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ABSTRACT

A Steiner triple system (ST'S) is an ordered pair (S,7") where S denotes a set
of points and T' denotes a set of three element subsets of S called triples with the
property that any pair of elements of § is a subset of exactly one triple. Let C be
a set of colors. A (weak) k-coloring of a ST'S(v) is a map ® : S — C such that
H{P(x), P(y), P(2)} > 2 for every triple {z,y,z} € T. A Steiner triple system is
k-chromatic if it admits a k-coloring but not a (k — 1)-coloring. In this case we say
that the ST'S has chromatic number k and we write Chr(S) = k. This thesis is a

survey on colorings of Steiner triple systems.
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OZETCE

Bir Steiner ticlii sistemi (SUS), (8,T) seklinde bir sirali ikili ile ifade edilebilir,
oyleki, bu ifadede S sistemin elemanlar kiimesini, 7" bu elemanlar kiimesinin 3
elemanl baz altkiimelerinden olusan bir kiimeyi temsil eder. T kiimesi tlizerindeki
kosul, S’ye ait her eleman ciftinin birlikte 77nin elemanlarindan yalnmz ve ancak
birinde yer almasidir. C' kiimesini renkler kiimesi olarak kabul ettigimizde, kose
renklendirmesi, S kiimesinden C' kiimesine (¢ : § — ') tammlanmg bir fonksiyon-
dur, 6yle ki, her {x, y, 2} € T i¢in, |®(z), ®(y), ®(z)| > 2 olsun. Bir Steiner iiglii
sistemi, hig bir ticlii tek renkle boyanmayacak sekilde £ renkle renklendirilip daha az
renkle renklendirilemediginde sisteme, k-kromatik diyoruz. Bu tez, bu konuda daha

once yapilmis calismalar iistiine bir inceleme niteligindedir.
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NOMENCLATURE

STS Steiner triple system

S*(2™ — 1) Totally associative Steiner triple system of order 2" — 1
E, Field of n elements

AG(n, k) Affine geometry of dimension n over the field Fj,

PG(n, k) Projective geometry of dimension n over the field Fy
Chr(S)  Chromatic number of a Steiner triple system S

K, Complete graph with n vertices

F3 Vector space over I3 of dimension n

X
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Chapter 1

PRELIMINARIES AND DEFINITIONS

1.1 Basic definitions

Definition 1.1.1 A binary operation x on a set G is a function x : G x G — G.

For any a,b € G we shall write a b for x(a,b).

Definition 1.1.2 If % is a binary operation on a set G we say elements a and b of
G commutes if axb=0bxa. We say x (or G) is commutative if for all a,b € G

axb=bxa.

Definition 1.1.3 For a map f : A — B, for a subset A" of A, the induced map
far: A — B is defined as follows: for any a € A, fa(a) = f(a).

Definition 1.1.4 A group is an ordered pair (G, *) where G is a non-empty set and
% 15 a binary operation on G satisfying the following axioms:

(i) For all a, b, c € G, (axb)*xc=ax(bxc), that is, * is associative.

(ii) There ezists an element e € G, called an identity of G such that for allg € G
we have ex g =g*xe =g.

(#1) For each g € G there is an element g~* of G called an inverse of g such that
g’l*g:g*gflze.

The group (G, *) is called abelian if for all a,b € G a*xb="bx*a.

Definition 1.1.5 A subgroup H of a group G is a nonempty subset which is closed
under the operation of the group G, and satisfies the condition that x € H implies

xr e H.
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Definition 1.1.6 A field is a set F together with two binary operations + and - on
F such that (F,+) is an abelian group (call its identity 0) and (F — {0},-) is also an

abelian group, and the following distributive law holds:
a-(b+c)=a-b+a-c forallabceF.

Definition 1.1.7 A wvector space V is a set along with a binary operation, namely,
addition on V and a scalar multiplication (a function that assigns an element
av € V to each pair (a,v) for a € F and v € V) on V such that the following
properties hold:

(1) x+y=y+ax forall z,y € V (commutativity of vector addition).

(1) v+ (y+ 2) = (x +y) + 2 for all z,y,z € V (associativity of vector addition).

(7i1) There exists an element 0 € V' such that x + 0 = 0+ z (additive identity).

(tv) For any x € V there exists —x € V such that x + (—z) = (—x) + 2+ = 0
(existence of additive inverse).

(v) r(sz) = (rs)x for allr,s € F and all x € V (associativity of scalar multipli-
cation).

(vi) (r + s)x = rx + sz for all r;s € F and all x € V (distributivity of scalar
sums).

(vit) r(x +y) = rx +ry for all r € F and all x,y € V (distributivity of vector
sums).

(viii) There exists 1 € F such that lx = z1 = x for all x € V (existence of

multiplicative identity).

Definition 1.1.8 A latin square of size n is an n x n array L = (I; ;) such that
each entry l; ; contains a single symbol from an n-set S = {ay, ...,an} of symbols such

that each symbol occurs in each row and column exactly once.

Definition 1.1.9 A partial latin square of size n is an n X n array L = (I; ;)
such that each entry l; ; contains either a single symbol from an n-set S of symbols

or empty such that each symbol occurs in each row and column at most once.
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Definition 1.1.10 A quasigroup (Q,o) is a pair where Q) is a set of size n and o
15 a binary operation on Q) such that for every pair a,b of ), the equations aox =b
and y o a = b have unique solutions. The order of the quasigroup is the number of
the elements of the set Q).

Note that a quasigroup is just a latin square with a headline and a sideline.

Let Q = {ay,...,a,}. We can use a latin square of size n to obtain a quasigroup
of order n by defining a; o a; = aj, where the entry l; ; of the latin square is a, for all
i,5,k € {1,2,....,n}.

A quasigroup (Q, o) is idempotent if for all a; € Q, a; o a; = a;.

A quasigroup (Q, o) of order 2n is half idempotent if for all a; and a;r, € Q

with 1 S n, a; o a; = a; and Ajt1n © Qjypy = ;.

Definition 1.1.11 For a finite set S of v objects a block design based on S is a
collection of k element subsets of S which are called blocks, where each t element
subset of V' occurs in X\ blocks together. We denote this design as a t — (v,k,\)
design.

When t = 2, a block design is called a balanced incomplete block design
(BIBD). We denote a BIBD by (v,k,\) — BIBD.

When the size of the blocks in a block design is 3, we call the blocks triples, and
the design a triple system. We denote a triple system as TS(v, \)

When X =1 in a block design we call the design a Steiner system, S(t,k,v). A
Steiner triple system (STS) is a S(2,3,v). We denote the ST'S as (S,T) where
S is the set of points (or vertices) and T is the set of triples. The order, that is,
the number of elements of the Steiner triple system is denoted by |S|. For the ease of
notation, we sometimes denote the STS (S,T) as S.

Definition 1.1.12 A partial triple system PTS(v, \) is a set of v elements V and
a collection of triples B, so that each unordered pair of elements from V occurs in at

most \ triples of B.

Definition 1.1.13 An incomplete triple system, ITS of order v is a PTS(v, \),

with a set 'V of v elements and a collection B of triples, such that the following
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additional property is satisfied: there is a set W C 'V of size w such that,
(i) if z,y € W, then no triple of B contains {x,y},
(i) if e € V\W and y € V then exactly X\ triples of B contains {z,y}.

Definition 1.1.14 For a ST'S (S,T), a subset of S is said to be independent if no

three element subset of it is a triple.

Definition 1.1.15 If for a PT'S(v, ), defined on a set of points V' with the triple
set T, there is a TS(w,\) defined on a set of points V' with the triple set T', such
that V-C V', and T CT', then we call the enclosing an embedding.

Definition 1.1.16 For a pair of Steiner triple systems, namely (S1,T1) and (Sz, 1),
an tsomorphism is a bijection ® : S — Sy for which the induced mapping
® Ty — T, is also a bijection. Two Steiner triple systems are isomorphic if

there 1s such a bijection.

Definition 1.1.17 An automorphism of o STS (S,T), is a bijection
f S — S such that {f(z), f(y), f(z)} € T for every triple {x,y,z} € T. We
denote the automorphism group of the system as Aut(S).

Definition 1.1.18 The totally associative Steiner triple system of order 2™ — 1,
which is unique up to isomorphism, denoted by S*(2" —1) is a ST'S with the property
that, when the elements of the system are considered as elements of a commutative
quasigroup which is defined by:

(1) aa = a,

(77) ab=c¢, a # b if {a, b, ¢} is a triple in S*(2" — 1),

then, we have for any points a, b, ¢ from the system mnot forming a triple,
a(bc) = b(ac) = c(ab). We denote the set of points of the totally associative STS
as V(S§*(2" —1)). It is known that any 3 elements not forming a triple in the system
generates a STS(7) in S*(2" —1). §*(2" — 1) is isomorphic to PG(n — 1,2).

Definition 1.1.19 A wvertex coloring of a Steiner triple system is an onto map

f V. — C where C is the set of colors. If the order of C, |C| = m, we call the
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coloring an m-coloring. For each ¢ € C, f~'(c) = {x € V : f(x) = ¢} is a color

class.

Definition 1.1.20 A triple is monochromatic if all of its vertices are colored by

the same color.

There are many ways of coloring Steiner triple systems. But among these, we
will study the properties of the weak colorings. Those are the colorings with the
condition that no triple in the ST'S is monochromatic. When this condition is

satisfied, we say the coloring is a proper coloring.

Definition 1.1.21 A hypergraph H is an ordered pair (V,E) where V is a set of
vertices and E is a set of edges, where edges are subsets of V. A STS is an
example of a hypergraph where each triple corresponds to an edge. A hypergraph
is k-uniform if its edges all have size k. The chromatic number Chr(H) of a
hypergraph H is the minimum number of colors needed to label the vertices so that no

edge is monochromatic.

Notice that a 3-uniform hypergraph is a ST'S.

Definition 1.1.22 A partition sequence of an r-chromatic ST'S(v) is a sequence
of integers t; > ty > ... > t, that corresponds to the sizes of color classes in some

r-coloring of the r-chromatic ST S(v).

Definition 1.1.23 A weakly m-chromatic STS(v) is uniquely colorable if every
weak m-coloring of the ST'S produces the same partition of the element set into color

classes.

Definition 1.1.24 A ST'S has a bicoloring with m-color classes if the points are
partitioned into m subsets and the three points in every triple are contained in exactly

two of the color classes. Bicolorings are weak colorings.

Definition 1.1.25 The chromatic number of a STS is the least integer k such
that the system admits a proper vertex coloring with k colors. We then say that the

STS is k-chromatic and we denote this as Chr(S) = k.
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Definition 1.1.26 The spectrum is the set of integers m for which there exists a
weakly m-chromatic STS(v). It is denoted as C(v). So in other words C'(v) = {k :
there exist a k-chromatic STS(v)}.

Definition 1.1.27 A k-coloring of a STS is a biased coloring if at least % of

the elements are colored by (k — 2) of the colors.

Definition 1.1.28 A graph G is a triple consisting of a vertex set V(G), an edge
set E(G) and a relation that associates with each edge two vertices (not necessarily
distinct) called its endpoints. When the vertices u and v are endpoints of an edge,
they are adjacent. We call an edge a loop if its endpoints are the same vertex. A

loopless graph s called a simple graph.

Definition 1.1.29 For a graph G, a subgraph G' of G is a graph such that
V(G') C V(G) and E(G") C E(G). If V(G) = V(G'), the subgraph is called a

spanning subgraph.

Definition 1.1.30 If vertez v is an endpoint of an edge e, then v and e are incident.

The degree of a vertex is the number of edges incident to it.

Definition 1.1.31 A complete graph is a simple graph whose vertices are pairwise

adjacent. If the number of vertices is n, the complete graph is denoted as K,.

Definition 1.1.32 A walk is a list vy, e1,v1, ..., ex, Vp of vertices and edges such that
for1 <i <k, the edge e; has endpoints v;_1 and v;. A trail is a walk with no repeated
edge. A circuit is a closed trail, that means vog = v,. For a graph G if a circuit is also

a spanning subgraph, we call it a Hamiltonian circuit.

Definition 1.1.33 A 1-factor of a graph G is a spanning subgraph in which all the

vertices have degree 1.

Definition 1.1.34 A 1-factorization of a graph G is a set of 1-factors which par-
tition the edge set of the graph.
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Definition 1.1.35 For a graph G with odd number of vertices n, a near 1-factor

s a subgraph of G, where exactly one vertex has degree 0, all the rest have degree 1.

