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ABSTRACT 

 

 

The design of a distribution logistics system requires quite a number of decisions of 

different planning levels. The most important strategic decision is the locations of 

distribution centers, which are also referred to as depots. The allocation of customers to 

the depots is a decision of tactical level, while determining vehicle routes to visit those 

customers belongs to the operational level. Multi-depot Location-Routing Problem 

(MDLRP) involves the decisions of different levels simultaneously. In the problem, the 

optimal number and locations of depots are decided while allocating customers to 

depots and determining vehicle routes to visit all customers.  

In this thesis, we propose a nested Lagrangian relaxation-based method named [LR-

TS] for the 2-layer discrete uncapacitated MDLRP. An outer Lagrangian relaxation 

embedded in subgradient optimization decomposes the parent problem into two 

subproblems. The first subproblem is a facility location-like problem. It is solved to 

optimality with Cplex 10.0.  

The second one resembles a capacitated and degree constrained minimum spanning 

forest problem, which is tackled with an augmented Lagrangian relaxation. The lower 

bound to the true optimal solution of the comprehensive problem is obtained by 

summing the objective function value of the Cplex solution of SubP1 and the lower 

bound found for SubP2.  

The solution of the first subproblem reveals a depot location plan. As soon as a new 

distinct location plan is found in the course of the subgradient iterations, a tabu search 

algorithm is triggered to solve the multi-depot vehicle routing problem associated with 

that plan, and a feasible solution to the parent problem is obtained. Its objective value is 

checked against the current upper bound on the parent problem’s true optimal objective 

value. 
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The performance of the proposed method is evaluated based on the gap between the 

best upper bound and the best lower bound achieved. [LR-TS] has been tested on a 

number of randomly generated test problems as well benchmarking problems from LRP 

literature, and the results have been tabulated. 
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ÖZET 

 

 

Dağıtım sistemlerinin dizayn edilmesi için değişik planlama düzeylerinde bir çok 

karar alınması gerekir. Kaç adet dağıtım merkezinde faaliyet gösterileceğinin ve bu 

merkezlerin yerlerinin belirlenmesi stratejik seviyede alınması gereken kararlardır. 

Hangi deponun hangi müşteriye hizmet vereceği taktik seviyede ele alınırken, teslimat 

rotaları operasyonel seviyede belirlenir. Çoğul Depolu Tesis Yeri Belirleme - Rotalama 

Problemi (ÇDTYRP) değişik düzeydeki bu kararları birlikte değerlendirir. Bu 

problemde, toplam maliyeti enküçülten depo sayısı ve yerleri, her müşteriye hangi 

deponun hizmet verdiği ve teslimat rotaları eşzamanlı olarak belirlenir.  

Bu tez, 2 seviyeli ayrık ve kapasite kısıtsız ÇDTYRP için [LR-TS] adını verdiğimiz 

iç içe geçmiş iki Lagrange gevşetmeye dayanan bir çözüm yöntemi önermektedir. 

Subgradient eniyileme yöntemi içerisine oturtulmuş olan dıştaki Lagrange gevşetme ana 

problemi iki alt probleme ayırmaktadır. Đlk alt problem SubP1, tesis yeri belirleme 

problemine benzemektedir ve Cplex 10.0 ile en iyi çözümü elde edilmektedir. Kapasite 

kısıtlı en küçük kapsayan orman problemine benzeyen ve SubP2 olarak adlandırılan 

diğer alt problem ise ilk Lagrange gevşetmenin içine yerleştirilmiş bir çoğalan Lagrange 

gevşetme yöntemiyle çözülmektedir. SubP1’in Cplex çözümünden elde edilen amaç 

fonksiyon değeri ve çoğalan Lagrange gevşetme yöntemiyle SubP2 için bulunan alt 

sınır değeri toplanarak, tüm problemin amaç fonksiyon değeri için bir alt sınır elde 

edilir.  

Đlk problemin çözümü sonucunda bir depo yerleşim planı elde edilir. Dıştaki 

subgradient yönteminin yinelemeleri sırasında, ilk alt problemin sonucu olarak her 

farklı depo yerleşim planı elde edildiğinde, bir tabu araması algoritması çalışmaya 

başlar. Tabu araması algoritması ilk alt problem sonucunu temel alarak bir Çok Depolu 

Araç Rotalama Problemi çözer. Böylece ana problem için olurlu bir sonuç elde edilmiş 
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olur. Bulunan en iyi olurlu çözümün toplam maliyeti ana problemin en iyi sonucu için 

bir üst sınır teşkil etmektedir.  

Önerilen çözüm metodunun performansı bulunan en iyi üst sınır ile en iyi alt sınır 

arasındaki aralık temel alınarak değerlendirilmektedir. [LR-TS] bir kısmı rasgele 

üretilmiş ve bir kısmı da literatürdeki kıyas problemlerinden alınmış test problemleri 

üzerinde denenmiş ve sonuçlar sunulmuştur. 
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Chapter 1 

 

INTRODUCTION 

 

 

The design of a distribution logistics system requires quite a number of decisions of 

different planning levels. The most important strategic decision to be taken is the 

locations of distribution centers, which are also referred to as depots. The allocation of 

customers to the depots is a decision of tactical level, while determining vehicle routes 

to visit those customers belongs to the operational level. Since logistics management 

plays an important role in customer satisfaction and efficiency of companies, 

practitioners take considerable notice of location and routing problems. Besides their 

importance in the logistics business, both location and routing problems have been 

studied widely by researchers. They are very attractive from research point of view due 

to the fact that they give rise to a wide variety of challenging mathematical models, and 

there exist several heuristics and metaheuristics applicable on them. 

The construction of a distribution logistics system starts with the depot locations. 

The potential locations of depots are found based on a series of requirements such as 

physical and economical accessibility, and particular conditions inherent to the specific 

application (governmental restrictions, international regulations, company policies etc.). 

Once the set of candidate locations is determined, the managers select a subset of them 

which is the best with respect to the objectives. In earlier times, the objective was 

inadequately settled by only considering the demand of the customers and the distance 

between the candidate depots and the customers. However, recent research showed that 

the vehicle acquisition and delivery costs have an impact on the optimum depot location 

plan. It was observed that the allocation of the customers to depots and the selection of 

the routes to visit customers, which are decisions of tactical and operational level 
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respectively, should be considered simultaneously with the selection of the depots to be 

established among candidate locations.  

The need for integrating these three steps of the distribution system design process 

has been fulfilled by the Location-Routing Problem (LRP). LRP involves finding the 

optimal number and locations of depots while allocating customers to depots and 

determining vehicle routes to visit all customers. LRP focuses on three main decisions 

of different levels simultaneously. The interdependence between these decisions has 

been noticed by researchers long ago. The effect of ignoring routes when locating 

depots has also been stressed by Salhi and Rand [1]. However, location and routing 

parts of the problem have traditionally been solved separately which is justified by the 

inevitable difficulty of the combined problem due to its components. Extremely high 

computing power of mainstream processors available today and the success already 

achieved in solving location as well as routing problems provide us the motivation to 

deal with the combined location-routing problem without splitting it into its 

subproblems. In recent years, the literature on the LRP has been increasingly addressing 

some variants of the problem, which generally correspond to the real world needs.  

In this thesis, we solve a two-tier or two-layer (single echelon) multi-depot location-

routing problem (MDLRP) where transportation is made directly from depots to 

customers. There exist two kinds of depots: present and candidate depots. Present 

depots are already operating facilities that can be preserved or closed. If a present depot 

is closed, a fixed cost is incurred. This cost may turn out to be a gain since the closure 

of a depot usually brings about savings in overhead costs. Candidate depot locations are 

potential sites in which new depots can be opened. For each new depot to be opened, a 

location dependent fixed cost is incurred. In addition, there exists fixed operating cost 

which is charged for each preserved or newly opened depot. Customers are visited by a 

homogeneous fleet of capacitated vehicles. For each of them, a vehicle acquisition cost 

is charged. Each customer has a deterministic and static demand which should be 

satisfied by the single visit of a vehicle. There is no capacity constraint on depots. The 

sum of depot opening-closing, depot operating, vehicle acquisition, and vehicle 
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traveling costs is minimized subject to the standard vehicle capacity specified in the 

problem. 

To solve this problem, a nested Lagrangian relaxation-based method which is named 

as [LR-TS] is proposed. An outer Lagrangian relaxation embedded in subgradient 

optimization decomposes the parent problem into two subproblems. The first 

subproblem which is a facility location-like problem is solved to optimality with Cplex 

10.0. The second subproblem resembles a capacitated and degree constrained minimum 

spanning forest problem. It is tackled with an augmented Lagrangian relaxation. The 

sum of objective value of the Cplex solution of SubP1 and the lower bound found for 

SubP2 by the subgradient optimization scheme in the augmented Lagrangian relaxation 

constitutes the lower bound to the true optimal solution of the comprehensive problem.  

The solution of the first subproblem reveals a depot location plan. As soon as a new 

distinct location plan is found in the course of the subgradient iterations, a tabu search 

algorithm is triggered to solve the multi-depot vehicle routing problem associated with 

that plan, and a feasible solution to the parent problem is obtained. Its objective value is 

checked against the current upper bound on the parent problem’s true optimal objective 

value. The performance of the proposed method has been tested on a number of test 

problems, and the results have been tabulated. 

The remainder of the thesis is organized as follows. In Chapter 2, an overview of the 

previous studies on the LRP is given. Chapter 3 comprises the problem definition and 

mathematical formulation. The detailed explanations of the Lagrangian relaxation 

scheme and the solutions for the subproblems are provided in Chapter 4. In Chapter 5, 

the tabu search heuristic that is used to obtain upper bounds on the true optimal solution 

is explained. The computational experiments and results are given in Chapter 7. Finally, 

Chapter 8 presents a summary with concluding remarks.  
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Chapter 2 

 

LITERATURE REVIEW 

 

 

The LRP has been studied since 1970s although researchers have been using 

different names for the problems they are dealing with. Formerly, the LRP used to be 

solved by decomposing it into location and routing parts. In recent years, with the ever 

increasing performance and affordability of PC platforms, algorithms have been 

proposed to solve the combined problem in reasonable computing time. Most of the 

solution methods are heuristics while several exact solution approaches have been 

offered for problems with limited number of customers. 

The newest literature survey of the state-of-the-art in location routing is 

accomplished by Nagy and Salhi [2]. They provide the review of previous studies on 

the LRP in groups based on the solution techniques and the particular problem 

investigated. First, they suggest four criteria to classify the studies which they regard as 

the key aspects of the problems. These are hierarchical structure, type of input data, 

planning period and solution method. Hierarchical structure is the configuration of the 

distribution system which states the serving and receiving nodes. In most of the 

problems, there exist facilities servicing a number of customers. Delivery or pick-up 

between facilities is not common. The authors classify the problems first in terms of the 

structure of the flow of the goods. The second criterion is the type of input data which 

can be deterministic or stochastic. Then, the papers are grouped based on whether the 

problem is single period or multi period. The last of the key classification aspects is the 

proposed solution method, which can be either exact or heuristic. Although they do not 

follow a complete taxonomy, they give five further attributes of the problems together 

with this classification. They clarify the characteristics of an LRP instance using these 
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five criteria: structure of the objective function, solution space (discrete, continuous, 

network), number of depots, number and types of vehicles and route structure (arc 

routing, multiple trips, pick-up and delivery etc.). Finally, they give their suggestions 

for future research on the LRP after summarizing the suggestions of Balakrishnan et 

al.[3], Laporte [4] and  Min et al. [5]. 

Another annotated literature review of the LRP and its extensions is due to 

Ahipaşaoğlu et al. [6]. They provide an overview of the computational aspects and the 

research prospects. The study has the attribute to be the first survey in the literature that 

includes a complete analysis of all problem variants. They review the studies in three 

groups as Deterministic LRP, Stochastic LRP and LRP with obnoxious facilities. LRP 

with obnoxious facilities refers to the group of problems dealing with locations of 

anticentral facilities the examples of which are hazardous material storage facilities and 

waste disposal sites.    

A perfect synthesis and survey of the LRP is earlier carried out by Min et al. [5]. 

They review and compare the literature with respect to algorithmic developments and 

also include a hierarchical taxonomy. Min et al. define the location-routing model as 

solving the joint problem of determining the optimal number, capacity and location of 

facilities serving more than one customer/supplier (demand node), and finding the 

optimal set of vehicle schedules and routes. Its main difference from the classical 

location/allocation problem is that, once the facility is located, LRP requires a visitation 

of demand nodes through tours, whereas the latter assumes a straight-line or radial trip 

from the facility to the demand nodes. The authors recommend solving the whole LRP 

concurrently in order to be able to analyze tradeoffs between location and routing 

decisions at the same level of hierarchy. 

The survey by Laporte [7] can be accounted as one of the milestones in LRP 

literature. This survey is the first comprehensive study of the earlier work on the 

deterministic LRP. Because it is written in a tutorial style, this survey is particularly 

important for researchers that are new to the area. It also includes a classification 

scheme of LRPs based on the number of layers and the type of routes between these 
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layers. For example, 3/R/T refers to a three layer LRP where routes between the first 

and second layer is of type Replenishment (direct shipment) while the delivery between 

the second and third layer is realized via tours (vehicle routes).   

Among exact solution methods proposed for the LRP is the method of Laporte and 

Nobert [8]. They formulate the uncapacitated single facility LRP as an integer linear 

program (ILP), and solve it using constraint relaxation and a branch-and-bound method.  

They initially relax all subtour elimination constraints and add them one at a time as 

needed. Laporte et al. [9] studied the LRP with multiple uncapacitated facilities and 

uncapacitated vehicles. They locate several facilities among n sites and find the optimal 

routes to serve the remaining ones. They formulate the problem as an ILP, and solve it 

using a constraint relaxation procedure similar to Laporte and Nobert [8]. Laporte et al. 

[10] use a graph transformation approach to model the LRP as an ILP and tackle it with 

a branch and bound method. They solve instances with 80 nodes and 1 to 3 potential 

sites to optimality which is, to our knowledge, the largest LRP solved optimally.  

Laporte and Dejax [11] studied the dynamic version of the case of multiple facilities 

with multiple vehicles. Their model represents the system as a network consisting of 

three-layers where the layers correspond to production sites, distribution centers, and 

customers. In their paper two solution approaches have been addressed. In the first one, 

which is proposed to solve small size problems, the LRP is formulated as an ILP using a 

network representation and solved to optimality. In the second approach, the solution is 

obtained by an approximation algorithm based on approximating TSP tours with 

spanning trees. This work of Laporte and Dejax [11] is outstanding in that it is the first 

analytical study concerning the dynamic LRP. 

In his thesis Gezdur [12] formulates the LRP as a set partitioning problem and 

solves it using a column generation algorithm. The bounds are tightened by 2-path cuts, 

and a separation algorithm is used to eliminate the subtours. The performance of the 

proposed method is evaluated by comparing with the solutions of Perl and Daskin [13], 

Wu et al. [14], and Hansen et al. [15]. It is found to yield better solutions than the 

others. 
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Another study on the exact solution of the LRP is due to Boğ [16]. He also tackles 

the problem with a column generation method. He uses the set-partition based 

formulation, and solves an elementary shortest path problem for the pricing 

subproblem. The method is tested on the problems that are compiled by Barreto [17] 

and tight gaps are obtained for most of them. 

Jacobsen and Madsen [18] solve a newspaper distribution system problem with 

approximately 4500 retailers. The delivery is first made from the printing office to a 

number of transfer points, and then from the transfer points to the retailers where the 

number and locations of transfer points are among the decisions to be made. They 

present three heuristics methods. The first heuristic is a tour construction method with 

implicit transfer point locations. The second is an alternative location-allocation 

procedure for locating transfer points followed by savings procedures for routing the 

trips from the printing office to the transfer points, and subsequently from transfer 

points to the retailers. In the third heuristic an initial savings procedure is used for the 

routing of the tours from the transfer points to the retailers. This is followed by a Drop 

procedure determining the locations of the transfer points, and a savings procedure 

constructing the tours from the printing office to the transfer points. Madsen [19] 

provides an almost complete and comprehensive survey of previous applications, and 

comparison of methods for solving combined location-routing problems. 

Perl and Daskin [13] analyze the case where both facilities and vehicles are 

capacitated. They give an ILP formulation, but solve the problem by a heuristic method 

where the LRP is decomposed into three stages, and the location and routing phases are 

solved iteratively. They obtain the initial feasible solution by a route-first, location-

allocation second heuristic method. The method is applied to a large scale problem of a 

distribution system of an international manufacturer.  Hansen et al. [15] modify the LRP 

formulation of Perl and Daskin [13] and suggest a more effective heuristic which yields 

better solutions.  

Srivastava [20] designs three heuristic for LRP in his dissertation work which form 

the basis of an extensive computational study published in Srivastava and Benton [21]. 
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In the computational study of Srivastava and Benton, the authors compare the three 

heuristics of Srivastava [20], which has been also published in Srivastava [22], with the 

sequential locate-first, route-second method. The authors use a set of 150 problems, and 

test the performance of the heuristics under varying conditions defined by the cost 

structure, spatial distribution of customers, and number of depot sites. They conclude 

that the three heuristics yielded smaller (better) objective function values than the 

sequential method, except for the low cost case. They have also commented on which 

heuristic is more appropriate to use under what settings of the experimental parameters. 

Tüzün and Burke [23] propose a two-phase tabu search architecture for the solution 

of the multi-depot LRP where depots have unlimited throughput capacity. The first 

stage of the tabu search is the routing phase where routes are improved by swap and 

insert-delete moves. In the second stage, the location-allocation configuration is 

improved by moving a facility from one location to another, and by simultaneous 

adding and dropping of facilities. They compare their results with the results of SAV1 

heuristic addressed in Srivastava [22], and conclude that their heuristic performs better 

than SAV1 on the average. The computation times are also relatively short. Wu et al. 

[14] decompose the standard LRP with capacitated depots into a discrete facility 

location-allocation problem (FLAP) and a vehicle routing problem (VRP), and solve 

each subproblem using simulated annealing in a sequential and iterative manner. They 

obtain better solutions on the same instances solved by Perl and Daskin [13] and 

Hansen et al. [15]. For the same class of the LRP, Albareda-Sambola et al. [24] apply a 

method which generates first a lower bound either from the linear relaxation of the 

given problem or from the solutions of a pair of ad hoc knapsack and asymmetric 

traveling salesman problems. This lower bound is then used as a starting point of a tabu 

search heuristic. They test their method on a set of randomly generated problems. 

Melechovský et al. [25] address an LRP with non-linear depot opening costs that grow 

with the total demand satisfied by the depots. They present a hybrid metaheuristic 

consisting of tabu search (TS) and variable neighborhood search (VNS) heuristics.  



 
 
Chapter 2: Literature Review    9 

 

We are aware of one study by Aksen and Altinkemer [26] on Lagrangian relaxation 

for the LRP. They propose a 3-layer distribution logistics model for the conversion 

from brick-and-mortar to click-and-mortar retailing. They consider a traditional brick-

and-mortar retailing model in which such a retailer operates two types of facilities, and 

serves only one type of customers. Its facilities comprise warehouses (WH’s) and 

physical stores, where goods are transferred from the former to the latter in direct 

shipments. Goods are then sold to walk-in type customers who are assumed to go to the 

nearest physical store for shopping. When the retailer opens a website for the online 

shopping convenience, it needs the capability of receiving, processing and then 

delivering orders placed by online customers at that website. Some of the present brick-

and-mortar stores (BM’s) of the retailer might have to be reconfigured, or several new 

stores might be opened with that capability. A physical store is designated as a click-

and-mortar store (CM) if it is Internet-enabled, equipped with the necessary hardware, 

software and personnel such that it can effectively handle online orders. A physical 

store can serve online customers only then if it is opened as a CM, or if it is a BM 

reconfigured as (converted to) a CM.  They determine the number and locations of CM 

and BM type facilities, and the vehicle routes to visit online customers. A static one-

period optimization model is built and solved using Lagrangian relaxation. They assess 

the performance of the Lagrangian-based solution method on a number of randomly 

generated test problems. 

