
PEER-TO-PEER MULTIPOINT VIDEO CONFERENCING

USING LAYERED VIDEO

by

İstemi Ekin Akkuş

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical and Computer Engineering

Koç University

August, 2007

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

İstemi Ekin Akkuş

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Dr. M. Reha Civanlar (Advisor)

Assist. Prof. Öznur Özkasap (Advisor)

Prof. A. Murat Tekalp

Assist. Prof. F. Sibel Salman

Assist. Prof. Serdar Taşıran

Date:

To my family and friends

iii

ABSTRACT

A new peer-to-peer architecture for multipoint video conferencing using layered

video coding with two layers at the end hosts is presented. The system targets

end points with low bandwidth network connections (single video in and out) and

enables them to create a multipoint conference without any additional networking and

computing resources than what is needed for a point-to-point conference. In contrast

to prior work, it allows each conference participant to see any other participant at

any given time under all multipoint configurations of any number of users, with a

caveat that some participants may have to receive only the base layer video. Layered

video encoding techniques usable within this architecture are described. A protocol

for the peer-to-peer video transmission approach has been developed and simulated.

Its performance is analyzed. A prototype has been implemented and successfully

deployed. The effects of upload bandwidths that can support multiple video signals

are investigated.

Furthermore, a multi-objective optimization approach to minimize the number of

base layer receivers, to minimize the delay experienced by the peers and to maximize

the granted additional requests to support peers having multiple input bandwidths

has been developed. A technique assigning importance weights to each of the objec-

tives is proposed and explained. The use of the proposed multi-objective optimiza-

tion scheme is demonstrated through example scenarios. The system has been fully

specified and verified. To ensure secure transmission of video, a scheme providing au-

thentication, integrity and non-repudiation is presented and its effectiveness is shown

through simulations.

iv

ÖZETÇE

Uç noktalarda katmanlı video işleme yöntemi ile iki katman olarak işlenen video

görüntüleri kullanan yeni bir eşler arası çok noktalı video konferans mimarisi sunul-

maktadır. Bu mimari, düşük bant genişliğine (bir video alış ve gönderiş) sahip kul-

lanıcılara, bir noktadan bir noktaya konferans için gerekli ağ ve işlemci gücünden

daha fazlasına gerek duymadan çok noktalı konferans yetisi vermektedir. Daha önceki

çalışmadan farklı olarak, bazı katılımcıların taban kalitede video izlemesi karşılığında,

her katılımcının, istediği katılımcıyı herhangi bir zaman ve düzenleşimde izleyebilme-

sine olanak sağlamaktadır. Kullanılabilecek katmanlı video işleme yaklaşımları be-

timlenmiş, eşler arası video gönderimi için bir protokol geliştirilmiş ve benzetimler

yapılmıştır. Protokolun başarımı incelenmiştir. Prototip bir uygulama geliştirilmiş

ve başarılı bir şekilde gerçek hayata geçirilmiştir. Birden fazla gönderimi destekleyen

bant genişliklerinin etkileri incelenmiştir.

Ayrıca, taban katman video izleyenlerin sayısını ve eşlerin gözlemlediği gecik-

meyi azaltmayı ve birden fazla alış bant genişliğine sahip kullanıcıları desteklemek

üzere, karşılanan ek video taleplerinin sayısını arttırmayı hedefleyen bir çoklu eniy-

ileme yaklaşımı geliştirilmiştir. Bu hedeflerin her birine önem katsayıları atayan bir

yöntem sunulmuş ve açıklanmıştır. Sunulan çoklu eniyileme yaklaşımının, sistem

içindeki kullanımı, örnek senaryolarla betimlenmiştir. Sistem özellikleri tanımlanmış

ve doğrulanmıştır. Videonun güvenli bir şekilde iletimi için, kimlik doğrulama, bütün-

lük kontrolü ve inkar önleme destekleyen bir çözüm sunulmuş ve etkinliği benzetimlerle

gösterilmiştir.

v

ACKNOWLEDGMENTS

I would like to thank to my advisors Dr. Reha Civanlar and Prof. Öznur Özkasap

for their guidance and time. I would also like to thank to Prof. Serdar Taşıran for

supplying me another perspective on my work. I would also like to thank to my other

committee members Prof. Sibel Salman and Prof. Murat Tekalp for their corrections

and suggestions to improve my work.

Without my friends and colleagues, I would not have come this far: Canan Uçkun,

Engin Kurutepe, Emre Atsan, Erkan Keremoğlu, Burak Görkemli, Emre Güney,

Göktuğ Gürler, ”Metmet” Ali Yatbaz, Tayfun Elmas, Merve Kovan, Çiçek Güven,

Berkin Abanoz, Engin Ural, Ferda Ofli, Erhan Baş, Ekin Tüzün, Nurcan Tunçbağ,

Gözde Kar, Selen Pehlivan, Mustafa Kaymakçı, Onur Demir, Hazal Özden, Soner

Yaldız, and many others at the Graduate School of Sciences and Engineering at Koç

University.

Finally, I would like to thank my family, whose only intention is the good of mine,

and who never rolled back (and I know, would never will) their spiritual and financial

support for me, no matter what I do.

vi

TABLE OF CONTENTS

List of Figures x

List of Tables xiv

Nomenclature xvi

Chapter 1: Introduction 1

1.1 Contributions . 4

1.2 Organization . 5

Chapter 2: Related Work 6

2.1 Application Layer Multicast . 6

2.2 P2P Video Streaming . 8

2.2.1 Video Encoding: Single-stream 10

2.2.2 Video Encoding: Multiple Description Coding (MDC) 11

2.2.3 Video Encoding: Layered Coding (LC) 12

2.2.4 Construction of the Data Network 13

2.3 Video Conferencing Tools . 16

2.3.1 OCTOPUS - A Global Multiparty Video Conferencing System 16

2.3.2 3D Video Conferencing using Application Level Multicast . . . 18

2.4 Other Aspects . 19

2.4.1 Formal Specification & Verification 19

2.4.2 Security . 20

2.5 Remarks . 21

vii

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Lay-

ered Video 24

3.1 Layered Video . 28

3.1.1 Scalable Video Approach . 28

3.1.2 Multiple Description Coding Approach 30

3.2 Optimizations - Minimizing the Number of Base Layer Receivers . . . 32

3.3 The Effects of Multiple Outputs . 39

3.3.1 Special Case: 4 participants, 2 requests, 2 layers 42

Chapter 4: Real-Life Application 44

4.1 Tracker Software . 44

4.2 Peer Software . 45

4.3 Peer Software Modules . 45

4.3.1 Conference Manager Module 46

4.3.2 Video Module . 46

4.4 Peer Software Interfaces . 47

4.4.1 Graphical User Interface (GUI) 47

4.4.2 Conference Manager - Video Interface 48

4.5 Peer States . 49

4.5.1 Participant . 49

4.5.2 Member . 49

4.5.3 Chainhead . 49

4.5.4 Chainhead Member . 50

4.6 Messages . 50

4.6.1 Messages between peers and the tracker 51

4.6.2 Messages between peers . 52

Chapter 5: Multi-objective Optimization 60

5.1 Overview . 60

viii

5.1.1 Assumptions . 60

5.1.2 Problem Definition . 62

5.1.3 Computational Complexity . 63

5.2 Optimization Objectives . 64

5.2.1 Objective 1: Minimize the number of base layer receivers . . . 64

5.2.2 Objective 2: Minimize the maximum delay experienced by a peer 65

5.2.3 Objective 3: Maximize the number of additional requests granted 67

5.3 Multi-objective Optimization . 68

5.3.1 Formulation . 68

5.3.2 Example scenario: Minimize the number of base layer receivers

and the maximum delay in a chain 70

5.3.3 Example scenario: Minimize the number of base layer receivers

and maximize the number of additional requests granted . . . 73

5.4 Simulation results . 76

5.5 Discussions . 79

Chapter 6: Formal Specification, Verification and Security Aspects 83

6.1 Applying Formal Methods . 83

6.1.1 Formal Specification . 84

6.1.2 Illustrating the Abstraction Map 92

6.1.3 Formal Verification through Model Checking 95

6.1.4 Discussions . 97

6.2 Secure Video Transmission . 97

6.2.1 Method . 98

6.2.2 Simulation Results . 98

6.2.3 Discussions . 102

Chapter 7: Conclusion 104

7.1 Concluding Remarks . 104

ix

7.2 Future Work . 105

Bibliography 107

Vita 115

x

LIST OF FIGURES

3.1 Configurations for a three-participant conference (Numbers on arrows

indicate which video signal is used in that upstream). Each participant

can see any other one. 25

3.2 a) Participant 4 can not see participant 2. b) Participant 4’s request

can be granted. (F stands for full quality video (base & enhancement),

H stands for half quality video (base)) 26

3.3 Algorithm for granting a video request. 27

3.4 An example of chain optimization a) Participant 3 requests a relaying

participant’s video. b) Chain without optimization. c) Chain after

Participant 2 is moved to end. 33

3.5 a) Chain after Participant 2 is moved to the end. b) Chain after Par-

ticipant 2 is moved just before the end. 34

3.6 Complete decision algorithm with optimizations to minimize the num-

ber of base layer receivers. 36

3.7 Percentage of configurations containing base quality receivers versus

number of participants. 37

3.8 Percentage of base quality receivers to all receivers under all configu-

rations versus number of participants. 38

3.9 Average percentage of base quality receivers versus number of partici-

pants. 38

3.10 Algorithm to grant a request. Works for single and multiple output

bandwidths (The numbers of the lines are there to increase readability

and indicate the corresponding [if] and [else] pairs.). 40

xi

3.11 Percentage of base layer needed cases in all cases vs. participant count. 41

3.12 Percentage of average number of base layer receivers in a case vs. par-

ticipant count. 41

3.13 a) Two requests before and after swap. X denotes that the request set

needs base layer, shown in b). OK means there is no need for layers.

b) Two request sets needing two layers c) Two request sets not needing

any layers. 42

4.1 Peer modules and interfaces. 46

4.2 GUI a) before the user signs in to the tracker. b) after the user signed

in to the tracker. 48

4.3 System Sequence Diagram of signing in, checking in and signing out

events of a peer. 51

4.4 System Sequence Diagram of inviting an online peer to a conference. . 53

4.5 System Sequence Diagram of a peer leaving a conference. 54

4.6 System Sequence Diagram of sending a video request, video request

move, video request acknowledgement and video request update mes-

sages. Conference peers that are chain members are the members of

the respective chains of the senders. 55

4.7 System Sequence Diagram of sending a video request, video request ac-

knowledgement and video request update messages. Conference peers

that are chain members are the members of the respective chains of

the senders. 55

4.8 System Sequence Diagram of sending a video request update message. 56

4.9 System Sequence Diagram of sending a video request move, video re-

quest acknowledgement and video request update messages. Confer-

ence peers that are chain members are the members of the respective

chains of the senders. 57

xii

4.10 System Sequence Diagram of sending video keep-alive messages to the

chainhead and releasing a video source of a peer. 58

4.11 System Sequence Diagram of sending a private or conference message

of a peer. 59

5.1 A possible chain configuration of peer 1 with the set of receivers 3, 4,

5. The chain is represented as <4, 3, 5>. Arrows indicate the direction

of video transmission. F stands for full video quality and H stands for

base layer quality. Peer 4 and peer 3 are also heads for the chains, <6,

7> and <2>, respectively. 63

5.2 a) If the importance weights are assigned only with respect to the

preferences of the peers in a chain. b) If the importance weights are

assigned according to the preferences of all peers. The majority of the

peers get what they want: maximum video quality. 70

5.3 a) Chain configuration <4, 3, 5> yielding 5 as the number of base layer

receivers (Peers 6, 7, 3, 2 and 5). b) Chain configuration <3, 5, 4>

yielding 2 as the number of base layer receivers (Peers 2 and 4). . . . 72

5.4 a) Correct chain order to minimize the maximum delay. b) Correct

chain to minimize the number of base layer receivers. 72

5.5 a) The configuration after peer 5’s additional request is rejected. b) A

possible chain configuration of peer 1 after it granted peer 5’s additional

request. c) Another possible chain configuration of peer 1 with only 2

base layer receivers. 75

5.6 Pseudo code to handle a request. 77

5.7 Percentages of all requests. 80

5.8 Average percentage of base layer receiving requests to total requests in

cases where base layer is used. 80

xiii

6.1 Finite State Machine. The numbers on the transition arrows indicate

transition id. The messages causing this transition (input) and sent

during the transition (output) are given in Table 6.4. 92

6.2 TLA+ specification of sending a video request. 94

6.3 Prototype implementation of sending a video request. 95

6.4 Encryption times versus the chunk sizes. Corresponding series show

the key sizes. 100

6.5 Decryption times versus the chunk sizes. Corresponding series show

the key sizes. 100

6.6 Encryption/Decryption times versus the key size. Chunk size is equal

to the key size. 101

xiv

LIST OF TABLES

2.1 Classification of video streaming applications according to their target

group size . 9

2.2 Classification of video streaming applications according to their dis-

tributed content . 9

2.3 Classification of video streaming applications according to the number

of sources . 9

2.4 Classification of video streaming applications according to video en-

coding approaches . 9

2.5 Classification of video streaming applications according to their con-

struction of data networks . 10

3.1 Average PSNR and bit rate values: Temporal scalable base and full

quality layers. 29

3.2 Bitstream contents of the full quality layer with temporal scalability. 30

3.3 Average PSNR and bit rate values: SNR scalable base and full quality

layers. 31

3.4 Bitstream contents of the full quality layer with SNR scalability. . . . 31

3.5 Average PSNR and bit rate values: MDC scalable base and full quality

layers. (JSVM) . 32

3.6 Average PSNR and bit rate values: MDC scalable base and full quality

layers. (Nokia) . 32

4.1 Peer State Variables . 50

5.1 Latency Table . 71

xv

5.2 g1(c) and h1(c) values with wg = 0.29 and wh = 0.71. 74

5.3 g1(c) and h1(c) values with wg = 0.71 and wh = 0.29. 74

5.4 g1(c) and m1(c) values with wg = 0.33 and wm = 0.67. 76

5.5 g1(c) and m1(c) values with wg = 0.83 and wm = 0.17. 76

6.1 User states in the TLA+ specification with a correspondent in the

prototype implementation. 85

6.2 Variables in the TLA+ specification with a correspondent in the pro-

totype implementation. 86

6.3 Messages in the TLA+ specification with a correspondent in the pro-

totype implementation. 86

6.4 Messages that cause transitions (input), messages that are sent during

the transition (output) and state variables that have an effect on the

transition. 91

6.5 State information of TLC checks . 97

6.6 Total time spent on digest value calculation and encryption/decryption

times with corresponding key sizes 102

xvi

NOMENCLATURE

ESM End System Multicast

GVC Global Video Conference

IM Instant Messaging

ISP Internet Service Provider

JSVM Joint Scalable Video Model

LC Layered Coding

LTL Linear Temporal Logic

LVC Local Video Conference

MCU Multipoint Control Unit

MDC Multiple Description Coding

MP Multipoint

OSI Open Systems Interconnection

P2P Peer-to-Peer

PROMELA Process Meta Language

RP Rendezvous Point

RTT Round Trip Time

TLA Temporal Logic of Actions

TLC Temporal Logic Checker

QoS Quality of Service

VoD Video on Demand

VoIP Voice over IP

xvii

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The Internet has revolutionized people’s communication methods. It started re-

placing traditional pen-paper model letter with e-mail and continued with voice over

IP (VoIP). With the increasing computing power and its decreasing cost, image and

video coding has become more common. This created a place for video communica-

tions beneath the text and audio. Unfortunately, the increase in the access bandwidth

to the Internet is not as steep as it is in the computing power of end hosts. Also, the

cost does not become cheaper as speedily.