Definition 1.1.36 For a graph with odd number of vertices, a near 1-factorization

is a collection of near 1-factors whose union is the graph itself.

Definition 1.1.37 For any subgroup N of a group G and for any g € G let gN =
{gn|n € N} and Ng = {ng|n € N} called respectively a left coset and right coset
of N in G.

Definition 1.1.38 The affine geometry of dimension n over the field Fj is
the set of all cosets of the vector space F3', which is the vector space of dimension n
over the field Fs, the field of 3 elements. We denote an affine geometry as AG(n,3).

A k-flat of AG(n,3) fork € {0,1,2,...,n} is a coset of a subspace of dimension k.
1-flats are called lines, 2-flats are called planes, and (n—1)-flats are called hyperplanes.
The points of AG(n,3) which are vectors of F§ are 0-flats.

AG(n,3) can be thought as a STS(3") where the points of AG(n,3) are the points
of the ST'S, the lines of it are triples of the ST'S.

Definition 1.1.39 The projective geometry, PG(n,3) is defined as the space of
equivalence classes (AG(n+1,3)\ {6)})/ ~ where x ~ y if for some element c of the
field F, x = cy. For all k > 0, the images of a (k+ 1)-flat in AG(n,3) are defined to
be k-flats in PG(n,3).

Definition 1.1.40 A subset of an affine geometry is a cap if no three of its points are
collinear, that is, if no three of its points lie in the same 1-flat. A cap of cardinality

k is called a k-cap.

Moreover, the caps of the AG(n, 3) can be thought as the color classes of the ST'S,
since no three points are collinear, they will not be on the same line, and on the same

triple.
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Definition 1.1.41 A subset S of a vector space V' is called a set of linearly inde-
pendent vectors if an equation a vy + asvy + .... + a,v, = 0 with ay,as,...,a, € F

and vi, Vg, ....,v, € S implies a1 = as = ... = a, = 0.

Definition 1.1.42 A basis of a vector space V is a list of vector in V that are
linearly independent and spans (that is, any vector in V' can be written as a linear

combination of the vectors from this list) V.

Definition 1.1.43 Complexity theory is the theory of classifying problems based
on how difficult they are to solve. A problem is assigned to the P-problem (polynomial-
time) class if the number of steps needed to solve it, is bounded by some power of the
size of the problem. A mon-deterministic Turing machine is a a model of be-
havior composed of a finite number of states, transitions between those states, and
actions which is associated with an external storage or memory medium and for each
pair of state and input symbol there may be several possible next states. An NP
(Non-deterministic Polynomial time) problem is a decision problem (a problem whose
answer is either yes or no) solvable in polynomial time on a non-deterministic Turing
machine. The class of P-problems is a subset of the class of NP-problems, but there

also exist problems which are not NP.

Definition 1.1.44 An NP-complete problem is a problem which is both NP and
NP-hard (any NP-problem can be translated into this problem). In other words, a
problem is NP-complete if it is NP and an algorithm for solving it can be translated

into one for solving any other NP-problem.

Definition 1.1.45 A group divisible design (GDD) is a triple (X, G, B), where
X is a point set, which satisfies the following properties:

(1) G is a partition of X into subsets called groups.

(17) B is a set of subsets of X (called blocks) such that a group and a block contain
at most one element in common.

(7i1) Every pair of points from distinct groups occurs in a unique block.
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1.2 Bose Construction and Skolem Construction

1.2.1 Bose Construction

Let (Q,o) be an idempotent commutative quasigroup of order 2u + 1. Let
Q=11,2,3 .. 2u+1} and § = Q x {1, 2, 3}. Define a collection of triples T'
of § as follows:

(1) For every z € Q {(z,1),(x,2),(x,3)} € T.

(17) For every x, y € Q, © # y, then {(z,1),(y,1),(x 0 y,2)}, {(z,2),(y,2),(z o

y,3)1:A(2,3), (y,3), (xoy, 1)} €T.
It is easy to see that (S,T) is a ST'S(6u + 3), by counting the number of triples

in T and checking that any pair of elements is seen in exactly one triple. Note that

the number of triples should be % ina STS.

1.2.2 Skolem Construction

Let (Q,o) be an half idempotent commutative quasigroup of order 2u where
Q=A11,2,3, .., 2u} and set S = @ x {1, 2, 3} U {oo}. Define a collection of triples
T of § as follows:

(i) for every z € Q, x < wu, z € Q, {(x,1), (2,2),(z,3)} € T,

(ii) for each x > w, the three triples {oo, (z, 1), (z — u,2)}, {00, (z,2), (x — u, 3)},
{0, (2,3),(x —u,1)} €T,

(if) for #, y € Q, & # y, then {(z,1), (3, 1), (z 0 9,2}, {(2,2), (5,2, (z 0 9, 3)},
{(2,3),(y,3), (woy, 1)} € T.

Similar to the Bose Construction, it is easy to see that (S,7T) is an ST'S(6u + 1).

Notice that in both Bose and Skolem Constructions subquasigroups will always

produce subsystems in the resulting ST'S [5].
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1.3 Some preliminary theorems

1.3.1 Preliminary results for studies of Rosa

We will see in the following chapters, for any admissable v > 7, a ST'S(v) is at least
3-chromatic. We summarize here some theorems about the existence of 2-chromatic
PTSs and 3-chromatic 7'Ss. We will also state some of the theorems due to A. Rosa.
(30].

The following result gives us an upper bound for the number of triples of the

2-chromatic partial triple system.

Proposition 1.3.1 [9] Let (V,B) be a weakly 2-chromatic partial TS(v,\). Then,
|B| < \v?/8.

Proof: For the two colors a and (3, suppose p of the elements are colored by « and
the remaining v — p of them are colored by 3. Since none of the triples are monochro-
matic, in each triple, two of the elements will be colored by one color, and the other
element will be colored by the other color. So in each triple there are two unordered
pairs of elements which are colored by different colors. There are v(v — p) pairs of ele-
ments which are not monochromatic. Each of them can be seen in \ triples together.
But since there are two such pairs for each triple, to count the triples, we divide the
product Ap(v —p) by 2. This is a partial triple system. So |B| < Ap(v—p)/2 < \v?/8.

The second inequality holds since p(v — p)/2 takes a maximum value when p = v/2.1

Consider a triple system with a 2-coloring. To decrease the number of the mono-
chromatic triples, we should have color classes of nearly equal size. The following
result belongs to Phelps, and is about the number of the monochromatic triples of a

TS(v,A) with a 2-coloring.

Lemma 1.3.2 [9] When a T'S(v, \) has a coloring with color classes of size | 5] and

(51, the number of monochromatic triples equals A 5]([5]—2)/6 and does not depend

on the particular triple system.
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This shows that there exists a 2-chromatic partial triple system with b triples for any
b satisfying 1 < b < [Mv?/8]. Take any T'S(v,A). Color any [%] of its elements by
one color and the rest by a second color. The number of monochromatic triples is
assured to be A5 |([5] —2)/6 by Lemma 1.3.2 independent from how we color the
vertices. When we delete these monochromatic triples, we will have [ Av?/8] triples.
To obtain a partial triple system with b triples, delete any |Av?/8| — b triples.

By Proposition 1.3.1 we can deduce, the chromatic number of a T'S(v, ) for v > 5

is at least 3.

Lemma 1.3.3 [30] If there are two STSs named Sy, Sy having orders ny and no,
respectively, then there exists a Steiner triple system (S, B) of order niny, moreover

S includes 81 and Sy as subsystems.

Lemma 1.3.4 [30] If there are three ST'Ss named Sy, Sz, Ss, where Ss is a subsystem
of Sa, then there exists a ST'S of order n3+mny(ny —ng) containing the all three ST'Ss

as subsystems.

Theorem 1.3.5 [30] If S; and Sy are two ST Ss of orders 6k + 1 and n, respectively,
where k 1is an integer, k > 0 and n > 6k + 1, then there exists a STS of order

2n + 6k + 1 containing S; and S as disjoint subsystems.

Theorem 1.3.6 [30] If S and Sy are two ST Ss of orders 6k + 3 and n, respectively,
where k is an integer, k > 0, n = 3 (mod 6), n > 6k + 3, then there exists a ST'S of

order 2n + 6k + 3 containing S and Sy as disjoint subsystems.

Corollary 1.3.7 [30] Let S be a ST'S of order n = 3 (mod 6). For every admissible

s, 2n+ 1 < s < 3n, there exists a STS of order s containing S as a subsystem.

Proof: We apply the two previous theorems for every k € {0,1,...,t}, where n =
6t + 3, and obtain Steiner triple systems §;’s, where 0 < ¢ < t, so that in each &;, we
have copies of S and a ST'S of order 6k + 1. [ |
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1.8.2  Preliminary results for coloring finite geometries

Let C be an independent set of the vector space V(5*(63)).

Lemma 1.3.8 [16] If C' does not contain a basis, then there is a hyperplane K such
that |C N K| < 2.

Let Oy = {0, 1, 2, 3, 4, 5, 0123, 0124, 0125, 012345, 034, 035, 045, 134, 135, 145, 234,
235, 245, 345}. It has the property that, it meets every hyperplane of S*(63) in at

least 4 points.

Theorem 1.3.9 [16] If the independent set C' satisfies |C' N K| > 4 for every hyper-
plane K, then C = f(Cy) for some f € Aut(S*(63)).

This shows the size of an independent set that meets every hyperplane of S*(26 — 1)

in at least 4 points is 20.

Corollary 1.3.10 [16] V(5*(63)) has no independent subset C' which meets every

hyperplane of S*(28 — 1) in 5 or more points.

Lemma 1.3.8 and Theorem 1.3.9 together imply the following corollary, which will be
used in the proof of Theorem 4.1.4.

Corollary 1.3.11 [16] If C is independent and satisfies |C| < 19, then there is a
hyperplane K such that |C N K| < 3.

1.8.83  Preliminary results for the existence of k-chromatic STS for large k

Lemma 1.3.12 [9] A commutative quasigroup of order n exists for alln > 0. A

commutative idempotent quasigroup of order n exists if and only if n =0 or n is odd.

Proof: Index the rows, columns and the symbols of the latin square of size n by the
elements of the additive group Z,. Consider the quasigroup corresponding to this
latin square obtained by putting l;; = [;; = ¢ + j (modn). This is commutative by

construction.
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For the idempotent commutative quasigroup, the case n = 0 is trivial. Take an
odd number n. Consider a latin square just as above. It is commutative by construc-
tion. Every symbol is seen just once on the main diagonal. By renaming the symbols
in the latin square, we can obtain an idempotent latin square. For the converse,
consider we have an idempotent commutative latin square whose order is more than
0. Every symbol is seen n times on the latin square, once on the main diagonal and

by symmetry, even number of times outside the main diagonal. So, n must be odd. W

Erdos and Hajnal used methods of probability to show the following theorem [13].

Theorem 1.3.13 For any integer k > 2 there exists a PTS such that chromatic

number of the system C' > k.

Treash proved that, any partial Steiner triple system can be extended to a Steiner

triple system.
Theorem 1.3.14 [31] A partial triple system has an embedding.

For A = 1, this means a PSTS can be completed to a ST'S.
The following theorem of Lindner also gives us an idea about the comparative

sizes of the PSTS and STS.

Theorem 1.3.15 [21] A PSTS(v) can be embedded in a ST S(w) if w > 120+ 7 and
w=1,3(mod 6).

Andersen, Hilton, and Mendelsohn [1] proved the following theorem which im-

proves the previous result of Lindner:

Theorem 1.3.16 A partial Steiner triple system of order v can be embedded in a

STS(v) whenever w > 4v + 1 and w = 1,3 (mod 6).
Finally, very recently Bryant proved the following [7]:

Theorem 1.3.17 Any partial Steiner triple system of order u can be embedded in a

Steiner triple system of order v if v =1, 3 (mod 6) and v > 3u — 2.
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Chapter 2

INTRODUCTION

Combinatorics as an area of mathematics can be considered as the science of count-
ing discrete objects. Design theory, which is a branch of combinatorics, is the science
of counting, choosing, arranging and classifying discrete objects. A combinatorial de-
sign is a way of selecting subsets from a finite set that meets certain requirements. For
instance, these subsets can be selected in such a way that the intersections of them
have certain properties. Therefore, combinatorial design theory deals with the con-
struction of the necessary and sufficient conditions for the existence of combinatorial
designs. Like many other problems in combinatorics, coloring problems are counting
problems in general. Various methods can be used in studies for colorings of designs,
including some probabilistic and computational methods [10]. There are many studies
investigating the coloring properties of Steiner triple systems. This thesis is a survey
on weak colorings of Steiner triple systems, the focus is particularly on dealing with
the constructive methods that are used for the coloring problems.

