Γ0

(m · ν)|u|2dx

≤ β

2
(n2 + 1)

∫
Γ0

(m · ν)|ut|2dΓ +
1

2

∫
Ω

|∇u|2dx. (3.16)

Again using Young’s inequality on Γ0 × (0,∞) we also have that

|2utm · ∇ū| ≤ R2|ut|2 + |∇u|2. (3.17)

Inserting (3.16) and (3.17) into (3.15) we get

E ′
ε(t) ≤ −3εE(t)− Re

∫
Γ0

(m · ν)[1− ε(R2 +
(n2 + 1)β

2
)]|ut|2dΓ.
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Since m · ν > 0 on Γ0, for 0 < ε ≤ ε0 := 2
2R2+(n2+1)β

, we have

E ′
ε(t) ≤ −3εE(t). (3.18)

Using (3.10) and (3.11),

Eε(t) = E(t) + ερ(t) ≤ E(t) + εC1E(t) = (1 + εC1)E(t)

which implies
−3ε

1 + εC1

Eε(t) ≥ −3εE(t). (3.19)

From (3.18) and (3.19), we have

E ′
ε(t) ≤ −C2εEε(t)

where C2 = 3
1+εC1

. This implies

Eε(t) ≤ Eε(0)e
−C2εt.

Replacing Eε(t) with E(t) + ερ(t) and Eε(0) with E(0) + ερ(0) and using (3.11), for

all sufficiently small ε we get

(1− εC1)E(t) ≤ (1 + εC1)E(0)e−C2εt ⇒ E(t) ≤ 1 + εC1

1− εC1

E(0)e−C2εt

which shows that the energy E(t) decreases exponentially, provided that Γ1 has non-

empty interior in Γ and n ≤ 3.

Hence, we conclude with the following theorem.

Theorem 3.2.2. Suppose Ω ⊂ Rn (1 ≤ n ≤ 3) is a bounded domain with boundary Γ

of class C3, x0 ∈ Rn is a fixed point such that int(Γ1) 6= ∅. Then there exist positive

constants C, γ such that

E(t) ≤ CE(0)e−γt,∀t ∈ R+.
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3.3 Internal Stabilization

In this section we solve the internal stabilization problem.

Multiplying the system (3.7) by ū, integrating by parts and taking the imaginary

parts we get

0 = Im

∫
Ω

(iūut + ū4u+ iauū)dx =

Re

∫
Ω

ūutdx− Im

∫
Ω

∇ū · ∇udx+ Im

∫
Γ

ū
∂u

∂ν
dΓ + Im

∫
Ω

ia|u|2dx =

1

2

d

dt

∫
Ω

|u|2dx+

∫
Ω

a|u|2dx.

Hence, the function F defined by identity (3.9) satisfies

F ′(t) = −
∫

Ω

a|u|2dx, (3.20)

or we can compute∫ t2

t1

F ′(t)dt = F (t2)− F (t1) = −
∫ t2

t1

∫
Ω

a|u|2dxdt (3.21)

where t2 > t1 ≥ 0. Thus, one can conclude that the L2(Ω)−norm is non-increasing,

but (3.21) or (3.20) may not imply any decay at a first glance, because if u is zero on

the neighborhood of the boundary where damping is supported we may not conclude

stabilization, but we will prove that this is really not the case. Indeed, our aim is

to prove a stronger result which is to show that L2(Ω)−norm of the solution has an

exponential decay.

In order to prove the exponential decay of the solutions of the Schrödinger equation,

it is enough to prove the inequality

F (T ) ≤ C0

∫ T

0

∫
Ω

a|u|2dxdt, (3.22)

for a time T > 0 and a positive constant C0, because if (3.22) holds, then using (3.21)

we have

F (T )− F (0) ≤ −
∫ T

0

∫
Ω

a|u|2dxdt ≤ −1

C0

F (T )
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which implies

F (T ) ≤ C0

1 + C0

F (0). (3.23)

The fact that (3.23) implies the exponential decay of the L2(Ω)−norm of the solution

is noted but not proved in [9]. Now, we show this for the completeness. Note that

(3.23) implies

||u(t)||2 = ||S(T )u0||2L2(Ω) ≤
C0

1 + C0

||u0||2L2(Ω),

that is
||S(T )u0||2L2(Ω)

||u0||2L2(Ω)

≤ C0

1 + C0

.

Now, using this we observe that

||S(T )||2 = sup
||u0||L2(Ω) 6=0

||S(T )u0||2L2(Ω)

||u0||2L2(Ω)

≤ C0

1 + C0

.

Since, C0

1+C0
< 1 and T > 0, there exists a γ > 0 such that C0

1+C0
= e−γT . Taking

logarithm of both sides, we get γ = 1
T

ln(1 + 1
C0

). Hence, we now have

||S(T )||2 ≤ e−γT .

For any large t, there exist k ∈ N and 0 ≤ t̃ < T such that t = kT + t̃. From this

equality, we observe that k > t
T
− 1. Now, from the semigroup property we have

S(t) = S(kT + t̃) = S(t̃)S(T )k,

which implies

||S(t)||2 = ||S(kT + t̃)||2 = ||S(t̃)S(T )k||2 ≤ ||S(t̃)||2||S(T )||2k

≤ ||S(0)||2||S(T )||2k = ||S(T )||2k ≤ e−γTk ≤ e−γT ( t
T
−1) = eγT e−γt = (1 +

1

C0

)e−γt.

Hence,

||S(t)u0||2 = ||u(t)||2 ≤ (1 +
1

C0

)e−γt||u0||2,

that is

F (t) ≤ (1 +
1

C0

)F (0)e−γt.
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However, as we noted in the earlier lines, for this estimate to be true, we still need to

prove (3.22). To prove this, we first consider the problem
iϕt +4ϕ = 0, in Ω× (0,∞),

ϕ = 0, on Γ× (0,∞),

ϕ(0) = u0, in Ω.

(3.24)

Then, we define the function z := u − ϕ where u is the solution of the system (3.7)

and ϕ is the solution of the system (3.24). Then z satisfies the following problem.
izt +4z = −ia(x)u, in Ω× (0,∞),

z = 0, on Γ× (0,∞),

z(0) = 0, in Ω.

(3.25)

First note that from (3.23), we have

F (T ) ≤ F (0) =
1

2
||u0||2L2(Ω). (3.26)

On ||u0||2L2(Ω), we have the estimate given in the following proposition given in [10].

Proposition 3.3.1. Let ω ⊂ Ω be a neighborhood of Γ0 in Ω. Then, for T > 0, there

is a constant C1 = C1(T ) > 0 such that

||u0||2L2(Ω) ≤ C1

∫ T

0

∫
ω

|ϕ|2dxdt (3.27)

where ϕ is the solution of the system (3.24).

Now, using (3.26), (3.27) and (3.6) we have

F (T ) ≤ 1

2
||u0||2L2(Ω) ≤

C1

2

∫ T

0

∫
ω

|ϕ|2dxdt ≤ C1

2a0

∫ T

0

∫
Ω

a|ϕ|2dxdt

≤ C1

a0

∫ T

0

∫
Ω

a[|u|2 + |z|2]dxdt ≤

C1

a0

∫ T

0

∫
Ω

a|u|2dxdt+
C1||a||L∞(Ω)

a0

∫ T

0

||z(t)||2L2(Ω)dt. (3.28)

Now, we will prove a Schrödinger estimate (3.29), which is stated in [9] without proof.

Multiplying (3.25) by z̄, integrating by parts and taking the imaginary parts, we have
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Im

∫
Ω

[iztz̄ + z̄4z]dx = −Im

∫
Ω

iauz̄dx⇒

Re

∫
Ω

ztz̄dx− Im

∫
Ω

∇z̄ · ∇zdx+ Im

∫
Γ

z̄
∂z

∂ν
dΓ = −Re

∫
Ω

auz̄dx⇒

Re

∫
Ω

ztz̄dx = −Re

∫
Ω

auz̄dx.