The problem in our study is a 2-layer multi-depot location routing problem with 

uncapacitated depots. In our study, we deal with a 2-layer multi-depot LRP with 

unlimited throughput capacities. Tüzün and Burke [23] explain that this problem 

belongs to the class of NP-hard problems. Once the locations of the facilities are 

determined, this is, once the uncapacitated FLAP is solved, the LRP reduces to a 

multiple depot VRP. Tüzün and Burke cite the work of Cornuejols et al. [27] who have 

shown that the FLAP belongs to the class of NP-hard optimization problems. Similarly, 

they refer to Karp [28] and Lenstra and Rinnooy Kan [29] who have proven that even 

the single depot VRP is NP-hard. Supported by these facts, Tüzün and Burke conclude 
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that the LRP is also an NP-hard problem. We propose a nested Lagrangian relaxation 

scheme to provide lower bounds to the problem while an upper bound is obtained for 

the problem using the tabu search heuristic. The tabu search heuristic takes the location 

plan that comes from the Lagrangian relaxation as an input and solves a multi-depot 

vehicle routing problem to constitute a feasible solution the complete problem. The gap 

between the best upper bound and the best lower bound is used to assess the quality of 

the solution scheme. 
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Chapter 3 

 

PROBLEM DESCRIPTION AND MATHEMATICAL MODEL 

 

 

The problem that we described in Chapter 2 takes its motivation from the real life 

problems faced by local logistics firms. They operate a number of depots some of which 

are their own property while the others have been rented by them. At the beginning of 

certain periods, or when they sign new contracts with the customers on their portfolio, 

they revise their operating depots. According to the locations and demands of their 

customers they may decide to hire out their own depots, to leave some of the depots 

they have rented before, or to rent new ones. In order to use a new depot, they have to 

cover a certain opening cost. This opening cost comprises the sum of overhead charges 

related to renting the depot, hiring new workers, moving or buying new equipment. 

When they quit using a depot which was in service, they have to compensate the 

overhead costs of laying off or transferring workers, and moving out of the depot. The 

sum of these cost items constitutes the closing cost of a depot. They also consider such 

depot operating costs as wages and social packages offered to the workers and 

maintenance costs. These may vary from depot to depot depending on the quality of the 

workforce or on the regulations applying to the region of the depot. They adopt the 

location plan which minimizes the sum of total opening, closing and operating costs of 

depots plus the traveling cost between depots and customers. This case of the logistics 

firms turns out to be a location routing problem since the location and routing decisions 

are made simultaneously.  

In our study, we model and solve the problem where the depots to be in service are 

selected among a number of operating and candidate depots, and the routes to visit the 

customer locations are determined with the assumption that there is no limit on the 
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depot capacities. The problem can be represented as 2/T according to Laporte’s [7] 

classification of LRPs. It means there are two layers; namely, depots and customers 

where the transportation between these layers is realized via tours (vehicle routes) 

rather than direct shipments.  

In the problem we are dealing with, there exist two kinds of depots: present and 

candidate. Present depots are the ones that are already operating. We (the logistics firm) 

have the option to close these depots at a fixed cost which amounts to the overhead 

costs of closure minus the salvage value of the depot if there exists one. Candidate 

depot locations are potential sites where new depots can be opened. When we decide to 

start operations in one of these potential depot locations, we have to pay a fixed opening 

cost. In addition, for each depot in service a fixed operating cost is incurred as well. 

There is no capacity constraint on the throughput of depots. We assume that there is an 

unlimited number of vehicles with the same capacity (homogeneous vehicle fleet) 

where for each one deployed a fixed acquisition cost is charged. Each customer has a 

deterministic demand which is to be satisfied by a single visit of the assigned vehicle. 

This means split deliveries are not permitted. We assume that the network of candidate 

and present depot sites and customer locations forms a complete graph where each node 

is directly accessible from another. In case there exist more than one depot in service, 

any customer can be served on a route originating from any of the depots. However, 

each route should start and end at the same depot.  

In the problem, we determine  

i. the number and locations of depots, 

ii. which customer will be served by which depot (the assignment of customers 

to depots), 

iii. on which routes the customers will be served  

minimizing the sum of  

i. opening, closing, and operating costs of the depots, 

ii. total vehicle acquisition cost 

iii. total traveling cost. 
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For the multi-depot location routing problem that we have described, we give below 

a mathematical model preceded by its notation. 

 
Notation: 

Sets: 

IC : set of customers 

ID : set of depots  

IDpres : set of present depots  

IDcand : set of candidate depots 

I : set of all nodes (IC ∪ ID) 

 

Binary Decision Variables: 

xijk : 1 if node j is visited after node i on a route originating from depot k, 0 

otherwise. 

yk : 1 if depot k is in service, 0 otherwise.  

δik : 1 if customer i is assigned to depot k, 0 otherwise. 

 

Parameters: 

FCk : the opening or closing cost of depot k 

OCk : the operating cost of depot k 

VCk : vehicle acquisition cost for depot k  

cij : traveling cost of one vehicle from node i to node j 

Q : uniform vehicle capacity 

L(S) : the optimal solution to the one-dimensional bin packing problem where the 

bin length is equal to the vehicle capacity Q, and demand values di (i ∈ IC) 

are the sizes of the items to be packed into the bins. 
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{ }, 0,1ik kyδ ∈  ,i I k ID∀ ∈ ∀ ∈  (3.10) 

 

The model structure can be expressed in plain English as follows:  

 
Minimize  ZP   =  Σ FLAP Objectives   +   Σ MDVRP Objectives 

Subject to:  i)  Pure FLAP constraints  

  ii)  Pure MDVRP-TD constraints  

  iii)  FLAP and MDVRP-TD coupling constraints. 

The objective function of P shown in Equation (3.1) is a combination of objectives 

of a facility location-allocation problem (FLAP) and a multi-depot vehicle routing 

problem (MDVRP). The constraints are comprised of pure FLAP constraints, pure 
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MDVRP constraints and coupling constraints linking routing decisions with location 

decisions. The set of constraints in Equation (3.2) provides that each customer is 

assigned to a depot. Equations (3.3)−(3.4) are flow conservation constraints which 

guarantee all customers be visited exactly once on a route originating from the depot 

they are assigned to. Equation (3.5) ensures that the numbers of incoming and outgoing 

arcs at each depot are equal which means number of vehicles departing from a depot is 

equal to the number of vehicles returning to it. Equation (3.6) is identical to the sum of 

the constraints in Equation (3.2). In order to obtain the second subproblem as a 

minimum spanning forest like problem after the Lagrangian relaxation, we add this 

redundant constraint to the model. Equation (3.7) represents the well-known 

exponential number of subtour elimination constraints which provide that the first and 

last nodes in all routes are one of the depots. The assignment of a customer to a closed 

or unopened depot, and routes originating from such a depot are avoided by Equation 

(3.8). Finally, Equations (3.9)–(3.10) are integrality constraints.  



 
 
Chapter 4: The Lagrangian Relaxation for MDLRP  16 

 

Equation Chapter 4 Section 4 

 

Chapter 4 

 

THE LAGRANGIAN RELAXATION FOR MDLRP 

 

 

4.1. Overview of the Lagrangian Relaxation Method and the Subgradient 

Optimization 

Lagrangian relaxation (LR) is a decomposition approach used for a variety of NP-

hard optimization problems. In this method, the true optimal objective value of the 

problem *
P
Z  is bracketed between a lower and an upper bound [Zlb, Zub] and ub lb

lb

Z Z

Z

−
; 

i.e., the percentage gap between the final values of the bounds; is used to measure the 

quality of the solution. In a minimization problem, the objective function value of a 

good feasible solution found by a heuristic method constitutes the upper bound. The 

lower bound is obtained from the solution of the Lagrangian relaxed problem. The 

relaxed problem is formed by removing some of the constraints of the original problem, 

penalizing them with a set of Lagrange multipliers λ, and adding them to the objective 

function. If the constraints set is exclusively comprised of linear functions, then the 

Lagrangian relaxation can be represented as the following transformation. 

 

 

: min ( )f

Ax b

x X

≤

∈

L x     

 

: min ( )

' '

f

A x b

x X

λ

≤

∈

L' x,    

 

'  and  'A b  are obtained from A and b by deleting the respective rows that are associated 

with the constraints to be removed for the relaxation. 
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Geoffrion [30] proved that for any given value of multipliers λ, the optimal 

objective function value fmin(x, λ) of L', namely Zlb, is a lower bound for the true 

optimal solution *
P
Z  of L. Since *

P
Z  is guaranteed to be equal to or higher than Zlb, the 

final gap between the bounds (Zub − Zlb) cannot be lower than the gap (Zub − *
P
Z ). 

The selection of constraints that will be dualized with Lagrange multipliers λ and 

embedded in the original objective function f(x) forms the resulting Lagrangian relaxed 

problem L'. In order to achieve the tightest lower bound Zlb on *
P
Z , one needs to obtain 

the best Lagrange multipliers λ* by solving the problem in (4.1) . 

 

 fmin(x, λ*)
 

max ( , )f= λ
λ

x   (4.1) 

 

The success of any Lagrangian method not only depends on how easy it is to solve 

the relaxed problem L', but also on the method of obtaining the best multipliers λ*. One 

method of Zlb improvement is the iterative subgradient optimization. The subgradient 

vector of L' is given by the difference between left- and right-hand sides of the relaxed 

constraints in L. This difference is to be calculated using the values of decision 

variables in the current iteration q. The subgradient vector is used as the step direction 

together with the multipliers iterate λq and as a step size to calculate the new iterate λq+1 

of the next iteration q+1.  

In vehicle routing and capacitated spanning tree problems solved by LR, a number 

of other methods have been suggested that compute better values for the Lagrange 

multipliers λ so as to find tighter lower bounds on the original problem. In their paper 

on the VRP with time windows, Kohl and Madsen [31] describe a bundle algorithm in 

which a convex combination of previously obtained subgradients is used instead of a 

single subgradient only. Gavish [32] suggests a dual ascent procedure followed by a 

subgradient optimization procedure in his paper on centralized network design modeled 

as a Capacitated Minimal Spanning Tree (CMST) Problem. 
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The Lagrangian relaxation approach combined with the subgradient optimization 

techniques have been shown to be useful in obtaining near-optimal dual solutions that 

can provide lower bounds which are as good as (in some instances tighter than) the 

lower bounds obtained by the standard linear programming relaxation. 

When the Lagrangian relaxation is applied to the MDLRP model, the coupling 

constraints in Equations (3.3)–(3.4) which combine the FLAP and MDVRP parts of the 

problem are relaxed. The left-hand sides of the constraints are subtracted from their 

right-hand sides. The differences are multiplied by the Lagrange multipliers λ and µ 

respectively, which are unrestricted in sign. The terms are then augmented into the 

original objective function, and the new objective function ZLR(λ, µ) in Equation (4.2) is 

obtained. 
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+ ) )ik ijk ik jk ijk jk

k ID i IC j IC k k ID j IC i IC k
j i i j

x xδ λ δ µ
∈ ∈ ∈ ∪ ∈ ∈ ∈ ∪

≠ ≠

( − + ( −∑∑ ∑ ∑ ∑ ∑  (4.2) 

 

When we rearrange the last two terms of the objective function as in Equation (4.3), 

there remains no terms which connect location and routing variables. Consequently, 

ZLR(λ, µ) becomes separable in FLAP and MDVRP parts. 
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{ } { }
               

+ ( ) ( )ik jk ik ijk jk ik
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j i i j

xδ µ λ µ λ
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≠ ≠

+ − +∑∑ ∑ ∑ ∑ ∑  (4.3) 

 

After the rearrangement, the structure of the Lagrangian relaxed problem LR(λ, µ) 

can be written in plain English as shown below.  
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LR(λ, µ): Minimize  ZLR(λ, µ) =      Σ Augmented FLAP objectives (ZSubP1) 

   + Σ Augmented MDVRP objectives (ZSubP2) 

 subject to:  

  i.  Pure FLAP constraints (3.2), (3.8) (constraints of SubP1)          

  ii.  Pure MDVRP constraints (3.5)–(3.7) (constraints of SubP2)  

   iii. Nonnegativity and integrality constraints (3.9)–(3.10) 

 

The Lagrangian relaxed problem LR(λ, µ) can be partitioned into two independent 

subproblems. The first subproblem resembles an uncapacitated FLAP (SubP1). The 

second one is similar to a degree constrained minimum spanning forest problem 

(DCMSF) (SubP2). We solve SubP1 with Cplex 10.0 in reasonable time. However, 

SubP2 is still an NP-hard problem, which is tackled with an augmented Lagrangian 

relaxation by relaxing the degree constraints. The relaxed SubP2 becomes a minimum 

spanning forest problem with a minimum number of outgoing arcs at root nodes 

(depots). It is solved with a modified version of Prim’s minimum spanning tree 

algorithm. Figure 4.1 displays the flow chart of the iterative subgradient optimization 

procedure with the Lagrangian relaxation scheme applied to the parent problem P. The 

flow chart’s segment in the box indicates the inner augmented Lagrangian relaxation 

which is applied to the second subproblem SubP2. The upper bound for problem P is 

obtained using a tabu search heuristic embedded in the iterations of the Lagrangian 

relaxation. Therefore, the complete solution method is named [LR-TS]. 
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Figure 4.1 Flow chart of the Lagrangian relaxation Scheme for MDLRP 
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4.2. The Lagrangian Relaxed Problem LR 

The objective function of the Lagrangian relaxed problem; i.e., ZLR(λ, µ) is 

separable into two components as FLAP and MDVRP objectives. In order to obtain two 

independent components, ZLR(λ, µ) needs to be rearranged by dividing the relaxed 

constraints that are augmented into the objective function into two parts, as shown in 

Equation (4.3). Then the part which is stated in Equation (4.4) is added to the FLAP 

objectives of ZLR(λ, µ), while the remainder is included in the MDVRP objectives. The 

Lagrange multipliers that are added to the FLAP objective component represent pseudo 

costs of allocating customers to depots. The part which is appended to the MDVRP 

component, Equation (4.5), augments the traveling costs between nodes. 

 

 ( )ik ik ik

i IC k ID

δ µ
∈ ∈

+ λ∑∑  (4.4) 

 ( )ijk ik ik

i IC k ID

x µ
∈ ∈

− + λ∑∑  (4.5) 

 

After reorganizing the terms of the objective function as in Equation (4.6), we 

derive the 3-dimensional asymmetric and depot dependent traveling cost matrix 

Cnew=[(cijk)
new]. In this cost matrix, the vehicle traveling cost from node i to node j not 

only depends on the distance between i and j, but also on the depot k which sends off 

that vehicle. 
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Let G(I,A) denote the complete weighted and directed graph of customers and 

depots, i.e. A = {(i,j)  ∈ (I x I), i ≠ j}. Let (cijk)
new denote the cost of arc (i, j), if it is 
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traversed with a vehicle dispatched from depot k ∈ ID. Arc costs in G are then defined 

as follows: 

i. (i, j) ∈ IC x IC, i ≠ j, k ∈ /ID :  (cijk)
new = cij – λik – µjk 

ii. (i, j) ∈ IC x ID :  (cijj)
new = cij – λij  

iii. (i, j) ∈ ID x IC :  (ciji)
new = cij – µji + VCi 

iv. (i, j) ∈ ID x IC, k ∈ ID, i ≠ k :  (cijk)
new = +∞ 

v. (i, j) ∈ IC x ID, k ∈ ID, j ≠ k :  (cijk)
new = +∞ 

 

The Lagrange multipliers which are multiplied by the binary decision variable xijk 

are embedded into the cost matrix as arc costs. The vehicle acquisition cost is added to 

the cost of the arcs which emanate from depots and go to customers. The rationale 

behind doing so is that each time a depot node is directly connected to a customer node 

a new vehicle has to be acquired at the unit acquisition cost. The last two cost 

assignments avoid illegal arc definitions. As we mentioned in Chapter 3, the binary 

decision variable xijk takes the value 1 when node j is visited immediately after node i 

on a route originating from depot k. If a vehicle visits node j after depot i, the route 

cannot be originating from a depot k ≠ i, k ∈ ID. Also, if a depot node j is visited after 

node i, the route cannot be originating from depot k ≠ j, k ∈ ID. Therefore, cijk is 

assigned to infinity in these two cases in order to prevent xijk from taking the value 1. 

After the construction of the new cost matrix Cnew, the Lagrangian relaxed problem 

LR(λ, µ) can be stated as follows. 

 

Min    ( , ) (1 ) ( )
cand pres

LR k k k k k k ik ik ik

k ID k ID k ID k ID i IC
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∈ ∈ ∈ ∈ ∈

= + + − + +∑ ∑ ∑ ∑∑  

 + ( )newijk ijk
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subject to:  (3.2), (3.5)–(3.10) 
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The Lagrangian relaxed problem is solved with a subgradient optimization 

procedure in order to obtain a lower bound (Zlb) for 
*
P
Z , the true optimal solution of the 

main problem P. We use a tabu search heuristic to find a good feasible solution whose 

objective value will be an upper bound (Zub) on 
*
P
Z . This upper bound is updated 

throughout the subgradient iterations of the Lagrangian relaxation. The details of the 

upper bound generation and updating method are explained in Chapter 5. 

4.3. Subgradient Optimization in the Lagrangian Relaxed Problem LR 

Iterative subgradient optimization is one of the common methods of obtaining the 

best Lagrange multipliers that are hoped to produce the tightest bound on the original 

problem’s true optimal objective value. The aim is to update the Lagrange multipliers of 

the current iteration, and use them in the next iteration of the subgradient optimization. 

Kohl and Madsen [31] remark on the easy implementation advantage of subgradient 

optimization. They state that it usually gives rapid improvement in the first iterations. 

Though, the convergence slows down later, and for some difficult or large problems 

convergence in a reasonable computing time is not possible.  

Let SGq denote the subgradient vector of the problem LR(λ, µ) at iteration q of the 

subgradient optimization procedure. Step size sq is then derived from the norm square 

of SGq and the gap between the current best objective q

ubZ  (upper bound on *
P
Z ) and 

current Lagrangian objective q

LRZ . It is multiplied also by a scalar Λq whose first value 

Λ1 is 2.0 by convention (see Fisher [33]). This scalar is halved whenever the objective 

ZLR does not improve for a specified number of consecutive iterations. At the beginning, 

we set all Lagrange multipliers to the initial value zero. Formulae of the subgradient 

optimization routine for the Lagrangian relaxation of problem P are given below. 

 

 
{ }

     

( ) ( ) ( )q q q

ik ik ijk

j IC k
j i

SG xλ δ
∈ ∪
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= − ∑  ,i IC k ID∀ ∈ ∀ ∈  (4.8) 
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( ) ( ) ( )q q q

ik ik jik

j IC k
j i

SG xµ δ
∈ ∪
≠

= − ∑  ,i IC k ID∀ ∈ ∀ ∈  (4.9) 

 
2 2 2

 SG SG SGλ µ= +   (4.10) 

 
2

( , )q q
q q ub LRZ Z
s

SG

λ µ−
= Λ   (4.11) 

 1( ) ( ) ( )q q q q

ik ik iks SGλ λ+ = +  ,i IC k ID∀ ∈ ∀ ∈  (4.12) 

 1( ) ( ) ( )q q q q

ik ik iks SGµ µ+ = +  ,i IC k ID∀ ∈ ∀ ∈  (4.13) 

 

As mentioned in the previous section, q

LRZ  has two components. The FLAP part of 

the objective function comes from the optimal solution of SubP1. The second part 

comes from SubP2 which is tackled by an augmented Lagrangian relaxation scheme. 

Then the values are added up to constitute q

LRZ . Before the subgradient optimization 

procedure starts, we generate a greedy initial solution for the complete problem. The 

upper bound q

ubZ  is assigned to the objective value of this quickly obtained initial 

solution, for which we assume that all present depots are in service, and solve a 

MDVRP for the remainder of the problem. The solution is accomplished by a method 

called [PFIH-NN] proposed by Aksen and Altınkemer [34]. It is a hybrid of Push 

Forward Insertion and Nearest Neighborhood methods explained in 5.1.1 and Appendix 

A. In the subsequent iterations, the upper bound comes from a tabu search method 

which solves a MDVRP for the location part of the solution of SubP1. This part of the 

SubP1 solution reveals namely the facilities of the problem that will be in service. 

