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ABSTRACT

In this thesis, we concentrate on two aspects of production-inventory systems: advance

demand information and admission control. We firstly consider a continuous review, infi-

nite horizon replenishment and admission control model. We propose static and dynamic

admission control methods to determine the acceptable demand rate for the supplier who

produces a single product for a single class of customers. The profit function of the supplier

is investigated under different parameter settings and the benefits of the dynamic admission

control policies are found to be significant. Therefore, we continue our study with dynamic

admission control in a periodic-review, infinite horizon model with multiple customer classes

and advance orders. We investigate the role of inventory and advance demand information

to manage multi-class demand through dynamic admission control policies. The main aim

of the latter model is capturing the tradeoffs in a situation where different customers provide

different levels of advance demand information. We analyze the model using event-based

stochastic dynamic programming and investigate the structure of the optimal replenishment

and admission control policies. The numerical results of this model underline the benefits

of advance demand information and admission control.
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ÖZETÇE

Bu tez üretim-envanter sistemlerinin iki özelliği üzerinde odaklanmaktadır: ileri talep

bilgisi ve kabul kontrolü. Öncelikle sonsuz zamanlı, sürekli kontrollü bir envanter ve kabul

kontrol modeli ele alınmıştır. Bu modelde tek tip müşteriye tek tip ürünle hizmet eden

bir tedarikçi için en iyi kabul edilebilir talep oranı bulunmak üzere statik ve dinamik kabul

kontrol yöntemleri önerilmiştir. Kar fonksiyonu farklı sistem parametreleriyle sayısal olarak

analiz edildiğinde dinamik kabul kontrol yöntemlerinin statik kabul kontrol yöntemlerine

üstünlük sağladığı görülmüştür. Bu nedenle, tezin geri kalan kısmında dinamik kabul kon-

trol yöntemleri kullanılarak devam edilmiştir. İkinci olarak ele alınan periyodik kontrollü

çoklu müşterili modelde bir kısım müşterilerin tedarikçi ile yaptıkları anlaşma sebebiyle her

zaman belirli bir süre önce sipariş verdikleri bir sistem ele alınmıştır. Bu model yoluyla

çoklu müşterili sistemler için envanter ve ileri talep bilgisinin rolü incelenmiştir. Bu modeli

oluştururken asıl amaç farklı seviyelerde ileri talep bilgisi sağlayan çok sayıda müşteriye

sahip sistemler hakkında bilgi sahibi olmaktır. Model olay-bazlı stokastik dinamik pro-

gramlama kullanılarak analiz edilmiştir; en iyi envanter ve kabul kontrol politikalarının

yapısı araştırılmıştır. Bu model için yapılan sayısal analizler ileri talep bilgisi ve kabul

kontrolünün yararlarını vurgulamaktadır.
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Chapter 1

INTRODUCTION

It is well known that capacity limitations and demand and processing time uncertainties

have a negative effect on the performance of a supply chain. Inventory has to be carried

through the supply chain in order to satisfy these deficiencies with an acceptable service

level. However, carrying inventory is a costly activity. Thus, the suppliers aim to decrease

their inventory levels while keeping service levels sufficiently high. In this context, increasing

popularity of technologies such as Internet and Radio Frequency Identification (RFID) is

worth mentioning. These technologies enable better control and sharing of information so

that they can be used to decrease uncertainties in the supply chain.

Capacity limitations are common in today’s demanding market. The market consists of

several segments of customers with different rewards, lost sales costs and demand leadtimes.

On the other hand, the supplier has a fixed capacity that may not be sufficient to serve the

whole market demand available and the capacity investments are so costly that they can

not be considered in the short term. Therefore, the supplier aims to control the portion

of demand to be satisfied in order to better match demand and supply. For instance, it is

plausible that, she admits or rejects to satisfy demand according to the inventory level and

other system parameters in order to maximize her benefits. Additionally, she may choose

to provide only a fraction of the demand of a specific customer class and keep inventory for

the other classes. This is called the “admission control” problem of the supplier. One of the

issues that we try to shed some light on is determining the customer portfolio of a supplier

with fixed capacity through different admission control methods. The motivation behind

our study is the growing consensus on having a portfolio of different customers, since this

may lead to higher revenues and better capacity utilizations.

Demand and processing time uncertainties are the other factors that reduce the perfor-

mance of a production-inventory system. The performance losses caused by the uncertainties
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can be compensated by keeping inventory or sharing demand information in advance. As a

result of the recent advances in information technologies, demand information can easily be

shared in advance between the members of a supply chain. Therefore, it is possible to de-

crease the role of inventory against uncertainty by the help of advance demand information

(ADI). The literature on ADI advocates its use and outlines the benefits if it is smartly inte-

grated. Additionally, improvements in technology enable keeping better track of inventory

and production information in the system. Collecting better information about demand,

inventory level etc. allows the supplier to take uncertainty in control through dynamic

control policies. In this thesis, we investigate the interactions between ADI and admission

control in a multi-customer setting where dynamic control is performed.

We concentrate on two specific production-inventory systems with admission control.

In the first model, we focus on the method of admission control. We perform analyses of

both static and dynamic admission control policies; these analyses reveal the dominance of

dynamic admission control policies. Thus, we use dynamic admission control in the second

model to investigate impacts of admission control and ADI at the same time. We establish

the structure of the optimal policies. In general, we investigate the role of inventory and

ADI to manage multi-class demand through dynamic admission control policies. We aim to

determine the optimal portfolio of customers among the ones providing different levels of

advance demand information. To our knowledge, there are only a few and specific studies

which concentrate on dynamic admission control and ADI at the same time.

The rest of this thesis is organized as follows. In Chapter 2, we provide the necessary

background on inventory management with advance demand information and admission

control.

In Chapter 3, we consider a supplier’s admission control problem. We propose static

and dynamic admission control methods and discuss the advantages and disadvantages of

the methods. According to the numerical results, we find out that the benefits of dynamic

admission control surely dominates the static admission control methods.

In Chapter 4, we apply dynamic admission control to a system with multiple customers

and advance orders. We propose event-based operators to analyze the model. We prove

optimality of threshold type replenishment and admission control policies using stochastic

dynamic programming.



Chapter 1: Introduction 3

Finally, in the last chapter, we summarize the performed study and its results.
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Chapter 2

LITERATURE SURVEY

Inventory systems with ADI have been frequently studied in the literature and they are

still of interest today. Research has been done in order to incorporate advance demand

information in different types of production/inventory systems. In order to expand the use

of ADI, its benefits and its interactions with the system parameters are investigated.

This literature review is structured as follows. Firstly, the literature on ADI in ca-

pacitated production/inventory systems is presented. It is followed by the papers about

uncapacitated systems with ADI. Later, the related literature about demand management

focusing on stock rationing is discussed. In the subsequent part, the papers combining the

ADI and stock rationing issues are mentioned. The review is concluded with the contribu-

tion of the model in this thesis.

Buzacott and Shanthikumar [2] is one of the earliest papers considering advance demand

information in a production/inventory system. In this study, safety time is compared with

safety stocks in a single-stage capacitated production/inventory system with advance de-

mand information coming from a MRP system. Despite the conventional discrete time MRP

systems, they propose release rules for continuous time systems. They provide insights into

the performance of the MRP system by comparing the use of safety time with safety stocks

in systems with different levels of advance demand information. According to their results,

the accuracy of the ADI is effective on the choice of safety stocks against safety time; if

the ADI about the future demand is poor, safety stocks will be preferable. However, with

accurate ADI, safety time will bring more benefits to the system. Karaesmen et al. [23]

study a single-stage, single-customer capacitated production/inventory system modeled as

a discrete time make-to-stock queue with advance orders. Their work resembles Buzacott

and Shanthikumar [2] in several ways except its discrete time nature. However, their main

interest is in identifying optimal production policies. By stochastic dynamic programming,

they find out that advance orders can be optimally incorporated in the system by a base-
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stock mechanism; however, an easily implemented heuristic policy with a release leadtime

parameter also performs well. They compare these two policies and emphasize the benefits

of advance demand information when optimally integrated into such a system.

Karaesmen et al. [24] provide an extensive analysis for both make-to-order and make-to-

stock systems with advance demand information. The intuition that the advance demand

information increases the performance of a system is highlighted in this study. Additionally,

the factors that decrease costs in a system with advance demand information are investi-

gated. The authors primarily consider the single stage systems where the inputs are only

controlled at the beginning of the stage. For the single stage make-to-order systems, they

find the optimal release leadtime L∗. Thus, if the order is released exactly L∗ units of time

in advance of the due-date, the sum of average holding and backordering costs is minimized.

The effects of the production leadtime, i.e. the time between the release of an order to the

production stage and its delivery to the finished goods stock, are significant in make-to-order

systems. Increased production leadtime variability causes high optimal costs. Moreover,

high production leadtimes require more ADI in make-to-order systems with generally dis-

tributed processing times. For capacitated M/M/1 make-to-order systems, the authors find

out that sharing ADI earlier exponentially decreases the expected number of backorders; on

the other hand, increasing the release leadtime increases the expected number of inventory.

As further research, a system operating in make-to-stock mode is considered under base-

stock policy with ADI. The basestock levels and the optimal average costs depending on

the demand leadtime, i.e. the horizon of visibility, are determined according to this policy.

They state that demand leadtime decreases the basestock levels and the optimal average

costs in comparison with the no information case. Additionally, the make-to-stock system

with general processing times under geometric tail approximation is considered in order to

examine the effects of increased production leadtime variability. Highly variable production

leadtimes increase the optimal basestock levels and optimal average costs and decrease the

benefits of ADI. Besides, in highly loaded systems, the demand leadtimes should be suffi-

ciently long to make use of ADI. Karaesmen et al. handle the multi-stage systems where the

analysis is even difficult without advance demand information. They examine the system

with two stages and state that if the unit holding cost of the upstream stage is greater than

the downstream stage, the system behaves as a single stage system. Otherwise, the analysis
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of multi-stage systems poses several challenges. In another study, Karaesmen et al. [25]

reconsider make-to-order and make-to-stock systems with advance demand information. In

addition to their previous study, this time, they emphasize the value of advance demand

information in such systems. The early deliveries and timely deliveries cases are separately

examined. They consider the timely delivery systems under the basestock policy with a

fixed release time parameter. On the other hand, for the early delivery systems, they apply

an order-based basestock policy where the backorder cost is incurred after the horizon of

visibility ends. The relative value of advance demand information is found to be high in

the systems where early deliveries are allowed; although it is moderate in timely delivery

systems. Additionally, for the horizon dependent costs of advance demand information, if

the customer has a more dominant role in price setting, the supplier may not prefer giving

discounts in return for advance demand information. Thus, inefficiencies in the supply chain

that could be removed by sharing information remain unchanged.

DeCroix and Mookerjee [8] study the incorporation of advance demand information in

a different setting. The aim of this paper is to determine the value of advance demand

information in a periodic-review inventory system where the advance demand information

is available at a price. They analyze the problem with both perfect and imperfect ADI over

finite and infinite horizons. The optimal information purchasing and replenishment policies

are addressed. DeCroix and Mookerjee state that the value of information increases as the

inventory level decreases and the length of remaining horizons increases. Another study that

aims to measure the benefits of advance demand information is the work of Gavirneni et al.

[13]. They consider a two-echelon capacitated inventory model under three assumptions.

They assume the scenarios where no information is shared, only demand distribution and

the optimal production policy of the retailer is shared, and lastly, full information, i.e.

information of the periodic inventory levels, is shared. In all cases, the order-up-to ((s, S))

policies are optimal. They compare these three scenarios in order to distinguish the system

conditions where the benefits of advance demand information are maximized. They show

that it is always better to have full information than restricted information. However, when

the variance of the demand and the S−s are of moderate values, the benefits of ADI become

significant. Additionally, low capacity levels cause a decrease in the benefits of ADI.

In some of the systems, the forecasts are considered as advance demand information.
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Güllü [15] provides one of the first of these studies. He evaluates the benefits of information

about future demands provided from forecast evolutions in a dynamic production/inventory

system with zero production leadtime. He compares the inventory model with Martingale

model of forecast evolutions (MMFE) to a standard inventory model under capacity con-

straints; then, he extends his work for the uncapacitated versions of the systems. The

results, similar with those for advance orders, reveal the fact that information about future

demands decreases the expected costs and inventory levels. In one of his later studies [16],

Güllü works on a two-echelon model, consisting of a depot and several retailers, with the

aim of analyzing the benefits of the MMFE incorporated in the system. He finds the ap-

proximate system-wide order-up-to level and compares the system costs and inventory levels

to a standard system. The results show that forecasts improve the system costs and perfor-

mance for the two-echelon systems, too. Another study with advance forecast information

is Toktay and Wein [33]. Their aim is to determine the replenishment policy structure under

the MMFE in discrete time with limited capacity. They state that the optimal policy is

designated as the state-dependent forecast-corrected basestock policy. They benchmark the

optimal policy with a replenishment policy in which the advance forecast information and

state-dependency is not considered. Additionally, an easily implemented approximation is

derived for the optimal basestock level to gain insights on the benefits of the forecasts and

the forecast updates. One of the results of their work parallels the previous literature on

advance demand information; information is mostly beneficial at moderate levels of system

load. They observe that the optimal planning horizon length increases by the system load,

demand variability and desired service level as also highlighted in Karaesmen et al. [23].

Their main result reveals the increasing use of capacity instead of safety stocks when sys-

tems with longer horizon of visibilities are handled. As in forecasts, the supplier is only

able to reach imperfect information about future demand in some cases. Tan et al. [31]

carry out one of the noteworthy studies about the systems with imperfect advance demand

information. They define imperfect ADI as early uncertain indication of prospective future

demands. They provide a generalized probability structure to model the imperfect ADI. By

using this model and the dynamic programming, they address the structure of the optimal

inventory policies for the discrete-time finite-horizon model with backordering. They show

that the optimal policy is of order-up-to type depending on the available ADI. Since the
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order-up-to levels are shown to be non-decreasing in time with same ADI, they develop

an upper-bound on the order-up-to level of any period. In order to make better use of

imperfect ADI, they propose a segmentation framework for the ADI sources; by this way,

they observe a decrease in the system costs. They assess the value of imperfect ADI in the

single-period problem and generalize it for the N -period problem. They state that their

work can be extended by using updating schemes like Bayesian updates, time-series models

and forecast evolution methods as in Güllü [15].

In order to underline the use of ADI, Hu [20] compares it with outsourcing against

demand and capacity uncertainty. Hu considers a system with advance demand information

where production and outsourcing decisions are made at each period. The optimal policy

has two parameters; the production threshold and the outsourcing threshold. The system

costs decrease in expected capacity; however, the variability of capacity increases the costs.

Hu proposes the practical uses of the outsourcing and the advance demand information

underlining the decreasing benefits of the advance demand information with the increases

in variability of the capacity, system load and service level.

Özer and Wei [29] scrutinize the capacitated production/inventory system with advance

demand information and fixed costs. Özer and Wei suggest optimal replenishment policies

for the periodic-review problems over finite and infinite horizons. They conclude that for

both problems, with zero fixed cost a state dependent modified basestock policy is optimal.

For the fixed cost case, below a state dependent threshold, the supplier should produce at full

capacity; otherwise, she should produce none over finite and infinite horizons. Additionally,

Özer and Wei emphasize the role of advance demand information as a substitute for both

capacity and inventory in order to provide incentives to share advance demand information.

Above the literature on capacitated systems with ADI is mentioned; however, there are

important results corresponding uncapacitated systems with advance demand information.

Hariharan and Zipkin [19] investigate the effects of advance demand information by ex-

tending basic inventory models to allow advance ordering in the systems with single class

of customers and backorders. They investigate the single stage system under determinis-

tic and stochastic leadtimes while the multi-stage extension is done for only deterministic

leadtimes. They conclude that the optimal policies for conventional systems can be simply

and effectively used for the cases with advance demand information, especially under some
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specifications, the conventional policies are optimal. Their results show that the horizon

of visibility improves the system performance in the same way as a reduction in supply

leadtimes and the reduction in costs is more significant as future uncertainty is resolved

earlier. Gallego and Özer [11] also consider an uncapacitated production/inventory system

with advance demand information. Their work is similar to the Hariharan and Zipkin [19]

in most aspects; however, Gallego and Özer consider a system with periodic reviews and set

up costs. They state that a portfolio of customers with different demand leadtimes can lead

to higher revenues and better utilizations. With a given portfolio of customers, they check

the optimality of the conventional policies on the single stage systems with and without

set up costs over finite and infinite horizons. According to their results, when the horizon

of visibility is shorter than the planning horizon, the systems reduce to the classical inven-

tory systems. However, when the horizon of visibility is longer than the planning horizon, a

state-dependent basestock policy is optimal for the system with zero set up costs and a state

dependent (s, S) policy is optimal for the fixed set up costs. The results parallel the ones in

Özer and Wei [29] that is the capacitated version of this paper. Gallego and Özer [12] extend

their work for the periodic-review multi-echelon inventory systems. The system considered

is a centralized system with a single-item where the number of customers arriving each

period, the order size and the demand leadtimes are random. Gallego and Özer decompose

the system into single stages and solve each dynamic program starting from the last stage

until the first stage. After this stage-based analysis, they conclude that for the finite and

infinite horizons, the state-dependent, echelon basestock policies are optimal. Additionally,

they investigate the case where demand and cost parameters are stationary and propose

the optimal policy as a myopic policy where the information beyond the leadtimes does not

affect the optimal basestock levels and costs. By their numerical analysis, it is shown that

the value of information displays the same behavior as in the single-echelon case. ADI is

more valuable in the systems with high penalty costs. Moreover, when the ADI reaches a

certain level, the system begins to operate in make-to-order mode.

Up to this point, the papers about the effects of ADI on the optimal replenishment

policies are presented. However, there are other relevant issues which have received less

attention. The firms usually have capacity constraints and different customers who provide

different levels of advance demand information. Thus, in this thesis, we consider joint
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replenishment and admission control in multi-customer systems to be more realistic. In the

remaining part of this chapter, the literature about segmentation of customers and demand

management with fixed capacity will be discussed.

Chen [6] provides an important study since it combines the effects of market segmenta-

tion with advance demand information. Chen considers a system with heterogeneous cus-

tomers exhibiting different degrees of aversion to waiting. The pricing and replenishment

policies are investigated to optimally incorporate the market segmentation and ADI in the

system. The optimal replenishment policy is designated as a basestock policy. Heuristic

algorithms are proposed to compute the optimal price schedule. In the numerical analysis,

the benefits of information and segmentation are evaluated. It is always better to have both

ADI and segmentation. However, value of segmentation becomes significant when the num-

ber of more patient customers, difference between customers (in terms of aversion), total

leadtime (for all stages) and the number of stages increase. On the other hand, the value of

information decreases in the number of stages and increases in the total leadtime and unit

backorder cost.