Instant messaging (IM) applications (e.g., ICQTM, Microsoft MessengerTM) were

originally designed for real-time text communications. VoIP applications (e.g., SkypeTM,

VoipBusterTM) targeted audio communications. Although these started providing

point-to-point (i.e., between two end points) text and audio communications, they

incorporated multipoint conferencing abilities as well and provided multi-user chat

rooms and audio conferences where more than two end points could interact with

each other. Video conferencing is slowly merging into people’s lives as these appli-

cations try to include video communications as well. Unfortunately, the bandwidth

demand of video communications prevents these applications to form a multipoint

(MP) video conferencing environment and limits them to only point-to-point video

communications. This is mostly because of the fact that low bandwidth connections

(e.g., ordinary modem over a phone line or wireless GPRS) that are barely enough for

point-to-point video communications make more than one video connection infeasible.

Moreover, users tend to consume as much of the available bandwidth as possible to

increase their video quality and, hence, a MP video system that increases the demand

Chapter 1: Introduction 2

for bandwidth cannot be popular.

The bandwidth demand of a MP video system can be reduced using a special

network-based equipment called Multipoint Control Unit (MCU) [1]. The MCU acts

as a single-point recipient for each participant, thus needing a large bandwidth con-

nection itself. It prepares a multipoint video representation that can fit into a smaller

bandwidth and sends it to each participant. However, because of the complexity and

cost of the operations of the MCUs, they are mostly used by large business applica-

tions that can afford such equipment. They also suffer from single-point-of-failures

and hence are not failure transparent.

Multicasting is another approach to reduce bandwidth demands of MP video con-

ferencing whenever the underlying network supports it. The additional advantage of a

multicasting-based solution is the reduced operational complexity [2], but it requires

the support of routers. Deploying multicast-supporting routers on the global Inter-

net by the Internet Service Providers (ISPs) is costly and is not popular among the

system administrators since they may increase security risks. Therefore, MP video

conferencing using this approach is not applicable, due to the fact that native mode

multicasting on the global Internet has not been realized.

Initiated for file sharing aims, peer-to-peer (P2P) systems became extremely pop-

ular in a short time. The distributed architecture where each peer could act as a server

and a client at the same time, created a difference from the traditional client/server

models. This has triggered P2P systems to find diverse applications. One of these

applications is media streaming. Most of the recent techniques for P2P media stream-

ing on the Internet utilize multicast model at the application layer. The main benefit

of implementing application layer multicast is overcoming the lack of large-scale IP

multicast deployment at the network layer.

In this thesis, we propose and develop extensions to the alternative approach to

MP video conferencing presented in [3]. The system is based on the use of a distributed

P2P architecture which does not need any special hardware or network infrastructure

support. Its P2P architecture prevents single-point-of-failures and provides failure

Chapter 1: Introduction 3

transparency (i.e., if one peer crashes, the system continues to function). There is no

additional networking and computing resources needed at the end points more than

that of a point-to-point video conference. In this system, each participant can see one

other participant under most practical cases. However, the number of denied video

requests increases as the participant count increases [3].

One of the extensions proposed in this thesis is the use of layered video. Utilizing

two layers of video (i.e., base and enhancement layers), we overcome the problem of

denying video requests and assure that each participant can view any other partici-

pant at any configuration. Although this may cause that some participants receive

base layer quality video, we show that even with small bandwidths, the video is in

acceptable quality. We also propose some optimizations to minimize the number of

base layer receiving participants, since the existence of participants receiving base

layer only becomes inevitable at some cases.

Simulation results show that the optimizations make the system scalable in terms

of participant count. The use of layered video does not cause the system to crash

as the participant count increases, nor does it hurt the average video quality viewed

at the conference. The approach assumes that each peer has at least the computing

and networking resources that are enough for a point-to-point video conference. That

means, peers can send one video signal and receive one video signal at the same time.

By the use of layered video, we virtually break the upload bandwidth into two. This

way we guarantee that each peer’s video request is granted.

We also present a multi-objective optimization framework to handle delays be-

tween the peers and their heterogeneous bandwidth connections. Since our approach

makes use of a chain-based solution [4], this may cause that the peers at the ends

of chains receive video after several peers have forwarded it. Furthermore, peers can

have different bandwidth connections that can support more than one video download

and upload. We define objective functions to minimize the number of base layer re-

ceivers, to minimize the maximum delay experienced in a chain and to maximize the

number of additional requests granted. We formulate the multi-objective functions

Chapter 1: Introduction 4

and describe how they can be employed within the system.

Other aspects of the system are also investigated. The system is modeled in detail

using Lamport’s specification language TLA+ based on Temporal Logic of Actions

(TLA) [5]. TLA is a logic to specify and reason about concurrent and reactive systems.

The system model is then verified with TLA+ Model Checker (TLC) [6]. Besides,

since peers may act as a relay to forward the video of another peer, any intermediate

peer can alter the original video. In order to prevent this, a security scheme is

proposed. This scheme works on packet level and provides integrity, authentication

and non-repudiation.

1.1 Contributions

Contributions of this study are the following:

1. We propose a P2P MP video conferencing system that makes use of layered

video. The participants (i.e., the peers) are assumed to have at least the net-

working resources that are enough to be used in a point-to-point video con-

ference, that is, they are able to send one video signal and receive one video

signal at the same time. The use of layered video with two layers (i.e., base

and enhancement layers) makes sure that each participant can view another

participant under any configuration.

2. A fully distributed algorithm and architecture of the P2P MP video conferencing

system is developed and presented. Although all participants can receive one

other participant’s video signal of their choice, some peers only receive base

layer quality video. Optimizations to minimize the number of such receivers are

proposed and presented along with simulation results.

3. We present layered video techniques that can be employed within the proposed

system. They are explained and compared.

Chapter 1: Introduction 5

4. A multi-objective optimization framework has been developed to consider the

end-to-end delays between peers and their heterogeneous bandwidth connections

to the Internet. Objective functions to minimize the number of base layer

receivers, to minimize the maximum delay experienced and to maximize the

number of additional requests granted are defined and derived. Formulations to

achieve these objectives are developed and explained with example scenarios.

5. The formal specification of the system has been made using TLA+. The system

is modeled in detail; describing the protocol run by the peers, the format of

the messages they exchange, the syntax and semantics of these messages and

the actions when these are received. The model has been verified with TLA+

Modelchecker (TLC). An abstraction map between the real-life application and

the model is presented.

6. A simulation study to integrate security into the proposed system has been

carried out. The proposed scheme integrates integrity, authentication and non-

repudiation into the system via generating digests per packet and digitally sign-

ing them.

1.2 Organization

Next chapter gives a literature survey on video streaming applications and video

conferencing tools. It also covers related work for the verification process and the

security scheme. Chapter 3 explains the theory of our P2P approach using layered

video. It also describes layered video schemes and presents optimizations to minimize

the number of base layer quality video receivers in a configuration along with simula-

tion results. Chapter 4 presents the details of our system prototype. We present the

Multi-objective Optimization framework in Chapter 5. Other aspects of the proposed

system such as formal specification of the system model, formal verification and se-

curity scheme are described in Chapter 6. Finally, Chapter 7 includes the concluding

remarks and gives future directions.

Chapter 2: Related Work 6

Chapter 2

RELATED WORK

In this chapter, existing studies on P2P video streaming applications and video

conferencing tools will be analyzed and investigated. Their targets, advantages and

shortcomings will be discussed. Also, other related work on formally specifying and

verifying distributed systems and securing a streamed media is presented.

2.1 Application Layer Multicast

Since replacing routers to support multicast is not an easy task to be realized in the

global Internet, another method has been proposed. In the application layer multicast

-also known as End System Multicast (ESM), P2P Multicast, Overlay Multicast- end

hosts are used to relay data instead of routers in native multicast.

Narada [7] is a self-organizing and self-improving protocol for conferencing ap-

plications and adapts to network dynamics. After maintaining a connected graph

called mesh among the peers, Narada constructs a shortest path spanning tree on the

mesh whenever a source wants to transmit content to a set of receivers. The mesh

is improved by adding links or removing them in an incremental fashion, considering

stress, number of identical copies of a packet carried over a physical link, relative

delay penalty, ratio of the delay between two members in the mesh to the unicast

delay between them, and resource usage. Results indicate that ESM is a promising

approach for conferencing applications in dynamic and heterogeneous Internet set-

tings. The study shows the necessity for self-organizing protocols to adapt to latency

and bandwidth metrics.

The implementation of video conferencing through ESM is reported in [8, 9]. In

practice, ESM is widely and successfully used for single-source video streaming. The

Chapter 2: Related Work 7

assumption is that in a typical conferencing application, there is a source transmitting

at any point in time. Although its applicability to multi-source video conferencing

is mentioned, its practical usage in this context is not that common and related

performance results are not reported. Besides, the system assumes that participants

have large upstream bandwidths. Also, maintaining the mesh becomes costly as the

group size is increased, since the links are added by probing.

NICE [10] is another application layer multicast protocol which aims larger receiver

sets than targeted in Narada [7]. NICE clusters the peers into a hierarchical structure.

The hierarchy of clusters is useful for the scalability of the system, since NICE requires

peers to maintain state of some other peers. With the clustering, the size of this

state table is bounded with O(logN). The hierarchical structure implicitly defines

the multicast overlay paths, where each cluster head forwards data to other peers

in the same cluster. The cluster heads form another cluster in the higher level and

receive the data from their heads. Clustering also brings the advantage of faster

recovery on leaves or failures of peers, since it is localized. The increase in the control

overhead is logarithmic as the group size increases, which makes NICE scale better

than Narada for large receiver sets. The performance may be increased by using

randomized forwarding when there is high packet losses and host failures [11].

Zigzag [12] is another P2P system developed for single-source media streaming for

large receiver groups like NICE. Zigzag and NICE look similar; however, they differ in

their multicast tree construction and maintenance mechanisms. Although ZIGZAG

also possesses a hierarchical cluster structure for peers, the cluster members are not

used to forward the content to the peers. Instead, the so-called associate heads from

the upper layer are used. This gives the ability of recovering fast from failures. Zigzag

also aims that the height of the multicast tree is logarithmic and thus, to minimize

the end-to-end delay from the server to the peers.

Chapter 2: Related Work 8

2.2 P2P Video Streaming

Nearly all P2P video streaming applications found in the literature make use of appli-

cation layer multicast. Application layer multicast overcomes the lack of IP multicast

by using the end hosts. However, there is a performance penalty since some packets

may have to pass some links more than once. Generally, P2P video streaming applica-

tions aim to minimize this penalty and enhance performance of the application layer

multicast by making use of video encoding techniques and using clever techniques in

their construction of the overlay network.

One can classify P2P video streaming applications according to

• their target group size

• whether they are distributing video on demand (VoD) or live video

• the number of sources

• whether they use layers in their video encoding (i.e., single-stream, Multiple

Description Coding (MDC) or Layered Coding (LC))

• their construction of data networks.

However, this classification does not prevent that these groups would intersect.

Related work under this classification can be viewed at Tables 2.1, 2.2 and 2.3. In the

context of P2P video streaming applications, we will focus on their video encoding

approaches and the way they make use of video encoding structures. We will also take

a closer look on how the data network is constructed when it comes to distributing

live content.

Chapter 2: Related Work 9

Table 2.1: Classification of video streaming applications according to their target
group size

Small MP Video Conferencing Applications [30, 32, 3]

Medium Narada [7, 8, 9]

Large NICE [10, 11], Zigzag [12], P2Cast [14], SplitStream [16], CoopNet [20, 21], PeerCast & SpreadIt [26, 27],

P2VoD [15], Centralized P2P applications [22, 23, 24], DONet & CoolStreaming [28], AnySee [29],

Table 2.2: Classification of video streaming applications according to their distributed
content

Video on Demand P2Cast [14], SplitStream [16], CoopNet [20], P2VoD [15], Centralized P2P applications [22, 23, 24]

Live Video DONet & CoolStreaming [28], PeerCast & SpreadIt [26, 27], AnySee [29],

CoopNet [21], MP video conferencing applications [30, 32, 3]

Table 2.3: Classification of video streaming applications according to the number of
sources

Single source Nice [10, 11], Zigzag [12], SplitStream [16], CoopNet [20, 21], P2Cast [14], P2VoD [15]

PeerCast & SpreadIt [26, 27], AnySee [29], DONet [28]

Multiple sources Narada [7, 8, 9], MP video conferencing applications [30, 32, 3]

Table 2.4: Classification of video streaming applications according to video encoding
approaches

Single-stream GnuStream [13], P2Cast [14], P2VoD [15], MP Video Conferencing Applications [30, 32, 3]

MDC SplitStream [16], CoopNet [20, 21]

LC Centralized P2P applications [22, 23, 24]

Chapter 2: Related Work 10

Table 2.5: Classification of video streaming applications according to their construc-
tion of data networks

Receiver-driven GnuStream [13]

Source-driven Narada [7, 8, 9], NICE [10, 11], Zigzag [12], PeerCast & SpreadIt [26, 27]

Data-driven DONet & CoolStreaming [28], AnySee [29]

2.2.1 Video Encoding: Single-stream

GnuStream [13] is built on top of Gnutella and is a receiver-driven media streaming

system. Instead of one fixed sender, a dynamic set of peers is used. This way,

the streaming bandwidth is aggregated from multiple senders, so that the streaming

load is distributed for the senders, and the receivers can react to the departure of

the clients in a fast manner. This is achieved by keeping a list of standby senders,

which become active if a sender disconnects. The Streaming Control Layer performs

bandwidth aggregation, data collection and status change of the peers. The buffer

control mechanism is the key challenge because of the P2P network dynamics. Data

Collection Buffer collects data from peers and feeds the Playback buffer. The Playback

buffer feeds the Decoder buffer, which are coordinated by the Control Buffer. The

Control Buffer is responsible for the synchronization of the data collected from the

peers. This data is then fed back to the Decoder Buffer, which feeds the Display

Buffer. A double buffer for the display uses the player efficiently and minimizes the

switching overhead. Experiments show that the buffer management mechanism works

well, in case a peer supplying media is disconnected. There is no interruption even

during the recovery by changing the sender to include the standby sender.

In P2Cast [14], the aim is to construct an application overlay appropriate for

streaming and providing continuous stream playback without glitches even when some

clients depart. A patching technique relying on unicast connections among peers is

proposed. The peers that have contacted the source to receive the stream within a

certain threshold form a session and cooperatively stream the video content. The peers

Chapter 2: Related Work 11

in a session supply patches to later joining peers to the same session. The streaming

tree is constructed regarding to the bandwidth availability of the connections and

only using local information (i.e., about parents and children). Continuous playback

is supported by using shifted forwarding. In this technique, a peer re-joining the base

tree after its parent departed requests the missing parts from the new parent. Instead

of current video data, the parent forwards the lost parts. Continuous playback occurs

if sufficient time is waited. The threshold of the sessions can be adjusted to balance

between scalability and quality. Base stream quality is higher, when the threshold is

small (i.e., small sessions and small patches). If the threshold is large, more clients

can be supported by forming large sessions, but the quality is decreased because of

large patches.

