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ABSTRACT

The design of a distribution logistics system requires quite a number of decisions of
different planning levels. The most important strategic decision is the locations of
distribution centers, which are also referred to as depots. The allocation of customers to
the depots is a decision of tactical level, while determining vehicle routes to visit those
customers belongs to the operational level. Multi-depot Location-Routing Problem
(MDLRP) involves the decisions of different levels simultaneously. In the problem, the
optimal number and locations of depots are decided while allocating customers to
depots and determining vehicle routes to visit all customers.

In this thesis, we propose a nested Lagrangian relaxation-based method named [LR-
TS] for the 2-layer discrete uncapacitated MDLRP. An outer Lagrangian relaxation
embedded in subgradient optimization decomposes the parent problem into two
subproblems. The first subproblem is a facility location-like problem. It is solved to
optimality with Cplex 10.0.

The second one resembles a capacitated and degree constrained minimum spanning
forest problem, which is tackled with an augmented Lagrangian relaxation. The lower
bound to the true optimal solution of the comprehensive problem is obtained by
summing the objective function value of the Cplex solution of SubP1 and the lower
bound found for SubP2.

The solution of the first subproblem reveals a depot location plan. As soon as a new
distinct location plan is found in the course of the subgradient iterations, a tabu search
algorithm is triggered to solve the multi-depot vehicle routing problem associated with
that plan, and a feasible solution to the parent problem is obtained. Its objective value is
checked against the current upper bound on the parent problem’s true optimal objective

value.
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The performance of the proposed method is evaluated based on the gap between the
best upper bound and the best lower bound achieved. [LR-TS] has been tested on a
number of randomly generated test problems as well benchmarking problems from LRP

literature, and the results have been tabulated.
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OZET

Dagitim sistemlerinin dizayn edilmesi i¢in degisik planlama diizeylerinde bir ¢ok
karar alinmas1 gerekir. Ka¢ adet dagitim merkezinde faaliyet gosterileceginin ve bu
merkezlerin yerlerinin belirlenmesi stratejik seviyede alinmasi gereken kararlardir.
Hangi deponun hangi miisteriye hizmet verecegi taktik seviyede ele alinirken, teslimat
rotalar1 operasyonel seviyede belirlenir. Cogul Depolu Tesis Yeri Belirleme - Rotalama
Problemi (CDTYRP) degisik diizeydeki bu kararlar1 birlikte degerlendirir. Bu
problemde, toplam maliyeti enkiiclilten depo sayisi ve yerleri, her miisteriye hangi
deponun hizmet verdigi ve teslimat rotalar1 eszamanli olarak belirlenir.

Bu tez, 2 seviyeli ayrik ve kapasite kisitsiz CDTYRP i¢in [LR-TS] adin1 verdigimiz
i¢ ice gecmis iki Lagrange gevsetmeye dayanan bir ¢oziim yontemi Onermektedir.
Subgradient eniyileme yontemi igerisine oturtulmus olan distaki Lagrange gevsetme ana
problemi iki alt probleme ayrrmaktadir. ilk alt problem SubPl, tesis yeri belirleme
problemine benzemektedir ve Cplex 10.0 ile en iyi ¢oziimii elde edilmektedir. Kapasite
kisitli en kiigiik kapsayan orman problemine benzeyen ve SubP2 olarak adlandirilan
diger alt problem ise ilk Lagrange gevsetmenin icine yerlestirilmis bir cogalan Lagrange
gevsetme yontemiyle ¢oziilmektedir. SubP1’in Cplex ¢dzlimiinden elde edilen amag
fonksiyon degeri ve ¢ogalan Lagrange gevsetme yontemiyle SubP2 i¢in bulunan alt
sinir degeri toplanarak, tiim problemin amag fonksiyon degeri i¢in bir alt sinir elde
edilir.

IIk problemin ¢dziimii sonucunda bir depo yerlesim plam elde edilir. Distaki
subgradient yonteminin yinelemeleri sirasinda, ilk alt problemin sonucu olarak her
farkli depo yerlesim plani elde edildiginde, bir tabu aramasi algoritmasi c¢alismaya
baglar. Tabu aramasi algoritmasi ilk alt problem sonucunu temel alarak bir Cok Depolu

Arac Rotalama Problemi ¢6zer. Bdylece ana problem i¢in olurlu bir sonug elde edilmis



olur. Bulunan en iyi olurlu ¢ézlimiin toplam maliyeti ana problemin en iyi sonucu igin
bir list sinir teskil etmektedir.

Onerilen ¢6ziim metodunun performanst bulunan en iyi iist smnir ile en iyi alt sinir
arasindaki aralik temel alinarak degerlendirilmektedir. [LR-TS] bir kismi rasgele
tiretilmis ve bir kism1 da literatiirdeki kiyas problemlerinden alinmis test problemleri

lizerinde denenmis ve sonuglar sunulmustur.

vi



ACKNOWLEDGEMENTS

First and foremost I would like to thank my thesis advisor Deniz Aksen for his
guidance and support. He has shared his experience with me not only on my thesis topic
but also on all aspects of research and my personal development. This thesis would not
be possible without his assistance and his tolerance especially during the last period of
my study.

I want to thank members of my thesis committee Necati Aras, Sibel Salman and my
professor Ceyda Oguz for their valuable comments and suggestions. I am very grateful
to Yaman Arkun and Siileyman Ozekici for their contributions on the enhancement of
my study. I also want to thank Arzu Aras for her support on the completion of my thesis
as well as my colleague, Hakan Aydin for his kind welcome and for the fun he adds to
every occasion.

My friends Nesrin, Eda, Canan, Suat, Hazal, Eren and Cem, made me enjoy my life
in Kog¢ University and provided me with the encouragement when I needed. I am very
lucky to meet such people who hold success, kindness and fun together and to be part of
this friendship. I also want to thank my roommates Selen, Besray, Deniz and Zeynep for
the times that we have together full of good memories.

I am very grateful to my family for being with me every time and for their love.
Without them, any success I achieved would not be possible. My special appreciation
goes to my brother Seyfettin whom I have founded beside me whenever 1 got into
difficulties.

Last but not least, I want to thank my best friend, my love, my fiancé Ahmet, for his
valuable support, everlasting encouragement and permanent belief in my success. The
most precious present I have ever received is "you" making me feel the happiness deep

inside every moment and making my life wonderful in every way.

vil



TABLE OF CONTENTS

LISt Of TADIES cccceeneeririiiiiiiiiiiciiencsteenineensnnecssnneessnnessssnecssssessssssssssssssssssssssnsssssnssssascnss X

LSt Of FIGUI@S..uucicieriirrnriiisniiissnnissnncssnicsssncssssnsssssssssssesssssesssssssssssosssssssssssosssssssssssssnss xii

NOMENCIATULE «oueeeeneieiiieeiiniiiiteeiiteesinneessetesssnecsssnessssnecssssessssssssssnsssssesssssesssssnssssasesss xiii

Chapter 1: INtroduction .....c.eecccceeicisericssnncsssnncssssncsssscssssssssssesssssessssssssssssssssssssssossssssses 1

Chapter 2: Literature ReVIEW .......ciiciiveeicciisnnicssssnniicsssnsiessssssssssssssssssssssssssssssssssssnssss 4

Chapter 3: Problem Description and Mathematical Model ............cocereueiruecnnecnnens 11

Chapter 4: The Lagrangian Relaxation for MDLRP ...........uiiirvveriicicrnreccscnnsecssnns 16
4.1. Overview of the Lagrangian Relaxation Method and the Subgradient

OPHMIZATION. 1...teeutieeiiieiee ettt ettt et e e steebeeesbeeseeeabeesseessseeseesnsaenseesnseeseens 16

4.2. The Lagrangian Relaxed Problem LR ...........cccccooiiiiiiiiiiiiiieee e 21

4.3. Subgradient Optimization in the Lagrangian Relaxed Problem LR ................... 23

4.4. Flap-like Subproblem SubP1 ........ccccoiiiiiiiiiiiieiieeie e 24

4.5. Minimum Spanning Forest-like Subproblem SubP2 ..............cccccoeoiiiiiininnnnne. 26

4.5.1. Mathematical Formulation and Characteristics of SubP2 ........................ 26

4.5.2. Augmented Lagrangian Relaxation for SubP2 ...........cccccoevviiiiiiiininenen. 27

4.5.3. Solving DCMST-like Problem ALRS™ ..o 31

4.6. Subgradient Optimization in the Augmented Lagrangian Relaxation................ 32

viil



Chapter 5: Generating Upper Bounds for P: The Tabu Search Heuristic.............. 34

5.1. An Initial Solution for P.........cooiiiiii e 35
5.1.1. The [PFIH-NN] AlOTithm .......cccooiieiiiiieiieiieieeee e 35

5.1.2. The [CW] Parallel Savings Algorithm for the MDVRP........................... 36

5.2. Evaluation of the SOIUtIONS ......eecviiiiriiiiiiiiiicieteeeeeee e 36
5.3. Neighborhood Structure, Tabu Attributes and Stopping Conditions.................. 37
5.3.1. Move Operators and Neighborhood Size..........cccccovvevciiieniieecciieeeeee, 38

5.3.2. Local Post OptimiZation ............ccceeveeeriienieeiiienieeieeniieereesieeeveesieeeeve e 42

5.3.3. Tabu AIIDULES ...o.eeeuvieiiiiiiiieieceee e 43

5.3.4. ASPITation CIItETION ...ccuvveeerieeiieeeitieeeriieeeireeeteeesaeeesaeeesseeessseeensseeesneens 44

5.3.5. StopPINg CONAITIONS. .....veeeieiieeiiieeiiie et e eieeeeieeeeteeesaeeesaeeeeaeeessaeeeeneeas 45

5.4. The Probabilistic Nature of the Proposed Tabu Search Algorithm .................... 45
5.5, Add-Drop HEUTISLIC. ....ccuuiiiieriieeiieciie ettt ettt ettt et et ve et esave s 45
Chapter 6: Computer Experiments and Results........ccccceceevcvnniicsisnrrccscsnnrecsssnneccsnns 47
6.1. More Details on the Proposed Solution Method............cccceeviieiiieniiiiiiiniinieee. 47
6.2. The Design of Computer EXperiments. ..........cceecveerieeieeniienieeniiesieesieeseeeneee e 48
6.3. Random Problem Generation..............coceeeieeiiienieiiienieeieese e 49
6.4. Experimenting with Algorithmic Parameters...........cccccvveeviieniiieeciieeciie e 54
6.5. Results of Randomly Generated Test Problems ............ccccoveiienieiiiiniiniiiciee. 59
6.6. Results for Tliziin-Burke INStances ...........coeeverieniiniiiinieieeecececeeeee 69
6.7. The Computational Time Elapsed by TS and LR Parts of [LR-TS]..................... 77
(O] F:1 0175 W 0712 1 16 11T (1) 1 PR 82
BibDliography ..cccuueiiiniinniiciinsnniicsssnnicssssnnnecsssnsssssssssssessssssssssssssssssssssssssssssssssssssssssssssss 86
APPENAIX ccunrriirsriissnicssnnssssnessssncssssnesssssossssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssass 91
VI cuviuiinicniiinnninninnissecssisnessissssssssssnsssissssssessssssssssessssssessssssssssssssessssssasssesssssssssssssssss 111

1X



Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8

Table 6.9
Table 6.10
Table 6.11

Table 6.12
Table 6.13

Table 6.14

Table 6.15
Table 6.16
Table 6.17
Table 6.18
Table 6.19
Table 6.20
Table 6.21

LIST OF TABLES

LPO Sequences teSted........ooouieriiiriieiienieeieeeie ettt 43
TYPE 1 PATAMELETS ..cceeiiiiieieiiiee e e e eaeeeeees 50
TYPE 2 PATAMELETS ...ceeuivieeiiieeiiieeitee ettt e ettt e site e st e e sbeeesiaeeesebeeenabeeenaneeenns 51
The problem generation Pattern ..........cceecveeeriieeiieeeiie e eeieeeeree e 51
The Type 2 parameter values for R1.........cccoooiiiiiiiiiiiiiiieieeeee 52
The Type 2 parameter values for R2.........cccoocvieiiiiiiciiiieceeee e, 53
Maximum number of iteration of inner and outer LR values tested.......... 54
Two patterns of tabu search implementation through [LR-TS]................. 56

The values of the performance parameters for 26 LPO sequences where
the initial solutions of TS have been found by [PFIH-NN] heuristic........ 58

Comparison of performance parameters for LPO sequences C and L....... 58

GAMS/Cplex options in the mathematical models ............cccccveerverennnns 59
Performance comparison between Cplex and [LR-TS] on the problems in

2 PSSR PS 64
Results obtained for test problems in R2 ..........ccccoeviiiiiiniiiiiiiiecieee 65

Performance comparison for Cplex and [LR-TS] in terms of best feasible
SOTULION 1.ttt ettt et st e bt ene s 66

Performance comparison for Cplex and [LR-TS] in terms of the gap

between the best feasible and the best possible solution found................. 66
Comparison of aggregated results for each N¢ value...........cccceeevvieennnnns 66
Comparison of aggregated results for each distc value ..........cccccoeenennnee. 67
Comparison of aggregated results for each Np value ..........ccceevvveennennns 67
The main characteristics of the 36 LRP instances ..........ccccceecvvevvercirennnnne 69
Performance comparison of [LR-TS] and TS of Tiiziin and Burke........... 72
Aggregated results for each N¢ and Np combination.........cccceeeeeveeeennnenee. 73
Computational times for R1 problems...........ccccoeeviieiiiiniieeciieeciee e 78



Table 6.22
Table 6.23
Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6

Table A.7
Table A.8
Table A.9
Table A.10

Computational times for R1 problems...........ccccoeevieeciiiiniieieiieeeieeeieee 79
Computational times for R1 problems...........ccccoecvieviiiiiiniiniiiieeieeeee 80
Notations and symbols used in the pseudo code of [PFIH-NN]................... 92
Notations and symbols used in the pseudo code of [MSF-ALR] ..........uuvevererennnns 95
Notations used in the pseudo code of tabu search............cccovvveeeeeeeeeeccnriiennn... 97
Notations and symbols used in the pseudo code of Add-Drop heuristic ............ 99
Notation used in Table A.O......ccceeviiieiiiieiiieeeeceeee e 101
The fixed opening-closing, the operating and the vehicle acquisition costs

of the randomly generated test problems............cccccveevciiienciieenciee e, 102
Comparison of Z;, with LP bounds for R1..........cccocceiiiiiiiiniiiiiieees 107
Comparison of Zj, with LP bounds for R2..........ccccoeeiiiviiiiiiiiiieeiee 108
Comparison of Z;, with LP bounds for TB .........c.ccceviiiniiiiiiieieeee 109

Comparison of LP bounds found by 3-index and 2-index formulations . 110

X1



Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11

LIST OF FIGURES

Flow chart of the Lagrangian Relaxation Scheme for MDLRP ................ 20
1-0 MOVE 1N SAME TOULE .....eeiutieiiietieeiieeiee ettt ettt e st e st e s eaee e 39
1-0 MOVE DEtWEEN tWO TOULES ...c.veeuviiieiieiieeiienieeie ettt 39
I-1 exchange in SAME TOULE.........cccveeerrieeiiieeiieeeieeeeiee et eeereeereeeeaee e 39
1-1 exchange betWeen tWo TOULES ........cccueeriieriieeieerie e eiee e eee e 40
2-0Pt NOVE 11N SAME TOULE.....eeeruvireeireeeiieeeieeeeieeesaeeessaeeessreeensseesssseesssseens 40
2-0pt MOVE DEtWEEN tWO TOULES .....vveeuiieiieeiiieiie ettt iee e 40
2-2 eXChange N SAME TOULC.........eeeureerrieeeiieeeieeeeieeeeieeeraeeeseaeeesereeeeaeeas 41
2-2 exchange betWeen tWo TOULES ........cevuveeriierieeiieriieeieeniee e eiee e e 41
%GAP1 versus the number of customers in the problem.......................... 68

CPU time elapsed (sec) versus the number of customers in the problem..68

%GAP1 vs N¢ for two different Np values..........ccooovvviiiiiiiii. 73
CPU time elapsed by [LR-TS](sec) vs N¢ for two different Np, values.....74
%GAP2 vs N¢ for two different Np values..........ccoooovvviiiiiiiiiii, 74
%GAP1 vs Np for three different Ne values........ooovveeeeeeeeeeieeiiiiiiieieeeeaann. 75
CPU time elapsed by [LR-TS](sec) vs Np for three different N¢ values...75
%GAP2 vs Np for three different Ne values........oooevvveeeeeeeeeeeiiiiieieeeeeeaann. 76
%GAP?2 for all of the TB problems grouped by Np.....ccccecueeveenienieenncne 76
Change in CPUjr-1s), CPU[r; and CPUjrs; for 96 test problems............. 81
Change in % CPUjrs) for 96 test problems ..o, 81

X1l



NOMENCLATURE

PC Personal computer
CPU Central processing unit
LRP Location routing problem

MDLRP Multi-depot location routing problem

LP Linear programming

ILP Integer linear programming

TSP Traveling salesman problem

FLAP Facility location allocation problem
VRP Vehicle routing problem

VRP-TW Vehicle routing problem with time windows
MDVRP Multi-depot vehicle routing problem

LR Lagrangian relaxation

MST Minimal spanning tree

MSF Minimal spanning forest

CMST Capacitated minimal spanning tree

CMSF Capacitated minimal spanning forest

DCMST Degree constrained capacitated minimal spanning tree
TS Tabu search

VNS Variable neighborhood search

MTZ Miller, Tucker, Zemlin

[LR-TS] The name of the complete algorithm designed to solve P

[MSF-ALR] The algorithm that solves the problem obtained after Lagrangian
relaxation of SubP2

[PFIH-NN]  Push Forward Insertion-Nearest Neighborhood heuristic

xiil



[CW]
LPO

SubP1
SubP2
IC

ID
IDpyes
IDcana

Xijk

Vi

FCy
OCy
VCy

Cij

L(S)

Zy,
Zub

Modified Clarke-Wright heuristic for MDVRP

Local Post Optimization

The comprehensive multi-depot location routing problem

FLAP-like subproblem of P

MSF-like subproblem of P

Set of customers

Set of depots

Set of present depots

Set of candidate depots

Set of all nodes (/C v ID)

Binary decision variable taking the value 1 if node j is visited after node
i on a route originating from depot &, 0 otherwise.

Binary decision variable taking the value 1 if depot £ is in service, 0
otherwise.

Binary decision variable taking the value 1 if customer i is assigned to
depot £, 0 otherwise.

The opening or closing cost of depot &

The operating cost of depot &

Vehicle acquisition cost for depot &

Traveling cost of one vehicle from node i to node j

Uniform vehicle capacity

The optimal solution to the one-dimensional bin packing problem where
the bin length is equal to the vehicle capacity O, and demand values d; (i

€ IC) are the sizes of the items to be packed into the bins
The optimal objective function value of the problem P

Lower bound on the true optimal objective value of the problem P

Upper bound on the true optimal objective value of problem P

Xiv



Zq

ub

Z‘I

LR

A
B

o

LR, p)
Zir(A, W)
AL RSubPZ

*

SubP2

Z
71

ub(SubP2)

q
ZALR(SubPZ)

Chew
SG*

q
S4LR

Pe
Ve(r)
R1
R2

The upper bound found for the optimal objective value of P in iteration ¢
of the subgradient optimization

The Lagrangian objective value found in iteration g of the subgradient
optimization in the main Lagrangian relaxation

Lagrange multiplier set in the main Lagrangian relaxation

Lagrange multiplier set in the Lagrangian relaxed problem

Lagrange multiplier set in the Lagrangian relaxed SubP2

The Lagrangian relaxed problem of P

The objective function of Lagrangian relaxed LR(A, p)

The Lagrangian relaxed problem of SubP2

The true optimal objective function value of SubP2

The upper bound found for the optimal objective value of SubP2 in

iteration g of the subgradient optimization

The Lagrangian objective value found in iteration g of the subgradient

optimization in the inner Lagrangian relaxation
The cost matrix of the objective function of ALRSP?

Subgradient vector of the problem LR(A, p) at iteration g of the
subgradient optimization procedure

Step size at iteration g of the subgradient optimization procedure of the
problem LR(A, p)

Subgradient vector of the problem ALRSP?

