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Çiçek Güven
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ABSTRACT

A Steiner triple system (STS) is an ordered pair (S, T ) where S denotes a set

of points and T denotes a set of three element subsets of S called triples with the

property that any pair of elements of S is a subset of exactly one triple. Let C be

a set of colors. A (weak) k-coloring of a STS(v) is a map Φ : S → C such that

|{Φ(x), Φ(y), Φ(z)}| ≥ 2 for every triple {x, y, z} ∈ T . A Steiner triple system is

k-chromatic if it admits a k-coloring but not a (k − 1)-coloring. In this case we say

that the STS has chromatic number k and we write Chr(S) = k. This thesis is a

survey on colorings of Steiner triple systems.
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ÖZETÇE

Bir Steiner üc.lü sistemi (SÜS ), (S, T ) s.eklinde bir sıralı ikili ile ifade edilebilir,

öyleki, bu ifadede S sistemin elemanlar kümesini, T bu elemanlar kümesinin 3

elemanlı bazı altkümelerinden olus.an bir kümeyi temsil eder. T kümesi üzerindeki

kos.ul, S’ye ait her eleman çiftinin birlikte T ’nin elemanlarından yalnız ve ancak

birinde yer almasıdır. C kümesini renkler kümesi olarak kabul ettiğimizde, kös.e

renklendirmesi, S kümesinden C kümesine (Φ : S → C) tanımlanmıs. bir fonksiyon-

dur, öyle ki, her {x, y, z} ∈ T için, |Φ(x), Φ(y), Φ(z)| ≥ 2 olsun. Bir Steiner üçlü

sistemi, hiç bir üc.lü tek renkle boyanmayacak s.ekilde k renkle renklendirilip daha az

renkle renklendirilemediğinde sisteme, k-kromatik diyoruz. Bu tez, bu konuda daha

önce yapılmıs. çalıs.malar üstüne bir inceleme niteliǧindedir.
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Chapter 1: Preliminaries and Definitions 1

Chapter 1

PRELIMINARIES AND DEFINITIONS

1.1 Basic definitions

Definition 1.1.1 A binary operation ∗ on a set G is a function ∗ : G×G → G.

For any a, b ∈ G we shall write a ∗ b for ∗(a, b).

Definition 1.1.2 If ∗ is a binary operation on a set G we say elements a and b of

G commutes if a ∗ b = b ∗ a. We say ∗ (or G) is commutative if for all a, b ∈ G

a ∗ b = b ∗ a.

Definition 1.1.3 For a map f : A → B, for a subset A′ of A, the induced map

fA′ : A′ → B is defined as follows: for any a ∈ A′, fA′(a) = f(a).

Definition 1.1.4 A group is an ordered pair (G, ∗) where G is a non-empty set and

∗ is a binary operation on G satisfying the following axioms:

(i) For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c), that is, ∗ is associative.

(ii) There exists an element e ∈ G, called an identity of G such that for all g ∈ G

we have e ∗ g = g ∗ e = g.

(iii) For each g ∈ G there is an element g−1 of G called an inverse of g such that

g−1 ∗ g = g ∗ g−1 = e.

The group (G, ∗) is called abelian if for all a, b ∈ G a ∗ b = b ∗ a.

Definition 1.1.5 A subgroup H of a group G is a nonempty subset which is closed

under the operation of the group G, and satisfies the condition that x ∈ H implies

x−1 ∈ H.
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Definition 1.1.6 A field is a set F together with two binary operations + and · on

F such that (F, +) is an abelian group (call its identity 0) and (F − {0}, ·) is also an

abelian group, and the following distributive law holds:

a · (b + c) = a · b + a · c for all a, b, c ∈ F .

Definition 1.1.7 A vector space V is a set along with a binary operation, namely,

addition on V and a scalar multiplication (a function that assigns an element

av ∈ V to each pair (a, v) for a ∈ F and v ∈ V ) on V such that the following

properties hold:

(i) x + y = y + x for all x, y ∈ V (commutativity of vector addition).

(ii) x + (y + z) = (x + y) + z for all x, y, z ∈ V (associativity of vector addition).

(iii) There exists an element 0 ∈ V such that x + 0 = 0 + x (additive identity).

(iv) For any x ∈ V there exists −x ∈ V such that x + (−x) = (−x) + x = 0

(existence of additive inverse).

(v) r(sx) = (rs)x for all r, s ∈ F and all x ∈ V (associativity of scalar multipli-

cation).

(vi) (r + s)x = rx + sx for all r, s ∈ F and all x ∈ V (distributivity of scalar

sums).

(vii) r(x + y) = rx + ry for all r ∈ F and all x, y ∈ V (distributivity of vector

sums).

(viii) There exists 1 ∈ F such that 1x = x1 = x for all x ∈ V (existence of

multiplicative identity).

Definition 1.1.8 A latin square of size n is an n × n array L = (li, j) such that

each entry li, j contains a single symbol from an n-set S = {a1, ..., an} of symbols such

that each symbol occurs in each row and column exactly once.

Definition 1.1.9 A partial latin square of size n is an n × n array L = (li, j)

such that each entry li, j contains either a single symbol from an n-set S of symbols

or empty such that each symbol occurs in each row and column at most once.
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Definition 1.1.10 A quasigroup (Q, ◦) is a pair where Q is a set of size n and ◦

is a binary operation on Q such that for every pair a, b of Q, the equations a ◦ x = b

and y ◦ a = b have unique solutions. The order of the quasigroup is the number of

the elements of the set Q.

Note that a quasigroup is just a latin square with a headline and a sideline.

Let Q = {a1, ..., an}. We can use a latin square of size n to obtain a quasigroup

of order n by defining ai ◦ aj = ak where the entry li, j of the latin square is ak, for all

i, j, k ∈ {1, 2, ..., n}.

A quasigroup (Q, ◦) is idempotent if for all ai ∈ Q, ai ◦ ai = ai.

A quasigroup (Q, ◦) of order 2n is half idempotent if for all ai and ai+n ∈ Q

with i ≤ n, ai ◦ ai = ai and ai+n ◦ ai+n = ai.

Definition 1.1.11 For a finite set S of v objects a block design based on S is a

collection of k element subsets of S which are called blocks, where each t element

subset of V occurs in λ blocks together. We denote this design as a t − (v, k, λ)

design.

When t = 2, a block design is called a balanced incomplete block design

(BIBD). We denote a BIBD by (v, k, λ)−BIBD.

When the size of the blocks in a block design is 3, we call the blocks triples, and

the design a triple system. We denote a triple system as TS(v, λ)

When λ = 1 in a block design we call the design a Steiner system, S(t, k, v). A

Steiner triple system (STS) is a S(2, 3, v). We denote the STS as (S, T ) where

S is the set of points (or vertices) and T is the set of triples. The order, that is,

the number of elements of the Steiner triple system is denoted by |S|. For the ease of

notation, we sometimes denote the STS (S, T ) as S.

Definition 1.1.12 A partial triple system PTS(v, λ) is a set of v elements V and

a collection of triples B, so that each unordered pair of elements from V occurs in at

most λ triples of B.

Definition 1.1.13 An incomplete triple system, ITS of order v is a PTS(v, λ),

with a set V of v elements and a collection B of triples, such that the following
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additional property is satisfied: there is a set W ⊆ V of size w such that,

(i) if x, y ∈ W , then no triple of B contains {x, y},

(ii) if x ∈ V \W and y ∈ V then exactly λ triples of B contains {x, y}.

Definition 1.1.14 For a STS (S, T ), a subset of S is said to be independent if no

three element subset of it is a triple.

Definition 1.1.15 If for a PTS(v, λ), defined on a set of points V with the triple

set T , there is a TS(w, λ) defined on a set of points V ′ with the triple set T ′, such

that V ⊆ V ′, and T ⊆ T ′, then we call the enclosing an embedding.

Definition 1.1.16 For a pair of Steiner triple systems, namely (S1, T1) and (S2, T2),

an isomorphism is a bijection Φ : S1 → S2 for which the induced mapping

Φ : T1 → T2 is also a bijection. Two Steiner triple systems are isomorphic if

there is such a bijection.

Definition 1.1.17 An automorphism of a STS (S, T ), is a bijection

f : S → S such that {f(x), f(y), f(z)} ∈ T for every triple {x, y, z} ∈ T . We

denote the automorphism group of the system as Aut(S).

Definition 1.1.18 The totally associative Steiner triple system of order 2n − 1,

which is unique up to isomorphism, denoted by S?(2n− 1) is a STS with the property

that, when the elements of the system are considered as elements of a commutative

quasigroup which is defined by:

(i) aa = a,

(ii) ab = c, a 6= b if {a, b, c} is a triple in S?(2n − 1),

then, we have for any points a, b, c from the system not forming a triple,

a(bc) = b(ac) = c(ab). We denote the set of points of the totally associative STS

as V (S?(2n − 1)). It is known that any 3 elements not forming a triple in the system

generates a STS(7) in S?(2n − 1). S?(2n − 1) is isomorphic to PG(n− 1, 2).

Definition 1.1.19 A vertex coloring of a Steiner triple system is an onto map

f : V → C where C is the set of colors. If the order of C, |C| = m, we call the
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coloring an m-coloring. For each c ∈ C, f−1(c) = {x ∈ V : f(x) = c} is a color

class.

Definition 1.1.20 A triple is monochromatic if all of its vertices are colored by

the same color.

There are many ways of coloring Steiner triple systems. But among these, we

will study the properties of the weak colorings. Those are the colorings with the

condition that no triple in the STS is monochromatic. When this condition is

satisfied, we say the coloring is a proper coloring.

Definition 1.1.21 A hypergraph H is an ordered pair (V, E) where V is a set of

vertices and E is a set of edges, where edges are subsets of V . A STS is an

example of a hypergraph where each triple corresponds to an edge. A hypergraph

is k-uniform if its edges all have size k. The chromatic number Chr(H) of a

hypergraph H is the minimum number of colors needed to label the vertices so that no

edge is monochromatic.

Notice that a 3-uniform hypergraph is a STS.

Definition 1.1.22 A partition sequence of an r-chromatic STS(v) is a sequence

of integers t1 ≥ t2 ≥ ... ≥ tr that corresponds to the sizes of color classes in some

r-coloring of the r-chromatic STS(v).

Definition 1.1.23 A weakly m-chromatic STS(v) is uniquely colorable if every

weak m-coloring of the STS produces the same partition of the element set into color

classes.

Definition 1.1.24 A STS has a bicoloring with m-color classes if the points are

partitioned into m subsets and the three points in every triple are contained in exactly

two of the color classes. Bicolorings are weak colorings.

Definition 1.1.25 The chromatic number of a STS is the least integer k such

that the system admits a proper vertex coloring with k colors. We then say that the

STS is k-chromatic and we denote this as Chr(S) = k.
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Definition 1.1.26 The spectrum is the set of integers m for which there exists a

weakly m-chromatic STS(v). It is denoted as C(v). So in other words C(v) = {k :

there exist a k-chromatic STS(v)}.

Definition 1.1.27 A k-coloring of a STS is a biased coloring if at least v+3
2

of

the elements are colored by (k − 2) of the colors.

Definition 1.1.28 A graph G is a triple consisting of a vertex set V (G), an edge

set E(G) and a relation that associates with each edge two vertices (not necessarily

distinct) called its endpoints. When the vertices u and v are endpoints of an edge,

they are adjacent. We call an edge a loop if its endpoints are the same vertex. A

loopless graph is called a simple graph.

Definition 1.1.29 For a graph G, a subgraph G′ of G is a graph such that

V (G′) ⊆ V (G) and E(G′) ⊆ E(G). If V (G) = V (G′), the subgraph is called a

spanning subgraph.

Definition 1.1.30 If vertex v is an endpoint of an edge e, then v and e are incident.

The degree of a vertex is the number of edges incident to it.

Definition 1.1.31 A complete graph is a simple graph whose vertices are pairwise

adjacent. If the number of vertices is n, the complete graph is denoted as Kn.

Definition 1.1.32 A walk is a list v0, e1, v1, ..., ek, vk of vertices and edges such that

for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. A trail is a walk with no repeated

edge. A circuit is a closed trail, that means v0 = vk. For a graph G if a circuit is also

a spanning subgraph, we call it a Hamiltonian circuit.

Definition 1.1.33 A 1-factor of a graph G is a spanning subgraph in which all the

vertices have degree 1.

Definition 1.1.34 A 1-factorization of a graph G is a set of 1-factors which par-

tition the edge set of the graph.
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Definition 1.1.35 For a graph G with odd number of vertices n, a near 1-factor

is a subgraph of G, where exactly one vertex has degree 0, all the rest have degree 1.

Definition 1.1.36 For a graph with odd number of vertices, a near 1-factorization

is a collection of near 1-factors whose union is the graph itself.

Definition 1.1.37 For any subgroup N of a group G and for any g ∈ G let gN =

{gn|n ∈ N} and Ng = {ng|n ∈ N} called respectively a left coset and right coset

of N in G.