Steiner triple systems were defined for the first time by W. S. B. Woolhouse in 1844.
In 1847, T. P. Kirkman proved that for all v = 1 or 3 (mod 6), there exists a Steiner
triple system of order v [24]. The weak chromatic number of a hypergraph, will be
one of our main concerns since ST'Ss are special cases of uniform hypergraphs. Erdos,
Hajnal [13], and Lovasz [25] considered the weak vertex colorings of hypergraphs for
the first time. Chromatic number of hypergraphs has been defined by Berge [3].

Here we first gave some required definitions for our study and state some of the
main theorems about coloring of Steiner triple systems. In the following chapters, we
will discuss construction methods for k-chromatic Steiner triple systems for small k

and the existence of k-chromatic Steiner triple systems for large k. We will discuss
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the constructive methods used in the coloring problems of Steiner triple systems.
Blaniuk and Mendelsohn have made a survey on the colorings of Steiner systems
in [4] where the studies about vertex colorings and edge colorings of Steiner triple
systems were explained. Some notes on open problems and comments on the possible
future studies also took place in it. A latter survey about colorings of block designs

belong to Colbourn and Rosa [10].

2.1 Overview

In the weak colorings of Steiner triple systems, the condition that no triple is monochro-
matic is required. There are many methods to color Steiner triple systems, while we
will only deal with the weak colorings.

A. Rosa worked on the weak chromatic number of ST'Ss. He showed that there
exists no nontrivial 2-chromatic ST'S [30]. Mathon, Phelps, and Rosa showed all
ST S(v)’s with v < 15 are 3-chromatic in their detailed study [26] on small Steiner
triple systems and their properties. Rosa proved there exists a weakly 3-chromatic
ST'S of all orders except of order 3 elements [29]. He also gave some constructions
for weakly 4-chromatic ST'Ss. For instance, he showed the totally associative Steiner
triple system of order 31 is 4-chromatic [29]. Also, he constructed a 4-chromatic
ST'S(49) by using a product of two Steiner triple systems of order 7 [29].

Rodl, Brandes, and Phelps used probabilistic approach to find upper and lower
bounds for the number u,,, which corresponds to the smallest order for which there ex-
ists a partial ST'S(u,,) [5]. In particular, they showed Cym? logm < u,, < Com?logm
where C and ) are constants. By using the embedding theorem for partial ST'S’s,
and the existence of m-chromatic partial ST'Ss, they proved that for any m > 3, there
exists an n,, such that for all v = 1 or 3 (mod6), v > n,, there exists an m-chromatic
STS(v). In addition, they showed that for any v > 25 (v = 1 or 3 (mod 6)) there ex-
ists a weakly 4-chromatic ST'S except 39, 43, 45. The examples of 4-chromatic Steiner
triple systems of orders 25, 27, 33, 37 were found by Rodl, Phelps and Brandes using
computer algorithms. Haddad showed there exist 4-chromatic ST'S(21) and STS(39)
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[17]. The 4-chromatic ST'S of order 39 is again found by using computer algorithms.
The existence of 4-chromatic ST'S(21) implies the existence of 4-chromatic ST'S(43)
and 4-chromatic ST'S(45) by the following Theorem:

Theorem 2.1.1 [9] If a k-chromatic STS(v) exists with v = 3 (mod 6) and k > 4
in which size of the three of the color classes bounded by v/3, then there exists a

k-chromatic STS(u) for every admissible u > 2v + 1.

Therefore, there are 4-chromatic ST'S for all admissible values of v > 21 and
the only value in doubt is 19. Since there are 11,084, 874, 829 known nonisomorphic
STS(19) [20], proving if there exists a 4-chromatic ST'S(19) is not a trivial problem
and requires a constructive solution.

A 5-chromatic ST'S(v) for every admissible v > 127 is constructed by Fugere,
Haddad, and Wehlau [16]. They also gave a specific example of a 5-chromatic ST'S(v).
Before that, for £ > 5, there had been no specific examples of k-chromatic ST'S, the
existence of such Steiner triple systems were shown by nonconstructive methods [5].
After four years, the first example of a 6-chromatic ST'S was given [6] by using some
computer algorithms. They proved that there exists a 6-chromatic ST'S(u) for every
admissible u > 487 by recursive methods.

It is known that as k increases, it is hard to give specific examples of k-chromatic
STSs. Colbourn worked on the complexity of the problem of finding the chromatic
number of a given ST'S.

In the previous chapter, we gave the required definitions for our study, statements
of some preliminary theorems, and proofs to some of them. In the third chapter, we
will focus on the earlier studies on the problem which mostly deals with k-chromatic
Steiner triple systems for small k. In the fourth chapter, we will deal with the former
studies on the k-chromatic Steiner triple systems for small £k, which are mostly using
methods in finite geometry. In the fifth chapter, we will summarize the studies on the
k-chromatic Steiner triple for large k, which are mostly existence theorems. In the
fiftth chapter, we will also include some related results for weak colorings of Steiner

triple systems related to complexity of this problem and some specific weak colorings
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of Steiner triple systems. We will conclude our study by summarizing the main results

that are included in it.
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Chapter 3

EARLY STUDIES ON o-CHROMATIC STEINER TRIPLE
SYSTEMS FOR SMALL «

Early contributions of the weak colorings of ST'Ss made by A. Rosa. We will first
discuss the early studies of Rosa about weak colorings of Steiner triple systems. Some
very important contributions about weak colorings of Steiner triple systems were done
by the studies of Brandes, Phelps, and Rodl. We will also discuss some of the main

theorems they proved.

3.1 Studies of Rosa

Mathon, Phelps and Rosa studied on the structure of Steiner triple systems of small
orders. In their detailed study [26], they summarized all known structural properties
of the Steiner triple systems up to date which includes the list of triples and the
color classes. The following two examples of ST'Ss, one of order 13, and the other
of order 15 are taken from this nice work. Actually, all Steiner triple systems whose
order less than or equal to 15 are included in the article. There is a unique ST'S(7)
up to isomorphism, there are exactly two nonisomorphic S7'S(13), 80 nonisomorphic
STS(15). After the order 19, the number of nonisomorphic Steiner triple systems
are comparably very large, that is why, it is not easy to classify them. Number of
nonisomorphic Steiner triple systems of small orders or lower bounds on these orders
are given.

In addition, some selected Steiner triple systems whose order is less than 27 are

also included in the article [26].
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Example 3.1.1 STS(7)

Triples: {1,2,3}, {1,4,5}, {1,6,7}, {2.4,6}, {2.5,7}, {3.4,7}, {3.5,6}.
Color classes: {1,2}, {3,4}, {5,6,7}.

Example 3.1.2 STS(15)

Triples: {1,2,3}, {1,4,5}, {1,6,7}, {1,8,9}, {1,10,11}, {1,12,13}, {1,14,15},
{2,4,6}, {2,5,7}, {2,8,10}, {2,9,11}, {2,12,14}, {2,13,15}, {3,4,7}, {3,5,6},
{3,8,111, {3,9,10}, {3,12,15}, {3, 13, 14}, {4,8, 12}, {4,9,13}, {4, 10, 14}, {4,11, 15},
{5,8,14}, {5,9,12}, {5, 10,15}, {5, 11,13}, {6,8, 15}, {6,9, 14}, {6, 10, 13}, {6, 11,12},
(7,8,13}, {7,9,15}, {7,10,12}, {7,11,14}.

Color classes: {1,2,4,7,9}, {3,5,8,12,13}, {6, 10,11, 14, 15}.

Example 3.1.3 ST'S(13)

Triples:  {1,2,3), {1,4,5}, {1,6,7}, {1,8,9}, {1,10,11}, {1,12,13}, {2.4,6),
(2,5,7), {2,8,10}, {2,9,12}, {2,11,13}, {3,4,8}, {3,5,12}, {3,6,13}, {3,7,11},
(3,9,10}, {4,7,9}, {4,10,13}, {4,11,12}, {5,6,10}, {5,8,11}, {5,9,13}, {6,8,12},
16,9,11}, {7,8,13}, {7,10,12}.

Color classes: {1,2,4,7,8}, {3,5,6,9}, {10,11,12,13}.

Theorem 3.1.4 [29] Chr(S(v)) > 3 whenever v > T.

Proof: Suppose for some v we have ST'S(v) which can be colored by two colors, say
p of them by red, v — p, where p < v — p of them by blue. None of the triples is
monochromatic. Corresponding to each triple, there are 2 pairs of elements which
are multicolored. So, if we denote the number of triples by |T'|, 2|T| = p(v — p). But
|T| = % [24]. This equality holds if and only if when p = 1,v = 3. that is a ST'S

is 2-chromatic if and only if v = 3 and it is at least 3-chromatic when v > 7. |

The existence of Steiner triple systems of large chromatic numbers can be deduced
by earlier studies. Treash proved that any partial Steiner triple system can be em-

bedded in a Steiner triple system [31]. Erdés and Hajnal [13] proved the existence of



Chapter 3: FEarly Studies on a-Chromatic Steiner Triple Systems for Small o 20

a partial Steiner triple system which is k-chromatic for any positive integer k. The
extension of this PSTS to a STS will include an isomorphic copy of the PST'S in
the ST'S. So the ST'S is at least k-chromatic.

Theorem 3.1.5 Ifv =1 or 3 (mod 6), then there exists a 3-chromatic STS(v) [29].

Proof: For the case v = 3 (mod 6) the Bose Construction is used. In the Bose Con-
struction, a commutative quasigroup of order 2n+1, (@, o) where @ = {1, 2, ...., 2n+
1} is used. Let S = @ x {1,2,3}. We color (7, 1)s by blue, (i,2)s by green and (i, 3)s
by red for 1 <i < 2n + 1.

For the case v = 1(mod6), there exists a 3-chromatic ST'S(v) constructed as
follows by Rosa: & = {ai,...,as, b1, ..., bax, C1, ..., Cor,, 00} . Let G be the complete
graph on the vertices 1,2, ...,2k and let L = {L, ..., Lox_1} be a decomposition of G
into 2k — 1 1-factors. Where we denote the vertex 2k by oo in this decomposition.
Li = {(k+i—1,00), (i+4,i—j—1) (mod 2k—1),0 < j < k—2}. I/ = {L} : 1 < i < 2k}
is a set of subgraphs of K5, which forms a decomposition of Ky.

L;, if i is odd;
Liy=4 L;—(i—1,i), ifiiseven andi < 2k;

(2§ —2,2j), 1<j<k-—1ifi=2k

For z, yin 1,2, ....,2k and x # y define f(z,y) by f(z,y) = i if and only if (z,y) €
Lj. Then, the blocks of the ST'S(v) are given by (as, ay, bfwy)), (b2, by, Cr@y)); (Ca, Cy,
Af(zy)) for 1 <o <y <2k, (ag;, by, ca), for 1 <i < k; and (a;, biy1,00), (bi, cit1,00),
(¢iyair1,00) for i = 1,3, ...,2k — 1. By coloring a;’s by blue, b;’s by yellow, ¢;’s by red

and oo by any of those colors, the three coloring can be verified. |

Example 3.1.6 STS(19) can be constructed and colored by the above construction
where k = 3.

Let S = {a1,...,a6,b1,...,b6,¢1,...,c6,00}. G is a complete graph of 6 vertices.

L ={Ly, Ly, L3, Ly, L5} is a set of 1-factors which partites G.
Ly = {(37 6)7 (17 5>’ (2’4)}7 Ly = {<6’ 4)? (27 1)7 (5v 3)’ }v Ly = {(57 6)7 (37 2)a (47 1)}7
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Ly ={(6,1),(4,3),(5,2)}, Ls ={(6,2),(5,4),(1,3)}.

L' ={Ly, Ly, Ly, Ly, Lg}, Ly = Ly, Ly = Ls, Ly = Ls,

Ly ={(4,6),(3,5)}, Ly = {(6,1),(5,2)}, Ls = {(3,4),(1,2)}.
f(L2) =6, f(1,3) =5, f(23) = 3, f(1L4) = 3, f
f(2,5) = 4, f(1,6) = 4, f(2,6) = 5, f(3,3) = 6, f
f(4,6) =2, f(3,6) =1, f(5,6) = 3.