When the capacity is limited, management of demand is an important tool to improve

performance in supply chains. Tang [32] provides an extensive review for risk management

in supply chains and classifies the methods of demand management. In this review, advance

booking and advance-purchase discounts are mentioned in order to shift demand across time.

Additionally, product rollovers, substitutions and bundling are stated as methods of demand

management. However, different methods of demand management exist that do not belong

to these classifications. The work of Carr and Lovejoy [5] is an example of these methods.

The regular newsvendor problem aims choosing the best capacity that responds to a known

demand distribution. Carr and Lovejoy address the ”inverse newsvendor” problem where a

demand distribution is chosen among prioritized customer classes that best fits the known,

fixed capacity. They assume continuous opportunity sets consisting of several normally

distributed customer clusters; the opportunity sets are completely or partially known. For

the case with completely known opportunity sets, they firstly work on the single customer

scenario and propose the optimal demand distribution in the newsvendor setting. They use

the single class solution to approximate the multi-customer setting. Additionally, bounds

are developed on the optimal mean demand when the opportunity set is only partially
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known.

Li [28] investigates the factors that engender the supplier to operate in a make-to-

stock manner rather than a make-to-order manner. The role of inventory is examined in a

production system where the supplier faces delivery time competition. In oligopoly racing

markets, duplicate orders are allowed; so the customer buys the product from the supplier

who provides earliest service. The oligopoly racing market, the monopoly market and

the demand sharing market are compared in terms of inventory policies and the incentive

for make-to-stock regime is shown to be decreasing in the mentioned order. The results

show that the optimal inventory level decreases in the number of competitors if there is

a demand sharing market. However, the increase in the number of competitors results in

an increase in the optimal inventory level when the firm competes in an oligopoly market.

Li’s study provides insights in the way of managing demand since it enables the supplier to

determine the basestock level that maximizes her profit. In fact, with the optimal basestock

level determined, the supplier chooses to respond only a fraction of customers. Duenyas

[9] reports another study about the time concern of customers and its use in managing

demand. He analyzes a make-to-order queue with multi customers. He considers the due

date setting and order sequencing problem that arises when the customer orders depend

on the due date quoted by the supplier. Duenyas emphasizes the deficiencies of the FCFS

model and introduces a heuristic approach that outperforms classical due date setting rules.

By choosing optimal policies in consideration of the due date and price preferences of the

customers, the supplier indirectly chooses the fraction of demand that she wants to serve.

There are many papers in the literature that address the stock rationing policies as a

way of managing demand with fixed capacity. Ha [17] studies a make-to-stock queue with

backorders and two priority classes. For the exponential interarrival and service times

scenario, he proposes the production and stock-rationing policies by modeling the system

as a queuing control problem. The production policy is of basestock type and the stock

rationing policy has the rationing level parameter that decreases in the number of backorders

of the low-priority class. De Vericourt et al. [7] also consider a capacitated make- to-stock

production system where they compare the performance of three different stock rationing

policies. A multi-customer single item model with backordering is examined and is extended

with a fill-rate constraint. The optimal parameters are found under standard FCFS policy,
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a strict priority policy, i.e. a policy with priority that does not reserve inventory, and a

multilevel rationing policy. The performance of the policies improves with the degree of

bias offered to more costly customers. However, with identical backorder costs, all policies

are identical. De Vericourt et al. highlight the benefits of stock rationing for the systems

with significantly different backorder costs.

Frank et al. [10] consider the optimal replenishment and stock rationing policies for a

system with priority demand classes. In their periodic-review model, there are two cus-

tomers. The first class has constant deterministic demand that should be fully satisfied. On

the other hand, the secondary class has stochastic demand that can be accepted or rejected

in order to ration inventory for the first class. The demand of the second class customers is

lost when rejected. The authors present the optimal replenishment and inventory rationing

policies for the given system; however, since the policies are complicated, implementation

is difficult in practice. Thus, they propose a simpler heuristic algorithm including both

policies. By the numerical analysis, they test their heuristic against the optimal policy and

observe that the heuristic performs well. In particular, they underline the use of inventory

rationing in the systems with large fixed costs and low-volume stochastic demand. Carr

and Duenyas [4] consider the admission control and sequencing problem arising in a multi-

customer production system. They investigate a system where there are both contractual

and spontaneous customers arriving according to distinct Poisson distributions. They as-

sume that the demand of contractual customers is satisfied from the inventory; however,

make-to-order discipline is applied to the spontaneous customers. The processing times

have identical exponential distributions and preemptions are allowed. The main aim in

their study is determining the amount of demand that will be fixed by contracts to maxi-

mize the profit and finding out the structure of the optimal admission and inventory control

policies. The optimal policies are characterized by switching curves, i.e. each area formed

by intersection of curves represents a different combination of the optimal decisions. Since

the optimal policies have complex structure, they propose a simpler policy that seems to

perform well in numerical study. They extend their model with Erlang arrival and service

distributions.

Recently, the effects of ADI in the systems where replenishment and stock rationing

are jointly controlled have been an attractive issue for the researchers. Gayon et al. [14]
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investigate a continuous-time production/inventory system with joint production control

and inventory allocation. They study the problem with several customer classes who provide

different levels of advance demand information. In the study, they evaluate the effects of

the information that is imperfect because of random demand leadtimes and cancellation of

customer orders. The optimal production control policy is characterized as a state dependent

basestock policy with basestock level non-decreasing in the number of orders. Additionally,

the structure of the inventory allocation policy is addressed as a state-dependent multi-level

rationing policy, with a non-decreasing rationing level in the number of announced orders.

Gayon et al. emphasize the value of advance demand information through both suppliers’

and customers’ perspectives. According to their numerical results, suppliers tend to benefit

from advance demand information by reducing the inventory levels, thus the service levels

and the utilization of customers. For the customers to share the benefits of advance demand

information, high lost sales costs should be imposed. Additionally, Gayon et al. observe

that the value of advance demand information is considerably high in moderate levels of

expected demand leadtimes and lost sales costs while it is insignificant when the system

load is high.

Iravani et al. [21] also study a similar production-inventory system including ADI and

stock rationing. They consider a two-class, single item system where only one of the classes

give advance order information. They define the optimal replenishment and admission

control policies. In addition to this, the benefits of advance demand information in a multi-

class setting are evaluated. They model the problem with Poisson arrivals and exponential

processing times. The first class of customers, who gives advance demand information,

orders a random quantity periodically although the secondary customers order an individual

item randomly. The orders of the first class are fully satisfied; otherwise, a penalty cost

is incurred. However, the orders of the second class of customers are lost without any

cost when rejected. By stochastic dynamic programming, they characterize the optimal

replenishment and stock rationing policies as threshold type where the thresholds depend

on the future demand quantity of the first class as well as the current time. By their

numerical analysis, they investigate the effects of some system parameters on the value of

information. When the share of Original Equipment Manufacturers (OEM ) customers who

give advance demand information is significantly larger than the secondary customers, an
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increase in capacity increases the value of information. However, when the share of the

secondary customers is significantly larger than the OEM market; the value of information

decreases in the capacity. Additionally, they emphasize the fact that as the ratio between

the reward of the secondary customers and the penalty cost of not satisfying OEM orders

increases, the value of the information decreases. These numerical results imply that the

importance of the OEM market increases the value of information.

In this chapter, firstly, a review of the literature about the impacts of ADI is presented.

Demand management literature focusing on the stock rationing is given in the subsequent

part. In this thesis, a joint study of these issues is carried out. In the model considered in

Chapter 3, a static admission control model is proposed and it is compared with a dynamic

admission control model. There are only a few studies in the literature that consider the

static admission control of customers in this framework. In addition, the model in Chapter

4 investigates the joint problem of replenishment and admission control in the presence of

ADI. Another aspect of this model is its multi-customer setting. This model is one of the

limited studies in the literature that combine admission control with ADI. Similar studies in

the literature model the system in continuous time setting. The dominance of our model on

the existing models is because of the constant information horizon, random OEM customer

arrivals, batch arrivals and batch admissions assumptions. We also enable outsourcing of

items for both classes. Our contribution with this model can be summarized as addressing

the optimal replenishment and admission control policies in a discrete time multi-customer

capacitated system with ADI.
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Chapter 3

DETERMINING THE ACCEPTABLE DEMAND RATE

3.1 Introduction

Capacity is a common constraint that a supplier faces while serving customers. Since

capacity investments are costly, it is difficult to adapt capacity according to the conditions

in the supply chain. Thus, adapting other system components is usually preferable for most

of the suppliers. For a supplier with limited capacity, demand management is a way of

getting better utilizations with the existing capacity limitations.

There are different ways of managing demand when the capacity of the supplier is limited.

Shifting demand across time, product substitutions, holding inventory and optimizing the

stock-rationing policies are some of the useful demand management methods. Each method

has its own area of use. For long term customers with contractual agreements, the firm

may determine the amount of supply at the beginning while contracting. However, in some

cases the supplier may face unplanned demands and has to admit or reject the customer

at the time of the demand arrival. In this type of settings, the supplier is able to make

such decisions at the time of the customer arrivals. Our main interest in this chapter is to

optimally perform an admission control for a single server, single customer make-to-stock

queue. Firstly, we investigate the optimal acceptable demand rate of customers that will

be contracted to be admitted. We determine the acceptable demand rate that gives the

best expected profit. Secondly, we look at the problem from a dynamic perspective and

investigate the structure of the optimal admission control policy. The aim of this chapter

is to analyze the admission control problem of a supplier and to compare the methods used

for the analysis.

The remainder of this chapter is organized as follows. In Section 3.2, the system is

modeled and in Sections 3.3 and 3.4, the analyses with static and dynamic perspectives are

done respectively. The structure of the optimal policies are determined in Section 3.4.1. In
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Section 3.5, numerical examples for both methods and the comparison of the methods are

presented. Finally, in Section 3.6, we summarize the conclusions driven by the structural

and numerical analysis model.

3.2 Problem Definition

We consider a firm who supplies a single product with limited capacity. Since supplier’s

capacity is limited, the supplier does not prefer satisfying the demand of the whole market.

In the market, there are customers with no distinction. Whenever the demand of the

customers is satisfied, the supplier gains a reward of R per item. Unit demand arrivals

occur according to a Poisson distribution with rate λ. The service time of the supplier is

exponential with rate µ and she produces a single item at a time with a cost of c per item.

In this environment, the supplier satisfies the demand of the customers from the inventory.

If there is no inventory, backordering is allowed with a cost of b per unit time per item.

The supplier incurs an inventory holding cost of h per unit time per item. The production

system is modeled as a continuous-time M/M/1 queue. More precisely, since items can be

produced in advance and held in inventory, the resulting model is a make-to-stock queue.

3.3 Analysis of the Model in the Static Framework

When the model is considered with a long term customer working through contracts, the

admission control problem may be investigated in the static framework. In the beginning,

before the contract, the supplier should decide on the fraction of the customers that will

be satisfied. At that moment, the supplier only knows the potential rates of the customer

arrivals and the capacity. In addition, the reward and costs are fully known. Thus, the

supplier chooses the fraction of demand that maximizes her expected profit per unit time

which depends on the customer arrival parameter λ. With the profit function Π(λ), the

supplier maximizes the expected revenue gained from sales after subtracting the expected

inventory and backorder costs over unit time. The expected profit Π(λ) of the supplier is

given as follows where E[I] is the expected inventory and E[B] is the expected backorder:

Π(λ) = λ(R− c)− hE[I]− bE[B] (3.1)
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The optimal amount of demand to be satisfied by the supplier is the fraction of customers

that maximizes the expected profit Π(λ) given in Equation 3.1. The problem is simply:

max
λ

Π(λ) = Π(λ∗)

In the literature, M/M/1 make-to-stock queues are studied in detail and there are stan-

dard formulas for the expected inventory and backorder in the M/M/1 queues. For the

target inventory level of Z and ρ = λ/µ, the expected inventory and backorder are given as

follows [1]:

E[I] = Z − ρ

1− ρ
(1− ρZ)

E[B] =
ρZ+1

1− ρ

Since our system is also modeled as an M/M/1 make-to-stock queue, standard formulas

for the expected inventory and the expected backorder can be used while writing the profit

function of the supplier given in Equation 3.1. The expected profit of the supplier becomes:

Π(λ) = λ(R− c)− h(Z − ρ

1− ρ
(1− ρZ))− b(

ρZ+1

1− ρ
) (3.2)

In order to find the optimal customer fraction λ∗ that maximizes the profit function

Π(λ) given in Equation 3.1, Π(λ) should be concave in λ. The second order derivative

should be non-positive to satisfy concavity in λ. The first order derivative and second order

derivatives are as follows:

dΠ(λ)
dλ

= (R− c)− h

(
−

(
λ
(
1− ρZ

)
(1− ρ)2 µ2

)
+

Z λ ρ−1+Z

(1− ρ) µ2
− 1− ρZ

(1− ρ) µ

)
− b (1 + Z) ρZ

(1− ρ) µ
− b ρ1+Z

(1− ρ)2 µ

d2Π(λ)
dλ2

= −h

(
−2 λ

(
1− ρZ

)
(1− ρ)3 µ3

+
(−1 + Z) Z λ ρ−2+Z

(1− ρ) µ3
+

2 Z λ ρ−1+Z

(1− ρ)2 µ3
−

2
(
1− ρZ

)
(1− ρ)2 µ2

)

−h

(
2 Z ρ−1+Z

(1− ρ) µ2

)
− b Z (1 + Z) ρ−1+Z

(1− ρ) µ2
− 2 b (1 + Z) ρZ

(1− ρ)2 µ2
− 2 b ρ1+Z

(1− ρ)3 µ2

We check the inequality d2Π(λ)
dλ2 ≤ 0 for concavity. However, it is impossible to prove

or disprove this inequality for Π(λ). Therefore, the structure of the profit function cannot
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be easily addressed. In particular, it seems difficult to find an analytical expression for the

optimal acceptable demand rate λ∗.

Remark 1 Since the profit function is complex, we may use approximations in order

to gain insights about the system. In this context, we investigate a similar system without

processing time uncertainty and capacity limitations where normal approximations are used.

This approximated system can be modeled as an M/D/∞ queue. The analysis of this model

is given in Appendix A.1.

Remark 2 In the literature there are papers about the structural properties of queuing

systems. The results of these papers may shed some light on the structure of the complex

profit function considered here at least under certain assumptions. Harel and Zipkin [18]

investigate M/M/c queues and prove convexity of the expected cost function in the arrival

and service rates. These results are for convexity of the expected cost functions; so they are

also valid for concavity of the expected profit functions. Although, in general, our problem

is more complex since it is a make-to-stock queue; Harel and Zipkin’s results hold for the

special case of our problem where make-to-order discipline is applied, i.e. Z = 0.

3.3.1 Analysis of the Model in the Static Framework with Approximations

In the previous section, we considered the admission control problem where the supplier aims

to choose the demand rate that maximizes her expected profit at once. However, because

of the complexity of the profit function given in Equation 3.2; we were unable to reach an

explicit solution for the problem. In this section, we are going to simplify the profit function

of the supplier by employing some approximations. By the help of these approximations, we

may gain insights about optimal acceptable demand rate and the behavior of the supplier’s

profit function.

In Section 3.3, the profit function of the supplier was defined as follows:

Π(λ) = λ(R− c)− hE[I]− bE[B].

E[I] and E[B] were replaced with the formulas where a basestock policy with a target
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inventory level of Z is used. Recall that, the optimal basestock level for this system is:

Z∗ =

⌊
log( h

b+h)
log ρ

⌋
(3.3)

where bxc denotes the largest integer that is less than or equal to x.

The exact optimal basestock level for the system is the integer value given by Equation

3.3. However, since it is not practical to work with integer round-offs, we use the continuous

approximation given in Equation 3.4. Hence:

Z∗ ≈
log( h

b+h)
log ρ

. (3.4)

The profit function of the supplier can be written as follows by using the approximations

(See [22]):

Π(λ) ≈ λ(R− c)− hZ∗

Πapp(λ) = λ(R− c)− hZ∗

Πapp(λ) = λ(R− c)− h
log( h

b+h)
log ρ

. (3.5)

The static admission control problem then reduces to:

max
λ

Πapp(λ) = Πapp(λ∗).

In order to maximize the approximate profit function Πapp(λ) given in Equation 3.5, we

should check the concavity of Πapp(λ) in λ. The first and second order derivatives are found

for Πapp(λ):

dΠapp(λ)
dλ

= (R− c) +
h log( h

b+h)

λ log ρ2

d2Πapp(λ)
dλ2

=
−2 h log( h

b+h)

λ2 log ρ3 −
h log( h

b+h)

λ2 log ρ2

If the inequality d2Πapp(λ)
dλ2 ≤ 0 is satisfied, the approximate profit function Πapp(λ) is

shown to be concave. However, for this profit function d2Πapp(λ)
dλ2 ≤ 0 has some restrictions
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on the value of λ:

d2Πapp(λ)
dλ2

=
−2 h log( h

b+h)

λ2 log ρ3 −
h log( h

b+h)

λ2 log ρ2

d2Πapp(λ)
dλ2

= −
(2 + log(λ

µ))h log( h
b+h)

λ2 log ρ3

Since log ρ ≤ 0, log( h
b+h) ≤ 0 and h ≥ 0; 2 + log ρ ≥ 0 should be verified in order to show

concavity. Thus,

log ρ ≥ −2

ρ ≥ e−2

ρ ≥ 0.136.

The approximate profit function Πapp(λ) is concave for the values of 0.136 ≤ ρ ≤ 1.

Since concavity for at least some specific values of λ is satisfied, we check for dΠapp(λ)
dλ = 0

to find the optimal acceptable demand rate λ∗. However, this approximation does not yield

an explicit solution for λ∗.

We further analyze the system with an additional approximation in order to obtain an

explicit solution.

Another well-known approximation is (See [3]):

log ρ ≈ −(µ− λ) (3.6)

This approximation is known to be accurate as ρ = λ
µ approaches 1. The optimal

basestock level is given as follows by the help of Equation 3.6:

Z∗ ≈
log( h

b+h)
−(µ− λ)

After using the two approximations mentioned, the profit function becomes:

Π(λ) ≈ λ(R− c)− hZ∗

Πapp2(λ) = λ(R− c)− h
log( h

b+h)
−(µ− λ)

(3.7)
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The profit function given by Equation 3.7 is simpler than the Equations 3.2 and 3.5. An

explicit solution for the optimal acceptable demand rate may be found if Πapp2(λ) ≤ 0. The

first and second order derivatives of the approximated profit function given in Equation 3.7

are:

dΠapp2(λ)
dλ

= (R− c) +
h log( h

b+h)

(λ− µ)2

d2Πapp2(λ)
dλ2

=
−2 h log( h

b+h)

(λ− µ)3
.