Definition 1.1.38 The affine geometry of dimension n over the field F3 is

the set of all cosets of the vector space F n
3 , which is the vector space of dimension n

over the field F3, the field of 3 elements. We denote an affine geometry as AG(n, 3).

A k-flat of AG(n, 3) for k ∈ {0, 1, 2, ..., n} is a coset of a subspace of dimension k.

1-flats are called lines, 2-flats are called planes, and (n−1)-flats are called hyperplanes.

The points of AG(n, 3) which are vectors of F n
3 are 0-flats.

AG(n, 3) can be thought as a STS(3n) where the points of AG(n, 3) are the points

of the STS, the lines of it are triples of the STS.

Definition 1.1.39 The projective geometry, PG(n, 3) is defined as the space of

equivalence classes (AG(n+1, 3)\ {−→0 })/ ∼ where x ∼ y if for some element c of the

field F , x = cy. For all k ≥ 0, the images of a (k + 1)-flat in AG(n, 3) are defined to

be k-flats in PG(n, 3).

Definition 1.1.40 A subset of an affine geometry is a cap if no three of its points are

collinear, that is, if no three of its points lie in the same 1-flat. A cap of cardinality

k is called a k-cap.

Moreover, the caps of the AG(n, 3) can be thought as the color classes of the STS,

since no three points are collinear, they will not be on the same line, and on the same

triple.
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Definition 1.1.41 A subset S of a vector space V is called a set of linearly inde-

pendent vectors if an equation a1v1 + a2v2 + .... + anvn = 0 with a1, a2, ..., an ∈ F

and v1, v2, ...., vn ∈ S implies a1 = a2 = ... = an = 0.

Definition 1.1.42 A basis of a vector space V is a list of vector in V that are

linearly independent and spans (that is, any vector in V can be written as a linear

combination of the vectors from this list) V .

Definition 1.1.43 Complexity theory is the theory of classifying problems based

on how difficult they are to solve. A problem is assigned to the P-problem (polynomial-

time) class if the number of steps needed to solve it, is bounded by some power of the

size of the problem. A non-deterministic Turing machine is a a model of be-

havior composed of a finite number of states, transitions between those states, and

actions which is associated with an external storage or memory medium and for each

pair of state and input symbol there may be several possible next states. An NP

(Non-deterministic Polynomial time) problem is a decision problem (a problem whose

answer is either yes or no) solvable in polynomial time on a non-deterministic Turing

machine. The class of P-problems is a subset of the class of NP-problems, but there

also exist problems which are not NP.

Definition 1.1.44 An NP-complete problem is a problem which is both NP and

NP-hard (any NP-problem can be translated into this problem). In other words, a

problem is NP-complete if it is NP and an algorithm for solving it can be translated

into one for solving any other NP-problem.

Definition 1.1.45 A group divisible design (GDD) is a triple (X, G, B), where

X is a point set, which satisfies the following properties:

(i) G is a partition of X into subsets called groups.

(ii) B is a set of subsets of X (called blocks) such that a group and a block contain

at most one element in common.

(iii) Every pair of points from distinct groups occurs in a unique block.
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1.2 Bose Construction and Skolem Construction

1.2.1 Bose Construction

Let (Q, ◦) be an idempotent commutative quasigroup of order 2u + 1. Let

Q = {1, 2, 3, ..., 2u + 1} and S = Q × {1, 2, 3}. Define a collection of triples T

of S as follows:

(i) For every x ∈ Q {(x, 1), (x, 2), (x, 3)} ∈ T .

(ii) For every x, y ∈ Q, x 6= y, then {(x, 1), (y, 1), (x ◦ y, 2)}, {(x, 2), (y, 2), (x ◦

y, 3)},{(x, 3), (y, 3), (x ◦ y, 1)} ∈ T .

It is easy to see that (S, T ) is a STS(6u + 3), by counting the number of triples

in T and checking that any pair of elements is seen in exactly one triple. Note that

the number of triples should be v(v−1)
6

in a STS.

1.2.2 Skolem Construction

Let (Q, ◦) be an half idempotent commutative quasigroup of order 2u where

Q = {1, 2, 3, ..., 2u} and set S = Q× {1, 2, 3} ∪ {∞}. Define a collection of triples

T of S as follows:

(i) for every x ∈ Q, x ≤ u, x ∈ Q, {(x, 1), (x, 2), (x, 3)} ∈ T ,

(ii) for each x > u, the three triples {∞, (x, 1), (x− u, 2)}, {∞, (x, 2), (x− u, 3)},

{∞, (x, 3), (x− u, 1)} ∈ T ,

(iii) for x, y ∈ Q, x 6= y, then {(x, 1), (y, 1), (x ◦ y, 2)}, {(x, 2), (y, 2), (x ◦ y, 3)},

{(x, 3), (y, 3), (xoy, 1)} ∈ T .

Similar to the Bose Construction, it is easy to see that (S, T ) is an STS(6u + 1).

Notice that in both Bose and Skolem Constructions subquasigroups will always

produce subsystems in the resulting STS [5].
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1.3 Some preliminary theorems

1.3.1 Preliminary results for studies of Rosa

We will see in the following chapters, for any admissable v ≥ 7, a STS(v) is at least

3-chromatic. We summarize here some theorems about the existence of 2-chromatic

PTSs and 3-chromatic TSs. We will also state some of the theorems due to A. Rosa.

[30].

The following result gives us an upper bound for the number of triples of the

2-chromatic partial triple system.

Proposition 1.3.1 [9] Let (V,B) be a weakly 2-chromatic partial TS(v, λ). Then,

|B| ≤ λv2/8.

Proof: For the two colors α and β, suppose p of the elements are colored by α and

the remaining v−p of them are colored by β. Since none of the triples are monochro-

matic, in each triple, two of the elements will be colored by one color, and the other

element will be colored by the other color. So in each triple there are two unordered

pairs of elements which are colored by different colors. There are v(v−p) pairs of ele-

ments which are not monochromatic. Each of them can be seen in λ triples together.

But since there are two such pairs for each triple, to count the triples, we divide the

product λp(v−p) by 2. This is a partial triple system. So |B| ≤ λp(v−p)/2 ≤ λv2/8.

The second inequality holds since p(v−p)/2 takes a maximum value when p = v/2.�

Consider a triple system with a 2-coloring. To decrease the number of the mono-

chromatic triples, we should have color classes of nearly equal size. The following

result belongs to Phelps, and is about the number of the monochromatic triples of a

TS(v, λ) with a 2-coloring.

Lemma 1.3.2 [9] When a TS(v, λ) has a coloring with color classes of size bv
2
c and

dv
2
e, the number of monochromatic triples equals λbv

2
c(dv

2
e−2)/6 and does not depend

on the particular triple system.
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This shows that there exists a 2-chromatic partial triple system with b triples for any

b satisfying 1 ≤ b ≤ bλv2/8c. Take any TS(v, λ). Color any bv
2
c of its elements by

one color and the rest by a second color. The number of monochromatic triples is

assured to be λbv
2
c(dv

2
e − 2)/6 by Lemma 1.3.2 independent from how we color the

vertices. When we delete these monochromatic triples, we will have bλv2/8c triples.

To obtain a partial triple system with b triples, delete any bλv2/8c − b triples.

By Proposition 1.3.1 we can deduce, the chromatic number of a TS(v, λ) for v ≥ 5

is at least 3.

Lemma 1.3.3 [30] If there are two STSs named S1, S2 having orders n1 and n2,

respectively, then there exists a Steiner triple system (S, B) of order n1n2, moreover

S includes S1 and S2 as subsystems.

Lemma 1.3.4 [30] If there are three STSs named S1, S2, S3, where S3 is a subsystem

of S2, then there exists a STS of order n3 +n1(n2−n3) containing the all three STSs

as subsystems.

Theorem 1.3.5 [30] If S1 and S2 are two STSs of orders 6k +1 and n, respectively,

where k is an integer, k ≥ 0 and n ≥ 6k + 1, then there exists a STS of order

2n + 6k + 1 containing S1 and S2 as disjoint subsystems.

Theorem 1.3.6 [30] If S1 and S2 are two STSs of orders 6k +3 and n, respectively,

where k is an integer, k ≥ 0, n ≡ 3 (mod 6), n ≥ 6k + 3, then there exists a STS of

order 2n + 6k + 3 containing S1 and S2 as disjoint subsystems.

Corollary 1.3.7 [30] Let S be a STS of order n ≡ 3 (mod 6). For every admissible

s, 2n + 1 ≤ s ≤ 3n, there exists a STS of order s containing S as a subsystem.

Proof: We apply the two previous theorems for every k ∈ {0, 1, ..., t}, where n =

6t + 3, and obtain Steiner triple systems Si’s, where 0 ≤ i ≤ t, so that in each Si, we

have copies of S and a STS of order 6k + 1. �
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1.3.2 Preliminary results for coloring finite geometries

Let C be an independent set of the vector space V (S?(63)).

Lemma 1.3.8 [16] If C does not contain a basis, then there is a hyperplane K such

that |C ∩K| ≤ 2.

Let C4 = {0, 1, 2, 3, 4, 5, 0123, 0124, 0125, 012345, 034, 035, 045, 134, 135, 145, 234,

235, 245, 345}. It has the property that, it meets every hyperplane of S?(63) in at

least 4 points.

Theorem 1.3.9 [16] If the independent set C satisfies |C ∩K| ≥ 4 for every hyper-

plane K, then C = f(C4) for some f ∈ Aut(S?(63)).

This shows the size of an independent set that meets every hyperplane of S?(26 − 1)

in at least 4 points is 20.

Corollary 1.3.10 [16] V (S?(63)) has no independent subset C which meets every

hyperplane of S?(26 − 1) in 5 or more points.

Lemma 1.3.8 and Theorem 1.3.9 together imply the following corollary, which will be

used in the proof of Theorem 4.1.4.

Corollary 1.3.11 [16] If C is independent and satisfies |C| ≤ 19, then there is a

hyperplane K such that |C ∩K| ≤ 3.

1.3.3 Preliminary results for the existence of k-chromatic STS for large k

Lemma 1.3.12 [9] A commutative quasigroup of order n exists for all n ≥ 0. A

commutative idempotent quasigroup of order n exists if and only if n = 0 or n is odd.

Proof: Index the rows, columns and the symbols of the latin square of size n by the

elements of the additive group Zn. Consider the quasigroup corresponding to this

latin square obtained by putting li,j = lj,i = i + j (mod n). This is commutative by

construction.
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For the idempotent commutative quasigroup, the case n = 0 is trivial. Take an

odd number n. Consider a latin square just as above. It is commutative by construc-

tion. Every symbol is seen just once on the main diagonal. By renaming the symbols

in the latin square, we can obtain an idempotent latin square. For the converse,

consider we have an idempotent commutative latin square whose order is more than

0. Every symbol is seen n times on the latin square, once on the main diagonal and

by symmetry, even number of times outside the main diagonal. So, n must be odd. �

Erdös and Hajnal used methods of probability to show the following theorem [13].

Theorem 1.3.13 For any integer k ≥ 2 there exists a PTS such that chromatic

number of the system C ≥ k.

Treash proved that, any partial Steiner triple system can be extended to a Steiner

triple system.

Theorem 1.3.14 [31] A partial triple system has an embedding.

For λ = 1, this means a PSTS can be completed to a STS.

The following theorem of Lindner also gives us an idea about the comparative

sizes of the PSTS and STS.

Theorem 1.3.15 [21] A PSTS(v) can be embedded in a STS(w) if w ≥ 12v +7 and

w ≡ 1, 3 (mod 6).

Andersen, Hilton, and Mendelsohn [1] proved the following theorem which im-

proves the previous result of Lindner:

Theorem 1.3.16 A partial Steiner triple system of order v can be embedded in a

STS(v) whenever w ≥ 4v + 1 and w ≡ 1, 3 (mod 6).

Finally, very recently Bryant proved the following [7]:

Theorem 1.3.17 Any partial Steiner triple system of order u can be embedded in a

Steiner triple system of order v if v ≡ 1, 3 (mod 6) and v ≥ 3u− 2.
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Chapter 2

INTRODUCTION

Combinatorics as an area of mathematics can be considered as the science of count-

ing discrete objects. Design theory, which is a branch of combinatorics, is the science

of counting, choosing, arranging and classifying discrete objects. A combinatorial de-

sign is a way of selecting subsets from a finite set that meets certain requirements. For

instance, these subsets can be selected in such a way that the intersections of them

have certain properties. Therefore, combinatorial design theory deals with the con-

struction of the necessary and sufficient conditions for the existence of combinatorial

designs. Like many other problems in combinatorics, coloring problems are counting

problems in general. Various methods can be used in studies for colorings of designs,

including some probabilistic and computational methods [10]. There are many studies

investigating the coloring properties of Steiner triple systems. This thesis is a survey

on weak colorings of Steiner triple systems, the focus is particularly on dealing with

the constructive methods that are used for the coloring problems.