P2VoD [15] is a system for Video-on-Demand that is similar to the P2Cast. In

P2VoD, peers cache the most recent parts of the video and failures are handled locally

using generations of peers. A generation is a group of clients, who always have the

same smallest numbered retrieval block in their cache. If a failure occurs, the children

of the failed peer are adopted by the peers that are in the same generation of the

failed client. The performance comparison with P2Cast shows that P2VoD is better

in criteria such as client rejection probability, server workload, failure probability and

failure overhead.

2.2.2 Video Encoding: Multiple Description Coding (MDC)

SplitStream [16] aims to distribute the load of the overlay multicast evenly to all

the peers. This is achieved by striping the content into multiple parts and building

multiple distribution trees. To distribute the load among the interior nodes, these

tree are built disjoint, so that one peer in the interior of one distribution tree would be

a leaf in the others. Employing MDC, this forest of interior-node-disjoint multicast

trees is made to be resilient to failures. It is built using Pastry [17], which is a

scalable, self-organizing structured P2P overlay network similar to Chord [18] and

Scribe [19]. They showed that SplitStream distributes load more evenly on the links

Chapter 2: Related Work 12

than application-level multicast systems using a single distribution tree.

CoopNet [20, 21] can support both, VoD and live media streaming. In [20], the

authors propose CoopNet, as a hybrid approach integrating the client-server and P2P

models for both on-demand and live streaming media. Their aim is to complement

the client/server architecture to decrease the load on the server and distribute it

among the peers. Clients make use of caching content they viewed recently for on-

demand media. For live media, they form a distribution tree rooted at the source

(i.e., the server). To prevent disruptions because of peers departing, multiple disjoint

distribution trees are formed. Using MDC, failure resiliency is increased. Effectiveness

of the system is shown by simulation using the trace of a flash crowd event, for both

on-demand and live streaming.

In the extension study [21], the authors aim to solve the distribution of ”live”

media via a scalable centralized tree management algorithm, in which creating short,

diverse and efficient trees along with quick joins and leaves are the targets. MDC is

tuned adaptively by a scalable client feedback, in which the packet loss information

is passed up the distribution trees, so that the server is not overwhelmed by all

clients, but their direct children (i.e., the number of such children is equal to the

number of distribution trees). The quality of the video increases with the number of

distribution trees, since the loss resilience increases. The comparison with Forward

Error Correction (FEC) shows that MDC is more suitable when all peers experience

different loss rates.

2.2.3 Video Encoding: Layered Coding (LC)

Another VoD system is described in [22]. Video content is encoded into hierarchi-

cal layers and stored on different peers. A client request for a video is satisfied by

streaming different layers from different peers. The number of copies of the layers

differ according to the importance of the layers. Different number allocation schemes

are proposed and simulated. When the network is heavily loaded, more importance

is given to the lower layers, so that each peer can receive it. On the other hand,

Chapter 2: Related Work 13

with no congestion in the network, higher layers are given more importance and the

probability of a peer receiving all layers increases. The replacement time if a peer

disconnects, in the highly loaded network is longer, so that MDC with FEC has bet-

ter quality, because of MDC’s loss resilience. In lightly congested network, where the

replacement time is not that high, layered encoded video has better efficiency and

performance.

The authors in [23] present a centralized P2P algorithm. A layered video coding

technique based on 3D Discrete Cosine Transform is used along with the proposed P2P

Streaming Protocol to guarantee Perceived Quality of Service. The hybrid approach

works like a client/server architecture where the base and enhancement layers of video

are sent to all clients from the server. In congestion, only the base layer is sent to the

clients, whereas the enhancement layers are obtained from peers that already received

them.

In [24], a layered P2P streaming mechanism for on-demand media distribution is

proposed. This work points out the asynchrony of user requests and heterogeneity of

peer network bandwidth. As the solution, cache-and-relay and layer-encoded stream-

ing techniques are proposed. The solution has been shown to be efficient at utilizing

peers’ bandwidth, scalable at saving server bandwidth consumption, and optimal at

maximizing streaming quality of peers.

2.2.4 Construction of the Data Network

A classification of the application layer multicast protocols according to their con-

struction of the data network is as follows [25]:

• Receiver-driven: The receiver actively decides, which peers should be the senders

of the desired video. Multiple sources contribute parts of the content and the

receiver puts them together.

• Source-driven: There is a single source of the content and peers cooperatively

stream the content from the source to the other receivers.

Chapter 2: Related Work 14

• Data-driven: No clear direction for the data flow is defined.

In the receiver-driven approach, protocols make the data plan as a spanning tree

with the receiver being the root, so that afterwards they can organize the senders.

During this, encoding of the media content (e.g., MDC or LC) is necessary, since each

sender can send a different part of the stream. One example for the receiver-driven

approach is GnuStream [13] which is built on top of Gnutella. Although the authors

of GnuStream do not state explicitly the use of MDC or LC, their buffer mechanism

is responsible for collecting data from the peers (i.e., the senders), aggregation and

synchronization.

Source-driven approach: PeerCast

PeerCast described in [26] and [27] is a tree-based overlay network, that aims to

distribute live content over peers which are very dynamic and unreliable in terms of the

duration of their participation in the multicast scheme. They point out that current

performance metrics, such as link stress and relative delay penalty, do not reflect end-

system performance. Time-to-first-packet is one such metric. Peering layer between

the transport level and application level of the TCP/IP stack is introduced, in order

to hide the details and results of the overlay topology changes from the application

level, which is just responsible for streaming the video. Peering layers of different

peers establish data transfer sessions to manage the transience of peers (e.g., joining,

leaving, failing). The peering layer takes care of these events by using a redirect

primitive in which the peers are redirected to the parent, children or to the source

by the correspondent peer. It is shown through simulation that the redirect primitive

can handle a join request much faster than the traditional client-server architecture,

in which the server has to queue all the requests and reply them one-by-one. Thus,

the time-to-first-packet is decreased. Since the application sessions are established

between the peering layer and the end application, PeerCast has a flexible structure

and thus, can work with any of the existing streaming applications.

Chapter 2: Related Work 15

Data-driven approach: DONet & AnySee

In contrast to receiver-driven and source-driven approaches, a data-driven overlay

network for P2P live media streaming is presented in DONet [28]. In a data-driven

approach, there is no specific direction (i.e., the connections are used in both di-

rections) of the flow of the content. The basic idea is that each peer exchanges

information with its neighbor about data availability. If it misses data, it retrieves it

from the peer. If the neighbor misses data, it sends it to the neighbor. The design is

simple since no global structure is maintained; efficient since data transfer depends on

the dynamical availability information; robust and resilient, as the neighbor switch-

ing can be done quickly when a node fails. The membership management algorithm

depends on gossiping, so that each peer exchanges information with a random par-

tial group of peers, which also does the same. Simulations show that a group of 4

neighbors gives quite good streaming continuity and rate. Comparisons with a tree

overlay structure shows that DONet is more robust to client departures/failures, thus

giving better streaming continuity. An application is implemented and downloaded

by about 30,000 people. Statistical usage and feedback to the authors show that the

larger the overlay size, the better the streaming quality. This is expected, since larger

overlay gives peers the chance to look for better neighbors (in terms of bandwidth

and delay) and increases the probability of availability of the content.

AnySee [29] is a P2P live streaming system that has been in use since 2004 to

distribute TV shows, movies and even academic conferences. Previous P2P streaming

applications focus on intra-overlay optimizations, so that they can efficiently build a

control and data structure in the overlay network. However, these optimizations can

achieve well up to a certain point on performance metrics, such as startup delay,

source-to-end delay and playback continuity. The authors propose the inter-overlay,

so that peers can join multiple overlays. The target is to improve global resource

utilization, distribute traffic to all physical links evenly, assign resources based on

locality and delay and balance the load among group members. Using the nearest

peers, receivers are guaranteed good service quality. Simulations show that inter-

Chapter 2: Related Work 16

overlay optimizations outperform CoolStreaming (i.e., the commercial software for

DONet [28]) in resource utilization. One of the interesting findings is that the peers

tend to have great patience for large delays, if the streamed content is desired.

Source-driven or Data-driven?

In the source-driven approach (e.g., Narada [7, 8, 9], Nice [10, 11], Zigzag [12], Peer-

Cast [26, 27]), the system builds a control plan among the peers [25]. The data plan

is always a spanning tree using the control plan with its root at the sender. In the

receiver-driven approach, spanning trees are built at the receivers so that multiple

senders can be organized to send data to them. The data-driven approach does not

clearly separate both plans; the peers exchange information about the availability of

the pieces of the media.

The authors present simulation results of the source-driven approach using Peer-

Cast and data-driven approach using DONet for different metrics, like average time

to first packet, distribution of clients in the structure and data packet loss rates with

the clients dynamically leaving the system. In each of these approaches, DONet out-

performs the other variations of PeerCast (i.e., different cluster sizes). Since peers

randomly exchange information with other peers in DONet, the dynamic movement

of the peers does not severely affect the data loss rate. Therefore, the authors con-

clude that data-driven approach is more suitable for designing live P2P streaming

applications.

2.3 Video Conferencing Tools

2.3.1 OCTOPUS - A Global Multiparty Video Conferencing System

In [30], a global multiparty video conferencing system is presented. It is a two-tier

scheme: Local Video Conference (LVC) and Global Video Conference (GVC). LVCs

consist of participants that are geographically close to each other (a few kilometers)

and their architectures can be distributed or centralized. GVC does not require or

Chapter 2: Related Work 17

assume that LVCs use a fixed architecture, thus allowing flexibility. OCTOPUS is a

video conferencing application for closed participant groups that connects local video

conferences to make a globally connected one. GVCs make use of a group communi-

cation protocol running on the IP multicast. Each LVC selects a group coordinator,

which handles the connections between the other LVC group coordinators. Group

coordinators are responsible for setting up a global conference, connecting the LVC

to a global conference, managing the QoS, exchanging information with other group

coordinators about participants who join or leave, receiving video streams from other

LVCs and supplying floor control, to queue the participants who request to speak.

Bandwidth restrictions of the links between LVCs are determined through mea-

surements by and among LVC group coordinators. When bandwidth is not sufficient

to stream video signals of all participants to all other participants, the visibility prob-

lem emerges. Depending on the bandwidth, a limit on the number of the participants

who can be shown is imposed. A voting scheme is applied to decide which partici-

pants are mostly desired to be viewed [31]. The speaker is always shown with a good

quality (i.e., 12 frames per second). The rest of the bandwidth is divided between

the other participants who collected the most votes. (i.e., up to a certain number

of participants are shown). Group coordinators prioritize streams of the speaker and

the participants who are given importance levels through voting in order to match

with the bandwidth restrictions of the links.

Since the system is based on the connections established among the group coor-

dinators (i.e., the LVCs are connected through group coordinators), it suffers from

single-point-of-failures. Although detection and recovery is possible, it may take some

time before the LVC (whose group coordinator had failed) and its participants join

the global conference again. The flexibility of allowing LVCs having distributed or

centralized architectures seems to be weaken by this. Also, the group communication

protocol run between the group coordinators depends on the IP multicast, whose

deployment is not that wide.

Chapter 2: Related Work 18

2.3.2 3D Video Conferencing using Application Level Multicast

A 3D video conferencing application using an ESM is reported in [32]. The authors

point out that the current applications for P2P media streaming are focusing on

distributing a video content, be it on-demand or live, from a single source to a large

group of receivers. However, a video conferencing application targets a smaller group,

mostly from 4 to 10 participants, where each of these participants can be the source

of a video signal.

They propose an awareness-driven video model where a participant is seeing other

participants whenever they are in its field of view. They prefer a centralized algorithm

for tree construction for the recipients since it can react faster to changes during join

or leave events. Rendezvous Points (RP) decide how the multicast trees for different

sources are built and which peer will be acting as a parent for another peer. The

algorithm also considers the fan-out of the peers, so that the system does not allow

the total number of streams requested to exceed the total number of fan-outs of all

peers (e.g., in a 4 participant conference, there can be a total of 12 video requests; as

each participant at the maximum can see every other participant in the conference).

In a 4-participant conference experiment, they show that the total number of video

requests in the system at any time is mostly under 6, hinting that a video conference

participant at most desire to view two other participants.

During the construction of the trees, RPs can decide that some participants act

as reflector points, in the situation, that the corresponding participant does not want

to stream a video signal, but has to forward it to another participant. This makes

use of the idle fan-out that the reflector possesses. Despite this, some video requests

may still be rejected.

Although using a centralized approach decreases reaction time to changes and

makes good use of the idle bandwidths, it suffers from single-point-of-failures. Con-

trolling multiple multicast trees also increases operational complexity. Another disad-

vantage is that some participants’ fan-out bandwidths are used without their consent.

Chapter 2: Related Work 19

2.4 Other Aspects

2.4.1 Formal Specification & Verification

A formal description technique is LOTOS which is a standard for the design of dis-

tributed systems in particular for OSI services and protocols [33]. While other descrip-

tion techniques are based on state representations of the systems, LOTOS defines the

temporal relations between externally viewable events. LOTOS allows concurrency,

non-determinism, synchronous and asynchronous communications descriptions. For

specification, verification and code generation support, toolsets called EUCALYPTUS

[34] and APERO exist as well [35].

Several tools for model checking exist. One of the most popular is SPIN model

checker [36]. It is an automata-based model checker in which the system is writ-

ten in Process Meta Language (PROMELA) and uses Linear Temporal Logic (LTL)

for properties to be verified. With options such as partial order reduction [37] or

bit-state hashing [38], the model check process can be accelerated and done more

efficiently. SPIN is a suitable model checker for asynchronous distributed algorithms

and non-deterministic automata, and thus used to model check for various systems

and communication protocols [39, 40].

Temporal Logic Checker (TLC) is a model checker that verifies TLA+ specifica-

tions. TLA+ is based on TLA, Temporal Logic of Actions, which is fully described

by Lamport in [5] and adds constructs that can be used in the formal specification

process. In TLA, the systems as well as their properties are represented in the same

logic. TLC can be used for concurrent and reactive systems described in TLA+ spec-

ifications [6]. TLA+ and TLC can be used in different types of systems [41, 42, 43].

As a comparison, the main advantage of SPIN model checker is that the systems

can be defined and described with traditional C program-like input files. It is designed

for verification of software systems. Since the code is written like in a programming

language environment, expressing formulae is hard. On the other hand, TLA+ can

provide formulae in an easier manner. Sets, functions and temporal operators are

Chapter 2: Related Work 20

embedded in the language which makes it more complex yet powerful, but in the

mean time harder to understand and use. The generated specifications then can be

used in TLC to be verified. Therefore, TLA+ is chosen to specify our system and

TLC to verify it.