The second order derivative check ensures concavity of Πapp2(λ); since d2Πapp2(λ)
dλ2 ≤ 0

is satisfied without restrictions. Moreover, an optimal explicit solution for λ is found by

solving dΠapp2(λ)
dλ = 0:

λ∗ = µ−

√
−

h log( h
b+h)

(R− c)
. (3.8)

By the approximations used, the static admission control problem is solved and the

acceptable demand rate that maximizes the expected profit of the supplier is found. The

supplier should contract with the long term customer to satisfy the demand arriving ac-

cording to a Poisson distribution with parameter λ∗. Two cases may occur:

1. If λ∗ < λ, the supplier randomly eliminates certain proportion of customers. She

serves the customers arriving according to a Poisson distribution with parameter λ∗

by randomly eliminating the others.

2. Else if λ∗ ≥ λ, the supplier satisfies the demand of all customers. She serves the

customers arriving according to a Poisson distribution with parameter λ.

The optimal amount of the customers admitted (λ∗) is smaller than the service rate µ of

the supplier which reveals the fact that the supplier takes precautions against backordering.

The capacity left for safety depends on the cost of inventory holding, backordering and

production as well as the reward gained per supply.

3.3.2 The Performance of the Approximations

While analyzing the model in the static framework, we use two approximations (3.4, 3.6)

on the average profit function given in Equation 3.1. It is not possible to prove concavity of
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the exact profit function; however, we are able to find the optimal acceptable demand rate

numerically for each specific parameter setting.

In this section, we compare the approximations with the optimal results obtained through

a simulation of the exact profit function. We numerically find λ∗exact that maximizes the

exact profit function. We set the problem parameters and then increase λ with 0.01 step

sizes up to the value of µ. We choose λ∗exact that has the maximum profit. We compare

λ∗exact with λ∗ that is found by the Equation 3.8. The approximated profit is computed by

plugging λ∗ in the exact profit function given in 3.2. In these numerical analysis, we always

assume that c = 0.

In the numerical tests, it is observed that the optimal exact parameter of customers that

should be accepted is always lower than the approximated number of customers. Thus, the

supplier keeps higher basestock levels and expects lower profits in the approximated case.

Table 3.1: Comparison of Exact Analysis with Approximations

Exact Values Approximated Values
R b µ h λ∗exact Basestock Exact Profit λ∗ Basestock App.Profit

100 5 0.4 1 0.31 7 23.974 0.3253 9 23.8191
100 10 0.4 1 0.3 8 21.6963 0.3354 14 19.8796
100 15 0.4 1 0.29 8 20.4166 0.3399 18 16.8106
100 20 0.4 1 0.29 9 19.5725 0.3427 20 14.5509
100 25 0.4 1 0.29 10 18.8862 0.3446 22 12.5936
100 30 0.4 1 0.28 9 18.4144 0.346 24 10.8803
100 35 0.4 1 0.28 10 17.9605 0.3472 26 9.3372
100 40 0.4 1 0.28 10 17.631 0.3481 27 8.0619
100 45 0.4 1 0.28 10 17.3014 0.3489 29 6.7551
100 50 0.4 1 0.27 10 16.9971 0.3496 30 5.6859

In Table 3.1, there is a comparison of the exact analysis with the approximations for

specific parameter settings. With the approximations, the supplier tends to accept more

customers. We observe that λ∗ ≥ λ∗exact in all of the examples. The supplier keeps more

basestock since she aims to accept more customers when approximations are used. Thus,

her optimal average profit is lower with the approximations. However, when the problem

with parameters b = 10, h = 1, µ = 0.4, c = 0 is considered, the difference between the

exact and approximated profits is not very high (Figure 3.1). The percentage deviation
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from the exact profit for this problem is −12 on average.
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Figure 3.1: Approximated vs exact profit over R.

The difference is increasing in the unit backorder cost. At extremely high values of

unit backordering cost, the approximation performs worse (Table 3.1). We observe that the

performance of the approximation is sufficient for the systems that do not incur extreme unit

holding and unit backordering costs (Table 3.2). Using approximations enables us to gain

insights into the behaviors of the supplier while she is determining the optimal acceptable

demand rate.

Table 3.2: Comparison of Exact Analysis with Approximations with respect to h

Exact Values Approximated Values
R b µ h λ∗exact Basestock Exact Profit λ∗ Basestock App.Profit

150 10 0.4 1 0.32 10 37.2755 0.3473 16 35.1298
150 10 0.4 2 0.3 6 32.5928 0.3137 7 32.3645
150 10 0.4 3 0.29 4 29.9402 0.2832 4 29.8343
150 10 0.4 4 0.28 3 28.1287 0.2541 2 27.2421
150 10 0.4 5 0.27 2 26.6901 0.2258 1 24.3761
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3.4 Analysis of the Model in the Dynamic Framework

In certain cases, suppliers may determine the amount of demand to be satisfied by making

spontaneous admission control decisions. In this section, we are going to focus on this type

of supplier’s admission control problem.

We assume that the supplier admits or rejects the customer demand whenever a customer

order arrives. Unit demand arrivals occur and a reward of R is gained if the demand is

satisfied. Since backordering is allowed, x < 0 is possible. Additionally, the supplier does

the replenishment control. She incurs a cost of c per item produced. By using stochastic

dynamic programming, we are going to address the structure of the optimal replenishment

and admission control policies. In Section 3.2, the system is modeled as a continuous time

M/M/1 queue. However, it is difficult to work with continuous-time systems. To this end,

we first convert the continuous-time problem to an equivalent discrete-time problem using

uniformization ([27]). After uniformization, we only consider the embedded discrete-time

Markov decision chain and look at the chain at the transition instants that occur according

to a Poisson process with rate λ + µ. We rescale the time by taking λ + µ + β = 1 without

loss of generality. Thus, unit holding and backorder costs should be adjusted to this time

scale.

The supplier aims to find the optimal replenishment and admission control policies

that minimize the average cost per unit time including the cost of inventory holding and

backordering minus the revenue gained. However, we first focus on the finite-horizon total

discounted cost problem and then, extend it for the infinite horizon since the results for

the infinite horizon discounted cost problem are used for the problem with the average cost

criterion under certain conditions.

Let Vn(x) be the optimal discounted cost for the discrete-time equivalent of the given

system with a starting inventory level of x and n transitions to go. The value function Vn(x)

is defined as follows:

Vn+1(x) = c′(x) + [λ min{Vn(x− 1)−R, Vn(x)}+ µmin{Vn(x + 1) + c, Vn(x)}] (3.9)
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where β is the discount rate and

c′(x) =


hx if x > 0

−bx if x ≤ 0

The critical step in proving structural properties in the dynamic setting is to prove the

convexity of the value function. Koole [27] proposes event-based operators to easily prove

convexity. Following [27], the events and transitions in the system can be represented by

event-based operators. The value function is a concatenation of the event-based operators.

In the model with dynamic admission control, there are four events: production control,

admission control, discounting and the inventory and backordering costs, uniformization of

production and admission events.

Trepf(x) = min{f(x + 1) + c, f(x)}

Trep represents the replenishment decision of the supplier The supplier chooses the action

that minimizes her costs. If she decides to produce, her inventory level increases by one.

Otherwise, her state does not change. The next lemma establishes the convexity problems

for Trep operator.

Lemma 3.4.1. For every convex function f(x), Trepf(x) preserves convexity in x.

Proof. Let f(x) be convex in x, i.e. ∆f(x+1) ≥ ∆f(x) where ∆f(x+1) = f(x+1)−f(x).

We are going to show convexity of Trepf(x):

∆Trepf(x + 1) ≥ ∆Trepf(x)

Trepf(x + 1)− Trepf(x) ≥ Trepf(x)− Trepf(x− 1)

min{f(x + 2) + c, f(x + 1)} − min{f(x + 1) + c, f(x)} ≥

min{f(x + 1) + c, f(x)} − min{f(x) + c, f(x− 1)}

All possible cases resulting through minimizations should be considered separately to

verify convexity. The possible cases are listed in Table 3.3. Some cases are eliminated

because they conflict with the convexity property of f(x).
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Table 3.3: Possible Situations: Replenishment Control Operator

Trepf(x + 1) Trepf(x) Trepf(x− 1)
1 f(x + 2) + c f(x + 1) + c f(x) + c
2 f(x + 1) f(x + 1) + c f(x) + c
3 f(x + 1) f(x) f(x) + c
4 f(x + 1) f(x) f(x− 1)

Case 1. We have to verify the inequality:

f(x + 2)− f(x + 1) ≥ f(x + 1)− f(x)

Since f(x) is assumed to be convex in x, for this case, it is directly verified that Trep preserves

convexity in x.

Case 2. We have to verify the inequality:

f(x + 1)− f(x + 1)− c ≥ f(x + 1) + c− f(x)− c

f(x) ≥ f(x + 1) + c

By the results of the minimizations, we have:

f(x + 1) ≤ f(x + 2) + c

f(x + 1) + c ≤ f(x)

f(x) + c ≤ f(x− 1)

These results establish that f(x) ≥ f(x + 1) + c. So, for this case, it is verified that Trep

preserves convexity in x.

Case 3. We have to verify the inequality:

f(x + 1)− f(x) ≥ f(x)− f(x)− c

f(x + 1) + c ≥ f(x)
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By the results of the minimizations, we have:

f(x + 1) ≤ f(x + 2) + c

f(x) ≤ f(x + 1) + c

f(x) + c ≤ f(x− 1)

These results show that f(x + 1) + c ≥ f(x). So, for this case, it is verified that Trep

preserves convexity in x.

Case 4. We have to verify the inequality:

f(x + 1)− f(x) ≥ f(x)− f(x− 1)

Since f(x) is assumed to be convex in x, for this case, it is directly verified that Trep preserves

convexity in x.

Thus, Trepf(x) is proven to be convex in x.

Next, we focus on the admission control operator:

Taccf(x) = min{f(x− 1)−R, f(x)}

Tacc represents the order acceptance decision of the supplier. She chooses the action that

minimizes her costs. If she decides to accept the order of the customer, she will give one

item to the customer from her inventory. So, her inventory level will decrease by one and

she will get a reward of R for the demand satisfied. If she chooses to reject the order, her

state will not change. The next lemma establishes the convexity problems for Tacc operator.

Lemma 3.4.2. For every convex function f(x), Taccf(x) preserves convexity in x.

Proof. Let f(x) be convex in x, i.e. ∆f(x+1) ≥ ∆f(x) where ∆f(x+1) = f(x+1)−f(x).

We are going to show convexity of Taccf(x):

∆Taccf(x + 1) ≥ ∆Taccf(x)

Taccf(x + 1)− Taccf(x) ≥ Taccf(x)− Taccf(x− 1)
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min{f(x)−R, f(x+1)}−min{f(x−1)−R, f(x)} ≥ min{f(x−1)−R, f(x)}−min{f(x−2)−R, f(x−1)}

Once again, all possible cases resulting through minimizations should be considered

separately to verify convexity. The possible cases are listed in Table 3.4. As in Lemma

3.4.1, some cases are eliminated because they conflict with the convexity property of f(x).

Table 3.4: Possible Situations: Unit Admission Control Operator

Taccf(x + 1) Taccf(x) Taccf(x− 1)
1 f(x)−R f(x− 1)−R f(x− 2)−R
2 f(x)−R f(x− 1)−R f(x− 1)
3 f(x)−R f(x) f(x− 1)
4 f(x + 1) f(x) f(x− 1)

Case 1. We have to verify the inequality:

f(x)−R− f(x− 1) + R ≥ f(x− 1)−R− f(x− 2) + R

f(x)− f(x− 1) ≥ f(x− 1)− f(x− 2)

Since f(x) is assumed to be convex in x, for this case, it is directly verified that Tacc

preserves convexity in x.

Case 2. We have to verify the inequality:

f(x)−R− f(x− 1) + R ≥ f(x− 1)−R− f(x− 1)

f(x) ≥ f(x− 1)−R

By the results of the minimizations, we have:

f(x)−R ≤ f(x + 1)

f(x− 1)−R ≤ f(x)

f(x− 1) ≤ f(x− 2)−R

These results yield that f(x) ≥ f(x − 1) − R. So, for this case, it is verified that Tacc

preserves convexity in x.
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Case 3. We have to verify the inequality:

f(x)−R− f(x) ≥ f(x)− f(x− 1)

f(x− 1)−R ≥ f(x)

By the results of the minimizations, we have:

f(x)−R ≤ f(x + 1)

f(x) ≤ f(x− 1)−R

f(x− 1) ≤ f(x− 2)−R

These results establish that f(x−1)−R ≥ f(x). So, for this case, it is verified that Tacc

preserves convexity in x.

Case 4. We have to verify the inequality:

f(x + 1)− f(x) ≥ f(x)− f(x− 1)

Since f(x) is assumed to be convex in x, for this case, it is directly verified that Tacc preserves

convexity in x.

Thus, Taccf(x) is proven to be convex in x.

Next, we investigate the cost operator:

Tdiscf(x) = c′(x) + f(x)

Tdisc represents the direct holding and backordering costs depending on the state of the

supplier. The supplier incurs backordering cost of b per period per item if she cannot

satisfy the demand from inventory, i.e. x ≤ 0. If there are products in the inventory, the

supplier incurs the inventory holding cost of h per period per item.

Lemma 3.4.3. For every convex function f(x), Tdiscf(x) preserves convexity in x.

Proof. The proof follows since c′(x) and f(x) are convex functions [27].
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Finally, we focus on the operator for the uniformization of events:

Tuni(f1, f2)(x) = λf1(x) + µf2(x)

Tuni does the uniformization of events in a continuous time Markovian model; Tuni represents

the random events that may happen at an instant. The time is discretized whenever the

events occur.

Lemma 3.4.4. For convex functions fj(x), ∀ j, Tuni(f1(x), f2(x)) preserves convexity in x.

Proof. The proof follows since fj(x) is convex ∀ j [27].

The value function, given in Equation 3.9, can be rewritten by using the above operators:

Vn+1(x) = Tdisc(Tuni(Tacc Vn, Trep Vn))(x)

The discounted problem allows us to use induction in showing the structure of the value

function. To start induction, we assume that V0(x) = 0, ∀x, and verify convexity for n = 0.

Then, we assume that convexity is verified for n and check for n + 1. Following is the main

result of induction and the event-based dynamic analysis:

Proposition 3.4.5. The value function Vn+1(x) is convex in x since it can be represented

as a linear combination of operators that are proven to preserve convexity of Vn(x) in x.

As we stated earlier, our aim is to determine the structure of the optimal policies when

the infinite horizon problem is considered. However, by Proposition 3.4.5, we address the

structure of the optimal policies with the aim of minimizing the total discounted costs for

a finite number of transitions n. The results of the finite horizon problem can be related

with the infinite horizon problems with the objective of minimizing the discounted and

the long-run average costs through value iteration if certain standard conditions hold [30].

Since these conditions hold, Vn(x) converges to the optimal total discounted cost V (x) of

the infinite horizon problem, i.e. V (x) = lim
n→∞

Vn(x). This shows that the infinite horizon

discounted cost problem possesses the same structural properties. In addition, the structure

of the optimal policies with the aim of minimizing the average cost per unit time is similar

to the structure of the policies with the finite horizon discounted problem as n goes to
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infinity and β approaches 0. We, therefore, conclude that Proposition 3.4.5 extends to

infinite-horizon models.

3.4.1 Structure of the Optimal Policies

The value function of the dynamic program written for the infinite-horizon problem is proven

to be convex in x. Since we have shown the structural properties of the value function, we

are able to address the structure of the optimal policy of replenishment and admission

control:

Corollary 3.4.6. The optimal replenishment policy is a threshold type policy since the

value function is convex in x. The optimal replenishment policy is a basestock policy with

an optimal basestock level of Z∗. If the supplier has less than Z∗ items in her inventory, she

always produces. If her inventory level is greater than or equal to Z∗, she never produces.

Next, we focus on the structure of the optimal admission control policy:

Corollary 3.4.7. The optimal admission control policy is a threshold type policy since the

value function is convex in x. The supplier has a threshold type admission control policy

with an order acceptance threshold of X∗. If the supplier has more than X∗ items in her

inventory, she admits the customer’s order. However, if she has less inventory, she rejects

the order.

3.4.2 Optimal Acceptable Demand Rates

In this chapter, our aim is to determine the optimal number of customers to be admitted

by a capacitated supplier. When the problem is considered in the dynamic framework, the

optimal acceptable demand rate may be found through a dynamic program. This DP should

use as input the admission decisions from the main dynamic model that is represented by

the value function 3.9. At each admission, the supplier is assumed to collect a reward of

1. Thus, the supplier is able to count the number of customers admitted per unit time by

counting the total revenue gained. As in the main DP, we assume without loss of generality

that λ + µ + β = 1.

The supplier has two decisions: production and order acceptance. Let a(x) be the

decision about order acceptance made by the supplier at state x.
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a(x) =


1 if the supplier decides to admit the customer at x

0 if the supplier decides to reject the customer at x

Proposition 3.4.8. The below value function gives the expected total β-discounted number

of customers accepted over n transitions:

V̂n+1(x) = λ[a(x) (V̂n(x− 1) + 1) + (1− a(x)) V̂n(x)] (3.10)

As before, letting n → ∞ and β → 0, we can obtain the average revenue per unit time

which yields the optimal arrival rate λ∗d.

Remark 3 λ∗d can also be obtained by numerically solving the Markov Chain corresponding

to the optimal admission policy.

3.5 Numerical Analysis

In this section, we will present the results obtained by generating sample runs with different

system parameters. The objective of this numerical study is to observe the effects of system

parameters when static and dynamic admission control policies are separately applied in

a system. Additionally, we are going to compare these admission control methods and

underline the advantages and disadvantages of the methods. The average profit criterion

is used to analyze the admission control methods. The value iteration algorithm [30] is

coded in C in order to report the average profit per unit time for the dynamic control

problem. In the numerical examples considered, we assume that fifty items can be stored

and backordered at maximum and the unit production cost c = 0.

3.5.1 Results for the Static Admission Control

In the numerical analysis of the static method, we use the explicit solution of λ∗ given in

Equation 3.8. However, we work with the exact profit function by placing λ∗ in the Π(λ)

given by Equation 3.2.

Figure 3.2 displays the classical relationship of unit reward and unit backordering cost

with the average profit on a specific example with parameters µ = 0.4, h = 1. An increase
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in the unit backordering cost shifts the average profit curve downwards. On the other hand,

an increase in the unit reward stimulates the increase of the average profit.
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Figure 3.2: R vs average profit.

In Figure 3.3, the problem with b = 10, h = 1 is investigated. The figure verifies that

capacity is the constraint on the number of customers to be accepted. The supplier with

higher capacity accepts more customers and gains more. The unit reward has the same

effect; the optimal customer arrival rate increases in the unit reward.

In the static method, the supplier determines her basestock level according to the unit

reward and the customer arrival rate. In Figure 3.4, the basestock level of the supplier is

shown for the problem with parameters µ = 0.4, h = 1. The supplier increases her inventory

level when the unit reward and the customer arrival rate increase.

3.5.2 Results for the Dynamic Admission Control

In the numerical analysis of dynamic control, the average profit is reported by using the

value iteration algorithm [30]. Without loss of generality, it is assumed that λ+µ = 1. Since

the supplier has demand that she cannot fully satisfy, λ > µ by the problem definition.
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Figure 3.3: R vs µ.