Type 1 triples: {a1, as,bs}, {a1,as, b5}, {as, as, b3}, {b1, b2, c6}, {b1,bs, 5}, {b2,bs,c3},
{c1,¢2,a6}, {c1,c3,a5}, {co,c3,a3}, {ar,aq,b3}, {ai,ae,bs}, {az,as,bs}, {b1,b4,c3},
{b1,bs,ca}, {b2,b5,ca}, {c1,ca,a3}, {c1,¢6,a4}, {coyc5,a4}, {as,aqs,b1}, {as,aq, bs},
{c1,¢5,a1}, {ca,cq,a1}, {ca,c6,a5}), {b1,bs,c1}, {b2,bs, 1}, {b2,b6,¢5}, {as,aq,be},
{as,as5,bo}, {as,a6,b1}, {b3,bs,c6}, {b3,bs,c2}, {b3,bs,c1}, {c3,¢6,a1}, {aq,as,bs},
{ay4,a6,b2}, {as,ae, b3}, {bs,bs,c5}, {bs,bg,ca}, {bs,b6,c3}, {c3,ca,a6}, {c3,c5,a0},

{C4,C5,CL5}, {C4,Cﬁ,a2}, {05,66,(1,3}, {alaa’57b1}-

(274) = 1,
(475) = 9, f(375) = 2

)

Type 2 triples: {a27 b27 62}7 {04, b4> 64}7 {aﬁv b67 CG}7
Type 3 triples: {ah b27 OO}, {bla Co, 00}7 {Clu aa, 00}7 {a37 b47 OO}? {637 C4, OO}, {037 Qy, OO}J

{af)a b67 OO}, {bSa Ce, OO}, {057 Gg, OO}
Example 3.1.7 A STS of order 21 colored with 3 colors.

This example illustrates a S7'S(21) which is constructed by the Bose Construction.
The triples are as follows:

Type 1 triples: {1,8, 15}, {2,9, 16}, {3,10, 17}, {4, 11, 18}, {5,12, 19}, {6, 13, 20},
(7,14, 21}.

Type 2 triples: {1,2, 12}, {1,3, 9}, {1,4, 13}, {1,5, 10}, {1,6, 14}, {1,7, 11},
{2,3,13}, {2.,4,10}, {2.5 14}, {2.6, 11}, {2,7,8}, {3.,4, 14}, {3,5, 11},
{3.,6,8}, {3,7,12}, {4,5, 8}, {4,6,12}, {4,7.9}, {5,6,9}, {5,7, 13},
{6,7, 10}, {8,9, 19}, {8,10, 16}, {8,11, 20}, {8,12, 17}, {8,13, 21}, {8,14, 18},
{9,10, 20}, {9.,11, 17}, {9,12,21}, {9,13,18}, {9,14, 15}, {10,11, 21},
{10,12, 18}, {10,13, 15}, {10,14, 19}, {11,12, 15}, {11,13, 19}, {11,14, 16},
(12,13, 16}, {12,14,20}, {13,14, 17}, {15,16,5}, {15,17,2}, {15,18, 6},
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{15,19, 3}, {15,20, 7}, {15, 21, 4}, {16,17, 6}, {16, 18, 3}, {16,19, 7}, {16, 20, 4},
{16,21, 1}, {17,18, 7}, {17,19, 4}, {17,20, 1}, {17,21, 5}, {18,19, 1}, {18, 20, 5},
{18,21, 2}, {19, 20, 2}, {19,21, 6}, {20,21, 3}.

In this construction, the color classes are as follows:

{1,2,3,4,5,6, 7}, {8,9, 10, 11, 12, 13, 14}, {15, 16, 17, 18, 19, 20, 21}.

All triples above are colored by 3 colors.

The totally associative Steiner triple system of order 2" — 1, which is unique
up to isomorphism, denoted by S§*(2" — 1). Denote the elements of the system by:
A1y A2, cevvy Qpyy G102, ..y A1 A3...... a,. Notice that the elements are formed according to
the subsets of the set {1,2,...,n}. We can represent the elements of the S*(2" — 1)
by using the vectors in £} except the zero vector. The basis elements of £}’ can be
represented as ey, ..., e, where e; = 000...1...00 where i is the " entry for 1 < i < n.
The triples are two dimensional subspaces of FJ'. For instance, let aya3 and a;a; are
two elements of S*(2" — 1) and the corresponding vectors are e; + ez and e; + e;
respectively, name (e; + e3) + (e1 + e5) = e3 + e5 as azas. Then the triple which
includes ayas and ajas is {ayas, ajas, azas}. Chr(S*(15)) = 3. We will prove now,

S*(31) = 4.
Lemma 3.1.8 Chr(5*(31)) is 4.

Proof: By contradiction, suppose S*(31) = 3. We suppose there are five indepen-
dent elements aq, as, as, a4, as colored by the same color. (If all of the independent
sets have size less than 5, then the order 31 can not be obtained.) Color these points
by blue. Then no point a;a; where i,j € {1,2,3,4,5} can be colored by blue. If the
elements ajas, ajas, ayay are colored by green, then asas = ayasaias, asay = ajasayas,
azas = aiasaias can not be green, and can not be blue, so they should be red. But,
this can not be the case since they form a triple in S*(31) (asazasay = azay). We can
SUppose a1as, 4103, Aoay4, A3ds, asas are colored green, ajas, asas, asas, a3y, a1a, are
colored red by taking in consideration symmetry. ajasasas = ajasasaz = ajasasas

must be blue, since it can not be red or green. Similarly a;a;ara; must be blue where
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i,j,k,l € {1,2,3,4,5} and are distinct. Then ajasasasa; must not blue, a;a;arq;
can not be blue, which can not be true where i, j,k,1 € {1,2,3,4,5} and are dis-
tinct. If ajasazaqas is green, then asagas, azasas must be red, but this can not hold
since {asas, asasas, azagas} is a triple. If ajasasaysas is red, then elements asasas
and asaza, must be green but this can not be the case, since {ayas, asazay, asazas}
is a triple. So we cannot color S*(31) by 3 colors. On the other hand, we can show
Chr(S*(31)) < 4. Take a 3 coloring of S*(15) which is generated by ay, as, as, a4.
Color x and zas with the color of z in the coloring of S*(15). Color as with the fourth
color. This gives a 4-coloring of S*(31). [
From the proof of lemma 3.1.8 we can conclude that then

Chr(S*(2" — 1)) < Chr(S*(2"™ — 1)) <1+ Chr(S*(2" — 1).
Lemma 3.1.9 There exists a 4 chromatic STS(49) [30].

Proof: Rosa constructed a ST'S(49) by the product rule from two Steiner triple
systems of order 7. Then he showed the chromatic number of the system is more
than 3.

We will name the ST'S(49) which is obtained by the product rule as S’'(49) and
name the ST'S(7) as S(7), and the elements of S’(49) will be denoted as ¢; ; where ¢,
Jj €41,2,3,4,5,6, 7}. Three elements ¢, ,, ¢ns, ¢pr form a triple in S’(49) if one
of the following cases holds:

(i) m=n=np, {r, s, t} is a triple in S(7),
(1) r=s=t, {m, n, p} is a triple in S(7),
(13i) {r, s, t} is a triple in S(7) and {m, n, p} is a triple in S(7).

Every row or column of the 7 x 7 square C' = ¢;;, 1, j € {1, 2, 3,4, 5, 6, 7} form a
STS(7). We will name some subsets of C. Any set of 7 elements no two of them are
on the same row or column will be named as a diagonal. If no three element subset
of a diagonal is a triple in S’(49) then we call it an M-diagonal. If it contains at least
one triple, we call it a P-diagonal, if a P-diagonal is isomorphic to S(7) we call it an

S-diagonal.
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Suppose we have the three colors, red, blue, and green. Since Chr(STS(7)) = 3,
in each row and column, there must be at least one element from each of the three
color classes.

In an M-diagonal, no triple of the S’(49) is included and there is an M-diagonal
whose all elements are colored by the same color, say blue. Call this diagonal D.
The set of elements, which can not be colored blue since they form together with
the elements of D a triple in 5'(49), will be denoted as «(D). This set contains 21
elements. Suppose we have an element ¢, , € a(D) if namely ¢;, j,, Ciy.jos Cig,jss Cia, ja
are in D, while {c;, j,, Ciy, jos Co.y} and {Ciy. js Cis.jus Ca,yt form triples in S’(49), then
the remaining three elements of D would form a triple in S’(49) since {is, i, 2} and
{Js, J6, y} must be triples in S(7). However, this can not be the case since D is an
M-diagonal. Except the elements in D, we have 21 elements in a(D). Name these
elements by G(D). In each row and column, because of the properties of S(7) there
are exactly 3 elements of a(D) and 3 elements of 5(D).

We will now show that for some column or row, the three elements of the row
which belong to B(D) is a triple in S’(49). If we denote the elements of D by ¢ ;.,
i=1,2,3,4,5,6, 7and the elements of the k" row belonging to a(D) by ¢, Ck.y; Ck.-
then there will be the following triples: {cs, i, Cspitos Chw by {Cositss Csatas Chy }r {Csstss
Csotes Crot in S’(49). The first two elements in each of the three triples are from
D, the elements sy, ..., s7 and tq, ..., t; form a permutation of the elements 1, ..., 7
with s; = k and t; = ji. Then, {t, to, x}, {ts, ta, y}, {t5, ts, 2} are triples in
S(7). Because of the structure of S(7), = is equal to t3 or ¢4 or y is equal to t
or ty. Suppose x = t3. Then t is equal to ¢; or 5. With the previous assump-
tions, y is equal to either t5 or tg. Assuming y = t5 implies z = t;. So we have the
triples {t1, to, ts3}, {t3, ta, t5}, {ts, ts, t1}. For the elements ¢y, to, t3, t4, t5, tg, t7, the
STS(7) with the above three triples must have the following four triples: {¢1, ¢4, t7},
{t2, ts5, tz}, {ts, te, tr}, {to, t4, te}. As a result, cxy,, Crty, Crys are the elements of
the k'™ row belonging to 8(D) and they form a triple in S’(49).

We will now prove that for an M-diagonal D, for each element ¢, , € 3(D), there is
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an S-diagonal, namely D* which contains the element ¢, , and 6 elements from «(D),
in addition, D and D* are disjoint. To prove this claim, we will first prove the following
statement. Let ¢, , and ¢;; be two elements of an M-diagonal D, then one of the ¢, (
and ¢, n elements belong to «(D) and the other belongs to G(D). Suppose ¢, and
Ck.n are both in a(D), name the remaining elements of the diagonal D as C' = {cq, 5,5
Cas.bas - » Cas by y Where {m, k, a1, ..., as} = {l, n, by, ..., bs} = {1, 2, ..., T}. ¢y 18
known to be in (D), therefore, two elements of C' namely ¢,, p,, Cay, b, form a triple in
S'(49) with ¢, ;. Similarly, ¢, is known to be in a(D), therefore, two elements of C
namely Coy by, Cay, b, form a triple in S’(49) with ¢y, ,,. But then, in S(7) we would have
the triples {a;, as, m} and {as, a4, k} but this can not be the case since in a S(7),
no pair of triples is disjoint. Assume now, {Ca,. 5,5 Cag.bys Cmi} a0d {Cay 15 Cas.bss Chm}
are the two triples in 5'(49). Again because of the structure of S(7), this would imply
having {ca;,b1s Cay,bss Cas, b5} @S a triple in S’(49). This is impossible since D is an
M-diagonal. If we suppose ¢,,; and ¢, both belong to B(D), then there is a pair of
elements of D such that, since a(D) and (3(D) have the same number of elements, the
corresponding “cross-elements” belong to a(D). So, our claim “one of the elements
Cmy and ¢y, belong to a(D) and the other belongs to 5(D)” holds.