4.4. FLAP-like Subproblem SubP1 

The first of the two subproblems of LR(λ, µ) is the FLAP like problem SubP1. The 

formulation of SubP1 can be stated as follows. 
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1Min (1 )+ ( )  
cand pres

SubP k k k k k k ik ik ik

k ID k ID k ID k ID i IC

Z OC y FC y FC y δ λ µ
∈ ∈ ∈ ∈ ∈

= + + − +∑ ∑ ∑ ∑∑  

subject to: (3.2), (3.8), (3.10) 

 

The technological coefficients matrix of SubP1 is unimodular. For that reason we 

know that the decision variable δik takes integer values even if it is not defined as an 

integer decision variable. So we can define δik’s as nonnegative continuous decision 

variables between 0 and 1 instead of binary variables. Furthermore, the constraints in 

Equation (3.8) should be disaggregated as ik kyδ ≤ ,i IC k ID∀ ∈ ∀ ∈ . This way, we get 

a formulation with less integer variables, which in turn yields significantly better 

solution times for SubP1. In SubP1, the depots to be preserved or opened are 

determined, and customers are allocated to these. Each depot has its operating (OCk) 

and opening cost (FCk). FCk is incurred when a candidate depot is opened or when a 

present depot is closed. FCk of the present depots is generally negative corresponding to 

the savings in overhead costs and to the salvage value accrued by closing the depot. The 

Lagrange multipliers λ and µ embody allocation costs of customers to depots. These 

costs change as the Lagrange multipliers get updated during the subgradient 

optimization iterations on the Lagrangian relaxed problem. At the beginning of each 

subgradient iteration, allocation costs are plugged in and SubP1 is solved with Cplex to 

optimality. The solution times are generally reasonable. A problem instance with 20 

depots and 1000 customers takes 2.84 seconds on a present-day desktop PC. Note that 

the location part of the SubP1 solution is used by the tabu search procedure as an input 

telling which depots are going to be used in the MDVRP.  
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4.5. Minimum Spanning Forest-like Subproblem SubP2 

4.5.1. Mathematical formulation and characteristics of SubP2  

The second subproblem of LR(λ, µ) is SubP2 which resembles a degree and 

capacity constrained minimum spanning forest problem (CMSF). The cost matrix Cnew 

comprises the coefficients in the objective function of the subproblem. Since the 

Lagrange multipliers λ and µ are embedded in this matrix and since they change at each 

subgradient iteration, Cnew is to be calculated over again at the beginning of each 

iteration. The mathematical formulation of SubP2 can be stated as follows: 

 

2Min ( )newSubP ijk ijk

k ID i I j I
j i

Z c x
∈ ∈ ∈

≠

= ∑∑∑  (4.14) 

subject to: (3.5)−(3.7), (3.9) 

 
In SubP2 depot locations k ∈ ID represent center nodes, while customers i ∈ IC are 

terminal nodes. The terminals should be accessible from one of the center nodes via a 

subtree rooted at that center. Equation (3.5) enforces that the numbers of outgoing and 

incoming arcs at each center node be equal. This balance-of-in-and-outdegree condition 

differentiates SubP2 from the classical MSF. Capacity and subtour elimination 

constraints are given in Equation (3.7). The capacity constraint requires that the total 

demand on a subtree rooted at a center node do not exceed Q, the standard vehicle 

capacity in the main problem P. Equation (3.6), which is actually equal to the sum of 

the constraints stated in Equation (3.2), provides connectivity of the tree. As we 

mentioned in Chapter 3, (3.6) is added to the problem in order to solve SubP2 as a 

MSF–like problem. Otherwise, we would have SubP2 as a more relaxed problem which 

in turn would yield low quality lower bounds and high gaps. Equation (3.7) avoids the 

formation of subtrees which are not linked to any of the center nodes. Since the 

constraints in Equations (3.3) and (3.4) are relaxed, any node can have more than one 

offspring nodes. 
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4.5.2. Augmented Lagrangian relaxation for SubP2 

If the balance-of-degree constraints in Equation (3.5) are discarded, and if the 

number of depots in ID is dropped to one, SubP2 would reduce to the capacitated 

minimum spanning tree (CMST) problem. Papadimitriou [35] showed that CMST is an 

NP-hard problem. Consequently, SubP2 also belongs to the NP-hard class. In order to 

solve SubP2 we use the method proposed in Aksen and Altinkemer [26] where the 

augmented Lagrangian relaxation method of Gavish [32] is adopted and modified to 

tackle the balance of degree constraints. Gavish’s CMST formulation is very similar to 

our SubP2’s formulation in that both have an exponential number of subtour 

elimination and capacity constraints. Gavish’s paper [32] on the CMST problem is a 

pioneering study that combines an augmented Lagrangian and a subgradient 

optimization procedure into one solution technique. An early effective use of 

augmented Lagrangian based procedures was presented in Balas and Christofides [36] 

for solving asymmetric traveling salesman problems.  

The idea behind augmented Lagrangian relaxation is simply to generate and dualize 

to-be-relaxed constraints dynamically as they are violated by the current iteration’s 

Lagrangian solution instead of relaxing them all right away at the construction stage of 

the Lagrangian problem. This kind of Lagrangian relaxation has been applied for the 

classical VRP by Fisher [37], and for VRP-TW by Fisher, Jörnsten and Madsen [38]. A 

concise overview of Lagrangian lower bounds obtained in an augmented fashion can be 

found in a study of branch-and-bound algorithms for vehicle routing problems in Toth 

and Vigo [39]. The authors stress the main difficulty of most Lagrangian relaxation 

schemes for the VRP, which comes from the exponential cardinality of the set of 

relaxed constraints. This prevents one from including all of them explicitly into the 

objective function. Instead, the process of augmenting the Lagrangian problem with 

dynamically generated constraints as they are violated is iterated until no such 

constraint is detected or a prefixed number of subgradient iterations have been 
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executed. Slack constraints could be also purged from the Lagrangian problem during 

subgradient computations to keep the problem size under control. 

The augmented Lagrangian relaxation is applied to SubP2 as follows. We relax the 

subtour elimination constraints in SubP2, since this relaxation scheme achieves 

empirically better lower bounds on *
2SubPZ . First, the constraint set in Equation (3.7) is 

divided into two parts as (3.7.a) and (3.7.b), the second of which is relaxed. Secondly, a 

trivial constraint which sets the minimum number of vehicles required is added to the 

original formulation as (3.7.c). This minimum number is calculated by solving the 

associated bin-packing problem that embraces all demand values di, i ∈ IC. 

 

 1ijk

k ID i S j S
j i

x S
∈ ∈ ∈

≠

≤ −∑∑∑  ,  2S IC S∀ ⊆ ∃ ≥  (3.7.a) 

 ijk S

k ID i S j S

x S L
∈ ∈ ∈

≤ −∑∑∑  , 2S IC S∀ ⊆ ≥  (3.7.b) 

 kik IC

k ID i IC

x L
∈ ∈

≥∑∑   (3.7.c) 

 

The relaxed constraint set (3.7.b) is multiplied with Lagrange multipliers α, α ≤ 0. 

Left hand side values are subtracted from their right hand sides, and the resulting terms 

are augmented into the objective function of SubP2 in Equation (4.14). In order to 

combine the embedded terms with ZSubP2 and to get a compact formulation for the 

objective function of the problem after the Lagrangian relaxation we separate Equation 

(4.14) into three parts as follows: 

 

( ) ( ) ( )( )
newnew newnew

ijk ijk kik kik ikk ikk ijk ijk
k ID i I j I k ID i IC k ID i IC k ID i IC j IC

j i j i

c x c x c x c x
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

≠ ≠

= + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

 (4.15) 
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After appending the dualized constraints and making the necessary rearrangements, 

the objective function and constraints of ALRSubP2 (the Lagrangian relaxed SubP2) can 

be written as follows: 

 

( ) ( )2Min Z ( )
new newSubP

LR kik kik ikk ikk
k ID i IC k ID i IC

c x c xα
∈ ∈ ∈ ∈

   = +      ∑ ∑ ∑ ∑

 ( ) ( )L
ψij

new

ijk s ijk S s
k ID i IC j IC s G s

j i

c x Sα α
∈ ∈ ∈ ∈ ∈

≠

 
 + − + −
  

∑ ∑ ∑ ∑ ∑  (4.16) 

subject to: (3.5), (3.6), (3.7.a), (3.7.c), (3.9) 

 

The last term in Equation (4.16) is constant for a given set of Lagrange multipliers 

α. At first glance, there seems to be no use to include it in the optimization scheme and 

one could incorrectly think of omitting the term from 2SubP

LRZ . However, the solution to 

ALR
SubP2 will constitute a lower bound for the optimal solution of LR. Omitting the 

constant term would overestimate or underestimate the lower bound depending on the 

negativity of the term. Therefore we keep it in the objective function although it has no 

effect on the minimization process. 

Observe that S in the relaxed constraints represents any unordered subset of IC with 

a cardinality greater than one, which requires two or more vehicles to deliver orders. 

The set of such subsets is denoted by Ψ. For each S ∈ Ψ, there is an associated 

Lagrange multiplier αs ≥ 0. Let Gij denote the index set of subsets S in Ψ that contain 

customer nodes i and j. The augmented Lagrangian relaxation feature is used here, 

because we do not explicitly generate all constraints in Equation (3.7.b). Therefore, we 

do not compute the entire multiplier vector α, either. The augmented Lagrangian 

relaxed problem ALRSubP2 is equivalent to an MSF problem without capacity constraints 

where the cost matrix Cnew is dependent on the center node of departure. However, there 

are two distinct restrictions in this MSF problem: 
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i. The sum of outgoing degrees of all center nodes has to be equal to or greater 

than LIC as required by the constraint in (3.7.c).  

ii. At each center node, incoming and outgoing degrees should be equal as required 

by constraints in Equation (3.5).  

The solution of the problem ALRSubP2 is checked against the violation of constraints 

in Equation (3.7.b) in SubP2. If any violated constraint is detected, it is added together 

with its associated Lagrange multiplier to the set of active constraints and multipliers. 

The objective function is augmented with the product of the difference between the 

violated constraint’s right- and left-hand side values and the associated Lagrange 

multiplier’s initial value. We do not remove previously augmented constraints from the 

set of active constraints in the Lagrangian problem; neither do we generate any such 

constraint for a second time. Another issue inherent in an augmented Lagrangian 

relaxation is to determine an initial value for its associated dual multiplier of a newly 

generated constraint. Typically at the beginning of subgradient iterations, Lagrange 

multipliers are assigned to zero no matter of their sign restrictions. In an augmented 

relaxation, however, dualizing a newly generated constraint with a zero multiplier 

would have no effect on the Lagrangian objective value. The goal in a minimization 

problem is to obtain a lower bound as tight as possible. This means a higher optimal 

objective value from the Lagrangian problem is sought for. Gavish [32] explains a 

sensitivity analysis technique to elevate the value of the Lagrangian objective function 

by finding an initial multiplier value for every augmented constraint while maintaining 

the optimality property of the Lagrangian solution before that constraint. With a few 

modifications fitting the forest rather than tree structure in the problem, this sensitivity 

analysis technique is adopted also into the augmented Lagrangian relaxation of our 

problem SubP2.  

Finally, the degree balance constraints in Equation (3.5) and the minimum sum 

constraint in Equation (3.7.c) on the center nodes’ outgoing degrees should be reckoned 

with. These constraints could have been relaxed and embedded into the Lagrangian 

objective as well, leaving us with the multi-center node version of the well-studied 
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minimum spanning tree (MST) problem. However, such a relaxation would excessively 

loosen the parent problem SubP2, and this would make it even harder to close the gap 

between the lower and upper bounds on SubP2’s true optimal objective value.  

 

4.5.3. Solving DCMST-like problem ALRSubP2 

The closest version of ALRSubP2 is the degree-constrained minimum spanning tree 

problem (DCMST). Garey and Johnson [40] prove that the DCMST with arbitrary 

degree constraints on nodes other than the center is NP-hard. In spite of copious 

methods and algorithms developed for the DCMST in the literature, we cannot use any 

of them as is due to the following reasons: 

i. ALRSubP2 displays a forest structure with asymmetrical and center-node 

dependent costs 

ii. The degree constraints that appear in ALRSubP2 relate to the balance of incoming 

and outgoing degrees at the center nodes only.  

There exists also a lower bound on the sum of outgoing degrees at the centers 

according to Equation (3.7.c). From this perspective, ALRSubP2 is conceivably easier to 

solve than a general DCMST problem. Aksen and Altınkemer [26] develop a 

polynomial-time procedure called [MSF-ALR] which is largely an adaptation of Prim’s 

MST algorithm. They modify Prims’s algorithm to handle the balance-of-degree 

constraints at center nodes as well as ensuring minimum number of outgoing arcs from 

these center nodes. We take on their solution method for solving the problem ALRSubP2 

with some modification in the way the algorithm takes care of the extra constraints. 

Aksen and Altinkemer’s algorithm first constructs a minimum spanning forest using an 

algorithm like Prim’s algorithm without regarding the minimum total number of out 

degree constraint on center nodes. Then the solution is controlled to discover whether 

the constraint is violated or not. If the number of arcs emanating from the depots is less 

then the minimum number of out degrees, new arcs between the depots and customers 

are added to the forest. In order to select the arc that will yield the minimum additional 
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cost when it is inserted to the solution, all the arcs between the center nodes and the 

customers are scanned. The arc costs in ALRSubP2 are dependent on the depot node from 

which the edges of the arc are accessible. Therefore, when an arc between a center and 

a customer node which is previously accessible from another center node is considered, 

all of the arc cost in the subtree succeeding the customer is recalculated. The change in 

the total of arc costs in the subtree is taken into account as well as the cost of inserted 

arc. After the minimum total outgoing degree at center nodes constraint is satisfied, 

returning arcs from the customers to the center nodes are inserted to provide the balance 

of degree which is required by Equation (3.5). Our modification on the solution method 

is in the way the minimum number of outgoing arcs from center nodes constraint is 

handled. In order to avoid the prolonged solution time due to the recalculation of arc 

costs in the subtrees, we propose a more practical way. At the beginning of the 

algorithm we insert arcs to the forest as much as the minimum number of outgoing arcs, 

with lowest cost. Once the constraint is satisfied, the rest of the forest is constructed 

with the method of Aksen and Altinkemer [26]. The pseudo code of the algorithm can 

be found in Appendix B. 

4.6. Subgradient Optimization in the Augmented Lagrangian Relaxation  

The subgradient vector Υ is calculated according to the formulae given below. The 

cardinality of the subgradient vector increases as the number of violated constraints 

goes up. In the formulae, Gq denotes the index set of those subtour elimination and 

capacity constraints in Equation (3.7.b) which have been violated and thus generated 

either in the current iteration q or in a previous iteration. Each index r in Gq corresponds 

to some subtree of customer nodes whose indices comprise a particular subset S in Ψ as 

explained in 4.5.2. There are as many as |Gq| constraints from Equation (3.7.b) relaxed 

and augmented into ALRSubP2. In Equation (4.19), q

ALRs denotes the step size of the 

subgradient optimization, q

ALRΛ is a scalar with the initial value 2.0, ( 2)ub SubPZ  is an upper 
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bound on the true optimal objective value of SubP2, and finally ( 2)
q

ALR SubPZ is the current 

augmented Lagrangian objective value. The scalar q

ALRΛ  is halved whenever ( 2)
q

ALR SubPZ  

does not increase for a specified number of consecutive iterations. Sr in Equation (4.17) 

indicates the rth subset of customers in Ψ which are spanned by the same subtree. 
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 ( ) ( ) ( ){ }1
min 0,

qq q q

r r ALR rs αα α+
= + ϒ  qr G∀ ∈  (4.19) 

 

The upper bound ( 2)ub SubPZ  for the MSF-like problem SubP2 is found at the 

beginning of the augmented Lagrangian relaxation as follows. First, a capacitated 

MDVRP is solved by a version of [PFIH-NN] where the algorithm is modified to 

handle the costs structure in Cnew. All arc costs are calculated depending on the depot to 

which the customer will be connected. The solution attained is definitely a feasible 

solution for SubP2 since the corresponding MDVRP solution satisfies the capacity, 

connectivity and balance of degree constraints in SubP2. Moreover, a returning arc to a 

depot in SubP2 need not originate from the last customer on the respective route. 

Exploiting this fact, we apply a myopic improvement procedure for each depot. We 

search the arc with the lowest cost that connects the depot to one of the customers on 

the same route. If that arc is different than the currently defined returning arc, the 

current one is replaced by the lowest-cost arc found. 
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GENERATING UPPER BOUNDS FOR P: THE TABU SEARCH HEURISTIC 

 

 

We use a tabu search (TS) heuristic integrated into the Lagrangian relaxation 

scheme in order to generate upper bounds for the optimal solution of the comprehensive 

location routing problem. TS is an iterative meta-heuristic algorithm first proposed in its 

present form by Glover [41]. It guides the local search to prevent it from being trapped 

in premature local optima or in cycling. It starts with an initial solution which is 

generally obtained by a quick constructive heuristic algorithm. At each iteration of the 

TS, a neighborhood of solutions is generated for the current solution. The best one from 

this neighborhood is picked as the current solution depending on a number of criteria. 

Certain attributes of previous solutions are kept in a tabu list which is updated at the end 

of each iteration. The selection of the best solution in the neighborhood is done such 

that it does not attain any of the tabu attributes. Best feasible solution so far (incumbent) 

is updated if the current solution is both feasible and better than the incumbent. The 

procedure continues until one or more stopping criteria are fulfilled. 

At each subgradient iteration of the outer Lagrangian relaxation of P, first the 

facility location allocation problem SubP1 is solved. The solution obtained for SubP1 

reveals the depots that are preserved and newly opened, as well as which customers are 

allocated to which depots. For upper bound generating procedure, we only take facility 

location plan part of this solution. Once the facilities in service are known, the 

remainder of the problem becomes a MDVRP any feasible solution of which constitutes 

an upper bound to P. Each time a new depot location plan is obtained by solving 

SubP1, a tabu search (TS) heuristic solving MDVRP is triggered in the hope of 
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achieving a better upper bound for P. When the Lagrangian iterations terminate, a 

greedy method called Add-Drop heuristic starts in case the final gap is greater than 2%.  

In our study, we adopted the tabu search procedure as proposed by Aksen et al. [42] 

for the open vehicle routing problem with fixed driver nodes. We tailored the procedure 

for the MDVRP, and enriched it with additional neighborhood generation moves. 

5.1. An Initial Solution for P 

In order to generate an initial solution for our TS procedure, we tested on two 

constructive heuristics. One of them is the [PFIH-NN] method proposed by Aksen and 

Altinkemer [34], which is a hybrid of Push Forward Insertion and Nearest 

Neighborhood heuristics. The second heuristic is a modified version of Clarke-Wright 

parallel savings [CW] heuristic, which was first proposed for the single depot 

capacitated VRP by Clarke and Wright [43]. We have adjusted the algorithm so as to 

construct a good feasible solution to the capacitated MDVRP.  

Since the former algorithm [PFIH-NN] exhibits an empirically better performance, 

we have chosen [PFIH-NN] to construct an initial solution for the MDVRP when 

necessary.  

 

5.1.1. The [PFIH-NN] algorithm  

In [PFIH-NN] customers are first assigned to the nearest depot. Then they are placed 

in an array sorted in the non-decreasing order of a special cost coefficient. This 

coefficient is calculated for each customer based on his distance to the assigned depot. 

The customer with the lowest cost coefficient is appended to a route. The remaining 

customers in the array are then chosen one at a time, and inserted into this first route 

according to the cheapest insertion principle. When the next to-be-inserted customer’s 

demand exceeds the spare capacity on the current route, a new route is initiated.  

Before starting the subgradient optimization for P, we use [PFIH-NN] to find an 

initial solution for the comprehensive MDLRP problem. In doing this, all of the present 
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depots are assumed to be preserved, and the remainder of the problem is solved as a 

MDVRP by [PFIH-NN]. When there exist no present depots, the candidate depot with 

the least opening and operating cost is selected to be in service. A pseudo code of the 

algorithm can be found in Appendix A. 

 

5.1.2. The [CW] parallel savings algorithm for the MDVRP 

This savings algorithm was first proposed by Clarke and Wright [43] for the single 

depot capacitated VRP. It can solve an instance with 1,000 nodes in one second on a 

fast modern-day desktop PC. Furthermore, it can be implemented without using 

advanced data structures. Therefore it still remains popular to date. In this algorithm, 

first a dedicated route is formed for each customer. Savings that will be obtained by 

merging two routes are calculated for all pairs of dedicated routes. Then, routes are 

merged starting with the pair that yields the highest savings. The algorithm is repeated 

until none of the remaining mergers is feasible. 

In order to construct a feasible solution for the MDVRP we append an allocation 

phase at the beginning of the algorithm. In this phase, each customer is allocated to the 

nearest depot. After determining which customer will be served by which depot, a 

single depot capacitated VRP is solved using [CW] for each of the depots with more 

than one customers allocated. 