In Figure 3.5, the problem with parameters λ + µ = 1, λ = 0.6, b = 10, R = 50 is

considered. The increase in the unit holding cost decreases the safety stocks held and the

average profit.

In the dynamic control model, the supplier usually accepts relatively high amounts of

customers. Especially when her capacity is low, the supplier usually works at full capacity.

Therefore, the increase in unit reward affects the supplier whose capacity is relatively higher.

This effect is obvious in Figure 3.6 for the problem with b = 10, h = 1.

The supplier who faces higher demand with respect to her capacity keeps a higher

basestock level to satisfy more customers. The problem with b = 5, h = 1 is considered in

Figure 3.7. If the supplier gains more from unit customer demand, she holds more inventory

to guarantee receiving the reward.

3.5.3 Comparison of Static and Dynamic Admission Control Policies

In this subsection, the aim is to compare admission control methods used to analyze the

continuous-review model considered in this chapter. The problem is studied with different

parameters.
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Figure 3.4: R vs basestock.

Below in Figures 3.8 and 3.9, the impacts of capacity on the static and dynamic models

are displayed. In the figure, the problem with parameters R = 250, b = 10, h = 1 is

considered. λ + µ = 1 is still valid for the dynamic control case. The graphics display the

importance of capacity as a constraint on the optimal accepted demand rate. When the

capacity increases, the number of accepted customers significantly increases. The optimal

basestock level also shows a non-decreasing behavior which causes non-decreasing inventory

holding costs. This is because of the increasing number of customers admitted. Since

more customers are admitted, more inventory should be held. Despite holding costs, the

average profit increases as the capacity parameter increases. Therefore, we conclude that

the revenue gained from the optimally satisfied demand is so significant that it compensates

the increasing holding costs. It is worth mentioning that determining the amount of demand

to be satisfied optimally is very effective in the system performance.

In Figures 3.10 and 3.11, the effects of the unit holding cost h is investigated for both

dynamic and static methods. The impact of the unit holding cost is as expected on base-
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Figure 3.5: h vs average profit and basestock Level.
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Figure 3.6: R vs λ∗.
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Figure 3.7: R vs basestock and λ∗.

stock levels and average profit. Since holding inventory is more costly, the supplier carries

less inventory. The average profit of the supplier decreases because of the increase in the

expected inventory costs. However, λ∗ also decreases and fewer customers are accepted

since inventory levels decrease. The supplier can guarantee less demand fulfillment with

less safety stock. The dynamic and static admission control methods display same behavior

with respect to the unit holding cost.

Table 3.5 aims to summarize the advantages and disadvantages of the static and dynamic

methods. For some representative cases, related results are listed. The basestock levels in

two methods do not show a specific behavior; the static basestock level is sometimes less than

the dynamic basestock level and sometimes it is greater. However, at each case, dynamic λ∗

is greater than or equal to the static λ∗. So, the dynamic average profit is also greater than

or equal to the static average profit. In the right-most columns, the percentage differences

in the average profits of the two methods are listed. The percentage difference between the

approximated profit and the dynamic profit is computed by ∆1 = 100(Π∗d(λ)−Π∗s(λ))/Π∗s(λ).

Additionally, the percentage difference between the exact profit (found by simulation) and

the dynamic profit is computed by ∆2 = 100(Π∗d(λ)−Π∗exact(λ))/Π∗exact(λ).
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Figure 3.8: Static profit vs dynamic profit over µ and basestock.

We can conclude that the static analysis brings strict precautions against backordering,

thus the accepted number of customers stays low. In the dynamic framework, the supplier

is able to adjust order acceptance to inventory levels so that she may work at full capacity

with inconsiderable backordering. In this problem, dynamic control brings high benefits to

the system. However, for some systems, dynamic control may not be suitable or may be

difficult to apply. Therefore, static analysis is still valuable for the cases where dynamic

control is not possible.

Remark 4 In the numerical analysis, it is observed that the order acceptance threshold is

always less than or equal to zero, i.e. X∗ ≤ 0. There is no reason to keep inventory rather

than satisfying demand since there is only one customer class. Therefore the supplier always

accepts the customer if there is inventory on hand.

3.6 Concluding Remarks

In this chapter, we consider a production-inventory system with a single customer and

backorders. We model the system as a make-to-stock queue with a single server. We

compare the dynamic admission control of customers with a static one where the admitted
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Figure 3.9: Static profit vs dynamic profit over µ and λ∗.

amount is determined at the beginning. Using dynamic programming, the production and

admission control policies are found out to be of threshold type. An approximate explicit

solution is proposed for the amount to be admitted at the beginning of the corresponding

planning period. However, the numerical results display the fact that dynamic control still

brings significant benefits to the system in means of better service level and higher profits.

Thus, we are going to focus on dynamic admission control of customers in the remaining

part of this thesis .
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Figure 3.10: Static profit vs dynamic profit over h and basestock.
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Figure 3.11: Static profit vs dynamic profit over h and λ∗.
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Table 3.5: Comparison of Static and Dynamic Analysis

Static App. Static Exact Dynamic Differences
R b λ∗s Z∗s λ∗exact Z∗exact λ∗d Z∗d X∗ Π∗d(λ) % ∆1 % ∆2

50 5 0.29 6 0.27 4 0.4 11 0 18.02 103.58 100.39
55 5 0.30 7 0.29 5 0.4 12 0 20.01 98.29 92.08
55 10 0.31 10 0.26 5 0.4 12 0 20.01 170.03 127.73
60 5 0.30 7 0.29 5 0.4 13 0 22.01 89.33 85.43
60 10 0.32 11 0.27 6 0.4 13 0 22.01 155.85 117.55
60 15 0.32 13 0.26 6 0.4 13 0 22.01 240.43 138.79
65 5 0.31 7 0.29 5 0.4 14 0 24.00 82.58 80.24
65 10 0.32 11 0.28 6 0.4 14 0 24.00 139.41 108.49
65 15 0.33 14 0.26 6 0.4 14 0 24.00 214.91 128.27
65 20 0.33 16 0.26 7 0.4 14 0 24.00 316.65 143.82
70 5 0.31 8 0.3 6 0.4 15 0 26.00 79.80 75.74
70 10 0.32 12 0.28 6 0.4 15 0 26.00 130.78 101.36
70 15 0.33 15 0.28 7 0.4 15 0 26.00 196.08 119.27
70 20 0.33 17 0.27 7 0.4 15 0 26.00 278.30 132.33
70 25 0.33 19 0.26 7 0.4 15 0 26.00 400.37 143.24
75 5 0.31 8 0.3 6 0.4 16 0 28.00 74.56 71.83
75 10 0.33 12 0.29 7 0.4 16 0 28.00 119.90 95.37
75 15 0.33 15 0.28 7 0.4 16 0 28.00 175.06 111.20
75 20 0.33 17 0.27 7 0.4 16 0 28.00 242.08 123.26
75 25 0.34 19 0.27 8 0.4 16 0 28.00 332.58 133.35
75 30 0.34 21 0.27 8 0.4 16 0 28.00 465.71 142.40
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Chapter 4

OPTIMAL PRODUCTION AND ADMISSION CONTROL IN A

MAKE-TO-STOCK SYSTEM WITH ADI

4.1 Introduction

Suppliers carry inventory because of several reasons like demand uncertainty and production

leadtime. Carrying inventory is a costly activity that does not add value to the product.

Thus, decreasing inventory and its costs is crucial for most of the suppliers. Since demand

uncertainty is a reason to carry inventory, sharing demand information in advance between

the members of a supply chain acts as a substitute for safety stocks. Demand information

can easily be shared in advance with the use of the latest information technologies in the

supply chain. In order to benefit from advance demand information (ADI) in decreasing

inventory costs, ADI should be smartly integrated into the supply chain.

The role of ADI in multi-class systems has recently become an area of interest. The

tradeoffs between carrying inventory and sharing ADI are important when operating in a

multi-customer setting. In particular, the supplier may have to determine the right portfolio

of customers through an admission control policy in order to maximize her benefits. In the

multi-customer setting, it is possible to optimally manage demand by the help of both ADI

and admission control.

In this chapter, we consider a supplier facing demand and processing time uncertainty

with limited capacity and multi customers. We aim at minimizing the total of inventory,

outsourcing and production costs minus the revenue gained from the accepted orders. We

focus on one type of advance demand information -advance order information- that repre-

sents the fixed orders by contractual agreements. Our main modeling interest is in capturing

the tradeoffs in a situation where different customers provide different levels of advance de-

mand information. In this setting, we investigate the role of inventory and ADI to manage

multi-class demand through dynamic admission control policies.
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The remainder of this chapter is structured as follows. In Section 4.2, the problem is

defined and the model is built. Section 4.3 analyzes the model with Stochastic Dynamic

Programming. The structure of the optimal policies is described in Section 4.4. In Section

4.5, numerical examples analyzing the impacts of ADI and admission control are presented.

Extensions done for the model are summarized in Section 4.6. Lastly, in Section 4.7, the

observations and conclusions are given for the ADI model.

4.2 Problem Definition and Model Formulation

We consider a supplier who produces a single item at a time for two different customer

classes. The first customer class corresponds to contractual customers. According to the

contract, the customer orders H periods in advance of the due date and the supplier has

to satisfy all demands of this class at the due-date. The second class corresponds to non-

contractual customers who desire to purchase the item immediately but the supplier can

reject such demands if necessary. The decision of whether to accept or reject the customer

order depends on the inventory level and future demand information at that time.

The processing times of the product have a geometric distribution, that is, the production

will be completed during the same period with probability p if started at the beginning of

the period. At each period, unit demand arrivals occur randomly. First and second class

demand inter-arrival times have independent geometric distributions with parameters q1

and q2 respectively. A reward R1 is gained by the supplier, if an order of the first customer

class is received. Similarly, R2 is gained whenever an order of the second class customer is

fulfilled.

The supplier has the capacity to produce one unit at a time with a cost of c per item. If

there is inventory, the orders are fulfilled by the inventory. However, if there is no inventory,

the orders can be fulfilled by outsourcing the product with a cost of F per item. Since the

same product is sold to both customers, the outsourcing costs are assumed not to differ

according to customers. Additionally, backordering is not allowed. An inventory cost (h) is

incurred per period per item for the stocked products.

We model the production-inventory system as a discrete time make-to-stock queue. In

this setting, the supplier has two decisions in a period: replenishment and order acceptance.

The supplier considers these decisions with the aim of minimizing the inventory, outsourcing
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and variable production costs minus the sales revenue discounted over an infinite horizon.

To enhance our understanding of the supplier’s problem, it is crucial to investigate the

structure of the optimal policy of replenishment and admission control. We assume that

the events in a period occur in a sequence: production decision, production completion,

arrival of the first customer, arrival of the second customer and order acceptance decision.

Remark 1 In this problem we assume that a reward is gained by the supplier when

a first class customer orders. However, the reward may be received when the demand is

satisfied H periods after receiving the order. If the reward was gained at the time of the

demand fulfillment, nothing would change structurally. The only thing that would change is

that the reward would be discounted for H periods by the discount factor α.

4.3 Analysis of the Model

Stochastic Dynamic Programming (SDP) is used to address the structural properties for

the supplier’s replenishment and order acceptance problems. The supplier aims to find the

optimal replenishment and admission control policies that minimize the average cost per

unit time including the inventory holding, outsourcing and variable production costs minus

the revenue gained. However, we first focus on the finite-horizon total discounted cost

problem and then, extend it for the infinite horizon since the results for the infinite horizon

discounted cost problem are used for the problem with the average cost criterion under

certain conditions. The value function of the stochastic dynamic program that minimizes

the discounted cost with n periods to go until the end of the horizon is Vn( ). We assume

that V0(x, d) = 0, ∀x,d. The state space consists of two components: the inventory level,

x (x ≥ 0), and the demand vector d = [d1 d2 . . . dH ] for the first class customers with di as

the first class demand to be fulfilled i periods later. At every period, the first element (d1)

of this vector is fulfilled by the supplier. d+ is the demand vector after d is shifted left or in

other words, after the demand of that period (d1) is fulfilled. eH is the vector with one in

the Hth entry and zeroes elsewhere, used to display the arrival of first class customer order

that will be satisfied H periods later. Additionally, α (0 < α < 1) is the discount factor.
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Below, the value function is given, divided into smaller parts for practical purposes:

V
(1)
n (x,d) = Vn((x− d1)+, d+)− F (x− d1)−

V
(2)
n (x,d) = min{Vn((x− d1 − 1)+, d+)−R2 − F (x− d1 − 1)−,

Vn((x− d1)+, d+)− F (x− d1)−}

V
(3)
n (x,d) = Vn((x− d1)+, d+ + eH)−R1 − F (x− d1)−

V
(4)
n (x,d) = min{Vn((x− d1 − 1)+, d+ + eH)−R1 −R2 − F (x− d1 − 1)−,

Vn((x− d1)+, d+ + eH)−R1 − F (x− d1)−}

V
(5)
n (x,d) = q1q2V

(4)
n (x,d) + q1(1− q2)V

(3)
n (x,d) + (1− q1)q2V

(2)
n (x,d)

+(1− q1)(1− q2)V
(1)
n (x,d)

V
(6)
n (x,d) = min{V (5)

n (x + 1,d) + c, V
(5)
n (x,d)}

V
(7)
n (x,d) = p V

(6)
n (x,d) + (1− p)V (5)

n (x,d)

Vn+1(x,d) = hx + αV
(7)
n (x,d)
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If the small parts are put together, the value function becomes:

Vn+1(x,d) = hx + αp min{(q1q2 min{Vn((x− d1)+, d+ + eH)−R1 −R2

−F (x− d1)−, Vn((x− d1 + 1)+, d+ + eH)−R1 − F (x− d1 + 1)−}

+q1(1− q2)Vn((x− d1 + 1)+, d+ + eH)−R1 − F (x− d1 + 1)−

+(1− q1)q2 min{Vn((x− d1)+, d+)−R2 − F (x− d1)−,

Vn((x− d1 + 1)+, d+)− F (x− d1 + 1)−}+ (1− q1)(1− q2)

Vn((x− d1 + 1)+, d+)− F (x− d1 + 1)−) + c,

q1q2 min{Vn((x− d1 − 1)+, d+ + eH)−R1 −R2 − F (x− d1 − 1)−,

Vn((x− d1)+, d+ + eH)−R1 − F (x− d1)−}+ q1(1− q2)

Vn((x− d1)+, d+ + eH)−R1 − F (x− d1)− + (1− q1)q2

min{Vn((x− d1 − 1)+, d+)−R2 − F (x− d1 − 1)−, Vn((x− d1)+, d+)

−F (x− d1)−}+ (1− q1)(1− q2)Vn((x− d1)+, d+)− F (x− d1)−}

+(1− p)q1q2 min{Vn((x− d1 − 1)+, d+ + eH)−R1 −R2

−F (x− d1 − 1)−, Vn((x− d1)+, d+ + eH)−R1 − F (x− d1)−}+ q1

(1− q2)Vn((x− d1)+, d+ + eH)−R1 − F (x− d1)− + (1− q1)q2

min{Vn((x− d1 − 1)+, d+)−R2 − F (x− d1 − 1)−,

Vn((x− d1)+, d+)− F (x− d1)−}+ (1− q1)(1− q2)

Vn((x− d1)+, d+)− F (x− d1)−

In order to analyze the model with SDP, we should handle the value function and

investigate its characteristics. However, it is hard to work with the given complex value

function. Therefore, we are going to analyze the value function in pieces by the help of the

Event-Based Stochastic Dynamic Programming framework as in Chapter 3 [26].

In our model, we seek to prove convexity of the value function in x, x ≥ 0. Two

properties should be preserved by the event-based operators in this context:

Conv(x) : ∆f(x + 1,d) ≥ ∆f(x,d)

LBD(F ) : ∆f(x + 1,d) ≥ −F

where ∆f(x+1,d) = f(x+1,d)−f(x,d). Conv(x) represents convexity property. Since our

model does not allow backordering, x is always non-negative. Therefore, another property
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LBD(F ) is used in the analysis. In particular, LBD(F ) reveals that outsourcing is not

done if there is no demand to be satisfied.

In our model, nine event-based operators are used. The event-based operators used to

define the value function are:

Tcostsf(x,d) = hx + αf(x,d)

Tcosts represents the direct holding costs and the discounting. If there are products in the

inventory, the supplier will incur the inventory holding cost of h per period per item. The

costs and the revenue are discounted over time.

Lemma 4.3.1. If f(x,d) is convex in x, ∀d, Tcostsf(x,d) preserves convexity in x, ∀d.

Proof. The proof follows since hx and f(x,d) are convex.

Next, we focus on the operator denoting the event of production completion:

Tunifpro(f1, f2) (x,d) = pf1(x,d) + (1− p)f2(x,d)

Tunifpro is the convex combination of fj . This operator does the uniformization of

events; Tunifpro represents the random production completions that may happen in a period.

Tunifpro shows the expectation of production completion.

Lemma 4.3.2. If fj(x,d) is convex in x, ∀ j,d, Tunifpro(f1, f2)(x,d) preserves convexity

in x, ∀d.

Proof. The proof follows from the closedness of convexity under convex combinations.

Next, we focus on the operators representing the events of first and second class customer

arrival:

Tunifar1(f1, f2) (x,d) = q1f1(x,d) + (1− q1)f2(x,d)

Tunifar2(f1, f2) (x,d) = q2f1(x,d) + (1− q2)f2(x,d)

These operators arise as applications of Lemma 4.3.2. Tunifar1 and Tunifar2 represent ar-

rivals of first and second class customers respectively.
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Next, we define the operator used for the production decision of the supplier:

TACf (x,d) = min{f (x + 1,d) + c , f (x,d)}

TAC is the operator that represents production decision. The supplier chooses the action

that minimizes her costs. If she decides to produce, she will incur a cost of c and her

inventory level will increase by one. If she decides not to produce, her position does not

change.

Lemma 4.3.3. If f(x,d) is convex in x, ∀d, TACf(x,d) preserves convexity in x, ∀d.

Proof. The proof is in the Appendix A.2.

The fulfillment of first class orders are denoted by Tofl:

Toflf (x,d) = f (x− d1, d
+)

Order fulfillment of the first class customers is displayed by the operator Tofl. The

supplier satisfies the demand of the first class (d1) from the inventory. So, her inventory level

decreases by the demanded amount. Additionally, the demand vector is shifted leftwards,

since the demand of the current period is no more collected.

Lemma 4.3.4. If f(x,d) is convex in x, ∀d, and satisfies LBD(F ), Toflf(x,d) preserves

convexity and LBD(F ) property in x, ∀d.

Proof. The proof is in the Appendix A.3.