Since, (|z|2)t = (zz̄)t = ztz̄ + zz̄t = 2Re(ztz̄), that is Re(ztz̄) = 1
2
(|z|2)t, we have

Re

∫
Ω

ztz̄dx =
1

2

d

dt

∫
Ω

|z|2dx = −Re

∫
Ω

auz̄dx⇒

d

dt
||z(t)||2L2(Ω) = −2Re

∫
Ω

auz̄dx.

Integrating from 0 to t, we have

∫ t

0

d

ds
||z(s)||2L2(Ω)ds = ||z(t)||2L2(Ω) − ||z(0)||2L2(Ω) = ||z(t)||2L2(Ω)

= −2Re

∫ t

0

∫
Ω

auz̄dxds ≤ 2
( ∫ T

0

∫
Ω

|au|2dxds
)1/2( ∫ T

0

∫
Ω

|z|2dxds
)1/2

.

Hence, we have

||z(t)||2L2(Ω) ≤ 2||au||L2(Ω×(0,T ))

( ∫ T

0

||z(s)||2L2(Ω)ds
)1/2

≤ 2||au||L2(Ω×(0,T ))

√
T ||z||L∞(0,T ;L2(Ω)).

This is true for each t, hence we have

||z||2L∞(0,T ;L2(Ω)) ≤ 2||au||L2(Ω×(0,T ))

√
T ||z||L∞(0,T ;L2(Ω))

which implies

||z||L∞(0,T ;L2(Ω)) ≤ 2
√
T ||au||L2(Ω×(0,T )) ≤ 2

√
T ||a||L∞(Ω)

∫ T

0

∫
Ω

a|u|2dxdt. (3.29)

Inserting (3.29) into (3.28) we have

F (T ) ≤ C1

a0

∫ T

0

∫
Ω

a|u|2dxdt+
2T
√
TC1||a||2L∞(Ω)

a0

∫ T

0

∫
Ω

a|u|2dxdt
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=
(C1

a0

+
2T
√
TC1||a||2L∞(Ω)

a0

) ∫ T

0

∫
Ω

a|u|2dxdt = C(T )

∫ T

0

∫
Ω

a|u|2dxdt

where

C(T ) =
(C1

a0

+
2T
√
TC1||a||2L∞(Ω)

a0

)
.

Hence, we have just proved (3.22), which gives us the exponential decay of the L2(Ω)-

norm of the solution.

Hence, we conclude with the following theorem.

Theorem 3.3.2. Suppose Ω ⊂ Rn (n ≥ 1) is a bounded domain with boundary Γ

of class C3, x0 ∈ Rn, ω ⊂ Ω a neighbourhood of Γ0 and a ∈ L∞(Ω) satisfying (3.6).

Then there exist positive constants C, γ such that

F (t) ≤ CF (0)e−γt,∀t ∈ R+.
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Chapter 4

STABILIZATION OF THE NON-LINEAR

SCHRÖDINGER EQUATION

We consider the following Schrödinger equation,

iut −4u+ f(|u|2)u+ iau = 0 in Ω× (0,∞), (4.1)

with initial data and (inhomogeneous) boundary condition u = Q on Γ× (0,∞),

u(0) = u0 in Ω
(4.2)

where a is a strictly positive constant and Ω ⊂ Rn (n ≥ 1) is a bounded domain with

sufficiently smooth boundary Γ and f(|u|2) = g|u|p where p > 0, g ≥ 0, u0 ∈ H1(Ω),

Q ∈ C3(Γ× [0,∞)) and u0(x) ≡ Q(x, 0) on ∂Ω in the sense of traces.

The existence of solution of the nonlinear equation (4.1)-(4.2) (without the damping

term iau) have already been considered by Strauss and Bu in [11] with g > 0 in which

case a solution exists for all p ∈ (0,∞) and by Bu, Tsutaya, and Zhang in [12] with

the same nonlinear term, but with g < 0 in which case the solution exists at least

for p ∈ (0, 2
n
]. There are also some earlier results due to Bu [14] and Carroll and

Bu [15] considering only the corresponding 1−dimensional equations. In addition,

the corresponding nonlinear damped equation with homogenous boundary condition

(i.e., Q ≡ 0) was considered by Tsutsumi in his paper [13]. We will first review this

homogeneous case in the next section before solving the inhomogeneous boundary

value problem.

However, the stabilization problem of these strictly inhomogeneous Dirichlet bound-

ary value problems with a damping term has not been addressed as far as we know,
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so we will consider the stabilization problem of the damped linear and nonlinear

Schrödinger equations with inhomogeneous Dirichlet boundary condition. There are

a number of techniques to prove stabilization for PDEs, we will use a direct method

of multipliers. See for example Zuazua and Machtyngier [9]. Our main objective is

to get H1-stabilization of solutions under the assumption that the boundary function

decays in the sense of a reasonable norm.
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4.1 Existence and Stabilization: Homogenous Boundary Condition

In this section we consider the damped nonlinear Schrödinger equation with zero

boundary condition, i.e.,
iut −4u+ f(|u|2)u+ iau = 0 in Ω× (0,∞),

u = 0 on Γ× (0,∞),

u(0) = u0 in Ω,

(4.3)

where a > 0,Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. In addition,

we assume the nonlinearity f is a function from the class C2(R+) with |f(s)| ≤ Csp/2

(p > 0) for all s ∈ R+. Then, we have the following existence and stabilization result.

Theorem 4.1.1. Consider p ∈ (0,∞) if n = 1, 2 and p ∈ (0, 4
n−2

) if n ≥ 3, then

(i) If p ∈ (0, 4
n
), then for any u0 ∈ H1

0 (Ω), there is a solution u ∈ L∞([0,∞);H1
0 (Ω))

to problem (4.3) with exponential decay rate

||u(t)||H1
0 (Ω) ≤ Ce−bt

where b can be any arbitrary positive number < a.

(ii) If p ≥ 4
n
, then there is a constant M > 0 such that if u0 ∈ H1

0 (Ω) with ||u0||H1
0 (Ω) ≤

C, then there is a solution u ∈ L∞([0,∞);H1
0 (Ω)) to problem (4.3) with exponential

decay rate

||u(t)||H1
0 (Ω) ≤ Ce−at.

In the remaining part of this section, we will prove both the existence and the stabi-

lization results. Now, let wj ∈ H1
0 (Ω) ∩ H∞(Ω) be a complete orthonormal basis in

L2(Ω) satisfying  −4wj = λjwj in Ω,

wj = 0 on ∂Ω.
(4.4)

Let’s define um(t) =
∑m

j=1 gjm(t)wj where gjm(t) are found by the solution of the

following system of ordinary differential equations.
i(u′m(t), wj) + (−4um(t), wj) + (f(|um(t)|2)um(t), wj)

+ia(um(t), wj) = 0 j ∈ (1, ...,m),

um(0) = u0m =
∑m

j=1 gjm(0)wj on ∂Ω

(4.5)
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where u0m → u0 strongly in H1(Ω).

By the theory of ODE’s there is a unique solution um of the problem (4.5) on some

interval [0, tm). Our aim is to prove convergence of the approximate solutions um to

a solution u of the problem (4.3). To achieve this, we will first prove some uniform

estimates on um independent of time and m. For the time being assume that um

is valid for the whole time interval, the remaining part of this section will readily

formalize this.

We multiply (4.5) by ḡjm(t), then

i(u′m(t), gjm(t)wj) + (−4um(t), gjm(t)wj)

+(f(|um(t)|2)um(t), gjm(t)wj) + ia(um(t), gjm(t)wj) = 0.