Step size at iteration g of the subgradient optimization procedure of the
problem ALR*“""

Penalty coefficient used in the evaluation function of tabu search

Penalty term used in the evaluation function of tabu search

Randomly generated problem set 1

Randomly generated problem set 2

XV



TB LRP instances solved by Tiiziin and Burke [23]

distpp Probability distribution of the present depots locations on the problem
space

distcp Probability distribution of the candidate depots locations on the problem
space

distc Probability distribution of the customers locations on the problem space

U Uniform distribution

RU Rectalinear uniform distribution on a specified number of equidistant

longitudes and altitudes
C Clustered around the depot locations
k Coefficient used for calculating the vehicle capacities during random

problem generation

N¢ Number of customers

Npp Number of present depots
Nep Number of candidate depots
Np Total number of depots

Xvi



Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The design of a distribution logistics system requires quite a number of decisions of
different planning levels. The most important strategic decision to be taken is the
locations of distribution centers, which are also referred to as depots. The allocation of
customers to the depots is a decision of tactical level, while determining vehicle routes
to visit those customers belongs to the operational level. Since logistics management
plays an important role in customer satisfaction and efficiency of companies,
practitioners take considerable notice of location and routing problems. Besides their
importance in the logistics business, both location and routing problems have been
studied widely by researchers. They are very attractive from research point of view due
to the fact that they give rise to a wide variety of challenging mathematical models, and
there exist several heuristics and metaheuristics applicable on them.

The construction of a distribution logistics system starts with the depot locations.
The potential locations of depots are found based on a series of requirements such as
physical and economical accessibility, and particular conditions inherent to the specific
application (governmental restrictions, international regulations, company policies etc.).
Once the set of candidate locations is determined, the managers select a subset of them
which is the best with respect to the objectives. In earlier times, the objective was
inadequately settled by only considering the demand of the customers and the distance
between the candidate depots and the customers. However, recent research showed that
the vehicle acquisition and delivery costs have an impact on the optimum depot location
plan. It was observed that the allocation of the customers to depots and the selection of

the routes to visit customers, which are decisions of tactical and operational level
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respectively, should be considered simultaneously with the selection of the depots to be
established among candidate locations.

The need for integrating these three steps of the distribution system design process
has been fulfilled by the Location-Routing Problem (LRP). LRP involves finding the
optimal number and locations of depots while allocating customers to depots and
determining vehicle routes to visit all customers. LRP focuses on three main decisions
of different levels simultaneously. The interdependence between these decisions has
been noticed by researchers long ago. The effect of ignoring routes when locating
depots has also been stressed by Salhi and Rand [1]. However, location and routing
parts of the problem have traditionally been solved separately which is justified by the
inevitable difficulty of the combined problem due to its components. Extremely high
computing power of mainstream processors available today and the success already
achieved in solving location as well as routing problems provide us the motivation to
deal with the combined location-routing problem without splitting it into its
subproblems. In recent years, the literature on the LRP has been increasingly addressing
some variants of the problem, which generally correspond to the real world needs.

In this thesis, we solve a two-tier or two-layer (single echelon) multi-depot location-
routing problem (MDLRP) where transportation is made directly from depots to
customers. There exist two kinds of depots: present and candidate depots. Present
depots are already operating facilities that can be preserved or closed. If a present depot
is closed, a fixed cost is incurred. This cost may turn out to be a gain since the closure
of a depot usually brings about savings in overhead costs. Candidate depot locations are
potential sites in which new depots can be opened. For each new depot to be opened, a
location dependent fixed cost is incurred. In addition, there exists fixed operating cost
which is charged for each preserved or newly opened depot. Customers are visited by a
homogeneous fleet of capacitated vehicles. For each of them, a vehicle acquisition cost
is charged. Each customer has a deterministic and static demand which should be
satisfied by the single visit of a vehicle. There is no capacity constraint on depots. The

sum of depot opening-closing, depot operating, vehicle acquisition, and vehicle
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traveling costs is minimized subject to the standard vehicle capacity specified in the
problem.

To solve this problem, a nested Lagrangian relaxation-based method which is named
as [LR-TS] is proposed. An outer Lagrangian relaxation embedded in subgradient
optimization decomposes the parent problem into two subproblems. The first
subproblem which is a facility location-like problem is solved to optimality with Cplex
10.0. The second subproblem resembles a capacitated and degree constrained minimum
spanning forest problem. It is tackled with an augmented Lagrangian relaxation. The
sum of objective value of the Cplex solution of SubP1 and the lower bound found for
SubP2 by the subgradient optimization scheme in the augmented Lagrangian relaxation
constitutes the lower bound to the true optimal solution of the comprehensive problem.

The solution of the first subproblem reveals a depot location plan. As soon as a new
distinct location plan is found in the course of the subgradient iterations, a tabu search
algorithm is triggered to solve the multi-depot vehicle routing problem associated with
that plan, and a feasible solution to the parent problem is obtained. Its objective value is
checked against the current upper bound on the parent problem’s true optimal objective
value. The performance of the proposed method has been tested on a number of test
problems, and the results have been tabulated.

The remainder of the thesis is organized as follows. In Chapter 2, an overview of the
previous studies on the LRP is given. Chapter 3 comprises the problem definition and
mathematical formulation. The detailed explanations of the Lagrangian relaxation
scheme and the solutions for the subproblems are provided in Chapter 4. In Chapter 5,
the tabu search heuristic that is used to obtain upper bounds on the true optimal solution
is explained. The computational experiments and results are given in Chapter 7. Finally,

Chapter 8 presents a summary with concluding remarks.
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Chapter 2

LITERATURE REVIEW

The LRP has been studied since 1970s although researchers have been using
different names for the problems they are dealing with. Formerly, the LRP used to be
solved by decomposing it into location and routing parts. In recent years, with the ever
increasing performance and affordability of PC platforms, algorithms have been
proposed to solve the combined problem in reasonable computing time. Most of the
solution methods are heuristics while several exact solution approaches have been
offered for problems with limited number of customers.

The newest literature survey of the state-of-the-art in location routing is
accomplished by Nagy and Salhi [2]. They provide the review of previous studies on
the LRP in groups based on the solution techniques and the particular problem
investigated. First, they suggest four criteria to classify the studies which they regard as
the key aspects of the problems. These are hierarchical structure, type of input data,
planning period and solution method. Hierarchical structure is the configuration of the
distribution system which states the serving and receiving nodes. In most of the
problems, there exist facilities servicing a number of customers. Delivery or pick-up
between facilities is not common. The authors classify the problems first in terms of the
structure of the flow of the goods. The second criterion is the type of input data which
can be deterministic or stochastic. Then, the papers are grouped based on whether the
problem is single period or multi period. The last of the key classification aspects is the
proposed solution method, which can be either exact or heuristic. Although they do not
follow a complete taxonomy, they give five further attributes of the problems together

with this classification. They clarify the characteristics of an LRP instance using these
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five criteria: structure of the objective function, solution space (discrete, continuous,
network), number of depots, number and types of vehicles and route structure (arc
routing, multiple trips, pick-up and delivery etc.). Finally, they give their suggestions
for future research on the LRP after summarizing the suggestions of Balakrishnan et
al.[3], Laporte [4] and Min et al. [5].

Another annotated literature review of the LRP and its extensions is due to
Ahipasaoglu et al. [6]. They provide an overview of the computational aspects and the
research prospects. The study has the attribute to be the first survey in the literature that
includes a complete analysis of all problem variants. They review the studies in three
groups as Deterministic LRP, Stochastic LRP and LRP with obnoxious facilities. LRP
with obnoxious facilities refers to the group of problems dealing with locations of
anticentral facilities the examples of which are hazardous material storage facilities and
waste disposal sites.

A perfect synthesis and survey of the LRP is earlier carried out by Min et al. [5].
They review and compare the literature with respect to algorithmic developments and
also include a hierarchical taxonomy. Min et al. define the location-routing model as
solving the joint problem of determining the optimal number, capacity and location of
facilities serving more than one customer/supplier (demand node), and finding the
optimal set of vehicle schedules and routes. Its main difference from the classical
location/allocation problem is that, once the facility is located, LRP requires a visitation
of demand nodes through tours, whereas the latter assumes a straight-line or radial trip
from the facility to the demand nodes. The authors recommend solving the whole LRP
concurrently in order to be able to analyze tradeoffs between location and routing
decisions at the same level of hierarchy.

The survey by Laporte [7] can be accounted as one of the milestones in LRP
literature. This survey is the first comprehensive study of the earlier work on the
deterministic LRP. Because it is written in a tutorial style, this survey is particularly
important for researchers that are new to the area. It also includes a classification

scheme of LRPs based on the number of layers and the type of routes between these
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layers. For example, 3/R/T refers to a three layer LRP where routes between the first
and second layer is of type Replenishment (direct shipment) while the delivery between
the second and third layer is realized via tours (vehicle routes).

Among exact solution methods proposed for the LRP is the method of Laporte and
Nobert [8]. They formulate the uncapacitated single facility LRP as an integer linear
program (ILP), and solve it using constraint relaxation and a branch-and-bound method.
They initially relax all subtour elimination constraints and add them one at a time as
needed. Laporte et al. [9] studied the LRP with multiple uncapacitated facilities and
uncapacitated vehicles. They locate several facilities among # sites and find the optimal
routes to serve the remaining ones. They formulate the problem as an ILP, and solve it
using a constraint relaxation procedure similar to Laporte and Nobert [8]. Laporte et al.
[10] use a graph transformation approach to model the LRP as an ILP and tackle it with
a branch and bound method. They solve instances with 80 nodes and 1 to 3 potential
sites to optimality which is, to our knowledge, the largest LRP solved optimally.

Laporte and Dejax [11] studied the dynamic version of the case of multiple facilities
with multiple vehicles. Their model represents the system as a network consisting of
three-layers where the layers correspond to production sites, distribution centers, and
customers. In their paper two solution approaches have been addressed. In the first one,
which is proposed to solve small size problems, the LRP is formulated as an ILP using a
network representation and solved to optimality. In the second approach, the solution is
obtained by an approximation algorithm based on approximating TSP tours with
spanning trees. This work of Laporte and Dejax [11] is outstanding in that it is the first
analytical study concerning the dynamic LRP.

In his thesis Gezdur [12] formulates the LRP as a set partitioning problem and
solves it using a column generation algorithm. The bounds are tightened by 2-path cuts,
and a separation algorithm is used to eliminate the subtours. The performance of the
proposed method is evaluated by comparing with the solutions of Perl and Daskin [13],
Wu et al. [14], and Hansen et al. [15]. It is found to yield better solutions than the

others.
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Another study on the exact solution of the LRP is due to Bog [16]. He also tackles
the problem with a column generation method. He uses the set-partition based
formulation, and solves an elementary shortest path problem for the pricing
subproblem. The method is tested on the problems that are compiled by Barreto [17]
and tight gaps are obtained for most of them.

Jacobsen and Madsen [18] solve a newspaper distribution system problem with
approximately 4500 retailers. The delivery is first made from the printing office to a
number of transfer points, and then from the transfer points to the retailers where the
number and locations of transfer points are among the decisions to be made. They
present three heuristics methods. The first heuristic is a tour construction method with
implicit transfer point locations. The second is an alternative location-allocation
procedure for locating transfer points followed by savings procedures for routing the
trips from the printing office to the transfer points, and subsequently from transfer
points to the retailers. In the third heuristic an initial savings procedure is used for the
routing of the tours from the transfer points to the retailers. This is followed by a Drop
procedure determining the locations of the transfer points, and a savings procedure
constructing the tours from the printing office to the transfer points. Madsen [19]
provides an almost complete and comprehensive survey of previous applications, and
comparison of methods for solving combined location-routing problems.

Perl and Daskin [13] analyze the case where both facilities and vehicles are
capacitated. They give an ILP formulation, but solve the problem by a heuristic method
where the LRP is decomposed into three stages, and the location and routing phases are
solved iteratively. They obtain the initial feasible solution by a route-first, location-
allocation second heuristic method. The method is applied to a large scale problem of a
distribution system of an international manufacturer. Hansen et al. [15] modify the LRP
formulation of Perl and Daskin [13] and suggest a more effective heuristic which yields
better solutions.

Srivastava [20] designs three heuristic for LRP in his dissertation work which form

the basis of an extensive computational study published in Srivastava and Benton [21].
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In the computational study of Srivastava and Benton, the authors compare the three
heuristics of Srivastava [20], which has been also published in Srivastava [22], with the
sequential locate-first, route-second method. The authors use a set of 150 problems, and
test the performance of the heuristics under varying conditions defined by the cost
structure, spatial distribution of customers, and number of depot sites. They conclude
that the three heuristics yielded smaller (better) objective function values than the
sequential method, except for the low cost case. They have also commented on which
heuristic is more appropriate to use under what settings of the experimental parameters.
Tiizlin and Burke [23] propose a two-phase tabu search architecture for the solution
of the multi-depot LRP where depots have unlimited throughput capacity. The first
stage of the tabu search is the routing phase where routes are improved by swap and
insert-delete moves. In the second stage, the location-allocation configuration is
improved by moving a facility from one location to another, and by simultaneous
adding and dropping of facilities. They compare their results with the results of SAV1
heuristic addressed in Srivastava [22], and conclude that their heuristic performs better
than SAV1 on the average. The computation times are also relatively short. Wu et al.
[14] decompose the standard LRP with capacitated depots into a discrete facility
location-allocation problem (FLAP) and a vehicle routing problem (VRP), and solve
each subproblem using simulated annealing in a sequential and iterative manner. They
obtain better solutions on the same instances solved by Perl and Daskin [13] and
Hansen et al. [15]. For the same class of the LRP, Albareda-Sambola et al. [24] apply a
method which generates first a lower bound either from the linear relaxation of the
given problem or from the solutions of a pair of ad hoc knapsack and asymmetric
traveling salesman problems. This lower bound is then used as a starting point of a tabu
search heuristic. They test their method on a set of randomly generated problems.
Melechovsky et al. [25] address an LRP with non-linear depot opening costs that grow
with the total demand satisfied by the depots. They present a hybrid metaheuristic

consisting of tabu search (TS) and variable neighborhood search (VNS) heuristics.
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We are aware of one study by Aksen and Altinkemer [26] on Lagrangian relaxation
for the LRP. They propose a 3-layer distribution logistics model for the conversion
from brick-and-mortar to click-and-mortar retailing. They consider a traditional brick-
and-mortar retailing model in which such a retailer operates two types of facilities, and
serves only one type of customers. Its facilities comprise warehouses (WH’s) and
physical stores, where goods are transferred from the former to the latter in direct
shipments. Goods are then sold to walk-in type customers who are assumed to go to the
nearest physical store for shopping. When the retailer opens a website for the online
shopping convenience, it needs the capability of receiving, processing and then
delivering orders placed by online customers at that website. Some of the present brick-
and-mortar stores (BM’s) of the retailer might have to be reconfigured, or several new
stores might be opened with that capability. A physical store is designated as a click-
and-mortar store (CM) if it is Internet-enabled, equipped with the necessary hardware,
software and personnel such that it can effectively handle online orders. A physical
store can serve online customers only then if it is opened as a CM, or if it is a BM
reconfigured as (converted to) a CM. They determine the number and locations of CM
and BM type facilities, and the vehicle routes to visit online customers. A static one-
period optimization model is built and solved using Lagrangian relaxation. They assess
the performance of the Lagrangian-based solution method on a number of randomly
generated test problems.

The problem in our study is a 2-layer multi-depot location routing problem with
uncapacitated depots. In our study, we deal with a 2-layer multi-depot LRP with
unlimited throughput capacities. Tiiziin and Burke [23] explain that this problem
belongs to the class of N&-hard problems. Once the locations of the facilities are
determined, this is, once the uncapacitated FLAP is solved, the LRP reduces to a
multiple depot VRP. Tiiziin and Burke cite the work of Cornuejols et al. [27] who have
shown that the FLAP belongs to the class of /#-hard optimization problems. Similarly,
they refer to Karp [28] and Lenstra and Rinnooy Kan [29] who have proven that even
the single depot VRP is N/®-hard. Supported by these facts, Tiiziin and Burke conclude
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that the LRP is also an N/ P-hard problem. We propose a nested Lagrangian relaxation
scheme to provide lower bounds to the problem while an upper bound is obtained for
the problem using the tabu search heuristic. The tabu search heuristic takes the location
plan that comes from the Lagrangian relaxation as an input and solves a multi-depot
vehicle routing problem to constitute a feasible solution the complete problem. The gap
between the best upper bound and the best lower bound is used to assess the quality of

the solution scheme.



Chapter 3: Problem Description and Mathematical Model 11

Chapter 3

PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

The problem that we described in Chapter 2 takes its motivation from the real life
problems faced by local logistics firms. They operate a number of depots some of which
are their own property while the others have been rented by them. At the beginning of
certain periods, or when they sign new contracts with the customers on their portfolio,
they revise their operating depots. According to the locations and demands of their
customers they may decide to hire out their own depots, to leave some of the depots
they have rented before, or to rent new ones. In order to use a new depot, they have to
cover a certain opening cost. This opening cost comprises the sum of overhead charges
related to renting the depot, hiring new workers, moving or buying new equipment.
When they quit using a depot which was in service, they have to compensate the
overhead costs of laying off or transferring workers, and moving out of the depot. The
sum of these cost items constitutes the closing cost of a depot. They also consider such
depot operating costs as wages and social packages offered to the workers and
maintenance costs. These may vary from depot to depot depending on the quality of the
workforce or on the regulations applying to the region of the depot. They adopt the
location plan which minimizes the sum of total opening, closing and operating costs of
depots plus the traveling cost between depots and customers. This case of the logistics
firms turns out to be a location routing problem since the location and routing decisions
are made simultaneously.

In our study, we model and solve the problem where the depots to be in service are
selected among a number of operating and candidate depots, and the routes to visit the

customer locations are determined with the assumption that there is no limit on the
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depot capacities. The problem can be represented as 2/T according to Laporte’s [7]
classification of LRPs. It means there are two layers; namely, depots and customers
where the transportation between these layers is realized via tours (vehicle routes)
rather than direct shipments.

In the problem we are dealing with, there exist two kinds of depots: present and
candidate. Present depots are the ones that are already operating. We (the logistics firm)
have the option to close these depots at a fixed cost which amounts to the overhead
costs of closure minus the salvage value of the depot if there exists one. Candidate
depot locations are potential sites where new depots can be opened. When we decide to
start operations in one of these potential depot locations, we have to pay a fixed opening
cost. In addition, for each depot in service a fixed operating cost is incurred as well.
There is no capacity constraint on the throughput of depots. We assume that there is an
unlimited number of vehicles with the same capacity (homogeneous vehicle fleet)
where for each one deployed a fixed acquisition cost is charged. Each customer has a
deterministic demand which is to be satisfied by a single visit of the assigned vehicle.
This means split deliveries are not permitted. We assume that the network of candidate
and present depot sites and customer locations forms a complete graph where each node
is directly accessible from another. In case there exist more than one depot in service,
any customer can be served on a route originating from any of the depots. However,
each route should start and end at the same depot.

In the problem, we determine

1. the number and locations of depots,

11. which customer will be served by which depot (the assignment of customers
to depots),

1. on which routes the customers will be served

minimizing the sum of
1. opening, closing, and operating costs of the depots,
11. total vehicle acquisition cost

iil. total traveling cost.
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For the multi-depot location routing problem that we have described, we give below

a mathematical model preceded by its notation.

Notation:
Sets:
IC : set of customers
ID : set of depots
ID,es : set of present depots
ID.4nq : set of candidate depots
1 : set of all nodes (/C v ID)

Binary Decision Variables:

xj 1 if node j is visited after node i on a route originating from depot &, 0
otherwise.

vi : lifdepot k is in service, 0 otherwise.

ox 1 if customer i is assigned to depot &, 0 otherwise.

Parameters:

FC; : the opening or closing cost of depot &

OC : the operating cost of depot k

VCy : vehicle acquisition cost for depot &

c;j :traveling cost of one vehicle from node 7 to node j

QO  :uniform vehicle capacity

L(S) : the optimal solution to the one-dimensional bin packing problem where the
bin length is equal to the vehicle capacity O, and demand values d; (i € IC)

are the sizes of the items to be packed into the bins.