Steiner triple systems were defined for the first time by W. S. B. Woolhouse in 1844.

In 1847, T. P. Kirkman proved that for all v ≡ 1 or 3 (mod 6), there exists a Steiner

triple system of order v [24]. The weak chromatic number of a hypergraph, will be

one of our main concerns since STSs are special cases of uniform hypergraphs. Erdös,

Hajnal [13], and Lovaśz [25] considered the weak vertex colorings of hypergraphs for

the first time. Chromatic number of hypergraphs has been defined by Berge [3].

Here we first gave some required definitions for our study and state some of the

main theorems about coloring of Steiner triple systems. In the following chapters, we

will discuss construction methods for k-chromatic Steiner triple systems for small k

and the existence of k-chromatic Steiner triple systems for large k. We will discuss
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the constructive methods used in the coloring problems of Steiner triple systems.

Blaniuk and Mendelsohn have made a survey on the colorings of Steiner systems

in [4] where the studies about vertex colorings and edge colorings of Steiner triple

systems were explained. Some notes on open problems and comments on the possible

future studies also took place in it. A latter survey about colorings of block designs

belong to Colbourn and Rosa [10].

2.1 Overview

In the weak colorings of Steiner triple systems, the condition that no triple is monochro-

matic is required. There are many methods to color Steiner triple systems, while we

will only deal with the weak colorings.

A. Rosa worked on the weak chromatic number of STSs. He showed that there

exists no nontrivial 2-chromatic STS [30]. Mathon, Phelps, and Rosa showed all

STS(v)’s with v ≤ 15 are 3-chromatic in their detailed study [26] on small Steiner

triple systems and their properties. Rosa proved there exists a weakly 3-chromatic

STS of all orders except of order 3 elements [29]. He also gave some constructions

for weakly 4-chromatic STSs. For instance, he showed the totally associative Steiner

triple system of order 31 is 4-chromatic [29]. Also, he constructed a 4-chromatic

STS(49) by using a product of two Steiner triple systems of order 7 [29].

Rödl, Brandes, and Phelps used probabilistic approach to find upper and lower

bounds for the number um which corresponds to the smallest order for which there ex-

ists a partial STS(um) [5]. In particular, they showed C1m
2 log m < um < C2m

2 log m

where C1 and C2 are constants. By using the embedding theorem for partial STSs,

and the existence of m-chromatic partial STSs, they proved that for any m ≥ 3, there

exists an nm such that for all v ≡ 1 or 3 (mod 6), v ≥ nm there exists an m-chromatic

STS(v). In addition, they showed that for any v ≥ 25 (v ≡ 1 or 3 (mod 6)) there ex-

ists a weakly 4-chromatic STS except 39, 43, 45. The examples of 4-chromatic Steiner

triple systems of orders 25, 27, 33, 37 were found by Rödl, Phelps and Brandes using

computer algorithms. Haddad showed there exist 4-chromatic STS(21) and STS(39)



Chapter 2: Introduction 16

[17]. The 4-chromatic STS of order 39 is again found by using computer algorithms.

The existence of 4-chromatic STS(21) implies the existence of 4-chromatic STS(43)

and 4-chromatic STS(45) by the following Theorem:

Theorem 2.1.1 [9] If a k-chromatic STS(v) exists with v ≡ 3 (mod 6) and k ≥ 4

in which size of the three of the color classes bounded by v/3, then there exists a

k-chromatic STS(u) for every admissible u ≥ 2v + 1.

Therefore, there are 4-chromatic STS for all admissible values of v ≥ 21 and

the only value in doubt is 19. Since there are 11, 084, 874, 829 known nonisomorphic

STS(19) [20], proving if there exists a 4-chromatic STS(19) is not a trivial problem

and requires a constructive solution.

A 5-chromatic STS(v) for every admissible v ≥ 127 is constructed by Fug̀ere,

Haddad, and Wehlau [16]. They also gave a specific example of a 5-chromatic STS(v).

Before that, for k ≥ 5, there had been no specific examples of k-chromatic STS, the

existence of such Steiner triple systems were shown by nonconstructive methods [5].

After four years, the first example of a 6-chromatic STS was given [6] by using some

computer algorithms. They proved that there exists a 6-chromatic STS(u) for every

admissible u ≥ 487 by recursive methods.

It is known that as k increases, it is hard to give specific examples of k-chromatic

STSs. Colbourn worked on the complexity of the problem of finding the chromatic

number of a given STS.

In the previous chapter, we gave the required definitions for our study, statements

of some preliminary theorems, and proofs to some of them. In the third chapter, we

will focus on the earlier studies on the problem which mostly deals with k-chromatic

Steiner triple systems for small k. In the fourth chapter, we will deal with the former

studies on the k-chromatic Steiner triple systems for small k, which are mostly using

methods in finite geometry. In the fifth chapter, we will summarize the studies on the

k-chromatic Steiner triple for large k, which are mostly existence theorems. In the

fifth chapter, we will also include some related results for weak colorings of Steiner

triple systems related to complexity of this problem and some specific weak colorings
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of Steiner triple systems. We will conclude our study by summarizing the main results

that are included in it.
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Chapter 3

EARLY STUDIES ON α-CHROMATIC STEINER TRIPLE

SYSTEMS FOR SMALL α

Early contributions of the weak colorings of STSs made by A. Rosa. We will first

discuss the early studies of Rosa about weak colorings of Steiner triple systems. Some

very important contributions about weak colorings of Steiner triple systems were done

by the studies of Brandes, Phelps, and Rödl. We will also discuss some of the main

theorems they proved.

3.1 Studies of Rosa

Mathon, Phelps and Rosa studied on the structure of Steiner triple systems of small

orders. In their detailed study [26], they summarized all known structural properties

of the Steiner triple systems up to date which includes the list of triples and the

color classes. The following two examples of STSs, one of order 13, and the other

of order 15 are taken from this nice work. Actually, all Steiner triple systems whose

order less than or equal to 15 are included in the article. There is a unique STS(7)

up to isomorphism, there are exactly two nonisomorphic STS(13), 80 nonisomorphic

STS(15). After the order 19, the number of nonisomorphic Steiner triple systems

are comparably very large, that is why, it is not easy to classify them. Number of

nonisomorphic Steiner triple systems of small orders or lower bounds on these orders

are given.

In addition, some selected Steiner triple systems whose order is less than 27 are

also included in the article [26].
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Example 3.1.1 STS(7)

Triples: {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}.

Color classes: {1, 2}, {3, 4}, {5, 6, 7}.

Example 3.1.2 STS(15)

Triples: {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {1, 12, 13}, {1, 14, 15},

{2, 4, 6}, {2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 12, 14}, {2, 13, 15}, {3, 4, 7}, {3, 5, 6},

{3, 8, 11}, {3, 9, 10}, {3, 12, 15}, {3, 13, 14}, {4, 8, 12}, {4, 9, 13}, {4, 10, 14}, {4, 11, 15},

{5, 8, 14}, {5, 9, 12}, {5, 10, 15}, {5, 11, 13}, {6, 8, 15}, {6, 9, 14}, {6, 10, 13}, {6, 11, 12},

{7, 8, 13}, {7, 9, 15}, {7, 10, 12}, {7, 11, 14}.

Color classes: {1, 2, 4, 7, 9}, {3, 5, 8, 12, 13}, {6, 10, 11, 14, 15}.

Example 3.1.3 STS(13)

Triples: {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {1, 12, 13}, {2, 4, 6},

{2, 5, 7}, {2, 8, 10}, {2, 9, 12}, {2, 11, 13}, {3, 4, 8}, {3, 5, 12}, {3, 6, 13}, {3, 7, 11},

{3, 9, 10}, {4, 7, 9}, {4, 10, 13}, {4, 11, 12}, {5, 6, 10}, {5, 8, 11}, {5, 9, 13}, {6, 8, 12},

{6, 9, 11}, {7, 8, 13}, {7, 10, 12}.

Color classes: {1, 2, 4, 7, 8}, {3, 5, 6, 9}, {10, 11, 12, 13}.

Theorem 3.1.4 [29] Chr(S(v)) ≥ 3 whenever v ≥ 7.

Proof: Suppose for some v we have STS(v) which can be colored by two colors, say

p of them by red, v − p, where p ≤ v − p of them by blue. None of the triples is

monochromatic. Corresponding to each triple, there are 2 pairs of elements which

are multicolored. So, if we denote the number of triples by |T |, 2|T | = p(v − p). But

|T | = v(v−1)
6

[24]. This equality holds if and only if when p = 1, v = 3. that is a STS

is 2-chromatic if and only if v
.
= 3 and it is at least 3-chromatic when v ≥ 7. �

The existence of Steiner triple systems of large chromatic numbers can be deduced

by earlier studies. Treash proved that any partial Steiner triple system can be em-

bedded in a Steiner triple system [31]. Erdös and Hajnal [13] proved the existence of
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a partial Steiner triple system which is k-chromatic for any positive integer k. The

extension of this PSTS to a STS will include an isomorphic copy of the PSTS in

the STS. So the STS is at least k-chromatic.

Theorem 3.1.5 If v ≡ 1 or 3 (mod 6), then there exists a 3-chromatic STS(v) [29].

Proof: For the case v ≡ 3 (mod 6) the Bose Construction is used. In the Bose Con-

struction, a commutative quasigroup of order 2n+1, (Q, ◦) where Q = {1, 2, ...., 2n+

1} is used. Let S = Q× {1, 2, 3}. We color (i, 1)s by blue, (i, 2)s by green and (i, 3)s

by red for 1 ≤ i ≤ 2n + 1.

For the case v ≡ 1 (mod 6), there exists a 3-chromatic STS(v) constructed as

follows by Rosa: S = {a1, ..., a2k, b1, ..., b2k, c1, ..., c2k,∞}. Let G be the complete

graph on the vertices 1, 2, ..., 2k and let L = {L1, ..., L2k−1} be a decomposition of G

into 2k − 1 1-factors. Where we denote the vertex 2k by ∞ in this decomposition.

Li = {(k+i−1,∞), (i+j, i−j−1) (mod 2k−1), 0 ≤ j ≤ k−2}. L′ = {L′
i : 1 ≤ i ≤ 2k}

is a set of subgraphs of K2k which forms a decomposition of K2k.

L′
i =


Li, if i is odd;

Li − (i− 1, i), if i is even and i < 2k;

(2j − 2, 2j), 1 ≤ j ≤ k − 1 if i = 2k.

For x, y in 1, 2, ...., 2k and x 6= y define f(x, y) by f(x, y) = i if and only if (x, y) ∈

L′
i. Then, the blocks of the STS(v) are given by (ax, ay, bf(x,y)), (bx, by, cf(x,y)), (cx, cy,

af(x,y)) for 1 ≤ x < y ≤ 2k, (a2i, b2i, c2i), for 1 ≤ i ≤ k; and (ai, bi+1,∞), (bi, ci+1,∞),

(ci, ai+1,∞) for i = 1, 3, ..., 2k− 1. By coloring ai’s by blue, bi’s by yellow, ci’s by red

and ∞ by any of those colors, the three coloring can be verified. �

Example 3.1.6 STS(19) can be constructed and colored by the above construction

where k = 3.

Let S = {a1, ..., a6, b1, ..., b6, c1, ..., c6,∞}. G is a complete graph of 6 vertices.

L = {L1, L2, L3, L4, L5} is a set of 1-factors which partites G.

L1 = {(3, 6), (1, 5), (2, 4)}, L2 = {(6, 4), (2, 1), (5, 3), }, L3 = {(5, 6), (3, 2), (4, 1)},
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L4 = {(6, 1), (4, 3), (5, 2)}, L5 = {(6, 2), (5, 4), (1, 3)}.

L′ = {L′
1, L

′
2, L

′
3, L

′
4, L

′
5}, L′

1 = L1, L′
3 = L3, L′

5 = L5,

L′
2 = {(4, 6), (3, 5)}, L′

4 = {(6, 1), (5, 2)}, L′
6 = {(3, 4), (1, 2)}.

f(1, 2) = 6, f(1, 3) = 5, f(2, 3) = 3, f(1, 4) = 3, f(2, 4) = 1, f(1, 5) = 1,

f(2, 5) = 4, f(1, 6) = 4, f(2, 6) = 5, f(3, 3) = 6, f(4, 5) = 5, f(3, 5) = 2,

f(4, 6) = 2, f(3, 6) = 1, f(5, 6) = 3.