5.2. Evaluation of the Solutions 

For a given location plan, the objective of the problem is to minimize the vehicle 

acquisition and total traveling cost. In our tabu search method, we apply strategic 

oscillation by admitting infeasible solutions where infeasible solutions are penalized in 

proportion to the violations of capacity and time constraints. The penalty terms are 

added to the objective value of an infeasible solution. This penalty is intended to 

prevent the algorithm from spending too much time with exploring the infeasible 

regions of the search space. Every 10 iterations, the number of feasible and infeasible 
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solutions visited are compared. If the number of feasible solutions exceeds that of 

infeasible solutions, penalty terms are divided by a factor of 1.5; otherwise penalty 

terms are multiplied by 1.5. The purpose of dynamically adjusting penalty coefficients, 

referred to as strategic oscillation, is to keep the search procedure around the boundary 

of feasible and infeasible regions. Since good solutions are expected near this boundary, 

exploring this region is likely to provide better solutions. 

The objective value for a solution is obtained by Equation (5.1). 

 

( )ijk ijk c c

k ID j I i I r R
j i

c x p V r
∈ ∈ ∈ ∈

≠

+∑∑∑ ∑   (5.1) 

The first term is the total traveling cost containing the vehicle acquisition cost. This 

cost can be appended to the costs of the arcs which connect depots directly to 

customers. Every time an arc from a depot to a customer is included in the solution, a 

new vehicle is needed. Thus, its acquisition cost is incurred in the cost of that arc.  The 

second is the penalty term for the routes that hold more demand than the vehicle 

capacity. R is the set of all routes, Vc(r) denotes the overload (total demand of 

customers in route r minus vehicle capacity Q), and pc denotes the penalty coefficient 

for overload on a route. 

The best infeasible objective value is kept in memory during the procedure as well 

the best feasible objective value. The best infeasible objective value is updated when a 

feasible or infeasible solution with a better total cost is obtained. We utilize from this 

value in the aspiration and stopping criteria which are explained in following 

subsections. 

5.3. Neighborhood Structure, Tabu Attributes and Stopping Conditions 

In tabu search, at every iteration a neighborhood of the current solution is generated 

by the use of some move operators. The move operators are defined actions which 

generate neighboring solutions by altering one or more attributes of the current solution. 

Some examples to these attributes can be the position of a node on a route, the depot 
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that a customer is allocated, or the number of routes serving the customers. After the 

neighborhood generation, the neighboring solutions that do not possess one of the tabu 

attributes are examined, and the one with the best objective function value is set as the 

new current solution. Depending on the configuration of the tabu search heuristic, one 

can generate all possible neighboring solutions that can be obtained by the relevant 

move, or one can restrict the neighborhood size to a certain number of solutions. The 

decision depends on the trade-off between the solution time and solution quality. As 

more neighboring solutions are generated, the possibility to come across a better 

solution increases. 

 

5.3.1. Move operators and neighborhood size 

We use four move operators to create a neighborhood for the current solution. The 

pictorial descriptions of the moves can be found in Figure 5.1 – Figure 5.8. Each move 

involves two pilot nodes:  

1-0 move : One of the pilot nodes is taken from its current position and inserted 

after the other. (Figure 5.1, Figure 5.2) 

1-1 exchange : Two pilot nodes are swapped.(Figure 5.3, Figure 5.4) 

2-Opt move : For two pilot nodes in the same route, the arcs emanating from these 

are removed. Two arcs are added one of which connects the pilot nodes, and the other 

connects their successor nodes. If the pilot nodes are in different routes, then the route 

segments following them are swapped preserving the order of nodes succeeding the 

pilots on each segment. (Figure 5.5, Figure 5.6) 

2-2 exchange : One of the pilot nodes and its successor are swapped with the other 

pilot node and its successor. (Figure 5.7, Figure 5.8) 
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Figure 5.1 1-0 move in same route 
 
 

 

Figure 5.2 1-0 move between two routes 
 

 

Figure 5.3 1-1 exchange in same route 
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Figure 5.4 1-1 exchange between two routes 
 
 

 

Figure 5.5 2-opt move in same route 
 
 

 

Figure 5.6 2-opt move between two routes 
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Figure 5.7 2-2 exchange in same route 
 
 
 

 

Figure 5.8 2-2 exchange between two routes 
 
 
 

In our TS implementation, the size of the neighborhood is restricted because of time 

consideration. The number of solutions generated in each iteration depends on the 

number of operating depots and on the number of customer nodes in the problem. The 

solutions are generated in a probabilistic manner. Before the generation of each 

neighboring solution we choose one of the move operators with probability equal 

probability. Then we randomly pick two pilot nodes from the problem space. 
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5.3.2. Local post optimization 

Besides neighborhood generation, we incorporate also a local search with these 

moves into the tabu search as a tool of local post optimization (LPO). A series of LPO 

operations are to be applied to the initial solution, to the current solution at the end of 

every 100 iterations if it is feasible, and also to the incumbent (current best solution) 

whenever it is updated. This helps the intensification of tabu search on the given 

MDVRP instance.  

In the application of LPO, all customers are set one by one as the first pilot node. 

For a given pilot node, the second one is chosen such that the related move yields the 

highest improvement in total distance without causing any infeasibility. Every time we 

use local post optimization, we apply a sequence of five LPO methods. We have 

determined the sequence of the LPO operations empirically according to the results of 

extensive experimentation. We have tested 26 distinct sequences of four LPO methods 

which are listed in Table 5.1. The tests have been conducted on 33 MDVRP problems 

compiled by J.-F. Cordeau at the following web address: http://neumann.hec.ca/ 

chairedistributique/data/ . 
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LPO Type 1 2 3 4 5 
      

A 2-2 exchange 1-0 move 2-opt move 1-1 exchange 1-0 move 

B 2-2 exchange 1-1 exchange 1-0 move 2-opt move 1-0 move 

C 2-2 exchange 2-opt move 1-1 exchange 1-0 move 2-opt move 

D 2-2 exchange 1-1 exchange 2-opt move 1-0 move 2-opt move 

E 2-2 exchange 1-0 move 2-opt move 1-0 move 1-1 exchange 

F 1-1 exchange 2-opt move 1-0 move 2-opt move 2-2 exchange 

G 1-1 exchange 2-opt move 2-2 exchange 1-0 move 2-opt move 

H 1-1 exchange 2-opt move 1-0 move 2-2 exchange 2-opt move 

I 1-1 exchange 2-2 exchange 2-opt move 1-0 move 2-opt move 

J 1-1 exchange 1-0 move 2-2 exchange 2-opt move 1-0 move 

K 1-1 exchange 1-0 move 2-2 exchange 1-0 move 2-opt move 

L 1-1 exchange 1-0 move 2-opt move 2-2 exchange 2-opt move 

M 1-1 exchange 1-0 move 2-opt move 2-2 exchange 1-0 move 

N 2-opt move 2-2 exchange 1-0 move 1-1 exchange 1-0 move 

O 2-opt move 2-2 exchange 1-0 move 1-1 exchange 2-opt move 

P 2-opt move 1-0 move 2-2 exchange 1-0 move 1-1 exchange 

Q 2-opt move 1-1 exchange 1-0 move 2-2 exchange 2-opt move 

R 2-opt move 1-0 move 1-1 exchange 1-0 move 2-2 exchange 

S 2-opt move 1-1 exchange 2-opt move 2-2 exchange 1-0 move 

T 1-0 move 2-2 exchange 2-opt move 1-1 exchange 1-0 move 

U 1-0 move 2-2 exchange 1-0 move 1-1 exchange 2-opt move 

V 1-0 move 2-opt move 1-1 exchange 2-opt move 2-2 exchange 

W 1-0 move 1-1 exchange 2-opt move 2-2 exchange 2-opt move 

X 1-0 move 2-opt move 1-1 exchange 2-2 exchange 1-1 exchange 

Y 1-0 move 1-1 exchange 2-opt move 1-0 move 2-2 exchange 

Z 1-0 move 2-2 exchange 1-0 move 2-opt 1-1 exchange 

Table 5.1 LPO sequences tested  
 

5.3.3. Tabu attributes 

Tabu search heuristics make use of a list of attributes of the previously visited 

solutions in order to prevent cycling. Some attributes of the solutions are decided to be 

tabu during the design of the heuristic. These attributes of the visited solutions are kept 
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in a tabu list. At each iteration, while choosing the best solution in the neighborhood of 

the current solution, the neighboring solutions are checked whether they possess at least 

one of the attributes declared tabu in the list. Tabu attributes of a solution generated by 

a move can be stated as follows.  

1-0 move : If node i is inserted after node j, the position of i cannot be changed 

by the same move while it is tabu-active.  

1-1 exchange : If nodes i and j are swapped, they cannot be swapped again while 

they are tabu-active.  

2-Opt move : If 2-Opt move is applied to nodes i and j, the move cannot be applied 

again to the same nodes while they are tabu-active.  

2-2 Exchange : If nodes i and successor of i are swapped with nodes j and successor 

of j, these cannot be swapped again while they are tabu active.  

The tabu list is updated at the end of each iteration. Some attributes are dropped 

from the list, while the tabu attributes of the new current solution are added to the list. 

The number of iterations during which an attribute stays in the tabu list; i.e., the 

duration that the attribute is tabu-active is called tabu tenure. At each iteration, the tabu 

tenure is chosen randomly between 5 and 15 iterations.  

 

5.3.4. Aspiration criterion 

In some cases, namely if the so-called aspiration criterion is satisfied, a neighboring 

solution can be accepted although its attributes are tabu-active. In our tabu search 

implementation, the aspiration criterion is considered to be satisfied if the total cost of 

the neighboring solution resulting from the move is better than the incumbent’s 

objective value. If the neighboring solution obtained is infeasible, it is compared with 

the best infeasible solution. 
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5.3.5. Stopping conditions 

The tabu search heuristic terminates when any of two stopping criteria is satisfied. 

First criterion is the total number of iterations performed. Second criterion is the 

maximum permissible number of iterations during which the best feasible or the best 

infeasible solution does not improve. Both values are determined based on the problem 

size. 

5.4. The Probabilistic Nature of the Proposed Tabu Search Algorithm  

The tabu search algorithm proposed has probabilistic nature in selection of move 

operators, determining the pilot nodes in a move and choosing the tabu tenure. The 

values of these attributes are determined using uniform pseudo-random numbers which 

are obtained by a linear congruential pseudo-random number generator designed by 

Park and Miller [44]. The series of the pseudo-random numbers depends on an initial 

random number seed. At the beginning of every single tabu search run, the initial 

random number seed is taken from an array of 20 predetermined random number seeds 

in sequence. 

Since the sequence of the random numbers generated is reliant on the initial random 

number seed, the seed have effect on the moves, pilot nodes and tabu tenure at each 

iteration of the tabu search heuristic. Starting with the same initial solution but with 

different seeds, the heuristic can come up with different final solutions. In order to 

remove the effect of the initial random number seed, in some parts of the Lagrangian 

relaxation method the tabu search is run several times with different seeds for a specific 

location plan (6.4). 

5.5. Add-Drop Heuristic 

When the Lagrangian iterations terminate, an Add-Drop heuristic is applied to the 

best feasible solution found if the final gap between Zub and Zlb is greater than 2%. First, 

closed or unopened depots are added to the solution one by one; then, currently opened 
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depots are dropped from the solution in a similar decremental fashion. The MDVRP is 

solved with respect to each of these scenarios using the tabu search heuristic. Because 

of the probabilistic nature of the tabu search heuristic, the tabu search is run for 10 

times with different initial random number seeds. The best of the final solutions of the 

10 runs is taken and compared with the best solutions of the other scenarios. If a better 

feasible solution is realized, the new depot location plan is adopted, and the Zub value 

and the final gap are updated as well. A pseudo code of the Add-Drop heuristic is 

provided in Appendix D.  
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Chapter 6 

 

COMPUTER EXPERIMENTS AND RESULTS 

 

 

6.1.  More Details on the Proposed Solution Method 

Stopping criteria of the Lagrangian relaxation 

The mutually exclusive stopping conditions of the subgradient optimization for the 

outer Lagrangian relaxation are defined as follows. If the number of subgradient 

iterations performed exceeds 300, or if the number of consecutive subgradient iterations 

during which the Lagrangian gap does not improve reaches 100, or finally if the amount 

of absolute change in the Lagrange multipliers is not greater than 1.0e–7, the 

subgradient optimization procedure for the problem P stops. The stopping conditions in 

case of the augmented Lagrangian relaxation applied to SubP2 are satisfied if the 

predefined limit on one of following parameters is reached: 150 subgradient iterations 

performed in the augmented Lagrangian relaxation, the step size or the gap between 

( 2)lb SubPZ  and ( 2)ub SubPZ dropping below 1.0e–5, and finally 75 consecutive iterations 

during  which the gap does not improve. 

 

The constructive heuristic to generate an initial solution for the tabu search 

Tabu search is an improvement heuristic which starts with an initial solution and 

searches for better ones throughout its iterations. Among the constructive heuristics 

explained in 5.1, we adopted [PFIH-NN] to generate the initial solution at the beginning 

of each tabu search run. [PFIH-NN] is also employed in order to generate feasible 
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solutions for P at the beginning of the algorithm [LR-TS] and for SubP2 each time the 

inner Lagrangian relaxation is called (4.3, 4.6).  

 

LPO sequence 

The local post optimization methods utilized are embedded into the tabu search as 

an intensification tool. In the tabu search algorithm we designed, the LPO methods are 

applied both to the initial solution at the beginning of the heuristic and to the best 

feasible solution whenever it is updated. After extensive experimentation with 26 

different sequences specified in Table 5.1, the sequence that is represented with the 

letter L is selected. The sequence L is as follows: 1-1 exchange, 1-0 move, 2-opt move, 

2-2 exchange, 2-opt move. 

6.2. The Design of Computer Experiments 

All of the codes for the proposed method have been written in ANSI C language, 

compiled in Visual C++ .NET and executed on a 3.20 GHz Intel Xeon processor with 2 

GB RAM. To test the performance of the algorithm we have experimented on a test bed 

of 96 problems composed of three parts. The first part includes 30 small size randomly 

generated problems (R1) with 15–35 customers and 2–6 depots. The second part, the 

larger problems (R2) consist of 30 randomly generated instances with number of 

customers and depots ranging from 40 to 100 and from 4 to 6, respectively. The third 

part of the test bed has been designated as TB. It takes in the 36 problems solved in 

Tüzün and Burke [23] which have 100–200 customers and 10–20 depots. The problems 

in R1 have been  also solved by Cplex 10.0 with a time limit of five hours. The best 

integer solutions found by Cplex constitute benchmarks for the upper bounds obtained 

by our method. The upper bounds obtained for the TB problems have been compared 

with the solutions provided in Tüzün and Burke [23]. We utilized a subset of the test 

problems for the fine-tuning of the parameters of the tabu search and the Lagrangian 

relaxation algorithms. In the remainder of this chapter, the details of the random 



 
 
Chapter 6: Computer Experiments and Results  49 
 

 

problem generation procedure are first presented. Then the experiments for the fine-

tuning of the algorithmic parameters are explained. Finally, the results and some 

conclusions are given for the problems of R1, R2 and TB along with the comparisons 

with other solution methods. 

6.3.  Random Problem Generation 

In order to evaluate the performance of the solution method and to study the 

configuration of the algorithmic parameters, we randomly generated 60 LRP instances. 

The number of customers in the problems ranges from 15 to 100, while the number of 

depots changes between 2 and 6. We divide the test problems into two parts, as R1 and 

R2, depending on the number of customers in the problem. The instances are created 

using a generator program coded in ANSI C language. The program works based on 

several parameters. The values of the parameters are provided by the user. The 

parameters are explained in two groups as Type 1 and Type 2 parameters. In Table 6.1 

the short forms, explanations and values of the Type 1 parameters are given. This group 

contains the parameters which are set to the same value for all of the random test 

problems. Table 6.2 shows the information for Type 2 parameters. This group of 

parameters takes different values for different problems. The details of the random 

problem generation process and the generated test problems are provided in Tables 6.1 

to 6.5.  

Among the parameters, distC denotes the distribution of the customer locations on 

the problem space. The parameter U indicates that the customers locations are generated 

using a uniform distribution. RU means the customers locations come from a 

distribution that is rectilinear uniform on a specified number of equidistant longitudes 

and altitudes. For the entire problems in which RU is used the number of equidistant 

longitudes and altitudes are set as 2 and 3 respectively. Finally, C stands for “Clustered 

Uniform around depots”. The vehicle capacity is assigned based on the sum of the 

demands of the customers and the coefficient k, with the formula given in Table 6.1. 
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The problems have been generated using 10 different values for the number of 

customers (NC). For each specific value of number of customers, two different number 

of present-candidate depots (NPD-NCD) was used. For each of the 20 NC – NPD – NCD 

pairs, three problems with different spatial distribution of customer locations (distC) 

have been generated (Table 6.3). The values of Type 2 parameters for each problem in 

R1 and R2 are presented in Table 6.4 and Table 6.5, respectively. 

In the assignment of the fixed depot opening-closing (FC) and operating costs (OC) 

we assumed that all the costs are projected to the daily time scale as the vehicle 

traveling costs. We observed that it is reasonable to set the FC and OC values equal to 

approximately 10% of the total traveling cost in the problem. Also the vehicle 

acquisition costs (VC) are projected to same time scale. In the average, the VC values 

correspond to 10% of the fixed depot opening-closing costs. Appendix E details the 

calculation of FC and OC values. 

 

 

Parameter Explanation Value 

W × H 
Dimensions of the rectangular 
problem space (width and height). 

W = 300,  H = 250 

(x0,y0) 
Coordinates of the depot at the center 
of the problem space. 

(x0,y0) = (0,0) 

distPD 
Distribution of the locations of 
present depots 

U : uniformly distributed in the 
problem space 

distCD 
Distribution of the locations of 
candidate depots 

RU : rectilinear uniform on 
specified number of equidistant 
longitudes and altitudes 

di Demand of customers i 
Comes from a Continuous Uniform 
Distribution between [5,10] 

Q Vehicle capacity Q=
i

i

d

k

 
 
 
  

∑
 

Table 6.1 Type 1 parameters 
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Parameter Explanation Values used 

NC Number of customers 
R1 : 15,20, 25, 30, 35 

R2 : 40, 50, 60, 80, 100 

NPD Number of present depots 
R1 : 0, 1 

R2 : 0, 1, 2 

NCD Number of candidate depots 
R1 : 2, 3, 4, 6 

R2 : 4, 5, 6 

FC 
Fixed opening-closing cost of 
depots 

[20, 45] 

OC Fixed operating cost of depots [25, 50] 

VC Vehicle acquisition cost 3, 4 

k Coefficient for vehicle capacity 4.5, 5, 5.5, 6, 7 

distC 
Distribution of the locations of 
customers 

U : uniformly distributed in the 
problem space 

RU : rectilinear uniform on specified 
number of equidistant longitudes 
and altitudes  

C : clustered around the locations of 
depots 

SEED Initial random number seed. 27, 82, 951 

Table 6.2 Type 2 parameters  
 
 

Parameter # values 

NC 10 

distC 3 

NCD-NPD pair 2 

TOTAL 60 

Table 6.3 The problem generation pattern 
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ID NCD NPD NCD distC SEED k 
       

R1-1 15 1 2 U 82 4.5 

R1-2 15 1 2 RU 27 4.5 

R1-3 15 1 2 C 951 4.5 

R1-4 15 - 2 U 82 4.5 

R1-5 15 - 2 RU 27 4.5 

R1-6 15 - 2 C 951 4.5 

R1-7 20 1 3 U 82 5 

R1-8 20 1 3 RU 27 5 

R1-9 20 1 3 C 951 5 

R1-10 20 - 3 U 82 5 

R1-11 20 - 3 RU 27 5 

R1-12 20 - 3 C 951 5 

R1-13 25 1 2 U 82 5 

R1-14 25 1 2 RU 27 5 

R1-15 25 1 2 C 951 5 

R1-16 25 1 4 U 82 5 

R1-17 25 1 4 RU 27 5 

R1-18 25 1 4 C 951 5 

R1-19 30 1 4 U 82 5.5 

R1-20 30 1 4 RU 27 5.5 

R1-21 30 1 4 C 951 5.5 

R1-22 30 - 4 U 82 5.5 

R1-23 30 - 4 RU 27 5.5 

R1-24 30 - 4 C 951 5.5 

R1-25 35 1 4 U 82 6 

R1-26 35 1 4 RU 27 6 

R1-27 35 1 4 C 951 6 

R1-28 35 - 6 U 82 6 

R1-29 35 - 6 RU 27 6 

R1-30 35 - 6 C 951 6 

Table 6.4 The Type 2 parameter values for R1 
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ID NCD NPD NCD distC SEED k 
       

R2-1 40 1 4 C 951 5 

R2-2 40 1 4 RU 27 5 

R2-3 40 1 4 U 82 5 

R2-4 40 - 4 C 951 5 

R2-5 40 - 4 RU 27 5 

R2-6 40 - 4 U 82 5 

R2-7 50 1 4 C 951 6 

R2-8 50 1 4 RU 27 6 

R2-9 50 1 4 U 82 6 

R2-10 50 - 5 C 951 6 

R2-11 50 - 5 RU 27 6 

R2-12 50 - 5 U 82 6 

R2-13 60 1 4 C 951 6 

R2-14 60 1 4 RU 27 6 

R2-15 60 1 4 U 82 6 

R2-16 60 - 5 C 951 6 

R2-17 60 - 5 RU 27 6 

R2-18 60 - 5 U 82 6 

R2-19 80 2 4 C 951 7 

R2-20 80 2 4 RU 27 7 

R2-21 80 2 4 U 82 7 

R2-22 80 - 6 C 951 7 

R2-23 80 - 6 RU 27 7 

R2-24 80 - 6 U 82 7 

R2-25 100 2 4 C 951 8 

R2-26 100 2 4 RU 27 8 

R2-27 100 2 4 U 82 8 

R2-28 100 - 6 C 951 8 

R2-29 100 - 6 RU 27 8 

R2-30 100 - 6 U 82 8 

Table 6.5 The Type 2 parameter values for R2 
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6.4.  Experimenting with Algorithmic Parameters 

The maximum number of iterations in outer and inner Lagrangian relaxations, the 

pattern of the tabu search heuristic implementation and the LPO sequence applied in the 

tabu search have been finalized in accordance with the empirical findings of the tests 

conducted. In this section, the details of the experiments and the results are explained. 