Chapter 3: Problem Description and Mathematical Model 14

P:
Min > OC,y,+ D, FCy,+ D, FC(1=y)+D>. > VCx,+ D> > ¢c;x, (3.1
kelD kelD, 4 keIme. ielD jelC kelD iel jE]
i#]
subject to:
> 5, =1 VielC (3.2)
kelD
D X, =0, VielC, Yk e ID (3.3)
]:e{Cu{k}
J#i
> X, =0, VielC, Yk e ID (3.4)
]:e{Cu{k}
J#i
D X=X Vie ID,Vk e ID (3.5)
ielC ielC
IDRTEDIDIPILALE (3.6)
kelD ielC kelD ielC _je{C
i#]
DD <IS|-L(S) vSclic, |§=2 (3.7)
kelD ieS /eS
J#I
> 5, <|ICly, Vk e ID (3.8)
ielC
X, €401} Viel,Vjel,VkelD (3.9)
é‘ik,yke{o,l} Viel,VkelD (3.10)

The model structure can be expressed in plain English as follows:

Minimize Zp = X FLAP Objectives + X MDVRP Objectives
Subject to: i) Pure FLAP constraints
1) Pure MDVRP-TD constraints
iii) FLAP and MDVRP-TD coupling constraints.
The objective function of P shown in Equation (3.1) is a combination of objectives
of a facility location-allocation problem (FLAP) and a multi-depot vehicle routing

problem (MDVRP). The constraints are comprised of pure FLAP constraints, pure
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MDVRP constraints and coupling constraints linking routing decisions with location
decisions. The set of constraints in Equation (3.2) provides that each customer is
assigned to a depot. Equations (3.3)—(3.4) are flow conservation constraints which
guarantee all customers be visited exactly once on a route originating from the depot
they are assigned to. Equation (3.5) ensures that the numbers of incoming and outgoing
arcs at each depot are equal which means number of vehicles departing from a depot is
equal to the number of vehicles returning to it. Equation (3.6) is identical to the sum of
the constraints in Equation (3.2). In order to obtain the second subproblem as a
minimum spanning forest like problem after the Lagrangian relaxation, we add this
redundant constraint to the model. Equation (3.7) represents the well-known
exponential number of subtour elimination constraints which provide that the first and
last nodes in all routes are one of the depots. The assignment of a customer to a closed
or unopened depot, and routes originating from such a depot are avoided by Equation

(3.8). Finally, Equations (3.9)—(3.10) are integrality constraints.
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Chapter 4

THE LAGRANGIAN RELAXATION FOR MDLRP

4.1. Overview of the Lagrangian Relaxation Method and the Subgradient

Optimization

Lagrangian relaxation (LR) is a decomposition approach used for a variety of NV-

hard optimization problems. In this method, the true optimal objective value of the

problem Z; is bracketed between a lower and an upper bound [Z, Z,»] and M

b

Ib
1.e., the percentage gap between the final values of the bounds; is used to measure the
quality of the solution. In a minimization problem, the objective function value of a
good feasible solution found by a heuristic method constitutes the upper bound. The
lower bound is obtained from the solution of the Lagrangian relaxed problem. The
relaxed problem is formed by removing some of the constraints of the original problem,
penalizing them with a set of Lagrange multipliers A, and adding them to the objective
function. If the constraints set is exclusively comprised of linear functions, then the

Lagrangian relaxation can be represented as the following transformation.

L: min f(x) L': min f(x,A)
Ax<b A'x<b'
xeX xeX

A" and b' are obtained from 4 and b by deleting the respective rows that are associated

with the constraints to be removed for the relaxation.
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Geoffrion [30] proved that for any given value of multipliers A, the optimal

objective function value f,n(x, A) of L', namely Z;, is a lower bound for the true

optimal solution Z; of L. Since Z; is guaranteed to be equal to or higher than Z, the

final gap between the bounds (Z,, — Z;») cannot be lower than the gap (Z,, — Z; ).

The selection of constraints that will be dualized with Lagrange multipliers A and

embedded in the original objective function f{x) forms the resulting Lagrangian relaxed
problem L'. In order to achieve the tightest lower bound Z;, on Z;, one needs to obtain

the best Lagrange multipliers A~ by solving the problem in (4.1) .

Jmin(X, A*) =max f(x, L) 4.1)
A

The success of any Lagrangian method not only depends on how easy it is to solve
the relaxed problem L', but also on the method of obtaining the best multipliers A". One
method of Z;, improvement is the iterative subgradient optimization. The subgradient
vector of L' is given by the difference between left- and right-hand sides of the relaxed
constraints in L. This difference is to be calculated using the values of decision
variables in the current iteration g. The subgradient vector is used as the step direction
together with the multipliers iterate A, and as a step size to calculate the new iterate Ag+
of the next iteration g+1.

In vehicle routing and capacitated spanning tree problems solved by LR, a number
of other methods have been suggested that compute better values for the Lagrange
multipliers A so as to find tighter lower bounds on the original problem. In their paper
on the VRP with time windows, Kohl and Madsen [31] describe a bundle algorithm in
which a convex combination of previously obtained subgradients is used instead of a
single subgradient only. Gavish [32] suggests a dual ascent procedure followed by a
subgradient optimization procedure in his paper on centralized network design modeled

as a Capacitated Minimal Spanning Tree (CMST) Problem.
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The Lagrangian relaxation approach combined with the subgradient optimization
techniques have been shown to be useful in obtaining near-optimal dual solutions that
can provide lower bounds which are as good as (in some instances tighter than) the
lower bounds obtained by the standard linear programming relaxation.

When the Lagrangian relaxation is applied to the MDLRP model, the coupling
constraints in Equations (3.3)—(3.4) which combine the FLAP and MDVRP parts of the
problem are relaxed. The left-hand sides of the constraints are subtracted from their
right-hand sides. The differences are multiplied by the Lagrange multipliers, A and p
respectively, which are unrestricted in sign. The terms are then augmented into the
original objective function, and the new objective function Z,x(A, p) in Equation (4.2) is

obtained.

Zp(A )= 0Cy + Y FCy. + Y. FC(I=y )+, > VCx,+ 2. D> c;x,

kelD kelD,,,., keIme, ielD jelC kelD iel jel
i
IDIDND I CAEL AL I D IR G (4.2)
kelD ielC jelCU{k} kelD jelC ielCU{k}
J#i i)

When we rearrange the last two terms of the objective function as in Equation (4.3),
there remains no terms which connect location and routing variables. Consequently,

Z1r(A, p) becomes separable in FLAP and MDVRP parts.

Zp(A,)=D 0Cy + Y FCy+ D, FC(I1—y)+> > VCx;+ 2. D> c;x,

kelD kelD,,,.q keID,, . ielD jelC kelD iel jel
J#i
+z Z z é;k(ﬂjk+ﬁﬁk)_z Z z xijk(ﬂjk_i_ﬁ“[k) (4.3)
kelD ielC jelCU{k} kelD jelC ielCU{k}
J#i i#]

After the rearrangement, the structure of the Lagrangian relaxed problem LR(A, p)

can be written in plain English as shown below.
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LR(A, w): Minimize Zg(A, W) = > Augmented FLAP objectives (Zsupp1)

+2 Augmented MDVRP objectives (Zsupp2)

subject to:
1. Pure FLAP constraints (3.2), (3.8) (constraints of SubP1)
ii. Pure MDVRP constraints (3.5)—~(3.7) (constraints of SubP2)
iii. Nonnegativity and integrality constraints (3.9)—(3.10)

The Lagrangian relaxed problem LR(A, p) can be partitioned into two independent
subproblems. The first subproblem resembles an uncapacitated FLAP (SubP1). The
second one is similar to a degree constrained minimum spanning forest problem
(DCMSF) (SubP2). We solve SubP1 with Cplex 10.0 in reasonable time. However,
SubP2 is still an N/&-hard problem, which is tackled with an augmented Lagrangian
relaxation by relaxing the degree constraints. The relaxed SubP2 becomes a minimum
spanning forest problem with a minimum number of outgoing arcs at root nodes
(depots). It is solved with a modified version of Prim’s minimum spanning tree
algorithm. Figure 4.1 displays the flow chart of the iterative subgradient optimization
procedure with the Lagrangian relaxation scheme applied to the parent problem P. The
flow chart’s segment in the box indicates the inner augmented Lagrangian relaxation
which is applied to the second subproblem SubP2. The upper bound for problem P is
obtained using a tabu search heuristic embedded in the iterations of the Lagrangian

relaxation. Therefore, the complete solution method is named [LR-TS].
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Figure 4.1 Flow chart of the Lagrangian relaxation Scheme for MDLRP
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4.2. The Lagrangian Relaxed Problem LR

The objective function of the Lagrangian relaxed problem; i.e., Ziz(A, p) is
separable into two components as FLAP and MDVRP objectives. In order to obtain two
independent components, Z;z(A, p) needs to be rearranged by dividing the relaxed
constraints that are augmented into the objective function into two parts, as shown in
Equation (4.3). Then the part which is stated in Equation (4.4) is added to the FLAP
objectives of Z;z(A, B), while the remainder is included in the MDVRP objectives. The
Lagrange multipliers that are added to the FLAP objective component represent pseudo
costs of allocating customers to depots. The part which is appended to the MDVRP

component, Equation (4.5), augments the traveling costs between nodes.

z Z Oy (L + i) (4.4)

ielC kelD

=20 2w+ ) 4.5)

ielC kelD

After reorganizing the terms of the objective function as in Equation (4.6), we
derive the 3-dimensional asymmetric and depot dependent traveling cost matrix
Corew=[(ci)""]. In this cost matrix, the vehicle traveling cost from node i to node j not
only depends on the distance between i and j, but also on the depot £ which sends off

that vehicle.

Zp(A )= OCy + Y FCy.+ D, FC(I1-y)+>, > (c; +VCi—u,)x,

kelD kelD,,, kEID, e, ielD jelC
+Z Z (¢ = )Xy + Z Z Z G —%k)xz—jﬁz Z Z Gy (R + Ay (4.6)
ielC jelD kelD ielC jelC kelD ielC jelCU{k}
i i

Let G(I,4) denote the complete weighted and directed graph of customers and
depots, i.e. 4 = {(iyj) € (Ix1),i#j}. Let (c;x)"" denote the cost of arc (i, j), if it is
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traversed with a vehicle dispatched from depot & € ID. Arc costs in G are then defined

as follows:
i (,)) e ICXIC,i#j,keID : (c;i)"" =cy— hik— W
ii. (i,j) e ICxID D) =i — Ay
iii. (i,j) e IDxX IC ()" =y — Wi + VG

iv. (1,j)) e IDXIC, ke ID,i#k : (cju)™" =+
v. (1,j) € ICXID,k € ID,j#k : (cjw)™" =+

The Lagrange multipliers which are multiplied by the binary decision variable x;;
are embedded into the cost matrix as arc costs. The vehicle acquisition cost is added to
the cost of the arcs which emanate from depots and go to customers. The rationale
behind doing so is that each time a depot node is directly connected to a customer node
a new vehicle has to be acquired at the unit acquisition cost. The last two cost
assignments avoid illegal arc definitions. As we mentioned in Chapter 3, the binary
decision variable x;; takes the value 1 when node j is visited immediately after node i
on a route originating from depot k. If a vehicle visits node j after depot i, the route
cannot be originating from a depot k # i, k € ID. Also, if a depot node j is visited after
node i, the route cannot be originating from depot k # j, k € ID. Therefore, c;y 1s
assigned to infinity in these two cases in order to prevent x;; from taking the value 1.
After the construction of the new cost matrix C,.,, the Lagrangian relaxed problem

LR(A, ) can be stated as follows.

Min ZLR(/I’:U)ZZOCkyk—F Z FCy, + Z FCk(l_yk)+zzé;k(ﬁﬁk+ﬂik)

kelD kelD, ., KeID kelD ielC
new
193 ACREEH @)
kelD iel jel

J#i

subject to: (3.2), (3.5)—(3.10)
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The Lagrangian relaxed problem is solved with a subgradient optimization
procedure in order to obtain a lower bound (Z;;) for Z;, the true optimal solution of the
main problem P. We use a tabu search heuristic to find a good feasible solution whose
objective value will be an upper bound (Z,;) on Z;. This upper bound is updated

throughout the subgradient iterations of the Lagrangian relaxation. The details of the

upper bound generation and updating method are explained in Chapter 5.
4.3. Subgradient Optimization in the Lagrangian Relaxed Problem LR

Iterative subgradient optimization is one of the common methods of obtaining the
best Lagrange multipliers that are hoped to produce the tightest bound on the original
problem’s true optimal objective value. The aim is to update the Lagrange multipliers of
the current iteration, and use them in the next iteration of the subgradient optimization.
Kohl and Madsen [31] remark on the easy implementation advantage of subgradient
optimization. They state that it usually gives rapid improvement in the first iterations.
Though, the convergence slows down later, and for some difficult or large problems
convergence in a reasonable computing time is not possible.

Let SG? denote the subgradient vector of the problem LR(A, p) at iteration g of the

subgradient optimization procedure. Step size s? is then derived from the norm square

of SG? and the gap between the current best objective Z‘ (upper bound on Z;) and

current Lagrangian objective Z,. It is multiplied also by a scalar A? whose first value

A' is 2.0 by convention (see Fisher [33]). This scalar is halved whenever the objective
Zr does not improve for a specified number of consecutive iterations. At the beginning,
we set all Lagrange multipliers to the initial value zero. Formulae of the subgradient

optimization routine for the Lagrangian relaxation of problem P are given below.

(SGH =(5,)" = D, (x,)" VieIC,Vk e ID (4.8)
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(SGLY =8, = 3 (x,)° Vie IC,Vk € ID 4.9)
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As mentioned in the previous section, Z;, has two components. The FLAP part of
the objective function comes from the optimal solution of SubP1. The second part
comes from SubP2 which is tackled by an augmented Lagrangian relaxation scheme.
Then the values are added up to constitute Z;, . Before the subgradient optimization
procedure starts, we generate a greedy initial solution for the complete problem. The
upper bound Z? is assigned to the objective value of this quickly obtained initial
solution, for which we assume that all present depots are in service, and solve a
MDVRP for the remainder of the problem. The solution is accomplished by a method
called [PFIH-NN] proposed by Aksen and Altinkemer [34]. It is a hybrid of Push
Forward Insertion and Nearest Neighborhood methods explained in 5.1.1 and Appendix
A. In the subsequent iterations, the upper bound comes from a tabu search method
which solves a MDVRP for the location part of the solution of SubP1. This part of the

SubP1 solution reveals namely the facilities of the problem that will be in service.
4.4. FLAP-like Subproblem SubP1

The first of the two subproblems of LR(A, p) is the FLAP like problem SubP1. The

formulation of SubP1 can be stated as follows.
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Min Z,,p, = Z OC.y, + Z FCy, + z FCk(l_yk)+Z zaik(ﬂ’ik + M)
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subject to: (3.2), (3.8), (3.10)

The technological coefficients matrix of SubP1 is unimodular. For that reason we
know that the decision variable oy takes integer values even if it is not defined as an
integer decision variable. So we can define J;’s as nonnegative continuous decision
variables between 0 and 1 instead of binary variables. Furthermore, the constraints in

Equation (3.8) should be disaggregated as 6, <y, Vie IC, Vk e ID. This way, we get

a formulation with less integer variables, which in turn yields significantly better
solution times for SubP1l. In SubP1, the depots to be preserved or opened are
determined, and customers are allocated to these. Each depot has its operating (OCy)
and opening cost (FCy). FCy is incurred when a candidate depot is opened or when a
present depot is closed. F'Cy, of the present depots is generally negative corresponding to
the savings in overhead costs and to the salvage value accrued by closing the depot. The
Lagrange multipliers A and p embody allocation costs of customers to depots. These
costs change as the Lagrange multipliers get updated during the subgradient
optimization iterations on the Lagrangian relaxed problem. At the beginning of each
subgradient iteration, allocation costs are plugged in and SubP1 is solved with Cplex to
optimality. The solution times are generally reasonable. A problem instance with 20
depots and 1000 customers takes 2.84 seconds on a present-day desktop PC. Note that
the location part of the SubP1 solution is used by the tabu search procedure as an input

telling which depots are going to be used in the MDVRP.
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4.5. Minimum Spanning Forest-like Subproblem SubP2
4.5.1. Mathematical formulation and characteristics of SubP2

The second subproblem of LR(A, p) is SubP2 which resembles a degree and
capacity constrained minimum spanning forest problem (CMSF). The cost matrix C,,,
comprises the coefficients in the objective function of the subproblem. Since the
Lagrange multipliers A and p are embedded in this matrix and since they change at each
subgradient iteration, C,., is to be calculated over again at the beginning of each

iteration. The mathematical formulation of SubP2 can be stated as follows:

Min Zgp = 2 DD ()" " X (4.14)
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subject to: (3.5)—(3.7), (3.9)

In SubP2 depot locations k € ID represent center nodes, while customers i € IC are
terminal nodes. The terminals should be accessible from one of the center nodes via a
subtree rooted at that center. Equation (3.5) enforces that the numbers of outgoing and
incoming arcs at each center node be equal. This balance-of-in-and-outdegree condition
differentiates SubP2 from the classical MSF. Capacity and subtour elimination
constraints are given in Equation (3.7). The capacity constraint requires that the total
demand on a subtree rooted at a center node do not exceed Q, the standard vehicle
capacity in the main problem P. Equation (3.6), which is actually equal to the sum of
the constraints stated in Equation (3.2), provides connectivity of the tree. As we
mentioned in Chapter 3, (3.6) is added to the problem in order to solve SubP2 as a
MSF-like problem. Otherwise, we would have SubP2 as a more relaxed problem which
in turn would yield low quality lower bounds and high gaps. Equation (3.7) avoids the
formation of subtrees which are not linked to any of the center nodes. Since the
constraints in Equations (3.3) and (3.4) are relaxed, any node can have more than one

offspring nodes.
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4.5.2. Augmented Lagrangian relaxation for SubP2

If the balance-of-degree constraints in Equation (3.5) are discarded, and if the
number of depots in /D is dropped to one, SubP2 would reduce to the capacitated
minimum spanning tree (CMST) problem. Papadimitriou [35] showed that CMST is an
NP-hard problem. Consequently, SubP2 also belongs to the N/¥-hard class. In order to
solve SubP2 we use the method proposed in Aksen and Altinkemer [26] where the
augmented Lagrangian relaxation method of Gavish [32] is adopted and modified to
tackle the balance of degree constraints. Gavish’s CMST formulation is very similar to
our SubP2’s formulation in that both have an exponential number of subtour
elimination and capacity constraints. Gavish’s paper [32] on the CMST problem is a
pioneering study that combines an augmented Lagrangian and a subgradient
optimization procedure into one solution technique. An early effective use of
augmented Lagrangian based procedures was presented in Balas and Christofides [36]
for solving asymmetric traveling salesman problems.

The idea behind augmented Lagrangian relaxation is simply to generate and dualize
to-be-relaxed constraints dynamically as they are violated by the current iteration’s
Lagrangian solution instead of relaxing them all right away at the construction stage of
the Lagrangian problem. This kind of Lagrangian relaxation has been applied for the
classical VRP by Fisher [37], and for VRP-TW by Fisher, Jornsten and Madsen [38]. A
concise overview of Lagrangian lower bounds obtained in an augmented fashion can be
found in a study of branch-and-bound algorithms for vehicle routing problems in Toth
and Vigo [39]. The authors stress the main difficulty of most Lagrangian relaxation
schemes for the VRP, which comes from the exponential cardinality of the set of
relaxed constraints. This prevents one from including all of them explicitly into the
objective function. Instead, the process of augmenting the Lagrangian problem with
dynamically generated constraints as they are violated is iterated until no such

constraint is detected or a prefixed number of subgradient iterations have been
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executed. Slack constraints could be also purged from the Lagrangian problem during
subgradient computations to keep the problem size under control.

The augmented Lagrangian relaxation is applied to SubP2 as follows. We relax the
subtour eclimination constraints in SubP2, since this relaxation scheme achieves

empirically better lower bounds on Zg,,,,. First, the constraint set in Equation (3.7) is

divided into two parts as (3.7.a) and (3.7.b), the second of which is relaxed. Secondly, a
trivial constraint which sets the minimum number of vehicles required is added to the
original formulation as (3.7.c). This minimum number is calculated by solving the

associated bin-packing problem that embraces all demand values d,, i € IC.

PIDIPIE AN vScIC, 3|S|22 (3.7.)
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The relaxed constraint set (3.7.b) is multiplied with Lagrange multipliers a, a0 < 0.
Left hand side values are subtracted from their right hand sides, and the resulting terms
are augmented into the objective function of SubP2 in Equation (4.14). In order to
combine the embedded terms with Zg,,p, and to get a compact formulation for the
objective function of the problem after the Lagrangian relaxation we separate Equation

(4.14) into three parts as follows:

new
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(4.15)
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After appending the dualized constraints and making the necessary rearrangements,
the objective function and constraints of ALRSP? (the Lagrangian relaxed SubP2) can

be written as follows:

Min Zilftebpz (@)= > |:(ckik )”ew]xkik +2 2 [(Cikk )new:|xikk
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subject to: (3.5), (3.6), (3.7.a), (3.7.¢c), (3.9)

The last term in Equation (4.16) is constant for a given set of Lagrange multipliers

a. At first glance, there seems to be no use to include it in the optimization scheme and
one could incorrectly think of omitting the term from Z;+"*. However, the solution to

ALR®™ " will constitute a lower bound for the optimal solution of LR. Omitting the
constant term would overestimate or underestimate the lower bound depending on the
negativity of the term. Therefore we keep it in the objective function although it has no
effect on the minimization process.

Observe that S in the relaxed constraints represents any unordered subset of /C with
a cardinality greater than one, which requires two or more vehicles to deliver orders.
The set of such subsets is denoted by W. For each S € ¥, there is an associated
Lagrange multiplier o > 0. Let G;; denote the index set of subsets S in ¥ that contain
customer nodes i and j. The augmented Lagrangian relaxation feature is used here,
because we do not explicitly generate all constraints in Equation (3.7.b). Therefore, we
do not compute the entire multiplier vector @, either. The augmented Lagrangian

relaxed problem ALRS"*"

is equivalent to an MSF problem without capacity constraints
where the cost matrix C,.,, is dependent on the center node of departure. However, there

are two distinct restrictions in this MSF problem:
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i. The sum of outgoing degrees of all center nodes has to be equal to or greater
than ;¢ as required by the constraint in (3.7.c).

ii. At each center node, incoming and outgoing degrees should be equal as required
by constraints in Equation (3.5).