The first class order arrivals are represented by Tcoa:

Tcoaf (x,d) = f (x, d + eH)−R1

The contractual order arrivals, the orders of the first class customers, are represented

by Tcoa. As soon as the first class order is received, the supplier gets a reward of R1. In

addition, the amount of demand that will be satisfied H periods later is added as the Hth

entry of the demand vector.

Lemma 4.3.5. If f(x,d) is convex in x, ∀d, Tcoaf(x,d) preserves convexity in x, ∀d.
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Proof. The proof is in the Appendix A.4.

Next, we focus on the operator for admission control:

Tacaf (x,d) = min{f (x− 1,d)−R2, f (x,d)}

Taca denotes the admission control decision for the second class customers. The supplier

decides to admit or reject the second class customers in order to minimize her costs. If she

decides to admit the orders, her inventory level decreases by one and she gains a reward of

R2. If she decides to reject the second class orders, her state does not change.

Lemma 4.3.6. If f(x,d) is convex in x, ∀d, and satisfies LBD(F ), Tacaf(x,d) preserves

convexity and LBD(F ) property in x, ∀d.

Proof. The proof is in the Appendix A.5.

Finally, the operator for outsourcing is investigated:

Toutf (x,d) = f (x+,d)− Fx−

Tout is the operator showing that the inventory level x is always non-negative. If there

is no inventory, the supplier outsources the deficient amount of demand with a cost of F

per item.

Lemma 4.3.7. If f(x,d) is convex in x, ∀d, and satisfies LBD(F ), Toutf(x,d) preserves

convexity and LBD(F ) property in x, ∀d.

Proof. The proof is in the Appendix A.6.

To sum up, the properties that are preserved by the operators for x ≥ 0 may be listed

as follows (See Appendix A for proofs):

• Tcosts: Conv(x) → Conv(x); LBD(F ) → LBD(F ).

• Tunifpro: Conv(x) → Conv(x); LBD(F ) → LBD(F ).

• TAC : Conv(x) → Conv(x); LBD(F ) → LBD(F ).
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• Tofl: Conv(x), LBD(F ) → Conv(x); LBD(F ) → LBD(F ).

• Tcoa: Conv(x) → Conv(x); LBD(F ) → LBD(F ).

• Taca: Conv(x), LBD(F ) → Conv(x); LBD(F ) → LBD(F ).

• Tout: Conv(x), LBD(F ) → Conv(x); LBD(F ) → LBD(F ).

Now, we are ready to combine the individual operators to obtain the value function

(4.3):

Vn+1(x,d) = Tcosts(Tofl(Tunifpro(TAC(Tunifar1(Tcoa(Tunifar2(Taca(ToutVn), ToutVn)),

Tunifar2(Taca(Tout Vn), Tout Vn))), Tunifar1(Tcoa(Tunifar2(Taca(Tout Vn),

ToutVn)), Tunifar2(Taca(Tout Vn), Tout Vn))))) (x,d)

Since we showed that all operators used to form the value function preserve convexity

in x, ∀d; we can address the characteristics of the value function by induction. To start

the induction, we specify V0(x,d) = 0, ∀x, d; so, convexity is verified for n = 0. We, then,

assume that convexity is verified for Vn(x,d) and check for Vn+1(x,d).

Proposition 4.3.8. The value function Vn+1(x,d) is convex in x, ∀d, since it can be

represented by the operators that are proven to preserve convexity of Vn(x,d) in x, ∀d.

As we stated earlier, our aim is to determine the structure of the optimal policies when

the infinite horizon problem is considered. However, by Proposition 4.3.8, we address the

structure of the optimal policies with the aim of minimizing the total discounted costs for

a finite number of transitions n. Since the results of the finite horizon problem can be

related with the infinite horizon problems, we conclude that Proposition 4.3.8 extends to

the infinite-horizon models as in Chapter 3.

4.4 Structure of the Optimal Policies

We have proven convexity of the value function ∀d. The next corollary explains the policy

implications of this property. We first consider the replenishment policy that minimizes the

average cost per unit time:
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Corollary 4.4.1. A state dependent basestock policy is optimal for replenishment with a

basestock level depending on the future demand vector d.

For the replenishment policy, there is a threshold inventory level Sd for every demand

vector d. Below the inventory level Sd, the decision maker always decides to produce

and above the inventory level Sd, the decision maker always decides not to produce. The

threshold inventory level Sd depends on the demand vector d, so the replenishment policy

is said to be state dependent. This is a modified version of the basestock policy that is

called “the state dependent basestock policy” in the literature.

Next, we define the structure of the optimal admission control policy that minimizes the

average cost per unit time:

Corollary 4.4.2. A state dependent threshold type policy is optimal for admission control

with an order acceptance threshold depending on the future demand vector d.

For admission control of the second class customers, there is an order acceptance thresh-

old Xd that depends on the demand vector d. Above that order acceptance threshold, the

second class customer should be admitted. The second class customer should be rejected

below that order acceptance threshold for the same demand vector d. Since the order ac-

ceptance threshold level depends on the demand vector d, the admission control policy is a

state dependent threshold type policy.

To sum up, in Section 4.3, we consider a production-inventory system with two customer

classes one of which provides ADI. We model the system as a discrete time make-to-stock

queue and analyze it using Event-Based SDP. Since all the operators written for the events

and transitions in the system are proven to preserve convexity in x, ∀d, the value function

is also convex in x, ∀d. Therefore, the optimal replenishment and admission control policies

are threshold type policies.

4.5 Numerical Analysis

In this section, our aim is to display the impacts of ADI on the system performance in

terms of costs and threshold levels. The improvements in profit and basestock level support

the structural results of the paper. Moreover, we observe the behavior of the proposed

policies with different parameter settings. We use the value iteration algorithm [30] to
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compute the optimal average profit. Since basestock levels are state dependent, without

loss of generality, we display the basestock levels at state d = [0 0 ... 0] where there are no

orders in the information horizon. Similarly, the threshold levels depend on the inventory

level, decisions and events before the order acceptance decision. The order acceptance

thresholds have the same characteristics, so we representatively use the threshold level of

order acceptance when production decision is made, first customer arrived and d = [0 0 ... 0].

4.5.1 Impact of the horizon of visibility

The ADI has positive effects on the basestock and customer acceptance threshold levels. In

Figures 4.1 and 4.2, we investigate the problem with parameters h = 1, R1 = 25, R2 = 50,

F = 300, p = 0.5, q1 = 0.45, q2 = 0.4. In Figure 4.1, we observe that the basestock level

and the customer acceptance threshold are non-increasing in the horizon of visibility. As

the horizon of visibility increases, it is obvious that the demand uncertainty decreases and

the supplier does not need to carry high safety stocks. This is the intuition behind the

decrease of the basestock levels. Decreasing demand uncertainty facilitates a better control

of inventory and customer admission. Therefore, the acceptance threshold for second class

of customers decreases, meaning that the supplier can serve more customers of second class.

The revenue gained from the second class of customers increases if ADI is provided earlier.

The increase in the revenue is due to the advantage of having multiple classes of customers.

Reduction in inventory costs and the increase in the revenue stimulate an increase in the

optimal average profit as the horizon of visibility increases.

4.5.2 Impacts of the system load and capacity

The ratio between the first class customer arrival rate and the production rate (q1/p) defined

as system load affects the average profit of the system (See Figure 4.3). If we increase system

load with a constant capacity, the optimal average profit reduces in the given problem with

parameters h = 1, R1 = 25, R2 = 50, F = 300, p = 0.5, q2 = 0.4. This shows that the

capacity is not enough to fully satisfy the demand from the inventory; the supplier has to

satisfy the demand by outsourcing. The outsourcing cost can be the reason of this reduction

in the average profit. However, the average profit can also increase in some conditions when

the system load increases. The reason for this increase is the utilization of idle capacity
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Figure 4.1: The effect of the information horizon on the basestock and the order acceptance
threshold.

when the system load increases.

The parameter p represents the production rate. For system load (q1/p) held constant, p

can be viewed as a measure of variability. High production rates designate high capacities;

low production rates designate low capacities. In Figure 4.4, the problem with parameters

h = 1, R1 = 25, R2 = 50, F = 300, q1 = 0.4, q1/p = 0.9, q2 = 0.4 is investigated. In this

figure as the capacity increases, the average profit significantly increases for constant system

load. This increase is caused by the increased number of satisfied customers. With a better

replenishment and admission control, high capacity enables obtaining higher profits when

ADI is provided.

4.5.3 Impacts of advance orders

The integration of ADI into our production-inventory system is optimally done by a state

dependent basestock policy for replenishment. Within this policy, the supplier makes a de-

cision according to the current demand vector and the inventory level. In Figure 4.5 optimal

basestock and order acceptance threshold levels are given for a problem with parameters
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Figure 4.2: The effect of the information horizon on the average profit.

H = 5; R1 = 25; R2 = 50; F = 300; p = 0.5; q1 = 0.45; q2 = 0.8. The basestock and the

order acceptance threshold levels depend on the current demand vector and the inventory

level. Additionally, they behave similarly with respect to the number of orders (See Figure

4.5). Table 4.1 reveals the fact that the basestock and the order acceptance threshold levels

increase with unit step sizes when the number of orders in the information horizon increases.

This property is observed in the numerical examples with 0 ≤ H ≤ 8.

Remark 2 In this subsection, optimality of order-basestock policies is numerically

shown in a limited number of examples. However, it would be an interesting extension if

this property is tested structurally. Wijngaard and Karaesmen [34] show optimality of order-

basestock policies for a single class M/D/1 make-to-stock queue with ADI. Their paper may

be a guide to show this property for our model although our model is more complex.

4.6 Extensions: Batch Arrivals and Batch Processing

So far, we consider the model with unit production, unit admission control and unit demand

arrivals. However, it is possible to relax these assumptions where different amounts of

production, admission and demand arrivals may occur.
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Figure 4.3: The effect of the system load on the optimal average profit.

In this section, we consider a production-inventory system with two customer classes and

advance orders. The first customer class corresponds to contractual customers. According

to the contract, the customer orders H periods in advance of the due date. The first class

customers may order any amount m, 0 ≤ m ≤ M and the supplier has to satisfy all demands

of this class at the due-date. The second class corresponds to non-contractual customers

who desire to purchase the item immediately but the supplier can reject some or all of the

second class demand if necessary. The second class customers order any amount t, 0 ≤ t ≤ T

and the supplier admits any amount t, 0 ≤ t ≤ t that minimizes her costs.

Let us assume that there is no processing time uncertainty. The production will be surely

completed if started. The supplier has a capacity of producing K items with a cost of c per

item and she chooses to produce any amount k, 0 ≤ k ≤ K in a period. At each period,

demand arrivals of two customer classes occur randomly. First class orders m, 0 ≤ m ≤ M

items with probability qm,
M∑

m=0
qm = 1. The second class orders t, 0 ≤ t ≤ T items with

probability rt,
t=T∑
t=0

rt = 1. A reward R1 is gained by the supplier for each item ordered by

the first customer class. Similarly, R2 is gained for each second class order fulfilled.

If there is inventory, the orders are fulfilled by the inventory. However, if there is no
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Figure 4.4: The effect of the production rate on the average profit for a given system load.

inventory, the orders can be fulfilled by outsourcing the product with a cost of F per

item. Since the same product is sold to both customers, the outsourcing costs do not differ

according to customers. Additionally, backordering is not allowed. An inventory cost (h) is

incurred per period per item for the stocked products.

We model the production-inventory system as a discrete time make-to-stock queue. In

this setting, the supplier has two decisions in a period: replenishment and admission control.

The supplier considers these decisions with the aim of minimizing the inventory, outsourcing

and variable production costs minus the sales revenue discounted over an infinite horizon.

She investigates the structure of the optimal policy of replenishment and admission control.

We assume that the events in a period occur in a sequence: production decision, production

completion, arrival of the first customer, arrival of the second customer and order acceptance

decision.

4.6.1 Analysis of the Extended Model

Stochastic Dynamic Programming (SDP) is used to address the structural properties for

the supplier’s replenishment and order acceptance problems. The supplier again aims to
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Figure 4.5: The effect of the number of orders on the basestock and the order acceptance
thresholds.

find the optimal replenishment and admission control policies that minimize the average

cost per unit time. However, as before we will start with the finite-horizon discounted

cost problem to reach the average cost per unit time. The value function of the stochastic

dynamic program that minimizes the discounted cost with n periods to go until the end

of the horizon is Vn( ). The state space consists of two components: the inventory level,

x (x ≥ 0), and the demand vector d = [d1 d2 . . . dH ] for the first class customers with di

as the first class demand to be fulfilled i periods later. At every period, the first element

(d1) of this vector is fulfilled by the supplier. d+ is the demand vector after d is shifted left

or in other words, after the demand of that period (d1) is fulfilled. mH is the vector with

m in the Hth entry and zeroes elsewhere, used to display the arrival of m first class orders

that will be satisfied H periods later. Additionally, α (0 < α < 1) is the discount factor.
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Table 4.1: Impacts of the Number of Orders in the Information Horizon

Demand Vector Number of Orders Basestock Order Acceptance Threshold
d = [00000] 0 43 6
d = [00001] 1 44 7
d = [00010] 1 44 7
d = [00011] 2 45 8
d = [00100] 1 44 7
d = [00101] 2 45 8

Below, the value function is given, divided into smaller parts for practical purposes:

V
(1)
n (x,d) = Vn((x− d1)+,d+)− F (x− d1)−

V
(2)
n (x,d) = min

0≤t≤t
{V (1)

n ((x− t),d)− t R2}

V
(3)
n (x,d) =

t=T∑
t=0

rtV
(2)
n (x,d)

V
(4)
n (x,d) =

M∑
m=0

qm (V (3)
n (x,d + mH)−m R1)

V
(5)
n (x,d) = min

0≤k≤K
{V (4)

n (x + k,d) + k c}

Vn+1(x,d) = hx + αV
(5)
n (x,d)

If the small parts are put together, the value function becomes:

Vn+1(x,d) = hx + α min
0≤k≤K

{(
M∑

m=0
qm[(

t=T∑
t=0

rt min
0≤t≤t

{Vn((x + k − d1 − t),d+ + m)− t R2

−F (x + k − d1 − t)−})−m R1]) + k c}

In order to analyze the model with SDP, we should handle the value function and

investigate its characteristics. For this purpose, once again, we are going to analyze the

value function in pieces by the help of the Event-Based SDP. In this extended model, below

event-based operators are used. Firstly, we focus on the operator representing the batch

production:

Tprof (x,d) = min
0≤k≤K

{f(x + k,d) + k c}

Tpro represents supplier’s decision of production amount. The supplier has a capacity of
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producing K items. She chooses any production amount k (0 ≤ k ≤ K) that will minimize

her costs. Additionally, she incurs a cost of c per item produced.

Lemma 4.6.1. If f(x,d) is convex in x, ∀d, Tprof(x,d) preserves convexity in x, ∀d.

Proof. The proof is in the Appendix A.7.

Next, the operator for batch admission control is given:

Tadmf (x,d) = min
0≤t≤t

{f((x− t),d)− t R2}

Tadm represents supplier’s decision of admission amount. The second class customer

orders t items at that period and the supplier can choose to satisfy t (0 ≤ t ≤ t) items of

the demand in order to minimize her costs.

Lemma 4.6.2. If f(x,d) is convex in x, ∀d, and satisfies LBD(F ) property, Tadmf(x,d)

preserves convexity and LBD(F ) in x, ∀d.

Proof. The proof is in the Appendix A.8.

Next, we focus on the operator of first class customer arrivals:

Tfarfm (x,d) =
M∑

m=0

qmfm (x,d)

Tfar is the convex combination of fm. Tfar represents the random amount of the first

class customer arrivals that may happen in a period.

Lemma 4.6.3. If fm(x,d) is convex in x, ∀m,d, Tfarfm(x,d) preserves convexity in x,

∀d.

Proof. The proof follows from the closedness of convexity under convex combinations.

The below operator, Tsar, is an application of Lemma 4.6.3 and it represents the random

amount of the second class customer arrivals that may happen in a period:

Tsarft (x,d) =
t=T∑
t=0

rtft (x,d)
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Lastly, we define the operator used for contractual order arrivals:

Tfcof (x,d) = f (x,d + mH)−m R1

The contractual order arrivals, the orders of the first class customers, are represented

by Tfco. The customers order any amount m (0 ≤ m ≤ M). As soon as the first class order

is received, the supplier gets a reward of R1 per item. mH is the vector with m in the Hth

entry and zeroes elsewhere. By adding mH to the demand vector, the amount of demand

that will be satisfied H periods later is collected in the Hth entry of the demand vector.

Lemma 4.6.4. If f(x,d) is convex in x, ∀d, Tfcof(x,d) preserves convexity in x, ∀d.

Proof. The proof is in the Appendix A.9.

To sum up, the properties that are preserved by the operators for x ≥ 0 may be listed

as follows:

• Tpro: Conv(x) → Conv(x); LBD(F ) → LBD(F ).

• Tadm: Conv(x), LBD(F ) → Conv(x); LBD(F ) → LBD(F ).

• Tfar: Conv(x) → Conv(x); LBD(F ) → LBD(F ).

• Tsar: Conv(x) → Conv(x); LBD(F ) → LBD(F ).

• Tfco: Conv(x) → Conv(x); LBD(F ) → UBD(F ).

The value function can be rewritten as follows by using the event-based operators:

Vn+1(x,d) = Tcosts(Tpro(Tfar(Tfco(Tsar(Tadm(Tofl(Tout Vn))))))) (x,d)

Since we showed that all operators used to form the value function preserve convexity

in x, ∀d; we can address the characteristics of the value function by induction. To start

the induction, we specify V0(x,d) = 0, ∀x, d; so, convexity is verified for n = 0. We, then,

assume that convexity is verified for Vn(x,d) and check for Vn+1(x,d).
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Proposition 4.6.5. The value function Vn+1(x,d) is convex in x, ∀d, since it can be

represented by the operators that are proven to preserve convexity of Vn(x,d) in x, ∀d.

As in the basic ADI model, our aim is to determine the structure of the optimal policies

when the infinite horizon problem is considered. By Proposition 4.6.5, we address the

structure of the optimal policies with the aim of minimizing the total discounted costs

for a finite number of transitions n. Since necessary conditions hold ([30]) as in section

4.3, we conclude that Proposition 4.6.5, written for the α-discounted case, extends to the

infinite-horizon models.

4.6.2 Structure of the Optimal Policies

We have proven the convexity of the operators and conclude that the finite horizon value

function is convex in x, ∀d. Additionally, we relate the finite horizon model with the infinite

horizon model with the average cost criterion. Thus, we are able to address the structure

of the optimal replenishment policy that minimizes the average cost per unit time:

Corollary 4.6.6. A state dependent basestock policy is optimal for replenishment with a

basestock level depending on the future demand vector d.

For the replenishment policy, there is a threshold inventory level Sd for every demand

vector d. Below the inventory level Sd, the decision maker chooses to produce the amount

k to reach the optimal basestock level. Above the inventory level Sd, the decision maker

always decides not to produce. The threshold inventory level Sd depends on the demand

vector d.