 

Maximum number of iterations of outer and inner Lagrangian relaxations 

The stopping conditions of the Lagrangian relaxation have been fine-tuned by 

testing on 16 test problems. Since the solution times of the larger problems are not 

practical for such experimentation, 10 of these problems have been selected among the 

randomly generated test problems with the number of customers between 15 and 35. 

The remaining 6 problems have been chosen from among the TB instances.  

 

num_ out num_ in 
  

400 100 

350 150 

350 200 

300 150 

300 200 

250 150 

Table 6.6 Maximum number of iteration of inner and outer LR values tested 
 

Six different combinations of the number of iterations in the outer Lagrangian 

relaxation (num_out) and the number of iterations in the inner Lagrangian relaxation 

(num_in) have tested on these 16 LRP instances (Table 6.6). The “num_out – num_in” 

combination has been evaluated based on three criteria: the gap between the best 

feasible objective value found and the objective of the benchmark solution, the final gap 
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between the best lower bound and the best upper bound found and the CPU time 

elapsed. For 10 small test problems, benchmark results are the Cplex solutions while the 

ones for the TB problems are the solutions found by Tüzün and Burke [23]. 

Consequently, the maximum number of iterations in outer and inner Lagrangian 

relaxation has been determined as 300 and 150, respectively, for a favorable 

performance and reasonable solution time. 

 
Two different patterns of tabu search implementation 

In the comprehensive solution method proposed for the LRP, we make use of the 

tabu search in order to find a good feasible solution. An MDVRP is solved by the tabu 

search throughout the iterations of the outer Lagrangian relaxation and in the Add-Drop 

heuristic (5.5). Because of the probabilistic nature of the tabu search algorithm (5.4), in 

some cases the tabu search is run more than once starting with different initial random 

number seeds. The best objective of these runs is taken as a remedy against the 

probabilistic character of the heuristic. The decision of where and how many times to 

apply tabu search depends on the balance between the solution time and the solution 

quality.  

In order to determine how to utilize tabu search during [LR-TS], we experimented 

on two patterns. In the first one, the tabu search is run for once during the outer 

Lagrangian relaxation whenever the solution of SubP1 reveals a new location plan. If 

the Add-Drop heuristic is decided to be applied after the Lagrangian iterations 

terminate, the tabu search is run once for every distinct location plan generated by the 

add and the drop moves. After the Add-Drop heuristic the tabu search solves a MDVRP 

10 times for the final location plan with different initial random number seeds.  In 

pattern 2, the tabu search is run for once during the Lagrangian relaxation iterations, as 

well. However, when the Lagrangian iterations terminate, the tabu search is run 10 

times for the particular location plan of the best feasible solution found. Then, if the 

Add-Drop Heuristic is triggered, for each distinct location plan generated, the tabu 

search works 10 times and the best solution of the 10 runs is adopted. This solution is 
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compared with the ones of other location plans and if it is better than the best feasible 

solution, the best upper bound is updated. 

The two patterns are tried on the test problems which we utilize for fine tuning of 

the maximum number of iterations in Lagrangian relaxation. We adopted Pattern 2, for 

it provides better solutions with allowable increase in solution time. 

 

 

  

Number of TS 

runs in Pattern 1 
Number of TS 

runs in Pattern 2 
    

Through LR  1 1 

End of LR  - 10 

Add-Drop  1 10 

End of Add-Drop  10 - 

Table 6.7 Two patterns of tabu search implementation through [LR-TS] 
 

 

The selection of the constructive heuristic to generate initial solution and the LPO 

sequence in tabu search 

The constructive heuristic that generates an initial solution for the tabu search (TS), 

and the LPO sequence applied to the initial and the incumbent solution have been 

determined after experimenting on 33 MDVRP problems compiled by J.-F. Cordeau at 

the following web address: http://neumann.hec.ca/chairedistributique/data/ . 

First, [PFIH-NN] has been used as the initial solution generating method and the 26 

LPO sequences listed in Table 5.1 have been tested. All MDVRP instances have been 

solved 10 times by TS with different initial random number seeds utilizing each LPO 

sequence (33 problems x 10 seeds x 26 sequences = 8580 runs). For each test problem 

and LPO sequence, the average, maximum and the minimum objective values of 10 

tabu search runs have been identified. Then, these values have been compared with the 
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ones that were obtained with TS using other LPO sequences. The performance of a 

given LPO sequence is evaluated based on the following three parameters: 

n_min: The number of problems where the minimum objective value found by the 

tabu search using that LPO sequence is lower than the ones obtained with the tabu 

search using other LPO sequences.  

n_max: The number of problems where the maximum objective value found by the 

tabu search using that LPO sequence is higher than the ones obtained with the tabu 

search using other LPO sequences.  

n_avg: The number of problems where the average of the objective values found by 

the tabu search using that LPO sequence is lower than the ones obtained with the tabu 

search using other LPO sequences. 

The three parameter values have been compared where the ones with higher n_min, 

n_avg and with lower n_max are considered performing better. The priority was given 

to the parameter n_min, while n_avg is checked second. In case these two parameter 

values were equal for two or more LPO sequences, n_max was used for determining the 

best. In accordance with the analysis of the test results which are depicted in Table 6.8, 

the LPO sequences C and L are found to perform better than the others.  

After determining the LPO sequences with better performance in the experiments 

where the initial solutions of TS have been constructed with [PFIH-NN] heuristic, we 

tested these LPO sequences with an initial solution provided by [CW] heuristic. The 

very same method explained above has been used to evaluate the performances of 

different LPO sequences. As shown in Table 6.9, the tabu search with an [PFIH-NN] 

initial solution has performed better. Therefore, [PFIH-NN] is chosen as the initial 

solution construction method while the LPO sequence L is utilized in the tabu search 

heuristic. 
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LPO Type  n_min n_max n_avg 
     

A  8 2 5 

B  8 1 3 

C  10 3 9 

D  9 1 4 

E  6 1 3 

F  8 4 4 

G  8 3 4 

H  7 4 4 

I  7 2 4 

J  9 1 3 

K  8 3 5 

L  10 2 9 

M  9 1 6 

N  6 2 3 

O  10 1 6 

P  8 2 5 

Q  10 2 5 

R  10 2 3 

S  9 2 5 

T  7 3 4 

U  8 4 3 

V  8 1 5 

W  9 2 5 

X  7 1 5 

Y  6 3 5 

Z  9 2 4 

Table 6.8 The values of the performance parameters for 26 LPO sequences where the 
initial solutions of TS have been found by [PFIH-NN] heuristic 

 

LPO Type  n_min n_max n_avg 
     

C after [PFIH-NN]  10 3 9 

L after [PFIH-NN]  10 2 9 

C after [CW]  6 7 4 

L after [CW]  7 4 2 

Table 6.9 Comparison of performance parameters for LPO sequences C and L 
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6.5.  Results of Randomly Generated Test Problems 

The proposed solution method [LR-TS] was first tested on the randomly generated 

test problems in R1 and R2. All codes have been written in ANSI C, compiled and 

executed in Microsoft Visual Studio .NET on a 3.20 GHz Intel Xeon® server with 2 

GB RAM. For each test problems in R1, we have also constructed a GAMS model, and 

solved it on the same platform to optimality where possible using the general-purpose 

MIP solver Cplex 10.0. Each test problem’s optimal or best feasible objective value 

found by Cplex makes a benchmark for the best feasible objective value obtained by 

[LR-TS]. In GAMS models, the accuracy obtained by the employed solver is controlled 

with a number of options. A relative optimality criterion (OPTCR) can be set for the 

MIP master problem determining when the solver should terminate its branch-and-

bound (or branch-and-cut) procedure. OPTCR is defined as the ratio (|BP−BF|) / (1.0e–

10 + |BF|) where BF is the objective function value of the current best integer solution 

while BP is the best known (current) lower bound in case of minimization. The solver 

stops trying to improve upon the integer solution BF when this ratio drops below the 

specified value. The options used in our GAMS models are explained in Table 6.10. 

The Cplex solutions are assessed using the gap between BF and BP calculated with the 

ratio given above and referred to as %GAP2 in Table 6.11. 

 

Option Explanation Value 

ITERLIM 
Simplex algorithm iteration limit applied per node of 
the search tree. 

5,000,000 

NODELIM 
Maximum number of nodes solved before the 
algorithm terminates, without reaching optimality. 

5,000,000 

OPTCR Relative optimality criterion for a MIP problem. 0.01 

RESLIM Solution time limit for the MIP solver. 5 hours 

Table 6.10 GAMS/Cplex options in the mathematical models 
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The Cplex solutions that serve as benchmark for the best upper bound found by 

[LR-TS] to problems in R1 belong to a different LRP model than P. We first 

constructed GAMS models for the ILP formulation P which is given in Chapter 3 and 

tried to solve with Cplex. However, with the available memory of 2 GB, Cplex was not 

able to even execute the model for problems with 20 and more customers. We supposed 

that the model could not be executed because of the exponential number of subtour 

elimination constraints given in Equation (3.7). We replaced those constraints with the 

ones shown in Equation (6.1). These are the alternative subtour elimination constraints 

which are referred to as Lifted Miller-Tucker-Zemlin (MTZ) constraints for the VRP. 

MTZ inequalities were first proposed by Miller, Tucker and Zemlin [45] for the 

traveling salesman problem, and then extended by Kulkarni and Bhave [46] to the VRP. 

Kara et al. [47] present in their recent note a correction for the lifted version of the 

Miller-Tucker-Zemlin equations for the VRP.  

 

 ( )i j ij i j ji jU U Qx Q d d x Q d− + + − − ≤ −  ,i j IC∀ ∈  (6.1) 

 

Cplex 10.0 was able to find integer solutions to the test problems of R1 solving the 

GAMS models of the LRP formulations with MTZ equations. With the hope of finding 

better solutions with Cplex, we also constructed and solved GAMS models with the 2-

index LRP formulation proposed by Boğ [16]. The best integer solutions found by 

Cplex solving the 2-index LRP formulation were better than the ones obtained by 

solving the 3-index model. So we adopted the solutions of the 2-index model as 

benchmark for [LR-TS]. The 2-index formulation of Boğ [16] adapted to our 

comprehensive problem P is provided in Appendix F. 

In the tables, ZCplex denotes the best feasible objective found by Cplex (BF), while 

that of [LR-TS] is shown by Zub. The best lower bound obtained by [LR-TS] for the 

comprehensive location routing problem P is represented by Zlb. %GAP1 and %GAP3 

are computed as shown in Equations (6.2) and (6.3) while %GAP2 is taken from the 
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GAMS output file. We make use of the ratios to assess the performance of the proposed 

solution method in terms of both the upper bound and the lower bound found. In the 

formulas the differences are used without taking the absolute values. Thus, %GAP3 

taking a negative value means that, [LR-TS] has outperformed the Cplex solution in 

terms of solution quality. 

 

 % 1 100 ub lb

lb

Z Z
GAP

Z

−
= ×  (6.2) 

 % 3 100 ub Cplex

Cplex

Z Z
GAP

Z

−
= ×  (6.3) 

 

Except for the problems with 15 customers, the Cplex solver terminated due to 

solution time limit without obtaining a solution that satisfies OPTCR. The randomly 

generated test problems in R2 are not solved with Cplex, for with more number of 

customers and depots Cplex is not expected to find comparable solutions in reasonable 

time. For test problems in R1, the quality of the [LR-TS] solutions is measured by 

%GAP1. The results obtained for the test problems in R1 and R2 are monitored through 

Table 6.11 to Table 6.17. The solutions of [LR-TS] and Cplex as well the gaps 

mentioned above are displayed in Table 6.11 and Table 6.12 for every single problem in 

R1 and R2, if available. In Table 6.13 to Table 6.17, results are aggregated with respect 

to the number of customers (NC), the spatial distribution of customer locations (distC) 

and the total number of depots (ND) in the problem. The average results for each of 

those parameter triplets are examined in order to find out their effect on the solution 

quality and the solution time. Observing the results in the tables, we derive some 

conclusions about our solution method [LR-TS] and Cplex. 

Cplex accomplished to find a feasible solution that satisfies OPTCR for three of the 

problems in R1. For nine out of 30 problems Cplex comes up with solutions better than 

[LR-TS], while the upper bound (best feasible solution) found by [LR-TS] outperforms 



 
 
Chapter 6: Computer Experiments and Results  62 
 

 

the Cplex solution for 15 problems. If we examine the aggregated results in Table 6.13, 

we observe that as the number of customers in the problem goes up, the number of 

problems where [LR-TS] does better increases. When the number of customers reaches 

35, Cplex cannot match [LR-TS] in any of the instances. On the average, the solutions 

of Cplex are improved by 1.8% with the proposed method.  

The value of %GAP2 monitors the gap between the best possible and the best 

feasible solutions of Cplex, while %GAP1 serves the same purpose for [LR-TS]. The 

average %GAP1 is 4.27% for the problems in R1. In four of the problems it is lower 

than 1% and in two of them higher than 10%. On the other hand, the average %GAP2 is 

14.91% with 19 of the problems having a %GAP2 value above 10%. Table 6.14 shows 

that in 24 out of 30 problems [LR-TS] has found better gaps in comparison with Cplex. 

From the table one can also detect that the number of problems where %GAP1 is lower 

than %GAP2 (i.e. N[LR-TS]) increases as the problem size gets bigger. 

When the results for problems in R2 are examined, a significant deterioration of the 

gap between the best feasible objective value and the best lower bound of [LR-TS] 

(%GAP1) is observed. The average %GAP1 is 16.27% for the problems in R2, while 

the value remains under 5% for the problems in R1. The deterioration can also be seen 

in detail in Table 6.15 and Figure 6.1, where the available results are aggregated for 

problems with the same number of customers. The average gap grows with the problem 

size. In Table 6.15 we can also observe that solution times get worse for bigger 

problems which is depicted in Figure 6.2. 

In order to evaluate its quality, the final lower bound Zlb is also compared against 

the optimal objective value of the linear programming (LP) relaxation of the modified 

2-index formulation found by Cplex. In other words, the gap between the solution of LP 

relaxed problem and the upper bound provided by [LR-TS] is compared against 

%GAP1. As the result of LP relaxation we obtain average gaps of 31.79% and 50.05% 

for the problems in R1 and R2, respectively. It is observed that [LR-TS] provides 

significantly better lower bounds in comparison with the LP relaxation where average 
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%GAP1 is 4.71% and 16.27% for R1 and R2, respectively. The detailed results of the 

LP relaxation of the LRP model are provided in Appendix G. 

To see the effect of the spatial distribution of the customer locations, average results 

have been computed for each distC values U, RU and C for the problems in R1 and R2, 

both separately and together. We have not concluded any evidence of a correlation 

between distC and the solution quality or the solution time. Finally, in Table 6.17, it is 

shown that the solution quality as well the solution time deteriorate with the increasing 

number of depots. However, the result is also related to the fact that the problems with 

more customers also have more depots. The effect of the number of depots is examined 

on TB test problems in the next section. 
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ID Zlb Zub %GAP1 CPU(s)  ZCplex %GAP2  %GAP3 
          

R1-1 1075.58 1127.84 4.86 54.7  1127.84 0.10  0.00 

R1-2 994.92 994.92 0.00 27.6  994.92 0.10  0.00 

R1-3 805.16 909.72 12.99 45.0  909.72 0.10  0.00 

R1-4 975.28 1027.14 5.32 53.5  1024.19 1.01  0.29 

R1-5 1031.51 1074.68 4.19 48.5  1032.08 1.01  4.13 

R1-6 1274.75 1291.96 1.35 29.2  1280.85 1.01  0.87 

R1-7 1128.51 1148.72 1.79 38.2  1136.52 0.10  1.07 

R1-8 1262.14 1317.96 4.42 96.7  1285.05 10.75  2.56 

R1-9 1114.10 1138.72 2.21 158.1  1138.72 9.83  0.00 

R1-10 1435.11 1442.48 0.51 155.1  1442.47 5.58  0.00 

R1-11 953.04 1022.49 7.29 74.4  1442.47 5.57  -29.12 

R1-12 1220.38 1220.48 0.00 52.5  1220.48 5.26  0.00 

R1-13 1321.13 1402.44 6.15 261.6  1407.29 12.72  -0.34 

R1-14 1244.53 1286.85 3.40 161.8  1271.85 15.98  1.18 

R1-15 1204.01 1204.41 0.03 95.5  1210.09 11.52  -0.47 

R1-16 1370.51 1418.18 3.48 241.8  1424.57 14.73  -0.45 

R1-17 1367.03 1370.47 0.25 241.3  1368.62 18.05  0.14 

R1-18 975.77 1029.39 5.50 223.9  1050.80 19.40  -2.04 

R1-19 1471.51 1525.03 3.64 356.8  1629.90 28.58  -6.43 

R1-20 1348.73 1441.94 6.91 640.8  1432.56 30.06  0.65 

R1-21 1093.31 1198.73 9.64 514.1  1175.44 19.58  1.98 

R1-22 1511.43 1543.86 2.15 232.6  1599.46 23.98  -3.48 

R1-23 1555.81 1611.87 3.60 482.0  1619.42 26.79  -0.47 

R1-24 1386.08 1442.53 4.07 392.9  1472.70 14.57  -2.05 

R1-25 1735.65 1812.81 4.45 945.1  1909.93 31.26  -5.08 

R1-26 1362.82 1386.02 1.70 285.2  1408.74 31.75  -1.61 

R1-27 1140.06 1255.75 10.15 978.4  1289.18 26.58  -2.59 

R1-28 1658.61 1801.37 8.61 682.3  1844.70 25.45  -2.35 

R1-29 1556.13 1634.60 5.04 582.4  1730.64 31.43  -5.55 

R1-30 1081.08 1185.35 9.64 420.4  1244.89 24.54  -4.78 

averages 1255.16 1308.96 4.27 285.7 
 

1337.54 14.91 
 

-1.80 

Table 6.11 Performance comparison between Cplex and [LR-TS] on the problems in R1 
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ID  Zlb Zub %GAP1 CPU(s) 
      