Consider D to be an M-diagonal and let ¢, € B(D). Let ¢, and cxp be elements
of D. By what we have just proved, since cx; belongs to G(D), ¢, belongs to a(D).
Furthermore, there must be two elements in D, namely ¢, , and ¢,, such that {c,,,
Cuws Cap) forms a triple in S7(49). Similarly, for the following four elements ¢, ,, cq,
Ckbs Cup there is a corresponding set of 6 elements which belong to «(D) (there are
6 possible pairs and for each pair we have an element in a(D)). These 6 elements
together with the element c;; forms a set of 7 elements which we will call D*. We
will now show, this set is in fact a S-diagonal. The first indices are a, k, x, u. The
other elements of the S(7) will be w, m, n. When one of the triples is known to be
{z, u, a}, the others are expected to be as follows: {a, k, w}, {z, k, m}, {k, u, n},
{a, m, n}, {z, w, n}, {w, u, m}. For the second indices b, [, y, v, we apply a similar

procedure; we take z, p, ¢ as the extra elements to complete these to an element
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set of a STS(7) for the extension of the triple {y, v, b} to a S(7). The other 6
triples are: {y, [, p}, {l, b, z}, {l, v, q}, {b, p, ¢}, {v, 2, q}, {v, z, p}. So, D* =
{Chiis Caps Cwzy Cogs Cups Cmops Cny ) 1s an S-diagonal. We have shown that for an M-
diagonal D, for each element ¢, , in §(D), there is an S-diagonal, namely D* which
contains the element c¢,, and 6 elements from «(D), in addition, D and D* are
disjoint.

Among the blue vertices, there must be an M-diagonal D. We proved that for each
element ¢x; € (D), there is an S-diagonal namely D* disjoint from D, containing
¢, with other 6 elements of a(D). D* is isomorphic to S(7), so one of its elements
at least should be blue. If not C'hr(S’(49)) would be more than 3. Since elements
of (D) can not be blue, ¢, is blue. But ¢, is an arbitrary element in 3(D), so all
the elements of 3(D) are blue. But some three element subsets of 3(D) are triples in
S’'(49), so, S'(49) can not be 3-chromatic.

The next step is to show Chr(S’(49)) < 4 which will result Chr(S’(49)) = 4.

Let the triples in S(7) be defined as {i, i+ 1, ¢ + 3} (mod 7), i =1,2,3,4,5,6,7.
Take an M-diagonal D = {c17, Cap, C35, Caa, C71, Co2, C53}. For i € {1,2, .., 7},
D= {01,(7+¢), C2,(6+1)y C3,(5+1)) C4,(4+i)» C7,(1+i)» C6,(2+i)> C5,(3+i)} (mod 7)- Then color
the elements of D, D; by blue, the ones of Dy, D3 by red, the ones of D4, D5 by
green, and the ones of Dy by brown. With this coloring, no triple will be monochro-

matic. So Chr(5'(49)) = 4. [

Rosa concluded the following:

Corollary 3.1.10 Suppose there are two STSs named S, Sy of orders ny and no
respectively, both containing a subsystem of order 7. Then, Chr(S) > 4, where S is
the Steiner triple system obtained by the product of S and Ss.

Theorem 3.1.11 For anyv =1,3(mod6), v > 123, there exists a ST'S(v) S, where
Chr(S) > 4.

Proof: Rosa used recursive methods to prove this theorem.
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We know that there is a ST'S of order 31 (namely S*(31)) and a ST'S of order 49
(namely &’(49)) whose chromatic number is 4. In Theorem 1.3.5:

(i) By letting n = 31 and k£ = 1,7, 13, 19, 25, 31 respectively, we can conclude there
are ST'Ss of order 63,69,75,81,87, and 93 containing a subsystem S*(31) having
chromatic number k > 4.

(ii) By letting n = 49 and k = 1,7, 13,19, 25, respectively, we can conclude there
are ST'Ss of order 99,105,111,117, and 123 containing a subsystem S’(49), with
chromatic number k£ > 4.

Recall Lemmas 3.1.8 and 3.1.9. In Lemma 1.3.4:

(i) If we let n; = 3, ny = 31, and n3 = 7, we obtain a Steiner triple system of
order 79.

(ii) If we let ny = 3, ny = 31, and ng = 1, we obtain a Steiner triple system of
order 91.

Both of the above systems include S*(31) as a subsystem, so have chromatic
number k > 4.

We obtained ST'S(63) and ST'S(93) previously. Applying Corollary 1.3.7:

(i) For any admissible order k such that 127 < k < 189 we obtain a S(k),

(ii) For any admissible order ¢ such that 187 <t < 279 we obtain a S(k).

By Theorem 1.3.5 for any n > 279:

(i) Let |S1| = 7, and |S3| = 6k — 3 in Theorem 1.3.5 to obtain a ST'S(n), where
n =12k + 1.

(ii) Let |S1| = 1, and |Ss| = 6k + 1 in Theorem 1.3.5 to obtain ST'S(n), where
n =12k + 3.

(iii) Let |S1| = 1, and |S3| = 6k + 3 in Theorem 1.3.5 to obtain ST'S(n), where
n=12k+7.

(iv) Let |Sy| = 7, and |S3| = 6k + 1 in Theorem 1.3.5 to obtain ST'S(n) where
n =12k +9.

Since all of those constructed ST'Ss include isomorphic copies of ST'Ss of smaller

orders which are at least 4-chromatic, they are also at least 4-chromatic. [ |
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Corollary 3.1.12 For every v =1 or 3 (mod6) there are at least two nonisomorphic

STSs.

For any admissible v, we have a 3-chromatic ST'S and a ST'S which can be colored
by at least k colors, where k > 4. But two ST'Ss with different chromatic numbers
are nonisomorphic, this existence proves the existence of two nonisomorphic ST'Ss.

It is not easy to show that a ST'S is not m-chromatic for some m > 4.

3.2 Studies of Phelps, Brandes, and Ro6dl

Phelps, Brandes, and Rodl made important contributions to the weak coloring prob-
lems of the ST'Ss. In their study [5], several results on the chromatic number of
Steiner triple systems are established. They proved that for any £ > 3 there exists an
ng such that for all admissible v > ny, there exists a k-chromatic Steiner triple sys-
tems of order v. In addition they proved that for all v > 49 there exists a 4-chromatic

Steiner triple system of order v.
Lemma 3.2.1 [5] There exists a 4-chromatic STS(v) for v = 25,27,33, and 37.

Proof: For the above orders, the points of the Steiner triple systems are considered
to be 1,2, ....,v and ST'Ss are cyclic, that is, there is a map & : § — § such that
®(i) = i+1 (modwv) for all 7 in S which satisfies the condition that {4, j, k} € T implies
{®(i),P(5),P(k)} € T. Computational methods are used to show these ST'Ss are not
3-chromatic.

v =25

Base triples: {1,2,4},{1,5,24},{1,6,12}, {1, 8, 18}.

Color classes: {1, 2, 3, 6, 7, 8, 11} {5, 9, 10, 13, 15, 14, 19}, {12, 16, 17, 18, 21, 22},
{4, 20, 23, 24, 25}.

v =27

Base triples: {1,2,4},{1,5,12},{1,6,18},{1,7,15}.

Color classes: {1, 2, 3, 6, 7, 8, 11, 12, 22, 25}, {10, 13, 15, 14, 19, 18, 20, 23, 24},

{4, 5,9, 17, 26}, {16, 21, 27}.
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v =233

Base triples:{1,2,4},{1,5,15},{1,6, 14},{1,7,19}.

Color classes: {1, 2, 3, 6, 7, 8, 12, 13, 30}, {15, 14, 16, 19, 20, 21, 24, 25, 26, 31},
{4,5,11,27,28,29,32,33}, {9,10,17,18,2,23}.

v =37

Base triples: {1,2,4},{1,5,15},{1,6,14},{1,7,22}.

Color classes: {1,2,3,6,7,8,11,12,13,18,32}, {15,14,16,19,20,21, 24, 25,26, 37},
{4,9,23,29,30,31,34,35,36}, {5,10,17,22,27,28,33}. [

Theorem 3.2.2 [5] If there exists a k-chromatic STS(v), then there exists a k-
chromatic STS(2v + 1).

Proof: Let (S, B) be a k-chromatic ST'S(v), where S = {ai,as, ...,a,}. Consider
two disjoint sets 71 and Ty, with Ty UTy =7, T NS = () where |7| = v + 1 which is
an even number. Let v+ 1 =2n, |T}| =n = |T3|.
Case (a): n =0 (mod 2)

Take a 1-factorization (7, F) of K,,, whose vertices represent elements of 7.
F ={F, ..., F5,_1}. Let the first n— 1 of them be in such a way that they are unions
of two isomorphic copies of 1-factorizations of K, namely (T}, F) for i = 1,2 , one
for Ty, one for Ty. So, if F* = {F{, ..., F}_,},for j =1,2, .n—1, let F; = F] UF}.
Case (b): n =1 (mod 2)

Take a 1-factorization (7, F) of Ks,, whose vertices represent elements of 7.
F ={Fy, ..., F5,_1}. Let the first n of them be in such a way that they are unions of
two isomorphic copies of near 1-factorizations of K,,, namely (T}, F*) for i = 1,2, one
for 17, one for 15, plus an edge which is selected as the edge between the vertex which
is out of the near 1-factorization of 71 namely x; and the vertex which is out of the near
1- factorization of Ty, namely a(z;). That is F; = F;U F7U{z;,a(z;)}, j = 1,2,...,n
where « is a bijection between vertices of two copies of K,, and F* = {F}, ..., F'}.
The existence of such a 1-factorization of Ky, where n is odd, is known [2].

For both of the cases, let S* =SUT, B* = BUD where D = {{a;,x,y} : z,y €
F;,i=1,2,...,2n—1}. We will first show (S*, B*) is a ST'S. To do this we will check
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if any pair of elements of S* is seen in exactly one triple. If both of these elements,
namely = and y are from S, then they are seen exactly once in B, so only once in
B*. If both of them are from 7, the edge {x,y} will be in exactly one 1-factor, call it
Fk. Then the only triple in B* containing the pair x,y would be {z,y,a;}. If z € S,
y € T, then x = a; for some i € {1,2,....,2n— 1 = v}, and y € T then find the vertex
adjacent to y in the 1-factor F;, say z, then {x,y, 2} would be a triple in B*. The
more interesting problem is to show the new system is still k-chromatic. Color the
elements of T black, elements of T; white, and let the elements of S have the same
color as in the coloring C'. There are no monochromatic triples, this is obviously true
for triples of B. If {a;,x,y} is a triple of D with i € {1,2,.,n}, then q; is colored by
one of the k — 2 colors other than black or white while z,y(€ T') can be only black or
white. If i € {n+1,n+2,..,2n— 1} then one of x,y is black and the other is white.ll

Theorem 3.2.3 Ifv =1 or9 (mod12), and there exist a k-chromatic ST S(v), then
there exists a k-chromatic STS(2v + 7).

Proof: Let (S, B) be a k-chromatic ST'S(v) where S = {ay,as, ...,a,}. Let v +7 =
2m. Since v = 1 or 9 (mod12), m is even. Let 7 = X UY where X NY = 0,
| X|=m = |Y|. Let (X,F), FF ={F,.., F,_1} a l-factorization of K,, whose two
1-factors give an hamiltonian circuit when their union is taken. Call them F,, 5 and
Foq. Let F,, o UF,, 1 = (21, Z9, ..., Ty, 1), where z; € X, i = 1,2,....m. The
existence of such a 1-factorization is known [22]. We define the new triples as follows:

C = {{¥i, Tir3, Tiva}, {Yi, Yir1, Ti2}y |1 = 1,2, ... ,m},

D = {{ai, xp, x4}, {ais Yp, Yo } | {xp, 2} € Fiyi=1,2,...;m — 3},

E={am-o+k,xj,yjsx}t|j=1,2,....m;k=0,1,...,m — 5},

S*=SUT, B*=BUCUDUE (the subscripts of z’s and y’s reduced modulo
m when necessary).

(S*,B*) is a ST'S(2v + 7). The triples which include pairs of elements from S
namely a;, a; pairs is only seen in B. The pairs of the form z;, x; are seen in 1-factors

of X. An edge {x;, z;} with the condition that |j —i| = 1 if and only if it is in F,_; or
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in F,,_9. So for |j —i| =1, {z;,x;} is in C, otherwise it is in D and there is a unique
triple including this pair for the second case since there is only one 1-factor including
every edge. For the first case, it is obvious. For the pairs {y;,y;} where [j —i| > 1
the situation is same as above. For |j —i| =1, {y;, y;} pairs are in C. For the pairs
{z;,y;} where 1 <|j—i| <4, it is easy to see the pairs are in C. For 0 = |j —i| and
|7 — 4| > 4, the pairs are in E. The remaining pairs are {a;,y;} and {z;,a;} pairs.
Consider the 1-factor F;. It spans the complete graph of order m. So, for any vertex
x; there is an edge in F; which contains this vertex. So there is a triple including the
pair {a;,x;} for i = 1,2, ...,m — 3. The same argument also works for {a;,y;}.