We sum in j,

i(u′m(t),
m∑
j=1

gjm(t)wj) + (−4um(t),
m∑
j=1

gjm(t)wj)

+(f(|um(t)|2)um(t),
m∑
j=1

gjm(t)wj) + ia(um(t),
m∑
j=1

gjm(t)wj)

= i(u′m(t), um(t)) + (−4um(t), um(t)) + (f(|um(t)|2)um(t), um(t))

+ia(um(t), um(t)) = 0. (4.6)

Taking the imaginary part and using the divergence theorem, we have

d

dt
||um(t)||2 = −2a||um(t)||2.

Multiplying this with e2at and integrating in time, we get

||um(t)||2 = e−2at||u0m||2 (4.7)

However taking the real part of (4.6) and again using the divergence theorem we have

i(u′m(t), um(t))− i(um(t), u′m(t)) + 2||∇u||2 + 2

∫
Ω

f(|um(t)|2)|um(t)|2dx = 0. (4.8)



Chapter 4: Stabilization of the Non-Linear Schrödinger Equation 37

Multiplying (4.5) by ḡ′jm(t), we have

i(u′m(t), g′jm(t)wj) + (−4um(t), g′jm(t)wj)

+(f(|um(t)|2)um(t), g′jm(t)wj) + ia(um(t), g′jm(t)wj) = 0.

We sum in j, hence we have

i(u′m(t),
m∑
j=1

g′jm(t)wj) + (−4um(t),
m∑
j=1

g′jm(t)wj)

+(f(|um(t)|2)um(t),
m∑
j=1

g′jm(t)wj) + ia(um(t),
m∑
j=1

g′jm(t)wj)

= i(u′m(t), u′m(t)) + (−4um(t), u′m(t))

+(f(|um(t)|2)um(t), u′m(t)) + ia(um(t), u′m(t)) = 0. (4.9)

Taking the real part of (4.9) and using the divergence theorem, we have

d

dt
(||∇um||2 +

∫
Ω

F (|um|2)dx) = a(i(u′m(t), um(t))− i(um(t), u′m(t)))

where F is the antiderivative of f , i.e.,

F (s) :=

∫ s

0

f(τ)dτ.

Now, using (4.8), we have

d

dt
(||∇um||2 +

∫
Ω

F (|um|2)dx) = −2a(||∇u||2 +

∫
Ω

f(|um(t)|2)|um(t)|2dx).

Integrating this in time, we have,

(
||∇um||2L2(Ω) +

∫
Ω

F (|um|2)dx
)
e2at = ||∇um0||2L2(Ω) +

∫
Ω

F (|um0|2)dx

+2a

∫ t

0

e2as
∫

Ω

(F (|um|2)− f(|um|2)|um|2)dxds. (4.10)

Now, taking j = 0,m = 1, r = q = 2 in the Gagliardo-Nirenberg inequality (2.3.9)

and using Poincare inequality since um ∈ H1
0 (Ω), in particular we have

||um||Lp+2(Ω) ≤ C||∇um||θ||um||1−θ.
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where
1

p+ 2
=

1

2
− θ

n
.

Now, since F (s) =
∫ s

0
f(s)ds, we get

|F (s)| = |
∫ s

0

f(s)ds| ≤
∫ s

0

|f(s)|ds ≤ C

∫ s

0

sp/2ds = Cs
p+2
2

which implies

|F (s2)| ≤ Csp+2.

Using this and (4.7) we have

|
∫

Ω

F (|um|2)dx|, |
∫

Ω

(F (|um|2)− f(|um|2)|um|2)dx|

≤M ||u||p+2
p+2 ≤M ||∇um||θ(p+2)||um||(1−θ)(p+2)

≤M ||∇um||θ(p+2)e−a(1−θ)(p+2)t||u0m||(1−θ)(p+2) (4.11)

Now, consider the case p ∈ (0, 4
n
). In this case, we have

0 < θ =
np

2(p+ 2)
=

n

2(1 + 2
p
)
<

n

2(1 + n
2
)

=
n

n+ 2
< 1

and

0 < θ(p+ 2) =
np

2
< 2.

Hence, we can use Young’s inequality and right hand side of (4.11) is dominated by

δ||∇um||2 + Cδe
−µat

for some δ ∈ (0, 1) and µ = 2((2−n)p+4)
4−np . Hence, using (4.10) we have

(1− δ)||∇um||2e2at ≤ Cδe
(2−µ)at + C0 + 2aδ

∫ t

0

||∇um(s)||2e2asds

+2aCδ

∫ t

0

e(2−µ)asds

where C0 = C0(||u0||H1(Ω)) is a constant with

C0 ≥ ||∇um0||2L2(Ω) + |
∫

Ω

F (|um0|2)dx|
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for all m, such a constant exists since we took the sequence um0 strongly converging

to u0 in H1−sense. Note that 2− µ < 0, hence we have

||∇um||2e2at ≤ C +
2aδ

1− δ

∫ t

0

||∇um(s)||2e2asds.

Now, using Gronwall’s inequality, we have

||∇um||2e2at ≤ Ce
2aδ
1−δ

t

which implies

||∇um|| ≤ Ce
(2δ−1)a

1−δ
t.

Hence, taking δ so small, we have the desired stabilization result.

Now, we consider the case p = 4
n
. Then, we have

θ(p+ 2) = 2

and

(1− θ)(p+ 2) = p.

Suppose that we have the fact that ||um0|| ≤ (M
2

)1/p. Then, (4.11) gives

|
∫

Ω

F (|um|2)dx| ≤
1

2
||∇u||2

and

|
∫

Ω

(F (|um|2)− f(|um|2)|um|2)dx| ≤
1

2
||∇u||2e−apt.

Combining these with (4.10) we have

||∇um||2e2at ≤ 2C0 + 4Ma

∫ t

0

e−aps||∇um(s)||2e2asds.

Then, by Gronwall’s inequality,

||∇um||2 ≤ 2C0e
−2ate4Ma

R t
0 e

−apsds ≤ Ce−2at

which is the desired stabilization result.
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Now, we consider the case p > 4
n
. Then using (4.10) we have

||∇um(t)||2(1− C2||∇um||θ(p+2)−2)e2at

≤ C0 + 2aC2

∫ t

0

e2as||∇um||θ(p+2)e−(1−θ)(p+2)asds (4.12)

where C2 := M ||um0||(1−θ)(p+2) and C0 as before. Now, assume that ||u0||H1(Ω) chosen

so that

C0 <
np− 4

2np2qCq
2

min{n, 2}−q

where q = 4
np−4

= 1
θ(p+2)−2

. Now, we claim that for each t, we have the stabilization

result

||∇um(t)||2 < 2np

np− 4
C0e

−2at.

To prove this claim, let’s define

I := {t > 0 : ||∇um(t)||2 < 2np

np− 4
C0e

−2at}.

Then, I 6= ∅, because otherwise

||∇um(t)||2 ≥ 2np

np− 4
C0e

−2at

for all t and since p > 4
n
, we have np

np−4
> 1 and hence ||∇um(t)||2 ≥ 2C0 which is a

contradiction since we already know ||∇um(t)||2 ≤ C0. Hence, I 6= ∅, so now by the

continuity of norm, we know that I is a nonempty open interval. Now, let

tmax := sup
t∈I
{t} ≤ ∞.

Now, if tmax = ∞ we are done. If not, taking the θ(p+2)−2
2

th powers, for [0, tmax], we

have

||∇um(t)||θ(p+2)−2 < (
2np

np− 4
C0e

−2at)θ(p+2)−2

< (
2np

np− 4

np− 4

2np2qCq
2

min{n, 2}−q)
1
q =

1

2C2

. (4.13)

Now, using this and (4.12), we have

||∇um(t)||2 < 2C0 + 4aC2

∫ t

0

e2as||∇um||θ(p+2)e−(1−θ)(p+2)asds.
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Now, we define

A(T ) := sup
t∈[0,T ]

||∇um(t)||2e2at

where T ∈ [0, tmax].

Then, using (4.13), we have

A(T ) ≤ 2C0 + 4aC2A(T )
θ(p+2)

2

∫ T

0

e−apsds ≤ 2C0 +
4

p
C2A(T )

θ(p+2)
2 .