2.4.2 Security

Shifting the multicasting burden from the routers to the end systems is beneficial in

terms of scalability; however, since every end system forwards received data to other

hierarchically lower systems, security concerns may be introduced. The intermediate

peers may alter the received data and forward them so that the receivers in the lower

levels of the hierarchy may encounter modified data. One way to prevent this would

be using encryption. The video would be encrypted by the sender and decrypted by

the receivers. This is a challenging task, since this needs to be achieved in a limited

time to meet the real-time streaming demands.

To enhance performance that is brought by encryption of the entire data packet,

Spanos et al. [44] and Li et al. [45] propose encrypting only the I-frame that are used

as reference frames for other frames. However, it was shown that the performance

enhancement is not considerable and the video is recoverable using only B and P-

frames [46].

The Adaptive Rich Media Streaming System (ARMS) uses Advanced Encryption

System (AES) to stream MPEG-4 video [47]. End-to-end security is established while

content is adapted to the network conditions and streamed over untrusted servers.

Because of its efficiency and low overhead, AES is also pointed out in RFC3711 [48]

as standard encryption and decryption schemes that could be used in RTP [49] are

described.

To meet the real-time demands, compression and encryption may be done at

the same [50, 51]. Compression-independent algorithms [52] may also achieve fast

performance. All these techniques make use of a shared secret key that enhances

performance. However, the same key is used both for encryption and decryption. In

Chapter 2: Related Work 21

an application layer multicast session where the sender and receivers share the same

secret key, the authentication of the sender is not possible.

Timed Efficient Stream Loss-tolerant Authentication (TESLA) allows receivers in

a multicast group to authenticate the sender [53]. It requires that the sender and

receivers are loosely time synchronized meaning that the receivers know an upper

bound of the sender’s clock. Although encryption is done with symmetric keys, they

are not known by the receivers until the sender discloses it. So the receivers need to

buffer incoming packets until the key is disclosed. Non-repudiation is not provided.

In [54], chaining techniques for signing and verifying multiple packets (i.e., a block)

using a single signing and verification operation are proposed. This way, the overhead

is reduced. The signature-based technique proposed does not depend on the reliable

delivery of packets, but uses caching of the packet digests in order to verify the other

packets in the block efficiently.

In our scheme, no caching is required and verification is done per packet basis. Be-

sides the authentication and integrity of the sender, it also provides non-repudiation.

Simulations show that this can be done fast enough even for large key sizes.

2.5 Remarks

P2P streaming research can be classified according to the network architectures and

video coding techniques, like done in [55]. The architectures differ in the number

of their senders, namely multiple sources and single source. In the multiple source

architecture, there may be intermediate peers involved between the source and the

destination; however, their role is limited to the transfer of the received packet. On

the other hand, in a single source architecture, the intermediate peers are also the

destination of the packets and they cache some part of the packets in their internal

buffers, so that requesting peers can obtain the content from an intermediate peer

directly as well as from the source. This helps distributing the load among the peers.

Two video coding techniques are generally used. MDC is more loss resilient than the

LC; however, LC has better coding efficiency, so that network resources are used more

Chapter 2: Related Work 22

efficiently. Besides a brief literature review of the existing applications, they point

out that a successful P2P streaming application should have a method for deciding

the appropriate coding scheme, the peer dynamicity and heterogeneity, efficient over-

lay construction, best peer selection, adapting the network conditions and to take

measures to encourage participation of peers.

The system presented in this thesis gives the flexibility of using two different video

coding techniques. As long as their bandwidth requirements are the same, either MDC

or LC can be used within the application to generate two layers of video. Since a small

group of participants is considered, the assumption is that the peers are static most

of the time, so that the reconstruction of the chain is not done very frequently. Their

heterogeneous bandwidth distribution is considered in Section 3.3 and in Chapter 5

of this thesis. Optimization techniques are given to construct the overlay optimally

for different metrics. They aim to:

• minimize the number of base layer receivers

• minimize the maximum delay experienced in a chain

• maximize the number of extra requests

The overlay construction and best peer selection, in the sense that the objec-

tive functions of the optimizations are achieved, are done in a distributed manner.

Adapting to network conditions, such as bandwidth availability, is not considered,

since peers are assumed to have fixed low-bandwidth connections. Peers are taken

as cooperative (i.e., they agree to forward another’s video), but security measures

to assure integrity, authentication and non-repudiation are taken and explained in

Section 6.2.

In [56, 57], the authors point out that the assumption in all of the application layer

multicast protocols is that the peers have symmetric bandwidths. In real world, the

asymmetry is more common and because of this assumption the type and quality of

the streamed content is limited. They propose a technique in which the peers supply

Chapter 2: Related Work 23

as their upstream bandwidths allow them. The video quality is not degraded because

of the output restriction, rather output bandwidths of different peers are aggregated

at the receiver peer to keep the quality of the video as intended. They propose mesh

optimizations to limit the length of the mesh, the network cost and make use of client

buffers and strategic nodes (i.e., stable nodes in higher levels). Simulations show that

the service is available for about 95% and is increasing as the latency increases.

Although the assumption throughout this thesis is that peers possess bandwidth

that is enough for sending and receiving only one video signal at a time, this may not

be generally true in real-life. The authors in [56, 57] use the asymmetry of the peers’

bandwidths to increase the quality of the video streamed, which in turn increases

user satisfaction. In this thesis, the bandwidths of the peers will be spoken in an

input/output basis. (i.e., if the video quality is assumed to be 64kbps, and a peer

has 128kbps downstream and 64kbps upstream, then the peer is said to have 2 inputs

and 1 output.) A peer having two inputs is handled so that it can make two requests.

A peer having multiple outputs will help other peers receive full quality video. In

general, multiple inputs/outputs are used to increase user satisfaction. Three or

more inputs having peers, however, will not receive the third request. This restriction

is to guarantee that every request can be granted in the entire conference. Also, like

argued in [32], trying to view more than two users simultaneously is most probably

not realistic and is not considered. Multiple inputs/outputs cases are discussed in

Section 3.3 and in Chapter 5.

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 24

Chapter 3

PEER-TO-PEER MULTIPOINT VIDEO

CONFERENCING USING LAYERED VIDEO

The assumption of the P2P approach for multipoint video conferencing described

in [3] is that the participants (i.e., the peers) could be the source of one video signal.

Also, they could only receive and send one video signal at a time. In other words,

they have the computational power to produce one video signal and their bandwidth

is limited and only enough for streaming one video signal upstream and downstream.

This way, the networking and computing resources of an MP video conference do not

exceed the needs of a point-to-point video conference.

This requires that some of the peers may have to forward the video packets they

receive to another participant. In previous work [4], the following definitions were

made:

• Chain: The ordered group of peers that receive the same video signal.

• Head of a chain: A peer sending its own video signal.

• Relay: A peer that is forwarding the video signal it is receiving, to another peer.

The restriction that the upstream bandwidth is only enough to send one video

signal may cause a request to be denied. This is because a peer cannot send its own

video signal if it is relaying another peer’s video signal and a peer cannot relay if it

is sending its own video signal. In [4], it was shown that this is not the case most of

the time, and in fact each participant could view another participant’s video under

most practical cases. However, the number of the cases in which a request is denied

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 25

Figure 3.1: Configurations for a three-participant conference (Numbers on arrows
indicate which video signal is used in that upstream). Each participant can see any
other one.

increases as the number of the participants increases. This causes the system to be

unscalable.

The cases that could emerge on a video conferencing with three participants are

depicted in Figure 3.1. As can be seen, there is always a solution to grant every

participant’s every request. However, when a fourth user requests the video of an

intermediate peer, like shown in Figure 3.2 (a), the request cannot be met since the

upstream bandwidth of the intermediate peer (i.e., peer 2) is already in use.

Our approach in this thesis study makes use of two layers in a video signal, and

allows that each participant can view any other participant’s video at anytime for any

number of participants. This is accomplished by allowing a peer to be a relay and a

head of a chain at the same time. One of the video layers is the base and the other

is the enhancement. The two layers have almost equal bandwidths, so that sending a

base layer and an enhancement layer, is not different from sending two different base

layers. A participant receiving a base layer and the corresponding enhancement layer

is able to view the video signal in full quality whereas one receiving only the base

layer can view the video in reduced quality. This allows to achieve a solution under

all cases without having to reject any video request from any participant at anytime.

The employment of layered video and how it solves the described problem can

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 26

Figure 3.2: a) Participant 4 can not see participant 2. b) Participant 4’s request can
be granted. (F stands for full quality video (base & enhancement), H stands for half
quality video (base))

be seen in the example of Figure 3.2 (b). The pseudo code describing the actions

performed by a participant who receives a video request is given in Figure 3.3.

Since the system is based on a P2P paradigm and is software only, it does not need

any particular server functionality or special hardware that may be prone to single-

point-of-failures. It does not depend on network multicast infrastructure support

which may or may not be present. Hence, the use of a distributed P2P architecture

brings the advantage of enhanced fault tolerance. Another fault tolerance related

issue is that peers can leave the system at anytime, either at will or unintentionally

(i.e., by crashing). A peer may be sending its own video signal (i.e., the peer is a

chainhead) when this happens. The members of the chain would immediately notice

that something is wrong and would act accordingly (i.e., stop receiving the video

signal of the peer that has just left the system and may request another peer’s video

signal). Another possibility is that this peer may be a relaying peer in a chain. The

chainhead would notice and rearrange its chain accordingly when this is the case,

since members of a chain periodically send keep-alive messages to the chainhead. If

a peer does not coordinate on time with its chainhead, the chainhead removes the

peer from its chain and makes the necessary changes (i.e., sends update messages to

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 27

Figure 3.3: Algorithm for granting a video request.

appropriate peers). Messages that are used in our prototype system are explained in

Chapter 4. A peer that is both a chainhead and a relaying peer would not cause a

problem either when it leaves or crashes. The members of the leaving peer’s chain

would react by stopping to receive the video signal; the chainhead would rearrange

its chain accordingly.

Next section gives details of layered video solutions and how the base and en-

hancement layers can be generated. Section 3.2 explains the optimizations that can

be used a) to minimize the number of lower quality (i.e., only the base layer) receivers

and b) to minimize the maximum delay experienced in a chain along with the number

of base layer receivers at the same time. The effects of multiple output bandwidths

that allow more than one video signal to be sent simultaneously, are investigated in

Section 3.3.

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 28

3.1 Layered Video

The proposed algorithm requires that the video signal is coded in two layers, such

that it consists of a base layer and an enhancement layer. The video is in full quality,

if the base and the corresponding enhancement layers are received. If only the base

layer is received, the video can be viewed in an acceptable quality.

The base layer is used whenever the intermediate peer, the relay, receives a video

request from another participant. The relay stops forwarding the video signal it

is receiving in full quality, that is, with the base and the enhancement layer, but

continues to forward only the base layer. The rest of the bandwidth is used for its own

video signal and sent to the participant that requested the relay’s video signal. This

way, any participant can see any other participant at any time and any configuration

of requests.

This statement makes an assumption about the bandwidth of the layers: The

bandwidth of the base layer and the bandwidth of the enhancement layer are equal.

This allows a relaying participant to stop forwarding the enhancement layer of the

video signal it is receiving and then sending its own video signal in base layer.

In this section, two approaches for layered video are described:

• Scalable video approach

• Multiple description coding approach

We will explain the details of these approaches and how they can be achieved with

standard encoders, such as JSVM [58] and Nokia [59].

3.1.1 Scalable Video Approach

Scalable video coding techniques are gaining popularity with H264/SVC allowing

encoding of the video in different quality layers so that according to the bandwidth

restrictions corresponding layers can be transmitted [60]. Quality is increased by

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 29

Table 3.1: Average PSNR and bit rate values: Temporal scalable base and full quality
layers.

Average Average Average Average

Quality PSNR(Y) PSNR(U) PSNR(V) Bit Rate (kbps)

Single Layer 34.3292 38.7423 40.0163 63.7320

Base Layer 31.8586 37.4623 38.5050 31.5066

Base + Enhancement 33.6630 38.8204 40.1227 63.9414

using more layers. There are three aspects of scalability, namely spatial, temporal

and SNR.

Spatial scalability is achieved by changing the resolution of the video. Since this

is done in two dimensions, switching from one standard resolution (QCIF, 176x144)

to another (CIF, 352x288) increases the bandwidth requirement much more. The

bandwdith requirement of a CIF video is approximately four times the bandwidth re-

quirement of a QCIF video. In our approach we need two layers with equal bandwidth

requirements, and hence we do not employ spatial scalability.

Temporal and SNR scalability are explained next.

Temporal scalability

The bandwidth requirements of each layer should be equal. This is achieved simply

by dividing the video stream in the temporal dimension. Base layer will have half

the frame rate of the original video. Using JSVM [58], two temporal layers can be

created. We are assuming a base layer of 7.5 fps. Full quality video would then have

15 fps frame rate. The results of the encoding of a standard sequence (i.e., Foreman)

and the available layers of the resulting bitstream can be seen in Table 3.1 and 3.2,

respectively. The last column (i.e., DTQ) stands for Dependent layer id, Temporal

layer id, Quality layer id).

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 30

Table 3.2: Bitstream contents of the full quality layer with temporal scalability.

Layer Resolution Frame rate Bit rate Minimum Bit rate DTQ

0 176x144 0.9375 13.00 13.00 (0,0,0)

1 176x144 1.8750 17.52 17.52 (0,1,0)

2 176x144 3.75 23.52 23.52 (0,2,0)

3 176x144 7.5 30.52 30.52 (0,3,0)

4 176x144 0.9375 28.00 28.00 (1,0,0)

5 176x144 1.8750 36.12 36.12 (1,1,0)

6 176x144 3.75 45.12 45.12 (1,2,0)

7 176x144 7.5 55.12 55.12 (1,3,0)

8 176x144 15 63.12 63.12 (1,4,0)

SNR scalability

JSVM [58] also allows SNR scalability to be used so that one can fine-tune the qual-

ity of the video by using Fine Granular Scalability (FGS) layers. To achieve SNR

scalability, JSVM uses progressive refinement (PR) slices whose coding symbols are

ordered by their importance. PR slices can be truncated at any point, providing a

rate interval rather than rate points [58]. So, one can create a bitstream with one FGS

layer and extract the base layer when needed. The encoding results can be found in

Table 3.3. Although the bit rate of the layers is not very high, the quality it provides

is acceptable. The base layer can now be extracted to have a bit rate about the half

of the full quality video, so that the frame rate is still the same and the bandwidth

is equally shared between the base and the enhancement layers. This can be verified

from Table 3.4.

3.1.2 Multiple Description Coding Approach

Multiple description coding (MDC) is another alternative for transmitting video [61].

In this approach, odd numbered frames and even numbered frames may be predicted

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 31

Table 3.3: Average PSNR and bit rate values: SNR scalable base and full quality
layers.

Average Average Average Average

Quality PSNR(Y) PSNR(U) PSNR(V) Bit Rate (kbps)

Single Layer 34.3292 38.7423 40.0163 63.7320

Base Layer 30.3959 36.9938 37.7932 31.7730

Base + Enhancement 32.9896 38.4540 39.6059 64.1106

Table 3.4: Bitstream contents of the full quality layer with SNR scalability.