To show that (S*, B*) is k-chromatic, color the elements of X black, those of
Y white and those of S as in the coloring of (S, B). There are no monochromatic
triples in B*. This is obvious for triples of B, C' and E as the latter two contain only
triples with at least one black and at least one white element. On the other hand, no
element a; with ¢ € {1,2,...,m — 3} is colored black or white; thus no triple of D can

be monochromatic. [ |

Theorem 3.2.4 [fv =3 or7 (modl2), k > 5, and there exists a biased k-chromatic
STS(v), then there exists a k-chromatic STS(2v + 7).

Proof: Let (S,B) be a k-chromatic ST'S(v) with S = {ay, as, ..., a,} and C be
a biased k-coloring of the system. Let v +7 = 2m. Let X = {xy, 29, ..., z,,} and
Y = {1, y2, ..., Ym} be two disjoint sets where XUY =7 and 7TNS = (). Let (X, F)
be a near 1-factorization, where F' = {F}, F5, ..., F,,,} containing two near 1-factors,
namely F,,,_; and F},, whose union is a hamiltonian path F,,,_ UF,, = (x1, T2, ..., Tp,).
Such a near 1-factorization is known to exist [2]. Suppose also the edge {z,z,,} €
Fo_s.

Let C' = {{vi, ®it3, Tiza}, {Yi> Yit1, Tiza}|i=1,2, ...,m},

D = {{a;, p, x4}, {ai, Yp, Yo} |, {2p, 2} € Fi,i=1,2, ....,m— 3},

D' = {{a;, 6, vj0} | i =1, 2, ...,m — 2,24 is an isolated vertex of F;},

D" = {{am 3,7, 2}, Lm2: Ups e} | {9 7} € Fon 2\ o1, 2} U {tm2, 31, 11},
{am—2, Ym, Tm}},
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E={am-osk, 5, yjeu}|i=1,2, ..om; k=1,2,...,m —5}.

(The subscripts are considered to be in modulo m.) Let §&* = SUT,
B*=BUCUDUD UE. (§*,B*)isa STS(2v+ 7). (§*, B*) is also k-chromatic.
If elements of X are black, elements of Y are white and elements of S are as in the
coloring of (S, B), then there are no monochromatic triples in B*. Triples of B, C,
D' and E are not also monochromatic. Since m — 2 = “f2 and the coloring of (S, B)
is biased, neither of the elements aq, as, ..., a,,_» is black or white; so no triple of D

or D' can be monochromatic. |
Lemma 3.2.5 There ezists a 4-chromatic ST'S(v) for every admissible v > 49.

Proof: There are three cases:

(i) v =1 ( mod 6) Recall that in the Skolem Construction, we use an half idempo-
tent commutative quasigroup. For any even number 2t, there exist a half idempotent
commutative quasigroup of order 2¢ which contains a half idempotent commutative
quasigroup of order 8. Here notice that with the given constraint, our set is of order
6t + 1 where 2t > 18. Therefore, such a ST'S(6t + 1) will include a ST'S(25). But we
have a 4-chromatic ST'S(25). Then we can replace the 3-chromatic subST'S with the
4-chromatic ST'S, but we will make the three of the color classes of the new ST'S(25)
in a way that they are subsets of the old ST'S(25) with color classes of sizes 8, 8, and
9.

(ii) v = 3 ( mod 6) We follow a procedure similar to above, this time, our idem-
potent commutative quasigroups are known to exist for every odd number say 2t + 1
where v = 3(2t + 1). There exists a commutative idempotent quasigroup of order
2t +1 > 19, which contains a commutative idempotent subquasigroup of order 9.
We will use the 4-chromatic ST'S(27), and replace the 3-chromatic subsystem by the
4-chromatic ST'S(27) again with the condition that the color classes are subsets of
the old ST'S(27).

(iii) v = 49 or 51 For v = 49 Rosa gave a solution (see Lemma 3.1.9). For v = 51
recall that we have a 4-chromatic ST'S(25), recall Theorem 3.2.2; for k-chromatic
STS(v), we have a k-chromatic ST'S(2v + 1). |
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The following theorem follows from the previously established Lemmas 3.1.9, 3.1.8
and 3.2.1.

Theorem 3.2.6 There exists a 4-chromatic STS(v) for all v > 25, v = 1 or 3
(mod 6) except possibly 39, 43, and 45.

By using Bose Construction, we gave an example of a 3-chromatic ST'S(21). Had-
dad constructed a 4-chromatic ST'S(21) [17]. Forbes, Grannell and Griggs [15] prove
that every ST'S(21) is 5-colorable. They then showed every ST'S(21) is 4-colorable
[14]. The chromatic number of any ST'S(21) is either 3 or 4.

Haddad used the following construction to show the existence of a 4-chromatic
STS(21). A similar construction was used in [5], for the proof of Theorem 5.1.5.
Let (S,T) be an STS(v) with § = {0,1,...,v — 1}. Define the ST'S(3v) (S',T") by
S ={(x,i),z € §,1=1,2,3} and for every triple {z,y, 2z} € T, the following triples
are included in 7" {(z,1), (y,1), (2, )}, {(z, 1), (,2), (2,3)}, {(y,1), (%,2), (4,3)},
{(2,1),(2,2),(2,3)}, {(2,2),(2,1), (3, 2)}, {(z,2),(2,2), (4, 1)}, {(2,2),(2,3),(y,3)},
{(z,1),(9,3), (2,2)}, {(z,1),(2,3), (v,2)}, {(2,3), (2, 1), (1, 3)}, {(2,3), (v, 1), (2,3)},
{(#,3), (4,2), (2,2)}. Note that the triples {(x,1), (x,2), (z,3)}, {(y,1), (y,2), (v, 3)},
{(z1)

C' be a set of colors whose order is k, ® : S — C be a k-coloring of it. (S',T")

,(2,2),(2,3)}, are included only once. Suppose that (S,T) is k-chromatic, let

includes an isomorphic copy of (S,T), so is at least k-chromatic. ' : &' — C' U {00},
where oo is a color which is not in C. For any z € S, ®'(x,1) = ®'(2,2) = ¢(z) and
®(x,3) = co. This is a proper k + 1 coloring, so, chromatic number of the system is
either k or k + 1.

The following results belong to Haddad. He studied on the ST'S(21) which can
be obtained from a cyclic ST'S(7) and on the ST'S(39) which can be obtained from
a cyclic ST'S(13) by the above construction. By using some computational methods,
he proved for this ST'S(21) and this ST'S(39) that these two can not be colored by
3 colors, but can be colored by 4-colors properly. The only values in doubt were
19,21, 39,43 and 45 [5]. The existence of 4-chromatic ST'S(21) implies the existence
of 4-chromatic ST'S(43) and 4-chromatic ST'S(45) (See Theorem 4.1.5) [5]. It can be
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deduced that [17]:

Theorem 3.2.7 There exists a 4-chromatic STS(v) for every admissible v > 21. In

particular ng < 21.

So the only order for which we are not sure about the existence of a 4-chromatic
STS is 19.
About the existence of k-chromatic Steiner triple systems for large k, some results

proven by Brandes, Phelps and Rodl will be discussed in the fifth chapter.
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Chapter 4

FINITE GEOMETRIES AND STEINER TRIPLE
SYSTEMS

In this chapter, we will deal with the solutions found to the problem of finding
specific examples of k-chromatic Steiner triple systems for k£ > 4. Up to date, only 5-
chromatic and 6-chromatic ST'Ss could be found. The first example of a 5-chromatic
ST'S took place in the study of Fugere, Haddad, and Wehlau [16]. Bruen, Haddad,
and Wehlau gave the first specific example of a 6-chromatic ST'S [6].

4.1 5-chromatic STS

Previously, Rosa worked on the coloring properties of the totally associative Steiner
triple systems which we denote as S*(2" — 1). A S*(2" — 1) can be constructed by
considering F3', the vector space of dimension n over the field of order 2. Here,
the points are one dimensional subspaces of F3' or the points of the projective n — 1-
space, and the triples are two dimensional subspaces or the lines of the projective
n — l-space, PG(n — 1, 2). Each such subspace is represented by the non-zero vector
contained in it. For the sake of simplicity, if {ei, ..., e,} is a basis of F}' and « is an
element of S*(2" — 1), if x = e + e2 + e3 in the given basis then we write it as 123.
The following example is a S*(15). Recall that for a vector space of dimension n over
the field F', the projective space PG(n, F') is the geometry whose points, lines, planes,

. are the vector subspaces of the vector space of dimensions 1,2, 3, ....

Example 4.1.1 Consider F. The basis elements of the system can be denoted as
follows: e; = (0,0,0,1), e; = (0,0,1,0), e3 = (0,1,0,0), and es = (1,0,0,0). We
denote the points of the STS as: 1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234,
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1234. The triples are as follows: {1, 2, 12}, {1, 3, 13}, {1, 4, 14}, {1, 234, 1234},
(1,923,123}, {1,24,124), {1,34 134}, {2, 3,23}, {2, 4, 24}, {2, 14, 124},
(2,13, 123}, {2, 34, 234}, {12, 3,123}, {12, 13,23}, {124,124}, {12, 24, 14},
(12, 34, 1234}, {3, 4, 34}, {3, 14, 134}, {3, 24, 234}, {3, 124, 1234}, {23, 4, 234},
(2,134, 1234}, {123, 4,1234), {13, 24,1234}, {13, 4, 134}, {13, 14, 34},
(13,234, 124}, {23, 14, 1234}, {23, 24, 34}, {23,124, 134}, {123, 134, 24},
(123, 234, 14}, {123, 124, 34}, {12, 134, 234}.

We will call elements of S*(2" — 1) words and we say for instance 123 is a word
of length 3. Note that these words are commutative. If a vector in FJ' is written
as a sum of k basis elements, then the corresponding word will be of length k. A
three element subset of the set S*(2" — 1) is a triple if and only if the sum of the
corresponding vectors in F3' is 6, the zero vector.

Rosa showed that C'hr(S*(31)) = 4 and gave a constraint on the chromatic number
of such systems: Chr(S*(2" — 1)) < Chr(S*(2"*! — 1)) < Chr(S*(2" — 1)) + 1.

J. Pelikan [27] showed also that C'hr(S*(31)) = 4.

Recall that a subset of V(S*(2" —1)) is called independent if it does not contain
any lines or in other words, it does not contain any triples. Moreover, it is called
linearly independent if it is a linearly independent subset of F'. The study of Fugere,
Haddad, and Wehlau [16] shows Chr(S*(63)) = 5. This is done by studying inde-
pendent sets and the size of the sets of intersection of the independent sets sets with
hyperplanes.

Furthermore, it is shown that if a k-chromatic ST'S(v) exists for some v = 3
(mod 6) with £ > 5, then a k-chromatic ST'S(w) exists for every admissible w > 2v+1.
From these results, it can be deduced that for every admissible v > 127, there is a
5-chromatic ST'S(v).

For 2 < k <n—1,asubset K C V(S*(2"—1)) is a k-flat if K U{0} is a (k + 1)-
dimensional subspace of FJ'. The set of triples T restricted to a k-flat K induces the

structure of a Steiner triple system isomorphic to S*(2F — 1) on K.
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For any X C V(5*(2" —1)) we denote the smallest k-flat containing X as (X). A
plane is a 1-flat while a hyperplane is an (n — 2)-flat, that is, an n — 1-dimensional
subspace of Fj'.

A subset of V(S*(2" — 1)), namely K (v) is an hyperplane if and only if there is a
vector v in V(S*(2" — 1)) such that for all u in K (v) the scalar product results in 6>,

. —
that isuv = 0.

4.1.1  Main results

The following is proved by Pelikan [27]:

Proposition 4.1.2 In any 3-coloring of S*(15) all color classes have the same size

and every plane (1-flat) contains at most 3 points of the same color.

This means any color class consists of 4 linearly independent vectors and the linear

combinations of these vectors.

Proposition 4.1.3 S§*(15) is uniquely colorable up to an isomorphism.