Since we know that, θ(p+ 2) > 1, by Strauss’s inequality we have

A(T ) ≤
θ(p+2)

2
θ(p+2)−2

2

C0 =
2np

np− 4
C0.

This implies, tmax ∈ I, hence I is both open and closed, therefore I = R, that is

tmax must be equal to ∞. Hence, we have the desired stabilization result for the case

p > 4/n, too.

By this stabilization result, we see that

||um||L∞([0,∞);H1
0 (Ω)) ≤ C (4.14)

and

|||um|pum||L∞([0,∞);L(p+2)/(p+1)(Ω)) ≤ C. (4.15)

Also, by (4.5), taking any w =
∑∞

j=1 ajwj ∈ H1
0 (Ω) with ||w||H1

0 (Ω) = 1, we have

i(u′m(t), w) + (−4um(t), w) + (f(|um(t)|2)um(t), w) + ia(um(t), w) = 0

which implies

i(u′m(t), w) + (∇um(t),∇w) + (f(|um(t)|2)um(t), w) + ia(um(t), w) = 0.

This gives,

||u′m(t)||H−1(Ω) = sup
||w||

H1
0(Ω)

=1

|i(u′m(t), w)| ≤ ||∇um(t)||+ C||um(t)||p+2
Lp+2 ≤ C

by (4.14) and (4.15). Hence, we have

||u′m||L∞([0,∞);H−1(Ω)) ≤ C. (4.16)
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Hence, by (4.14), (4.15) and (4.16), we can assume that

um → u weakly* in L∞([0,∞);H1
0 (Ω)),

|um|pum → g weakly* in L∞([0,∞);L(p+2)/(p+1)(Ω)),

u′m → u weakly* in L∞([0,∞);H−1(Ω))

where g is indeed equal to |u|pu by Lemma 2.5.15 and Lemma 2.5.16. Hence, this

concludes the existence part.
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4.2 Existence: Inhomogeneous Boundary Condition

In this section, we will prove the existence of the solutions of the damped Schrodinger

equation with inhomogeneous boundary condition, the proof is similar to the proof for

the undamped problem given in [11]. The equation that we are concerned is formally

given as follows.


iut −4u+ f(|u|2)u+ iau = 0, in Ω× (0,∞),

u = Q, on Γ× (0,∞),

u(0) = u0, in Ω.

(4.17)

Here, Ω ⊂ Rn (n ≥ 1) is a bounded domain with sufficiently smooth boundary Γ,

a > 0 is a positive constant, and f(s) = gs
p
2 where g ≥ 0, p > 0. Note that when

g = 0, we have the corresponding damped linear equation and when g > 0 we have the

corresponding nonlinear damped equation with positive sign. One can also consider

the stabilization problem when the nonlinearity has negative sign, i.e., g < 0 problem,

but we omit such a discussion.

Multiplying the equation (4.17) with ū, taking the imaginary parts and integrating

by parts, we have

Im

∫
Ω

[iutū− ū4u+ f(|u|2)uū+ iauū]dx

= Re

∫
Ω

utūdx+

0︷ ︸︸ ︷
Im

∫
Ω

∇u · ∇ūdx−Im

∫
Γ

ū
∂u

∂ν
dΓ +

0︷ ︸︸ ︷
Im

∫
Ω

f(|u|2)|u|2dx

+

∫
Ω

a|u|2dx = 0.

Since we have

Re

∫
Ω

utūdx =
1

2

d

dt

∫
Ω

|u|2dx,

we get the L2-identity

d

dt

∫
Ω

|u|2dx = 2Im

∫
Γ

ū
∂u

∂ν
dΓ− 2a

∫
Ω

|u|2dx

= 2Im

∫
Γ

Q̄(∇u · ν)dΓ− 2a

∫
Ω

|u|2dx,
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that is
d

dt
||u(t)||2L2(Ω) = −2a||u(t)||2L2(Ω) + 2Im

∫
Γ

Q̄(∇u · ν)dΓ. (4.18)

Multiplying the above identity with e2at and integrating over time, we get the identity

||u||2L2(Ω) = e−2at||u0||2L2(Ω) + 2e−2atIm

∫ t

0

e2as
∫

Γ

Q̄(∇u · ν)dΓds. (4.19)

After multiplying the equation (4.17) with ū, taking the real parts and integrating

over Ω, we obtain

Re

∫
Ω

[iutū− ū4u+ g|u|puū+ iauū]dx = 0.

Integrating by parts we get,

Re

∫
Ω

iutūdx+

∫
Ω

|∇u|2dx− Re

∫
Γ

ū
∂u

∂ν
dΓ +

∫
Ω

g|u|p+2dx+

0︷ ︸︸ ︷
Re

∫
Ω

ia|u|2dx = 0.

Hence, we have

Re

∫
Ω

iutūdx = −Re

∫
Ω

iūtudx = −
∫

Ω

(|∇u|2+g|u|p+2)dx+Re

∫
Γ

Q̄(∇u·ν)dΓ. (4.20)

Multiplying the main equation (4.17) with ūt, taking the real parts and integrating

by parts, we have

Re

∫
Ω

[iutūt − ūt4u+ g|u|puūt + iauūt]dx = 0

⇒

0︷ ︸︸ ︷
Re

∫
Ω

i|ut|2dx+Re

∫
Ω

∇u · ∇ūtdx− Re

∫
Γ

ūt
∂u

∂ν
dΓ + Re

∫
Ω

g|u|puūtdx

+aRe

∫
Ω

iuūtdx = 0.

In the above, we can use the equalities

Re[|u|puūt] =
1

p+ 2

d

dt
|u|p+2 and Re[∇u · ∇ūt] =

1

2

d

dt
|∇u|2.

Hence, using (4.20) we get the (energy) identity

d

dt

∫
Ω

(|∇u|2 +
2g

p+ 2
|u|p+2)dx = 2Re

∫
Γ

ūt
∂u

∂ν
dΓ− 2aRe

∫
Ω

iuūtdx
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= 2Re

∫
Γ

Q̄t(∇u · ν)dΓ− 2a
( ∫

Ω

(|∇u|2 + g|u|p+2)dx− Re

∫
Γ

Q̄(∇u · ν)dΓ
)
,

that is

d

dt
(||∇u||2L2(Ω) +

∫
Ω

F (|u|2)dx) + 2a
(
||∇u||2L2(Ω) +

∫
Ω

F (|u|2)dx) =

2Re

∫
Γ

(Q̄t + aQ̄)(∇u · ν)dΓ + 2a

∫
Ω

(F (|u|2)− g|u|p+2)dx, (4.21)

where

F (|u|2) =
2g

p+ 2
|u|p+2.

Multiplying (4.21) with e2at and integrating over time, we get the identity

(
||∇u||2L2(Ω) +

∫
Ω

F (|u|2)dx
)
e2at = ||∇u0||2L2(Ω) +

∫
Ω

F (|u0|2)dx

+2Re

∫ t

0

e2as
∫

Γ

(Q̄t+aQ̄)(∇u ·ν)dΓds+2a

∫ t

0

e2as
∫

Ω

(F (|u|2)−g|u|p+2)dxds. (4.22)

Since, Γ is of class C∞, there exists a smooth vector field q : Rn → Rn such that

q|Γ = ν, which is the outward unit normal vector field.

Now, we have the equality

utūxj
− ūtuxj

= (uūxj
)t − (uūt)xj

.

Multiplying this by qj, we obtain

qj(utūxj
− ūtuxj

) = qj(uūxj
)t − qj(uūt)xj

= (qjuūxj
)t − (qjuūt)xj

+ (qj)xj
uūt.