R2-1  1206.44 1428.56 18.41 706.1 

R2-2  1549.84 1649.62 6.44 1006.6 

R2-3  1903.06 2144.55 12.69 825.3 

R2-4  1708.44 1877.78 9.91 1025.9 

R2-5  1770.79 1947.74 9.99 938.0 

R2-6  1897.92 2221.40 17.04 1052.4 

R2-7  1532.22 1700.76 11.00 3031.9 

R2-8  1772.49 1997.27 12.68 2797.8 

R2-9  2112.81 2357.29 11.57 2114.9 

R2-10  1778.51 1973.15 10.94 754.8 

R2-11  1635.76 1990.79 21.70 1084.0 

R2-12  2114.33 2306.43 9.09 1660.3 

R2-13  1617.15 1921.78 18.84 3017.2 

R2-14  2084.90 2336.22 12.05 5425.5 

R2-15  2130.51 2735.82 28.41 1594.5 

R2-16  2103.90 2200.74 4.60 3468.8 

R2-17  1890.00 2339.18 23.77 1984.5 

R2-18  2115.01 2751.57 30.10 1231.7 

R2-19  1781.52 1996.10 12.04 6285.8 

R2-20  2286.75 2642.04 15.54 4571.5 

R2-21  2585.78 3076.79 18.99 8182.5 

R2-22  1945.81 2190.70 12.59 1909.6 

R2-23  2308.77 2670.56 15.67 5315.8 

R2-24  2488.13 3050.53 22.60 4343.4 

R2-25  1952.80 2184.96 11.89 8800.0 

R2-26  2369.93 2893.82 22.11 11337.7 

R2-27  2691.79 3320.89 23.37 12650.4 

R2-28  2032.33 2448.95 20.50 5026.9 

R2-29  2324.22 2896.34 24.62 14666.7 

R2-30  2741.77 3258.81 18.86 11207.8 
     

averages  2014.46 2350.37 16.27 4267.3 

Table 6.12 Results obtained for test problems in R2 
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NC   # problems NCplex
1
 N[LR-TS]

2
 

     

15  6 3  

20  6 2 1 

25  6 2 4 

30  6 2 4 

35   6 - 6 

Table 6.13 Performance comparison for Cplex and [LR-TS] in terms of best feasible 
solution 

 

NC   # problems NCplex
3
 N[LR-TS]

4
 

     

15  6 5 1 

20  6 1 5 

25  6 0 6 

30  6 0 6 

35   6 0 6 

Table 6.14 Performance comparison for Cplex and [LR-TS] in terms of the gap between 
the best feasible and the best possible solution found 

 

NC  

 
AvgZlb AvgZub AvgGAP1 AvgCPU  

 
AvgZCplex AvgGAP3 

         

15  1026.20 1071.04 4.79 43.06  1061.60 0.88 

20  1185.55 1215.14 2.70 95.83  1277.62 -4.25 

25  1247.16 1285.29 3.14 204.29  1288.87 -0.33 

30  1394.48 1460.66 5.00 436.54  1488.25 -1.63 

35   1422.39 1512.65 5.99 648.98   1571.35 -3.66 

40  1672.75 1878.28 12.41 925.69  - - 

50  1824.35 2054.28 12.83 1907.28  - - 

60  1990.25 2380.89 19.63 2787.03  - - 

80  2232.79 2604.45 16.24 5101.44  - - 

100  2352.14 2833.96 20.23 10614.92  - - 

Table 6.15 Comparison of aggregated results for each NC value 
 
 
1 Number of problems in R1 that best feasible objective value found by Cplex outperforms that of [LR-TS] 
2 Number of problems in R1that best feasible objective value found by [LR-TS] outperforms that of Cplex 
3 Number of problems in R1that %GAP2 is lower than %GAP1 
4 Number of problems in R1that %GAP1 is lower than %GAP2 
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distC  AvgZlb AvgZub AvgGAP1 AvgCPU  AvgZcplex AvgGAP3 
         

R1-U  1368.33 1424.99 4.10 302.2  1454.69 -1.68 

R1-RU  1267.67 1314.18 3.68 264.1  1358.64 -2.81 

R1-C  1129.47 1187.70 5.10 291.0  1199.29 -0.91 
         

R2-U  2278.11 2722.41 19.27 4486.3  - - 

R2-RU  1999.35 2336.36 16.46 4912.8  - - 

R2-C  1765.91 1992.35 13.07 3402.7  - - 
         

U  1823.22 2073.70 11.68 2394.2  - - 

RU  1633.51 1825.27 10.07 2588.4  - - 

C  1447.69 1590.03 9.09 1846.9  - - 

Table 6.16 Comparison of aggregated results for each distC value  
 
 
 
 

ND   AvgZlb AvgZub AvgGAP2 AvgCPU 
      

2  1093.85 1131.26 3.62 43.7 

3  1139.32 1179.07 3.91 103.1 

4  1481.69 1583.40 6.13 490.7 

5  1642.18 1844.67 11.58 1463.8 

6   2120.36 2483.45 16.60 6398.9 

Table 6.17 Comparison of aggregated results for each ND value 
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Figure 6.1 %GAP1 versus the number of customers in the problem 
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Figure 6.2 CPU time elapsed (sec) versus the number of customers in the problem 
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6.6.  Results for Tüzün-Burke Instances 

Tüzün and Burke [23] propose a two-phase tabu search algorithm to solve the 2- 

layer (single echelon) MDLRP where depots have unlimited throughput capacities. 

They provide their solutions to 36 benchmark LRP instances and compare their 

solutions with the SAV1 heuristic of Srivastava [22]. In order to compare the solution 

quality of [LR-TS] with the benchmark solutions in the recent LRP literature, we solve 

the 36 LRP instances of Tüzün and Burke [23] with [LR-TS]. Since no present depots 

exist in those test problems, ND in this section denotes the total number of depots which 

comprise only candidate ones. 

 

NC ND # problems 
   

100 10 6 

100 20 6 

150 10 6 

150 20 6 

200 10 6 

200 20 6 

TOTAL 36 

Table 6.18 The main characteristics of the 36 LRP instances 
 
 

The [LR-TS] results for each benchmark problem are provided in Table 6.19 along 

with the solutions found by Tüzün and Burke. The gap between Zub and Zlb is denoted 

by %GAP1 and calculated with the formula given in Equation (6.1). %GAP2 represents 

the gap between Zub and Tüzün and Burke’s solutions (ZTB). It is obtained as shown in 

Equation (6.4). If the gap is negative it means [LR-TS] has achieved a better solution 

than the one provided in Tüzün and Burke [23]. 
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 % 2 100 ub TB

TB

Z Z
GAP

Z

−
= ×  (6.4) 

 

[LR-TS] updates Tüzün and Burke’s solutions for 31 out of 36 problems. The 

margin between our and their solutions which is represented by %GAP2 ranges 

between 3.83% and -11.95%. On the average, Tüzün and Burke results are improved by 

an average margin of 3.75%. However, solutions times of [LR-TS] are significantly 

higher in comparison with the CPU times of Tüzün and Burke’s two phase tabu search 

method. Although [LR-TS] provides lower bounds along with better feasible solutions 

for the LRP, the solution times need to be improved appreciably.  

%GAP1 which monitors the gap between the best upper bound and the best lower 

bound found by [LR-TS] increases as the number of customers goes up. On the average, 

the gap between Zub and Zlb is 25.04% which is significantly higher than that of the 

problems in R1 and R2. The minimum %GAP1 is 9.93% which is obtained in an 

instance with 100 customers and 20 depots. The maximum %GAP1 which is 38.24% is 

obtained in an instance with 150 customers and 20 depots. In order to evaluate the 

contribution of the lower bound we provided, an alternative lower bound is obtained by 

the linear programming relaxation of the LRP model. For this purpose, we have 

employed the LRP model with 2-index formulation which is shown in Appendix F. The 

reasoning of using the formulation is provided in 6.6. as well as Appendix F. The 

percentage gap between the LP bound and Zub (%GAPLP)is compared with %GAP1. 

%GAPLP values ranges between 28.46% and 107.03% with an average of 58.82%.  

In order to monitor the impact of the number of customers and the number of depots 

to the performance of the proposed solution method, the results are aggregated in Table 

6.20. The charts in Figure 6.3 to Figure 6.9 illustrate the changes of %GAP1, %GAP2, 

CPU times elapsed in [LR-TS] in connection with the number of customers and the 

number of depots. Examining Table 6.20 and the charts closely, the following 

conclusions can be derived: 
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1. As the number of customers in the problem increases, %GAP1 deteriorates. 

Slightly better gaps are obtained for the problems with less number of depots, 

but the increase in the number of depots does not appear to be as prominent as 

that of the number of customers. Since the location-allocation problem part of 

the LRP is solved by Cplex to optimality, the changes in the number of 

customers seems to be much more liable for the complexity of the overall 

solution method. 

2. Neither the number of customers nor the number of depots shows a consistent 

impact on %GAP2. We have not observed dependable evidence directing to the 

impact of NC or ND on the gap between the best upper bound generated by [LR-

TS] and Tüzün and Burke’s solutions. 

3. The CPU time of [LR-TS] goes up with the number of customers which is 

expected due to growing problem complexity. However, the solution times are 

not affected by the number of depots as predicted. A slight decrease in the CPU 

time is observed as the number of depots increases.  
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ID ND NC  Zlb Zub %GAP1 CPU(s)  ZTB %GAP2 CPU(s) 
            

P111112 100 10 1283.09 1417.30 10.46 19875.3  1556.64 -8.95 5 

P111122 100 20 1178.19 1410.04 19.68 10554.9  1531.88 -7.95 3 

P111212 100 10 1140.54 1406.33 23.30 9562.8  1443.43 -2.57 3 

P111222 100 20 1186.54 1464.84 23.45 16420.2  1511.39 -3.08 4 

P112112 100 10 1079.16 1209.88 12.11 14444.0  1231.11 -1.72 4 

P112122 100 20 925.16 1019.44 10.19 18333.1  1132.02 -9.95 2 

P112212 100 10 627.05 726.48 15.86 7158.2  825.12 -11.95 3 

P112222 100 20 541.66 738.34 36.31 15391.9  740.64 -0.31 3 

P113112 100 10 1069.98 1296.04 21.13 16432.6  1316.98 -1.59 3 

P113122 100 20 1055.33 1160.09 9.93 12327.2  1274.50 -8.98 4 

P113212 100 10 753.37 908.79 20.63 6190.9  920.75 -1.30 4 

P113222 100 20 780.93 929.22 18.99 11696.9  1042.21 -10.84 3 

P131112 150 10 1561.25 1869.43 19.74 52546.7  2000.97 -6.57 12 

P131122 150 20 1465.80 1899.42 29.58 54043.2  1892.84 0.35 12 

P131212 150 10 1589.11 2099.50 32.12 43472.2  2022.11 3.83 14 

P131222 150 20 1438.10 1807.63 25.70 55900.3  1854.97 -2.55 13 

P132112 150 10 1151.67 1488.29 29.23 42149.1  1555.82 -4.34 9 

P132122 150 20 1144.07 1502.16 31.30 59226.1  1478.80 1.58 12 

P132212 150 10 959.29 1234.50 28.69 26122.6  1231.34 0.26 9 

P132222 150 20 742.16 938.22 26.42 69757.7  948.28 -1.06 9 

P133112 150 10 1232.78 1667.65 35.28 10469.4  1762.45 -5.38 9 

P133122 150 20 1051.04 1452.97 38.24 32540.3  1488.34 -2.38 9 

P133212 150 10 930.82 1173.29 26.05 55394.5  1264.63 -7.22 10 

P133222 150 20 973.35 1189.44 22.20 26393.2  1182.28 0.61 9 

P121112 200 10 1747.10 2337.60 33.80 107893.1  2379.47 -1.76 22 

P121122 200 20 1639.88 2176.88 32.75 75101.7  2211.74 -1.58 22 

P121212 200 10 1800.51 2144.31 19.09 144487.6  2288.17 -6.29 23 

P121222 200 20 1683.70 2303.29 36.80 122279.4  2355.81 -2.23 26 

P122112 200 10 1591.88 2011.02 26.33 188714.8  2158.60 -6.84 20 

P122122 200 20 1320.11 1757.52 33.13 206415.4  1787.02 -1.65 18 

P122212 200 10 1079.33 1484.87 37.57 74098.2  1549.79 -4.19 18 

P122222 200 20 1001.98 1094.71 9.25 76432.0  1112.96 -1.64 18 

P123112 200 10 1576.96 2009.21 27.41 72359.7  2056.11 -2.28 23 

P123122 200 20 1433.07 1885.89 31.60 130101.3  2002.42 -5.82 20 

P123212 200 10 1498.26 1783.77 19.06 159535.9  1877.30 -4.98 20 

P123222 200 20 1064.47 1362.84 28.03 61384.5  1414.83 -3.67 17 

averages    1202.71 1510.03 25.04 58478.1  1566.77 -3.75 12 

Table 6.19 Performance comparison of [LR-TS] and TS of Tüzün and Burke [23] 
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ND NC  Zlb Zub %GAP1 CPU(s)  ZTB %GAP2 CPU(s) 
           

100 10  992.20 1160.80 17.25 12277.3  1215.67 -4.68 3.7 

100 20  944.64 1120.33 19.76 14120.7  1205.44 -6.85 3.2 

150 10  1237.49 1588.78 28.52 38359.1  1639.55 -3.24 10.5 

150 20  1135.75 1464.97 28.91 496435  1474.25 -0.58 10.7 

200 10  1549.01 1961.80 27.21 124514.9  2051.57 -4.39 21.0 

200 20   1357.20 1763.52 28.59 111952.4  1814.13 -2.77 20.2 

averages  1202.71 1510.03 25.04 58478.0  1566.77 -3.75 11.5 

Table 6.20 Aggregated results for each NC and ND combination 
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Figure 6.3 %GAP1 vs NC for two different ND values 
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Figure 6.4 CPU time elapsed by [LR-TS](sec) vs NC for two different ND values 
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Figure 6.5 %GAP2 vs NC for two different ND values 
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Figure 6.6 %GAP1 vs ND for three different NC values 
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Figure 6.7 CPU time elapsed by [LR-TS](sec) vs ND for three different NC values 
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Figure 6.8 %GAP2 vs ND for three different NC values 
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Figure 6.9 %GAP2 for all of the TB problems grouped by ND 
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6.7.  The Computational Time Elapsed by TS and LR Parts of [LR-TS] 

The experimentation on 96 test problems revealed that the solution time of the 

proposed algorithm needs to be improved. In order to figure out possibilities of 

shortening the computational time, we have examined the computational time in detail. 

In Tables 6.21–6.23, CPU[LR-TS] denotes the solution time of the proposed method [LR-

TS]. The total times consumed by the tabu search and by the  Lagrangian relaxation part 

of the algorithm are denoted by CPUTS and CPULR, respectively. The former includes 

also the solution time of the Add-Drop heuristic. The latter, namely CPULR comprises 

the time for inner and outer Lagrangian relaxations as well as the time for the solution 

of SubP1 with [PFIH-NN] heuristic whenever the inner Lagrangian relaxation starts. 

The proportion of CPU time due to tabu search is given in column %CPUTS. Finally, 

CPUTB in Table 6.23 represents the solution times of Tüzün and Burke [23].  

For the R1 problems, the tabu search comprises 47.4% of the solution time in the 

average. As the problem size increases the time elapsed by the LR part increases 

significantly, and the average %CPUTS drops to14.1% in R2 problems. In the case of 

Tüzün and Burke’s [23] problems, only 8.1% of the solution time is used for tabu 

search. Examining the values in the tables, it is observed that the significant increase in 

CPU[LR-TS] is due to the Lagrangian relaxation part of the solution method. In order to 

find out the potential improvement points in terms of the solution time, the complete 

Lagrangian relaxation procedure is reviewed. We see that at each iteration of the inner 

Lagrangian relaxation a DCMSF-like problem is solved with the algorithm [MSF-

ALR]. We perform at most 300 outer subgradient iterations where at each of them a 

maximum of 150 inner subgradient iterations are executed. As a result, the algorithm 

[MSF-ALR] is executed at most 45,000 times throughout the complete solution method. 

Note that our [MSF-ALR] implementation has an order of time complexity equal to 

2( ( ))
C C D

O N N N+  which is significantly high.  

We believe that a better implementation of the [MSF-ALR] algorithm may achieve 

less order of complexity, and this could possibly improve the CPU times of the 
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proposed solution method. Furthermore, CPUTS is not comparable with CPUTB, which 

points out the need for improvement also in the solution times of our tabu search for the 

MDVRP.  

ID CPU[LR-TS] CPULR CPUTS %CPUTS 
     

R1-1 54.7 23.0 31.7 57.9 

R1-2 27.6 2.2 25.3 91.9 

R1-3 45.0 2.0 43.0 95.6 

R1-4 53.5 15.0 38.5 71.9 

R1-5 48.5 17.8 30.6 63.2 

R1-6 29.2 3.9 25.4 86.8 

R1-7 38.2 7.4 30.7 80.6 

R1-8 96.7 20.4 76.2 78.9 

R1-9 158.1 67.5 90.6 57.3 

R1-10 155.1 125.9 29.2 18.8 

R1-11 74.4 25.1 49.4 66.3 

R1-12 52.5 14.2 38.3 72.9 

R1-13 261.6 192.9 68.7 26.3 

R1-14 161.8 114.1 47.6 29.4 

R1-15 95.5 42.5 53.0 55.5 

R1-16 241.8 138.3 103.6 42.8 

R1-17 241.3 183.5 57.8 23.9 

R1-18 223.9 80.2 143.6 64.2 

R1-19 356.8 237.6 119.2 33.4 

R1-20 640.8 576.4 64.3 10.0 

R1-21 514.1 340.7 173.4 33.7 

R1-22 232.6 121.8 110.8 47.6 

R1-23 482.0 394.3 87.7 18.2 

R1-24 392.9 282.3 110.7 28.2 

R1-25 945.1 799.1 146.0 15.4 

R1-26 285.2 220.9 64.3 22.6 

R1-27 978.4 783.9 194.6 19.9 

R1-28 682.3 454.3 228.0 33.4 

R1-29 582.4 452.6 129.8 22.3 

R1-30 420.4 193.2 227.2 54.0 

averages 285.7 197.8 88.0 47.4 

Table 6.21 Computational times for R1 problems 
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ID CPU[LR-TS] CPULR CPUTS %CPUTS 
     

R2-1 706.1 477.7 228.3 32.3 

R2-2 1006.6 864.8 141.8 14.1 

R2-3 825.3 595.5 229.8 27.8 

R2-4 1025.9 895.7 130.1 12.7 

R2-5 938.0 799.8 138.2 14.7 

R2-6 1052.4 903.2 149.1 14.2 

R2-7 3031.9 2627.6 404.3 13.3 

R2-8 2797.8 2609.7 188.1 6.7 

R2-9 2114.9 1806.1 308.8 14.6 

R2-10 754.8 540.7 214.2 28.4 

R2-11 1084.0 897.1 186.9 17.2 

R2-12 1660.3 1291.4 368.9 22.2 

R2-13 3017.2 2717.8 299.4 9.9 

R2-14 5425.5 5097.7 327.8 6.0 

R2-15 1594.5 1315.8 278.7 17.5 

R2-16 3468.8 3223.6 245.1 7.1 

R2-17 1984.5 1735.5 249.0 12.5 

R2-18 1231.7 931.2 300.5 24.4 

R2-19 6285.8 5602.8 683.1 10.9 

R2-20 4571.5 4194.3 377.2 8.3 

R2-21 8182.5 7671.5 511.0 6.2 

R2-22 1909.6 1319.3 590.3 30.9 

R2-23 5315.7 4788.1 527.6 9.9 

R2-24 4343.4 3719.0 624.4 14.4 

R2-25 8800.0 8116.9 683.1 7.8 

R2-26 11337.7 10648.2 689.4 6.1 

R2-27 12650.4 11599.7 1050.7 8.3 

R2-28 5026.9 4466.6 560.2 11.1 

R2-29 14666.7 14025.5 641.2 4.4 

R2-30 11207.9 10208.7 999.2 8.9 

averages 4267.3 3856.4 410.9 14.1 

Table 6.22 Computational times for R2 problems 
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ID  CPU[LR-TS] CPULR CPUTS %CPUTS  CPUTB 
        

P111112 19875.3 18331.6 1543.7 7.8  5 
P111122 10554.9 8313.1 2241.8 21.2  3 
P111212 9562.8 8419.8 1143.0 12.0  3 
P111222 16420.2 14839.3 1580.9 9.6  4 
P112112 14444.0 13585.3 858.6 5.9  4 
P112122 18333.1 15737.3 2595.8 14.2  2 
P112212 7158.2 6114.5 1043.7 14.6  3 
P112222 15391.9 13899.7 1492.3 9.7  3 
P113112 16432.6 15490.0 942.6 5.7  3 
P113122 12327.2 9707.0 2620.2 21.3  4 
P113212 6190.9 5260.2 930.7 15.0  4 
P113222 11696.9 9725.7 1971.2 16.9  3 
P131112 52546.7 49267.2 3279.5 6.2  12 
P131122 54043.2 49999.1 4044.2 7.5  12 
P131212 43472.2 41597.7 1874.4 4.3  14 
P131222 55900.3 51380.0 4520.3 8.1  13 
P132112 42149.1 40270.5 1878.7 4.5  9 
P132122 59226.1 56162.1 3064.0 5.2  12 
P132212 26122.6 24682.9 1439.7 5.5  9 
P132222 69757.7 67392.3 2365.4 3.4  9 
P133112 10469.4 8791.9 1677.5 16.0  9 
P133122 32540.3 29404.3 3136.0 9.6  9 
P133212 55394.5 53388.9 2005.6 3.6  10 
P133222 26393.2 24038.6 2354.6 8.9  9 
P121112 107893.1 103408.8 4484.4 4.2  22 
P121122 75101.7 65697.0 9404.7 12.5  22 
P121212 144487.6 141462.7 3024.9 2.1  23 
P121222 122279.4 115925.1 6354.3 5.2  26 
P122112 188714.8 185395.7 3319.1 1.8  20 
P122122 206415.4 201249.3 5166.1 2.5  18 
P122212 74098.2 71898.2 2200.1 3.0  18 
P122222 76432.0 72377.5 4054.5 5.3  18 
P123112 72359.7 69992.9 2366.8 3.3  23 
P123122 130101.3 122222.7 7878.6 6.1  20 
P123212 159535.9 157170.3 2365.6 1.5  20 
P123222 61384.5 55929.3 5455.3 8.9  17 

averages  58478.1 55514.67 2963.29 8.1  12 

Table 6.23 Computational times for TB problems 
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Figure 6.10 Change in CPU[LR-TS], CPU[LR] and CPU[TS] for 96 test problems* 
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Figure 6.11 Change in % CPU[TS] for 96 test problems1 

1 The problems are sorted first in increasing number of customers, secondly in increasing number of depots 
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Chapter 7 

 

CONCLUSION 

 

 

In this thesis, we have studied a 2-layer (single echelon) discrete uncapacitated multi 

depot location routing problem (MDLRP). The problem that we are dealing with takes 

its motivation from real life problems faced by local logistics companies. They operate 

a number of depots some of which are their own property while the others have been 

rented by them. At the beginning of certain periods, or when they sign new contracts 

with the customers on their portfolio, they revise their operating depots. According to 

the locations and demands of their customers they may decide to hire out their own 

depots, to leave some of the depots they have rented before, or to rent new ones. 