The solution of the problem ALR***"* is checked against the violation of constraints
in Equation (3.7.b) in SubP2. If any violated constraint is detected, it is added together
with its associated Lagrange multiplier to the set of active constraints and multipliers.
The objective function is augmented with the product of the difference between the
violated constraint’s right- and left-hand side values and the associated Lagrange
multiplier’s initial value. We do not remove previously augmented constraints from the
set of active constraints in the Lagrangian problem; neither do we generate any such
constraint for a second time. Another issue inherent in an augmented Lagrangian
relaxation is to determine an initial value for its associated dual multiplier of a newly
generated constraint. Typically at the beginning of subgradient iterations, Lagrange
multipliers are assigned to zero no matter of their sign restrictions. In an augmented
relaxation, however, dualizing a newly generated constraint with a zero multiplier
would have no effect on the Lagrangian objective value. The goal in a minimization
problem is to obtain a lower bound as tight as possible. This means a higher optimal
objective value from the Lagrangian problem is sought for. Gavish [32] explains a
sensitivity analysis technique to elevate the value of the Lagrangian objective function
by finding an initial multiplier value for every augmented constraint while maintaining
the optimality property of the Lagrangian solution before that constraint. With a few
modifications fitting the forest rather than tree structure in the problem, this sensitivity
analysis technique is adopted also into the augmented Lagrangian relaxation of our
problem SubP2.

Finally, the degree balance constraints in Equation (3.5) and the minimum sum
constraint in Equation (3.7.c) on the center nodes’ outgoing degrees should be reckoned
with. These constraints could have been relaxed and embedded into the Lagrangian

objective as well, leaving us with the multi-center node version of the well-studied
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minimum spanning tree (MST) problem. However, such a relaxation would excessively
loosen the parent problem SubP2, and this would make it even harder to close the gap

between the lower and upper bounds on SubP2’s true optimal objective value.

4.5.3. Solving DCMST-like problem ALR>**"*

The closest version of ALRS*"?

problem (DCMST). Garey and Johnson [40] prove that the DCMST with arbitrary

is the degree-constrained minimum spanning tree

degree constraints on nodes other than the center is N&-hard. In spite of copious
methods and algorithms developed for the DCMST in the literature, we cannot use any
of them as is due to the following reasons:
i. ALRS" displays a forest structure with asymmetrical and center-node
dependent costs

R%“"P2 relate to the balance of incoming

ii. The degree constraints that appear in AL
and outgoing degrees at the center nodes only.
There exists also a lower bound on the sum of outgoing degrees at the centers

RSP ig conceivably easier to

according to Equation (3.7.c). From this perspective, AL
solve than a general DCMST problem. Aksen and Altinkemer [26] develop a
polynomial-time procedure called [MSF-ALR] which is largely an adaptation of Prim’s
MST algorithm. They modify Prims’s algorithm to handle the balance-of-degree
constraints at center nodes as well as ensuring minimum number of outgoing arcs from
these center nodes. We take on their solution method for solving the problem ALR*“""
with some modification in the way the algorithm takes care of the extra constraints.
Aksen and Altinkemer’s algorithm first constructs a minimum spanning forest using an
algorithm like Prim’s algorithm without regarding the minimum total number of out
degree constraint on center nodes. Then the solution is controlled to discover whether
the constraint is violated or not. If the number of arcs emanating from the depots is less

then the minimum number of out degrees, new arcs between the depots and customers

are added to the forest. In order to select the arc that will yield the minimum additional
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cost when it is inserted to the solution, all the arcs between the center nodes and the
customers are scanned. The arc costs in ALR¥**"* are dependent on the depot node from
which the edges of the arc are accessible. Therefore, when an arc between a center and
a customer node which is previously accessible from another center node is considered,
all of the arc cost in the subtree succeeding the customer is recalculated. The change in
the total of arc costs in the subtree is taken into account as well as the cost of inserted
arc. After the minimum total outgoing degree at center nodes constraint is satisfied,
returning arcs from the customers to the center nodes are inserted to provide the balance
of degree which is required by Equation (3.5). Our modification on the solution method
is in the way the minimum number of outgoing arcs from center nodes constraint is
handled. In order to avoid the prolonged solution time due to the recalculation of arc
costs in the subtrees, we propose a more practical way. At the beginning of the
algorithm we insert arcs to the forest as much as the minimum number of outgoing arcs,
with lowest cost. Once the constraint is satisfied, the rest of the forest is constructed
with the method of Aksen and Altinkemer [26]. The pseudo code of the algorithm can
be found in Appendix B.

4.6. Subgradient Optimization in the Augmented Lagrangian Relaxation

The subgradient vector Y is calculated according to the formulae given below. The
cardinality of the subgradient vector increases as the number of violated constraints
goes up. In the formulae, G? denotes the index set of those subtour elimination and
capacity constraints in Equation (3.7.b) which have been violated and thus generated
either in the current iteration ¢ or in a previous iteration. Each index r in G corresponds
to some subtree of customer nodes whose indices comprise a particular subset S in ¥ as

explained in 4.5.2. There are as many as |GY| constraints from Equation (3.7.b) relaxed

and augmented into ALRS"?, In Equation (4.19), s, denotes the step size of the

subgradient optimization, A’;,, is a scalar with the initial value 2.0, Z , 5, 18 an upper
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bound on the true optimal objective value of SubP2, and finally Z7,, s, is the current

augmented Lagrangian objective value. The scalar A, is halved whenever Z% ; q.p»)

does not increase for a specified number of consecutive iterations. S, in Equation (4.17)

indicates the 7" subset of customers in ¥ which are spanned by the same subtree.
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The upper bound Z,,p, for the MSF-like problem SubP2 is found at the

beginning of the augmented Lagrangian relaxation as follows. First, a capacitated
MDVRP is solved by a version of [PFIH-NN] where the algorithm is modified to
handle the costs structure in C,.,. All arc costs are calculated depending on the depot to
which the customer will be connected. The solution attained is definitely a feasible
solution for SubP2 since the corresponding MDVRP solution satisfies the capacity,
connectivity and balance of degree constraints in SubP2. Moreover, a returning arc to a
depot in SubP2 need not originate from the last customer on the respective route.
Exploiting this fact, we apply a myopic improvement procedure for each depot. We
search the arc with the lowest cost that connects the depot to one of the customers on
the same route. If that arc is different than the currently defined returning arc, the

current one is replaced by the lowest-cost arc found.
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Chapter 5

GENERATING UPPER BOUNDS FOR P: THE TABU SEARCH HEURISTIC

We use a tabu search (TS) heuristic integrated into the Lagrangian relaxation
scheme in order to generate upper bounds for the optimal solution of the comprehensive
location routing problem. TS is an iterative meta-heuristic algorithm first proposed in its
present form by Glover [41]. It guides the local search to prevent it from being trapped
in premature local optima or in cycling. It starts with an initial solution which is
generally obtained by a quick constructive heuristic algorithm. At each iteration of the
TS, a neighborhood of solutions is generated for the current solution. The best one from
this neighborhood is picked as the current solution depending on a number of criteria.
Certain attributes of previous solutions are kept in a tabu list which is updated at the end
of each iteration. The selection of the best solution in the neighborhood is done such
that it does not attain any of the tabu attributes. Best feasible solution so far (incumbent)
is updated if the current solution is both feasible and better than the incumbent. The
procedure continues until one or more stopping criteria are fulfilled.

At each subgradient iteration of the outer Lagrangian relaxation of P, first the
facility location allocation problem SubP1 is solved. The solution obtained for SubP1
reveals the depots that are preserved and newly opened, as well as which customers are
allocated to which depots. For upper bound generating procedure, we only take facility
location plan part of this solution. Once the facilities in service are known, the
remainder of the problem becomes a MDVRP any feasible solution of which constitutes
an upper bound to P. Each time a new depot location plan is obtained by solving

SubP1, a tabu search (TS) heuristic solving MDVRP is triggered in the hope of
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achieving a better upper bound for P. When the Lagrangian iterations terminate, a

greedy method called Add-Drop heuristic starts in case the final gap is greater than 2%.
In our study, we adopted the tabu search procedure as proposed by Aksen et al. [42]

for the open vehicle routing problem with fixed driver nodes. We tailored the procedure

for the MDVRP, and enriched it with additional neighborhood generation moves.

5.1.  An Initial Solution for P

In order to generate an initial solution for our TS procedure, we tested on two
constructive heuristics. One of them is the [PFIH-NN] method proposed by Aksen and
Altinkemer [34], which is a hybrid of Push Forward Insertion and Nearest
Neighborhood heuristics. The second heuristic is a modified version of Clarke-Wright
parallel savings [CW] heuristic, which was first proposed for the single depot
capacitated VRP by Clarke and Wright [43]. We have adjusted the algorithm so as to
construct a good feasible solution to the capacitated MDVRP.

Since the former algorithm [PFIH-NN] exhibits an empirically better performance,
we have chosen [PFIH-NN] to construct an initial solution for the MDVRP when

necessary.

5.1.1. The [PFIH-NN] algorithm

In [PFIH-NN] customers are first assigned to the nearest depot. Then they are placed
in an array sorted in the non-decreasing order of a special cost coefficient. This
coefficient is calculated for each customer based on his distance to the assigned depot.
The customer with the lowest cost coefficient is appended to a route. The remaining
customers in the array are then chosen one at a time, and inserted into this first route
according to the cheapest insertion principle. When the next to-be-inserted customer’s
demand exceeds the spare capacity on the current route, a new route is initiated.

Before starting the subgradient optimization for P, we use [PFIH-NN] to find an

initial solution for the comprehensive MDLRP problem. In doing this, all of the present
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depots are assumed to be preserved, and the remainder of the problem is solved as a
MDVRP by [PFIH-NN]. When there exist no present depots, the candidate depot with
the least opening and operating cost is selected to be in service. A pseudo code of the

algorithm can be found in Appendix A.

5.1.2. The [CW] parallel savings algorithm for the MDVRP

This savings algorithm was first proposed by Clarke and Wright [43] for the single
depot capacitated VRP. It can solve an instance with 1,000 nodes in one second on a
fast modern-day desktop PC. Furthermore, it can be implemented without using
advanced data structures. Therefore it still remains popular to date. In this algorithm,
first a dedicated route is formed for each customer. Savings that will be obtained by
merging two routes are calculated for all pairs of dedicated routes. Then, routes are
merged starting with the pair that yields the highest savings. The algorithm is repeated
until none of the remaining mergers is feasible.

In order to construct a feasible solution for the MDVRP we append an allocation
phase at the beginning of the algorithm. In this phase, each customer is allocated to the
nearest depot. After determining which customer will be served by which depot, a
single depot capacitated VRP is solved using [CW] for each of the depots with more

than one customers allocated.

5.2. Evaluation of the Solutions

For a given location plan, the objective of the problem is to minimize the vehicle
acquisition and total traveling cost. In our tabu search method, we apply strategic
oscillation by admitting infeasible solutions where infeasible solutions are penalized in
proportion to the violations of capacity and time constraints. The penalty terms are
added to the objective value of an infeasible solution. This penalty is intended to
prevent the algorithm from spending too much time with exploring the infeasible

regions of the search space. Every 10 iterations, the number of feasible and infeasible
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solutions visited are compared. If the number of feasible solutions exceeds that of
infeasible solutions, penalty terms are divided by a factor of 1.5; otherwise penalty
terms are multiplied by 1.5. The purpose of dynamically adjusting penalty coefficients,
referred to as strategic oscillation, is to keep the search procedure around the boundary
of feasible and infeasible regions. Since good solutions are expected near this boundary,
exploring this region is likely to provide better solutions.

The objective value for a solution is obtained by Equation (5.1).

PIDIDITEIES W AAC (5.1)
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The first term is the total traveling cost containing the vehicle acquisition cost. This
cost can be appended to the costs of the arcs which connect depots directly to
customers. Every time an arc from a depot to a customer is included in the solution, a
new vehicle is needed. Thus, its acquisition cost is incurred in the cost of that arc. The
second is the penalty term for the routes that hold more demand than the vehicle
capacity. R is the set of all routes, V.(r) denotes the overload (total demand of
customers in route » minus vehicle capacity Q), and p. denotes the penalty coefficient
for overload on a route.

The best infeasible objective value is kept in memory during the procedure as well
the best feasible objective value. The best infeasible objective value is updated when a
feasible or infeasible solution with a better total cost is obtained. We utilize from this
value in the aspiration and stopping criteria which are explained in following

subsections.
5.3. Neighborhood Structure, Tabu Attributes and Stopping Conditions

In tabu search, at every iteration a neighborhood of the current solution is generated
by the use of some move operators. The move operators are defined actions which
generate neighboring solutions by altering one or more attributes of the current solution.

Some examples to these attributes can be the position of a node on a route, the depot
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that a customer is allocated, or the number of routes serving the customers. After the
neighborhood generation, the neighboring solutions that do not possess one of the tabu
attributes are examined, and the one with the best objective function value is set as the
new current solution. Depending on the configuration of the tabu search heuristic, one
can generate all possible neighboring solutions that can be obtained by the relevant
move, or one can restrict the neighborhood size to a certain number of solutions. The
decision depends on the trade-off between the solution time and solution quality. As
more neighboring solutions are generated, the possibility to come across a better

solution increases.

5.3.1. Move operators and neighborhood size

We use four move operators to create a neighborhood for the current solution. The
pictorial descriptions of the moves can be found in Figure 5.1 — Figure 5.8. Each move
involves two pilot nodes:

1-0 move : One of the pilot nodes is taken from its current position and inserted
after the other. (Figure 5.1, Figure 5.2)

1-1 exchange : Two pilot nodes are swapped.(Figure 5.3, Figure 5.4)

2-Opt move : For two pilot nodes in the same route, the arcs emanating from these
are removed. Two arcs are added one of which connects the pilot nodes, and the other
connects their successor nodes. If the pilot nodes are in different routes, then the route
segments following them are swapped preserving the order of nodes succeeding the
pilots on each segment. (Figure 5.5, Figure 5.6)

2-2 exchange : One of the pilot nodes and its successor are swapped with the other

pilot node and its successor. (Figure 5.7, Figure 5.8)
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Figure 5.1 1-0 move in same route

Figure 5.2 1-0 move between two routes

i+1

Figure 5.3 1-1 exchange in same route
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Figure 5.6 2-opt move between two routes
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Figure 5.7 2-2 exchange in same route

Figure 5.8 2-2 exchange between two routes

In our TS implementation, the size of the neighborhood is restricted because of time
consideration. The number of solutions generated in each iteration depends on the
number of operating depots and on the number of customer nodes in the problem. The
solutions are generated in a probabilistic manner. Before the generation of each
neighboring solution we choose one of the move operators with probability equal

probability. Then we randomly pick two pilot nodes from the problem space.
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5.3.2. Local post optimization

Besides neighborhood generation, we incorporate also a local search with these
moves into the tabu search as a tool of local post optimization (LPO). A series of LPO
operations are to be applied to the initial solution, to the current solution at the end of
every 100 iterations if it is feasible, and also to the incumbent (current best solution)
whenever it is updated. This helps the intensification of tabu search on the given
MDVREP instance.

In the application of LPO, all customers are set one by one as the first pilot node.
For a given pilot node, the second one is chosen such that the related move yields the
highest improvement in total distance without causing any infeasibility. Every time we
use local post optimization, we apply a sequence of five LPO methods. We have
determined the sequence of the LPO operations empirically according to the results of
extensive experimentation. We have tested 26 distinct sequences of four LPO methods
which are listed in Table 5.1. The tests have been conducted on 33 MDVRP problems

compiled by J.-F. Cordeau at the following web address: http://neumann.hec.ca/

chairedistributique/data/ .
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LPO Type 1 2 3 4 5

A 2-2 exchange  1-0 move 2-opt move 1-1 exchange 1-0 move

B 2-2 exchange 1-1 exchange 1-0 move 2-opt move 1-0 move

C 2-2 exchange  2-opt move 1-1 exchange 1-0 move 2-opt move
D 2-2 exchange 1-1 exchange 2-opt move 1-0 move 2-opt move
E 2-2 exchange 1-0 move 2-opt move 1-0 move 1-1 exchange
F 1-1 exchange  2-opt move 1-0 move 2-opt move 2-2 exchange
G 1-1 exchange  2-opt move 2-2 exchange 1-0 move 2-opt move
H 1-1 exchange  2-opt move 1-0 move 2-2 exchange 2-opt move

I 1-1 exchange  2-2 exchange 2-opt move 1-0 move 2-opt move

J 1-1 exchange 1-0 move 2-2 exchange 2-opt move 1-0 move

K 1-1 exchange 1-0 move 2-2 exchange 1-0 move 2-opt move
L 1-1 exchange 1-0 move 2-opt move 2-2 exchange 2-opt move
M 1-1 exchange 1-0 move 2-opt move 2-2 exchange 1-0 move

N 2-opt move 2-2 exchange  1-0 move 1-1 exchange 1-0 move

O 2-opt move 2-2 exchange 1-0 move 1-1 exchange 2-opt move
P 2-opt move 1-0 move 2-2 exchange 1-0 move 1-1 exchange
Q 2-opt move 1-1 exchange  1-0 move 2-2 exchange 2-opt move
R 2-opt move 1-0 move 1-1 exchange 1-0 move 2-2 exchange
S 2-opt move 1-1 exchange  2-opt move 2-2 exchange 1-0 move

T 1-0 move 2-2 exchange  2-opt move 1-1 exchange 1-0 move

U 1-0 move 2-2 exchange  1-0 move 1-1 exchange 2-opt move
A% 1-0 move 2-opt move 1-1 exchange 2-opt move 2-2 exchange
W 1-0 move 1-1 exchange  2-opt move 2-2 exchange 2-opt move
X 1-0 move 2-opt move 1-1 exchange 2-2 exchange 1-1 exchange
Y 1-0 move 1-1 exchange  2-opt move 1-0 move 2-2 exchange
7 1-0 move 2-2 exchange 1-0 move 2-opt 1-1 exchange

5.3.3. Tabu attributes

Table 5.1 LPO sequences tested

Tabu search heuristics make use of a list of attributes of the previously visited

solutions in order to prevent cycling. Some attributes of the solutions are decided to be

tabu during the design of the heuristic. These attributes of the visited solutions are kept
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in a tabu list. At each iteration, while choosing the best solution in the neighborhood of
the current solution, the neighboring solutions are checked whether they possess at least
one of the attributes declared tabu in the list. Tabu attributes of a solution generated by
a move can be stated as follows.

1-0 move : If node 7 is inserted after node j, the position of i cannot be changed
by the same move while it is tabu-active.

1-1 exchange : If nodes i and j are swapped, they cannot be swapped again while
they are tabu-active.

2-Opt move : If 2-Opt move is applied to nodes i and j, the move cannot be applied
again to the same nodes while they are tabu-active.

2-2 Exchange : If nodes i and successor of i are swapped with nodes j and successor
of j, these cannot be swapped again while they are tabu active.

The tabu list is updated at the end of each iteration. Some attributes are dropped
from the list, while the tabu attributes of the new current solution are added to the list.
The number of iterations during which an attribute stays in the tabu list; i.e., the
duration that the attribute is tabu-active is called tabu tenure. At each iteration, the tabu

tenure is chosen randomly between 5 and 15 iterations.

5.3.4. Aspiration criterion

In some cases, namely if the so-called aspiration criterion is satisfied, a neighboring
solution can be accepted although its attributes are tabu-active. In our tabu search
implementation, the aspiration criterion is considered to be satisfied if the total cost of
the neighboring solution resulting from the move is better than the incumbent’s
objective value. If the neighboring solution obtained is infeasible, it is compared with

the best infeasible solution.
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5.3.5. Stopping conditions

The tabu search heuristic terminates when any of two stopping criteria is satisfied.
First criterion is the total number of iterations performed. Second criterion is the
maximum permissible number of iterations during which the best feasible or the best
infeasible solution does not improve. Both values are determined based on the problem

size.

5.4. The Probabilistic Nature of the Proposed Tabu Search Algorithm

The tabu search algorithm proposed has probabilistic nature in selection of move
operators, determining the pilot nodes in a move and choosing the tabu tenure. The
values of these attributes are determined using uniform pseudo-random numbers which
are obtained by a linear congruential pseudo-random number generator designed by
Park and Miller [44]. The series of the pseudo-random numbers depends on an initial
random number seed. At the beginning of every single tabu search run, the initial
random number seed is taken from an array of 20 predetermined random number seeds
in sequence.