Layer Resolution Frame rate Bit rate Minimum Bit rate DTQ

0 176x144 1.875 15.00 15.00 (0,0,0)

1 176x144 1.875 35.00 (0,0,1)

2 176x144 3.75 20.00 20.00 (0,1,0)

3 176x144 3.75 45.00 (0,1,1)

4 176x144 7.5 25.00 25.00 (0,2,0)

5 176x144 7.5 54.00 (0,2,1)

6 176x144 15 31.00 31.00 (0,3,0)

7 176x144 15 64.00 (0,3,1)

only from each other, creating two independently decodable threads. This approach

may also be used to increase the system’s loss resilience by allowing forwarding of

the description experiencing smaller number of packet losses at the relay nodes. The

quality is increased if more than one description is received. However, there is some

redundancy in the layers because of the independent decodability feature. This re-

dundancy may cause MDC approach to have an encoding that is not as efficient as

the scalable coding. Therefore, the quality of base layer video or full video (i.e., both

layers have arrived at the receiver) may not be as high as the scalable coded video

when both layers are received.

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 32

The results of MDC approach can be seen in Table 3.5 and in Table 3.6. As one

can see, JSVM has better results in terms of PSNR than Nokia Encoder, because in

contrast to Nokia Encoder, JSVM uses two reference frames for encoding a frame.

However, JSVM is not fast enough to meet the real-time requirements. On the other

hand, Nokia works fast enough to encode frames at 15 fps.

Table 3.5: Average PSNR and bit rate values: MDC scalable base and full quality
layers. (JSVM)

Average Average Average Average

Quality PSNR(Y) PSNR(U) PSNR(V) Bit Rate (kbps)

Single Layer 34.3292 38.7423 40.0163 63.7320

Base Layer (even frames) 32.5192 37.8689 38.9798 31.6908

Base Layer (odd frames) 32.4926 37.9254 38.9997 31.6272

Combined (even + odd frames) 32.5059 37.8972 38.9898 63.3180

Table 3.6: Average PSNR and bit rate values: MDC scalable base and full quality
layers. (Nokia)

Average Average Average Average

Quality PSNR(Y) PSNR(U) PSNR(V) Bit Rate (kbps)

Single Layer 34.3292 38.7423 40.0163 63.7320

Base Layer (even frames) 30.2404 37.0603 37.8799 32.045

Base Layer (odd frames) 30.4107 37.0932 37.9618 32.167

Combined (even + odd frames) 30.32555 37.07675 37.92085 64.212

3.2 Optimizations - Minimizing the Number of Base Layer Receivers

Chain configuration optimizations can be performed in order to maximize the number

of participants that receive full quality video in a particular configuration. In other

words, let n be the number of participants and r be the set of video requests, defining

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 33

Figure 3.4: An example of chain optimization a) Participant 3 requests a relaying
participant’s video. b) Chain without optimization. c) Chain after Participant 2 is
moved to end.

a particular configuration. The number of full quality receivers is k = f(n, r). The

aim of the optimizations is to maximize k, when the number of participants changes

and/or the request of a participant changes, namely k′ = f(n′, r′).

For example, assume that a participant (e.g., 2) is relaying another participant’s

(e.g., 1’s) video signal at full quality, i.e., base and enhancement layers. When yet

another participant (e.g., 3) requests 2’s video signal, 2 has to drop the relayed video

signal (of 1) to base layer and forward only the base layer, so that it can send its

own video to 3. This makes all participants receiving the relayed video from 2, and

participant 3 to receive base quality video. Assuming that 2 is located right after 1

in a long chain, letting it relay base quality video would reduce the received video

quality for a large number of participants. However, if 2 could be moved to the end of

the chain, this large number of participants can continue to receive full quality video.

Figure 3.4 shows this situation.

If in the configuration of Figure 3.4, participant 5 was also sending its own video

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 34

Figure 3.5: a) Chain after Participant 2 is moved to the end. b) Chain after Partici-
pant 2 is moved just before the end.

signal, then moving 2 to the end of the chain would cause all the participants in

5’s chain to receive base quality video. In this case, chain lengths for 2 and 5 can

be compared and the participant with a longer chain can be moved to (or left at)

the end. For instance, if 5 has a chain length of two, then moving participant 2 to

the end causes a total of three participants to receive base quality video (the chain

members of 5, i.e., two participants, plus participant 2). On the other hand, moving

participant 2 just before the end would cause only two participants to receive base

quality video (the participant that requested video from 2, i.e., 3, and participant 5).

This situation is depicted in Figure 3.5.

Similarly, when inserting participants into chains, the lengths of the involved

chains should be taken into consideration. If a participant is the head of a chain

sending full quality video, we should avoid using it as a relay node. As an example,

assume that a participant, P, that is a chain head sending full quality video, requests

participant T ’s video signal and T is already sending at base quality. In this case, P

could drop its video to base and relay T ’s video signal. However, doing so would cause

the chain members of P receive base quality video. A better solution would be adding

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 35

P to the end of the chain, so that it would continue to send its video at full quality.

However, if the last member, L, of the chain is also a chain head sending its video, a

comparison between P ’s and L’s chain lengths should be carried out. The participant

with longer chain would go to the end of the chain, minimizing the number of base

quality video receivers. This greedy approach ensures that every time a participant

requests video from another one, the configuration stays with maximum number of

full quality receivers. The complete decision chart including the optimizations to

minimize the number of base layers is given in Figure 3.6.

While making these optimizations, however, some configuration messages need

to be sent, because checking chain lengths or mobility of members in the chain re-

quire exchanging information between chain head and members. Although these can

be done in one message, there may still be delay before a configuration is updated.

Therefore, some optimizations may be skipped whenever low delay is more impor-

tant than quality. The optimizations can be performed after the requested video is

provided immediately using a suboptimal configuration.

Another method to prevent this delay is to let the chain head to keep a status

table of the chain members, in which the states and chain lengths of the members are

stored. This way, the chain head would have all the information it needs to decide

whether a member can be moved to the end of the chain or where a new member

should be in the newly configured chain. This method however, has a drawback: The

members’ status need to be updated periodically. This drawback can be overcome

by exploiting the keep-alive messages that are sent periodically from the members to

the head to let it know that it has not crashed. The user that has just made a video

request uses the video request message to send her state and chain length as well.

The piggybacked information is used to update the status table.

One other alternative is to assume that if no information update about the state

and the chain length of a member is made, it has stayed the same. This time,

the overhead that occurs by piggybacking the status information to each keep-alive

message can be cut down to only a message that is sent once state change or chain

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 36

Figure 3.6: Complete decision algorithm with optimizations to minimize the number
of base layer receivers.

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 37

length update occurs.

Figure 3.7: Percentage of configurations containing base quality receivers versus num-
ber of participants.

In the simulations, all possible cases for a given number of participants are gener-

ated. In each case, each participant requests a video signal of any other participant.

Using the algorithm given in Figure 3.3 and employing optimizations given in Figure

3.6, the chains were obtained and analyzed.

Figure 3.7 shows that with increasing number of participants, the probability that

some participant receives base quality video increases. In Figure 3.8, the percentage

of the total number of base quality receivers in all receivers, under all possible cases is

shown. Increasing the number of participants would increase the number of possible

cases and thus, the total number of base quality receivers as well. However, this

increase is asymptotic and the ratio of the average number of base quality receivers

to the number of participants decays. This is shown in Figure 3.9.

Simulations show that with increasing number of participants, the use of layers

and thus, base quality video receivers is inevitable. However, the ratio of the base

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 38

Figure 3.8: Percentage of base quality receivers to all receivers under all configurations
versus number of participants.

Figure 3.9: Average percentage of base quality receivers versus number of participants.

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 39

quality receivers to the total number of participants remains under 50%.

Besides this issue, the geographical location of the users and their heterogeneous

connection bandwidths would also play a role on the ordering of the participants in

a chain. In that case, the trade-off between maximizing the number of full quality

receivers, minimizing the maximum delay any participant experiences and maximizing

the number of granted additional requests still remains and can be left to the users’

choice. This is investigated in Chapter 5.

3.3 The Effects of Multiple Outputs

The application presented in [3, 62] assumed that the end-hosts possessed an Internet

connection that could be enough to send and receive only one video signal. However,

the bandwidth diversity of the Internet connections plays an important role in MP

video conferencing applications.

The extension presented in [62] showed that two output bandwidth is necessary to

be able to grant each and every request at any time. The obstacle emerging from the

assumption that the end-hosts do not have enough bandwidth was overcome by using

two layers of video, so that virtually two output bandwidths were created. In real

life, peers can have bandwidth that can support the case of two or more video signals

are received and/or sent. In this section, we investigate the case of multiple video

outputs. Effects of multiple inputs will be explained as we describe the multi-objective

optimization framework in 5.

When peers have multiple outputs, a relay receiving a video request, does not have

to drop the forwarded video quality to half; it just uses the other output bandwidth to

send its own video signal. In order to support these peers, the availability of a spare

output is checked, before the requester is added to the chain with base quality. If there

is, the requester receives full quality. Figure 3.10 shows the algorithm incorporating

both single and multiple output bandwidth cases.

Figure 3.11 shows that the increase of the percentage of cases, in which there are

base layer receivers, in all cases is much smaller when the maximum possible output is

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 40

Figure 3.10: Algorithm to grant a request. Works for single and multiple output
bandwidths (The numbers of the lines are there to increase readability and indicate
the corresponding [if] and [else] pairs.).

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 41

Figure 3.11: Percentage of base layer needed cases in all cases vs. participant count.

Figure 3.12: Percentage of average number of base layer receivers in a case vs. par-
ticipant count.

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 42

2. This is because the number of the cases with base layer receivers becomes insignif-

icant compared to the total number of configurations that can exist. In addition, the

probability of a relay’s dropping the forwarded video’s quality to base layer decreases,

since the spare output can be used for sending the relaying peer’s own video signal

whenever a request is received. This causes the percentage of average number of base

layer receivers in a configuration to decrease as can be observed in Figure 3.12. This

is expected, since if a peer has a spare output it can use it whenever a request is

received, without the quality of the forwarded video is dropped to base layer.

3.3.1 Special Case: 4 participants, 2 requests, 2 layers

Figure 3.13: a) Two requests before and after swap. X denotes that the request set
needs base layer, shown in b). OK means there is no need for layers. b) Two request
sets needing two layers c) Two request sets not needing any layers.

Chapter 3: Peer-to-peer Multipoint Video Conferencing Using Layered Video 43

If each participant had two outputs and single input for video, then every request

would be granted at any time in a conference. This fact can be generalized: If each

participant had more than one input allowing them to request more than one video

at the same time, each request set could be thought as a separate conference in which

participants are making just one request. This means, if there are two layers of

video for each extra request, the request can still be granted at any time, allowing

participants to watch more than one participant at the same time. This sets an upper

bound for the number of layers required to allow more than one request at the same

time. Determining how many layers are actually needed can be considered as a future

work.

However, one special case is a conference with four participants, each participant

requesting two other participants’ video signals. Assuming that each participant

has bandwidth enough to send and receive two video signals, it can be shown with

enumeration that without using any layers, each request can be granted at any time.

In every possible case, a request can be found in a set to be swapped with another

request in the other request set, so that both request sets are solvable without needing

an extra layer. This way, every participant watches two other participants. An

example can be viewed in Figure 3.13. As can be seen, in b) and c) part, the request

sets are the same (i.e., the participants request the to view the same participants’

video in both configurations). If the requests are taken into consideration like done

in b) the use of base quality is required to grant each request. On the other hand in

c), there is no such need.

Using two layers created two virtual outputs from one physical output bandwidth.

It would be the same thing if each participant had one input and one output band-

width and two layers of video were used. The only difference would be that the video

quality is degraded to an acceptable quality to allow video conferencing even when

there is scarce bandwidth available.

Chapter 4: Real-Life Application 44

Chapter 4

REAL-LIFE APPLICATION

In this chapter, details of the MP video conferencing application described in

Chapter 3 will be given. States of the participants, messages exchanged between

them, application architecture and interfaces between modules will be explained.

The application presented in this thesis is a P2P MP video conferencing application

that makes use of layered video and hence enables each participant to view another

participant’s video signal at any configuration. The video conferencing part is a P2P

architecture, which runs over an IM application. This IM application is used only for

the purpose of keeping a record of online peers. These can later create a conference

or join a conference through an invitation. We will now describe each part of the

implementation in detail.

4.1 Tracker Software

The tracker software’s only responsibility is to keep the track of which peers are online.

Each peer has an id and a peername (i.e., username of a peer). They have a contact

list which consists of the id’s and names of other peers. After the sign-in messages,

peers periodically send check-in messages to the tracker. The contact list information

is piggybacked at the end of the check-in message. As the tracker receives the check-in

message, it updates the status of the peer to ”online”. It also returns a reply with

the availability of the peers and their addresses if they are online. The tracker keeps

track of each peer and whenever a peer does not check-in in a timely manner or sends

a sign-out message, the its status is updated to ”offline”.

Chapter 4: Real-Life Application 45

4.2 Peer Software

The peer software is responsible for conference management, join, leave, invite, text

messaging, video request and video release operations. Furthermore, it handles video

module processes and their configurations. It provides a graphical user interface (GUI)

which allows the user to interact with the system. After signing in to the tracker,

the peer can view the status of the peers in its contact list. It can send private text

messages to online peers and invite them to a conference. A conference is established

after a peer accepts another peer’s invitation. Peers that join a conference are called

participants.

Participants can make video requests to one other participant or can release their

video sources if they had been already receiving a participant’s video signal. Confer-

ence Manager module in the recipient’s software handles the request and sends the

appropriate configuration messages to the corresponding participants. These may be

members of the chain of the requested participant, or the participant who has just

made the video request. Conference Manager module also updates the participant’s

state variables. Video module processes are created or destroyed according to the

type of the request message and the current state of the participant. Configuration

updates on these processes are also made by the Conference Manager module.

4.3 Peer Software Modules

There are two modules in the peer software. The first module, the Conference Man-

ager, is responsible for handling user interactions through a graphical user interaction

and conference related interactions with other peers. The second module dealing with

video related operations consists of four processes: Capturer, Encoder, Decoder and

Displayer. The modules and interfaces are depicted in Figure 4.1.

Chapter 4: Real-Life Application 46

Figure 4.1: Peer modules and interfaces.

4.3.1 Conference Manager Module

Conference Manager is the main application part. It is responsible for tasks that

are initiated by the user through the GUI, such as sign-in, sign-out, chat, invitation

and video request events and sending out their corresponding messages. Furthermore,

it listens for messages from the tracker (i.e., the contact list status information) and

from other peers and handles these. It uses a thread-per-request model. Each received

message is handled according to the user decisions by the help of the GUI and the

current state variables. Whenever a video request arrives, its outcome is calculated

by the decision algorithm 3.6. According to the result, appropriate messages are sent.

Any changes in the state variables of the participant are used to create, destroy and

update video related processes.

4.3.2 Video Module

The Video Module consists of four independent processes. These are created and

destroyed by the Conference Manager as needed.

The Capturer process’ main task is to get the frames from the capture device and

feed it to the encoder process. Since our prototype employs an MDC-like approach,

even and odd frames are fed to separate ports of the encoder.