Next, we define the structure of the optimal admission control policy that minimizes the

average cost per unit time:

Corollary 4.6.7. A state dependent threshold type policy is optimal for admission control

with an order acceptance threshold depending on the future demand vector d.

For admission control of second class customers, there is an order acceptance threshold

Xd that depends on the demand vector d. Above that order acceptance threshold, the

second class customer order is accepted until the inventory level reaches that threshold.

The second class customer should be rejected below that order acceptance threshold for the
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same demand vector d. Since the order acceptance threshold level depends on the demand

vector d, the admission control policy is a state dependent threshold type policy.

4.7 Concluding Remarks

In this chapter, we examine a production-inventory system with multiple classes of customers

and advance orders. We consider the supplier’s production planning and order acceptance

problems. By using SDP, we propose optimal replenishment and admission control policies

that highlight the advantages of ADI.

We provide insights into implementing ADI in a multi-class production-inventory system

by the proposed replenishment policy. It is shown that the replenishment in such a system

with ADI is of state dependent basestock type. Additionally, by the proposed admission

control policy, flexibility is attained for systems with different customers providing different

levels of ADI. The admission control policy is also of state dependent threshold type in such

a system.

The behaviors of the proposed policies are examined under different parameter settings.

Numerical results display the impacts of ADI on the optimal policies and on the optimal

profit. Our results show that sharing ADI yields significant improvements in the system

performance as costs and threshold levels. Thus, contractual agreements with the supply

chain partners are encouraged in multi-class production-inventory systems. As the first class

customer orders earlier, the average profit increases. Therefore, the downstream partner

should be persuaded to share the demand information as early as possible. As the first

class customer orders earlier, the supplier is able to extract higher benefits from the second

class customers. This underlines the importance of having the right portfolio of customers

in case of ADI.

The model is extended by relaxing the unit production, order and admission amount

assumptions. The optimal replenishment and admission control policies are state dependent

threshold type policies in the extended model.

Remark 3 In the model considered in this chapter, we assume that the supplier has

information about the future demands of a class of customers. The demand of the first class

customers determines the state of the system and affects the supplier and her decisions.

However, the supplier cannot control the demand of the first class, it randomly fluctuates.



Chapter 4: Optimal Production and Admission Control in a Make-to-Stock System with ADI 63

The future demand of the first class customers is represented by the demand vector d. Since

the first class demand has the properties of a random environment, the results of the ADI

model hold for any random environment represented by d. Additionally, for the ADI model,

the demand vector may permit cancellation of orders or any other uncontrollable random

event that affects the demand vector. Therefore, the model and its results are also valid for

more general systems.
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Chapter 5

CONCLUSIONS

In this thesis, infinite-horizon inventory and admission control problems with capacitated

supply are analyzed. In the models considered, we focus on the systems with limited capacity

that have to utilize through different admission control policies. The main aim is to gain

insights into the effects of admission control in different systems and to compare the two

different admission control models applied in business. One of them is the static admission

control method where the admitted number of orders is determined for once and remains

fixed over time. The other method is the dynamic admission control where the decision

maker admits or rejects the customer at arrival instants depending on the current state of

the system.

Firstly, we investigate a model with a single supplier that aims to determine the optimal

acceptable demand rate. Choosing the optimal acceptable demand rate can be done in two

ways: static and dynamic admission control. We propose static admission control policies

for the suppliers determining the amount that will be satisfied through contracts for long

term customers. Additionally, we apply dynamic admission control on the same system for

the spot customers whom the supplier may accept or reject depending on her inventory

level. For the model with Poisson inter-arrival times and exponential servers, we propose

an explicit formula for the optimal acceptable demand rate. In the dynamic case, we find

that threshold type policies are optimal for replenishment and admission control.

In this problem our main aim is to compare the admission control methods and discover

the specific systems that are suitable for a specific admission control method. Through nu-

merical analysis, we realize the dominance of dynamic admission control. However, choosing

the admission control policy that will be applied is still a fundamental question for most

of the suppliers. The dynamic admission control method seems to be more advantageous

however it may have many drawbacks since the supplier may lose reputation on the cus-

tomers. Customers once rejected may be less likely to employ demand next time. These
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type of suppliers who have more loyal relations with their customers may still apply static

admission control.

Secondly, we consider a periodic-review production-inventory system with ADI. We ex-

amine a supplier with two customer classes, one of which orders certain number of periods in

advance. We model this system as a discrete time make-to-stock with geometric processing

and inter-arrival times. In this study, we aim to gain insights into the way of implementing

ADI in a multi-customer setting. Thus, we analyze supplier’s replenishment and admis-

sion control problem with stochastic dynamic programming. Dynamic admission control

is applied in this model since there are spot customers who desire to purchase the item

immediately. In the analysis, event-based operators are proposed for each event and tran-

sition occurring in the system. These event-based operators constitute a framework for the

analysis of the models including similar events. We address the structure of the optimal

replenishment and admission control policies using these event-based operators. The opti-

mal replenishment policy is proven to be of state dependent basestock type. The supplier

aims to keep her inventory at the basestock level; she produces if and only if her inventory

is below the basestock level. Similarly, the optimal admission control policy is a state de-

pendent threshold type policy. There is an order acceptance threshold below which second

class customers are never served.

The effects of ADI and admission control in the multi-customer setting are examined

in the numerical analysis. As in the single class systems, ADI has positive effects on the

inventory levels. Additionally, as the first class customers order earlier, more profit can

be extracted from the second class customers. These results underline the importance of

information sharing in the multiple class systems.

The assumption of unit arrivals and processing is relaxed for the ADI model. For the

batch arrivals and processing case, some additional event-based operators are used to address

the structure of the optimal policies. State dependent threshold type policies are found to

be optimal for this model too.

A natural extension of the ADI model considered in this thesis is to allow backordering.

The results of the model with equal unit backorder costs for both customer classes are

trivial. However, extending the model with distinct backordering costs is not a trivial issue.

When the unit backorder costs are distinct, backorders should be collected separately and
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it becomes difficult to manage the state space. Another challenge would be to increase the

number of customer classes and allow each of them to give different levels of ADI.

The continuous-review model with both static and dynamic admission control considers

to optimize the number of customers to be accepted from a single class. However, it seems

interesting to construct the model with multi-customer classes. Analyzing the multi-class

model with and without priorities may lead to gain insights about the optimal customer

portfolio of the supplier. Another attractive issue might be to add ADI into this model.

Both of the models considered in this thesis ignore the fact that admission control may

affect the customer arrival rates in the long term. Therefore, another challenging extension

would be to investigate the models with arrival rates depending on the admission control

decisions of the supplier.
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[12] G. Gallego and Ö. Özer. Optimal Replenishment Policies for Multiechelon Inventory

Problems Under Advance Demand Information. Manufacturing & Service Operations

Management, 5(2):157–175, 2003.

[13] S. Gavirneni, R. Kapuscinski, and S. Tayur. Value of Information in Capacitated

Supply Chains. Management Science, 45(1):16–24, 1999.

[14] J.P. Gayon, S. Benjaafar, and F. de Véricourt. Using imperfect demand information in

productioninventory systems with multiple customer classes. Technical report, Working

paper, Ecole Centrale Paris, 2004.
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Appendix A

STRUCTURAL RESULTS

A.1 Analysis of the Acceptable Demand Rate Model with Normal Approxi-

mations

In this model, the aim is to find the acceptable demand rate that maximizes the expected

profit in an uncapacitated production-inventory system with a fixed production leadtime

L. Let us define Y as the stationary inventory level (a negative value indicates backorders)

and N = Z−Y which denotes the stationary number of outstanding orders with respect to

the basestock level Z. N can be approximated by a normal distribution with parameters

(µ = λL, σ =
√

λL) (See [35] for details). The expected profit with normal approximations

that includes the revenue and the costs of inventory, backorder and production is:

Πn = λ(R− c)− (h + b)fz(z∗)
√

λL

We apply second order derivative test to analyze the structure of the profit function. The

first and second order derivatives are:

dΠn(λ)
dλ

= (R− c)− (b + h) fz(z∗) L

2
√

Lλ

d2Πn(λ)
dλ2

=
(b + h) fz(z∗) L2

4 (Lλ)
3
2

fz(z∗) is the probability density function and fz(z∗) ≥ 0. Additionally, h ≥ 0, b ≥ 0.

Therefore, d2Πn(λ)
dλ2 ≥ 0 and the profit function is convex. This approximation does not yield

a concave profit function that can be maximized at an inner point. However, if the profit

function is nondecreasing, i.e. dΠn(λ)
dλ ≥ 0, the supplier always decides to accept all of the

customers in order to maximize her profit. Otherwise, she rejects all customers. To sum

up, the supplier either accepts or rejects all customers for this model.
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A.2 Unit Production Decision Operator

In this section, we investigate the structure of the unit production decision operator:

TACf (x,d) = min{f (x + 1,d) + c , f (x,d)}

For f(x,d) convex in x, ∀d, TAC preserves convexity in x, ∀d:

Proof. Let f(x,d) be convex in x, ∀d, i.e. ∆f(x + 1,d) ≥ ∆f(x,d). We are going to show

convexity of TACf(x,d):

∆TACf(x + 1,d) ≥ ∆TACf(x,d)

TACf(x + 1,d)− TACf(x,d) ≥ TACf(x,d)− TACf(x− 1,d)

min{f(x + 2,d) + c, f(x + 1,d)} − min{f(x + 1,d) + c, f(x,d)} ≥

min{f(x + 1,d) + c, f(x,d)} − min{f(x,d) + c, f(x− 1,d)}

All possible cases resulting through minimizations should be considered separately to

verify convexity. The possible cases are listed in Table A.1. However, some cases are

eliminated because they conflict with the convexity property of f(x,d). The cases that are

given numbers should be shown to verify convexity.

Table A.1: Possible Situations: Unit Production Decision Operator

TACf(x + 1,d) TACf(x,d) TACf(x− 1,d)
1 f(x + 2,d) + c f(x + 1,d) + c f(x,d) + c
2 f(x + 1,d) f(x + 1,d) + c f(x,d) + c
3 f(x + 1,d) f(x,d) f(x,d) + c
4 f(x + 1,d) f(x,d) f(x− 1,d)

Case 1. We have to verify the inequality:

f(x + 2,d) + c− f(x + 1,d)− c ≥ f(x + 1,d) + c− f(x,d)− c

Since f(x,d) is assumed to be convex in x, ∀d, for this case, it is directly verified that TAC

preserves convexity in x, ∀d.
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Case 2. We have to verify the inequality:

f(x + 1,d)− f(x + 1,d)− c ≥ f(x + 1,d) + c− f(x,d)− c

f(x,d) ≥ f(x + 1,d) + c

By the results of the minimizations, we have:

f(x + 1,d) ≤ f(x + 2,d) + c

f(x + 1,d) + c ≤ f(x,d)

f(x,d) + c ≤ f(x− 1,d)

These results display that f(x,d) ≥ f(x + 1,d) + c, ∀d. So, for this case, it is verified that

TAC preserves convexity in x, ∀d.

Case 3. We have to verify the inequality:

f(x + 1,d)− f(x,d) ≥ f(x,d)− f(x,d)− c

f(x + 1,d) + c ≥ f(x,d)

By the results of the minimizations, we have:

f(x + 1,d) ≤ f(x + 2,d) + c

f(x,d) ≤ f(x + 1,d) + c

f(x,d) + c ≤ f(x− 1,d)

These results display that f(x + 1,d) + c ≥ f(x,d), ∀d. So, for this case, it is verified

that TAC preserves convexity in x, ∀d.

Case 4. We have to verify the inequality:

f(x + 1,d)− f(x,d) ≥ f(x,d)− f(x− 1,d)

Since f(x,d) is assumed to be convex in x, ∀d, for this case, it is directly verified that TAC

preserves convexity in x, ∀d.
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Thus, TACf(x,d) is proven to be convex in x, ∀d.

For f(x,d) satisfying LBD(F ), ∀d , TAC preserves LBD(F ) property, ∀d:

Proof. Since f(x,d) satisfying LBD(F ), below equation is valid:

f(x + 1,d)− f(x,d) ≥ −F

We aim to show:

∆TACf(x + 1,d) ≥ −F

min{f(x + 1,d) + c, f(x,d)} −min{f(x,d) + c, f(x− 1,d)} ≥ −F

Through the results of the minimizations, three cases may occur:

Case 1. We have to verify the inequality:

f(x + 1,d)− f(x,d) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d , TAC preserves LBD(F ) property, ∀d.

Case 2. We have to verify the inequality:

f(x,d)− f(x,d)− c ≥ −F

Since outsourcing is more costly than producing, i.e. c ≤ F , LBD(F ) property is

preserved by the operator TAC .

Case 3. We have to verify the inequality:

f(x,d)− f(x− 1,d) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d , TAC preserves LBD(F ) property, ∀d.

A.3 Order Fulfillment Operator

In this section, we investigate the structure of the order fulfillment operator:

Toflf (x,d) = f (x− d1, d
+)



Appendix A: Structural Results 75

For f(x,d) convex in x, ∀d, Tofl preserves convexity in x, ∀d:

Proof. Let f(x,d) be convex in x, ∀d, i.e. ∆f (x + 1,d) ≥ ∆f(x,d). We are going to show

convexity of Toflf(x,d):

∆Toflf (x + 1,d) ≥ ∆Toflf(x,d)

Toflf (x + 1,d)− Toflf(x,d) ≥ Toflf(x,d)− Toflf (x− 1,d)

Since we define x as x ≥ 0, we may check the boundary values of x as well as the

non-extreme cases. For the non-extreme cases (x− 1− d1 ≥ 0), we have:

f (x + 1− d1, d
+)− f (x− d1, d

+) ≥ f (x− d1, d
+)− f (x− 1− d1, d

+)

Since f(x,d) is convex in x, ∀d, Toflf (x,d) is proven to be convex in x, ∀d for the

non-extreme cases. However, three extreme cases may occur that should be checked:

Case 1. We have to verify convexity at x− d1 = 0:

f ((x + 1− d1)+, d+)− (x + 1− d1)− F − f ((x− d1)+, d+) + (x− d1)− F ≥

f ((x− d1)+, d+)− (x− d1)− F − f ((x− 1− d1)+, d+) + (x− 1− d1)− F

f (1, d+)− f (0, d+) ≥ f (0, d+)− f (0, d+)− F

f (1, d+)− f (0, d+) ≥ −F

So, Toflf (x,d) preserves convexity in x, ∀d for the functions satisfying the inequality

f (x + 1, d+)− f (x, d+) ≥ −F .

Case 2. We have to verify convexity at x + 1− d1 = 0:

f ((x + 1− d1)+, d+)− (x + 1− d1)− F − f ((x− d1)+, d+) + (x− d1)− F ≥

f ((x− d1)+, d+)− (x− d1)− F − f ((x− 1− d1)+, d+) + (x− 1− d1)− F

f (0, d+)− f (0, d+)− F ≥ f (0, d+) + F − f (0, d+)− 2F

−F ≥ −F

Toflf (x,d) is proven to be convex in x, ∀d for this case.
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Case 3. We have to verify convexity at x + 1− d1 < 0:

f ((x + 1− d1)+, d+)− (x + 1− d1)− F − f ((x− d1)+, d+) + (x− d1)− F ≥

f ((x− d1)+, d+)− (x− d1)− F − f ((x− 1− d1)+, d+) + (x− 1− d1)− F

f (0, d+)− (x + 1− d1)F − f (0, d+) + (x− d1)F ≥

f (0, d+)− (x− d1)F − f (0, d+) + (x− 1− d1)F

F ≥ F

Toflf (x,d) is proven to be convex in x, ∀d for this case.

In conclusion, Toflf (x,d) is proven to be convex in x, ∀d for all convex functions f (x,d)

satisfying the inequality f (x + 1, d+)− f (x, d+) ≥ −F .

For f(x,d) satisfying LBD(F ), ∀d, Tofl preserves LBD(F ) property, ∀d:

Proof.

∆Toflf (x + 1,d) ≥ −F

Toflf (x + 1,d)− Toflf(x,d) ≥ −F

f (x + 1− d1, d
+)− f (x− d1, d

+) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Tofl preserves LBD(F ) property, ∀d for the non-

extreme cases. However, for the extreme cases (x + 1 − d1 ≤ 0), we have to verify the

inequality:

f (0, d+)− (x + 1− d1)F − f (0, d+) + (x− d1)F ≥ −F

−F ≥ −F

Tofl preserves LBD(F ) property, ∀d.

A.4 Unit Contractual Order Arrivals Operator

In this section, we investigate the structure of the unit contractual order arrivals operator:

Tcoaf (x,d) = f (x, d + eH)−R1

For f(x,d) convex in x, ∀d, Tcoa preserves convexity in x, ∀d:

Proof. Let f(x,d) be convex in x, ∀d, i.e. ∆f (x + 1,d) ≥ ∆f(x,d). We are going to show

convexity of Tcoaf(x,d):
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∆Tcoaf (x + 1,d) ≥ ∆Tcoaf(x,d)

Tcoaf (x + 1,d)− Tcoaf(x,d) ≥ Tcoaf(x,d)− Tcoaf (x− 1,d)

f (x + 1,d + eH)−R1 − f (x, d + eH) + R1 ≥ f (x,d + eH)−R1 − f (x− 1,d + eH) + R1

f (x + 1,d + eH)− f (x,d + eH) ≥ f (x,d + eH)− f (x− 1,d + eH)

Since f(x,d) is convex in x, ∀d, Tcoaf (x,d) is proven to be convex in x, ∀d.

For f(x,d) satisfying LBD(F ), ∀d, Tcoa preserves LBD(F ) property, ∀d:

Proof.

∆Tcoaf (x + 1,d) ≥ −F

Tcoaf (x + 1,d)− Tcoaf(x,d) ≥ −F

f (x + 1,d + eH)−R1 − f (x, d + eH) + R1 ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Tcoa preserves LBD(F ) property, ∀d.