Type 1 triples: {a1, a2, b6}, {a1, a3, b5}, {a2, a3, b3}, {b1, b2, c6}, {b1, b3, c5}, {b2, b3, c3},

{c1, c2, a6}, {c1, c3, a5}, {c2, c3, a3}, {a1, a4, b3}, {a1, a6, b4}, {a2, a5, b4}, {b1, b4, c3},

{b1, b6, c4}, {b2, b5, c4}, {c1, c4, a3}, {c1, c6, a4}, {c2, c5, a4}, {a2, a4, b1}, {a2, a6, b5},

{c1, c5, a1}, {c2, c4, a1}, {c2, c6, a5}, {b1, b5, c1}, {b2, b4, c1}, {b2, b6, c5}, {a3, a4, b6},

{a3, a5, b2}, {a3, a6, b1}, {b3, b4, c6}, {b3, b5, c2}, {b3, b6, c1}, {c3, c6, a1}, {a4, a5, b5},

{a4, a6, b2}, {a5, a6, b3}, {b4, b5, c5}, {b4, b6, c2}, {b5, b6, c3}, {c3, c4, a6}, {c3, c5, a2},

{c4, c5, a5}, {c4, c6, a2}, {c5, c6, a3}, {a1, a5, b1}.

Type 2 triples: {a2, b2, c2}, {a4, b4, c4}, {a6, b6, c6},

Type 3 triples: {a1, b2,∞}, {b1, c2,∞}, {c1, a2,∞}, {a3, b4,∞}, {b3, c4,∞}, {c3, a4,∞},

{a5, b6,∞}, {b5, c6,∞}, {c5, a6,∞}.

Example 3.1.7 A STS of order 21 colored with 3 colors.

This example illustrates a STS(21) which is constructed by the Bose Construction.

The triples are as follows:

Type 1 triples: {1 , 8, 15}, {2 , 9, 16}, {3 , 10, 17}, {4 , 11, 18}, {5 , 12, 19}, {6 , 13, 20},

{7 , 14, 21}.

Type 2 triples: {1 , 2, 12}, {1 , 3, 9}, {1 , 4, 13}, {1 , 5, 10}, {1 , 6, 14}, {1 , 7, 11},

{2 , 3, 13}, {2 , 4, 10}, {2 , 5, 14}, {2 , 6, 11}, {2 , 7, 8}, {3 , 4, 14}, {3 , 5, 11},

{3 , 6, 8}, {3 , 7, 12}, {4 , 5, 8}, {4 , 6, 12}, {4 , 7, 9}, {5 , 6, 9}, {5 , 7, 13},

{6 , 7, 10}, {8 , 9, 19}, {8 , 10, 16}, {8 , 11, 20}, {8 , 12, 17}, {8 , 13, 21}, {8 , 14, 18},

{9 , 10, 20}, {9 , 11, 17}, {9 , 12, 21}, {9 , 13, 18}, {9 , 14, 15}, {10 , 11, 21},

{10 , 12, 18}, {10 , 13, 15}, {10 , 14, 19}, {11 , 12, 15}, {11 , 13, 19}, {11 , 14, 16},

{12 , 13, 16}, {12 , 14, 20}, {13 , 14, 17}, {15 , 16, 5}, {15 , 17, 2}, {15 , 18, 6},
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{15 , 19, 3}, {15 , 20, 7}, {15 , 21, 4}, {16 , 17, 6}, {16 , 18, 3}, {16 , 19, 7}, {16 , 20, 4},

{16 , 21, 1}, {17 , 18, 7}, {17 , 19, 4}, {17 , 20, 1}, {17 , 21, 5}, {18 , 19, 1}, {18 , 20, 5},

{18 , 21, 2}, {19 , 20, 2}, {19 , 21, 6}, {20 , 21, 3}.

In this construction, the color classes are as follows:

{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13, 14}, {15, 16, 17, 18, 19, 20, 21}.

All triples above are colored by 3 colors.

The totally associative Steiner triple system of order 2n − 1, which is unique

up to isomorphism, denoted by S?(2n − 1). Denote the elements of the system by:

a1, a2, ...., an, a1a2, ..., a1a2......an. Notice that the elements are formed according to

the subsets of the set {1, 2, ..., n}. We can represent the elements of the S∗(2n − 1)

by using the vectors in F n
2 except the zero vector. The basis elements of F n

2 can be

represented as e1, ..., en where ei = 000...1...00 where i is the ith entry for 1 ≤ i ≤ n.

The triples are two dimensional subspaces of F n
2 . For instance, let a1a3 and a1a5 are

two elements of S∗(2n − 1) and the corresponding vectors are e1 + e3 and e1 + e5

respectively, name (e1 + e3) + (e1 + e5) = e3 + e5 as a3a5. Then the triple which

includes a1a3 and a1a5 is {a1a3, a1a5, a3a5}. Chr(S?(15)) = 3. We will prove now,

S?(31) = 4.

Lemma 3.1.8 Chr(S?(31)) is 4.

Proof: By contradiction, suppose S?(31) = 3. We suppose there are five indepen-

dent elements a1, a2, a3, a4, a5 colored by the same color. (If all of the independent

sets have size less than 5, then the order 31 can not be obtained.) Color these points

by blue. Then no point aiaj where i, j ∈ {1, 2, 3, 4, 5} can be colored by blue. If the

elements a1a2, a1a3, a1a4 are colored by green, then a2a3 = a1a2a1a3, a2a4 = a1a4a1a2,

a3a4 = a1a3a1a4 can not be green, and can not be blue, so they should be red. But,

this can not be the case since they form a triple in S?(31) (a2a3a2a4 = a3a4). We can

suppose a1a2, a1a3, a2a4, a3a5, a4a5 are colored green, a1a5, a2a3, a2a5, a3a4, a1a4 are

colored red by taking in consideration symmetry. a1a5a2a3 = a1a5a2a3 = a1a2a3a5

must be blue, since it can not be red or green. Similarly aiajakal must be blue where
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i, j, k, l ∈ {1, 2, 3, 4, 5} and are distinct. Then a1a2a3a4a5 must not blue, aiajakal

can not be blue, which can not be true where i, j, k, l ∈ {1, 2, 3, 4, 5} and are dis-

tinct. If a1a2a3a4a5 is green, then a2a4a5, a3a4a5 must be red, but this can not hold

since {a2a3, a2a4a5, a3a4a5} is a triple. If a1a2a3a4a5 is red, then elements a2a3a5

and a2a3a4 must be green but this can not be the case, since {a4a5, a2a3a4, a2a3a5}

is a triple. So we cannot color S?(31) by 3 colors. On the other hand, we can show

Chr(S?(31)) ≤ 4. Take a 3 coloring of S?(15) which is generated by a1, a2, a3, a4.

Color x and xa5 with the color of x in the coloring of S?(15). Color a5 with the fourth

color. This gives a 4-coloring of S?(31). �

From the proof of lemma 3.1.8 we can conclude that then

Chr(S?(2n − 1)) ≤ Chr(S?(2n+1 − 1)) ≤ 1 + Chr(S?(2n − 1).

Lemma 3.1.9 There exists a 4 chromatic STS(49) [30].

Proof: Rosa constructed a STS(49) by the product rule from two Steiner triple

systems of order 7. Then he showed the chromatic number of the system is more

than 3.

We will name the STS(49) which is obtained by the product rule as S ′(49) and

name the STS(7) as S(7), and the elements of S ′(49) will be denoted as ci,j where i,

j ∈ {1, 2, 3, 4, 5, 6, 7}. Three elements cm,r, cn,s, cp,t form a triple in S ′(49) if one

of the following cases holds:

(i) m = n = p, {r, s, t} is a triple in S(7),

(ii) r = s = t, {m, n, p} is a triple in S(7),

(iii) {r, s, t} is a triple in S(7) and {m, n, p} is a triple in S(7).

Every row or column of the 7×7 square C = ci,j, i, j ∈ {1, 2, 3, 4, 5, 6, 7} form a

STS(7). We will name some subsets of C. Any set of 7 elements no two of them are

on the same row or column will be named as a diagonal. If no three element subset

of a diagonal is a triple in S ′(49) then we call it an M -diagonal. If it contains at least

one triple, we call it a P -diagonal, if a P -diagonal is isomorphic to S(7) we call it an

S-diagonal.
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Suppose we have the three colors, red, blue, and green. Since Chr(STS(7)) = 3,

in each row and column, there must be at least one element from each of the three

color classes.

In an M -diagonal, no triple of the S ′(49) is included and there is an M -diagonal

whose all elements are colored by the same color, say blue. Call this diagonal D.

The set of elements, which can not be colored blue since they form together with

the elements of D a triple in S ′(49), will be denoted as α(D). This set contains 21

elements. Suppose we have an element cx, y ∈ α(D) if namely ci1, j1 , ci2, j2 , ci3, j3 , ci4, j4

are in D, while {ci1, j1 , ci2, j2 , cx, y} and {ci3, j3 ci4, j4 , cx, y} form triples in S ′(49), then

the remaining three elements of D would form a triple in S ′(49) since {i5, i6, x} and

{j5, j6, y} must be triples in S(7). However, this can not be the case since D is an

M -diagonal. Except the elements in D, we have 21 elements in α(D). Name these

elements by β(D). In each row and column, because of the properties of S(7) there

are exactly 3 elements of α(D) and 3 elements of β(D).

We will now show that for some column or row, the three elements of the row

which belong to β(D) is a triple in S ′(49). If we denote the elements of D by ci,ji
,

i = 1, 2, 3, 4, 5, 6, 7 and the elements of the kth row belonging to α(D) by ck,x, ck,y, ck,z

then there will be the following triples: {cs1,t1 , cs2,t2 , ck,x}, {cs3,t3 , cs4,t4 , ck,y}, {cs5,t5 ,

cs6,t6 , ck,z} in S ′(49). The first two elements in each of the three triples are from

D, the elements s1, ..., s7 and t1, ..., t7 form a permutation of the elements 1, ..., 7

with s7 = k and t7 = jk. Then, {t1, t2, x}, {t3, t4, y}, {t5, t6, z} are triples in

S(7). Because of the structure of S(7), x is equal to t3 or t4 or y is equal to t1

or t2. Suppose x = t3. Then t is equal to t1 or t2. With the previous assump-

tions, y is equal to either t5 or t6. Assuming y = t5 implies z = t1. So we have the

triples {t1, t2, t3}, {t3, t4, t5}, {t5, t6, t1}. For the elements t1, t2, t3, t4, t5, t6, t7, the

STS(7) with the above three triples must have the following four triples: {t1, t4, t7},

{t2, t5, t7}, {t3, t6, t7}, {t2, t4, t6}. As a result, ck,t2 , ck,t4 , ck,t6 are the elements of

the kth row belonging to β(D) and they form a triple in S ′(49).

We will now prove that for an M -diagonal D, for each element cx,y ∈ β(D), there is
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an S-diagonal, namely D? which contains the element cx,y and 6 elements from α(D),

in addition, D and D? are disjoint. To prove this claim, we will first prove the following

statement. Let cm,n and ck,l be two elements of an M -diagonal D, then one of the cm, l

and ck, n elements belong to α(D) and the other belongs to β(D). Suppose cm,l and

ck,n are both in α(D), name the remaining elements of the diagonal D as C = {ca1, b1 ,

ca2, b2 , ... , ca5, b5} where {m, k, a1, ..., a5} = {l, n, b1, ..., b5} = {1, 2, ..., 7}. cm,l is

known to be in α(D), therefore, two elements of C namely ca1, b1 , ca2, b2 form a triple in

S ′(49) with cm,l. Similarly, ck,n is known to be in α(D), therefore, two elements of C

namely ca3, b3 , ca4, b4 form a triple in S ′(49) with ck,n. But then, in S(7) we would have

the triples {a1, a2, m} and {a3, a4, k} but this can not be the case since in a S(7),

no pair of triples is disjoint. Assume now, {ca1, b1 , ca2, b2 , cm,l} and {ca1, b1 , ca3, b3 , ck,n}

are the two triples in S ′(49). Again because of the structure of S(7), this would imply

having {ca1, b1 , ca4, b4 , ca5, b5} as a triple in S ′(49). This is impossible since D is an

M -diagonal. If we suppose cm,l and ck,n both belong to β(D), then there is a pair of

elements of D such that, since α(D) and β(D) have the same number of elements, the

corresponding “cross-elements” belong to α(D). So, our claim “one of the elements

cm,l and ck,n belong to α(D) and the other belongs to β(D)” holds.

Consider D to be an M -diagonal and let ckl ∈ β(D). Let ca,l and ck,b be elements

of D. By what we have just proved, since ck,l belongs to β(D), ca,b belongs to α(D).

Furthermore, there must be two elements in D, namely cx,y and cu,v such that {cx,y,

cu,v, ca,b} forms a triple in S ′(49). Similarly, for the following four elements cx,y, cal,

ck,b, cu,v there is a corresponding set of 6 elements which belong to α(D) (there are

6 possible pairs and for each pair we have an element in α(D)). These 6 elements

together with the element ck,l forms a set of 7 elements which we will call D?. We

will now show, this set is in fact a S-diagonal. The first indices are a, k, x, u. The

other elements of the S(7) will be w, m, n. When one of the triples is known to be

{x, u, a}, the others are expected to be as follows: {a, k, w}, {x, k, m}, {k, u, n},

{a, m, n}, {x, w, n}, {w, u, m}. For the second indices b, l, y, v, we apply a similar

procedure; we take z, p, q as the extra elements to complete these to an element
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set of a STS(7) for the extension of the triple {y, v, b} to a S(7). The other 6

triples are: {y, l, p}, {l, b, z}, {l, v, q}, {b, p, q}, {y, z, q}, {v, z, p}. So, D? =

{ck,l, ca,b, cw,z, cx,q, cu,p, cm,v, cn,y} is an S-diagonal. We have shown that for an M -

diagonal D, for each element cx,y in β(D), there is an S-diagonal, namely D? which

contains the element cx,y and 6 elements from α(D), in addition, D and D? are

disjoint.