Therefore, there exist two kinds of depots in the problem: present and candidate. 

Present depots are already operating facilities that can be preserved or closed. Candidate 

depot locations are potential sites in which a new depot can be opened. The problem 

involves determining which present depots to preserve and which candidate depots to 

open while allocating customers to depots and designing the vehicle routes to visit all 

customers. 

We propose a nested Lagrangian relaxation based method named [LR-TS] to solve 

the MDLRP. An outer Lagrangian relaxation embedded in subgradient optimization 

decomposes the parent problem into two subproblems. The first subproblem SubP1, 

which is a facility location-like problem, is solved to optimality with Cplex 10.0. The 

solution times are generally reasonable. A problem instance with 20 depots and 1000 

customers takes 2.84 seconds on a present-day desktop PC. The second subproblem, 

namely SubP2, resembles a capacitated and degree constrained minimum spanning 

forest problem. It is tackled with an augmented Lagrangian relaxation. In the 
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augmented Lagrangian relaxation that we apply to SubP2, the subtour elimination 

constraints are generated and dualized only as they are violated by the current 

iteration’s Lagrangian solution. This procedure is preferred to relaxing all of them right 

away at the construction stage of the Lagrangian problem. ALRSubP2, namely the 

Lagrangian relaxed problem of SubP2 resembles a degree-constrained minimum 

spanning tree problem. It is solved by a modified version of Prim’s minimum spanning 

tree algorithm. This algorithm, called [MSF-ALR], was first proposed by Aksen and 

Altinkemer [26]. Some modifications are made to the algorithm in the way they tackle 

the additional constraints of the ALRSubP2 which do not exist in the classical degree-

constrained minimum spanning forest problem. The sum of the objective value of the 

Cplex solution of SubP1 and the lower bound found for SubP2 by the subgradient 

optimization scheme in the augmented Lagrangian relaxation constitutes a lower bound 

to the true optimal solution of the comprehensive problem P. 

Besides finding a lower bound, [LR-TS] generates a good feasible heuristic solution 

the objective value of which makes up an upper bound for P. The feasible solution is 

built using a tabu search heuristic implanted in the Lagrangian relaxation procedure. 

The tabu search procedure for the MDVRP is designed by tailoring the OTS (Open 

Tabu Serach) proposed by Aksen et al. [42] for the open vehicle routing problem with 

fixed driver nodes. The procedure is also enriched with additional neighborhood 

generation moves. The feasible heuristic solution to P is generated by solving an 

MDVRP with tabu search as soon as a new location plan is revealed by the solution of 

SubP1. 

The proposed solution method [LR-TS] is first tested on 60 randomly generated 

instances (30 small size instances designated as R1 and 30 large size instances 

designated as R2). Subsequently, it has been tested on the 36 LRP instances solved in 

Tüzün and Burke [23]. We denote the set of these instances as TB. The parameters of 

[LR-TS] are fine tuned in accordance with the results of experiments conducted on a 

subset of the test problems. The performance of [LR-TS] is evaluated based on two 

outcomes. First is %GAP1 which is the gap between the best lower bound and the best 
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upper bound (Zlb, Zub) obtained by [LR-TS]. The average %GAP1 is 4.27% for the 

smaller test problems. For 28 of the problems %GAP1 is below 10%. The gaps of the 

problems in R2 are higher where the average %GAP1 reaches 16.27% for this part of 

the test problems. For the problems in R1, the final gap is also compared with the gap 

between the best feasible and the best possible solution found by Cplex. We have 

observed that for 24 out of 30 problems [LR-TS] has come up with better gaps than 

Cplex. The quality of %GAP1 deteriorates for the TB due to growing problem size 

where the average gap is 25%. The behavior of the final gap changing with problem 

parameters is examined, and some conclusions are derived. As the number of customers 

in the problem goes up, the quality of the gap found by [LR-TS] gets worse while the 

solution times get longer. On the other hand, the performance of the [LR-TS] against 

Cplex improves with increasing number of customers. No significant effect of the 

spatial distribution of customer locations has been observed on the tested problems. 

Alternative lower bounds for the test problems are found by solving the linear 

relaxation of the complete LRP model to optimality with Cplex. The gap between the 

LP bound and the best feasible solution of [LR-TS] is compared with %GAP1 values. 

The LP bounds do not match the lower bounds found by [LR-TS] in any of the test 

problems. The average gaps are 31.79%, 50.05% and 58.82%, for R1, R2 and TB, 

respectively. 

The second outcome that is utilized to assess the performance of [LR-TS] is the 

objective function value of the best feasible solution achieved, namely Zub. For 

randomly generated test problems in R1, Zub is compared with the respective Cplex 

solution while Tüzün and Burke’s solutions constitute benchmarks for the instances in 

TB. On the average, Cplex solutions have been improved by 1.8%. For 15 test problems 

out of 30, [LR-TS] comes up with a better feasible objective value than Cplex. In case 

of TB instances [LR-TS] updates the best feasible objective value in 31 test problems 

out of 36. On the average, their solutions are improved by a margin of 3.75%. The 

effect of increasing number of customers on the gap between Zub and the benchmark 

solution changes with the benchmarked method. The number of problems where [LR-
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TS] finds better solutions than Cplex increases with the number of customers in the 

problem. However, we have not been able to observe a significant effect of NC on the 

gap between our solutions and the solutions provided by Tüzün and Burke. The 

outcomes for TB problems are also examined in order to evaluate the impact of the 

number of depots in the problem. %GAP1 decreases when the number of depots 

increases and the number of customers is kept constant. ND does not seem to have a 

consistent effect on the gap between Zub and the respective solution found by Tüzün and 

Burke.  

The proposed method [LR-TS] provides better feasible objective values for 70% of 

the test problems in comparison with the benchmarked solution method. The main 

disadvantage of [LR-TS] is its extremely high solution times. Although [LR-TS] 

accomplishes to find a lower bound on the true optimal objective value of the problem 

besides a heuristic solution, its CPU solution time needs to be improved in order to 

compete with other methods. For problems with less number of customers, favorable 

gaps are obtained while the gaps deteriorate considerably with growing problem size. 

The results of the computer experiments not only assess the performance of [LR-

TS], but also point to new research directions. The next step would be solving the 

MDLRP with time windows. This type of time restrictions is a crucial quality of service 

(QoS) guarantee promised more and more often to customers in distribution logistics. 

Finally, long solution times especially for problems with a customer number above 100 

are a severe disadvantage of the proposed method. This might be overcome by a new 

implementation of the modified Prim’s algorithm which is used for the Lagrangian 

relaxed subproblem ALRSubP2. 
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Appendix A. [PFIH-NN] Heuristic for Generating a Feasible Solution for MDVRP 

 
 

[PFIH-NN] heuristic is used to construct a feasible solution for Multi-depot Vehicle 

Routing Problem. In the proposed solution method it is used in three parts: 

1. [PFIH-NN] is run for once at the beginning of the main Lagrangian iterations 

in order to find an initial value of the upper bound for P. All of the present 

depots are assumed to be in service, a MDVRP is solved for the remainder of 

the problem with [PFIH-NN]. In case there does not exist any present depots, 

the candidate depot minimizing the sum of Euclidian distances from customers 

to the depot is selected to be opened.  

2. Each time the tabu search is triggered the initial solution is constructed using 

the [PFIH-NN] heuristic. 

3. In order to find an upper bound for SubP2, a modified version of the [PFIH-

NN] heuristic is utilized. SubP2 has a three dimensional asymmetric cost 

matrix denoted as Cnew. The third dimension of the cost matrix implies that the 

arc cost between two nodes is not only dependent on their locations in the 

solution space but also on the depot which they are connected to. So all the 

distance calculations in [PFIH-NN] heuristic for SubP2 are modified to take 

the third dimension into account.  
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J Set of depots 

I Set of customers 

N
j Subset of customers initially assigned to depot j 

n
j 

Cardinality of subset N
j
 

(x
k
, y

k 
) Coordinates of (customer or depot) k 

α Weight for the distance criterion 

γ Weight for the polar coordinate angle 

θ
i Polar coordinate angle of customer i with respect to the current depot   

Q Uniform vehicle capacity 

VCj Unit vehicle acquisition cost at depot j 

[dist
ki
] Matrix of distances between the nodes of the problem 

[Cjk] 
Asymmetric matrix of traveling costs with vehicle acquisition costs 
embedded 

ac Cost coefficient used to convert miles traveled into dollars and cents 

R
j
 Set of routes that emanate from depot j 

last(r) 
Index of the customer node last visited on route r (the depot node for an 
empty route)  

spare(r) Spare capacity of the vehicle assigned to route r 

i[k] Customer node i with kth lowest cost value 

d
i
 Demand of customer i 

TD
i Time deadline for the completion of service at customer i 

Cost
i Cost value for customer node i 

succ(i) Successor of customer node i on the pertinent route 

pred(i) Predecessor of customer node i on the pertinent route 

Table A.1 Notations and symbols used in the pseudo code of [PFIH-NN] 
 
Algorithm  [PFIH-NN] 

Step 0. Establish the cost matrix [Cjk] and embed vehicle acquisition costs into it, i.e. 

set: Cji := distji + VCj   ∀j ∈ J,  ∀i ∈ I,   Cik :=⋅distik  ∀i ∈ I,  ∀k ∈ I ∪J. 
From now on, proximity judgments will be made on the basis of this cost 
matrix instead of the distance matrix. 

Step 1. Assign each customer temporarily to the nearest depot and form the subsets 
Nj. 

Step 2. For ∀j ∈ J ∋ Nj ≠{}do:  
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Step 3. For ∀i ∈ Nj do:  

Compute the polar coordinate angle of customer node i with respect to its 
depot j, i.e. set: 

θi = arctan 
i j

i j

y y

x x

−

−
.   

Compute then the following cost expression:  

Costi :=  −
 α⋅ Cji +  γ⋅ 2

iθ
π
⋅Cji   with α = 0.7 and γ = 0.3 

Sort the Costi values in ascending order to obtain the sorted set  

Nj ={i[1], i[2], …, i[nj]} for depot j. Set route index r := 1, spare(r) := Q, and 

Rj ={1}. 

Step 4. Repeat until Nj = {}:  

Step 4a. Select the first customer i[1]∈Nj that is capacity feasible. Append i[1] 

to the current route r, set  Nj := Nj \ {i[1]} and  i := i[1] and update 
spare(r) := spare(r) − di. 

Step 4b. For all unrouted customers u (u ∈ Nj) and all edges (k, l) ∈  r  do: 

Compute the cost of inserting unrouted customer u between 
nodes k and l as follows: 

    INSERTION_COST(u, k, l) := Cku + Cul − Ckl 

Step 4c. Match the “best” candidate node u*∈Nj with the “best” candidate 

edge      (k
*
, l
*
) ∈ r such that the lowest INSERTION_COST is incurred 

If there does not exist such node u
*, then set  

BEST_INSERTION_COST :=  ∞ and go to Step 4d.  

O/w let  BEST_INSERTION_COST :=  INSERTION_COST(u*,  k*, l
* 
). 

Step 4d. Consider another “best” candidate node v ∈ Nj according to the 

following metric: v*:= argmin
jv∈  N
{Clast(r), v} ∋  spare(r) ≥ dv..  

If there does not exist such node v
*, then set  

BEST_INSERTION_COST :=  ∞ and go to Step 4e.  

O/w let  BEST_NEAREST_NEIGHBOUR_COST := Clast(r), v* 

Step 4e.  If there does not exist u* AND v*, then go to Step 4f.  
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O/w if BEST_NEAREST_NEIGHBOUR_COST < BEST_INSERTION_COST,  
then insert the edge (last(r), v*) to the end of route r.   
Update r, spare(r) := spare(r)− dv*, last(r) := v

* and Nj:= Nj \ 

{v*}. 

else insert the node u* into the edge (k*, l
* 
) between nodes k*and 

l
*
.
 
Update r, spare(r) := spare(r) − du and Nj := Nj \ {u

*}.  

Also update the service completion times for the nodes l
*
 

and its successors on r. 

Go to Step 4c to continue working on the same route r with the 
remaining nodes in Nj. 

Step 4f. If Nj ={} then set  j:= j+1  and go to Step 2.   

O/w enumerate the leftover nodes in Nj such that the first node has 

index 1, and begin a new route from depot j. Set  r := r + 1,  
spare(r):= Q  and Rj := Rj ∩{r}. Go to Step 4. 
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Appendix B. [MSF-ALR] Algorithm to Solve ALRSubP2 

 
 

S Current set of connected nodes. 

U Current set of unconnected nodes. 

A The arcs set of the current MSF. 

outdeg(j) 
The outgoing degree of a given store node j, i.e. the number of arcs leaving 
store j. 

indeg(j) 
The incoming degree of a given store node j, i.e. the number of arcs entering 
store j. 

depot(i) The ID of the depot node from which customer node i is accessible. 

parent(i) The ID of the parent node from which an arc directly enters into node i. 

Σoutdeg(j) The current sum of all depots’ outgoing degrees. 

Min_out Minimum number of outgoing arcs from depot nodes 

Table A.2 Notations and symbols used in the pseudo code of [MSF-ALR] 
 
 
Procedure [MSF-ALR] 

Step 0. Using to the current vector of Lagrange multipliers α compute the matrix 

new

new ijk
C c =   

 as explained in 4.2.   

Step 1. Put each depot node j ∈ ID into S. They will be the roots of potential trees in 

the MSF. Put each customer node i ∈ I into U. Initialize each customer node’s 

parent(i) and depot(i) as zero. Set each depot node’s outdeg(j) and indeg(j) to 

zero. Set the adjacency list of each node in the problem to the empty set {}. 

Also initialize A to {}. 

Step 2. Repeat until S  = min_out 

Step 2a.  Find the node (k
*
, l
* 
) ∈ ID × U  with the lowest arc cost * * *( )

new

k l k
c  
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Step 2b.  Update  S := S ∩ {l
*
},  U := U \ {l

*
},  A := A ∩ {(k

*
, l
* 
)}, and   

2SubP

ALR
Z  := 2SubP

ALR
Z  + * *

new

k l j
c .  Set  parent(l

*
):=  k

*
,  depot(l

*
):= k*.  

Step 2c.  Add node l
*
 to the adjacency list of node k

*
.  Then increase 

outdeg(k
*
) by one. Go to Step 2. 

Step 3. Repeat until U = {}: 

Step 3a.  Find the pair of nodes (k
*
, l
* 
) ∈ S × U  with the lowest arc cost 

*
( )
new

ijk
c  where j is either k

*
 itself  if k

*
∈ ID, or denotes the depot 

node of k
*
 if  k

*
∈ I. 

Step 3b.  Update  S := S ∩ {l
*
},  U := U \ {l

*
},  A := A ∩ {(k

*
, l
* 
)}, and   

2SubP

ALR
Z  := 2SubP

ALR
Z  + * *

new

k l j
c .  Set  parent(l

*
):=  k

*
,  depot(l

*
):= j.  

Step 3c.  Add node l
*
 to the adjacency list of node k

*
. Also if  k

*
∈ ID  then 

increase outdeg(k
*
) by one. Go to Step 2. 

Step 4.  Restore the resulting MSF’s conformation to the center (depot) nodes’ degree 

balance constraints in Equation (3.5). In doing so, select for each depot node j 

∈ ID that customer node i
*
 with depot(i

* ) = j, whose connection to j would 

yield the lowest-cost arc (i
*
, j). Repeat this selection for depot j until indeg(j) 

matches outdeg(j), which was established in Steps 2-3.  

 



 
 
Appendix C: Pseudo Code of the Tabu Serach Algorithm for MDVRP 97 
 

 

 
 

Appendix C. Pseudo Code of the Tabu Serach Algorithm for MDVRP 

 
 

num_iter Number of iterations performed. 

num_neigh Number of neighbors generated in current iterations. 

num_nonimp_iter 
Number of iterations through which the best feasible or the best 
infeasible solution do not improve. 

max_iter Maximum number of iterations. 

max_nonimp_iter 
Maximum number of iterations through which best feasible or best 
infeasible solution do not improve. 

size_neigh Number of neighboring solutions to be generated in an iteration. 

Table A.3 Notations used in the pseudo code of tabu search 
 
 
Algorithm Tabu Search 

Generate an initial solution using [PFIH- NN] heuristic.  
num_iter:= 0,  num_nonimp_iter := 0,  and  numi := 1  (i =1,2,3). 

While  (num_iter  ≤  max_iter)  AND  (num_nonimp_iter ≤ max_nonimp_iter)  do 

num_neigh := 0. 

While  (num_neigh  ≤  size_neigh)  do 

Select one of the move operators with equal probabilities. Call this move k. 

Select two pilot nodes randomly. 

Generate a neighboring solution with pilot nodes and move k. 

If the newly generated neighboring solution is not tabu and better than the best 
neighboring solution, update the best neighboring solution. 

If the newly generated neighboring solution is feasible and better than the 
incumbent or it is infeasible and better than the best infeasible solution, update 
the best neighboring solution and end loop 

num_neigh := num_neigh + 1. 

End While 

Set the best neighboring solution as the current solution. 



 
 
Appendix C: Pseudo Code of the Tabu Serach Algorithm for MDVRP 98 
 

 

If the current solution is feasible and also better than the incumbent,   
update the incumbent and set num_nonimp_iter = 0. 

If the current solution is infeasible, but better than the best infeasible solution, 
update the best infeasible solution and set num_nonimp_iter = 0. 

Decrement the tabu durations of all attributes by one. 

Select the tabu tenure between 5 and 15 with randomly. 

Make the attributes of the best neighboring solution tabu for as much as tabu tenure 
iterations. 

num_iter := num_iter + 1. 

num_nonimp_iter := num_nonimp_iter + 1.  