Proof: Let (0,1,2,3) be a copy of $*(15) with ¢ : V(S*(15)) — {1, 2,3} a 3-coloring.
Set S; = ®71(i), i = 1,2,3. By Proposition 4.1.2, we can deduce no matter how we
3-color §*(15) , any color class will consist of 4 linearly independent vectors and their
sum. We may apply an element of the automorphism group of $*(15) to ensure that
S =40,1,2,3,0123}. Since there are 6 words of length two, one color class, say Ss,
must contain at least three of them. Call those three words of length two a,b and
c. Since a,b and ¢ are independent, they generate a plane P. Now P contains only
words of even length and by Proposition 4.1.2, PNS, = {a, b, ¢}. This shows that for
1 = 2,3, S; contains exactly three words of length two and two words of length three.
Since Sy contains three words of length two, at least two of them must have a common
letter. Put {i,7,k,s} = {0,1,2,3} and let ij, ik € Sy. Then kj is not in S, and more-
over is € Sy would imply {jk, js, ks} C S3, a contradiction. Thus S must contain a

subset of the form {ij, ik, js}. We want to show that given three words of length two
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in Sy, the remaining two words of length three in S are uniquely determined. So let
{ij,ik, js} C Sy and suppose that Sy contains the word jks. Then this would imply
1] + 1k + js+ jks = j € Sy, a contradiction. By a similar argument we have iks is
not in Sy and we are left with {ijk,ijs} C Sy. Hence Sy = {ij, ik, js,ijk,ijs}. Since
the group of permutations of {0, 1,2, 3} is a subgroup of the automorphism group of

S§*(15), the result is proved. [

With the following color classes, we have a proper 3-coloring of S*(15):

C1 =40,1,2,3,0123}, Cy = {01,12,23,012, 123}, C3 = {02,03, 13,013, 023}.
Theorem 4.1.4 S*(63) is a 5-chromatic ST'S(63).

Proof: Rosa previously showed Chr(S*(63)) is either 4 or 5. We will show that it
is not possible to color S*(63) by 4 colors properly. By contradiction, suppose that
S*(63) is 4-colorable with color classes Cy,Cy, C5 and Cy. Then one of these color
classes, say Cy, has size at most 15. By Corollary 1.3.11, there is a hyperplane K such
that |Cy N K| < 3. The hyperplane K is generated by 5 independent points which we
can denote by 0,1, 2, 3,4. There is a 3-flat, H C K such that CyNH = (). Without loss
of generality H = (0, 1,2, 3). The 4-coloring of S*(63) induces a 3-coloring of H since
Cy N H = (. By Proposition 4.1.3, we may assume that C; N H = {0, 1,2,3,0123},
Coy N H = {01,12,23,012,123}, and C5 N H = {02,03,13,013,023}. A computer
program was used to check exhaustively that such a partition of the vertices of H
together with the condition that |Cy N K| < 3 cannot be extended to a 4-coloring of
S*(63) and thus we have a proof of the theorem. [

The following Theorem which resembles Theorem 2.1.1, is proved with a similar

method.

Theorem 4.1.5 Let k > 5 and v = 3 (mod 6). If there exists a k-chromatic STS(v),

then there exists a k-chromatic ST S(w) for every admissible w > 2v + 1.

Proof: Let k > 5 and S be a k-chromatic ST'S(v) where v = 6n+3. Let Sy, So, ..., Sk

be the color classes and let s; > so > ... > s; be the corresponding partition sequence
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where |S;| = s; for 1 <i < k. Then, 2n+1 > s; > sy > s3. We can find three sets of
points of size 2n + 1, namely A, A5, and Az where S; C Ay, So C Ay, and S5 C As.
Let w > 2v 4+ 1 be an admissible integer. We have two cases:

Case 1: w = 1(mod 6). Then w = 6u + 1 where u > 2n + 1. There exists a half-
idempotent commutative quasigroup (Q,o) of order 2u containing an idempotent
commutative quasigroup of order 2n + 1 [23]. By Skolem Construction with (Q, o),
we obtain a ST'S(6u+ 1) containing a subsystem of order 6n+ 3. Take this subsystem
of order 6n + 3 out and replace it with a copy of S in such a way that A; C @ x ¢
for ¢ = 1,2,3. This gives a k-chromatic ST'S(w). Since it includes a k-chromatic
subsystem, it is at least k-chromatic. It can also be colored properly by k-colors. Let
C = {ci,...,cx} be the k different colors used to color S, where S; is the color class
of ¢; for i = 1,...,k. Define ® be the coloring, ® : (@ x {1,2,3}) U{oc} — C by
O(z) =citres, &(z) =cjifr e @x{j}\S, j=1,2,3 and ®(co) may be chosen
to be any color. @ is a k-coloring of our ST'S(w).

Case 2: w = 3 (mod 6). Then w = 6u+3 > 2(6n+3)+ 1 implies that u > 2n+1.
By Cruses Theorem [12], there exists an idempotent commutative quasigroup (@, o)
of odd order 2u + 1 containing an idempotent commutative quasigroup of order
2n + 1. Bose construction applied to the quasigroup (@, o) produces a 3-chromatic
STS(6u + 3) with a (3-chromatic) subsystem of order 6n + 3. Take this subsystem
of order 6n + 3 and replace it with a copy of § in the same fashion as for the case 1.

Again it is easy to check that the resulting ST'S(6u + 3) is k-chromatic. [ |

S*(63) was the first specific example of a 5-chromatic ST'S and it was shown in
the study [16]. A combination of Theorem 4.1.4 and Theorem 4.1.5 results in the

following corollary.
Corollary 4.1.6 There exists a 5-chromatic ST S(v) for every admissible v > 127.

Haddad proved the following [17]:

Theorem 4.1.7 AG(4,3) is a 5-chromatic STS(81).
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Proof: Haddad proved first the largest k for which there exists a k-cap for AG(4, 3)
is 20 [17]. So, we can not color the system with 4 colors properly. The following
5-coloring given by Haddad proves AG(4, 3) is 5-chromatic.

C1={0000, 0001, 0010, 0102, 1000, 1001, 1010, 1102, 1120, 1122, 2011, 2012, 2021,
2100, 2101, 2122},

C,=1{0002, 0020, 0022, 0211, 0212, 0221, 1101, 1211, 1212, 1221, 2000, 2001, 2010,
2202, 2220, 2222},

C3={0111,0112,0121,0200; 0201, 0210, 1111, 1112, 1121, 1200, 1201, 1210, 2102,
2120, 2211, 2212, 2221},

C,={0011,0012, 0021, 0100, 0101, 0110, 1011, 1012, 1021, 1100, 2002, 2020, 2022,
2111,2112, 2121},

C5={0120, 0122, 0202, 0220, 0222, 1002, 1020, 1022, 1110, 1202, 1220, 1222, 2110,
2200, 2201, 2210}. m

4.2 6-chromatic STS

Bruen, Haddad, and Wehlau gave the first specific example of a 6-chromatic ST'S [6].
To do this, they showed that, the size of a cap in AG(5,3) is bounded above by 48.
They also found three disjoint 45-caps in AG(5,3). They combined these results to
prove the corresponding S7'5(243) of AG(5,3) is 6-chromatic. They first showed the
structure does not admit a 5-coloring. For a ST'S(243) to be 5-colorable, it should
have a color class with at least 49 elements. If all color classes have less than 49
elements, then the order of the ST'S, v < 240, which is not the case. But AG(5,3)
has caps of size at most 48. Therefore, AG(5,3) is not 5-colorable.

The 6-coloring of the ST'S(243) is as follows. C}, Cy, C5 are the three disjoint 45
caps of AG(5,3), Cy4, Cs, Cg are obtained by a 3-coloring of the partial ST'S, which
is the restriction of the AG(5,3) to the remaining 108 = 243 — 3(45) points by a
computer program.

Cy= {02201, 02101, 12202, 01211, 21111, 00120, 10221, 00112, 21100, 20210,
11211, 00002, 02020, 10020, 21000, 00010, 11110, 21210, 20120, 11121,00212, 00201,
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22220, 02220, 20001, 22001, 21221, 21101, 10112, 22222, 22212, 00110, 02021, 22121,
10111, 21220, 01210, 02102, 20100, 01102, 01110, 22021, 02200, 11221, 22101};

Cy= {00200, 11112, 10102, 01120, 00222, 20121, 00100, 11101, 02222, 11212,
22012, 20022, 22200, 12220, 22211, 02221, 01202, 10212, 22022, 21122, 22122, 21201,
22210, 02120, 10011, 01201, 00111, 20111, 02011, 21211, 02211, 01101, 00101, 00001,
20201, 21121, 21021, 10100, 00020, 22112, 02012, 21212, 21102, 11202, 02122}

Cy = {02000, 20010, 22202, 10121, 10002, 12211, 22000, 11122, 21110, 02111,
02202, 21202, 20102, 02212, 11200, 02110, 22100, 01220, 00122, 11220, 01122, 22110,
01222, 21012, 22201, 21120, 00022, 21200, 00102, 11100, 10200, 22010, 00210, 02210,
10120, 00011, 01111, 00121, 00221, 22221, 02002, 20112, 21112, 20222, 21222};

C, = {11021, 21002, 01022, 10022, 21022, 12120, 02121, 12212, 11020, 20020,
22120, 00000, 10000, 12002, 01000, 12000, 12100, 01200, 11120, 01112, 11010, 20220,
01002, 10122, 20021, 12022, 02010, 11201, 10201, 10202, 12101, 20110, 00202, 22002,
20212, 12222},

Cs = {20000, 11000, 02100, 12110, 10210, 11210, 10001, 01001, 21001, 12001,
10101, 12201, 01011, 21011, 12011, 22011, 00211, 10211, 01121, 20221, 12221, 20002,
11002, 11102, 12102, 22102, 20202, 00012, 10012, 01012, 12012, 12112, 01212, 11022,
02022, 20122}

Cs = {01100, 20200, 12200, 10010, 01010, 21010, 12010, 10110, 12210, 01020,
21020, 12020, 22020, 00220, 10220, 11001, 02001, 20101, 20011, 11011, 11111, 12111,
22111, 20211, 00021, 10021, 01021, 12021, 12121, 01221, 20012, 11012, 02112, 12122,
10222, 11222}.

So, AG(5,3) is a 6-chromatic ST'S(243). [

The combination of Theorem 4.1.5 and the existence of the 6-chromatic S7'S(243)

gives us the following corollary:

Corollary 4.2.1 There exists a 6-chromatic STS(u) for every admissible u > 487.
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Chapter 5

RELATED RESULTS

5.1 Existence of k-chromatic Steiner triple systems for large k

Erdos and Hajnal showed by probabilistic methods, the existence of a k-chromatic
partial triple system (see Theorem 1.3.13) for any k£ > 2. Treash showed any partial
Steiner triple system can be embedded into a Steiner triple system (see Theorem
1.3.14). Since this extension includes an isomorphic copy of the k-chromatic PST'S,
chromatic number of the ST'S is at least k. Rosa concluded, for any positive integer &,
there exists a Steiner triple system whose chromatic number is at least k. There is no
general way to embed PST'Ss to ST'Ss while preserving the chromatic number. For
instance, a PST'S can be 3-chromatic, but a nontrivial STS is at least 3 chromatic
[5]. So, due to the above results, it could not be concluded that, for any k there is a
STS, S, for which Chr(S) = k. However, result is obtained by Brandes, Phelps and
Rodl [5].

Theorem 5.1.1 [5] Let u,, be the number of the smallest order for which there exist
a m-chromatic partial STS. Then Cim?logm < u,, < Com?logm, where C; and Cs

are constants.

Lindner gave an embedding of a PST'S to a ST'S [23], but this did not necessarily
preserve the chromatic number. However, Brandes, Phelps, and Rodl had a simi-
lar approach with Lindner and showed there exists k-chromatic ST'S(v)’s for large
admissible v.

The following theorem which is proved by Brandes, Rodl, and Phelps [5] shows
that there are infinitely many ST'Ss of every chromatic number ¢, ¢ > 3. Before giving

the statement and the proof of the theorem, we will state the required propositions
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and lemmas in the proof.

Lemma 5.1.2 Let u be the smallest order of a weakly m-chromatic partial ST'S.

Then, cik*logk > uy, > cok?® where ¢ and ¢y are constants.

Lemma 5.1.3 [12], A partial idempotent commutative quasigroup of order n can be
embedded in an idempotent commutative quasigroup of ordert for every oddt > 2n+1

and in a commutative quasigroup of order t for every even t > 2n.

Lemma 5.1.4 [23] A partial idempotent commutative quasigroup of order n can be

embedded in an half idempotent commutative quasigroup of order 2t for every t > n.

Theorem 5.1.5 [5] For all k > 3 there exists a ny such that for every v = 1 or
3 (mod 6),v > ny, there ezists a k-chromatic STS(v).