Among the blue vertices, there must be an M -diagonal D. We proved that for each

element ck,l ∈ β(D), there is an S-diagonal namely D? disjoint from D, containing

ck,l with other 6 elements of α(D). D? is isomorphic to S(7), so one of its elements

at least should be blue. If not Chr(S ′(49)) would be more than 3. Since elements

of α(D) can not be blue, ck,l is blue. But ck,l is an arbitrary element in β(D), so all

the elements of β(D) are blue. But some three element subsets of β(D) are triples in

S ′(49), so, S ′(49) can not be 3-chromatic.

The next step is to show Chr(S ′(49)) ≤ 4 which will result Chr(S ′(49)) = 4.

Let the triples in S(7) be defined as {i, i + 1, i + 3} (mod 7), i = 1, 2, 3, 4, 5, 6, 7.

Take an M -diagonal D = {c1,7, c2,6, c3,5, c4,4, c7,1, c6,2, c5,3}. For i ∈ {1, 2, ..., 7},

Di= {c1,(7+i), c2,(6+i), c3,(5+i), c4,(4+i), c7,(1+i), c6,(2+i), c5,(3+i)} (mod 7). Then color

the elements of D, D1 by blue, the ones of D2, D3 by red, the ones of D4, D5 by

green, and the ones of D6 by brown. With this coloring, no triple will be monochro-

matic. So Chr(S ′(49)) = 4. �

Rosa concluded the following:

Corollary 3.1.10 Suppose there are two STSs named S1, S2 of orders n1 and n2

respectively, both containing a subsystem of order 7. Then, Chr(S) ≥ 4, where S is

the Steiner triple system obtained by the product of S1 and S2.

Theorem 3.1.11 For any v ≡ 1 , 3 (mod 6), v ≥ 123, there exists a STS(v) S, where

Chr(S) ≥ 4.

Proof: Rosa used recursive methods to prove this theorem.
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We know that there is a STS of order 31 (namely S?(31)) and a STS of order 49

(namely S ′(49)) whose chromatic number is 4. In Theorem 1.3.5:

(i) By letting n = 31 and k = 1, 7, 13, 19, 25, 31 respectively, we can conclude there

are STSs of order 63, 69, 75, 81, 87, and 93 containing a subsystem S?(31) having

chromatic number k ≥ 4.

(ii) By letting n = 49 and k = 1, 7, 13, 19, 25, respectively, we can conclude there

are STSs of order 99, 105, 111, 117, and 123 containing a subsystem S ′(49), with

chromatic number k ≥ 4.

Recall Lemmas 3.1.8 and 3.1.9. In Lemma 1.3.4:

(i) If we let n1 = 3, n2 = 31, and n3 = 7, we obtain a Steiner triple system of

order 79.

(ii) If we let n1 = 3, n2 = 31, and n3 = 1, we obtain a Steiner triple system of

order 91.

Both of the above systems include S?(31) as a subsystem, so have chromatic

number k ≥ 4.

We obtained STS(63) and STS(93) previously. Applying Corollary 1.3.7:

(i) For any admissible order k such that 127 ≤ k ≤ 189 we obtain a S(k),

(ii) For any admissible order t such that 187 ≤ t ≤ 279 we obtain a S(k).

By Theorem 1.3.5 for any n ≥ 279:

(i) Let |S1| = 7, and |S2| = 6k − 3 in Theorem 1.3.5 to obtain a STS(n), where

n = 12k + 1.

(ii) Let |S1| = 1, and |S2| = 6k + 1 in Theorem 1.3.5 to obtain STS(n), where

n = 12k + 3.

(iii) Let |S1| = 1, and |S2| = 6k + 3 in Theorem 1.3.5 to obtain STS(n), where

n = 12k + 7.

(iv) Let |S1| = 7, and |S2| = 6k + 1 in Theorem 1.3.5 to obtain STS(n) where

n = 12k + 9.

Since all of those constructed STSs include isomorphic copies of STSs of smaller

orders which are at least 4-chromatic, they are also at least 4-chromatic. �
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Corollary 3.1.12 For every v ≡ 1 or 3 (mod 6) there are at least two nonisomorphic

STSs.

For any admissible v, we have a 3-chromatic STS and a STS which can be colored

by at least k colors, where k ≥ 4. But two STSs with different chromatic numbers

are nonisomorphic, this existence proves the existence of two nonisomorphic STSs.

It is not easy to show that a STS is not m-chromatic for some m ≥ 4.

3.2 Studies of Phelps, Brandes, and Rödl

Phelps, Brandes, and Rödl made important contributions to the weak coloring prob-

lems of the STSs. In their study [5], several results on the chromatic number of

Steiner triple systems are established. They proved that for any k ≥ 3 there exists an

nk such that for all admissible v ≥ nk, there exists a k-chromatic Steiner triple sys-

tems of order v. In addition they proved that for all v ≥ 49 there exists a 4-chromatic

Steiner triple system of order v.

Lemma 3.2.1 [5] There exists a 4-chromatic STS(v) for v = 25, 27, 33, and 37.

Proof: For the above orders, the points of the Steiner triple systems are considered

to be 1, 2, ...., v and STSs are cyclic, that is, there is a map Φ : S → S such that

Φ(i) = i+1 (mod v) for all i in S which satisfies the condition that {i, j, k} ∈ T implies

{Φ(i), Φ(j), Φ(k)} ∈ T . Computational methods are used to show these STSs are not

3-chromatic.

v = 25

Base triples: {1, 2, 4}, {1, 5, 24}, {1, 6, 12}, {1, 8, 18}.

Color classes: {1, 2, 3, 6, 7, 8, 11} {5, 9, 10, 13, 15, 14, 19}, {12, 16, 17, 18, 21, 22},

{4, 20, 23, 24, 25}.

v = 27

Base triples: {1, 2, 4}, {1, 5, 12}, {1, 6, 18}, {1, 7, 15}.

Color classes: {1, 2, 3, 6, 7, 8, 11, 12, 22, 25}, {10, 13, 15, 14, 19, 18, 20, 23, 24},

{4, 5, 9, 17, 26}, {16, 21, 27}.
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v = 33

Base triples:{1, 2, 4}, {1, 5, 15}, {1, 6, 14}, {1, 7, 19}.

Color classes: {1, 2, 3, 6, 7, 8, 12, 13, 30}, {15, 14, 16, 19, 20, 21, 24, 25, 26, 31},

{4, 5, 11, 27, 28, 29, 32, 33}, {9, 10, 17, 18, 2, 23}.

v = 37

Base triples: {1, 2, 4}, {1, 5, 15}, {1, 6, 14}, {1, 7, 22}.

Color classes: {1, 2, 3, 6, 7, 8, 11, 12, 13, 18, 32}, {15, 14, 16, 19, 20, 21, 24, 25, 26, 37},

{4, 9, 23, 29, 30, 31, 34, 35, 36}, {5, 10, 17, 22, 27, 28, 33}. �

Theorem 3.2.2 [5] If there exists a k-chromatic STS(v), then there exists a k-

chromatic STS(2v + 1).

Proof: Let (S, B) be a k-chromatic STS(v), where S = {a1, a2, ..., av}. Consider

two disjoint sets T1 and T2, with T1 ∪ T2 = T , T ∩ S = ∅ where |T | = v + 1 which is

an even number. Let v + 1 = 2n, |T1| = n = |T2|.

Case (a): n ≡ 0 (mod 2)

Take a 1-factorization (T , F ) of K2n, whose vertices represent elements of T .

F = {F1, ..., F2n−1}. Let the first n−1 of them be in such a way that they are unions

of two isomorphic copies of 1-factorizations of Kn, namely (Ti, F
i) for i = 1, 2 , one

for T1, one for T2. So, if F i = {F i
1, ... , F i

n−1}, for j = 1, 2, ... n− 1, let Fj = F 1
j ∪ F 2

j .

Case (b): n ≡ 1 (mod 2)

Take a 1-factorization (T , F ) of K2n, whose vertices represent elements of T .

F = {F1, ..., F2n−1}. Let the first n of them be in such a way that they are unions of

two isomorphic copies of near 1-factorizations of Kn, namely (Ti, F
i) for i = 1, 2, one

for T1, one for T2, plus an edge which is selected as the edge between the vertex which

is out of the near 1-factorization of T1 namely xj and the vertex which is out of the near

1- factorization of T2, namely α(xj). That is Fj = F 1
j ∪ F 2

j ∪{xj, α(xj)}, j = 1, 2, ..., n

where α is a bijection between vertices of two copies of Kn and F i = {F i
1, ... , F i

n}.

The existence of such a 1-factorization of K2n where n is odd, is known [2].

For both of the cases, let S∗ = S ∪ T , B∗ = B ∪D where D = {{ai, x, y} : x, y ∈

Fi, i = 1, 2, ..., 2n−1}. We will first show (S∗, B∗) is a STS. To do this we will check
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if any pair of elements of S∗ is seen in exactly one triple. If both of these elements,

namely x and y are from S, then they are seen exactly once in B, so only once in

B∗. If both of them are from T , the edge {x, y} will be in exactly one 1-factor, call it

Fk. Then the only triple in B∗ containing the pair x, y would be {x, y, ak}. If x ∈ S,

y ∈ T , then x = ai for some i ∈ {1, 2, ..., 2n− 1 = v}, and y ∈ T then find the vertex

adjacent to y in the 1-factor Fi, say z, then {x, y, z} would be a triple in B∗. The

more interesting problem is to show the new system is still k-chromatic. Color the

elements of T1 black, elements of T2 white, and let the elements of S have the same

color as in the coloring C. There are no monochromatic triples, this is obviously true

for triples of B. If {ai, x, y} is a triple of D with i ∈ {1, 2, ., n}, then ai is colored by

one of the k− 2 colors other than black or white while x, y(∈ T ) can be only black or

white. If i ∈ {n+1, n+2, .., 2n−1} then one of x, y is black and the other is white.�

Theorem 3.2.3 If v ≡ 1 or 9 (mod 12), and there exist a k-chromatic STS(v), then

there exists a k-chromatic STS(2v + 7).

Proof: Let (S, B) be a k-chromatic STS(v) where S = {a1, a2, ..., av}. Let v + 7 =

2m. Since v ≡ 1 or 9 (mod 12), m is even. Let T = X ∪ Y where X ∩ Y = ∅,

|X| = m = |Y |. Let (X,F ), F = {F1, ..., Fm−1} a 1-factorization of Km whose two

1-factors give an hamiltonian circuit when their union is taken. Call them Fm−2 and

Fm−1. Let Fm−2 ∪ Fm−1 = (x1, x2, ..., xm, x1), where xi ∈ X, i = 1, 2, ...,m. The

existence of such a 1-factorization is known [22]. We define the new triples as follows:

C = {{yi, xi+3, xi+4}, {yi, yi+1, xi+2} | i = 1, 2, ...,m},

D = {{ai, xp, xq}, {ai, yp, yq} | {xp, xq} ∈ Fi, i = 1, 2, ...,m− 3},

E = {{am−2+k, xj, yj+k} | j = 1, 2, ...,m; k = 0, 1, ...,m− 5},

S∗ = S ∪ T , B∗ = B ∪ C ∪D ∪ E (the subscripts of x’s and y’s reduced modulo

m when necessary).

(S∗, B∗) is a STS(2v + 7). The triples which include pairs of elements from S

namely ai, aj pairs is only seen in B. The pairs of the form xi, xj are seen in 1-factors

of X. An edge {xi, xj} with the condition that |j−i| = 1 if and only if it is in Fm−1 or
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in Fm−2. So for |j − i| = 1, {xi, xj} is in C, otherwise it is in D and there is a unique

triple including this pair for the second case since there is only one 1-factor including

every edge. For the first case, it is obvious. For the pairs {yi, yj} where |j − i| > 1

the situation is same as above. For |j − i| = 1, {yi, yj} pairs are in C. For the pairs

{xi, yj} where 1 ≤ |j − i| ≤ 4, it is easy to see the pairs are in C. For 0 = |j − i| and

|j − i| > 4, the pairs are in E. The remaining pairs are {ai, yj} and {xi, aj} pairs.

Consider the 1-factor Fi. It spans the complete graph of order m. So, for any vertex

xj there is an edge in Fi which contains this vertex. So there is a triple including the

pair {ai, xj} for i = 1, 2, ...,m− 3. The same argument also works for {ai, yj}.