The Encoder process runs three threads: One is responsible for listening to the

Chapter 4: Real-Life Application 47

configuration changes that come from the Conference Manager module through the

Interface. The other two threads independently encode even and odd frames that

are supplied from the capturer process. The encoded frames are sent to another peer

that is decided by the Conference Manager. Even and odd frames are sent to different

ports.

The Decoder process is responsible for receiving encoded packets, decoding them

and sending them to the displayer process. Different ports are used for even and odd

frames. The decoder process is also responsible for relaying operations. According

to the information that comes from the Conference Manager module, the received

packets are either forwarded to the next peer in the chain in full quality (i.e., both

layers), base quality (i.e., only even-frames) or none at all.

The Displayer process is responsible for displaying the received frames in a syn-

chronized fashion. The decoder feeds two different threads, one responsible for re-

ceiving of even frames and one of odd frames. Another thread accesses them from a

shared buffer and displays them.

4.4 Peer Software Interfaces

4.4.1 Graphical User Interface (GUI)

GUI provides the interface for the user to interact with the conferencing software.

These interactions are signing in, sending private or conference-wide text messages,

inviting other online peers to a conference, accepting or rejecting invitations, making

video requests to watch a participant or release a video source, leaving the conference

and signing out of the system. It displays the details of the working of the peer

software as it runs and the peer’s current status in the conference such as the length of

its chain, its members, the id of the peer it is watching if any and its relay information.

The details of GUI are illustrated in Figures 4.2.

Chapter 4: Real-Life Application 48

Figure 4.2: GUI a) before the user signs in to the tracker. b) after the user signed in
to the tracker.

4.4.2 Conference Manager - Video Interface

This interface is between the Conference Manager and Video related processes. Be-

sides creating and destroying video related processes, the Conference Manager uses

this interface to update the Encoder and the Decoder processes according to the

current state of the peer.

The Encoder process is updated with the heading information, whether the pro-

cess should start encoding frames received from the Capturer process and the video

quality. It is also provided the IP address of the first member in the peer’s chain.

UPDATE_HEADINGINFO <0 || 1> <0 || 1> <address>

The Decoder process is updated with the relay information. It includes whether

the peer should be relaying, which quality of video should be relayed and the IP

Chapter 4: Real-Life Application 49

address of the peer that is next in the chain.

UPDATE_RELAYINFO <0 || 1> <0 || 1> <address>

4.5 Peer States

The actions that can be taken by the peers and responses to actions of other peers

depend on the current status of the peer. Together with the state variables that can

be viewed on Table 4.1, the current status of the peer is defined.

4.5.1 Participant

The peer in this state is in idle position. It does not watch the video signal of any

participant, nor does it send its own video signal to other participants. The peer may

send a video request to another participant to watch its video. When an online peer

accepts an invitation from another peer, or when the invitation sent by this peer is

accepted by the invited peer, in other words, when the peer joins a conference, it goes

into this state.

4.5.2 Member

When a peer is watching another peer’s video signal, it is in Member state. Whether

it is relaying the video to another participant in the chain or not, is determined by

the state variable relayNextId. A peer in this state cannot make a video request

since it already made one. It may release the video source.

4.5.3 Chainhead

The peer in this state has a chain. It is sending its own video signal to the peer

determined by the state variable headNextId. A peer in this state does not watch

another peer’s video signal, thus it can make a video request.

Chapter 4: Real-Life Application 50

4.5.4 Chainhead Member

When a peer is watching another peer’s video signal and sending its own video signal

at the same time, it is in Chainhead Member state. It is sending its own video

signal to the peer determined by the state variable headNextId. Whether it is

relaying or not, is determined by the state variable relayNextId. A peer in this

state cannot make a video request since it already made one. It may release the video

source.

Table 4.1: Peer State Variables

State Variable Explanation Type

headId The id of the peer this peer is watching int

relayNextId The id of the peer this peer is relaying to; -1 if none int

receivingFromId The id of the peer this peer is being relayed from int

headNextId The id of the peer which is the first member in the chain int

lastMemberId The id of the peer which the last member in the chain int

relaySendingFull True if this peer is relaying with full quality; false otherwise boolean

headSendingFull True if this peer is sending its own video signal in full quality; false otherwise boolean

receivingFull True if this peer is receiving full quality video boolean

isParticipant True if this peer is in a conference; false otherwise boolean

chain The ordered list of the peers that are receiving this peer’s video Vector

currentState ”” if isParticipant is false String

”Participant” if this peer is in a conference and watching nobody String

”Member” if this peer is watching another peer; but herself does not have chain String

”Chainhead” if this peer has a chain; but is not watching any other participant String

”Chainhead Member” if this peer is watching another peer, and has a chain String

4.6 Messages

There are two types of messages that are used in the prototype.

• messages exchanged between the peer and the tracker

• messages exchanged between the peers

Chapter 4: Real-Life Application 51

4.6.1 Messages between peers and the tracker

The messages are depicted in Figure 4.3.

Figure 4.3: System Sequence Diagram of signing in, checking in and signing out events
of a peer.

1. Sign-in message: This message is sent from a peer to the tracker to sign-in.

The tracker updates the status of the sender from ”offline” to ”online”.

SIGNIN <peer id> <peername> END

2. Sign-in acknowledgement message: This message is sent from the tracker

to the peer as a response to the sign-in message.

ACK_SIGNIN END

3. Check-in message: This message is periodically sent from the peer to the

tracker, whenever the peer is online. The id’s of the peers in the contact list are

Chapter 4: Real-Life Application 52

piggybacked at the end of the message. If a peer does not send this message (or

the tracker does not receive this message) after a certain amount of time has

passed, the tracker concludes that the peer experienced a crash and updates the

status of this peer from ”online” to ”offline”.

LIST <peer id> <peername> CONTACTLIST [<peer1 id> <peer2 id> ...]

END

4. Check-in reply message: This message is sent as a response to the check-

in message. It consists of the id’s of the peers in the corresponding check-in

message, their availability status and their addresses.

ACK_LIST <peer1 id> <status1> <address1> <peer2 id> <status2>

<address2> ... END

5. Sign-out message: This message is sent from a peer to the tracker whenever

the peer wants to sign-out of the system. The tracker updates the status of the

sender from ”offline” to ”online”.

SIGNOUT <peer id> <peername> END

6. Sign-out acknowledgement message: This message is sent from the tracker

to the peer as a response to the sign-out message.

ACK_SIGNOUT END

4.6.2 Messages between peers

All these messages are sent from an online peer to one or more online peers. They

are depicted in Figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11.

Chapter 4: Real-Life Application 53

Figure 4.4: System Sequence Diagram of inviting an online peer to a conference.

1. Invitation message: This message is used to start a conference or to invite

a peer to the current one. The receiving (and possibly replying) peer will be

added to the conference if it accepts the invitation.

INVITATION <peer id> <peername> <address> END

2. Invitation reply message: This message is a response to the invitation mes-

sage. If the sender is already in a conference and accepts the invitation, it leaves

the conference it is currently in and joins the new one. If it does not accept the

invitation, nothing changes. In either case, this message is sent. The receiver of

this message (i.e., the original sender of the invitation message) acts according

to the reply. If the invitation is accepted, the peer is added to the conference.

Other peers who are in the same conference are updated with the new partic-

ipant’s information. If the invitation is not accepted, the peer is notified with

the reason. SORRY 0 means that the peer is in another conference. SORRY 1

means that the peer rejected the invitation.

REPLY_INVITATION <peer id> <peername> <address> <OK || SORRY_0 ||

SORRY_1> END

Chapter 4: Real-Life Application 54

Figure 4.5: System Sequence Diagram of a peer leaving a conference.

3. Invitation acknowledgement message: This message is a response to the

invitation reply message only when the reply message is positive (i.e., the replier

has accepted the invitation). It is a list of the id’s of the peers in the current

conference, their peernames and their addresses.

ACK_INVITATION <peer id> <peername> <address> <conference_peer1 id>

[<conference_peername1> <address1> <conference_peer2 id>

<conference_peername2> <address2> ...] END

4. Invitation update message: This message is sent from the inviter to the

other peers in the conference to provide the contact information of another peer

(i.e., the invited peer) who just joined the conference.

UPDATE_INVITATION <peer id> <peername> <address> END

5. Leave message: This message is sent from an online peer to one or more online

peers that are in the same conference as the sender whenever the sender wishes

to leave the conference. If the peer is a head of a chain, its chain members

update their status. If the peer is a member in a chain, it sends a video release

message to the head first, so that it can update its chain accordingly.

LEAVE <peer id> <peername> <address> END

Chapter 4: Real-Life Application 55

Figure 4.6: System Sequence Diagram of sending a video request, video request move,
video request acknowledgement and video request update messages. Conference peers
that are chain members are the members of the respective chains of the senders.

Figure 4.7: System Sequence Diagram of sending a video request, video request ac-
knowledgement and video request update messages. Conference peers that are chain
members are the members of the respective chains of the senders.

Chapter 4: Real-Life Application 56

Figure 4.8: System Sequence Diagram of sending a video request update message.

6. Video request message: This message is sent from an online peer to another

online peer that is in the same conference. The message is only sendable when

the peer is not a member in a chain (i.e., have not requested to receive another

participant’s video). It has information about the status of the participant,

whether it can forward any video in full quality or base quality and the length

of its chain.

A peer can forward a video signal in full quality, if and only if it is in Partici-

pant state. Otherwise, it at least needs to send one video signal in base quality.

A peer can forward a video signal in base quality, when it is in Participant

state; in Chainhead state, and sending in base quality; in Member state and

does not forward the video (i.e., it is at the end of the chain) or forwarding in

base quality; in Chainhead Member state and does not forward the video

signal it is receiving.

VIDEO_REQUEST <peer id> <peername> <address> <Pass Through Full>

<Pass Through Half> <chainlength> <current state> END

7. Video request move message: This message is sent from an online peer to

another online peer when the sending peer is a member of the receiving peer’s

chain and has received a video request. The sending peer requests to be moved

Chapter 4: Real-Life Application 57

Figure 4.9: System Sequence Diagram of sending a video request move, video request
acknowledgement and video request update messages. Conference peers that are chain
members are the members of the respective chains of the senders.

to the end of the chain. The receiving peer tries to move the requesting peer to

the end of the chain. It does whenever the length of the chain of the peer at the

end of the chain is less than the requesting peer’s. If not, the requesting peer is

moved as close to the end as possible. This is done to minimize the number of

base layer receivers.

VIDEO_REQUEST_MOVE <peer id> <peername> <address> <Pass Through

Full> <Pass Through Half> <chainlength> <current state> END

8. Video request update message: This message is sent from an online peer to

another online peer when the sending peer is the head of the chain of which the

receiving peer is a member. It contains information about the previous member,

the next member and the video quality.

UPDATE_VIDEO_REQUEST <peer id> <peername> <address> <receive from

Chapter 4: Real-Life Application 58

Figure 4.10: System Sequence Diagram of sending video keep-alive messages to the
chainhead and releasing a video source of a peer.

peer id> <receive quality> <send next peer id> END

9. Video request acknowledgement message: This message is sent as a re-

sponse to the video request message or the video request move message. After

the head of the chain has decided where the requesting peer should be in the

chain, it sends an acknowledgement to the requesting peer. This acknowledge-

ment contains information about the previous member, the next member and

the video quality.

ACK_VIDEO_REQUEST_<ADD || INSERT || MOVE> <peer id> <peername>

<address> <receive from peer id> <receive quality> <send next peer

id> END

Chapter 4: Real-Life Application 59

Figure 4.11: System Sequence Diagram of sending a private or conference message of
a peer.

10. Video keep-alive message: This message is sent periodically from an online

peer to another online peer when the sending peer is a member of the receiving

peer’s chain. This message helps the head of the chain to detect crashes of

members and to update its status table consisting of the members. This way,

the head can achieve fast decision whenever it receives a video request.

VIDEO_ALIVE <peer id> <peername> <address> <current state>

<chainlength> END

11. Video release message: This message is sent from an online peer to another

online peer when the sending peer is a member of the receiving peer’s chain and

does not want to receive its video anymore.

VIDEO_RELEASE <peer id> <peername> <address> END

12. Chat message: This message is sent from an online peer to another online

peer if the message is private or to online peers in the conference, if the message

is public.

CHAT <peer id> <peername> <address> <private> MESSAGE <message> END

Chapter 5: Multi-objective Optimization 60

Chapter 5

MULTI-OBJECTIVE OPTIMIZATION

Optimizations to minimize the number of base layer receivers do not consider the

delay experienced by the peers or the heterogeneity of their connection bandwidths as

a parameter. In this chapter, we will define and derive formulations for the objective

functions to

1. minimize the number of base layer receivers

2. minimize the maximum delay experienced in a chain

3. maximize the number of additional requests granted.

After explaining each objective separately, a multi-objective function is formulated

to achieve these objectives simultaneously. It is then applied to example scenarios.

Discussions on the formulation are presented.

5.1 Overview

Before continuing to explain each of the objectives separately, we first describe our

assumptions. We give the general problem description and the solution we propose.

We also present the computational complexity of our solution and show that it can

be applied within our system.

5.1.1 Assumptions

Each peer is assumed to have at least a connection bandwidth that can support one

full quality video (i.e., base and enhancement layers) to be received and sent at the

Chapter 5: Multi-objective Optimization 61

same time. Some peers may have download bandwidths to enable them to receive

more than one full quality video at the same time. These will be covered in the

the multi-objective formulation. On the other hand, some peers may have upload

bandwidths that can support more than one full quality video at the same time. In

Section 3.3, we have shown that having multiple output bandwidths is always desirable

and beneficial. Therefore, we do not consider these peers now to demonstrate that

our approach works even when this kind of peers do not exist in a session.

Each chainhead obtains the delay information gathering round-trip-time (RTT)

values (i.e., the time a message takes to go from one peer to another and back) from

its members during the session. The one-way delays are calculated by dividing the

RTT value to 2, since they are assumed to be symmetric, so that di,j, (i.e., the delay in

the direction from peer i to peer j) is the same as dj,i (i.e., the delay in the direction

from peer j to peer i). These values are stored in a table by the chainhead and

updated periodically. A time synchronized algorithm [3] may be used for achieving

one-way delays, however, the RTT information gathered seems to be sufficient without

complicating the system.

The computational burden of the system is shown to be small [3]. Delays other

than the end-to-end delays (e.g., processing, switching, forwarding) are assumed to

be negligible compared to the network delays.

We assume that a participant can make at most two video requests, even if it

has a bandwidth that is sufficient to view more than two video signals. The reason

behind this assumption is that whenever a peer watches the video of another peer

and interacts with it, the focus of the watching peer can be at most at two persons.

Although this may look like a strong assumption, the situation is similar to whenever

a group of people interact with each other in a face to face conference. It is argued

that in a video conference with a field of view of 70 degrees mostly two persons are

in a participant’s view [32].

One can argue this situation might change, whenever the size of the group is

increased. However, in such large groups, there is usually only one speaker (i.e., one

Chapter 5: Multi-objective Optimization 62

video source) at a time whom the rest of the peers watch. In our case, there may be

more than one video sources at the same time, most probably having different groups

of receivers. Since our target in this system is relatively small groups, we believe that

the assumption limiting the number of video requests to 2 is reasonable.