Integrating this equality on Ω, we get

∫
Ω

qj(utūxj
− ūtuxj

) =
d

dt

∫
Ω

qjuūxj
dx−

∫
Γ

ν2
j︷︸︸︷

νjqj uūtdΓ +

∫
Ω

(qj)xj
uūtdx. (4.23)

On the other hand, using the main equation, we can also write

qj(utūxj
− ūtuxj

) = qj{2iIm(utūxj
)} = qj{2iIm

[
(−i4u+ ig|u|pu− au)ūxj

]
}
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= qj{−2iRe(4uūxj
) + 2igRe(|u|puūxj

)− 2iaIm(uūxj
)}

= qj{−2iRe
n∑

m=1

[(uxmūxj
)xm − uxmūxjxm ] + 2igRe(|u|puūxj

)− 2iaIm(uūxj
)}

= −2iRe
n∑

m=1

[(qjuxmūxj
)xm − (qj)xm

uxmūxj
] +

n∑
m=1

[i(qj|uxm|2)xj
− i(qj)xj

|uxm|2]+

i
2g

p+ 2
[(qj|u|p+2)xj

− (qj)xj
|u|p+2]− 2iaIm(uūxj

).

Integrating this equality over Ω, we obtain∫
Ω

qj(utūxj
− ūtuxj

)dx = −2iRe
n∑

m=1

∫
Γ

qjuxmūxj
νmdΓ + 2iRe

n∑
m=1

∫
Ω

(qj)xm
uxmūxj

dx

+i
n∑

m=1

∫
Γ

qj|uxm|2νjdΓ− i
n∑

m=1

∫
Ω

(qj)xj
|uxm|2dx+ i

2g

p+ 2

∫
Γ

qj|u|p+2νjdΓ

−i 2g

p+ 2

∫
Ω

(qj)xj
|u|p+2dx− 2iaIm

∫
Ω

uūxj
dx. (4.24)

Using (4.23) and (4.24) together and adding the terms corresponding to j = 1, ..., n,

we have

d

dt

∫
Ω

u(q · ∇ū)dx−
∫

Γ

QQ̄tdΓ +

∫
Ω

uūt(divq)dx

= −2i

∫
Γ

|ν · ∇u|2dΓ + 2i
n∑

m,j=1

∫
Ω

(qj)xm
uxmūxj

dx+ i

∫
Γ

|∇u|2dΓ

−i
∫

Ω

(divq)|∇u|2dx+ i
2g

p+ 2

∫
Γ

|u|p+2dΓ− i
2g

p+ 2

∫
Ω

(divq)|u|p+2dx

−2iaIm
n∑
j=1

∫
Ω

uūxj
dx. (4.25)

Now, we multiply (4.17) by (divq)ū and integrate on Ω, which gives
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0 =

∫
Ω

(iut −4u+ g|u|pu+ iau)ū(divq)dx =

i

∫
Ω

(divq)utūdx+

∫
Ω

(divq)|∇u|2dx+

∫
Ω

ū(∇(divq) · ∇u)dx

−
∫

Γ

(divq)ū
∂u

∂ν
dΓ +

∫
Ω

g(divq)|u|p+2dx+ ia

∫
Ω

(divq)|u|2dx.

Multiplying the above identity with −i, taking the complex conjugate, we have

∫
Ω

uūt(divq)dx = i

∫
Γ

(∇ū · ν)Q(divq)dΓ− i

∫
Ω

(divq)|∇u|2dx

−i
∫

Ω

u(∇(divq) · ∇ū)dx− i

∫
Ω

g(divq)|u|p+2dx− a

∫
Ω

(divq)|u|2dx. (4.26)

Using this in (4.25) we get the following identity

d

dt

∫
Ω

u(q · ∇ū)dx−
∫

Γ

QQ̄tdΓ + i

∫
Γ

(∇ū · ν)Q(divq)dΓ

−i
∫

Ω

u(∇(divq) · ∇ū)dx− i

∫
Ω

g(divq)|u|p+2dx− a

∫
Ω

(divq)|u|2dx

= −2i

∫
Γ

|ν · ∇u|2dΓ + 2i
n∑

m,j=1

∫
Ω

(qj)xm
uxmūxj

dx+ i

∫
Γ

|∇u|2dΓ

+i
2g

p+ 2

∫
Γ

|u|p+2dΓ− i
2g

p+ 2

∫
Ω

(divq)|u|p+2dx− 2iaIm
n∑
j=1

∫
Ω

uūxj
dx. (4.27)

Now, let MQ be a constant such that |Q| < MQ. Then, let’s define the following

truncated version fk of the nonlinear term f as

fk(|u|2) =

 g|u|p, |u| < k

gkp, |u| ≥ k

where we take k > MQ. Now, consider the following truncated system
iu

(k)
t −4u(k) + fk(|u(k)|2)u(k) + iau(k) = 0, in Ω× (0,∞),

u(k) = Q, on Γ× (0,∞),

u(k)(0) = u0, in Ω.

(4.28)
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It is easy to see that for any k the mapping u→ fk(|u|2)u is globally Lipschitz.

Also since k > MQ, we have fk(|Q|2) = f(|Q|2).

Now, we choose some Q̃ ∈ C3(Ω̄× [0,∞)) such that Q̃|Γ = Q,

4Q̃|Γ = f(|Q|2)Q+ iQt + iaQ.

We remark that v(k) := u(k)−Q̃ converts the problem (4.28) into the following problem

that has homogeneous boundary condition.


iv

(k)
t −4v(k) + iav(k) = f̃(v(k), Q̃), in Ω× (0,∞),

v(k) = 0, on Γ× (0,∞),

v(k)(0) = v0 ≡ u0 − Q̃(0), in Ω,

(4.29)

where

f̃k(v
(k), Q̃) = −fk(|v(k) + Q̃|2)(v(k) + Q̃)− iQ̃t +4Q̃− iaQ̃.

Now, let U0(t) = e−i4t be the evolution operator for the free Schrodinger equation,

i.e., a group of unitary operators on H1
0 (Ω). Then, we can write the system (4.29)

alternatively as an integral equation as follows.

v(k)(t) = U0(t)v
(k)(0) +

∫ t

0

U0(t− τ)f̃k(τ)dτ =: N v(k)(t)

Now, looking at the H1
0 (Ω) norm of the above identity on each [0, T ], we get the

inequality

||N v(k)(t)||H1
0 (Ω) ≤ ||v(k)(0)||H1

0 (Ω) +

∫ t

0

||f̃k(v(k)(s), Q̃(s))||H1
0 (Ω)ds

≤ ||v(k)(0)||H1
0 (Ω) + Ck

∫ t

0

||v(k)(s)||H1
0 (Ω)ds+ C̃k,T . (4.30)

We also have

||N v(k)(t)−Nw(k)(t)||H1
0 (Ω) ≤ ||v(k)(0)− w(k)(0)||H1

0 (Ω)

+

∫ t

0

||fk(|v(k) + Q̃|2)(v(k) + Q̃)− fk(|w(k) + Q̃|2)(w(k) + Q̃)||H1
0 (Ω)ds
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≤ ||v(k)(0)− w(k)(0)||H1
0 (Ω) + Ck

∫ t

0

||v(k)(s)− w(k)(s)||H1
0 (Ω)ds. (4.31)

We define the space

B := {v ∈ C([0, T0];H
1
0 (Ω)) : ||v||C([0,T0];H1

0 (Ω)) ≤ c∗, v(0) = u0 − Q̃(0)}

where T0 := 1
2
Ck and c∗ := 2(C̃k,T + ||u0||H1(Ω) + ||Q̃(0)||H1(Ω)). Then, N is a con-

traction on B by (4.30) and (4.31). Hence, there is a unique solution v(k) in B to the

problem (4.29) in [0, T0] which implies there is a unique solution u(k) = v(k) + Q̃ to

the problem (4.28) in [0, T0].

Now, if u(k) ∈ C([0, T ];H1(Ω)) is a solution, we want to extend it to the whole positive

time interval, therefore, we need a uniform bound on ||u(k)(t)||H1(Ω).