To show that (S∗, B∗) is k-chromatic, color the elements of X black, those of

Y white and those of S as in the coloring of (S, B). There are no monochromatic

triples in B∗. This is obvious for triples of B, C and E as the latter two contain only

triples with at least one black and at least one white element. On the other hand, no

element ai with i ∈ {1, 2, ...,m− 3} is colored black or white; thus no triple of D can

be monochromatic. �

Theorem 3.2.4 If v ≡ 3 or 7 (mod 12), k ≥ 5, and there exists a biased k-chromatic

STS(v), then there exists a k-chromatic STS(2v + 7).

Proof: Let (S, B) be a k-chromatic STS(v) with S = {a1, a2, ..., av} and C be

a biased k-coloring of the system. Let v + 7 = 2m. Let X = {x1, x2, ..., xm} and

Y = {y1, y2, ..., ym} be two disjoint sets where X∪Y = T and T ∩S = ∅. Let (X,F )

be a near 1-factorization, where F = {F1, F2, ..., Fm} containing two near 1-factors,

namely Fm−1 and Fm whose union is a hamiltonian path Fm−1∪Fm = (x1, x2, ..., xm).

Such a near 1-factorization is known to exist [2]. Suppose also the edge {x1, xm} ∈

Fm−2.

Let C = {{yi, xi+3, xi+4}, {yi, yi+1, xi+2} | i = 1, 2, ..., m},

D = {{ai, xp, xq}, {ai, yp, yq} |, {xp, xq} ∈ Fi, i = 1, 2, ..., m− 3},

D′ = {{ai, xj(i), yj(i)} | i = 1, 2, ..., m− 2, xj(i) is an isolated vertex of Fi},

D′′ = {{am−2, xp, xq}, {am−2, yp, yq} | {xp, xq} ∈ Fm−2\{x1, xm} ∪ {{am−2, x1, y1},

{am−2, ym, xm}},
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E = {{am−2+k, xj, yj+k} | j = 1, 2, ..., m; k = 1, 2, ..., m− 5}.

(The subscripts are considered to be in modulo m.) Let S∗ = S ∪ T ,

B∗ = B ∪ C ∪D ∪D′ ∪ E. (S∗, B∗) is a STS(2v + 7). (S∗, B∗) is also k-chromatic.

If elements of X are black, elements of Y are white and elements of S are as in the

coloring of (S, B), then there are no monochromatic triples in B∗. Triples of B, C,

D′ and E are not also monochromatic. Since m− 2 = v+3
2

and the coloring of (S, B)

is biased, neither of the elements a1, a2, ..., am−2 is black or white; so no triple of D

or D′ can be monochromatic. �

Lemma 3.2.5 There exists a 4-chromatic STS(v) for every admissible v ≥ 49.

Proof: There are three cases:

(i) v ≡ 1 ( mod6) Recall that in the Skolem Construction, we use an half idempo-

tent commutative quasigroup. For any even number 2t, there exist a half idempotent

commutative quasigroup of order 2t which contains a half idempotent commutative

quasigroup of order 8. Here notice that with the given constraint, our set is of order

6t + 1 where 2t ≥ 18. Therefore, such a STS(6t + 1) will include a STS(25). But we

have a 4-chromatic STS(25). Then we can replace the 3-chromatic subSTS with the

4-chromatic STS, but we will make the three of the color classes of the new STS(25)

in a way that they are subsets of the old STS(25) with color classes of sizes 8, 8, and

9.

(ii) v ≡ 3 ( mod6) We follow a procedure similar to above, this time, our idem-

potent commutative quasigroups are known to exist for every odd number say 2t + 1

where v = 3(2t + 1). There exists a commutative idempotent quasigroup of order

2t + 1 ≥ 19, which contains a commutative idempotent subquasigroup of order 9.

We will use the 4-chromatic STS(27), and replace the 3-chromatic subsystem by the

4-chromatic STS(27) again with the condition that the color classes are subsets of

the old STS(27).

(iii) v = 49 or 51 For v = 49 Rosa gave a solution (see Lemma 3.1.9). For v = 51

recall that we have a 4-chromatic STS(25), recall Theorem 3.2.2; for k-chromatic

STS(v), we have a k-chromatic STS(2v + 1). �
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The following theorem follows from the previously established Lemmas 3.1.9, 3.1.8

and 3.2.1.

Theorem 3.2.6 There exists a 4-chromatic STS(v) for all v ≥ 25, v ≡ 1 or 3

(mod 6) except possibly 39, 43, and 45.

By using Bose Construction, we gave an example of a 3-chromatic STS(21). Had-

dad constructed a 4-chromatic STS(21) [17]. Forbes, Grannell and Griggs [15] prove

that every STS(21) is 5-colorable. They then showed every STS(21) is 4-colorable

[14]. The chromatic number of any STS(21) is either 3 or 4.

Haddad used the following construction to show the existence of a 4-chromatic

STS(21). A similar construction was used in [5], for the proof of Theorem 5.1.5.

Let (S, T ) be an STS(v) with S = {0, 1, ..., v − 1}. Define the STS(3v) (S ′, T ′) by

S ′ = {(x, i), x ∈ S, i = 1, 2, 3} and for every triple {x, y, z} ∈ T , the following triples

are included in T ′: {(x, 1), (y, 1), (z, 1)} , {(x, 1), (x, 2), (x, 3)}, {(y, 1), (y, 2), (y, 3)},

{(z, 1),(z, 2), (z, 3)}, {(x, 2), (z, 1), (y, 2)}, {(x, 2), (z, 2), (y, 1)}, {(x, 2), (z, 3), (y, 3)},

{(x, 1), (y, 3), (z, 2)}, {(x, 1), (z, 3), (y, 2)}, {(x, 3), (z, 1), (y, 3)}, {(x, 3), (y, 1), (z, 3)},

{(x, 3), (y, 2), (z, 2)}. Note that the triples {(x, 1), (x, 2), (x, 3)}, {(y, 1), (y, 2), (y, 3)},

{(z, 1), (z, 2), (z, 3)}, are included only once. Suppose that (S, T ) is k-chromatic, let

C be a set of colors whose order is k, Φ : S → C be a k-coloring of it. (S ′, T ′)

includes an isomorphic copy of (S, T ), so is at least k-chromatic. Φ′ : S ′ → C ∪{∞},

where ∞ is a color which is not in C. For any x ∈ S, Φ′(x, 1) = Φ′(x, 2) = Φ(x) and

Φ(x, 3) = ∞. This is a proper k + 1 coloring, so, chromatic number of the system is

either k or k + 1.

The following results belong to Haddad. He studied on the STS(21) which can

be obtained from a cyclic STS(7) and on the STS(39) which can be obtained from

a cyclic STS(13) by the above construction. By using some computational methods,

he proved for this STS(21) and this STS(39) that these two can not be colored by

3 colors, but can be colored by 4-colors properly. The only values in doubt were

19, 21, 39, 43 and 45 [5]. The existence of 4-chromatic STS(21) implies the existence

of 4-chromatic STS(43) and 4-chromatic STS(45) (See Theorem 4.1.5) [5]. It can be
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deduced that [17]:

Theorem 3.2.7 There exists a 4-chromatic STS(v) for every admissible v ≥ 21. In

particular n4 ≤ 21.

So the only order for which we are not sure about the existence of a 4-chromatic

STS is 19.

About the existence of k-chromatic Steiner triple systems for large k, some results

proven by Brandes, Phelps and Rödl will be discussed in the fifth chapter.
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Chapter 4

FINITE GEOMETRIES AND STEINER TRIPLE

SYSTEMS

In this chapter, we will deal with the solutions found to the problem of finding

specific examples of k-chromatic Steiner triple systems for k > 4. Up to date, only 5-

chromatic and 6-chromatic STSs could be found. The first example of a 5-chromatic

STS took place in the study of Fugere, Haddad, and Wehlau [16]. Bruen, Haddad,

and Wehlau gave the first specific example of a 6-chromatic STS [6].

4.1 5-chromatic STS

Previously, Rosa worked on the coloring properties of the totally associative Steiner

triple systems which we denote as S?(2n − 1). A S?(2n − 1) can be constructed by

considering F n
2 , the vector space of dimension n over the field of order 2. Here,

the points are one dimensional subspaces of F n
2 or the points of the projective n− 1-

space, and the triples are two dimensional subspaces or the lines of the projective

n− 1-space, PG(n− 1, 2). Each such subspace is represented by the non-zero vector

contained in it. For the sake of simplicity, if {e1, ... , en} is a basis of F n
2 and x is an

element of S?(2n − 1), if x = e1 + e2 + e3 in the given basis then we write it as 123.

The following example is a S?(15). Recall that for a vector space of dimension n over

the field F , the projective space PG(n, F ) is the geometry whose points, lines, planes,

. . . are the vector subspaces of the vector space of dimensions 1, 2, 3, ....

Example 4.1.1 Consider F 4
2 . The basis elements of the system can be denoted as

follows: e1 = 〈0, 0, 0, 1〉, e2 = 〈0, 0, 1, 0〉, e3 = 〈0, 1, 0, 0〉, and e4 = 〈1, 0, 0, 0〉. We

denote the points of the STS as: 1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234,
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1234. The triples are as follows: {1, 2, 12}, {1, 3, 13}, {1, 4, 14}, {1, 234, 1234},

{1, 23, 123}, {1, 24, 124}, {1, 34, 134}, {2, 3, 23}, {2, 4, 24}, {2, 14, 124},

{2, 13, 123}, {2, 34, 234}, {12, 3, 123}, {12, 13, 23}, {12, 4, 124}, {12, 24, 14},

{12, 34, 1234}, {3, 4, 34}, {3, 14, 134}, {3, 24, 234}, {3, 124, 1234}, {23, 4, 234},

{2, 134, 1234}, {123, 4, 1234}, {13, 24, 1234}, {13, 4, 134}, {13, 14, 34},

{13, 234, 124}, {23, 14, 1234}, {23, 24, 34}, {23, 124, 134}, {123, 134, 24},

{123, 234, 14}, {123, 124, 34}, {12, 134, 234}.

We will call elements of S?(2n − 1) words and we say for instance 123 is a word

of length 3. Note that these words are commutative. If a vector in F n
2 is written

as a sum of k basis elements, then the corresponding word will be of length k. A

three element subset of the set S?(2n − 1) is a triple if and only if the sum of the

corresponding vectors in F n
2 is ~0, the zero vector.

Rosa showed that Chr(S?(31)) = 4 and gave a constraint on the chromatic number

of such systems: Chr(S?(2n − 1)) ≤ Chr(S?(2n+1 − 1)) ≤ Chr(S?(2n − 1)) + 1.

J. Pelikán [27] showed also that Chr(S?(31)) = 4.

Recall that a subset of V (S?(2n−1)) is called independent if it does not contain

any lines or in other words, it does not contain any triples. Moreover, it is called

linearly independent if it is a linearly independent subset of F n
2 . The study of Fugere,

Haddad, and Wehlau [16] shows Chr(S?(63)) = 5. This is done by studying inde-

pendent sets and the size of the sets of intersection of the independent sets sets with

hyperplanes.

Furthermore, it is shown that if a k-chromatic STS(v) exists for some v ≡ 3

(mod 6) with k ≥ 5, then a k-chromatic STS(w) exists for every admissible w ≥ 2v+1.

From these results, it can be deduced that for every admissible v ≥ 127, there is a

5-chromatic STS(v).

For 2 ≤ k ≤ n− 1, a subset K ⊆ V (S?(2n − 1)) is a k-flat if K ∪ {~0} is a (k + 1)-

dimensional subspace of F n
2 . The set of triples T restricted to a k-flat K induces the

structure of a Steiner triple system isomorphic to S?(2k − 1) on K.
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For any X ⊆ V (S?(2n − 1)) we denote the smallest k-flat containing X as 〈X〉. A

plane is a 1-flat while a hyperplane is an (n − 2)-flat, that is, an n − 1-dimensional

subspace of F n
2 .

A subset of V (S?(2n − 1)), namely K(v) is an hyperplane if and only if there is a

vector v in V (S?(2n − 1)) such that for all u in K(v) the scalar product results in
−→
0 ,

that is uv =
−→
0 .

4.1.1 Main results

The following is proved by Pelikán [27]:

Proposition 4.1.2 In any 3-coloring of S?(15) all color classes have the same size

and every plane (1-flat) contains at most 3 points of the same color.

This means any color class consists of 4 linearly independent vectors and the linear

combinations of these vectors.

Proposition 4.1.3 S?(15) is uniquely colorable up to an isomorphism.

Proof: Let 〈0, 1, 2, 3〉 be a copy of S?(15) with φ : V (S?(15)) → {1, 2, 3} a 3-coloring.