Since the sequence of the random numbers generated is reliant on the initial random
number seed, the seed have effect on the moves, pilot nodes and tabu tenure at each
iteration of the tabu search heuristic. Starting with the same initial solution but with
different seeds, the heuristic can come up with different final solutions. In order to
remove the effect of the initial random number seed, in some parts of the Lagrangian
relaxation method the tabu search is run several times with different seeds for a specific

location plan (6.4).

5.5. Add-Drop Heuristic

When the Lagrangian iterations terminate, an Add-Drop heuristic is applied to the
best feasible solution found if the final gap between Z,;, and Zj; is greater than 2%. First,

closed or unopened depots are added to the solution one by one; then, currently opened
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depots are dropped from the solution in a similar decremental fashion. The MDVRP is
solved with respect to each of these scenarios using the tabu search heuristic. Because
of the probabilistic nature of the tabu search heuristic, the tabu search is run for 10
times with different initial random number seeds. The best of the final solutions of the
10 runs is taken and compared with the best solutions of the other scenarios. If a better
feasible solution is realized, the new depot location plan is adopted, and the Z,, value
and the final gap are updated as well. A pseudo code of the Add-Drop heuristic is
provided in Appendix D.



Chapter 6: Computer Experiments and Results 47

Chapter 6

COMPUTER EXPERIMENTS AND RESULTS

6.1. More Details on the Proposed Solution Method
Stopping criteria of the Lagrangian relaxation

The mutually exclusive stopping conditions of the subgradient optimization for the
outer Lagrangian relaxation are defined as follows. If the number of subgradient
iterations performed exceeds 300, or if the number of consecutive subgradient iterations
during which the Lagrangian gap does not improve reaches 100, or finally if the amount
of absolute change in the Lagrange multipliers is not greater than 1.0e—7, the
subgradient optimization procedure for the problem P stops. The stopping conditions in
case of the augmented Lagrangian relaxation applied to SubP2 are satisfied if the
predefined limit on one of following parameters is reached: 150 subgradient iterations

performed in the augmented Lagrangian relaxation, the step size or the gap between

Zyswpry 04 Z 60, dropping below 1.0e-5, and finally 75 consecutive iterations

during which the gap does not improve.

The constructive heuristic to generate an initial solution for the tabu search

Tabu search is an improvement heuristic which starts with an initial solution and
searches for better ones throughout its iterations. Among the constructive heuristics
explained in 5.1, we adopted [PFIH-NN] to generate the initial solution at the beginning

of each tabu search run. [PFIH-NN] is also employed in order to generate feasible
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solutions for P at the beginning of the algorithm [LR-TS] and for SubP2 each time the

inner Lagrangian relaxation is called (4.3, 4.6).

LPO sequence

The local post optimization methods utilized are embedded into the tabu search as
an intensification tool. In the tabu search algorithm we designed, the LPO methods are
applied both to the initial solution at the beginning of the heuristic and to the best
feasible solution whenever it is updated. After extensive experimentation with 26
different sequences specified in Table 5.1, the sequence that is represented with the
letter L is selected. The sequence L is as follows: 1-1 exchange, 1-0 move, 2-opt move,

2-2 exchange, 2-opt move.
6.2. The Design of Computer Experiments

All of the codes for the proposed method have been written in ANSI C language,
compiled in Visual C++ NET and executed on a 3.20 GHz Intel Xeon processor with 2
GB RAM. To test the performance of the algorithm we have experimented on a test bed
of 96 problems composed of three parts. The first part includes 30 small size randomly
generated problems (R1) with 15-35 customers and 2—6 depots. The second part, the
larger problems (R2) consist of 30 randomly generated instances with number of
customers and depots ranging from 40 to 100 and from 4 to 6, respectively. The third
part of the test bed has been designated as TB. It takes in the 36 problems solved in
Tiiziin and Burke [23] which have 100-200 customers and 10-20 depots. The problems
in R1 have been also solved by Cplex 10.0 with a time limit of five hours. The best
integer solutions found by Cplex constitute benchmarks for the upper bounds obtained
by our method. The upper bounds obtained for the TB problems have been compared
with the solutions provided in Tiiziin and Burke [23]. We utilized a subset of the test
problems for the fine-tuning of the parameters of the tabu search and the Lagrangian

relaxation algorithms. In the remainder of this chapter, the details of the random
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problem generation procedure are first presented. Then the experiments for the fine-
tuning of the algorithmic parameters are explained. Finally, the results and some
conclusions are given for the problems of R1, R2 and TB along with the comparisons

with other solution methods.
6.3. Random Problem Generation

In order to evaluate the performance of the solution method and to study the
configuration of the algorithmic parameters, we randomly generated 60 LRP instances.
The number of customers in the problems ranges from 15 to 100, while the number of
depots changes between 2 and 6. We divide the test problems into two parts, as R1 and
R2, depending on the number of customers in the problem. The instances are created
using a generator program coded in ANSI C language. The program works based on
several parameters. The values of the parameters are provided by the user. The
parameters are explained in two groups as Type 1 and Type 2 parameters. In Table 6.1
the short forms, explanations and values of the Type 1 parameters are given. This group
contains the parameters which are set to the same value for all of the random test
problems. Table 6.2 shows the information for Type 2 parameters. This group of
parameters takes different values for different problems. The details of the random
problem generation process and the generated test problems are provided in Tables 6.1
to 6.5.

Among the parameters, distc denotes the distribution of the customer locations on
the problem space. The parameter U indicates that the customers locations are generated
using a uniform distribution. RU means the customers locations come from a
distribution that is rectilinear uniform on a specified number of equidistant longitudes
and altitudes. For the entire problems in which RU is used the number of equidistant
longitudes and altitudes are set as 2 and 3 respectively. Finally, C stands for “Clustered
Uniform around depots”. The vehicle capacity is assigned based on the sum of the

demands of the customers and the coefficient &, with the formula given in Table 6.1.
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The problems have been generated using 10 different values for the number of
customers (N¢). For each specific value of number of customers, two different number
of present-candidate depots (Npp-Ncp) was used. For each of the 20 N¢ — Npp — Nep
pairs, three problems with different spatial distribution of customer locations (distc)
have been generated (Table 6.3). The values of Type 2 parameters for each problem in
R1 and R2 are presented in Table 6.4 and Table 6.5, respectively.

In the assignment of the fixed depot opening-closing (F'C) and operating costs (OC)
we assumed that all the costs are projected to the daily time scale as the vehicle
traveling costs. We observed that it is reasonable to set the 'C and OC values equal to
approximately 10% of the total traveling cost in the problem. Also the vehicle
acquisition costs (VC) are projected to same time scale. In the average, the V'C values
correspond to 10% of the fixed depot opening-closing costs. Appendix E details the

calculation of F'C and OC values.

Parameter Explanation Value

Dimensions of the rectangular

W H problem space (width and height). W=300, H=250
Coordinates of the depot at the center B
(Foy0)  pihe problem space. (Xo.y0) = (0,0)
. Distribution of the locations of U : uniformly distributed in the
dist PD
present depots problem space
. Distribution of the locations of RU: rect1.11near uniform on o
distcp candidate depots specified number of equidistant
p longitudes and altitudes
d Demand of customers i Comes from a Continuous Uniform
! Distribution between [5,10]
S
0 Vehicle capacity 0= ik

Table 6.1 Type 1 parameters



Chapter 6: Computer Experiments and Results

Parameter Explanation Values used
Ne¢ Number of customers i; 4113:250()’,265(;,3800’,31500
Npp Number of present depots E 8: i’ 5
Nep Number of candidate depots i; i: i: 2’ ¢
FC Fixed opening-closing cost of [20, 45]

depots
ocC Fixed operating cost of depots  [25, 50]
Vc Vehicle acquisition cost 3,4

k Coecfficient for vehicle capacity 4.5,5,5.5,6,7

U : uniformly distributed in the
problem space

Distribution of the locations of RU : rectilinear uniform on specified

distc number of equidistant longitudes
customers .
and altitudes
C : clustered around the locations of
depots
SEED Initial random number seed. 27, 82, 951

Table 6.2 Type 2 parameters

Parameter # values
N¢ 10
distc 3
Ncp-Npp pair 2
TOTAL 60

Table 6.3 The problem generation pattern
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ID Nep Npp Nep distc SEED k
R1-1 15 1 2 U 82 4.5
R1-2 15 1 2 RU 27 4.5
RI1-3 15 1 2 C 951 4.5
R1-4 15 - 2 U 82 4.5
R1-5 15 - 2 RU 27 4.5
R1-6 15 - 2 C 951 4.5
R1-7 20 1 3 U 82 5
R1-8 20 1 3 RU 27 5
R1-9 20 1 3 C 951 5
R1-10 20 - 3 U 82 5
R1-11 20 - 3 RU 27 5
R1-12 20 - 3 C 951 5
R1-13 25 1 2 U 82 5
R1-14 25 1 2 RU 27 5
R1-15 25 1 2 C 951 5
R1-16 25 1 4 U 82 5
R1-17 25 1 4 RU 27 5
R1-18 25 1 4 C 951 5
R1-19 30 1 4 U 82 5.5
R1-20 30 1 4 RU 27 5.5
R1-21 30 1 4 C 951 5.5
R1-22 30 - 4 U 82 5.5
R1-23 30 - 4 RU 27 5.5
R1-24 30 - 4 C 951 55
R1-25 35 1 4 U 82 6
R1-26 35 1 4 RU 27 6
R1-27 35 1 4 C 951 6
R1-28 35 - 6 U 82 6
R1-29 35 - 6 RU 27 6
R1-30 35 - 6 C 951 6

Table 6.4 The Type 2 parameter values for R1
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1D Nep Npp Nep distc SEED k
R2-1 40 1 4 C 951 5
R2-2 40 1 4 RU 27 5
R2-3 40 1 4 U 82 5
R2-4 40 - 4 C 951 5
R2-5 40 - 4 RU 27 5
R2-6 40 - 4 U 82 5
R2-7 50 1 4 C 951 6
R2-8 50 1 4 RU 27 6
R2-9 50 1 4 U 82 6
R2-10 50 - 5 C 951 6
R2-11 50 - 5 RU 27 6
R2-12 50 - 5 U 82 6
R2-13 60 1 4 C 951 6
R2-14 60 1 4 RU 27 6
R2-15 60 1 4 U 82 6
R2-16 60 - 5 C 951 6
R2-17 60 - 5 RU 27 6
R2-18 60 - 5 U 82 6
R2-19 80 2 4 C 951 7
R2-20 80 2 4 RU 27 7
R2-21 80 2 4 U 82 7
R2-22 80 - 6 C 951 7
R2-23 80 - 6 RU 27 7
R2-24 80 - 6 U 82 7
R2-25 100 2 4 C 951 8
R2-26 100 2 4 RU 27 8
R2-27 100 2 4 U 82 8
R2-28 100 - 6 C 951 8
R2-29 100 - 6 RU 27 8
R2-30 100 - 6 U 82 8

Table 6.5 The Type 2 parameter values for R2
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6.4. Experimenting with Algorithmic Parameters

The maximum number of iterations in outer and inner Lagrangian relaxations, the
pattern of the tabu search heuristic implementation and the LPO sequence applied in the
tabu search have been finalized in accordance with the empirical findings of the tests

conducted. In this section, the details of the experiments and the results are explained.

Maximum number of iterations of outer and inner Lagrangian relaxations

The stopping conditions of the Lagrangian relaxation have been fine-tuned by
testing on 16 test problems. Since the solution times of the larger problems are not
practical for such experimentation, 10 of these problems have been selected among the
randomly generated test problems with the number of customers between 15 and 35.

The remaining 6 problems have been chosen from among the TB instances.

num__ out num__in
400 100
350 150
350 200
300 150
300 200
250 150

Table 6.6 Maximum number of iteration of inner and outer LR values tested

Six different combinations of the number of iterations in the outer Lagrangian
relaxation (num_out) and the number of iterations in the inner Lagrangian relaxation
(num_in) have tested on these 16 LRP instances (Table 6.6). The “num_out — num_in”
combination has been evaluated based on three criteria: the gap between the best

feasible objective value found and the objective of the benchmark solution, the final gap



Chapter 6: Computer Experiments and Results 55

between the best lower bound and the best upper bound found and the CPU time
elapsed. For 10 small test problems, benchmark results are the Cplex solutions while the
ones for the TB problems are the solutions found by Tiiziin and Burke [23].
Consequently, the maximum number of iterations in outer and inner Lagrangian
relaxation has been determined as 300 and 150, respectively, for a favorable

performance and reasonable solution time.

Two different patterns of tabu search implementation

In the comprehensive solution method proposed for the LRP, we make use of the
tabu search in order to find a good feasible solution. An MDVRP is solved by the tabu
search throughout the iterations of the outer Lagrangian relaxation and in the Add-Drop
heuristic (5.5). Because of the probabilistic nature of the tabu search algorithm (5.4), in
some cases the tabu search is run more than once starting with different initial random
number seeds. The best objective of these runs is taken as a remedy against the
probabilistic character of the heuristic. The decision of where and how many times to
apply tabu search depends on the balance between the solution time and the solution
quality.

In order to determine how to utilize tabu search during [LR-TS], we experimented
on two patterns. In the first one, the tabu search is run for once during the outer
Lagrangian relaxation whenever the solution of SubP1 reveals a new location plan. If
the Add-Drop heuristic is decided to be applied after the Lagrangian iterations
terminate, the tabu search is run once for every distinct location plan generated by the
add and the drop moves. After the Add-Drop heuristic the tabu search solves a MDVRP
10 times for the final location plan with different initial random number seeds. In
pattern 2, the tabu search is run for once during the Lagrangian relaxation iterations, as
well. However, when the Lagrangian iterations terminate, the tabu search is run 10
times for the particular location plan of the best feasible solution found. Then, if the
Add-Drop Heuristic is triggered, for each distinct location plan generated, the tabu

search works 10 times and the best solution of the 10 runs is adopted. This solution is
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compared with the ones of other location plans and if it is better than the best feasible
solution, the best upper bound is updated.

The two patterns are tried on the test problems which we utilize for fine tuning of
the maximum number of iterations in Lagrangian relaxation. We adopted Pattern 2, for

it provides better solutions with allowable increase in solution time.

Number of TS Number of TS
runs in Pattern 1 runs in Pattern 2

Through LR 1 1
End of LR - 10
Add-Drop 1 10
End of Add-Drop 10 -

Table 6.7 Two patterns of tabu search implementation through [LR-TS]

The selection of the constructive heuristic to generate initial solution and the LPO

sequence in tabu search

The constructive heuristic that generates an initial solution for the tabu search (TS),
and the LPO sequence applied to the initial and the incumbent solution have been
determined after experimenting on 33 MDVRP problems compiled by J.-F. Cordeau at

the following web address: http://neumann.hec.ca/chairedistributique/data/ .

First, [PFIH-NN] has been used as the initial solution generating method and the 26
LPO sequences listed in Table 5.1 have been tested. All MDVRP instances have been
solved 10 times by TS with different initial random number seeds utilizing each LPO
sequence (33 problems x 10 seeds x 26 sequences = 8580 runs). For each test problem
and LPO sequence, the average, maximum and the minimum objective values of 10

tabu search runs have been identified. Then, these values have been compared with the
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ones that were obtained with TS using other LPO sequences. The performance of a
given LPO sequence is evaluated based on the following three parameters:

n_min: The number of problems where the minimum objective value found by the
tabu search using that LPO sequence is lower than the ones obtained with the tabu
search using other LPO sequences.

n_max: The number of problems where the maximum objective value found by the
tabu search using that LPO sequence is higher than the ones obtained with the tabu
search using other LPO sequences.

n_avg: The number of problems where the average of the objective values found by
the tabu search using that LPO sequence is lower than the ones obtained with the tabu
search using other LPO sequences.

The three parameter values have been compared where the ones with higher n_min,
n_avg and with lower n_max are considered performing better. The priority was given
to the parameter n_min, while n_avg is checked second. In case these two parameter
values were equal for two or more LPO sequences, n_max was used for determining the
best. In accordance with the analysis of the test results which are depicted in Table 6.8,
the LPO sequences C and L are found to perform better than the others.

After determining the LPO sequences with better performance in the experiments
where the initial solutions of TS have been constructed with [PFIH-NN] heuristic, we
tested these LPO sequences with an initial solution provided by [CW] heuristic. The
very same method explained above has been used to evaluate the performances of
different LPO sequences. As shown in Table 6.9, the tabu search with an [PFIH-NN]
initial solution has performed better. Therefore, [PFIH-NN] is chosen as the initial
solution construction method while the LPO sequence L is utilized in the tabu search

heuristic.
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LPO Type n_min n_max n_avg

—_—
OOOOO

© S 0 0O 3 3 0o Ao

—_
==

—_
==

—_
e}
A O L L W B i W WL i &N W AN O N W DA BB B WP O W WL

N~ X< cHunwmOWOoOZICMNAR——=IZQ@WMmUOUAOw»
N
N W —= N = B W NN NN =N =N W=D Wh = = W=N

O O 9 O© 0 0 3 O

Table 6.8 The values of the performance parameters for 26 LPO sequences where the
initial solutions of TS have been found by [PFIH-NN] heuristic

LPO Type n_min n_max n_avg
C after [PFIH-NN] 10 3 9
L after [PFIH-NN] 10 2 9
C after [CW] 6 7 4
L after [CW] 7 4 2

Table 6.9 Comparison of performance parameters for LPO sequences C and L
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6.5. Results of Randomly Generated Test Problems

The proposed solution method [LR-TS] was first tested on the randomly generated
test problems in R1 and R2. All codes have been written in ANSI C, compiled and
executed in Microsoft Visual Studio .NET on a 3.20 GHz Intel Xeon® server with 2
GB RAM. For each test problems in R1, we have also constructed a GAMS model, and
solved it on the same platform to optimality where possible using the general-purpose
MIP solver Cplex 10.0. Each test problem’s optimal or best feasible objective value
found by Cplex makes a benchmark for the best feasible objective value obtained by
[LR-TS]. In GAMS models, the accuracy obtained by the employed solver is controlled
with a number of options. A relative optimality criterion (OPTCR) can be set for the
MIP master problem determining when the solver should terminate its branch-and-
bound (or branch-and-cut) procedure. OPTCR 1is defined as the ratio (|[BP—BF|) / (1.0e—
10 + |BF|) where BF is the objective function value of the current best integer solution
while BP is the best known (current) lower bound in case of minimization. The solver
stops trying to improve upon the integer solution BF when this ratio drops below the
specified value. The options used in our GAMS models are explained in Table 6.10.
The Cplex solutions are assessed using the gap between BF and BP calculated with the

ratio given above and referred to as %GAP2 in Table 6.11.

Option Explanation Value

Simplex algorithm iteration limit applied per node of

ITERLIM
the search tree.

5,000,000

NODELIM Max1paurn number of nqdes solved before ‘Fhe . 5,000,000
algorithm terminates, without reaching optimality.

OPTCR Relative optimality criterion for a MIP problem. 0.01

RESLIM  Solution time limit for the MIP solver. 5 hours

Table 6.10 GAMS/Cplex options in the mathematical models
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The Cplex solutions that serve as benchmark for the best upper bound found by
[LR-TS] to problems in RI1 belong to a different LRP model than P. We first
constructed GAMS models for the ILP formulation P which is given in Chapter 3 and
tried to solve with Cplex. However, with the available memory of 2 GB, Cplex was not
able to even execute the model for problems with 20 and more customers. We supposed
that the model could not be executed because of the exponential number of subtour
elimination constraints given in Equation (3.7). We replaced those constraints with the
ones shown in Equation (6.1). These are the alternative subtour elimination constraints
which are referred to as Lifted Miller-Tucker-Zemlin (MTZ) constraints for the VRP.
MTZ inequalities were first proposed by Miller, Tucker and Zemlin [45] for the
traveling salesman problem, and then extended by Kulkarni and Bhave [46] to the VRP.
Kara et al. [47] present in their recent note a correction for the lifted version of the

Miller-Tucker-Zemlin equations for the VRP.

U~U,+0x,+(Q~d,~d)x,<0~d, Vi jelC (6.1)

Cplex 10.0 was able to find integer solutions to the test problems of R1 solving the
GAMS models of the LRP formulations with MTZ equations. With the hope of finding
better solutions with Cplex, we also constructed and solved GAMS models with the 2-
index LRP formulation proposed by Bog [16]. The best integer solutions found by
Cplex solving the 2-index LRP formulation were better than the ones obtained by
solving the 3-index model. So we adopted the solutions of the 2-index model as
benchmark for [LR-TS]. The 2-index formulation of Bog [16] adapted to our
comprehensive problem P is provided in Appendix F.

In the tables, Zc,.. denotes the best feasible objective found by Cplex (BF), while
that of [LR-TS] is shown by Z,,. The best lower bound obtained by [LR-TS] for the
comprehensive location routing problem P is represented by Zj. %GAP1 and %GAP3
are computed as shown in Equations (6.2) and (6.3) while %GAP2 is taken from the
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GAMS output file. We make use of the ratios to assess the performance of the proposed
solution method in terms of both the upper bound and the lower bound found. In the
formulas the differences are used without taking the absolute values. Thus, %GAP3
taking a negative value means that, [LR-TS] has outperformed the Cplex solution in

terms of solution quality.