First note that replacing u by u(k) the identities (4.22) and (4.27) take the forms

(
||∇u(k)||2L2(Ω) +

∫
Ω

Fk(|u(k)|2)dx
)
e2at = ||∇u0||2L2(Ω) +

∫
Ω

Fk(|u0|2)dx

+2Re

∫ t

0

e2as
∫

Γ

(Q̄t + aQ̄)(∇u(k) · ν)dΓds

+2a

∫ t

0

e2as
∫

Ω

(Fk(|u(k)|2)− fk(|u(k)|2)|u(k)|2)dxds. (4.32)

and

d

dt

∫
Ω

u(k)(q · ∇ū(k))dx−
∫

Γ

QQ̄tdΓ + i

∫
Γ

(∇ū(k) · ν)Q(divq)dΓ

−i
∫

Ω

u(k)(∇(divq) · ∇ū(k))dx− i

∫
Ω

(divq)fk(|u(k)|2)|u(k)|2dx− a

∫
Ω

(divq)|u(k)|2dx

= −2i

∫
Γ

|ν · ∇u|2dΓ + 2i
n∑

m,j=1

∫
Ω

(qj)xm
uxmūxj

dx+ i

∫
Γ

|∇u|2dΓ

+i
2g

p+ 2

∫
Γ

|u|p+2dΓ− i

∫
Ω

(divq)Fk(|u(k)|2)dx− 2iaIm
n∑
j=1

∫
Ω

uūxj
dx. (4.33)
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Since v(k) is constant on the boundary Γ, we have that ∇v(k) = ∂v(k)

∂ν
ν, i.e., ∇v(k) is in

the direction of the outward unit normal. Hence, the tangential component of ∇v(k)

on the boundary is zero. Thus, using the definition of v(k), we have

∇u(k) · A =

0︷ ︸︸ ︷
∇v(k) · A+∇Q̃ · A = ∇Q̃ · A

where A is the unit tangential vector, so the dot product with A gives the tangential

components. Hence, we can write

|∇u(k)|2 = |∇u(k) · ν|2 + |∇u(k) · A|2 = |∇u(k) · ν|2 + |∇Q̃ · A|2. (4.34)

Substituting (4.34) into (4.33), integrating over time, and taking the absolute values,

we get the estimate∫ t

0

∫
Γ

|ν · ∇u(k)|2dΓdτ ≤
∫ t

0

∫
Γ

|∇Q̃ · A|2dΓdτ +
∣∣ ∫

Ω

u(k)(q · ∇ū(k))dx
∣∣

+
∣∣ ∫

Ω

u0(q · ∇ū0)dx
∣∣ +

∫ t

0

∫
Γ

|QQ̄t|dΓdτ + c

∫ t

0

∫
Γ

|(ν · ∇ ¯u(k))Q|dΓdτ

+c

∫ t

0

∫
Ω

|u(k)||∇u(k)|dxdτ + c

∫ t

0

∫
Ω

|∇u(k)|2dxdτ

+c

∫ t

0

∫
Ω

|u(k)|2dxdτ + c

∫ t

0

∫
Γ

|Q|p+2dΓdτ + c

∫ t

0

∫
Ω

Fk(|u(k)|2)dxdτ. (4.35)

Hence, we have∫ t

0

∫
Γ

|ν · ∇u(k)|2dΓdτ ≤ c+ c(||u(k)||2L2(Ω) + ||∇u(k)||2L2(Ω))+

c

∫ t

0

(||u(k)||2L2(Ω) + ||∇u(k)||2L2(Ω) + Fk(|u(k)|2))dτ (4.36)

where c is a constant which does not depend on time and which may have different

values at each place it is used.

Now, let’s define

J2 :=

∫ t

0

∫
Γ

|∇u(k) · ν|2dΓdτ.
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Then, we can write (4.36) in compact form J2 ≤ A2, where A2 is the sum of all the

terms in the right hand side of (4.36). Taking square root of both sides, we get

J ≤ A. (4.37)

Now, let’s define

G(t) :=

∫
Ω

(|u(k)|2 + |∇u(k)|2 + Fk(|u(k)|2))dx.

Then, we can write

A2 = c+ c(||u(k)||2L2(Ω) + ||∇u(k)||2L2(Ω))

+c

∫ t

0

(||u(k)||2L2(Ω) + ||∇u(k)||2L2(Ω) + Fk(|u(k)|2))dτ

≤ c+ c(||u(k)||2L2(Ω) + ||∇u(k)||2L2(Ω) +

∫
Ω

Fk(|u(k)|2)dx)

+c

∫ t

0

(||u(k)||2L2(Ω) + ||∇u(k)||2L2(Ω) + Fk(|u(k)|2))dτ

that is,

A2 ≤ c+ cG+ c

∫ t

0

Gdτ. (4.38)

Now, from the mass identity (4.19), using Hölder’s Inequality we have

||u(k)||2L2(Ω) = e−2at||u0||2L2(Ω) + 2e−2atIm

∫ t

0

e2aτ
∫

Γ

Q̄(∇u(k) · ν)dΓdτ

≤ c+ ce−2at
( ∫ t

0

e4aτ ||Q||2L2(Γ)dτ
) 1

2
( ∫ t

0

∫
Γ

|∇u(k) · ν|2dΓdτ
) 1

2 ,

that is,

||u(k)||2L2(Ω) ≤ c+ cJ. (4.39)

Now, using the energy identity (4.32) and Hölder’s Inequality, we have

||∇u(k)||2L2(Ω) +

∫
Ω

Fk(|u(k)|2)dx = ||∇u0||2L2(Ω)e
−2at + e−2at

∫
Ω

Fk(|u0|2)dx

+2e−2atRe

∫ t

0

e2aτ
∫

Γ

(Q̄t + aQ̄)(∇u(k) · ν)dΓdτ

+2ae−2at

∫ t

0

e2aτ
∫

Ω

(Fk(|u(k)|2)− fk(|u(k)|2)|u(k)|2)dxdτ
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≤ c+ ce−2at
( ∫ t

0

e4aτ (||Q||2L2(Γ) + ||Qt||2L2(Γ))dτ
) 1

2
( ∫ t

0

∫
Γ

|∇u(k) · ν|2dΓdτ
) 1

2

+ce−2at

∫ t

0

e2aτ
∫

Ω

Fk(|u(k)|2)dxdτ ≤ c+ cJ + c

∫ t

0

Gdτ,

that is

||∇u(k)||2L2(Ω) +

∫
Ω

Fk(|u(k)|2)dx ≤ c+ cJ + c

∫ t

0

Gdτ. (4.40)

Summing (4.39) and (4.40), we obtain

G = ||u(k)||2L2(Ω) + ||∇u(k)||2L2(Ω) +

∫
Ω

Fk(|u(k)|2)dx ≤ c+ cJ + c

∫ t

0

Gdτ. (4.41)

We observe that, (4.37), (4.38), the inequality (2.5) and Young’s Inequality imply

that

J ≤ A ≤ c+ c
√
G+ c

√∫ t

0

Gdτ ≤ c+ c
√
G+ c

∫ t

0

Gdτ (4.42)

Inserting (4.42) into (4.41) and using Young’s Inequality on c
√
G, we obtain

G ≤ c+ c
√
G+ c

∫ t

0

Gdτ ⇒ G ≤ c+ c

∫ t

0

Gdτ. (4.43)

Now using Gronwall’s Inequality in (4.43), we have G ≤ ect and hence J ≤ ect. Now,

(4.40) and positivity of Fk implies ||u(k)(t)||H1(Ω) is bounded for bounded T . Hence,

now we can extend u(k) to [0,∞) so that u(k) will be in C([0, T ];H1(Ω)) for each T

and for some constant CT , we will have

sup
t∈[0,T ]

||u(k)(t)||H1(Ω) ≤ CT .