Set Si = Φ−1(i), i = 1, 2, 3. By Proposition 4.1.2, we can deduce no matter how we

3-color S?(15) , any color class will consist of 4 linearly independent vectors and their

sum. We may apply an element of the automorphism group of S?(15) to ensure that

S1 = {0, 1, 2, 3, 0123}. Since there are 6 words of length two, one color class, say S2,

must contain at least three of them. Call those three words of length two a, b and

c. Since a, b and c are independent, they generate a plane P . Now P contains only

words of even length and by Proposition 4.1.2, P ∩S2 = {a, b, c}. This shows that for

i = 2, 3, Si contains exactly three words of length two and two words of length three.

Since S2 contains three words of length two, at least two of them must have a common

letter. Put {i, j, k, s} = {0, 1, 2, 3} and let ij, ik ∈ S2. Then kj is not in S2 and more-

over is ∈ S2 would imply {jk, js, ks} ⊆ S3, a contradiction. Thus S2 must contain a

subset of the form {ij, ik, js}. We want to show that given three words of length two
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in S2, the remaining two words of length three in S2 are uniquely determined. So let

{ij, ik, js} ⊆ S2 and suppose that S2 contains the word jks. Then this would imply

ij + ik + js + jks = j ∈ S2, a contradiction. By a similar argument we have iks is

not in S2 and we are left with {ijk, ijs} ⊆ S2. Hence S2 = {ij, ik, js, ijk, ijs}. Since

the group of permutations of {0, 1, 2, 3} is a subgroup of the automorphism group of

S?(15), the result is proved. �

With the following color classes, we have a proper 3-coloring of S?(15):

C1 = {0, 1, 2, 3, 0123}, C2 = {01, 12, 23, 012, 123}, C3 = {02, 03, 13, 013, 023}.

Theorem 4.1.4 S?(63) is a 5-chromatic STS(63).

Proof: Rosa previously showed Chr(S?(63)) is either 4 or 5. We will show that it

is not possible to color S?(63) by 4 colors properly. By contradiction, suppose that

S?(63) is 4-colorable with color classes C1, C2, C3 and C4. Then one of these color

classes, say C4, has size at most 15. By Corollary 1.3.11, there is a hyperplane K such

that |C4 ∩K| ≤ 3. The hyperplane K is generated by 5 independent points which we

can denote by 0, 1, 2, 3, 4. There is a 3-flat, H ⊂ K such that C4∩H = ∅. Without loss

of generality H = 〈0, 1, 2, 3〉. The 4-coloring of S?(63) induces a 3-coloring of H since

C4 ∩ H = ∅. By Proposition 4.1.3, we may assume that C1 ∩ H = {0, 1, 2, 3, 0123},

C2 ∩ H = {01, 12, 23, 012, 123}, and C3 ∩ H = {02, 03, 13, 013, 023}. A computer

program was used to check exhaustively that such a partition of the vertices of H

together with the condition that |C4 ∩K| ≤ 3 cannot be extended to a 4-coloring of

S?(63) and thus we have a proof of the theorem. �

The following Theorem which resembles Theorem 2.1.1, is proved with a similar

method.

Theorem 4.1.5 Let k ≥ 5 and v ≡ 3 (mod 6). If there exists a k-chromatic STS(v),

then there exists a k-chromatic STS(w) for every admissible w ≥ 2v + 1.

Proof: Let k ≥ 5 and S be a k-chromatic STS(v) where v = 6n+3. Let S1, S2, ..., Sk

be the color classes and let s1 ≥ s2 ≥ ... ≥ sk be the corresponding partition sequence
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where |Si| = si for 1 ≤ i ≤ k. Then, 2n + 1 > s1 > s2 > s3. We can find three sets of

points of size 2n + 1, namely A1, A2, and A3 where S1 ⊆ A1, S2 ⊆ A2, and S3 ⊆ A3.

Let w ≥ 2v + 1 be an admissible integer. We have two cases:

Case 1: w ≡ 1(mod 6). Then w = 6u + 1 where u ≥ 2n + 1. There exists a half-

idempotent commutative quasigroup (Q, ◦) of order 2u containing an idempotent

commutative quasigroup of order 2n + 1 [23]. By Skolem Construction with (Q, ◦),

we obtain a STS(6u+1) containing a subsystem of order 6n+3. Take this subsystem

of order 6n + 3 out and replace it with a copy of S in such a way that Ai ⊆ Q × i

for i = 1, 2, 3. This gives a k-chromatic STS(w). Since it includes a k-chromatic

subsystem, it is at least k-chromatic. It can also be colored properly by k-colors. Let

C = {c1, ..., ck} be the k different colors used to color S, where Si is the color class

of ci for i = 1, ..., k. Define Φ be the coloring, Φ : (Q × {1, 2, 3}) ∪ {∞} → C by

Φ(x) := ci if x ∈ Si, Φ(x) := cj if x ∈ Q×{j}\S, j = 1, 2, 3 and Φ(∞) may be chosen

to be any color. Φ is a k-coloring of our STS(w).

Case 2: w ≡ 3 (mod 6). Then w = 6u+3 ≥ 2(6n+3)+1 implies that u ≥ 2n+1.

By Cruses Theorem [12], there exists an idempotent commutative quasigroup (Q, ◦)

of odd order 2u + 1 containing an idempotent commutative quasigroup of order

2n + 1. Bose construction applied to the quasigroup (Q, ◦) produces a 3-chromatic

STS(6u + 3) with a (3-chromatic) subsystem of order 6n + 3. Take this subsystem

of order 6n + 3 and replace it with a copy of S in the same fashion as for the case 1.

Again it is easy to check that the resulting STS(6u + 3) is k-chromatic. �

S?(63) was the first specific example of a 5-chromatic STS and it was shown in

the study [16]. A combination of Theorem 4.1.4 and Theorem 4.1.5 results in the

following corollary.

Corollary 4.1.6 There exists a 5-chromatic STS(v) for every admissible v ≥ 127.

Haddad proved the following [17]:

Theorem 4.1.7 AG(4, 3) is a 5-chromatic STS(81).
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Proof: Haddad proved first the largest k for which there exists a k-cap for AG(4, 3)

is 20 [17]. So, we can not color the system with 4 colors properly. The following

5-coloring given by Haddad proves AG(4, 3) is 5-chromatic.

C1={0000, 0001, 0010, 0102, 1000, 1001, 1010, 1102, 1120, 1122, 2011, 2012, 2021,

2100, 2101, 2122},

C2={0002, 0020, 0022, 0211, 0212, 0221, 1101, 1211, 1212, 1221, 2000, 2001, 2010,

2202, 2220, 2222},

C3={0111, 0112, 0121, 0200; 0201, 0210, 1111, 1112, 1121, 1200, 1201, 1210, 2102,

2120, 2211, 2212, 2221},

C4={0011, 0012, 0021, 0100, 0101, 0110, 1011, 1012, 1021, 1100, 2002, 2020, 2022,

2111, 2112, 2121},

C5={0120, 0122, 0202, 0220, 0222, 1002, 1020, 1022, 1110, 1202, 1220, 1222, 2110,

2200, 2201, 2210}. �

4.2 6-chromatic STS

Bruen, Haddad, and Wehlau gave the first specific example of a 6-chromatic STS [6].

To do this, they showed that, the size of a cap in AG(5, 3) is bounded above by 48.

They also found three disjoint 45-caps in AG(5, 3). They combined these results to

prove the corresponding STS(243) of AG(5, 3) is 6-chromatic. They first showed the

structure does not admit a 5-coloring. For a STS(243) to be 5-colorable, it should

have a color class with at least 49 elements. If all color classes have less than 49

elements, then the order of the STS, v ≤ 240, which is not the case. But AG(5, 3)

has caps of size at most 48. Therefore, AG(5, 3) is not 5-colorable.

The 6-coloring of the STS(243) is as follows. C1, C2, C3 are the three disjoint 45

caps of AG(5, 3), C4, C5, C6 are obtained by a 3-coloring of the partial STS, which

is the restriction of the AG(5, 3) to the remaining 108 = 243 − 3(45) points by a

computer program.

C1= {02201, 02101, 12202, 01211, 21111, 00120, 10221, 00112, 21100, 20210,

11211, 00002, 02020, 10020, 21000, 00010, 11110, 21210, 20120, 11121,00212, 00201,
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22220, 02220, 20001, 22001, 21221, 21101, 10112, 22222, 22212, 00110, 02021, 22121,

10111, 21220, 01210, 02102, 20100, 01102, 01110, 22021, 02200, 11221, 22101};

C2= {00200, 11112, 10102, 01120, 00222, 20121, 00100, 11101, 02222, 11212,

22012, 20022, 22200, 12220, 22211, 02221, 01202, 10212, 22022, 21122, 22122, 21201,

22210, 02120, 10011, 01201, 00111, 20111, 02011, 21211, 02211, 01101, 00101, 00001,

20201, 21121, 21021, 10100, 00020, 22112, 02012, 21212, 21102, 11202, 02122};

C3 = {02000, 20010, 22202, 10121, 10002, 12211, 22000, 11122, 21110, 02111,

02202, 21202, 20102, 02212, 11200, 02110, 22100, 01220, 00122, 11220, 01122, 22110,

01222, 21012, 22201, 21120, 00022, 21200, 00102, 11100, 10200, 22010, 00210, 02210,

10120, 00011, 01111, 00121, 00221, 22221, 02002, 20112, 21112, 20222, 21222};

C4 = {11021, 21002, 01022, 10022, 21022, 12120, 02121, 12212, 11020, 20020,

22120, 00000, 10000, 12002, 01000, 12000, 12100, 01200, 11120, 01112, 11010, 20220,

01002, 10122, 20021, 12022, 02010, 11201, 10201, 10202, 12101, 20110, 00202, 22002,

20212, 12222};

C5 = {20000, 11000, 02100, 12110, 10210, 11210, 10001, 01001, 21001, 12001,

10101, 12201, 01011, 21011, 12011, 22011, 00211, 10211, 01121, 20221, 12221, 20002,

11002, 11102, 12102, 22102, 20202, 00012, 10012, 01012, 12012, 12112, 01212, 11022,

02022, 20122};

C6 = {01100, 20200, 12200, 10010, 01010, 21010, 12010, 10110, 12210, 01020,

21020, 12020, 22020, 00220, 10220, 11001, 02001, 20101, 20011, 11011, 11111, 12111,

22111, 20211, 00021, 10021, 01021, 12021, 12121, 01221, 20012, 11012, 02112, 12122,

10222, 11222}.

So, AG(5, 3) is a 6-chromatic STS(243). �

The combination of Theorem 4.1.5 and the existence of the 6-chromatic STS(243)

gives us the following corollary:

Corollary 4.2.1 There exists a 6-chromatic STS(u) for every admissible u ≥ 487.
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Chapter 5

RELATED RESULTS

5.1 Existence of k-chromatic Steiner triple systems for large k

Erdös and Hajnal showed by probabilistic methods, the existence of a k-chromatic

partial triple system (see Theorem 1.3.13) for any k ≥ 2. Treash showed any partial

Steiner triple system can be embedded into a Steiner triple system (see Theorem

1.3.14). Since this extension includes an isomorphic copy of the k-chromatic PSTS,

chromatic number of the STS is at least k. Rosa concluded, for any positive integer k,

there exists a Steiner triple system whose chromatic number is at least k. There is no

general way to embed PSTSs to STSs while preserving the chromatic number. For

instance, a PSTS can be 3-chromatic, but a nontrivial STS is at least 3 chromatic

[5]. So, due to the above results, it could not be concluded that, for any k there is a

STS, S, for which Chr(S) = k. However, result is obtained by Brandes, Phelps and

Rödl [5].

Theorem 5.1.1 [5] Let um be the number of the smallest order for which there exist

a m-chromatic partial STS. Then C1m
2 log m < um < C2m

2 log m, where C1 and C2

are constants.

Lindner gave an embedding of a PSTS to a STS [23], but this did not necessarily

preserve the chromatic number. However, Brandes, Phelps, and Rödl had a simi-

lar approach with Lindner and showed there exists k-chromatic STS(v)’s for large

admissible v.

The following theorem which is proved by Brandes, Rödl, and Phelps [5] shows

that there are infinitely many STSs of every chromatic number c, c ≥ 3. Before giving

the statement and the proof of the theorem, we will state the required propositions
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and lemmas in the proof.

Lemma 5.1.2 Let uk be the smallest order of a weakly m-chromatic partial STS.

Then, c1k
2 log k > uk > c2k

2 where c1 and c2 are constants.

Lemma 5.1.3 [12], A partial idempotent commutative quasigroup of order n can be

embedded in an idempotent commutative quasigroup of order t for every odd t ≥ 2n+1

and in a commutative quasigroup of order t for every even t ≥ 2n.

Lemma 5.1.4 [23] A partial idempotent commutative quasigroup of order n can be

embedded in an half idempotent commutative quasigroup of order 2t for every t ≥ n.

Theorem 5.1.5 [5] For all k ≥ 3 there exists a nk such that for every v ≡ 1 or

3 (mod 6), v ≥ nk, there exists a k-chromatic STS(v).