%GAP1 =100x 22— Zn (6.2)
b
Z. —Z
%GAP3 =100x —2 P (6.3)
Cplex

Except for the problems with 15 customers, the Cplex solver terminated due to
solution time limit without obtaining a solution that satisfies OPTCR. The randomly
generated test problems in R2 are not solved with Cplex, for with more number of
customers and depots Cplex is not expected to find comparable solutions in reasonable
time. For test problems in R1, the quality of the [LR-TS] solutions is measured by
%GAP1. The results obtained for the test problems in R1 and R2 are monitored through
Table 6.11 to Table 6.17. The solutions of [LR-TS] and Cplex as well the gaps
mentioned above are displayed in Table 6.11 and Table 6.12 for every single problem in
R1 and R2, if available. In Table 6.13 to Table 6.17, results are aggregated with respect
to the number of customers (N¢), the spatial distribution of customer locations (distc)
and the total number of depots (Np) in the problem. The average results for each of
those parameter triplets are examined in order to find out their effect on the solution
quality and the solution time. Observing the results in the tables, we derive some
conclusions about our solution method [LR-TS] and Cplex.

Cplex accomplished to find a feasible solution that satisfies OPTCR for three of the
problems in R1. For nine out of 30 problems Cplex comes up with solutions better than

[LR-TS], while the upper bound (best feasible solution) found by [LR-TS] outperforms
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the Cplex solution for 15 problems. If we examine the aggregated results in Table 6.13,
we observe that as the number of customers in the problem goes up, the number of
problems where [LR-TS] does better increases. When the number of customers reaches
35, Cplex cannot match [LR-TS] in any of the instances. On the average, the solutions
of Cplex are improved by 1.8% with the proposed method.

The value of %GAP2 monitors the gap between the best possible and the best
feasible solutions of Cplex, while %GAP1 serves the same purpose for [LR-TS]. The
average %GAPI1 is 4.27% for the problems in R1. In four of the problems it is lower
than 1% and in two of them higher than 10%. On the other hand, the average %GAP2 is
14.91% with 19 of the problems having a %GAP2 value above 10%. Table 6.14 shows
that in 24 out of 30 problems [LR-TS] has found better gaps in comparison with Cplex.
From the table one can also detect that the number of problems where %GAP1 is lower
than %GAP2 (i.e. Njx.7s7) increases as the problem size gets bigger.

When the results for problems in R2 are examined, a significant deterioration of the
gap between the best feasible objective value and the best lower bound of [LR-TS]
(%GAP1) is observed. The average %GAP1 is 16.27% for the problems in R2, while
the value remains under 5% for the problems in R1. The deterioration can also be seen
in detail in Table 6.15 and Figure 6.1, where the available results are aggregated for
problems with the same number of customers. The average gap grows with the problem
size. In Table 6.15 we can also observe that solution times get worse for bigger
problems which is depicted in Figure 6.2.

In order to evaluate its quality, the final lower bound Zj, is also compared against
the optimal objective value of the linear programming (LP) relaxation of the modified
2-index formulation found by Cplex. In other words, the gap between the solution of LP
relaxed problem and the upper bound provided by [LR-TS] is compared against
%GAP1. As the result of LP relaxation we obtain average gaps of 31.79% and 50.05%
for the problems in R1 and R2, respectively. It is observed that [LR-TS] provides

significantly better lower bounds in comparison with the LP relaxation where average
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%GAP1 is 4.71% and 16.27% for R1 and R2, respectively. The detailed results of the
LP relaxation of the LRP model are provided in Appendix G.

To see the effect of the spatial distribution of the customer locations, average results
have been computed for each distc values U, RU and C for the problems in R1 and R2,
both separately and together. We have not concluded any evidence of a correlation
between distc and the solution quality or the solution time. Finally, in Table 6.17, it is
shown that the solution quality as well the solution time deteriorate with the increasing
number of depots. However, the result is also related to the fact that the problems with
more customers also have more depots. The effect of the number of depots is examined

on TB test problems in the next section.
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1D Zlb Zub %GAP1 CPU(S) ZCplex %GAP2 %GAP3
R1-1 1075.58 1127.84  4.86 54.7 1127.84 0.10 0.00
R1-2 994.92 994.92  0.00 27.6 994.92 0.10 0.00
R1-3 805.16 909.72  12.99 45.0 909.72 0.10 0.00
R1-4 975.28 1027.14  5.32 53.5 1024.19 1.01 0.29
R1-5 1031.51 1074.68  4.19 48.5 1032.08 1.01 4.13
R1-6 1274.75 129196  1.35 29.2 1280.85 1.01 0.87
R1-7 1128.51 1148.72  1.79 38.2 1136.52 0.10 1.07
R1-8 1262.14 1317.96 442 96.7 1285.05 10.75 2.56
R1-9 1114.10 1138.72 2.21 158.1 1138.72 9.83 0.00
R1-10 1435.11 1442.48  0.51 155.1 1442.47 5.58 0.00
R1-11 953.04 1022.49  7.29 74.4 1442.47 5.57 -29.12
R1-12 1220.38 1220.48  0.00 52.5 1220.48 5.26 0.00
R1-13 1321.13 1402.44  6.15 261.6 1407.29 12.72 -0.34
R1-14 1244.53 1286.85  3.40 161.8 1271.85 15.98 1.18
R1-15 1204.01 1204.41  0.03 95.5 1210.09 11.52 -0.47
R1-16 1370.51 1418.18  3.48 241.8 1424.57 14.73 -0.45
R1-17 1367.03 1370.47  0.25 2413 1368.62  18.05 0.14
R1-18 975.77 1029.39  5.50 223.9 1050.80  19.40 -2.04
R1-19 1471.51 1525.03  3.64 356.8 1629.90  28.58 -6.43
R1-20 1348.73 144194 691 640.8 1432.56  30.06 0.65
R1-21 1093.31 1198.73  9.64 514.1 1175.44  19.58 1.98
R1-22 1511.43 1543.86  2.15 232.6 1599.46  23.98 -3.48
R1-23 1555.81 1611.87  3.60 482.0 1619.42  26.79 -0.47
R1-24 1386.08 1442.53  4.07 392.9 1472.70  14.57 -2.05
R1-25 1735.65 1812.81 445 945.1 1909.93 31.26 -5.08
R1-26 1362.82 1386.02  1.70 285.2 1408.74  31.75 -1.61
R1-27 1140.06 1255.75 10.15 978.4 1289.18  26.58 -2.59
R1-28 1658.61 1801.37  8.61 682.3 1844.70  25.45 -2.35
R1-29 1556.13 1634.60  5.04 582.4 1730.64 31.43 -5.55
R1-30 1081.08 118535 9.64 420.4 1244.89 24.54 -4.78
averages 1255.16 1308.96 4.27 285.7 1337.54 1491 -1.80

Table 6.11 Performance comparison between Cplex and [LR-TS] on the problems in R1
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1D Zip Zub %GAPI1 CPU(S)
R2-1 1206.44 1428.56 18.41 706.1
R2-2 1549.84 1649.62 6.44 1006.6
R2-3 1903.06 2144.55 12.69 825.3
R2-4 1708.44 1877.78 9.91 1025.9
R2-5 1770.79 1947.74 9.99 938.0
R2-6 1897.92 2221.40 17.04 1052.4
R2-7 1532.22 1700.76 11.00 3031.9
R2-8 1772.49 1997.27 12.68 2797.8
R2-9 2112.81 2357.29 11.57 2114.9
R2-10 1778.51 1973.15 10.94 754.8
R2-11 1635.76 1990.79 21.70 1084.0
R2-12 2114.33 2306.43 9.09 1660.3
R2-13 1617.15 1921.78 18.84 3017.2
R2-14 2084.90 2336.22 12.05 5425.5
R2-15 2130.51 2735.82 28.41 1594.5
R2-16 2103.90 2200.74 4.60 3468.8
R2-17 1890.00 2339.18 23.77 1984.5
R2-18 2115.01 2751.57 30.10 1231.7
R2-19 1781.52 1996.10 12.04 6285.8
R2-20 2286.75 2642.04 15.54 4571.5
R2-21 2585.78 3076.79 18.99 8182.5
R2-22 1945.81 2190.70 12.59 1909.6
R2-23 2308.77 2670.56 15.67 5315.8
R2-24 2488.13 3050.53 22.60 4343.4
R2-25 1952.80 2184.96 11.89 8800.0
R2-26 2369.93 2893.82 22.11 11337.7
R2-27 2691.79 3320.89 23.37 12650.4
R2-28 2032.33 2448.95 20.50 5026.9
R2-29 2324.22 2896.34 24.62 14666.7
R2-30 2741.77 3258.81 18.86 11207.8
averages 2014.46 2350.37 16.27 4267.3

Table 6.12 Results obtained for test problems in R2
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Nc¢ # problems Ncplex1 N[LR_TS]2

15 6 3

20 6 2 1
25 6 2 4
30 6 2 4
35 6 - 6

Table 6.13 Performance comparison for Cplex and [LR-TS] in terms of best feasible
solution

N¢ # problems Ncplex3 N[LR_TS]4

15 6 5 1
20 6 1 5
25 6 0 6
30 6 0 6
35 6 0 6

Table 6.14 Performance comparison for Cplex and [LR-TS] in terms of the gap between
the best feasible and the best possible solution found

Nc Avgzy  Avgzw  Avgcart Avgcru  AVEzcpiex AVEGaP3

15 1026.20 1071.04 4.79 43.06 1061.60  0.88
20 1185.55 1215.14 2.70 95.83 1277.62  -4.25
25 1247.16 1285.29 3.14  204.29 1288.87  -0.33
30 1394.48 1460.66 5.00  436.54 1488.25  -1.63
35 1422.39 1512.65 599  648.98 1571.35  -3.66
40 1672.75 1878.28 1241  925.69 - -
50 1824.35 2054.28 12.83  1907.28 - -
60 1990.25 2380.89  19.63  2787.03 - -
80 2232.79 2604.45 16.24 5101.44 - -
100 2352.14 283396 20.23 10614.92 - -

Table 6.15 Comparison of aggregated results for each N¢ value

! Number of problems in R1 that best feasible objective value found by Cplex outperforms that of [LR-TS]
2 Number of problems in R1that best feasible objective value found by [LR-TS] outperforms that of Cplex
3 Number of problems in R1that %GAP?2 is lower than %GAP1
* Number of problems in R1that %GAP1 is lower than %GAP2
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distc Avgzy  Avgzw  Avgourt AVEcru  AVEzepiex AVEGAP3
R1-U 1368.33 1424.99 4.10 302.2 1454.69  -1.68
R1-RU 1267.67 1314.18 3.68 264.1 1358.64 -2.81
R1-C 112947 1187.70 5.10 291.0 1199.29 -091
R2-U 2278.11 2722.41 19.27 4486.3 - -
R2-RU 1999.35 2336.36 16.46 4912.8 - -
R2-C 176591 1992.35 13.07 3402.7 - -

U 1823.22 2073.70 11.68 23942 - -
RU 1633.51 1825.27 10.07 25884 - -

C 1447.69 1590.03 9.09 18469 - -

Table 6.16 Comparison of aggregated results for each distc value

Np Avgzy  Avgzw  Avg€car2 AvEcru
2 1093.85 1131.26 3.62 43.7
3 1139.32  1179.07 3.91 103.1
4 1481.69 1583.40 6.13  490.7
5 1642.18 1844.67 11.58 1463.8
6 2120.36 2483.45  16.60  6398.9

Table 6.17 Comparison of aggregated results for each Np value
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Figure 6.2 CPU time elapsed (sec) versus the number of customers in the problem
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6.6. Results for Tiiziin-Burke Instances

Tliziin and Burke [23] propose a two-phase tabu search algorithm to solve the 2-
layer (single echelon) MDLRP where depots have unlimited throughput capacities.
They provide their solutions to 36 benchmark LRP instances and compare their
solutions with the SAV1 heuristic of Srivastava [22]. In order to compare the solution
quality of [LR-TS] with the benchmark solutions in the recent LRP literature, we solve
the 36 LRP instances of Tiiziin and Burke [23] with [LR-TS]. Since no present depots
exist in those test problems, Np in this section denotes the total number of depots which

comprise only candidate ones.

Nc Np # problems

100 10 6
100 20 6
150 10 6
150 20 6
200 10 6
200 20 6
TOTAL 36

Table 6.18 The main characteristics of the 36 LRP instances

The [LR-TS] results for each benchmark problem are provided in Table 6.19 along
with the solutions found by Tiiziin and Burke. The gap between Z,;, and Zj, is denoted
by %GAP1 and calculated with the formula given in Equation (6.1). %GAP2 represents
the gap between Z,, and Tiizlin and Burke’s solutions (Z73). It is obtained as shown in
Equation (6.4). If the gap is negative it means [LR-TS] has achieved a better solution

than the one provided in Tiiziin and Burke [23].
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%GAP2=100x 2w~ Zm.

TB

(6.4)

[LR-TS] updates Tiiziin and Burke’s solutions for 31 out of 36 problems. The
margin between our and their solutions which is represented by %GAP2 ranges
between 3.83% and -11.95%. On the average, Tiizlin and Burke results are improved by
an average margin of 3.75%. However, solutions times of [LR-TS] are significantly
higher in comparison with the CPU times of Tiiziin and Burke’s two phase tabu search
method. Although [LR-TS] provides lower bounds along with better feasible solutions
for the LRP, the solution times need to be improved appreciably.

%GAP1 which monitors the gap between the best upper bound and the best lower
bound found by [LR-TS] increases as the number of customers goes up. On the average,
the gap between Z,, and Zj, is 25.04% which is significantly higher than that of the
problems in R1 and R2. The minimum %GAP1 is 9.93% which is obtained in an
instance with 100 customers and 20 depots. The maximum %GAP1 which is 38.24% is
obtained in an instance with 150 customers and 20 depots. In order to evaluate the
contribution of the lower bound we provided, an alternative lower bound is obtained by
the linear programming relaxation of the LRP model. For this purpose, we have
employed the LRP model with 2-index formulation which is shown in Appendix F. The
reasoning of using the formulation is provided in 6.6. as well as Appendix F. The
percentage gap between the LP bound and Z,; (%GAPp)is compared with %GAP1.
%GAP;p values ranges between 28.46% and 107.03% with an average of 58.82%.

In order to monitor the impact of the number of customers and the number of depots
to the performance of the proposed solution method, the results are aggregated in Table
6.20. The charts in Figure 6.3 to Figure 6.9 illustrate the changes of %GAP1, %GAP2,
CPU times elapsed in [LR-TS] in connection with the number of customers and the
number of depots. Examining Table 6.20 and the charts closely, the following

conclusions can be derived:
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1.

As the number of customers in the problem increases, %GAP1 deteriorates.
Slightly better gaps are obtained for the problems with less number of depots,
but the increase in the number of depots does not appear to be as prominent as
that of the number of customers. Since the location-allocation problem part of
the LRP is solved by Cplex to optimality, the changes in the number of
customers seems to be much more liable for the complexity of the overall
solution method.

Neither the number of customers nor the number of depots shows a consistent
impact on %GAP2. We have not observed dependable evidence directing to the
impact of N¢ or Np on the gap between the best upper bound generated by [LR-

TS] and Tiiziin and Burke’s solutions.

The CPU time of [LR-TS] goes up with the number of customers which is
expected due to growing problem complexity. However, the solution times are
not affected by the number of depots as predicted. A slight decrease in the CPU

time is observed as the number of depots increases.
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ID Np N¢ Zy Zup %GAP1 CPU(s) Zrp %GAP2 CPU(s)
P111112 100 10 1283.09  1417.30 10.46 198753 1556.64 -8.95 5
P111122 100 20 1178.19  1410.04 19.68  10554.9 1531.88 -7.95 3
P111212 100 10 1140.54 140633  23.30 9562.8 1443 .43 -2.57 3
P111222 100 20 1186.54 1464.84  23.45 16420.2 1511.39 -3.08 4
P112112 100 10 1079.16  1209.88 12.11 14444.0 1231.11 -1.72 4
P112122 100 20 925.16  1019.44 10.19  18333.1 1132.02 -9.95 2
P112212 100 10 627.05 726.48 15.86 7158.2 825.12 -11.95 3
P112222 100 20 541.66 738.34  36.31 15391.9 740.64 -0.31 3
P113112 100 10 1069.98  1296.04  21.13 16432.6 1316.98 -1.59 3
P113122 100 20 105533  1160.09 9.93 12327.2 1274.50 -8.98 4
P113212 100 10 753.37 908.79  20.63 6190.9 920.75 -1.30 4
P113222 100 20 780.93 929.22 18.99  11696.9 1042.21 -10.84 3
P131112 150 10 1561.25  1869.43 19.74  52546.7 2000.97 -6.57 12
P131122 150 20 146580  1899.42  29.58  54043.2 1892.84 0.35 12
P131212 150 10 1589.11  2099.50  32.12 434722 2022.11 3.83 14
P131222 150 20 1438.10  1807.63  25.70  55900.3 1854.97 -2.55 13
P132112 150 10 1151.67 148829  29.23  42149.1 1555.82 -4.34 9
P132122 150 20 1144.07 1502.16 3130  59226.1 1478.80 1.58 12
P132212 150 10 959.29 123450  28.69  26122.6 1231.34 0.26 9
P132222 150 20 742.16 938.22 2642  69757.7 948.28 -1.06 9
P133112 150 10 1232.78 1667.65 3528  10469.4 1762.45 -5.38 9
P133122 150 20 1051.04 145297 3824 325403 1488.34 -2.38 9
P133212 150 10 930.82 117329  26.05  55394.5 1264.63 -7.22 10
P133222 150 20 97335 1189.44 2220  26393.2 1182.28 0.61 9
P121112 200 10 1747.10  2337.60  33.80 107893.1 2379.47 -1.76 22
P121122 200 20 1639.88  2176.88  32.75  75101.7 2211.74 -1.58 22
P121212 200 10 1800.51  2144.31 19.09 144487.6 2288.17 -6.29 23
P121222 200 20 1683.70  2303.29  36.80 122279.4 2355.81 -2.23 26
P122112 200 10 1591.88  2011.02  26.33 188714.8 2158.60 -6.84 20
P122122 200 20 1320.11  1757.52  33.13 206415.4 1787.02 -1.65 18
P122212 200 10 107933  1484.87  37.57  74098.2 1549.79 -4.19 18
P122222 200 20 1001.98  1094.71 925  76432.0 1112.96 -1.64 18
P123112 200 10 1576.96  2009.21 2741  72359.7 2056.11 -2.28 23
P123122 200 20 1433.07 1885.89  31.60 130101.3 2002.42 -5.82 20
P123212 200 10 149826  1783.77 19.06  159535.9 1877.30 -4.98 20
P123222 200 20 1064.47 1362.84  28.03  61384.5 1414.83 -3.67 17
averages 1202.71  1510.03 25.04  58478.1 1566.77 -3.75 12

Table 6.19 Performance comparison of [LR-TS] and TS of Tiiziin and Burke [23]
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Np N¢ Zi Zw  %GAP1 CPU(s) Zrg  %GAP2 CPU(s)
100 10 992.20 1160.80 17.25 12277.3 1215.67 -4.68 3.7
100 20 944.64 1120.33 19.76 14120.7 1205.44  -6.85 3.2
150 10 1237.49 1588.78 28.52 38359.1 1639.55 -3.24 10.5
150 20 1135.75 1464.97 2891 496435 147425  -0.58 10.7
200 10 1549.01 1961.80 27.21 1245149  2051.57 -4.39 21.0
200 20 1357.20 1763.52 2859 1119524 1814.13 -2.77 20.2
averages 1202.71 1510.03 25.04 58478.0 1566.77 -3.75 11.5
Table 6.20 Aggregated results for each N¢ and Np combination
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Figure 6.3 %GAP1 vs N¢ for two different Np values
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6.7. The Computational Time Elapsed by TS and LR Parts of [LR-TS]

The experimentation on 96 test problems revealed that the solution time of the
proposed algorithm needs to be improved. In order to figure out possibilities of
shortening the computational time, we have examined the computational time in detail.
In Tables 6.21-6.23, CPUjr-1s) denotes the solution time of the proposed method [LR-
TS]. The total times consumed by the tabu search and by the Lagrangian relaxation part
of the algorithm are denoted by CPUrg and CPUjp, respectively. The former includes
also the solution time of the Add-Drop heuristic. The latter, namely CPUy g comprises
the time for inner and outer Lagrangian relaxations as well as the time for the solution
of SubP1 with [PFIH-NN] heuristic whenever the inner Lagrangian relaxation starts.
The proportion of CPU time due to tabu search is given in column %CPUrs. Finally,
CPUrp in Table 6.23 represents the solution times of Tiiziin and Burke [23].