Since, CT is independent of k, for T = 1 we have a weakly* convergent subse-

quence u
(k)
1 of u(k) in L∞([0, 1];H1(Ω)), and similarly a weakly* convergent subse-

quence u
(k)
2 of u

(k)
1 in L∞([0, 2];H1(Ω)), etc. Hence, choosing the diagonal sequence

u
(k)
k , we have a function u ∈ L∞loc([0,∞];H1(Ω)) such that u

(k)
k converges weakly*

to u in L∞([0, T ];H1(Ω)) for each T , call this again u(k). Now, boundedness of∫
Ω
Fk(|u(k)|2)dx implies boundedness of fk(|u(k)|2)u(k) in L∞([0, T ];L1 + L2). Since,
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u
(k)
t = −i4u(k) + ifk(|u(k)|2)u(k), u

(k)
t ∈ L∞([0, T ];L1 +H−1). Using relative compact-

ness lemma and Cantor’s diagonalization again, there is a subsequence again called

u(k) without loss of generality, that converges to u almost everywhere on Ω× [0,∞).

Hence, we also have fk(|u(k)|2)u(k) converges a.e. to f(|u|2)u. Again boundedness

of
∫

Ω
Fk(|u(k)|2)dx and Egoroff’s Theorem imply fk(|u(k)|2)u(k) converges to f(|u|2)u

uniformly in L1(Ω′) for any bounded Ω′ ⊂ Ω× [0,∞). Therefore, we conclude that u

is a solution and from the class L∞loc((0,∞];H1(Ω) ∩ Lp+2(Ω)).

Hence, we conclude with the following theorem

Theorem 4.2.1. There exists a solution u of the system given in (4.17) from the

class L∞loc([0,∞);H1(Ω) ∩ Lp+2(Ω)) for all p ∈ (0,∞).
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4.3 Stabilization: Inhomogeneous Boundary Condition

In this section, we will prove the H1-stabilization of the damped nonlinear equation

with inhomogeneous boundary condition for which we have proved the existence result

in Section 4.2.

Let’s first define the following multiplier function

ρ(t) := Im

∫
Ω

u(x, t)h(x) · ∇ū(x, t)dx.

where h(x) is a sufficiently smooth real vector field and H(x) be the n × n matrix

with entries Hij = ∂hi

∂xj
.

Differentiating ρ(t) gives

ρ′(t) = Im

∫
Ω

uth · ∇ūdx+ Im

∫
Ω

uh · ∇ūtdx.

Using the divergence theorem on the vector function uūth we have

Im

∫
Ω

div(uūth)dx = Im

∫
Γ

uūt(h · ν)dΓ.

Since,

div(uūth) = Σn
i=1(uūth)xi

= Σn
i=1uxi

ūth+ Σn
i=1u(ūt)xi

h+ Σn
i=1uūthxi

= (∇u · h)ūt + (∇ūt · h)u+ div(h)uūt,

we have the equality

Im

∫
Ω

uh · ∇ūtdx = Im

∫
Γ

(h · ν)uūtdΓ− Im

∫
Ω

h · ∇uūtdx− Im

∫
Ω

div(h)uūtdx.

Now using (4.17), we get

−Im

∫
Ω

div(h)uūtdx = Im

∫
Ω

div(h)ūutdx = −Re

∫
Ω

div(h)ū(iut)dx

= −Re

∫
Ω

div(h)ū(4u− f(|u|2)u− iau)dx

= −Re

∫
Ω

div(h)ū4udx+

∫
Ω

div(h)f(|u|2)|u|2dx
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= Re

∫
Ω

∇(div(h)ū) · ∇udx+

∫
Ω

div(h)f(|u|2)|u|2dx− Re

∫
Γ

(div(h)ū)(∇u · ν)dΓ

=

∫
Ω

div(h)|∇u|2dx+ Re

∫
Ω

ū∇(div(h)) · ∇udx

+

∫
Ω

div(h)f(|u|2)|u|2dx− Re

∫
Γ

(div(h)ū)(∇u · ν)dΓ

We also have

−Im

∫
Ω

h · ∇uūtdx = Im

∫
Ω

h · ∇ūutdx = −Re

∫
Ω

h · ∇ūiutdx

−Re

∫
Ω

h · ∇ū(4u− f(|u|2)u− iau)dx

= −Re

∫
Ω

h · ∇ū4udx+ Re

∫
Ω

(h · ∇ū)f(|u|2)udx+ Re

∫
Ω

iau(h · ∇ū)dx

Hence, combining all above we have

ρ′(t) = −2Re

∫
Ω

h · ∇ū4udx+ 2Re

∫
Ω

iau(h · ∇ū)dx+ 2Re

∫
Ω

(h · ∇ū)f(|u|2)udx

+

∫
Ω

div(h)|∇u|2dx+ Re

∫
Ω

ū∇(div(h)) · ∇udx+

∫
Ω

div(h)f(|u|2)|u|2dx

−Re

∫
Γ

(div(h)ū)(∇u · ν)dΓ + Im

∫
Γ

(h · ν)uūtdΓ.

Now, note that we have

−2Re

∫
Ω

h · ∇ū4udx = 2Re

∫
Ω

∇u · ∇(h · ∇ū)dx− 2Re

∫
Γ

(∇ū · h)(∇u · v)dΓ

= 2Re

∫
Ω

(H∇u) · ∇ūdx+

∫
Ω

h · ∇(|∇u|2)dx− 2Re

∫
Γ

(∇ū · h)(∇u · v)dΓ

= 2Re

∫
Ω

(H∇u) · ∇ūdx−
∫

Ω

div(h)|∇u|2dx+

∫
Γ

(h · ν)|∇u|2dΓ

−2Re

∫
Γ

(∇ū · h)(∇u · v)dΓ.

Note that we also have,

2Re

∫
Ω

(h · ∇ū)f(|u|2)udx =

∫
Γ

F (|Q|2)h · νdΓ−
∫

Ω

div(h)F (|u|2)dx

Hence, rewriting ρ′(t), we have

ρ′(t) = 2Re

∫
Ω

(H∇u) · ∇ūdx+

∫
Γ

(h · ν)|∇u|2dΓ− 2Re

∫
Γ

(∇ū · h)(∇u · v)dΓ
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+2Re

∫
Ω

iau(h · ∇ū)dx+ Re

∫
Ω

ū∇(div(h)) · ∇udx− Re

∫
Γ

(div(h)ū)(∇u · ν)dΓ

+Im

∫
Γ

(h · ν)uūtdΓ +

∫
Γ

F (|Q|2)h · νdΓ−
∫

Ω

div(h)(F (|u|2)− f(|u|2)|u|2)dx.

Let’s define

||Q(t)||2b := ||Q(t)||2H1(Γ) + ||Qt(t)||2L2(Γ) + ||Q(t)||p+2
Lp+2(Γ).

Now, let’s define

G(t) := ||u||2H1(Ω) +

∫
Ω

F (|u|2)dx.

Then by (4.18) and (4.21), we have

G′(t) = −2aG(t) + 2a

∫
Ω

(F (|u|2)− f(|u|2)|u|2)dx

+2Re

∫
Γ

((a− i)Q̄+ Q̄t)(∇u · ν)dΓ ≤ −2aG(t) + 2Re

∫
Γ

((a− i)Q̄+ Q̄t)(∇u · ν)dΓ,

since

F (|u|2)− f(|u|2)|u|2 < 0.

Hence, we have

G′(t) ≤ −2aG(t) + 2C0(||Q(t)||L2(Γ) + ||Qt(t)||L2(Γ))||∇u · ν||L2(Γ)

≤ −2aG(t) +
8C2

0

ε
(||Q(t)||2L2(Γ) + ||Qt(t)||2L2(Γ)) +

ε

4
||∇u · ν||2L2(Γ)

≤ −2aG(t) +
8C2

0

ε
||Q(t)||2b +

ε

4
||∇u · ν||2L2(Γ)

where ε > 0 is a constant to be chosen later.