5.1.2 Problem Definition

Each chainhead that receives a video request needs to configure its chain accordingly

to achieve the defined objectives. This is done using local information, and brings

the advantage of not setting up a global information exchange mechanism and use

it whenever a request is made. Omitting this overhead also allows the chainhead to

decide fast, since the chain of a peer needs to be updated dynamically, whenever a

video request is received by the chainhead.

One method to find the optimized solution for each of the objectives separately is

to use combinatorial optimization and explore the entire solution space. However, we

need to achieve all of them simultaneously. Therefore we need a combined objective.

These objectives can be combined by choosing one objective to be achieved and setting

constraints for the others (e.g., the number of base layer receivers should be less than cb

where cb is an integer less than the number of participants in the session). However,

this brings the disadvantage of deciding which objective to be achieved and how.

Deciding the values of the constraints is another issue that needs to be overcome.

We claim that any comparison between the objectives to decide one is more im-

portant than the others cannot be justified. Instead, we combine these objectives by

making use of the preferences of the peers. Since they are the ones who would get

affected by the chain configuration that is going to be employed by the chainhead, we

claim that this is reasonable and best thing to do.

In order to formulate the objectives, we define some variables.

• i: id of the peer

• c: a possible chain configuration

Chapter 5: Multi-objective Optimization 63

• li: the length of the chain headed by peer i (i.e., the cardinality of the set

consisting of the peers that receive peer i’s video signal)

Let fv,c(o) be an integer valued function of the positions of peers that return the

id of a peer given its position in a possible chain configuration c headed by peer v.

Suppose that, there are three peers receiving the video of peer 1, namely peer 3,

4 and 5. One possible chain configuration of peer 1 is given by: <4, 3, 5>. In this

particular chain configuration, f1,<4,3,5>(3) = 5.

The number of possible chain configurations headed by peer v is given by the

factorial of the number of the peers receiving the video of v, namely l1, the chain length

of peer 1. In this example, l1 = 3, so the number of possible chain configurations is

3! = 6. Since the chain head would always be in the 0’th order, it is omitted in the

chain representation.

Figure 5.1: A possible chain configuration of peer 1 with the set of receivers 3, 4,
5. The chain is represented as <4, 3, 5>. Arrows indicate the direction of video
transmission. F stands for full video quality and H stands for base layer quality. Peer
4 and peer 3 are also heads for the chains, <6, 7> and <2>, respectively.

5.1.3 Computational Complexity

The solution space consists of the possible chain configurations headed by a peer v.

The number of these configurations is given by the factorial of the number of the peers

Chapter 5: Multi-objective Optimization 64

receiving the video of v, namely the chainlength of peer v. Since we use combinatorial

optimization and explore all the possible solution space, this gives a computational

complexity of O(n!) for the enumeration solution and would be problematic when the

chain of a peer becomes very long (i.e., lv > 10). However, our target group size for

this application is small (i.e., participant count < 10). Since the chain configuration

needs to be updated dynamically and in real-time, enumeration of possible chains

is not as costly as applying special optimization formulations or running a special

optimization software.

5.2 Optimization Objectives

Optimizations to minimize the number of base layer receivers are explained in the

previous chapter. However, the delay experienced by the peers is not considered

as a parameter. Furthermore, the work in [3] and [62] targeted end-points with low

bandwidth connections that can support only one video signal to be sent and received.

However, some peers may have higher bandwidth and asymmetric (i.e., download rate

> upload rate) Internet connections.

5.2.1 Objective 1: Minimize the number of base layer receivers

By using layered video, the system allows each conference participant to see any other

participant at any given time under all multipoint configurations of any number

of users, with a caveat that some participants may have to receive only the base

layer video. An objective of the system is to maximize the quality of the video each

participant receives, that is, both the base and the enhancement layers of the video

of a requested peer should be delivered, as long as this does not require the denial

of another participant’s request. Therefore, the system’s objective is to minimize the

number of participants receiving only the base layer video in a given configuration.

The following variable is defined to formulate the objective function.

kv,c: the number of lower quality video receivers in a possible chain configuration c

headed by peer v

Chapter 5: Multi-objective Optimization 65

Now, suppose that one or more of the receivers in this peer set {3, 4, 5} is also a

chain head. For example, in the chain configuration <4, 3, 5>, let peer 3 and peer 4

be chain heads and f−1
1,<4,3,5>(3) = 2 and f−1

1,<4,3,5>(4) = 1, where f−1
v,c (j) is the inverse

function fv,c(o). So, it gives the position of the peer with the id j in a possible chain

configuration c. Let o be the smallest of these values, namely 1. Also, suppose that

peer 3 has a chain length of 1 and peer 4 has a chain length of 2. This is illustrated

in Figure 5.1.

Remember that peers 3 and 4 are chain heads and relays at the same time. This

means that the peers in the chain of peer 3 (i.e., peer 2) and the peers in the chain

of 4 (i.e., peer 6 and peer 7) receive only base layer as well as peer 3 and peer 5.

In this particular chain configuration of peer 1, the total number of base layer

receivers is 2+1+1+1 = 5. (i.e., the chain length of peer 4 + peer 3 + the chain

length of peer 3 + peer 5). Note that, if peer 5 was also a chain head, it would not

relay, so its chain would receive full quality video and thus, would not be included

in the sum. So kv,c, the number of lower quality video receivers in a possible chain

configuration c headed by peer v, is calculated as

kv,c=

0 if o = lv or no such peer

lf−1
v,c (o) + 1 +

lv−1∑
j=o+1

(
lf−1

v,c (j) + 1
)

otherwise

The number of base layer receivers in a possible chain configuration c is 0, if o = lv

(i.e., the corresponding peer is at the end of the chain) or there is no such peer that

is head of a chain and relay, so that every peer receives full quality video. Otherwise,

it is calculated as given above.

The first objective function gv(c) is defined as

gv(c) = kv,c (5.1)

5.2.2 Objective 2: Minimize the maximum delay experienced by a peer

Since a video signal might have to be forwarded from a peer to another, this may

cause the peers located towards the end of a chain experience large delays. Another

Chapter 5: Multi-objective Optimization 66

objective of the system is to minimize the delays experienced by the peers in a chain.

Since the maximum delay in a chain will be experienced by the peer at the end of

the chain, we aim to minimize the delay of that peer and do our calculations based

on that. We define the delay of a chain as the delay experienced by the peer at the

end of that chain.

In order to calculate the delay of a chain, the end-to-end delay information be-

tween the peers are needed by the chain head. To do this, we re-define some of the

messages described in [3]. Whenever a peer makes a video request, it piggybacks the

RTT information between itself and the other peers. Thus the requested peer has

information about the end-to-end delay between the requesting peer and other peers,

so it can calculate the delay of a possible chain configuration.

Besides the request message, the keep-alive message is also re-defined. Keep-alive

messages are sent by the members of a chain to the chain head periodically, so that

the chain head can find out whether a peer has crashed or lost its connection and,

then rearrange its chain accordingly. These messages are also used to keep the head

informed of peers’ current status and chain lengths (if they have any), so that the chain

head can use this information to evaluate a request without needing to exchange any

additional messages. Each member piggybacks the RTT information between itself

and other peers in the conference to the keep-alive messages. This way, the chain

head has all the information it needs to calculate the delay of a possible chain.

Since the maximum delay in a chain configuration is experienced by the peer at

the end of the configuration c, the following holds.

dv,c: delay experienced by the peer at the end of a possible chain configuration c

headed by peer v

The chainhead that received a video request calculates the delay value of each

possible chain configuration by adding the one-way delay values between the peers.

dv,c =
lv∑

j=1

dfv,c(j−1),fv,c(j)

The second objective function hv(c) is defined as

Chapter 5: Multi-objective Optimization 67

hv(c) = dv,c (5.2)

The possible chain configurations and their delay values for the example given in

Figure 5.1 are given below.

h1(< 3, 4, 5 >) = d1,3 + d3,4 + d4,5

h1(< 3, 5, 4 >) = d1,3 + d3,5 + d5,4

h1(< 4, 3, 5 >) = d1,4 + d4,3 + d3,5

h1(< 4, 5, 3 >) = d1,4 + d4,5 + d5,3

h1(< 5, 3, 4 >) = d1,5 + d5,3 + d3,4

h1(< 5, 4, 3 >) = d1,5 + d5,4 + d4,3

5.2.3 Objective 3: Maximize the number of additional requests granted

The P2P approach we presented in [3] and [62] assumed that the peers have a connec-

tion bandwidth that is enough to send and receive only one video signal. However,

the diversity of the Internet connections and the asymmetry of these connections lead

to the fact that peers may have spare bandwidth for sending and receiving more than

one video signal.

Having an upload bandwidth that can support more than one video signal is always

beneficial. Suppose a peer R receives a video signal (i.e., watches another peer H)

and forwards it to another peer E in a chain. Whenever another peer A requests the

video of peer R, peer R may need to drop the quality of the forwarded video to base

layer, in order to be able to send its own video with the remaining bandwidth (also

in base layer). If peer R has an upload bandwidth to support more than one video

signal at the same time, it does not need to drop the quality of the forwarded video,

instead it uses its spare bandwidth to grant the request. So, peer E and peer A would

both receive full quality video (i.e., base + enhancement layers), instead of only the

base layer. This applies to all similar situations whenever a peer needs to be a chain

head and relay at the same time. Therefore, we do not investigate the cases where

Chapter 5: Multi-objective Optimization 68

peers have spare bandwidths for upload, rather we concentrate on peers having spare

bandwidth to receive more than one video signal (i.e., watching more than one peer).

Considering these, another objective of the system is to maximize the number of

such additional requests that are granted. Thus, we formulate the objective so that

the value of the objective function is 1 if the additional request is granted, whereas it

is -1 if the request is declined. Every chain head investigates each possible chain con-

figuration c whenever a peer makes an additional video request to the corresponding

chain head.

sv,c =

 -1 if the request is not granted

1 if the request is granted

The third and last objective function mv(c) is defined as

mv(c) = sv,c (5.3)

5.3 Multi-objective Optimization

In this section, we will describe our multi-objective optimization approach. We will

first present the mechanism to assign importance weights to each objective using the

preferences of the peers. Then, we will demonstrate how the technique is applied to

the system through example scenarios.

5.3.1 Formulation

In order to determine the best solution, we use the weighted sum method [63]. The

issue of determining importance weights to be assigned to each objective is overcome

by employing a preference mechanism. Peers being aware of the optimization objec-

tives choose one of the objectives as their preference. These will be exchanged during

the initialization of the conference. Peers may change their preferences during the

conference, but they need to inform the others. The assigned importance weights of

each objective function fi is defined as

Chapter 5: Multi-objective Optimization 69

wfi
=

pfi

n
(5.4)

where pfi
represents the number of peers that prefer fi to the other optimization

objectives. n is the number of participants in the conference.

The importance weights are determined using the number of participants in the

entire conference (i.e., n), rather than the number of participants in a corresponding

chain. The reason is that a peer’s preference (e.g., a chain head) may affect other

peers’ (e.g., the peers in its chain) received video quality. Consider the conference in

Figure 5.2 with 5 participants. Suppose that peers 2 and 3 prefer minimum delay and

peers 1, 4 and 5 prefer maximum video quality. Peers 1 and 2 are geographically closer,

so the chain configuration in Figure 5.2a will be employed by the chain head (i.e., peer

1) to minimize the delay. This will cause the other chain head (i.e., peer 2) send its

own video signal in base layer quality, although all peers in its chain prefer maximum

video quality. Since they can receive only the base layer, their preferences will have

no effect, even if they constitute the majority in the conference. Therefore, rather

than using only the preferences in the corresponding chain, all peers’ preferences are

taken into account while determining the importance weights. As a consequence, the

configuration in Figure 5.2b should be used to satisfy the majority.

Each chain head v would calculate the scaled versions of the optimization functions

while determining which chain configuration they are going to employ whenever they

receive a video request message. The formula for that is

fi,v,scaled(c) = wfi

fi,v(c)− fi,v,min(c)

fi,v,max(c) + fi,v,min(c)
(5.5)

where fi,v,min and fi,v,max represent the minimum and the maximum value of that

optimization function, respectively. The combined objective function would be uv(c)

as given below.

uv(c) = min(
∑
m

fi,v,scaled) (5.6)

Chapter 5: Multi-objective Optimization 70

Figure 5.2: a) If the importance weights are assigned only with respect to the prefer-
ences of the peers in a chain. b) If the importance weights are assigned according to
the preferences of all peers. The majority of the peers get what they want: maximum
video quality.

where m is the number of optimization objectives that are used in the multi-objective

solution. The chain head v would employ c∗, the configuration optimizing the objec-

tive function.

5.3.2 Example scenario: Minimize the number of base layer receivers and the maxi-

mum delay in a chain

In this part, we will illustrate the multi-objective optimization technique with an

example scenario. For simplicity and ease of understanding, we assume that all peers

have sufficient connection bandwidth only for one full-quality video. Thus, we do

not take the additional requests into account; they will be further investigated in the

second example.

Each chain head v should try to minimize the number of base layer receivers in its

chain and minimize the maximum delay experienced in that chain, at the same time.

First, we will show that these optimization objectives may be conflicting with each

other.

Suppose there is a conference session with 7 participants. Peers 1 and 4 are located

in the USA, peers 3 and 5 are located in Turkey, peers 6 and 7 are located in Germany

Chapter 5: Multi-objective Optimization 71

and peer 2 is located in Canada. Typical one-way delay values between the peers are

given in Table 5.1.

Let the video request configuration of this conference be the following: Peers 3, 4

and 5 request to view peer 1’s video, peer 2 requests peer 3’s video and peers 6 and

7 request peer 4’s video. So peers 1, 3 and 4 have chains with lengths 3, 1 and 2,

respectively.

Suppose that peer 1 needs to configure its chain, so that the number of base

layer receivers and the maximum delay experienced by a peer are minimized. The

minimum number of base layer receivers is achieved by the chain configuration <5,

3, 4> (i.e., peer 4 has the longest chain length, and thus, it should be at the end of

the chain, giving a total of 2 base layer receivers). The minimized maximum delay is

achieved by the chain configuration <4, 3, 5> and yields a maximum delay of 129 ms

as calculated from Table 5.1. These possible configurations can be seen in Figure 5.3.

Table 5.1: Latency Table

peer id 1 2 3 4 5 6 7

1 0 26 89 24 95 66 70

2 26 0 104 78 108 73 75

3 89 104 0 85 20 55 42

4 24 78 85 0 98 65 71

5 95 108 20 98 0 53 47

6 66 73 55 65 53 0 12

7 70 75 42 71 47 12 0

g1(< 4, 3, 5 >) = 5 and h1(< 4, 3, 5 >) = 129 ms

g1(< 5, 3, 4 >) = 2 and h1(< 5, 3, 4 >) = 200 ms

If the chain head (i.e., peer 1) were to minimize only the number of base layer

receivers, then the chain configuration it should be employing would be <5, 3, 4>.

Chapter 5: Multi-objective Optimization 72

Figure 5.3: a) Chain configuration <4, 3, 5> yielding 5 as the number of base layer
receivers (Peers 6, 7, 3, 2 and 5). b) Chain configuration <3, 5, 4> yielding 2 as the
number of base layer receivers (Peers 2 and 4).