Proof: We know the existence of the k-chromatic partial Steiner system of order wuy
by Lemma 5.1.2. From this PST'S we can obtain a partial idempotent commutative
quasigroup and by Lemmas 5.1.3 and 5.1.4, we can embed it into an idempotent com-
mutative quasigroup of order 2t + 1 and half idempotent commutative quasigroup of
order 2t for every t > uy. Then by the Bose and Skolem Constructions, we can obtain
ST'Ss of order 6+ 3 and 6t + 1 which are 3-chromatic by construction. For any triple
{z,y, 2} in the PST'S, we will have a ST'S(9) as a subsystem of the new ST'S(6t+1)
or ST'S(6t+ 3), with the following triples: {(x,1), (y,1),(2,2)}, {(z,1), (2, 1), (y,2)},
{(w; 1), (2 1), (z, )}, {(,2), (4,2), (2,3)}, {(2,2),(2,2), (4,3)}, {(%,2), (,2), (x,3)},
{(2,3), (y,3), (z, D}, {(2,3),(2,3), (v, D}, {(,3), (2,3), (x, D)}, {(2,1), (2,2), (x,3)},
{(y,1), (v,2),(y,3)}, {(2,1),(2,2),(2,3)}. Then this ST'S(9) is replaced with the
STS(9) which includes the triples {(z,1),(y,1),(z,1)} , {(x,1),(z,2), (z,3)},
{(y,1),(y,2),(y,3)}, {(2,1), (#,2),(2,3)}. (The remaining triples are: {(x,2), (z,1),
(1:2)}, {(2.2), (2,2), (5 D}, {(2,2), (2,3), (1, 3)}, {2, 1), (4,3, (2, 2)}, {(2 1), (2,3),
(v,2)}, {(2,3),(2,1), (y,3)}, {(2.3),(,1),(2,3)}, {(#,3),(y,2),(2,2)}.) When we
apply this procedure to our ST'S for all of the triples of the original PST'S, our re-
sulting ST'S will include an isomorphic copy of our PST'S. So the resulting ST'S' is
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at least k-chromatic. We can also show that during this procedure of replacing ST'Ss
of order 9 with the new ST'Ss of the above kind for all triples of the PST'S, at some
point we have a ST'S which is k-chromatic since this replacing procedure increases
the least required number of colors for a proper coloring at most once.

Consider one step of exchanging a subsystem of order 9 with a ST'S(9) as described
above. If there are no monochromatic triples after the replacement, this means, our
coloring is still proper. Say the ST'S(v) is i-chromatic before the exchange. Notice
that, only the triples consisting of the elements of the ST'S(9) are changed, the rest of
the triples remained unchanged, so a monochromatic triple may occur only in the new
STS(9). Before the replacement, the ST'S(9) was colored with 3-colors, since every
STS(9) is 3-chromatic. None of the 3 color classes can have more than 4 elements.
If one of the color classes has for instance 5 elements, there should be % = 10 triples
including pairs of elements of this color class (no three of them can be in a triple since
this is a proper coloring). There are 4 remaining elements, namely, a, b, ¢, d. For any
of the 10 triples we had already, we may have only one of a, b, c,d. Without loss of
generality, consider a. There must one triple including both a, b, one including both
a,c and including both a,d. If we have a triple {a,b, c}, we must have one triple
{a,d,x} and one {b,d,y}. These two triples are distinct, otherwise z = b and y = a,
but we had a and b together in one triple before. However this means we should have
more than 12 triples, which can not be the case. For 3 colors, the exchange may
result in at most 3 monochromatic triples. We can choose one element from each
monochromatic triple (there are at most 3) so that the resulting set contains no triple
of the subsystem of order 9 (and, hence, can contain no triple of the system either).

Assigning (i 4+ 1)** color to this set obviously gives a proper (i + 1)-coloring. [ |

The motivation behind the vertex colorings of S7'Ss was to find non isomorphic
STSs. Isomorphisms preserve chromatic number. The above theorem also assures

that for any large v there are a large number of nonisomorphic ST'S(v)s.
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5.2 [Equitable and balanced colorings

There are some types of weak colorings with additional properties. Equitable col-
orings and balanced colorings are two of those. Since the proofs of the theorems
in this section are based on GD Ds, and beyond the scope of our survey, we will only
define these terms and summarize the main results. We will only give the proof of
Theorem 5.2.1 since the proof is done by using a counting argument.

The equitable colorings are the colorings when the size of the color classes differ
by at most 1. Each of the 80 ST'S(15) have an equitable weak 3-coloring [26]. Each
3-coloring of S*(15) is equitable [27]. The problem of finding if every ST'S(v) admits
an equitable weak coloring was a major problem.

The following theorem, which is about the sizes of color classes of ST'Ss, belongs

to Haddad and Rodl.

Theorem 5.2.1 Let S = (V,B) be a weakly 3-chromatic STS(v), and V;, i = 1, 2, 3,

be the color classes of weak 3-colorings of S. Then
_ 1 2 2 2
V=1V + U2+ U3 2 2[(?]1 UQ) + (Ul 1}3) + (UQ ’Ug) ]

Thus, for sufficiently large v, the color classes must have approzimately the same

size.

Proof: For i,j € {1, 2, 3}, let x;; be the number of triples that intersect V; in 2

elements, and V; in one element. Let o be the number of triples having one element

v—1)

from each color class. The number of triples which is known to be o ¢ is equal to

x4+ Yy x;;. So we have,

v(v—1
(6 ):.T—i-zﬂiij,

T12 + Z13 :(v21)7
To1 + T3 :(U;),

T31 + T32 :(U;)a

2.7}12 + 21’21 +x = V1V2,

2x93 + 2132 + 1 = voU3,
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2I13 + 21’31 + T = vvs.

The following equalities follow from the above.
T13 + Ta3 — X21 — T12 = <U21)+ (U;)_Uﬂ)? +x > —(UI_UQ)QQ_(MJFW)»
and similarly,

(v1—v3)?—(v14v3)
T3z + T12 — X311 + —T13 2 - 3

—u3)2—

The inequality follows from adding the previous three inequalities and by rear-

ranging the terms. |

For larger numbers, the following theorem suggests not to expect to find an equi-

table m-coloring [18].

Theorem 5.2.2 For every 0 < € < 1, m > 6, and t > m, there exists a weakly
m-chromatic STS(v) such that for every t-coloring of the STS, there are m — 3 color

classes whose union contains at most sv elements.

Corollary 5.2.3 For every m > 6 there exists a weakly m-chromatic STS(v) that

does not admit an equitable m-coloring.

Colbourn, Haddad, and Linek had shown that, when the order v is large enough
with respect to the number 7 of colors, and v = 1 or 3 (mod 6) an equitably r-colored

r-chromatic Steiner triple system of order v exists.

Lemma 5.2.4 Suppose there exists an r-chromatic ST'S(w) with w = 3 (mod6) and
partition sequence ty >ty > ... > t,.. If v satisfies:

(1) v=3(mod 6),

(11) v > max{2w,rt;},

(i) [£] — , < Lo — w).

Then there exists an equitably r-colored, r-chromatic STS(v).
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Lemma 5.2.5 Suppose there exists an r-chromatic ST'S(w) with w = 3 (mod6) with
partition sequence ty >ty > ... > t,.. If v satisfies:

(1) v=1(mod6),

(17) v > maz{2w,rt, },

(i1) [2] =t < 3(v —w—1).

Then, there exists an equitably r-colored, r-chromatic STS(v).

Combination of Lemma 5.2.4 and Lemma 5.2.5 implies the following theorem.

Theorem 5.2.6 If there exists an equitably r-colored, r-chromatic STS(w) with
w = lor3 (mod 6) and r > 4, then there exists an equitably r-colored, r-chromatic

STS(v) for each admissible v > 2w.

Lemma 5.2.7 Any r-chromatic STS(w) with r > 4 can be embedded in an r-chro-
matic STS(3w). In addition, if the r-chromatic ST'S(w) is equitably r-colored, then

it can be embedded in a equitably r-colored, r-chromatic STS(3w).

Theorem 5.2.8 If there exists an equitably r-colored, r-chromatic STS(w) with
w = 1 (mod 6), and r > 4, then there exists an equitably r-colored, r-chromatic

STS(w) for each admissible v > 6w + 1.

Lemma 5.2.9 Suppose there exists an equitably r-chromatic STS(w) with w = 1
(mod 6) with partition sequence t; >ty > ... >t,. If v satisfies

(i) v=1 (mod6),

(17) v > maz (2w, 1),

(i) 2]~ t, < $(v - w)

then there exists an equitably r-colored, r-chromatic ST'S(v).

If every r-coloring of a triple system is equitable, we call the system r-balanced.

An r- balanced system is necessarily r-chromatic.

Theorem 5.2.10 With the possible exceptions of v € {19, 21, 37, 49, 55, 57, 67, 69,
85, 109, 139} for allw =1 or 3 (mod 6) and v > 15, there exists a 3-balanced Steiner

triple system of order v.
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Some examples of 3-chromatic ST'S(v) which do not admit equitable 3-colorings
are given recently in [14]. In this study, also further examples of systems with unique

and balanced colorings are presented.

5.3 Some related results

In this section we will summarize the results from complexity theory about weak
colorings of ST'S. We will also note some questions arised about chromatic number
of ST'Ss.

C. J. Colbourn, M. J. Colbourn, Phelps and R6dl worked on the problem of finding
the difficulty of deciding if the chromatic number of a given ST'S is k or not. They

proved the following theorem:

Theorem 5.3.1 [11]
(1) Deciding if a PSTS 1is t-colorable is N P-complete for any fized t > 3.

(13) Deciding if a block design is t-colorable is N P-complete for any fized t > 9.
Phelps and Rodl proved the following [28]:

Theorem 5.3.2 Deciding if a simple k-uniform hypergraph is t-colorable is NP-

complete for t > 3.
Corollary 5.3.3 [28] Deciding 14-colorability of a ST'S is N P-complete.

A uniquely colorable ST'S(33) was found, then the following question arised: for
what orders do such systems exist? In [5] it is asked that if there is a uniquely
colorable m-chromatic ST'S(v) for all m or not? [5] also introduced the question “is
C'(v) is an interval?” More generally, “what is the chromatic spectrum of ST'S(v)?”

Colbourn, Dinitz, and Rosa answered in [8] partially one of the open problems
they noted in the previous study. They showed the spectrum C(v) for bicolorings

needs not to be an interval. For instance, C'(31) = {3,5}, is not an interval. They

added that 31 may be the only possible order for a ST'S whose C'(v) is not an interval.
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They noted if a ST'S(v) is m-bicolorable, then m < [log,(v+1)] and for all v = 2n—1,
there exists a ST'S(v) for which the bound is attained. There are some recent studies
on the chromatic spectrum of ST'Ss. In [19] it is shown that the chromatic spectrum

of STS(25) is {3,4}.
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Chapter 6

CONCLUSION

In our study, we tried to demonstrate the findings about the weak colorings of
Steiner triple systems. The most interesting part of the problem is the fact that the
solutions come from various branches of mathematics and even computer science.

In the first chapter, we gave the required definitions for our study, statements of
the preliminary theorems that we need in the following chapters and proofs of some
of them.

In the second chapter, we summarized early studies on the topic on the k-chromatic
STSs for small k. Rosa made the first contributions to the problem [29, 30]. He
showed the existence of 3-chromatic ST'S for any admissible order. He also gave
examples of 4-chromatic ST'S(31) and ST'S(49). The study of Brandes, Phelps and
Rodl [5] includes results about the existence of k-chromatic ST'S for any k by using
probabilistic methods, in addition, some 4-chromatic ST'Ss are also included in the
study.

In the third chapter, we focused on the studies in which finite geometry was used.
Fugere, Haddad, and Wehlau gave the first specific example of a 5-chromatic ST'S [16].
Bruen, Haddad and Wehlau gave the first specific example of a 6-chromatic ST'S [6].
Haddad gave examples of 4-chromatic ST'S(21) and ST'S(39) by using computational
methods, and he gave an example of a 5-chromatic ST'S(81) by using finite geometry
techniques [17].

In the 4" chapter, we summarized the arguments for the existence of k-chromatic
ST'Ss for large k.

In the 5 chapter, we summarized the recent studies about colorings of ST'S,

which are mostly on specific types of weak colorings such as equitable and balanced
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colorings. We only defined the terms and stated the main theorems for those colorings.
We also included some related results in this chapter. For instance the statements of

the theorems about N P-completeness of solving weak coloring problems are included.
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