For the R1 problems, the tabu search comprises 47.4% of the solution time in the
average. As the problem size increases the time elapsed by the LR part increases
significantly, and the average %CPUrs drops to14.1% in R2 problems. In the case of
Tiiziin and Burke’s [23] problems, only 8.1% of the solution time is used for tabu
search. Examining the values in the tables, it is observed that the significant increase in
CPU|rr-1s] 1s due to the Lagrangian relaxation part of the solution method. In order to
find out the potential improvement points in terms of the solution time, the complete
Lagrangian relaxation procedure is reviewed. We see that at each iteration of the inner
Lagrangian relaxation a DCMSF-like problem is solved with the algorithm [MSF-
ALR]. We perform at most 300 outer subgradient iterations where at each of them a
maximum of 150 inner subgradient iterations are executed. As a result, the algorithm
[MSF-ALR] is executed at most 45,000 times throughout the complete solution method.

Note that our [MSF-ALR] implementation has an order of time complexity equal to
O(Né (N.+N,)) which is significantly high.

We believe that a better implementation of the [MSF-ALR] algorithm may achieve

less order of complexity, and this could possibly improve the CPU times of the
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proposed solution method. Furthermore, CPUrs is not comparable with CPUrg, which
points out the need for improvement also in the solution times of our tabu search for the

MDVRP.

D CPUjr1s;  CPUpr CPUrg %CPU+g

R1-1 54.7 23.0 31.7 57.9
R1-2 27.6 22 253 91.9
R1-3 45.0 2.0 43.0 95.6
R1-4 53.5 15.0 38.5 71.9
RI1-5 48.5 17.8 30.6 63.2
R1-6 29.2 3.9 254 86.8
R1-7 38.2 7.4 30.7 80.6
R1-8 96.7 20.4 76.2 78.9
R1-9 158.1 67.5 90.6 573
R1-10 155.1 125.9 29.2 18.8
R1-11 74.4 25.1 49.4 66.3
R1-12 52.5 14.2 383 72.9
R1-13 261.6 192.9 68.7 26.3
R1-14 161.8 114.1 47.6 29.4
R1-15 95.5 42.5 53.0 555
R1-16 241.8 138.3 103.6 42.8
R1-17 241.3 183.5 57.8 23.9
R1-18 2239 80.2 143.6 64.2
RI1-19 356.8 237.6 119.2 334
R1-20 640.8 576.4 64.3 10.0
R1-21 514.1 340.7 173.4 33.7
R1-22 232.6 121.8 110.8 47.6
R1-23 482.0 3943 87.7 18.2
R1-24 392.9 2823 110.7 28.2
R1-25 945.1 799.1 146.0 15.4
R1-26 285.2 220.9 64.3 22.6
R1-27 978.4 783.9 194.6 19.9
R1-28 682.3 4543 228.0 334
R1-29 582.4 452.6 129.8 223
R1-30 420.4 193.2 227.2 54.0
averages 285.7 197.8 88.0 47.4

Table 6.21 Computational times for R1 problems
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1D CPUpr.rs;  CPUr CPUrs  %CPUrs
R2-1 706.1 477.7 228.3 32.3
R2-2 1006.6 864.8 141.8 14.1
R2-3 825.3 595.5 229.8 27.8
R2-4 1025.9 895.7 130.1 12.7
R2-5 938.0 799.8 138.2 14.7
R2-6 1052.4 903.2 149.1 14.2
R2-7 3031.9 2627.6 404.3 13.3
R2-8 2797.8 2609.7 188.1 6.7
R2-9 2114.9 1806.1 308.8 14.6
R2-10 754.8 540.7 214.2 28.4
R2-11 1084.0 897.1 186.9 17.2
R2-12 1660.3 1291.4 368.9 22.2
R2-13 3017.2 2717.8 299.4 9.9
R2-14 5425.5 5097.7 327.8 6.0
R2-15 1594.5 1315.8 278.7 17.5
R2-16 3468.8 3223.6 245.1 7.1
R2-17 1984.5 1735.5 249.0 12.5
R2-18 1231.7 931.2 300.5 24.4
R2-19 6285.8 5602.8 683.1 10.9
R2-20 4571.5 4194.3 377.2 8.3
R2-21 8182.5 7671.5 511.0 6.2
R2-22 1909.6 1319.3 590.3 30.9
R2-23 5315.7 4788.1 527.6 9.9
R2-24 4343 .4 3719.0 624.4 14.4
R2-25 8800.0 8116.9 683.1 7.8
R2-26 11337.7  10648.2 689.4 6.1
R2-27 12650.4  11599.7 1050.7 8.3
R2-28 5026.9 4466.6 560.2 11.1
R2-29 14666.7  14025.5 641.2 4.4
R2-30 11207.9  10208.7 999.2 8.9
averages 4267.3 3856.4 410.9 14.1

Table 6.22 Computational times for R2 problems
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ID CPUjrrsy CPUg  CPUrs %CPUrs CPUrg
PI11112 198753 183316 15437 78 5
PI11122 105549 8313.1 22418 212 3
P111212 9562.8 8419.8 11430  12.0 3
PI11222 164202 148393 15809 9.6 4
P112112 144440 135853 8586 5.9 4
P112122  18333.1 157373 25958  14.2 2
P112212 7158.2 61145 10437  14.6 3
P112222 153919  13899.7 14923 9.7 3
PI13112 164326  15490.0 9426 5.7 3
P113122 123272 9707.0 26202 213 4
P113212 6190.9 52602 9307 15.0 4
P113222 116969 97257 19712 16.9 3
PI31112 525467 492672 32795 6.2 12
PI31122 540432  49999.1 40442 75 12
PI31212 434722 415977 18744 43 14
P131222 559003  51380.0 45203 8.1 13
PI32112  42149.1 402705 18787 45 9
P132122 592261 561621 30640 52 12
P132212  26122.6 246829 14397 55 9
P132222 697577 673923 23654 3.4 9
PI33112  10469.4 87919  1677.5  16.0 9
P133122 325403 294043 31360 9.6 9
P133212 553945 533889 20056 3.6 10
P133222 263932  24038.6 23546 89 9
PI21112  107893.1  103408.8 44844 42 22
PI21122 751017  65697.0 94047 125 22
PI21212  144487.6 1414627 30249 2.1 23
P121222 1222794  115925.1 63543 52 26
P122112  188714.8 1853957  3319.1 1.8 20
P122122 2064154 2012493 51661 2.5 18
P122212 740982 718982  2200.1 3.0 18
P122222 764320 723775 40545 53 18
PI23112  72359.7  69992.9 23668 3.3 23
P123122  130101.3 1222227 78786 6.1 20
P123212 1595359 1571703 23656 1.5 20
P123222 613845 559293 54553 89 17
averages  58478.1  55514.67 2963.29 8.1 12

Table 6.23 Computational times for TB problems
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! The problems are sorted first in increasing number of customers, secondly in increasing number of depots
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Chapter 7

CONCLUSION

In this thesis, we have studied a 2-layer (single echelon) discrete uncapacitated multi
depot location routing problem (MDLRP). The problem that we are dealing with takes
its motivation from real life problems faced by local logistics companies. They operate
a number of depots some of which are their own property while the others have been
rented by them. At the beginning of certain periods, or when they sign new contracts
with the customers on their portfolio, they revise their operating depots. According to
the locations and demands of their customers they may decide to hire out their own
depots, to leave some of the depots they have rented before, or to rent new ones.
Therefore, there exist two kinds of depots in the problem: present and candidate.
Present depots are already operating facilities that can be preserved or closed. Candidate
depot locations are potential sites in which a new depot can be opened. The problem
involves determining which present depots to preserve and which candidate depots to
open while allocating customers to depots and designing the vehicle routes to visit all
customers.

We propose a nested Lagrangian relaxation based method named [LR-TS] to solve
the MDLRP. An outer Lagrangian relaxation embedded in subgradient optimization
decomposes the parent problem into two subproblems. The first subproblem SubP1,
which is a facility location-like problem, is solved to optimality with Cplex 10.0. The
solution times are generally reasonable. A problem instance with 20 depots and 1000
customers takes 2.84 seconds on a present-day desktop PC. The second subproblem,
namely SubP2, resembles a capacitated and degree constrained minimum spanning

forest problem. It is tackled with an augmented Lagrangian relaxation. In the
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augmented Lagrangian relaxation that we apply to SubP2, the subtour elimination
constraints are generated and dualized only as they are violated by the current
iteration’s Lagrangian solution. This procedure is preferred to relaxing all of them right

away at the construction stage of the Lagrangian problem. ALR**""

, namely the
Lagrangian relaxed problem of SubP2 resembles a degree-constrained minimum
spanning tree problem. It is solved by a modified version of Prim’s minimum spanning
tree algorithm. This algorithm, called [MSF-ALR], was first proposed by Aksen and
Altinkemer [26]. Some modifications are made to the algorithm in the way they tackle
the additional constraints of the ALR*"* which do not exist in the classical degree-
constrained minimum spanning forest problem. The sum of the objective value of the
Cplex solution of SubP1 and the lower bound found for SubP2 by the subgradient
optimization scheme in the augmented Lagrangian relaxation constitutes a lower bound
to the true optimal solution of the comprehensive problem P.

Besides finding a lower bound, [LR-TS] generates a good feasible heuristic solution
the objective value of which makes up an upper bound for P. The feasible solution is
built using a tabu search heuristic implanted in the Lagrangian relaxation procedure.
The tabu search procedure for the MDVRP is designed by tailoring the OTS (Open
Tabu Serach) proposed by Aksen et al. [42] for the open vehicle routing problem with
fixed driver nodes. The procedure is also enriched with additional neighborhood
generation moves. The feasible heuristic solution to P is generated by solving an
MDVRP with tabu search as soon as a new location plan is revealed by the solution of
SubP1.

The proposed solution method [LR-TS] is first tested on 60 randomly generated
instances (30 small size instances designated as R1 and 30 large size instances
designated as R2). Subsequently, it has been tested on the 36 LRP instances solved in
Tiiziin and Burke [23]. We denote the set of these instances as TB. The parameters of
[LR-TS] are fine tuned in accordance with the results of experiments conducted on a
subset of the test problems. The performance of [LR-TS] is evaluated based on two

outcomes. First is %GAP1 which is the gap between the best lower bound and the best
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upper bound (Zj, Z,) obtained by [LR-TS]. The average %GAP1 is 4.27% for the
smaller test problems. For 28 of the problems %GAP1 is below 10%. The gaps of the
problems in R2 are higher where the average %GAP1 reaches 16.27% for this part of
the test problems. For the problems in R1, the final gap is also compared with the gap
between the best feasible and the best possible solution found by Cplex. We have
observed that for 24 out of 30 problems [LR-TS] has come up with better gaps than
Cplex. The quality of %GAP1 deteriorates for the TB due to growing problem size
where the average gap is 25%. The behavior of the final gap changing with problem
parameters is examined, and some conclusions are derived. As the number of customers
in the problem goes up, the quality of the gap found by [LR-TS] gets worse while the
solution times get longer. On the other hand, the performance of the [LR-TS] against
Cplex improves with increasing number of customers. No significant effect of the
spatial distribution of customer locations has been observed on the tested problems.
Alternative lower bounds for the test problems are found by solving the linear
relaxation of the complete LRP model to optimality with Cplex. The gap between the
LP bound and the best feasible solution of [LR-TS] is compared with %GAP1 values.
The LP bounds do not match the lower bounds found by [LR-TS] in any of the test
problems. The average gaps are 31.79%, 50.05% and 58.82%, for R1, R2 and TB,
respectively.

The second outcome that is utilized to assess the performance of [LR-TS] is the
objective function value of the best feasible solution achieved, namely Z,,. For
randomly generated test problems in R1, Z,;, is compared with the respective Cplex
solution while Tiizlin and Burke’s solutions constitute benchmarks for the instances in
TB. On the average, Cplex solutions have been improved by 1.8%. For 15 test problems
out of 30, [LR-TS] comes up with a better feasible objective value than Cplex. In case
of TB instances [LR-TS] updates the best feasible objective value in 31 test problems
out of 36. On the average, their solutions are improved by a margin of 3.75%. The
effect of increasing number of customers on the gap between Z,, and the benchmark

solution changes with the benchmarked method. The number of problems where [LR-
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TS] finds better solutions than Cplex increases with the number of customers in the
problem. However, we have not been able to observe a significant effect of N¢ on the
gap between our solutions and the solutions provided by Tiiziin and Burke. The
outcomes for TB problems are also examined in order to evaluate the impact of the
number of depots in the problem. %GAP1 decreases when the number of depots
increases and the number of customers is kept constant. Np does not seem to have a
consistent effect on the gap between Z,, and the respective solution found by Tiiziin and
Burke.

The proposed method [LR-TS] provides better feasible objective values for 70% of
the test problems in comparison with the benchmarked solution method. The main
disadvantage of [LR-TS] is its extremely high solution times. Although [LR-TS]
accomplishes to find a lower bound on the true optimal objective value of the problem
besides a heuristic solution, its CPU solution time needs to be improved in order to
compete with other methods. For problems with less number of customers, favorable
gaps are obtained while the gaps deteriorate considerably with growing problem size.

The results of the computer experiments not only assess the performance of [LR-
TS], but also point to new research directions. The next step would be solving the
MDLRP with time windows. This type of time restrictions is a crucial quality of service
(QoS) guarantee promised more and more often to customers in distribution logistics.
Finally, long solution times especially for problems with a customer number above 100
are a severe disadvantage of the proposed method. This might be overcome by a new
implementation of the modified Prim’s algorithm which is used for the Lagrangian

relaxed subproblem ALRS"",
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Appendix A. [PFIH-NN] Heuristic for Generating a Feasible Solution for MDVRP

[PFIH-NN] heuristic is used to construct a feasible solution for Multi-depot Vehicle

Routing Problem. In the proposed solution method it is used in three parts:

1.

[PFIH-NN] is run for once at the beginning of the main Lagrangian iterations
in order to find an initial value of the upper bound for P. All of the present
depots are assumed to be in service, a MDVRP is solved for the remainder of
the problem with [PFIH-NN]. In case there does not exist any present depots,
the candidate depot minimizing the sum of Euclidian distances from customers
to the depot is selected to be opened.

Each time the tabu search is triggered the initial solution is constructed using
the [PFIH-NN] heuristic.

In order to find an upper bound for SubP2, a modified version of the [PFIH-
NN] heuristic is utilized. SubP2 has a three dimensional asymmetric cost
matrix denoted as C,.,. The third dimension of the cost matrix implies that the
arc cost between two nodes is not only dependent on their locations in the
solution space but also on the depot which they are connected to. So all the
distance calculations in [PFIH-NN] heuristic for SubP2 are modified to take

the third dimension into account.
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[dist, ]

[Cik]

ac
R.

J
last(r)

spare(r)

un|
d

i

1D,

Cost,
succ(i)
pred(i)

Set of depots

Set of customers

Subset of customers initially assigned to depot j
Cardinality of subset N,

Coordinates of (customer or depot) k

Weight for the distance criterion

Weight for the polar coordinate angle

Polar coordinate angle of customer i with respect to the current depot
Uniform vehicle capacity

Unit vehicle acquisition cost at depot j

Matrix of distances between the nodes of the problem

Asymmetric matrix of traveling costs with vehicle acquisition costs
embedded

Cost coefficient used to convert miles traveled into dollars and cents
Set of routes that emanate from depot j

Index of the customer node last visited on route » (the depot node for an
empty route)

Spare capacity of the vehicle assigned to route »
Customer node i with k™ lowest cost value

Demand of customer i

Time deadline for the completion of service at customer i
Cost value for customer node i

Successor of customer node i on the pertinent route

Predecessor of customer node i on the pertinent route

Table A.1 Notations and symbols used in the pseudo code of [PFIH-NN]

Algorithm [PFIH-NN]

Step 0. Establish the cost matrix [C;] and embed vehicle acquisition costs into it, i.e.
set: Cﬁ = distﬁ + VCJ. Vield, Viel, C, :=dist, Viel, VkelJUJ.
From now on, proximity judgments will be made on the basis of this cost
matrix instead of the distance matrix.

Step 1. Assign each customer temporarily to the nearest depot and form the subsets

N,

s

Step 2. For VjeJ> N, #{}do:
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Step 3. For Vie ¥, do:

Compute the polar coordinate angle of customer node i with respect to its
depotJ, i.e. set:

Y=Y
xl.—xj

0. = arctan

Compute then the following cost expression:
Cost;:= —a- C; + y-i-C.. with a = 0.7 and y = 0.3
i i 20t ji
Sort the Cost; values in ascending order to obtain the sorted set

N, =iy, ips - i[nj]} for depot j. Set route index r = 1, spare(r) := Q, and
R, ={1}.

Step 4. Repeat until Nj = {}:

Step 4a. Select the first customer 7€V, that is capacity feasible. Append i,
to the current route r, set N, := N\ {i;;;} and i := iy, and update
spare(r) := spare(r) — d..

Step 4b. For all unrouted customers u (u € N,) and all edges (k, /) € r do:

Compute the cost of inserting unrouted customer u between
nodes k and / as follows:

INSERTION_COST(u, k, [) = C,,+C,,— C,

Step 4c. Match the “best” candidate node M*EJVJ. with the “best” candidate
edge  (k,!) € rsuch that the lowest INSERTION COST is incurred

If there does not exist such node u*, then set
BEST INSERTION COST := oo and go to Step 4d.

O/w let BEST INSERTION COST := INSERTION CosT(u’, k', 7).

Step 4d. Consider another “best” candidate node v € ¥, according to the

following metric: v':= argmin {Clasti). v
vedl,

} > spare(r) = d.,..

If there does not exist such node v*, then set
BEST INSERTION COST := o and go to Step 4e.

O/w let BEST _NEAREST_NEIGHBOUR_COST := C},,)

Step 4e. If there does not exist #' AND v, then go to Step 4f.
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O/w if BEST NEAREST NEIGHBOUR COST < BEST INSERTION COST,
then insert the edge (last(r), v ) to the end of route r.
Update r, spare(r) = spare(r)— d. ., last(r) := v and N = ./Vj \
{v}.
else ir*lsert the node " into the edge k', l*) between nodes & and
[ .Update r, spare(r) := spare(r) — d, and N, := N\ {u*}.

Also update the service completion times for the nodes /
and its successors on 7.

Go to Step 4c¢ to continue working on the same route » with the
remaining nodes in V.

Step 4f. If N, ={} then set j:=,;+1 and go to Step 2.

O/w enumerate the leftover nodes in JVJ such that the first node has

index 1, and begin a new route from depot j. Set r :=r + 1,
spare(r):=Q and R;:=R;n{r}. Go to Step 4.
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Appendix B. [MSF-ALR] Algorithm to Solve ALR"""*

S
U
A

outdeg(j)

indeg(j)
depot(i)
parent(i)
Zoutdeg(f)
Min_out

Current set of connected nodes.
Current set of unconnected nodes.
The arcs set of the current MSF.

The outgoing degree of a given store node j, i.e. the number of arcs leaving
store ;.

The incoming degree of a given store node j, i.e. the number of arcs entering
store j.

The ID of the depot node from which customer node i is accessible.
The ID of the parent node from which an arc directly enters into node i.
The current sum of all depots’ outgoing degrees.

Minimum number of outgoing arcs from depot nodes

Table A.2 Notations and symbols used in the pseudo code of [MSF-ALR]

Procedure [MSF-ALR]

Step 0. Using to the current vector of Lagrange multipliers o compute the matrix

C. = [cZzWJ as explained in 4.2.

Step 1. Put each depot node j € ID into S. They will be the roots of potential trees in

the MSF. Put each customer node i € [ into U. Initialize each customer node’s

parent(i) and depot(i) as zero. Set each depot node’s outdeg(j) and indeg(j) to

zero. Set the adjacency list of each node in the problem to the empty set {}.

Also initialize A to {}.

Step 2. Repeat until |S| = min_out

Step 2a. Find the node (k*, l*) € ID x U with the lowest arc cost (chl ka*)
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Step 3.

Step 4.

Step2b. Update S:=Sn {l}, U==U\{}, A:=An {(k,),and

7 SubP2 . SubP?

R =Zyr T cZ%Yj. Set parent(l ):= k , depot(l ):=k .

Step 2c. Add node I to the adjacency list of node k. Then increase
outdeg(k*) by one. Go to Step 2.

Repeat until U = {}:

Step 3a. Find the pair of nodes (k*, l*) € S x U with the lowest arc cost

(cj") where j is either & itself if k € ID, or denotes the depot

node ofk* if k*e L

Step3b. Update S:=Sn {{}, U=U\{I}, A=A {(k,! )}, and

ZSubP2 __ o SubP2

ur =2y T cl’c’flivj. Set parent(l ):= k , depot(l ):=].

Step 3c. Add node [ to the adjacency list of node k. Alsoif k e ID then

increase outdeg(k*) by one. Go to Step 2.