End While 
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Appendix D. Pseudo Code of the Add-Drop Heuristic 

 
 

BESTPLAN Location plan of the best feasible solution found 

ZUB_IMPROVED 
Flag variable indicating whether a feasible solution with better 
objective value has been achieved 

TOTCOST 
The best objective function value found for P through 10 tabu search 
runs 

P Denotes a present depot which is decided to be preserved 

O Denotes a candidate depot which is decided to be opened 

C Denotes a present depot which is decided to be closed 

X Denotes a candidate depot which is not opened 

Table A.4 Notations and symbols used in the pseudo code of Add-Drop heuristic 
 
 

Procedure [ADD] 

Step 0.  Copy the current best depot location plan BESTPLAN onto another parameter 

CURRPLAN. 

Do  
 Step 1. Set flag variable ZUB_IMPROVED:=  NO. 

 Step 2.  Scan all closed present depots (status “C”) in CURRPLAN, and promote them 

to “O” one by one.  

  For each resulting new depot location plan (NEWPLAN): 

Step 2a. TOTCOST:= ∞ 

 Apply the tabu search heuristic 10 times with different initial 

random number seeds. At the end of each run calculate the 

objective function value of the comprehensive problem P. If the 
new objective function is better update TOTCOST.   

Step 2b. If TOTCOST <  Zub, then update  Zub:=  TOTCOST  and  BESTPLAN:= 

NEWPLAN.   

Also update flag variable  ZUB_IMPROVED:=  YES. 
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 Step 3.  Scan all the candidate depot locations in which a depot is not established 
(status “X”) in CURRPLAN, and promote them to “O” one by one. For each 

resulting new depot location plan (NEWPLAN), repeat Steps 2a-2b in the 
search for a better BESTPLAN which can give a tighter Zub.  

 Step 6.  If  ZUB_IMPROVED =  YES,  then update  CURRPLAN:= BESTPLAN.  

While ZUB_IMPROVED =  YES; 

Procedure [DROP] 

Step 0.  Copy the current best depot location plan BESTPLAN onto another parameter 

CURRPLAN. 

Do  

 Step 1. Set  flag variable ZUB_IMPROVED:=  NO. 

 Step 2.  Scan all preserved present depots (status “P”) in CURRPLAN, and demote 

them to “C” one by one.  

  For each resulting new depot location plan (NEWPLAN): 

Step 2a. TOTCOST:= ∞ 

 Apply the tabu search heuristic 10 times with different initial 

random number seeds. At the end of each run calculate the 

objective function value of the comprehensive problem P. If the 
new objective function is better update TOTCOST.   

Step 2b. If TOTCOST < Zub, then update Zub:=  TOTCOST  and  BESTPLAN:= 

NEWPLAN.   

Also update flag variable  ZUB_IMPROVED:=  YES. 

 Step 3.  Scan all candidate depot locations in which a depot is established (status 
“O”) in CURRPLAN, and demote them to “X” one by one. For each resulting 

new depot location plan (NEWPLAN), repeat Steps 2a-2b in the search for a 
better BESTPLAN which can give a tighter Zub.  

 Step 5.  If  ZUB_IMPROVED =  YES,  then update  CURRPLAN:= BESTPLAN.  

While ZUB_IMPROVED =  YES 



 
 
Appendix E: The Depot Costs of the Randomly Generated Test Problems 101 
 

 

 
 

Appendix E. The Depot Costs of the Randomly Generated Test Problems 

 
 

The random problem generator takes on two sets of parameters where each one 

comprises a lower limit (L), an upper limit (U) and an increment (I) value. One of the 

parameter sets is used for calculating FC values while the second is used for OC values. 

FCk and OCk values are calculated using the following formula where k ∈ ID and randk 

denotes a standart uniform random number; i.e., randk ∈ [0, 1). 

 

 
( )

( ) * *k k k

U L
FC OC ROUND rand I L

I

− = + 
 

 (A.1) 

 

We have determined different L, U and I values for calculating FC and OC for each 

different NC-NPD-NCD triplet, which are provided in Table A.6. For each NC-NPD-NCD 

triplet we have set a vehicle acquisition cost VC in proportion to the fixed depot 

opening-closing costs. On the average, VC corresponds to 10% of the FC. 

 

NC Number of customers in the problem 

NPD Number of present depots in the problem 

NCD Number of candidate depots in the problem 

FC Fixed opening-closing cost of depots 

OC Fixed operating cost of depots 

VC Vehicle acquisition cost 

Table A.5 Notation used in Table A.6 
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    VC FC OC 

NC NPD NCD   L U I L U I 
           

15 1 2  3 20 30 5 30 40 5 

15 - 1  3 25 35 5 35 45 5 

20 1 3  3 25 35 5 35 45 5 

20 - 3  3 20 30 5 30 40 5 

25 1 2  3 20 30 5 30 40 5 

25 1 4  3 25 35 5 35 45 5 

30 1 5  3 30 40 5 40 50 5 

30 - 4  3 25 35 5 25 35 5 

35 1 4  4 25 35 5 35 45 5 

35 - 6  4 30 40 5 40 50 5 

40 1 4  3 25 35 5 35 45 5 

40 - 4  3 30 40 5 40 50 5 

50 1 4  3 25 35 5 35 45 5 

50 - 5  3 30 40 5 40 50 5 

60 1 4  3 25 35 5 35 45 5 

60 - 5  3 30 40 5 40 50 5 

80 2 4  3 30 40 5 40 50 5 

80 - 6  3 35 45 5 40 50 5 

100 2 4  3 30 40 5 40 50 5 

100 - 6  3 35 45 5 40 50 5 

Table A.6 The fixed opening-closing, the operating and the vehicle acquisition costs of the 
randomly generated test problems 
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The 2-index LRP model proposed by Boğ [16] is adapted to our problem that is 

described in Chapter 3. Boğ has defined replicates of depot nodes, and names the first 

set of the depot nodes as departure depots while referring to the others as arrival depots. 

We have not preferred adopting this way of depot definition as is. In order to represent 

the present depots and the candidate depot locations in our problem, we have defined 

IDpres and IDcand which do not exist in the formulation of Boğ. The objective function of 

the modified model P' also includes the terms for the depot closing and operating costs 

while the variable operating cost term in Boğ’s formulation which depends on the 

amount of demand assigned to a depot is eliminated. In order to tighten the subtour 

elimination constraints, we have employed the Lifted MTZ equations proposed by Kara 

et al. [47] instead of the original ones which Boğ has used in his formulation. In our 

problem, we do not define an upper bound on the number of vehicles acquired in the 

solution. Therefore, Equation (A.6) only forces a lower bound on the number of 

vehicles unlike the one defined by Boğ which brackets the number of vehicles between 

an upper and a lower bound.  

 

Notation: 

Sets: 

IC : set of customers 

ID : set of depots  

IDpres : set of present depots  

IDcand : set of candidate depots 

I : set of all nodes (IC ∪ ID) 
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Binary Decision Variables: 

xij : 1 if node j is visited after node i, 0 otherwise. 

yj : 1 if depot j is in service, 0 otherwise.  

δij : 1 if customer i is assigned to depot j, 0 otherwise. 

 

Parameters: 

FCj : the opening or closing cost of depot j 

OCj : the operating cost of depot j 

VCj : vehicle acquisition cost for depot j  

cij : traveling cost of one vehicle from node i to node j 

Q : uniform vehicle capacity 

di : demand of customer i 

 

P':Min (1 )
cand pres

j j j j j j j ij ij ij

j ID j ID j ID j ID i IC i I j I
j i

OC y FC y FC y VC x c x
∈ ∈ ∈ ∈ ∈ ∈ ∈

≠

+ + − + +∑ ∑ ∑ ∑∑ ∑∑  (A.2) 

subject to: 

1ij

j I
j i

x
∈
≠

=∑  i IC∀ ∈  (A.3) 

1ji

j I
j i

x
∈
≠

=∑  i IC∀ ∈  (A.4) 

ji ij

i IC i IC

x x
∈ ∈

=∑ ∑  j ID∀ ∈  (A.5) 

i

i IC
ji

j ID i IC

d

x
Q

∈

∈ ∈

 
 ≥  
  

∑
∑∑   (A.6) 

( )i j ij i j ji jU U Qx Q d d x Q d− + + − − ≤ −  ,i j IC∀ ∈  (A.7) 

i id U Q≤ ≤  i IC∀ ∈  (A.8) 

ij jyδ ≤  ,i IC j ID∀ ∈ ∈  (A.9) 
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1ij

j ID

δ
∈

=∑  i IC∀ ∈  (A.10) 

ij ijx δ≤  ,i IC j ID∀ ∈ ∈  (A.11) 

ji ijx δ≤  ,i IC j ID∀ ∈ ∈  (A.12) 

1ik ij kjx δ δ+ − ≤  , ,i k IC j ID∀ ∈ ∈  (A.13) 

1ik kj ijx δ δ+ − ≤  , ,i k IC j ID∀ ∈ ∈  (A.14) 

{0,1}ijx ∈  ,i j I∀ ∈  (A.15) 

{0,1}ijδ ∈  ,i IC j ID∀ ∈ ∈  (A.16) 

{0,1}jy ∈  j ID∀ ∈  (A.17) 

0iU ≥  i IC∀ ∈  (A.18) 
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Appendix G. The Lower Bounds Found by LP Relaxation 

 
 

The lower bounds found by solving the LP relaxation of the LRP model given in 

Appendix F (P') are given in Tables A.8 – A.10. We tried to solve LP relaxed version 

of the 3-indexed formulation P. However, Cplex was able to execute the model only for 

the test problems with 15 customers. In Table 10, the LP bounds found using two 

different formulations are compared. The time elapsed by the Lagrangian relaxation 

part of [LR-TS] is provided in the tables that we consider this value as the solution time 

of lower bound finding procedure. The notation used in the tables in as follows: 

The lower bounds found by solving the LP relaxation of the LRP model given in 

Appendix F (problem P') are given in Tables A.7–A.9. The CPU time elapsed by the 

Lagrangian relaxation part of [LR-TS] is also provided in the tables. We consider this 

value as the CPU time of our lower bound procedure. The notation used in the tables is 

as follows: 

 

Zub : The best upper bound found by [LR-TS] 

Zlb : The best lower bound found by [LR-TS] 

%GAPLR : The gap between Zub and Zlb calculated with the formula in Equation (6.2) 

(%GAP1 in Chapter 6) 

CPULR : The solution time of the LR part of [LR-TS] 

ZLP : The lower bound obtained as the optimal solution to the LP relaxation of P'  

%GAPLP : The gap between Zub and ZLP calculated with the formula 100 ub LP

LP

Z Z

Z

−
×  

CPULP : The Cplex 10.0 solution time of the LP relaxed problem 
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ID Zub Zlb %GAPLR CPULR  ZLP %GAPLP CPULP 
         

R1-1 1127.84 1075.58 4.86 23.0  932.93 20.89 0.1 

R1-2 994.92 994.92 0.00 2.2  725.23 37.19 0.1 

R1-3 909.72 805.16 12.99 2.0  753.72 20.70 0.1 

R1-4 1027.14 975.28 5.32 15.0  795.49 29.12 0.1 

R1-5 1074.68 1031.51 4.19 17.8  769.19 39.72 0.0 

R1-6 1291.96 1274.75 1.35 3.9  1035.65 24.75 0.0 

R1-7 1148.72 1128.51 1.79 7.4  933.39 23.07 0.1 

R1-8 1317.96 1262.14 4.42 20.4  978.2 34.73 0.1 

R1-9 1138.72 1114.10 2.21 67.5  858.66 32.62 0.1 

R1-10 1442.48 1435.11 0.51 125.9  1141.86 26.33 0.1 

R1-11 1022.49 953.04 7.29 25.1  760.98 34.36 0.1 

R1-12 1220.48 1220.38 0.00 14.2  1013.1 20.47 0.1 

R1-13 1402.44 1321.13 6.15 192.9  1111.58 26.17 0.1 

R1-14 1286.85 1244.53 3.40 114.1  966.04 33.21 0.1 

R1-15 1204.41 1204.01 0.03 42.5  961.95 25.21 0.1 

R1-16 1418.18 1370.51 3.48 138.3  1104.82 28.36 0.2 

R1-17 1370.47 1367.03 0.25 183.5  1017.98 34.63 0.2 

R1-18 1029.39 975.77 5.50 80.2  753.62 36.59 0.2 

R1-19 1525.03 1471.51 3.64 237.6  1111.85 37.16 0.3 

R1-20 1441.94 1348.73 6.91 576.4  989.58 45.71 0.2 

R1-21 1198.73 1093.31 9.64 340.7  882.43 35.84 0.3 

R1-22 1543.86 1511.43 2.15 121.8  1147.2 34.58 0.2 

R1-23 1611.87 1555.81 3.60 394.3  1177.42 36.90 0.2 

R1-24 1442.53 1386.08 4.07 282.3  1129.55 27.71 0.2 

R1-25 1812.81 1735.65 4.45 799.1  1365.01 32.81 0.4 

R1-26 1386.02 1362.82 1.70 220.9  987.37 40.37 0.4 

R1-27 1255.75 1140.06 10.15 783.9  935.44 34.24 0.5 

R1-28 1801.37 1658.61 8.61 454.3  1371.22 31.37 0.4 

R1-29 1634.60 1556.13 5.04 452.6  1157.95 41.16 0.5 

R1-30 1185.35 1081.08 9.64 193.2  928.02 27.73 0.5 

averages 1308.96 1255.16 4.27 197.8 
 

993.25 31.79 0.2 

Table A.7 Comparison of Zlb with LP bounds for R1 
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ID Zub Zlb %GAPLR CPULR  ZLP %GAPLP CPULP 
         

R2-1 1428.56 1206.44 18.41 477.7  999.7 42.90 0.6 

R2-2 1649.62 1549.84 6.44 864.8  1070.03 54.17 0.5 

R2-3 2144.55 1903.06 12.69 595.5  1576.17 36.06 0.6 

R2-4 1877.78 1708.44 9.91 895.7  1421.13 32.13 0.4 

R2-5 1947.74 1770.79 9.99 799.8  1220.21 59.62 0.4 

R2-6 2221.40 1897.92 17.04 903.2  1595.29 39.25 0.5 

R2-7 1700.76 1532.22 11.00 2627.6  1206.74 40.94 0.8 

R2-8 1997.27 177 2.49 12.68 2609.7  1257.35 58.85 0.7 

R2-9 2357.29 2112.81 11.57 1806.1  1627.42 44.85 0.6 

R2-10 1973.15 1778.51 10.94 540.7  1458.69 35.27 1.9 

R2-11 1990.79 1635.76 21.70 897.1  1160.28 71.58 0.8 

R2-12 2306.43 2114.33 9.09 1291.4  1674.59 37.73 0.9 

R2-13 1921.78 1617.15 18.84 2717.8  1341.11 43.30 1.4 

R2-14 2336.22 2084.90 12.05 5097.7  1453.82 60.70 1.0 

R2-15 2735.82 2130.51 28.41 1315.8  1826.79 49.76 1.2 

R2-16 2200.74 2103.90 4.60 3223.6  1648.42 33.51 1.4 

R2-17 2339.18 1890.00 23.77 1735.5  1368.35 70.95 1.1 

R2-18 2751.57 2115.01 30.10 931.2  1879.15 46.43 1.3 

R2-19 1996.10 1781.52 12.04 5602.8  1459.54 36.76 3.2 

R2-20 2642.04 2286.75 15.54 4194.3  1496.59 76.54 3.4 

R2-21 3076.79 2585.78 18.99 7671.5  2113.54 45.58 3.0 

R2-22 2190.70 1945.81 12.59 1319.3  1683.00 30.17 6.8 

R2-23 2670.56 2308.77 15.67 4788.1  1591.55 67.80 5.2 

R2-24 3050.53 2488.13 22.60 3719.0  2295.82 32.87 8.9 

R2-25 2184.96 1952.80 11.89 8116.9  1620.48 34.83 6.3 

R2-26 2893.82 2369.93 22.11 10648.2  1571.02 84.20 5.2 

R2-27 3320.89 2691.79 23.37 11599.7  2217.65 49.75 7.6 

R2-28 2448.95 2032.33 20.50 4466.6  1584.96 54.51 3.4 

R2-29 2896.34 2324.22 24.62 14025.5  1578.24 83.52 3.3 

R2-30 3258.81 2741.77 18.86 10208.7  2217.78 46.94 5.2 

averages 2350.37 2014.46 16.27 3856.4  1573.85 50.05 2.6 

Table A.8 Comparison of Zlb with LP bounds for R2 
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ID Zub Zlb %GAPLR CPULR  ZLP %GAPLP CPULP 
         

P111112 1417.30 1283.09 10.46 18331.6  1103.29 28.46 22.4 
P111122 1410.04 1178.19 19.68 8313.1  1048.64 34.46 50.7 
P111212 1406.33 1140.54 23.30 8419.8  958.32 46.75 13.4 
P111222 1464.84 1186.54 23.45 14839.3  1050.67 39.42 42.4 
P112112 1209.88 1079.16 12.11 13585.3  855.56 41.41 11.2 
P112122 1019.44 925.16 10.19 15737.3  757.00 34.67 38.8 
P112212 726.48 627.05 15.86 6114.5  433.45 67.60 9.2 
P112222 738.34 541.66 36.31 13899.7  440.52 67.61 21.1 
P113112 1296.04 1069.98 21.13 15490.0  823.99 57.29 11.0 
P113122 1160.09 1055.33 9.93 9707.0  782.73 48.21 31.7 
P113212 908.79 753.37 20.63 5260.2  467.44 94.42 8.1 
P113222 929.22 780.93 18.99 9725.7  477.83 94.47 15.0 
P131112 1869.43 1561.25 19.74 49267.2  1391.5 34.35 96.3 
P131122 1899.42 1465.80 29.58 49999.1  1306.28 45.41 213.6 
P131212 2099.50 1589.11 32.12 41597.7  1307.45 60.58 46.6 
P131222 1807.63 1438.10 25.70 51380.0  1327.85 36.13 202.5 
P132112 1488.29 1151.67 29.23 40270.5  916.00 62.48 34.2 
P132122 1502.16 1144.07 31.30 56162.1  920.58 63.18 169.5 
P132212 1234.50 959.29 28.69 24682.9  596.28 107.03 17.7 
P132222 938.22 742.16 26.42 67392.3  597.31 57.07 51.9 
P133112 1667.65 1232.78 35.28 8791.9  943.21 76.81 36.4 
P133122 1452.97 1051.04 38.24 29404.3  857.19 69.50 99.7 
P133212 1173.29 930.82 26.05 53388.9  624.06 88.01 12.9 
P133222 1189.44 973.35 22.20 24038.6  708.35 67.92 73.7 
P121112 2337.60 1747.10 33.80 103408.8  1591.75 46.86 457.3 
P121122 2176.88 1639.88 32.75 65697.0  1542.58 41.12 547.2 
P121212 2144.31 1800.51 19.09 141462.7  1614.53 32.81 572.2 
P121222 2303.29 1683.70 36.80 115925.1  1613.38 42.76 549.5 
P122112 2011.02 1591.88 26.33 185395.7  1299.35 54.77 358.3 
P122122 1757.52 1320.11 33.13 201249.3  1154.61 52.22 182.4 
P122212 1484.87 1079.33 37.57 71898.2  844.62 75.80 247.6 
P122222 1094.71 1001.98 9.25 72377.5  713.85 53.35 158.4 
P123112 2009.21 1576.96 27.41 69992.9  1147.47 75.10 390.4 
P123122 1885.89 1433.07 31.60 122222.7  1264.49 49.14 353.1 
P123212 1783.77 1498.26 19.06 157170.3  946.00 88.56 93.5 
P123222 1362.84 1064.47 28.03 55929.3  749.13 81.92 102.2 

averages 1510.03 1202.71 25.04 55514.67  977.15 58.82 148.4 

Table A.9 Comparison of Zlb with LP bounds for TB 
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 2-index formulation  3-index formulation 

ID ZLP %GAPLP CPULP  ZLP %GAPLP CPULP 
        

R1-1 932.93 20.89 0.1  1034.19 9.06 8.1 

R1-2 725.23 37.19 0.1  858.69 15.86 8.0 

R1-3 753.72 20.70 0.1  800.21 13.69 7.6 

R1-4 795.49 29.12 0.1  945.99 8.58 5.1 

R1-5 769.19 39.72 0.0  960.7 11.86 6.2 

R1-6 1035.65 24.75 0.0  1176.34 9.83 5.6 

averages 835.37 28.73 0.1  962.69 11.5 6.8 

Table A.10 Comparison of LP bounds found by 3-index and 2-index formulations 
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