Proof: We know the existence of the k-chromatic partial Steiner system of order uk

by Lemma 5.1.2. From this PSTS we can obtain a partial idempotent commutative

quasigroup and by Lemmas 5.1.3 and 5.1.4, we can embed it into an idempotent com-

mutative quasigroup of order 2t + 1 and half idempotent commutative quasigroup of

order 2t for every t ≥ uk. Then by the Bose and Skolem Constructions, we can obtain

STSs of order 6t+3 and 6t+1 which are 3-chromatic by construction. For any triple

{x, y, z} in the PSTS, we will have a STS(9) as a subsystem of the new STS(6t+1)

or STS(6t + 3), with the following triples: {(x, 1), (y, 1), (z, 2)}, {(x, 1), (z, 1), (y, 2)},

{(y, 1), (z, 1), (x, 1)}, {(x, 2), (y, 2), (z, 3)}, {(x, 2), (z, 2), (y, 3)}, {(y, 2), (z, 2), (x, 3)},

{(x, 3), (y, 3), (z, 1)}, {(x, 3), (z, 3), (y, 1)}, {(y, 3), (z, 3), (x, 1)}, {(x, 1), (x, 2), (x, 3)},

{(y, 1), (y, 2), (y, 3)}, {(z, 1), (z, 2), (z, 3)}. Then this STS(9) is replaced with the

STS(9) which includes the triples {(x, 1), (y, 1), (z, 1)} , {(x, 1), (x, 2), (x, 3)},

{(y, 1), (y, 2), (y, 3)}, {(z, 1), (z, 2), (z, 3)}. (The remaining triples are: {(x, 2), (z, 1),

(y, 2)}, {(x, 2), (z, 2), (y, 1)}, {(x, 2), (z, 3), (y, 3)}, {(x, 1), (y, 3), (z, 2)}, {(x, 1), (z, 3),

(y, 2)}, {(x, 3), (z, 1), (y, 3)}, {(x, 3), (y, 1), (z, 3)}, {(x, 3), (y, 2), (z, 2)}.) When we

apply this procedure to our STS for all of the triples of the original PSTS, our re-

sulting STS will include an isomorphic copy of our PSTS. So the resulting STS is



Chapter 5: Related Results 44

at least k-chromatic. We can also show that during this procedure of replacing STSs

of order 9 with the new STSs of the above kind for all triples of the PSTS, at some

point we have a STS which is k-chromatic since this replacing procedure increases

the least required number of colors for a proper coloring at most once.

Consider one step of exchanging a subsystem of order 9 with a STS(9) as described

above. If there are no monochromatic triples after the replacement, this means, our

coloring is still proper. Say the STS(v) is i-chromatic before the exchange. Notice

that, only the triples consisting of the elements of the STS(9) are changed, the rest of

the triples remained unchanged, so a monochromatic triple may occur only in the new

STS(9). Before the replacement, the STS(9) was colored with 3-colors, since every

STS(9) is 3-chromatic. None of the 3 color classes can have more than 4 elements.

If one of the color classes has for instance 5 elements, there should be 5.4
2

= 10 triples

including pairs of elements of this color class (no three of them can be in a triple since

this is a proper coloring). There are 4 remaining elements, namely, a, b, c, d. For any

of the 10 triples we had already, we may have only one of a, b, c, d. Without loss of

generality, consider a. There must one triple including both a, b, one including both

a, c and including both a, d. If we have a triple {a, b, c}, we must have one triple

{a, d, x} and one {b, d, y}. These two triples are distinct, otherwise x = b and y = a,

but we had a and b together in one triple before. However this means we should have

more than 12 triples, which can not be the case. For 3 colors, the exchange may

result in at most 3 monochromatic triples. We can choose one element from each

monochromatic triple (there are at most 3) so that the resulting set contains no triple

of the subsystem of order 9 (and, hence, can contain no triple of the system either).

Assigning (i + 1)st color to this set obviously gives a proper (i + 1)-coloring. �

The motivation behind the vertex colorings of STSs was to find non isomorphic

STSs. Isomorphisms preserve chromatic number. The above theorem also assures

that for any large v there are a large number of nonisomorphic STS(v)s.
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5.2 Equitable and balanced colorings

There are some types of weak colorings with additional properties. Equitable col-

orings and balanced colorings are two of those. Since the proofs of the theorems

in this section are based on GDDs, and beyond the scope of our survey, we will only

define these terms and summarize the main results. We will only give the proof of

Theorem 5.2.1 since the proof is done by using a counting argument.

The equitable colorings are the colorings when the size of the color classes differ

by at most 1. Each of the 80 STS(15) have an equitable weak 3-coloring [26]. Each

3-coloring of S?(15) is equitable [27]. The problem of finding if every STS(v) admits

an equitable weak coloring was a major problem.

The following theorem, which is about the sizes of color classes of STSs, belongs

to Haddad and Rödl.

Theorem 5.2.1 Let S = (V,B) be a weakly 3-chromatic STS(v), and Vi, i = 1, 2, 3,

be the color classes of weak 3-colorings of S. Then

v = v1 + v2 + v3 ≥
1

2
[(v1 − v2)

2 + (v1 − v3)
2 + (v2 − v3)

2]

Thus, for sufficiently large v, the color classes must have approximately the same

size.

Proof: For i, j ∈ {1, 2, 3}, let xij be the number of triples that intersect Vi in 2

elements, and Vj in one element. Let x be the number of triples having one element

from each color class. The number of triples which is known to be v(v−1)
6

is equal to

x +
∑

xij. So we have,

v(v−1)
6

= x +
∑

xij,

x12 + x13 =
(

v1

2

)
,

x21 + x23 =
(

v2

2

)
,

x31 + x32 =
(

v3

2

)
,

2x12 + 2x21 + x = v1v2,

2x23 + 2x32 + x = v2v3,
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2x13 + 2x31 + x = v1v3.

The following equalities follow from the above.

x13 + x23 − x21 − x12 =
(

v1

2

)
+

(
v2

2

)
−v1v2 + x ≥ (v1−v2)2−(v1+v2)

2
,

and similarly,

x32 + x12 − x31 +−x13 ≥ (v1−v3)2−(v1+v3)
2

,

x31 + x21 − x23 +−x32 ≥ (v2−v3)2−(v2+v3)
2

.

The inequality follows from adding the previous three inequalities and by rear-

ranging the terms. �

For larger numbers, the following theorem suggests not to expect to find an equi-

table m-coloring [18].

Theorem 5.2.2 For every 0 < ε < 1, m ≥ 6, and t ≥ m, there exists a weakly

m-chromatic STS(v) such that for every t-coloring of the STS, there are m− 3 color

classes whose union contains at most εv elements.

Corollary 5.2.3 For every m ≥ 6 there exists a weakly m-chromatic STS(v) that

does not admit an equitable m-coloring.

Colbourn, Haddad, and Linek had shown that, when the order v is large enough

with respect to the number r of colors, and v ≡ 1 or 3 (mod 6) an equitably r-colored

r-chromatic Steiner triple system of order v exists.

Lemma 5.2.4 Suppose there exists an r-chromatic STS(w) with w ≡ 3 (mod 6) and

partition sequence t1 ≥ t2 ≥ ... ≥ tr. If v satisfies:

(i) v ≡ 3 (mod 6),

(ii) v ≥ max{2w, rt1},

(iii) dv
r
e − tr ≤ 1

3
(v − w).

Then there exists an equitably r-colored, r-chromatic STS(v).
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Lemma 5.2.5 Suppose there exists an r-chromatic STS(w) with w ≡ 3 (mod 6) with

partition sequence t1 ≥ t2 ≥ ... ≥ tr. If v satisfies:

(i) v ≡ 1 (mod 6),

(ii) v > max{2w, rt1},

(iii) dv
r
e − tr ≤ 1

3
(v − w − 1).

Then, there exists an equitably r-colored, r-chromatic STS(v).

Combination of Lemma 5.2.4 and Lemma 5.2.5 implies the following theorem.

Theorem 5.2.6 If there exists an equitably r-colored, r-chromatic STS(w) with

w ≡ 1 or 3 (mod 6) and r ≥ 4, then there exists an equitably r-colored, r-chromatic

STS(v) for each admissible v ≥ 2w.

Lemma 5.2.7 Any r-chromatic STS(w) with r ≥ 4 can be embedded in an r-chro-

matic STS(3w). In addition, if the r-chromatic STS(w) is equitably r-colored, then

it can be embedded in a equitably r-colored, r-chromatic STS(3w).

Theorem 5.2.8 If there exists an equitably r-colored, r-chromatic STS(w) with

w ≡ 1 (mod 6), and r ≥ 4, then there exists an equitably r-colored, r-chromatic

STS(w) for each admissible v ≥ 6w + 1.

Lemma 5.2.9 Suppose there exists an equitably r-chromatic STS(w) with w ≡ 1

(mod 6) with partition sequence t1 ≥ t2 ≥ ... ≥ tr. If v satisfies

(i) v ≡ 1 (mod 6),

(ii) v > max(2w, rt1),

(iii) dv
r
e − tr ≤ 1

3
(v − w)

then there exists an equitably r-colored, r-chromatic STS(v).

If every r-coloring of a triple system is equitable, we call the system r-balanced.

An r- balanced system is necessarily r-chromatic.

Theorem 5.2.10 With the possible exceptions of v ∈ {19, 21, 37, 49, 55, 57, 67, 69,

85, 109, 139} for all w ≡ 1 or 3 (mod 6) and v ≥ 15, there exists a 3-balanced Steiner

triple system of order v.
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Some examples of 3-chromatic STS(v) which do not admit equitable 3-colorings

are given recently in [14]. In this study, also further examples of systems with unique

and balanced colorings are presented.

5.3 Some related results

In this section we will summarize the results from complexity theory about weak

colorings of STS. We will also note some questions arised about chromatic number

of STSs.

C. J. Colbourn, M. J. Colbourn, Phelps and Rödl worked on the problem of finding

the difficulty of deciding if the chromatic number of a given STS is k or not. They

proved the following theorem:

Theorem 5.3.1 [11]

(i) Deciding if a PSTS is t-colorable is NP -complete for any fixed t ≥ 3.

(ii) Deciding if a block design is t-colorable is NP -complete for any fixed t ≥ 9.

Phelps and Rödl proved the following [28]:

Theorem 5.3.2 Deciding if a simple k-uniform hypergraph is t-colorable is NP-

complete for t ≥ 3.

Corollary 5.3.3 [28] Deciding 14-colorability of a STS is NP -complete.

A uniquely colorable STS(33) was found, then the following question arised: for

what orders do such systems exist? In [5] it is asked that if there is a uniquely

colorable m-chromatic STS(v) for all m or not? [5] also introduced the question “is

C(v) is an interval?” More generally, “what is the chromatic spectrum of STS(v)?”

Colbourn, Dinitz, and Rosa answered in [8] partially one of the open problems

they noted in the previous study. They showed the spectrum C(v) for bicolorings

needs not to be an interval. For instance, C(31) = {3, 5}, is not an interval. They

added that 31 may be the only possible order for a STS whose C(v) is not an interval.
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They noted if a STS(v) is m-bicolorable, then m ≤ [log2(v+1)] and for all v = 2n−1,

there exists a STS(v) for which the bound is attained. There are some recent studies

on the chromatic spectrum of STSs. In [19] it is shown that the chromatic spectrum

of STS(25) is {3, 4}.
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Chapter 6

CONCLUSION

In our study, we tried to demonstrate the findings about the weak colorings of

Steiner triple systems. The most interesting part of the problem is the fact that the

solutions come from various branches of mathematics and even computer science.

In the first chapter, we gave the required definitions for our study, statements of

the preliminary theorems that we need in the following chapters and proofs of some

of them.

In the second chapter, we summarized early studies on the topic on the k-chromatic

STSs for small k. Rosa made the first contributions to the problem [29, 30]. He

showed the existence of 3-chromatic STS for any admissible order. He also gave

examples of 4-chromatic STS(31) and STS(49). The study of Brandes, Phelps and

Rödl [5] includes results about the existence of k-chromatic STS for any k by using

probabilistic methods, in addition, some 4-chromatic STSs are also included in the

study.

In the third chapter, we focused on the studies in which finite geometry was used.

Fugère, Haddad, and Wehlau gave the first specific example of a 5-chromatic STS [16].

Bruen, Haddad and Wehlau gave the first specific example of a 6-chromatic STS [6].

Haddad gave examples of 4-chromatic STS(21) and STS(39) by using computational

methods, and he gave an example of a 5-chromatic STS(81) by using finite geometry

techniques [17].

In the 4th chapter, we summarized the arguments for the existence of k-chromatic

STSs for large k.

In the 5th chapter, we summarized the recent studies about colorings of STS,

which are mostly on specific types of weak colorings such as equitable and balanced
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colorings. We only defined the terms and stated the main theorems for those colorings.

We also included some related results in this chapter. For instance the statements of

the theorems about NP -completeness of solving weak coloring problems are included.
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