Restore the resulting MSF’s conformation to the center (depot) nodes’ degree

balance constraints in Equation (3.5). In doing so, select for each depot node j
e ID that customer node i with depot(i *) = j, whose connection to j would

yield the lowest-cost arc (i *, J). Repeat this selection for depot j until indeg(y)
matches outdeg(j), which was established in Steps 2-3.
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Appendix C. Pseudo Code of the Tabu Serach Algorithm for MDVRP

num_iter Number of iterations performed.
num_neigh Number of neighbors generated in current iterations.

Number of iterations through which the best feasible or the best

num_nonimp_iter . . . !
- P infeasible solution do not improve.

max_iter Maximum number of iterations.

Maximum number of iterations through which best feasible or best

max_nonimp_iter . . . .
- P infeasible solution do not improve.

size_neigh Number of neighboring solutions to be generated in an iteration.

Table A.3 Notations used in the pseudo code of tabu search

Algorithm Tabu Search
Generate an initial solution using [PFIH- NN] heuristic.
num_iter:= 0, num_nonimp _iter :=0, and num; :=1 (i=1,2,3).
While (num_iter < max_iter) AND (num_nonimp_iter < max_nonimp_iter) do
num_neigh := 0.
While (num_neigh < size neigh) do
Select one of the move operators with equal probabilities. Call this move £.
Select two pilot nodes randomly.
Generate a neighboring solution with pilot nodes and move «.

If the newly generated neighboring solution is not tabu and better than the best
neighboring solution, update the best neighboring solution.

If the newly generated neighboring solution is feasible and better than the
incumbent or it is infeasible and better than the best infeasible solution, update
the best neighboring solution and end loop

num_neigh := num_neigh + 1.
End While

Set the best neighboring solution as the current solution.
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If the current solution is feasible and also better than the incumbent,
update the incumbent and set num_nonimp_iter = 0.

If the current solution is infeasible, but better than the best infeasible solution,
update the best infeasible solution and set num_nonimp_iter = 0.

Decrement the tabu durations of all attributes by one.
Select the tabu tenure between 5 and 15 with randomly.

Make the attributes of the best neighboring solution tabu for as much as tabu tenure
iterations.

num_iter := num_iter + 1.
num_nonimp_iter := num_nonimp_iter + 1.

End While
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Appendix D. Pseudo Code of the Add-Drop Heuristic

BESTPLAN Location plan of the best feasible solution found

Flag variable indicating whether a feasible solution with better

ZUB TMPROVED 2. .
— objective value has been achieved

The best objective function value found for P through 10 tabu search
runs

TOTCOST

Denotes a present depot which is decided to be preserved
Denotes a candidate depot which is decided to be opened

Denotes a present depot which is decided to be closed

X O O w

Denotes a candidate depot which is not opened

Table A.4 Notations and symbols used in the pseudo code of Add-Drop heuristic

Procedure [ADD]

Step 0. Copy the current best depot location plan BESTPLAN onto another parameter
CURRPLAN.

Do
Step 1. Set flag variable zus_ IMPROVED:= NO.

Step 2. Scan all closed present depots (status “C”) in cCURRPLAN, and promote them
to “O” one by one.
For each resulting new depot location plan (NEWPLAN):
Step 2a. TOTCOST:= 0

Apply the tabu search heuristic 10 times with different initial
random number seeds. At the end of each run calculate the
objective function value of the comprehensive problem P. If the
new objective function is better update TOTCOST.

Step 2b. If rorcosT < Z,, then update Z ,:= TorcosT and BESTPLAN:=
NEWPLAN.
Also update flag variable zuB IMPROVED:= YES.



Appendix D: Pseudo Code of the Add-Drop Heuristic 100

Step 3. Scan all the candidate depot locations in which a depot is not established
(status “X”) in currpLAN, and promote them to “O” one by one. For each
resulting new depot location plan (NEwPLAN), repeat Steps 2a-2b in the
search for a better BEsTPLAN Which can give a tighter Z ;.

Step 6. If zus IMPROVED = YEs, then update CURRPLAN:= BESTPLAN.

While zuB_ IMPROVED = YES;

Procedure [DROP]

Step 0. Copy the current best depot location plan BESTPLAN onto another parameter
CURRPLAN.
Do

Step 1. Set flag variable zuB 1MPROVED:= NO.

Step 2. Scan all preserved present depots (status “P”’) in CURRPLAN, and demote
them to “C” one by one.
For each resulting new depot location plan (NEWPLAN):
Step 2a. TOTCOST:= ®©

Apply the tabu search heuristic 10 times with different initial
random number seeds. At the end of each run calculate the
objective function value of the comprehensive problem P. If the
new objective function is better update ToTcosrT.

Step 2b. If TorcosT < Z ,, then update Z ;= ToTcoST and BESTPLAN:=
NEWPLAN.

Also update flag variable zuB IMPROVED:= YES.

Step 3. Scan all candidate depot locations in which a depot is established (status
“0”) in CURRPLAN, and demote them to “X” one by one. For each resulting
new depot location plan (NEWPLAN), repeat Steps 2a-2b in the search for a
better BESTPLAN which can give a tighter Z .

Step 5. If zus 1MPROVED = YES, then update CURRPLAN:= BESTPLAN.

While zu IMPROVED = YES
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Appendix E. The Depot Costs of the Randomly Generated Test Problems

The random problem generator takes on two sets of parameters where each one
comprises a lower limit (L), an upper limit (U) and an increment (/) value. One of the
parameter sets is used for calculating F'C values while the second is used for OC values.
FCy and OCy values are calculated using the following formula where k € ID and randj

denotes a standart uniform random number; i.e., rand; € [0, 1).
FCk(OCk):ROUND(randk*(U#_L)j*]+L (A.1)

We have determined different L, U and 7 values for calculating 'C and OC for each
different Nc-Npp-Nep triplet, which are provided in Table A.6. For each Nc-Npp-Nep
triplet we have set a vehicle acquisition cost V'C in proportion to the fixed depot

opening-closing costs. On the average, V'C corresponds to 10% of the F'C.

N¢ Number of customers in the problem

Npp Number of present depots in the problem
Ncp Number of candidate depots in the problem
FC Fixed opening-closing cost of depots

ocC Fixed operating cost of depots

Vc Vehicle acquisition cost

Table A.5 Notation used in Table A.6
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Ve FC ocC
Ne Nepp Nep L U 1 L U 1
15 1 2 3 20 30 5 30 40 5
15 - 1 3 25 35 5 35 45 5
20 1 3 3 25 35 5 35 45 5
20 - 3 3 20 30 5 30 40 5
25 1 2 3 20 30 5 30 40 5
25 1 4 3 25 35 5 35 45 5
30 1 5 3 30 40 5 40 50 5
30 - 4 3 25 35 5 25 35 5
35 1 4 4 25 35 5 35 45 5
35 - 6 4 30 40 5 40 50 5
40 1 4 3 25 35 5 35 45 5
40 - 4 3 30 40 5 40 50 5
50 1 4 3 25 35 5 35 45 5
50 - 5 3 30 40 5 40 50 5
60 1 4 3 25 35 5 35 45 5
60 - 5 3 30 40 5 40 50 5
80 2 4 3 30 40 5 40 50 5
80 - 6 3 35 45 5 40 50 5
100 2 4 3 30 40 5 40 50 5
100 - 6 3 35 45 5 40 50 5

Table A.6 The fixed opening-closing, the operating and the vehicle acquisition costs of the

randomly generated test problems
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Appendix F. The 2-index LRP Model

The 2-index LRP model proposed by Bog [16] is adapted to our problem that is
described in Chapter 3. Bog has defined replicates of depot nodes, and names the first
set of the depot nodes as departure depots while referring to the others as arrival depots.
We have not preferred adopting this way of depot definition as is. In order to represent
the present depots and the candidate depot locations in our problem, we have defined
ID,es and ID. g which do not exist in the formulation of Bog. The objective function of
the modified model P' also includes the terms for the depot closing and operating costs
while the variable operating cost term in Bog’s formulation which depends on the
amount of demand assigned to a depot is eliminated. In order to tighten the subtour
elimination constraints, we have employed the Lifted MTZ equations proposed by Kara
et al. [47] instead of the original ones which Bog has used in his formulation. In our
problem, we do not define an upper bound on the number of vehicles acquired in the
solution. Therefore, Equation (A.6) only forces a lower bound on the number of
vehicles unlike the one defined by Bog which brackets the number of vehicles between

an upper and a lower bound.

Notation:
Sets:
1C : set of customers
ID : set of depots
ID,,es : set of present depots
ID.4,q : set of candidate depots
1 : set of all nodes (/C v ID)
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Binary Decision Variables:

x; :11ifnodej is visited after node i, 0 otherwise.

y;  :lifdepotj is in service, 0 otherwise.

o; 1 1if customer i is assigned to depot j, 0 otherwise.
Parameters:

FC; :the opening or closing cost of depot j

OC; : the operating cost of depot j

VC; : vehicle acquisition cost for depot j

c;j :traveling cost of one vehicle from node 7 to node j
QO  :uniform vehicle capacity

d;  :demand of customer i

P:Min > OC,y,+ Y FCy,+ > FC/(I1-y)+>. > VCx;+>.> c;x; (A2)

jelD JjeID, .4 JEID,, o jelD ielC iel jel
J#i
subject to:

> ox, =1 VielC (A3)
Jel
J#i
D ox, =1 VielC (A.4)
Jel
J#i
dx,=>x, VjelID (A.5)
ielc ielC

>4

x, > Ee— (A.6)
U,~U,+0x,+(Q—-d,-d ))x,<0-d, Vi,jelC (A7)
d <U <0 VieIC (A.8)

0, <y, VielC,jelD (A.9)
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VielC

VielC,jelD
VielC,jelD
Vi,kelC,jelID
Vi,kelC,jelD
Vi,jel
VielC,jelD
VjelD

VielC

(A.10)

(A.11)
(A.12)
(A.13)
(A.14)
(A.15)
(A.16)
(A.17)

(A.18)
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Appendix G. The Lower Bounds Found by LP Relaxation

The lower bounds found by solving the LP relaxation of the LRP model given in
Appendix F (P') are given in Tables A.8 — A.10. We tried to solve LP relaxed version
of the 3-indexed formulation P. However, Cplex was able to execute the model only for
the test problems with 15 customers. In Table 10, the LP bounds found using two
different formulations are compared. The time elapsed by the Lagrangian relaxation
part of [LR-TS] is provided in the tables that we consider this value as the solution time
of lower bound finding procedure. The notation used in the tables in as follows:

The lower bounds found by solving the LP relaxation of the LRP model given in
Appendix F (problem P') are given in Tables A.7-A.9. The CPU time elapsed by the
Lagrangian relaxation part of [LR-TS] is also provided in the tables. We consider this

value as the CPU time of our lower bound procedure. The notation used in the tables is

as follows:
Zup : The best upper bound found by [LR-TS]
Z : The best lower bound found by [LR-TS]

%GAP;r : The gap between Z,;, and Zj, calculated with the formula in Equation (6.2)
(%GAPI in Chapter 6)
CPUr : The solution time of the LR part of [LR-TS]

Zip : The lower bound obtained as the optimal solution to the LP relaxation of P’

Z, -7
%GAPLp : The gap between Z,; and Z; p calculated with the formula 100 x| =42 —LP

Z LP

CPUrp : The Cplex 10.0 solution time of the LP relaxed problem
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1D Zup Zn, %GAPr CPUrr Zip %GAPrp CPUpp
R1-1 1127.84 1075.58 4.86 23.0 93293  20.89 0.1
R1-2 994.92 994.92 0.00 2.2 72523  37.19 0.1
R1-3 909.72 805.16 12.99 2.0 75372 20.70 0.1
R1-4 1027.14 975.28 5.32 15.0 79549  29.12 0.1
R1-5 1074.68 1031.51 4.19 17.8 769.19  39.72 0.0
R1-6 1291.96 1274.75 1.35 3.9 1035.65  24.75 0.0
R1-7 1148.72 1128.51 1.79 7.4 93339  23.07 0.1
R1-8 1317.96 1262.14 4.42 20.4 9782 3473 0.1
R1-9 1138.72 1114.10 2.21 67.5 858.66  32.62 0.1
R1-10 1442.48 1435.11 0.51 125.9 1141.86  26.33 0.1
R1-11 1022.49 953.04 7.29 25.1 76098  34.36 0.1
R1-12 1220.48 1220.38 0.00 14.2 1013.1 20.47 0.1
R1-13 1402.44 1321.13 6.15 192.9 1111.58  26.17 0.1
R1-14 1286.85 1244.53 3.40 114.1 966.04 3321 0.1
R1-15 1204.41 1204.01 0.03 42.5 96195 2521 0.1
R1-16 1418.18 1370.51 3.48 138.3 1104.82  28.36 0.2
R1-17 1370.47 1367.03 0.25 183.5 1017.98  34.63 0.2
R1-18 1029.39 975.77 5.50 80.2 753.62  36.59 0.2
R1-19 1525.03 1471.51 3.64 237.6 1111.85  37.16 0.3
R1-20 1441.94 1348.73 6.91 576.4 989.58  45.71 0.2
R1-21 1198.73 1093.31 9.64 340.7 882.43  35.84 0.3
R1-22 1543.86 1511.43 2.15 121.8 11472 34.58 0.2
R1-23 1611.87 1555.81 3.60 394.3 117742 36.90 0.2
R1-24 1442.53 1386.08 4.07 282.3 1129.55  27.71 0.2
R1-25 1812.81 1735.65 4.45 799.1 1365.01 32.81 0.4
R1-26 1386.02 1362.82 1.70 220.9 987.37  40.37 0.4
R1-27 1255.75 1140.06 10.15 783.9 935.44  34.24 0.5
R1-28 1801.37 1658.61 8.61 4543 1371.22  31.37 0.4
R1-29 1634.60 1556.13 5.04 452.6 1157.95  41.16 0.5
R1-30 1185.35 1081.08 9.64 193.2 928.02  27.73 0.5
averages 1308.96 1255.16 4.27 197.8 993.25  31.79 0.2

Table A.7 Comparison of Z;, with LP bounds for R1



Appendix G. The Lower Bound Found by LP Relaxation

108

D Zub Zy, %GAP R CPUrr Zip %GAPip CPUpp
R2-1 1428.56 1206.44 18.41 4717.7 999.7  42.90 0.6
R2-2 1649.62 1549.84 6.44 864.8 1070.03  54.17 0.5
R2-3 2144.55 1903.06 12.69 595.5 1576.17  36.06 0.6
R2-4 1877.78 1708.44 9.91 895.7 1421.13  32.13 0.4
R2-5 1947.74 1770.79 9.99 799.8 1220.21  59.62 0.4
R2-6 2221.40 1897.92 17.04 903.2 1595.29  39.25 0.5
R2-7 1700.76 1532.22 11.00  2627.6 1206.74  40.94 0.8
R2-8 1997.27 177 2.49 12.68  2609.7 1257.35  58.85 0.7
R2-9 2357.29 2112.81 11.57 1806.1 162742  44.85 0.6
R2-10 1973.15 1778.51 10.94 540.7 1458.69  35.27 1.9
R2-11 1990.79 1635.76 21.70 897.1 1160.28  71.58 0.8
R2-12 2306.43 2114.33 9.09 1291.4 1674.59  37.73 0.9
R2-13 1921.78 1617.15 18.84  2717.8 1341.11  43.30 1.4
R2-14 2336.22 2084.90 12.05 5097.7 1453.82  60.70 1.0
R2-15 2735.82 2130.51 28.41 1315.8 1826.79  49.76 1.2
R2-16 2200.74 2103.90 4.60  3223.6 1648.42  33.51 1.4
R2-17 2339.18 1890.00 23.77 1735.5 1368.35  70.95 1.1
R2-18 2751.57 2115.01 30.10 931.2 1879.15  46.43 1.3
R2-19 1996.10 1781.52 12.04  5602.8 1459.54  36.76 3.2
R2-20 2642.04 2286.75 15.54 41943 1496.59  76.54 34
R2-21 3076.79 2585.78 18.99  7671.5 2113.54  45.58 3.0
R2-22 2190.70 1945.81 12.59 1319.3 1683.00  30.17 6.8
R2-23 2670.56 2308.77 15.67  4788.1 1591.55  67.80 52
R2-24 3050.53 2488.13 22.60  3719.0 2295.82  32.87 8.9
R2-25 2184.96 1952.80 11.89 8116.9 1620.48  34.83 6.3
R2-26 2893.82 2369.93 22.11 10648.2 1571.02  84.20 52
R2-27 3320.89 2691.79 2337 11599.7 2217.65  49.75 7.6
R2-28 2448.95 2032.33 20.50  4466.6 1584.96  54.51 34
R2-29 2896.34 2324.22 24.62 14025.5 1578.24  83.52 33
R2-30 3258.81 2741.77 18.86  10208.7 2217.78  46.94 52
averages 2350.37 2014.46 16.27  3856.4 1573.85  50.05 2.6

Table A.8 Comparison of Z;, with LP bounds for R2
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1D Zu Zy %GAP;r  CPUpy Zip %GAPp CPUpp
P111112 1417.30 1283.09 10.46 18331.6 1103.29 28.46 22.4
P111122 1410.04 1178.19 19.68 8313.1 1048.64 34.46 50.7
P111212 1406.33 1140.54 23.30 8419.8 958.32 46.75 13.4
P111222 1464.84 1186.54 23.45 14839.3 1050.67 39.42 42 .4
P112112 1209.88 1079.16 12.11 13585.3 855.56 41.41 11.2
P112122 1019.44 925.16 10.19 15737.3 757.00 34.67 38.8
P112212 726.48 627.05 15.86 6114.5 433.45 67.60 92
P112222 738.34 541.66 36.31 13899.7 440.52 67.61 21.1
P113112 1296.04 1069.98 21.13 15490.0 823.99 57.29 11.0
P113122 1160.09 1055.33 9.93 9707.0 782.73 4821 31.7
P113212 908.79 753.37 20.63 5260.2 467.44 94.42 8.1
P113222 929.22 780.93 18.99 9725.7 477.83 94 .47 15.0
P131112 1869.43 1561.25 19.74 49267.2 1391.5 34.35 96.3
P131122 1899.42 1465.80 29.58 49999.1 1306.28 45 .41 213.6
P131212 2099.50 1589.11 32.12 41597.7 1307.45 60.58 46.6
P131222 1807.63 1438.10 25.70 51380.0 1327.85 36.13 202.5
P132112 1488.29 1151.67 29.23 40270.5 916.00 62.48 34.2
P132122 1502.16 1144.07 31.30 56162.1 920.58 63.18 169.5
P132212 1234.50 959.29 28.69 24682.9 596.28 107.03 17.7
P132222 938.22 742.16 26.42 67392.3 597.31 57.07 51.9
P133112 1667.65 1232.78 35.28 8791.9 94321 76.81 36.4
P133122 1452.97 1051.04 38.24 29404.3 857.19 69.50 99.7
P133212 1173.29 930.82 26.05 53388.9 624.06 88.01 12.9
P133222 1189.44 973.35 22.20 24038.6 708.35 67.92 73.7
P121112 2337.60 1747.10 33.80 103408.8 1591.75 46.86 4573
P121122 2176.88 1639.88 32.75 65697.0 1542.58 41.12 547.2
P121212 2144 31 1800.51 19.09 141462.7 1614.53 32.81 5722
P121222 2303.29 1683.70 36.80 115925.1 1613.38 42.76 549.5
P122112 2011.02 1591.88 26.33 185395.7 1299.35 54.77 358.3
P122122 1757.52 1320.11 33.13 201249.3 1154.61 52.22 182.4
P122212 1484.87 1079.33 37.57 71898.2 844.62 75.80 247.6
P122222 1094.71 1001.98 9.25 72377.5 713.85 53.35 158.4
P123112 2009.21 1576.96 27.41 69992.9 1147.47 75.10 390.4
P123122 1885.89 1433.07 31.60 122222.7 1264.49 49.14 353.1
P123212 1783.77 1498.26 19.06 157170.3 946.00 88.56 935
P123222 1362.84 1064.47 28.03 55929.3 74913 81.92 102.2
averages 1510.03 1202.71 25.04 55514.67 977.15 58.82 148.4

Table A.9 Comparison of Z;, with LP bounds for TB
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2-index formulation

3-index formulation

ID Zip %GAPp CPUpp Zip %GAPrp CPUpp
R1-1 932.93 20.89 0.1 1034.19 9.06 8.1
R1-2 725.23 37.19 0.1 858.69 15.86 8.0
R1-3 753.72 20.70 0.1 800.21 13.69 7.6
R1-4 795.49 29.12 0.1 945.99 8.58 5.1
RI1-5 769.19 39.72 0.0 960.7 11.86 6.2
R1-6 1035.65 24.75 0.0 1176.34 9.83 5.6
averages 835.37 28.73 0.1 962.69 11.5 6.8

Table A.10 Comparison of LP bounds found by 3-index and 2-index formulations
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