A.5 Unit Admission Control Operator

In this section, we investigate the structure of the unit admission control operator:

Tacaf (x,d) = min{f (x− 1,d)−R2, f (x,d)}

For f(x,d) convex in x, ∀d, Taca preserves convexity in x, ∀d:

Proof. Let f(x,d) be convex in x, ∀d, i.e. ∆f (x + 1,d) ≥ ∆f(x,d). We are going to show

convexity of Tacaf(x,d):

∆Tacaf (x + 1,d) ≥ ∆Tacaf(x,d)

Tacaf (x + 1,d)− Tacaf(x,d) ≥ Tacaf(x,d)− Tacaf (x− 1,d)

min{f(x,d)−R2, f (x + 1,d)} − min{f (x− 1,d)−R2, f(x,d)} ≥

min{f (x− 1,d)−R2, f(x,d)} − min{f (x− 2,d)−R2, f (x− 1,d)}

All possible cases resulting through minimizations should be considered separately to

verify convexity. The possible cases are listed in Table A.2.
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Table A.2: Possible Situations: Unit Admission Control Operator

Tacaf (x + 1,d) Tacaf(x,d) Tacaf (x− 1,d)
1 f(x,d)−R2 f (x− 1,d)−R2 f (x− 2,d)−R2

2 f(x,d)−R2 f (x− 1,d)−R2 f (x− 1,d)
3 f(x,d)−R2 f(x,d) f (x− 1,d)
4 f (x + 1,d) f(x,d) f (x− 1,d)

Case 1. We have to verify the inequality:

f(x,d)−R2 − f (x− 1,d) + R2 ≥ f (x− 1,d)−R2 − f (x− 2,d) + R2

f(x,d)− f (x− 1,d) ≥ f (x− 1,d)− f (x− 2,d)

Since f(x,d) is assumed to be convex in x, ∀d, for this case, it is directly verified that

Taca preserves convexity in x, ∀d. However, we assume that x ≥ 0. So, we have to verify

convexity at boundary values as well as the non-extreme cases. Above inequality verifies

convexity at non-extreme values of x. Three extreme cases may occur for this case:

1. We have to verify convexity at x− 1 = 0:

f(x+,d)− x− F − f ((x− 1)+,d) + (x− 1)− F ≥

f ((x− 1)+,d)− (x− 1)− F − f ((x− 2)+,d) + (x− 2)− F

f (1,d)− f (0,d) ≥ f (0,d)− f (0,d)− F

f (1,d)− f (0,d) ≥ −F

So, Tacaf (x,d) preserves convexity in x, ∀d, for the functions satisfying the inequality

f (x + 1, d)− f (x, d) ≥ −F .

2. We have to verify convexity at x = 0:

f(x+,d)− x− F − f ((x− 1)+,d) + (x− 1)− F ≥

f ((x− 1)+,d)− (x− 1)− F − f ((x− 2)+,d) + (x− 2)− F

f (0,d)− f (0,d)− F ≥ f (0,d) + F − f (0,d)− 2F

−F ≥ −F
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Tacaf (x,d) is proven to be convex in x, ∀d, for this case.

3. We have to verify convexity at x < 0:

f(x+,d)− x− F − f ((x− 1)+,d) + (x− 1)− F ≥

f ((x− 1)+,d)− (x− 1)− F − f ((x− 2)+,d) + (x− 2)− F

f (0,d)− xF − f (0,d) + (x− 1)F ≥

f (0,d)− (x− 1)F − f (0,d) + (x− 2)F

F ≥ F

For Case 1, Tacaf (x,d) is proven to be convex in x, ∀d, for the functions satisfying the

inequality f (x + 1,d)− f (x,d) ≥ −F .

Case 2. We have to verify the inequality:

f(x,d)−R2 − f (x− 1,d) + R2 ≥ f (x− 1,d)−R2 − f (x− 1,d)

f(x,d) ≥ f (x− 1,d)−R2

By the results of the minimizations, we have:

f(x,d)−R2 ≤ f (x + 1,d)

f (x− 1,d)−R2 ≤ f(x,d)

f (x− 1,d) ≤ f (x− 2,d)−R2

These results display that f(x,d) ≥ f (x − 1,d) − R2. So, for this case, it is verified that

Taca preserves convexity in x, ∀d. However, we assume that x ≥ 0. So, we have to verify

convexity at boundary values as well as the non-extreme cases. Above inequality verifies

convexity at non-extreme values of x(x − 2 ≥ 0). Two extreme cases may occur for this

case:

1. We have to verify convexity at x = 0:
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f(x+,d)− x− F ≥ f ((x− 1)+,d)−R2 − (x− 1)− F

f (0,d) ≥ f (0,d)−R2 + F

R2 ≥ F

By the results of the minimizations, we have:

f(0,d)−R2 ≤ f (1,d)

f (0,d)−R2 + F ≤ f(0,d)

f (0,d) + F ≤ f (0,d)−R2 + 2F

R2 = F

Since R2 ≥ F is satisfied, Tacaf (x,d) preserves convexity in x, ∀d, for this case.

2. We have to verify convexity at x− 1 < 0:

f(x+,d)− x− F ≥ f ((x− 1)+,d)−R2 − (x− 1)− F

f(0,d)− xF ≥ f (0,d)−R2 − (x− 1) F

R2 ≥ F

By the results of the minimizations, we have:

f(x,d)−R2 + F ≤ f (x + 1,d)

f (x− 1,d)−R2 + F ≤ f(x,d)

f (x− 1,d) ≤ f (x− 2,d)−R2 + F

R2 = F

Since R2 ≥ F is satisfied, Tacaf (x,d) is proven to be convex in x, ∀d, for this case.

For Case 2, Tacaf (x,d) is proven to be convex in x, ∀d.



Appendix A: Structural Results 81

Case 3. We have to verify the inequality:

f(x,d)−R2 − f(x,d) ≥ f(x,d)− f (x− 1,d)

f (x− 1,d)−R2 ≥ f(x,d)

By the results of the minimizations, we have:

f(x,d)−R2 ≤ f (x + 1,d)

f(x,d) ≤ f (x− 1,d)−R2

f (x− 1,d) ≤ f (x− 2,d)−R2

These results display that f (x−1,d)−R2 ≥ f(x,d). So, for this case, it is verified that

Taca preserves convexity in x, ∀d for the non-extreme cases.

1. We have to verify convexity at x = 0:

f ((x− 1)+,d)−R2 − (x− 1)− F ≥ f(x+,d)− x− F

f (0,d)−R2 + F ≥ f(0,d)

F ≥ R2

By the results of the minimizations, we have:

f(0,d)−R2 ≤ f (1,d)

f(0,d) ≤ f (0,d)−R2 + F

f (0,d) + F ≤ f (0,d)−R2 + 2F

R2 ≤ F

Since F ≥ R2 is satisfied, Tacaf (x,d) is proven to be convex in x, ∀d, for this case.
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2. We have to verify convexity at x < 0:

f ((x− 1)+,d)−R2 − (x− 1)− F ≥ f(x+,d)− x− F

f (0,d)−R2 − (x− 1) F ≥ f(0,d)− xF

f (0,d)−R2 − (x− 1) F ≥ f(0,d)− xF

F ≥ R2

By the results of the minimizations, we have:

f(x+,d)−R2 − x− F ≤ f ((x + 1)+,d)− (x + 1)− F

f(x+,d)− x− F ≤ f ((x− 1)+,d)−R2 − (x− 1)− F

f ((x− 1)+,d)− (x− 1)− F ≤ f ((x− 2)+,d)−R2 − (x− 2)− F

R2 ≤ F

Since R2 ≤ F is satisfied, Tacaf (x,d) is proven to be convex in x, ∀d, for this case.

For Case 3, Tacaf (x,d) is proven to be convex in x, ∀d.

Case 4. We have to verify the inequality:

f (x + 1,d)− f(x,d) ≥ f(x,d)− f (x− 1,d)

Since f(x,d) is assumed to be convex in x, ∀d, for this case, it is directly verified that Taca

preserves convexity in x, ∀d. However, these are valid for the non-extreme cases only. We

have to verify convexity for the extreme cases:

1. We have to verify convexity at x = 0:

f((x + 1)+,d)− (x + 1)− F − f (x+,d) + x− F ≥

f (x+,d)− x− F − f ((x− 1)+,d) + (x− 1)− F

f (1,d)− f (0,d) ≥ f (0,d)− f (0,d)− F

f (1,d)− f (0,d) ≥ −F
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So, Tacaf (x,d) preserves convexity in x, ∀d, for the functions satisfying the inequality

f (x + 1, d)− f (x, d) ≥ −F .

2. We have to verify convexity at x + 1 = 0:

f((x + 1)+,d)− (x + 1)− F − f (x+,d) + x− F ≥

f (x+,d)− x− F − f ((x− 1)+,d) + (x− 1)− F

f (0,d)− f (0,d)− F ≥ f (0,d) + F − f (0,d)− 2F

−F ≥ −F

Tacaf (x,d) is proven to be convex in x, ∀d, for this case.

3. We have to verify convexity at x + 1 < 0:

f((x + 1)+,d)− (x + 1)− F − f (x+,d) + x− F ≥

f (x+,d)− x− F − f ((x− 1)+,d) + (x− 1)− F

f (0,d)− (x + 1)F − f (0,d) + xF ≥

f (0,d)− xF − f (0,d) + (x− 1)F

F ≥ F

For Case 4, Tacaf (x,d) is proven to be convex in x, ∀d, for the functions satisfying the

inequality f (x + 1,d)− f (x, d) ≥ −F .

In conclusion, Tacaf(x,d) is proven to be convex in x, ∀d, for the functions satisfying

the inequality f (x + 1, d)− f (x, d) ≥ −F .

For f(x,d) satisfying LBD(F ), ∀d, Taca preserves LBD(F ) property, ∀d:

Proof. We have to verify the inequality:

∆Tacaf (x + 1,d) ≥ −F

Tacaf (x + 1,d)− Tacaf(x,d) ≥ −F

min{f(x,d)−R2, f (x + 1,d)} −min{f (x− 1,d)−R2, f(x,d)} ≥ −F

According to the results of the minimizations, three cases may occur:
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Case 1. We have to verify the inequality:

f(x,d)−R2 − f (x− 1,d) + R2 ≥ −F

f(x,d)− f (x− 1,d) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Taca preserves LBD(F ) property, ∀d for this case.

Case 2. We have to verify the inequality:

f(x,d)−R2 − f(x,d) ≥ −F

−R2 ≥ −F

According to the results of the minimizations at the extreme values, we know that:

f(0,d)−R2 − Fx ≤ f(0,d)− F (x + 1)

−R2 ≤ −F

f(0,d)− Fx ≤ f(0,d)−R2 − F (x− 1)

−F ≤ −R2

Thus, R2 = F is shown for this case and Taca preserves LBD(F ) property, ∀d for this case.

Case 3. We have to verify the inequality:

f (x + 1,d)− f(x,d) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Taca preserves LBD(F ) property, ∀d for this case.

A.6 Outsourcing Operator

In this section, we investigate the structure of the outsourcing operator:

Toutf (x,d) = f (x+,d)− x−F

For f(x,d) convex in x, ∀d, Tout preserves convexity in x, ∀d:

Proof. Let f(x,d) be convex in x, ∀d, i.e. ∆f (x + 1,d) ≥ ∆f(x,d). We are going to show

convexity of Toutf(x,d):
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∆Toutf (x + 1,d) ≥ ∆Toutf(x,d)

Toutf (x + 1,d)− Toutf(x,d) ≥ Toutf(x,d)− Toutf (x− 1,d)

f ((x + 1)+,d)− (x + 1)−F − f (x+,d) + x−F ≥

f (x+,d)− x−F − f ((x− 1)+,d) + (x− 1)−F

Since we define x as x ≥ 0, we may check the boundary values of x as well as the

non-extreme cases. For the non-extreme cases (x− 1 ≥ 0), we have:

f (x + 1, d)− f (x, d) ≥ f (x,d)− f (x− 1,d)

Since f(x,d) is convex in x, ∀d, Toutf (x,d) is proven to be convex in x, ∀d for the

non-extreme cases.However, three extreme cases occur that should be checked:

Case 1. We have to verify the convexity where x = 0:

f ((x + 1)+,d)− (x + 1)−F − f (x+,d) + x−F ≥

f (x+,d)− x−F − f ((x− 1)+,d) + (x− 1)−F

f (1,d)− f (0,d) ≥ f (0,d)− f (0, d)− F

f (1, d)− f (0,d) ≥ −F

So, Toutf (x,d) preserves convexity in x, ∀d for the functions satisfying the inequality

f (x + 1,d)− f (x,d) ≥ −F .

Case 2. We have to verify the convexity where x + 1 = 0:

f ((x + 1)+,d)− (x + 1)−F − f (x+,d) + x−F ≥

f (x+,d)− x−F − f ((x− 1)+,d) + (x− 1)−F

f (0, d+)− f (0, d+)− F ≥ f (0, d+) + F − f (0, d+)− 2F

−F ≥ −F

Toutf (x,d) is proven to be convex in x, ∀d for this case.
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Case 3. We have to verify the convexity where x + 1 < 0:

f ((x + 1)+,d)− (x + 1)−F − f (x+,d) + x−F ≥

f (x+,d)− x−F − f ((x− 1)+,d) + (x− 1)−F

f (0, d+)− (x + 1)F − f (0, d+) + xF ≥

f (0, d+)− xF − f (0, d+) + (x− 1) F

F ≥ F

Toutf (x,d) is proven to be convex in x, ∀d for this case.

In conclusion, Toutf (x,d) is proven to be convex in x, ∀d for all convex functions f (x,d)

satisfying the inequality f (x + 1,d)− f (x,d) ≥ −F .

For f(x,d) satisfying LBD(F ), ∀d, Tout preserves LBD(F ) property, ∀d:

Proof. We have to verify the inequality.

∆Toutf (x + 1,d) ≥ −F

Toutf (x + 1,d)− Toutf(x,d) ≥ −F

f ((x + 1)+,d)− (x + 1)−F − f (x+,d) + x−F ≥ −F

Three cases may occur:

Case 1. For x ≥ 0:

f (x + 1,d)− f (x,d) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Tout preserves LBD(F ) property, ∀d for this case.

Case 2. For x + 1 = 0:

f (0,d)− f (0,d)− F ≥ −F

−F ≥ −F

Case 3. For x + 1 ≤ 0:

f (0,d)− (x + 1)−F − f (0,d) + x−F ≥ −F

−F ≥ −F

Thus, for f(x,d) satisfying LBD(F ), ∀d, Tout is proven to preserve LBD(F ) property,
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∀d.

A.7 Production Amount Operator

In this section, we investigate the structure of the operator for production decision of any

amount k:

Tprof (x,d) = min
0≤k≤K

{f(x + k,d) + k c}

For f(x,d) convex in x, ∀d, Tpro preserves convexity in x, ∀d:

Proof. Let f(x,d) be convex in x, ∀d, i.e. ∆f (x + 1,d) ≥ ∆f(x,d). We are going to show

convexity of Tprof(x,d):

∆Tprof (x + 1,d) ≥ ∆Tprof(x,d)

Tprof (x + 1,d)− Tprof(x,d) ≥ Tprof(x,d)− Tprof (x− 1,d)

min
0≤k≤K

{f(x + 1 + k,d) + k c} − min
0≤k≤K

{f(x + k,d) + k c} ≥

min
0≤k≤K

{f(x + k,d) + k c} − min
0≤k≤K

{f(x− 1 + k,d) + k c}

min{f(x + 1,d), ..., f(x− 1 + K,d) + (K − 2)c, f(x + K,d) + (K − 1)c, f(x + 1 + K,d) + Kc}

− min{f(x,d), f(x + 1,d) + c, ..., f(x− 1 + K,d) + (K − 1)c, f(x + K,d) + Kc} ≥

min{f(x,d), f(x + 1,d) + c, ..., f(x− 1 + K,d) + (K − 1)c, f(x + d) + Kc}

− min{f(x− 1,d), f(x,d) + c, f(x + 1,d) + 2c..., f(x− 1 + K,d) + Kc}

There are similar terms in the minimizations. If we define:

a = min{f(x + 1,d), f(x + 2,d) + c, f(x + 3,d) + 2c, ..., f(x− 1 + K,d) + (K − 2)c}

we can simplify the convexity inequality as follows:

min{a, f(x + K,d) + (K − 1)c, f(x + 1 + K,d) + Kc}

− min{f(x,d), a + c, f(x + K,d) + Kc} ≥

min{f(x,d), a + c, f(x + K,d) + Kc}

− min{f(x− 1,d), f(x,d) + c, a + 2c}
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All possible result combinations for the minimizations should be examined to verify

convexity. In Table A.3 all possible results are listed. Since we assume that f(x,d) is

convex in x, ∀d, only nine of the possible results are valid.

Table A.3: Possible Situations: Production Amount

Tprof(x + 1,d) Tprof(x,d) Tpro(x− 1,d)
Min P.Amt. Min P.Amt. Min P.Amt. No

a 0 f(x,d) 0 f(x− 1,d) 0 1
a 0 f(x,d) 0 f(x,d) + c 1 2
a 0 f(x,d) 0 a + 2c 2 3
a 0 a + c 1 f(x,d) + c 1 4
a 0 a + c 1 a + 2c 2 5
a (K − 2) f(x + K,d) + Kc K a + 2c K 6
f(x + K,d) + (K − 1)c K − 1 a + c K − 1 a + 2c K 7
f(x + K,d) + (K − 1)c K − 1 f(x + K,d) + Kc K a + 2c K 8
f(x + 1 + K,d) + Kc K f(x + K,d) + Kc K a + 2c K 9

Case 1. We have to verify the inequality:

f(x + 1,d)− f(x,d) ≥ f(x,d)− f(x− 1,d)

Since f(x,d) is convex in x, ∀d, Tprof (x,d) is proven to be convex in x, ∀d for this

case where no production is done.

Case 2. We have to verify the inequality:

f(x + 1,d)− f(x,d) ≥ f(x,d)− f(x,d)− c

f(x + 1,d) + c ≥ f(x,d)
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By the results of the minimizations, we have:

a = f(x + 1,d)

f(x + K,d) + (K − 1)c ≥ f(x + 1,d)

f(x + 1 + K,d) + Kc ≥ f(x + 1,d)

f(x + 1,d) + c ≥ f(x,d) (A.1)

f(x + K,d) + Kc ≥ f(x,d)

f(x + 1,d) + 2c ≥ f(x,d) + c

f(x− 1,d) ≥ f(x,d) + c

Since f(x + 1,d) + c ≥ f(x,d) is verified by Equation A.1, convexity is verified for this

case.

Case 3. We have to verify the inequality:

f(x + 1,d)− f(x,d) ≥ f(x,d)− f(x + 1,d)− 2c

By the results of the minimizations, we have:

a = f(x + 1,d) (A.2)

f(x + K,d) + (K − 1)c ≥ f(x + 1,d)

f(x + 1 + K,d) + Kc ≥ f(x + 1,d)

f(x + 1,d) + c ≥ f(x,d)

f(x + K,d) + Kc ≥ f(x,d)

f(x,d) + c ≥ f(x + 1,d) + 2c

f(x− 1,d) ≥ f(x + 1,d) + 2c

Since f(x + 1,d) + c = f(x,d) by the Equations A.3 and A.3, the convexity inequality

is verified for this case.
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Case 4. We have to verify the inequality:

f(x + 1,d)− f(x + 1,d)− c ≥ f(x + 1,d) + c− f(x,d)− c

f(x,d) ≥ f(x + 1,d) + c

By the results of the minimizations, we have:

a = f(x + 1,d) (A.3)

f(x + K,d) + (K − 1)c ≥ f(x + 1,d)

f(x + 1 + K,d) + Kc ≥ f(x + 1,d)

f(x,d) ≥ f(x + 1,d) + c

f(x + K,d) + Kc ≥ f(x + 1,d) + c

f(x + 1,d) + 2c ≥ f(x,d) + c

f(x− 1,d) ≥ f(x,d) + c

Since f(x + 1,d) + c ≤ f(x,d) by Equation A.4, the convexity inequality is verified for

this case.