Note that we have

|ρ(t)| ≤ ||u(t)||L2(Ω)||h · ∇u(t)||L2(Ω) ≤ ||u(t)||L2(Ω)||h||L∞(Ω)||∇u(t)||L2(Ω)

≤ 1

2
(||u(t)||2L2(Ω) + ||h||2L∞(Ω)||∇u(t)||2L2(Ω))

≤ 1

2
(1 + ||h||2L∞(Ω))(||u(t)||2L2(Ω) + ||∇u(t)||2L2(Ω)).

Hence, we have

|ρ(t)| ≤ C1G(t) (4.44)
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where C1 := 1
2
(1 + ||h||2L∞(Ω)).

Then, choosing h so that h|Γ = ν we have the following estimate on ρ′(t),

ρ′(t) ≤ C2||u(t)||2H1(Ω)

+||∇u||2L2(Γ) − 2||∇u · ν||2L2(Γ) + C3||Q(t)||L2(Γ)||∇u · ν||L2(Γ)

+||Q(t)||L2(Γ)||Qt(t)||L2(Γ) +

∫
Γ

F (|Q|2)dΓ + C4

∫
Ω

|F (|u|2)− f(|u|2)|u|2|dx

Now, suppose that Q̃(x, t) be such that Q̃|Γ = Q. We remark that v := u − Q̃ con-

verts the problem (4.17) into the following problem that has homogeneous boundary

condition.


ivt −4v + iav = f̃(v, Q̃), in Ω× (0,∞),

v = 0, on Γ× (0,∞),

v(0) = u0 − Q̃(0), in Ω,

(4.45)

where

f̃(v, Q̃) = −f(|v + Q̃|2)(v + Q̃)− iQ̃t +4Q̃− iaQ̃.

Since v is constant on the boundary Γ, we have that ∇v = ∂v
∂ν
ν, i.e., ∇v is in the

direction of the outward unit normal. Hence, the tangential component of ∇v on the

boundary is zero. Thus, using the definition of v, we have

∇u · A =

0︷ ︸︸ ︷
∇v · A+∇Q̃ · A = ∇Q̃ · A

where A is the unit tangential vector, so the dot product with A gives the tangential

components. Hence, we can write

|∇u|2 = |∇u · ν|2 + |∇u · A|2 = |∇u · ν|2 + |∇Q̃ · A|2 = |∇u · ν|2 + |∇AQ|2. (4.46)

on the boundary.

Using (4.46) into the estimate above we derived for ρ′(t), we obtain,

ρ′(t) ≤ C2||u(t)||2H1(Ω)

−||∇u · ν||2L2(Γ) + ||∇AQ(t)||2L2(Γ) + C3||Q(t)||L2(Γ)||∇u · ν||L2(Γ)
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+||Q(t)||L2(Γ)||Qt(t)||L2(Γ) +

∫
Γ

F (|Q|2)dΓ + C4

∫
Ω

|F (|u|2)− f(|u|2)|u|2|dx.

Hence, we have

G′(t) + ερ′(t) ≤ (C5ε− 2a)G(t)− ε

4
||∇u · ν||2L2(Γ)

+(ε+
C2

3ε

2
+ 8C2

0)||Q(t)||2b .

Hence, choosing a fixed ε ∈ (0, 2a
C5

), we have

G′
ε(t) < −C6G(t) + C7||Q(t)||2b .

Since, we have |ρ′(t)| ≤ C1G(t)

Gε(t) = G(t) + ερ(t) ≤ G(t) + εC1G(t) = (1 + εC1)G(t)

which implies
−C6

1 + εC1

Gε(t) ≥ −C6G(t). (4.47)

Therefore,

G′
ε(t) ≤ −C8Gε(t) + C7||Q(t)||2b

where C8 = −C6

1+εC1
. This implies

Gε(t) ≤ Gε(0)e
−C8t + C7e

−C8t

∫ t

0

eC8s||Q(s)||2bds.

Replacing Gε(t) with G(t) + ερ(t) and Gε(0) with G(0) + ερ(0) and using (4.44), for

ε chosen sufficiently small we get

(1− εC1)G(t) ≤ (1 + εC1)G(0)e−C8t + C5e
−C8t

∫ t

0

eC8t||Q(s)||2bds

⇒ G(t) ≤ 1 + εC1

1− εC1

G(0)e−C8t +
C7

1− εC1

e−C8t

∫ t

0

eC8s||Q(s)||2bds

⇒ G(t) ≤ G(0)e−C8t + C7e
−C8t

∫ t

0

eC8s||Q(s)||2bds).

Hence, we conclude with the following theorem.

Theorem 4.3.1. Let u be a solution of the system given in (4.17) and assume that

limt→∞ ||Q(t)||b = 0, then limt→∞ ||u(t)||(H1(Ω)∩Lp+2(Ω)) = 0.
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Note that this theorem implies

lim
t→∞

||∇u(t)||L2(Ω) = 0

which implies the decay of the energy of the solutions.

Remark 4.3.2. (A remark on the rate of decay) Note, that in the above system,

the decay rate of b-norm of Q plays a fundamental role in the decay rate of the energy,

because for example if Q decays exponentially, we get exponential stabilization, or if

Q decays polynomially, we get at least a polynomial stabilization. However, if the

decay rate of Q is faster than exponential such as super exponential, this does not

necessarily make energy to decay faster than exponential, because of the exponential

term G(0)e−C8t.
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4.4 Open Problems

In this section we briefly list some open problems based on the analysis we do in

the previous sections of this study. These problems might be of interest for further

research.

Stabilization under Negative Nonlinearity

In Section 4.3, we prove that the energy of solutions of the weakly damped nonlinear

Schrödinger equation with inhomogeneous boundary condition decays to zero as time

goes to infinity under the assumption that the boundary condition decays to zero

in a reasonable sense. However, one of the assumptions we make is the sign of the

nonlinearity in the equation. We assume that the nonlinearity has positive sign,

that is the equation is attractive. However, there are also physical situations which

yield the same equation with negative signed nonlinearity, that is the equation is

repulsive. Therefore it is also interesting to consider the stabilization problem for the

same equation with negative signed nonlinearity. The mathematical motivations to

consider this problem can be the decay of solutions of the weakly damped nonlinear

Schrödinger equation with homogeneous boundary condition and the existence result

for the Schrödinger equation with inhomogeneous boundary condition with negative

signed nonlinearity which is done in [12] for p ≤ 2
n
.

Stabilization with Localized Damping

In Section 3.3, we prove that the solutions of the linear Schrödinger equation decay

to zero in L2−sense in the case the equation contains a linear damping term which is

supported only a small neighborhood of the boundary. Therefore, a natural question

is also to ask for a similar stabilization result for the nonlinear equation with some

localized damping, even in the case of homogeneous boundary condition.

Stabilization with Less Smooth Boundary Condition

Note that in Section 4.3, another assumption that we make is the smoothness of the

boundary condition. We assume that the boundary condition Q is from the class

of functions C3(∂Ω × (0,∞)). Hence, a new question we can ask is the stabilization

problem with a boundary condition at a lower regularity, for example one can consider
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the case where Q ∈ H1.

Stabilization with Nonlinear Damping

In Section 4.3, we consider the equation with a weak linear damping. However, there

are also some physical situations where the equation is driven by a nonlinear damping

instead of a linear damping. Hence, another question that we might consider for

further analysis can be the stabilization result for the nonlinear Schrödinger equation

with nonlinear damping.
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and Çetin Özsarı. After completing his work at Süleyman Demirel Anatolian High
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Koç University, Turkey and had completed his masters degree in this university in the

field of mathematics under the supervision of Prof. Varga K. Kalantarov. Then, he

started to his PhD studies in the Mathematics Department of University of Virginia

under the supervision of Prof. Irena Lasiecka. He is still a PhD student and teaching

assistant in the University of Virginia as of January 2007.