Case 5. We have to verify the inequality:

f(x + 1,d)− f(x + 1,d)− c ≥ f(x + 1,d) + c− f(x + 1,d)− 2c

−c ≥ −c

Here, convexity is verified for a = f(x + 1,d), however it is true for all values of a.

Case 6. We have to verify the inequality:

f(x + K − 1,d) + (K − 2)c− f(x + K,d)−Kc ≥ f(x + K,d) + Kc− f(x + K − 1,d)−Kc
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By the results of the minimizations, we have:

a = f(x + K − 1,d) + (K − 2)c

f(x + K,d) + (K − 1)c ≥ f(x + K − 1,d) + (K − 2)c (A.4)

f(x + 1 + K,d) + Kc ≥ f(x + K − 1,d) + (K − 2)c

f(x + K − 1,d) + (K − 1)c ≥ f(x + K,d) + Kc (A.5)

f(x,d) ≥ f(x + K,d) + Kc

f(x− 1,d) ≥ f(x + K − 1,d) + Kc

f(x,d) + c ≥ f(x + K − 1,d) + Kc

By Equations A.4 and A.5, the convexity inequality is verified for this case.

Case 7. We have to verify the inequality:

f(x + K,d) + (K − 1)c − f(x + K − 1,d)− (K − 1)c ≥

f(x + K − 1,d) + (K − 1)c − f(x + K − 1,d)−Kc

f(x + K,d) + c ≥ f(x + K − 1,d)

By the results of the minimizations, we have:

a = f(x + K − 1,d) + (K − 2)c

f(x + K − 1,d) + (K − 2)c ≥ f(x + K,d) + (K − 1)c

f(x + 1 + K,d) + Kc ≥ f(x + K,d) + (K − 1)c

f(x + K,d) + Kc ≥ f(x + K − 1,d) + (K − 1)c (A.6)

f(x,d) ≥ f(x + K − 1,d) + (K − 1)c

f(x− 1,d) ≥ f(x + K − 1,d) + Kc

f(x,d) + c ≥ f(x + K − 1,d) + Kc

By Equation A.6, the convexity inequality is verified for this case.
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Case 8. We have to verify the inequality:

f(x + K,d) + (K − 1)c − f(x + K,d)−Kc ≥

f(x + K,d) + Kc − f(x + K − 1,d)−Kc

f(x + K − 1,d) + c ≥ f(x + K,d) + c

By the results of the minimizations, we have:

a = f(x + K − 1,d) + (K − 2)c

f(x + K − 1,d) + (K − 2)c ≥ f(x + K,d) + (K − 1)c

f(x + 1 + K,d) + Kc ≥ f(x + K,d) + (K − 1)c

f(x + K − 1,d) + (K − 1)c ≥ f(x + K,d) + Kc (A.7)

f(x,d) ≥ f(x + K,d) + Kc

f(x− 1,d) ≥ f(x + K − 1,d) + Kc

f(x,d) + c ≥ f(x + K − 1,d) + Kc

By Equation A.7, the convexity inequality is verified for this case.

Case 9. We have to verify the inequality:

f(x + 1 + K,d) + Kc − f(x + K,d)−Kc ≥

f(x + K,d) + Kc − f(x + K − 1,d)−Kc

f(x + 1 + K,d)− f(x + K,d) ≥ f(x + K,d)− f(x + K − 1,d)

If f(x,d) is convex in x, ∀d, convexity is verified for this case.

In conclusion, if f(x,d) is convex in x, ∀d, Tprof (x,d) is proven to be convex in x,

∀d.

For f(x,d) satisfying LBD(F ), ∀d, TAC preserves LBD(F ) property, ∀d:

Proof. We have to verify the inequality:

∆Tprof (x + 1,d) ≥ −F

Tprof (x + 1,d)− Tprof(x,d) ≥ −F

min
0≤k≤K

{f(x + 1 + k,d) + k c} − min
0≤k≤K

{f(x + k,d) + k c} ≥ −F
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Three cases may occur according to the results of the minimizations:

Case 1. (0, 0) production case:

f(x + 1,d)− f(x,d) ≥ −F

This is valid since f(x,d) satisfies LBD(F ), ∀d.

Case 2. (k, k + 1) production case:

f(x + 1 + k,d) + kc− f(x + k + 1,d)− (k + 1)c ≥ −F

−c ≥ −F

This is valid since production is always less costly than outsourcing, c ≤ F .

Case 3. (K, K) production case:

f(x + 1 + K,d) + Kc− f(x + K,d)−Kc ≥ −F

f(x + 1 + K,d)− f(x + K,d) ≥ −F

This is valid since f(x,d) satisfies LBD(F ), ∀d.

A.8 Admission Amount Operator

In this section, we investigate the structure of the operator for admission control with any

amount t:

Tadmf (x,d) = min
0≤t≤t

{f((x− t),d)− t R2}

For f(x,d) convex in x, ∀d, Tadm preserves convexity in x, ∀d:

Proof.

Tadmf (x,d) = min
0≤t≤t̄

{f(x− t,d)− t R}

The convexity inequality is:

min
0≤t≤t̄

{f(x + 1− t,d)− t R} − min
0≤t≤t̄

{f(x− t,d)− t R} ≥

min
0≤t≤t̄

{f(x− t,d)− t R} − min
0≤t≤t̄

{f(x− 1− t,d)− t R}
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It can be expressed as follows:

min{f(x + 1,d), f(x,d)−R, f(x− 1,d)− 2R, f(x− 2,d)− 3R, ..., f(x + 1− t̄,d)− t̄ R}

− min{f(x,d), f(x− 1,d)−R, ..., f(x + 1− t̄,d)− (t̄− 1) R, f(x− t̄,d)− t̄ R} ≥

min{f(x,d), f(x− 1,d)−R, ..., f(x + 1− t̄,d)− (t̄− 1) R, f(x− t̄,d)− t̄ R}

− min{f(x− 1,d), f(x− 2,d)−R, ..., f(x + 1− t̄,d)− (t̄− 2) R, ..., f(x− 1− t̄,d)− t̄ R}

In order to simplify the minimizations, we can define a variable:

a = min{f(x− 1,d), f(x− 2,d)−R, ..., f(x + 1− t̄,d)− (t̄− 2) R}

So, convexity inequality is simplified as follows:

min{f(x + 1,d), f(x,d)−R, a− 2R} −min{f(x,d), a−R, f(x− t̄,d)− t̄ R} ≥

min{f(x,d), a−R, f(x− t̄,d)− t̄ R} −min{a, f(x− t̄,d)− (t̄− 1) R, f(x− 1− t̄,d)− t̄ R}

All possible result combinations of the minimizations should be examined to verify con-

vexity. There are nine possible results as shown in A.4, some are eliminated since they

conflict with the convex nature of f(x,d):

Table A.4: Possible Situations: Admission Amount

Tadmf(x + 1,d) Tadmf(x,d) Tadmf(x− 1,d)
Min A.Amt. Min A.Amt. Min A.Amt. No

f(x + 1,d) 0 f(x,d) 0 a 0 1
f(x,d)−R 1 f(x,d) 0 a 0 2
f(x,d)−R 1 a−R 1 a 0 3
a− 2R 2 f(x,d) 0 a 0 4
a− 2R 2 a−R 1 a 0 5
a− 2R t̄ a−R t̄− 1 f(x− t̄,d)− (t̄− 1)R t̄− 1 6
a− 2R t̄ f(x− t̄,d)− t̄R t̄ a t̄− 2 7
a− 2R t̄ f(x− t̄,d)− t̄R t̄ f(x− t̄,d)− (t̄− 1)R t̄− 1 8
a− 2R t̄ f(x− t̄,d)− t̄R t̄ f(x− 1− t̄,d)− t̄R t̄ 9
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Case 1. We have to verify the inequality:

f(x + 1,d)− f(x,d) ≥ f(x,d)− f(x− 1,d)

Since we assume that f(x,d) is convex in x,∀d, convexity is directly verified in this case.

Case 2. We have to verify the inequality:

f(x,d)−R− f(x,d) ≥ f(x,d)− f(x− 1,d)

f(x− 1,d)−R ≥ f(x,d)

By the results of the minimizations:

a = f(x− 1,d)

f(x + 1,d) ≥ f(x,d)−R

f(x− 1,d)− 2R ≥ f(x,d)−R

f(x− 1,d)−R ≥ f(x,d) (A.8)

f(x− t̄,d)− t̄R ≥ f(x,d)

f(x− t̄,d)− (t̄− 1)R ≥ f(x− 1,d)

f(x− 1− t̄,d)− t̄R ≥ f(x− 1,d)

(A.9)

By the Equation A.8, convexity is verified for this case.

Case 3. We have to verify the inequality:

f(x,d)−R− f(x− 1,d) + R ≥ f(x− 1,d)−R− f(x− 1,d)

f(x,d) ≥ f(x− 1,d)−R
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By the results of the minimizations:

a = f(x− 1,d)

f(x + 1,d) ≥ f(x,d)−R

f(x− 1,d)− 2R ≥ f(x,d)−R

f(x,d) ≥ f(x− 1,d)−R (A.10)

f(x− t̄,d)− t̄R ≥ f(x− 1,d)−R

f(x− t̄,d)− (t̄− 1)R ≥ f(x− 1,d)

f(x− 1− t̄,d)− t̄R ≥ f(x− 1,d)

By the Equation A.10, convexity is verified for this case.

Case 4. We have to verify the inequality:

f(x− 1,d)− 2R− f(x,d) ≥ f(x,d)− f(x− 1,d)

f(x− 1,d)−R− f(x,d) ≥ f(x,d)− f(x− 1,d) + R

By the results of the minimizations:

a = f(x− 1,d)

f(x + 1,d) ≥ f(x− 1,d)− 2R

f(x,d)−R ≥ f(x− 1,d)− 2R (A.11)

f(x− 1,d)−R ≥ f(x,d) (A.12)

f(x− t̄,d)− t̄R ≥ f(x,d)

f(x− t̄,d)− (t̄− 1)R ≥ f(x− 1,d)

f(x− 1− t̄,d)− t̄R ≥ f(x− 1,d)

By the Equations A.11 and A.12, convexity is verified for this case.

Case 5. We have to verify the inequality:

f(x− 1,d)− 2R− f(x− 1,d) + R ≥ f(x− 1,d)−R− f(x− 1,d)

−R ≥ −R
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Here, convexity is verified for a = f(x− 1,d), however it can be verified for all values of a.

Case 6. We have to verify the inequality:

f(x + 1− t̄,d)− t̄R − f(x− t̄ + 1,d) + (t̄− 1)R ≥

f(x− t̄ + 1,d)− (t̄− 1)R − f(x− t̄,d) + (t̄− 1)R

f(x− t̄,d)− t̄R ≥ f(x− t̄ + 1,d)− (t̄− 1)R

By the results of the minimizations:

a = f(x + 1− t̄,d)− (t̄− 2)R

f(x + 1,d) ≥ f(x + 1− t̄,d)− t̄R

f(x,d)−R ≥ f(x + 1− t̄,d)− t̄R

f(x,d) ≥ f(x + 1− t̄,d)− (t̄− 1)R

f(x− t̄,d)− t̄R ≥ f(x + 1− t̄,d)− (t̄− 1)R (A.13)

f(x− 1− t̄,d)− t̄R ≥ f(x− t̄,d)− (t̄− 1)R

f(x + 1− t̄,d)− (t̄− 2)R ≥ f(x− t̄,d)− (t̄− 1)R

For x−t̄ ≥ 0, the above computations are sufficient for convexity. However, for x−t̄+1 ≤

0:
f(0,d)− t̄R− F (x + 1− t̄)− − f(0,d) + (t̄− 1)R + F (x− t̄ + 1)− ≥

f(0,d)− (t̄− 1)R− F (x− t̄ + 1)− − f(0,d) + (t̄− 1)R + F (x− t̄)−

−R ≥ −F

This inequality is related with the decision at x. Since the decision maker preferred to accept

t̄− 1 customers rather than accepting t̄ customers at x, the below inequality is formed:

f(0,d)− (t̄− 1)R− F (x− t̄ + 1)− ≤ f(0,d)− t̄R− F (x− t̄)−

R ≤ F

−R ≥ −F

Thus, convexity is verified for this case.

Case 7. We have to verify the inequality:
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f(x + 1− t̄,d)− t̄R − f(x− t̄,d) + t̄R ≥

f(x− t̄,d)− t̄R − f(x + 1− t̄,d) + (t̄− 2)R

By the results of the minimizations:

a = f(x + 1− t̄,d)− (t̄− 2)R

f(x + 1,d) ≥ f(x + 1− t̄,d)− t̄R

f(x,d)−R ≥ f(x + 1− t̄,d)− t̄R

f(x,d) ≥ f(x− t̄,d)− t̄R

f(x + 1− t̄,d)− (t̄− 1)R ≥ f(x− t̄,d)− t̄R (A.14)

f(x− 1− t̄,d)− t̄R ≥ f(x + 1− t̄,d)− (t̄− 2)R

f(x− t̄,d)− (t̄− 1)R ≥ f(x + 1− t̄,d)− (t̄− 2)R (A.15)

By the Equations A.14 and A.15, convexity is verified for this case.

f(0,d)− t̄R− F (x + 1− t̄)− − f(0,d) + t̄R + F (x− t̄)− ≥

f(0,d)− t̄R− F (x− t̄)− − f(0,d) + (t̄− 2)R + F (x + 1− t̄)−

R ≥ F

According to the decisions at x and x− 1, it is obvious that F = R for this case. Therefore,

convexity is verified for this case.

Case 8. We have to verify the inequality:

f(x + 1− t̄,d)− t̄R − f(x− t̄,d) + t̄R ≥

f(x− t̄,d)− t̄R − f(x− t̄,d) + (t̄− 1)R

f(x + 1− t̄,d)− (t̄− 1)R ≥ f(x− t̄,d)− t̄R
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By the results of the minimizations:

a = f(x + 1− t̄,d)− (t̄− 2)R

f(x + 1,d) ≥ f(x + 1− t̄,d)− t̄R

f(x,d)−R ≥ f(x + 1− t̄,d)− t̄R

f(x,d) ≥ f(x− t̄,d)− t̄R

f(x + 1− t̄,d)− (t̄− 1)R ≥ f(x− t̄,d)− t̄R (A.16)

f(x− 1− t̄,d)− t̄R ≥ f(x− t̄,d)− (t̄− 1)R

f(x + 1− t̄,d)− (t̄− 2)R ≥ f(x− t̄,d)− (t̄− 1)R

By the Equation A.16, convexity is verified for this case. The extreme cases are trivial

here.

Case 9. admission amount = t̄− t̄− t̄

f(x + 1− t̄,d)− t̄R− f(x− t̄,d) + t̄R ≥ f(x− t̄,d)− t̄R− f(x− 1− t̄,d) + t̄R

f(x + 1− t̄,d)− f(x− t̄,d) ≥ f(x− t̄,d)− f(x− 1− t̄,d)

Since we assume that f(x,d) is convex in x, ∀d, convexity is directly verified for this

case for the non-extreme cases. However, for x− t̄ = 0, we have:

f(1,d)− t̄R− f(0,d) + t̄R ≥ f(0,d)− t̄R− f(0,d) + t̄R− F

f(1,d)− f(0,d) ≥ −F

So, f(1,d)−f(0,d) ≥ −F for proving convexity in x. For this case, f(x+1,d)−f(x,d) ≥

−F should be verified for convexity.

In conclusion, Tadmf(x,d) = min
0≤t≤t̄

{f(x − t,d) − t R2} preserves convexity in x, ∀d for

every f(x,d) convex in x and satisfying LBD(F ), ∀d.

For f(x,d) satisfying LBD(F ), ∀d, Tadm preserves LBD(F ) property, ∀d:

Proof. We have to verify the inequality:

min
0≤t≤t̄

{f(x + 1− t,d)− t R} − min
0≤t≤t̄

{f(x− t,d)− t R} ≥ −F
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There are three possible cases according to the results of the minimizations:

Case 1. (0, 0) admission amount:

f(x + 1,d)− f(x,d) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Tadm preserves LBD(F ) property, ∀d.

Case 2. (t, t− 1) admission amount:

f((x + 1− t)+,d) − tR− F (x + 1− t)−

−f((x− t + 1)+,d) + (t− 1)R + F (x− t + 1)− ≥ −F

−R ≥ −F

This result is related with the decision at x. Although it is possible to accept t customers at

x, the decision maker chooses to accept t− 1 customers. Thus, below inequality is formed:

f((x− t + 1)+,d)− (t− 1)R− F (x− t + 1) ≤ f((x− t)+,d)− tR− F (x− t)

For x− t + 1 ≤ 0:

f(0,d)− (t− 1)R− F (x− t + 1) ≤ f(0,d)− tR− F (x− t)

−F ≤ −R

Thus, LBD(F ) property, ∀d, is verified for this case.

Case 3. (t̄, t̄) admission amount:

f(x + 1− t̄,d)− t̄R− f(x− t̄,d) + t̄R ≥ −F

f(x + 1− t̄,d)− f(x− t̄,d) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Tadm preserves LBD(F ) property, ∀d.
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A.9 First Class Order Arrival Operator

In this section, we investigate the structure of the operator for the first class order arrivals

of any amount m:

Tfcof (x,d) = f (x,d + mH)−m R1

For f(x,d) convex in x, ∀d, Tfco preserves convexity in x, ∀d:

Proof. Let f(x,d) be convex in x, ∀d, i.e. ∆f (x + 1,d) ≥ ∆f(x,d). We are going to show

convexity of Tfcof(x,d):

∆Tfcof (x + 1,d) ≥ ∆Tfcof(x,d)

Tfcof (x + 1,d)− Tfcof(x,d) ≥ Tfcof(x,d)− Tfcof (x− 1,d)

f (x + 1,d + mH)−mR1 − f (x, d + mH) + mR1 ≥

f (x,d + mH)−mR1 − f (x− 1,d + mH) + mR1

f (x + 1,d + mH)− f (x,d + mH) ≥ f (x,d + mH)− f (x− 1,d + mH)

Since f(x,d) is convex in x, ∀d, Tfcof (x,d) is proven to be convex in x, ∀d.

For f(x,d) satisfying LBD(F ), ∀d, Tfco preserves LBD(F ) property, ∀d:

Proof. We have to verify the inequality:

∆Tfcof (x + 1,d) ≥ −F

Tfcof (x + 1,d)− Tfcof(x,d) ≥ −F

f (x + 1,d + mH)−mR1 − f (x, d + mH) + mR1 ≥ −F

f (x + 1,d + mH)− f (x, d + mH) ≥ −F

Since f(x,d) satisfies LBD(F ), ∀d, Tfco preserves LBD(F ) property, ∀d.
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Industrial Engineering Department of Koç University, as a teaching and research assistant.