Figure 5.4: a) Correct chain order to minimize the maximum delay. b) Correct chain
to minimize the number of base layer receivers.

Chapter 5: Multi-objective Optimization 73

On the other hand, if it were to minimize only the maximum delay in a chain, then

the chain configuration <4, 3, 5> should be employed. Clearly, these two objectives

conflict with each other. Figure 5.4 shows details of this example.

In our scenario, peers 5 and 6 prefer maximum video quality and peers 1, 2, 3, 4

and 7 prefer minimum delay. So, pg = 2 and ph = 5. Then the weights would be wg

= 0.29 and wh = 0.71. gv(c) and hv(c) values are scaled according to the equation

(5.5). The best solution is determined according to the optimization function uv(c).

The entire set of the possible chain configurations and their gv(c) and hv(c) values

are given in Table 5.2.

According to Table 5.2, the chain configuration <4, 5, 3> gives the minimum value

of the objective function. This chain is employed by the chain head. Remember that,

4 of 6 peers had told that they would prefer minimum delay over high quality of video.

We can see the trade-off between minimizing the delay and minimizing the number

of base layer receivers. Peer 1 employs a chain that has the second best minimized

delay and third best minimized number of base layer receivers.

Table 5.3 gives gv(c) and hv(c) values calculated with the preference values wpref,g

= 0.71 and wpref,h = 0.29, so that now 2 of 7 peers prefer high video quality over

minimum delay.

Since the preference values have changed, peer 1 has to change its chain to the

best configuration determined by the objective function. The chain configuration <5,

3, 4> has the minimum gv(c) value and has the third best delay. The compromise is

done to match the preferences of the peers.

5.3.3 Example scenario: Minimize the number of base layer receivers and maximize

the number of additional requests granted

In this example, we assume that the peers are geographically close to each other and

thus, do not take the delays into account. The peers prefer either maximum video

quality or additional video requests.

Chapter 5: Multi-objective Optimization 74

Table 5.2: g1(c) and h1(c) values with wg = 0.29 and wh = 0.71.

c g1(c) h1(c) g1,scaled(c) h1,scaled(c) u1(c)

<3, 4, 5> 5 272 0.29 0.68 0.97

<3, 5, 4> 3 207 0.10 0.37 0.47

<4, 3, 5> 5 129 0.29 0.00 0.29

<4, 5, 3> 4 142 0.19 0.06 0.25

<5, 3, 4> 2 200 0.00 0.34 0.34

<5, 4, 3> 3 278 0.10 0.71 0.81

Table 5.3: g1(c) and h1(c) values with wg = 0.71 and wh = 0.29.

c g1(c) h1(c) g1,scaled(c) h1,scaled(c) u1(c)

<3, 4, 5> 5 272 0.71 0.28 0.99

<3, 5, 4> 3 207 0.24 0.15 0.39

<4, 3, 5> 5 129 0.71 0.00 0.71

<4, 5, 3> 4 142 0.47 0.03 0.50

<5, 3, 4> 2 200 0.00 0.14 0.14

<5, 4, 3> 3 278 0.24 0.29 0.53

The conference has 6 participants and is illustrated in Figure 5.5. The chains

of peer 1, peer 3 and peer 5 consist of peers 2 and 3, peers 4 and 5, and peer 6,

respectively. Suppose that peer 5 has sufficient bandwidth to make an additional

video request and that it requests peer 1’s video. If peer 1 would arrange its chain

just to minimize the number of base layer receivers, peer 5’s additional video request

would be rejected. Figure 5.5a depicts this situation. If the request were granted

employing a chain configuration like in Figure 5.5b, that would mean that 3 peers

would receive base layer video (i.e., 3 requests would be granted, but the requesters

would receive base layer video; requesters 4, 5 and 5). However, the configuration

shown in Figure 5.5c would allow that a smaller number of requests would receive

base layer video (i.e., only 2; peers 2 and 6).

Chapter 5: Multi-objective Optimization 75

Figure 5.5: a) The configuration after peer 5’s additional request is rejected. b) A
possible chain configuration of peer 1 after it granted peer 5’s additional request. c)
Another possible chain configuration of peer 1 with only 2 base layer receivers.

As can be seen, the two objectives conflict again, as one requires that the request

is rejected and the other requires that some peers receive base layer video. Assuming

that 4 out of 6 peers would prefer that additional requests are granted over the video

quality, the importance weights for the objective functions would be: pg = 2/6 = 0.33

and pm = 4/6 = 0.67.

The uv(c) values for all chain configurations are presented in Table 5.4. Since

the second objective aims to maximize the number of additional requests granted,

its value is negated to minimize the overall objective function uv(c). According to

the Table 5.4, the chain configuration <2, 5, 3> is the best-compromise solution and

thus, would be employed by the chain head (i.e., peer 1). Since 4 out of 6 peers prefer

that additional requests are granted, the system has tried to maximize that number

as well as to minimize the number of base layer receivers at the same time.

Table 5.5 shows how the objective function values change as the importance

weights change when only one peer would prefer that additional requests are granted.

Since the chain head would calculate the objective function values according to the

new weights and employ the best-compromise chain configuration, the second request

of peer 5 would be rejected.

Chapter 5: Multi-objective Optimization 76

Table 5.4: g1(c) and m1(c) values with wg = 0.33 and wm = 0.67.

c g1(c) m1(c) g1,scaled(c) m1,scaled(c) u1(c)

<2, 3, 5> 3 1 0.20 0.67 -0.47

<2, 5, 3> 2 1 0.13 0.67 -0.53

<5, 2, 3> 3 1 0.20 0.67 -0.47

<5, 3, 2> 5 1 0.33 0.67 -0.33

<3, 2, 5> 4 1 0.27 0.67 -0.40

<3, 5, 2> 5 1 0.33 0.67 -0.33

<2, 3> 0 -1 0.00 0.00 0.00

Table 5.5: g1(c) and m1(c) values with wg = 0.83 and wm = 0.17.

c g1(c) m1(c) g1,scaled(c) m1,scaled(c) u1(c)

<2, 3, 5> 3 1 0.50 0.17 0.33

<2, 5, 3> 2 1 0.33 0.17 0.16

<5, 2, 3> 3 1 0.50 0.17 0.33

<5, 3, 2> 5 1 0.83 0.17 0.66

<3, 2, 5> 4 1 0.67 0.17 0.50

<3, 5, 2> 5 1 0.83 0.17 0.66

<2, 3> 0 -1 0.00 0.00 0.00

5.4 Simulation results

In this section, we present simulation results covering possible scenarios with up to

10 participants. Each participant requests the video of another participant randomly.

Participants with additional bandwidth make another video request in addition to

their first requests. We again do not take the delays into account.

For each conference case with different participant counts, we generated 100,000

cases randomly, in which the number of participants with additional bandwidths

is increased from 1 up to the participant count for that case. For example, for a

conference scenario with 6 participants, we generated 100,000 random cases with only

one participant having additional bandwidth; we generated another 100,000 with two

of the participants having additional bandwidth and so on.

Chapter 5: Multi-objective Optimization 77

During our simulations, we assumed that the participants with no additional band-

width prefer maximum video quality and the rest prefers that additional requests are

granted. This is plausible, because a participant with additional bandwidth would

be more likely willing that additional requests are granted. The importance weights

for maximizing the video quality and maximizing the number of granted additional

requests are calculated accordingly.

Figure 5.6: Pseudo code to handle a request.

Whenever a request comes to a participant p from a participant r, the actions that

p can take are given in the pseudo code (Figure 5.6). In the first part (lines 1-5), the

status of the requested participant p is checked. If it is relaying video, the chain head

of p tries to move p to the end of the chain, so that it would not forward the video

anymore. This way, the number of base layer receivers in the chain is minimized [62].

If the last member of the chain has a shorter chain or no chain, the head of p can

move p to the end. If not, then p is moved to a position where the number of base

layer receivers is minimized according to our optimization formulations described in

[62] (i.e., near the end of the chain).

The second part deals with the request. If the requesting participant r is a chain

head and a relay at the same time, the status of the last member in p’s chain needs

Chapter 5: Multi-objective Optimization 78

to be checked (lines 6-12). We are going to explain each case in detail.

The last member l might have made two requests, for p’s and o’s video signals.

Also, at least one other participant might have requested l’s video, so l is a chain

head. Suppose that o’s chain requires that l must relay video. Since l is also a chain

head, it will relay only base layer of o’s video. The remaining bandwidth will be used

for l’s own video. The only way that l receives p’s video is that it is at the end of p’s

chain. Once another participant r, a chain head and a relay itself, requests p’s video,

the only position r could be was at the end, but since l cannot be in another position

in p’s chain and relay p’s video to r, the request is rejected.

Similarly, l might have not been a chain head, but only a relay for o. Suppose

that another participant m did not make a request yet and we allowed that r relay

two different video signals, so that l also relays p’s video to r. When m makes its first

request to receive l’s video, this would be rejected, because l’s uploading bandwidth is

used for relaying two base layer video signals (i.e., p’s and o’s). However, our condition

that each participant can see any other participant anytime contradicts with this. So,

we do not allow that a participant relay two different video signals. Therefore, r’s

request is rejected. Remember that r had additional bandwidth and the request was

its second. r has already a request granted, so our condition holds.

The rest of the code is for when r is not a chain head and a relay at the same time.

This means, that it could also be relaying in p’s chain, if the best-compromise chain

requires it to do so. Participant p generates all possible chain configurations with r

in its requester list. The best-compromise chain is selected by the head p using the

calculations given in Section 5.2 regarding the importance levels. According to the

best-compromise chain, the request is either granted or rejected.

The results of the scenarios for each participant count are averaged. Figure 5.7

shows the percentages of the rejected requests, granted base layer video receiving

requests and granted full quality receiving requests. The percentage of the rejected

requests does not exceed 15% and decreases as the number of participant count in-

creases. Although the percentage of the base layer video receiving requests increases

Chapter 5: Multi-objective Optimization 79

with the participant count, this increase is asymptotic. Our system was able to grant

at least 50% of the requests to receive full quality video.

Even when additional requests were not granted, there was a slight increase in the

base layer receiving requests with the increase in the participant count. However, the

ratio of the average number of base layer receiving requests to the total number of

requests is decreasing as the participant count increases [62]. For the multi-objective

case, simulations show that the increase in the participant count, increases the number

of base layer video receiving requests as well. But this increase is also asymptotic and

does not damage the system’s scalability.

Instead of rejecting the requests, the system makes use of layered video and grants

the additional requests according to the best-compromise chain found. Increased

participant count increases the probability for a request to receive base quality layer

video; however, in cases where base layer video is used, the average percentage of

these requests to all requests stays below 45% percent and is generally about 39%

(Figure 5.8).

In some cases, there may be rejected requests; however, all of these requests are

additional requests, so that the requesters already receive a participant’s video. Our

system tries to maximize the number of granted additional requests, as long as this

does not cause other participants’ requests to be rejected.

5.5 Discussions

The best-compromise solution makes a trade-off between the gv(c) and hv(c) or mv(c)

values. Each change in the number of base layer receivers may cause a change in

the other objective value. The maximum delay experienced by the peers in the cor-

responding chain may increase or decrease; an additional request of a peer may be

rejected or granted. However, one cannot make a clear statement saying that ’a change

in the number of base layer receivers corresponds to a certain increase or decrease in

the maximum delay of that chain’ or ’a change in the number of base layer receivers

corresponds to a certain number of additional requests to be granted or rejected’. The

Chapter 5: Multi-objective Optimization 80

Figure 5.7: Percentages of all requests.

Figure 5.8: Average percentage of base layer receiving requests to total requests in
cases where base layer is used.

Chapter 5: Multi-objective Optimization 81

uniqueness of the video request set (i.e., which peers request the video of which other

peers), the pair-wise delay values and which peers have sufficient bandwidth to make

additional requests prevent this.

Since we cannot know how much delay is worth how many base layer receivers or

how many full quality video receivers we can sacrifice to grant one more additional

request, we need a way to determine the sensitivity of this trade-off. Therefore, we

need to assign importance weights to the objective functions. This assignment is

a hard task which is overcome by the preferences of the peers. There is no way to

compare the number of base layer receivers with the delay values or additional requests

to conclude one is more important than the other. The preferences of the peers are

used to determine the importance weights of the optimization objectives. This is a

plausible assumption since the peers will be the ones affected by the employed chain

configuration.

The system makes use of layered video to guarantee that each video request at

each participant is granted. With the presented extensions, the system makes com-

promises between the quality of the video peers receive, delays experienced by peers

and additional requests of peers with sufficient bandwidth. Our multi-objective for-

mulation successfully finds the best-compromise solution. We have shown with a

counter-example that the solution should be calculated according to the preferences

of all participants in the conference, not just in a corresponding chain.

Instead of denying an additional request when the combined objective function

does not allow it to be granted, one may queue the requesting peer r. This way, this

peer will have higher priority than the new requester n, when the chainhead receives a

new video request and tries to update its chain. However, this may cause the problem

of having the peer n wait in queue a long time, when the combined objective function

never allows the request of r to be granted.

The sensitivity analysis showed that our objective function reacts to the changes

in the preferences of the participants and satisfies them in the best way. Although the

employed solution causes more requests to receive base layer video quality, simulation

Chapter 5: Multi-objective Optimization 82

results show that this does not damage the system’s scalability. Since the intended

group size is relatively small, generation of possible chain configurations does not

bring much computational burden. This makes the system easy to implement.

Chapter 6: Formal Specification, Verification and Security Aspects 83

Chapter 6

FORMAL SPECIFICATION, VERIFICATION AND

SECURITY ASPECTS

In this chapter, we discuss other aspects of the presented P2P MP video confer-

encing system. Formal specification and verification process of our protocol will be

explained. Besides, a scheme that provides security to the relayed video packets will

be described and analyzed.

6.1 Applying Formal Methods

Although simulations have been done to validate that the given protocol is functioning

properly and results have been given, a formal model and verification of the developed

protocol is still needed. Many tools and methods exist for formal modeling and

verification of distributed systems. Among them, TLA+ is the best to be used with

our system. TLA+ is a formal specification language enabling to formally model

systems and their properties [5]. TLA+ specifications are checked using TLC model

checker [6]. In this section, the formal specifications, the iterations in the process and

the steps taken to formally specify the system are explained. Also, some analytical

results and discussions are given.

The model is specified assuming that the users have already joined the conference

and can see other participants so that they can make video requests to them. It does

not cover a special service which takes care of showing who is online and who is not,

joining or leaving a conference and inviting other users to a conference.

The most important restriction of the system is that the users can only issue

a request to watch just one user’s video signal. Before they make another, they

have to first release the one they are already receiving and then issue another request.

Chapter 6: Formal Specification, Verification and Security Aspects 84

Although this release operation was implemented and specified using TLA+, it drasti-

cally increased the search space. Therefore, this operation is left without employment

in the specification.

6.1.1 Formal Specification

In this section, we will describe the states, variables and messages that are used in

the TLA+ specification. We will also provide their correspondents in the prototype

implementation. However, some of these are used only in TLA+ specification in order

to cover atomicity of our distributed system.

We can explain the atomicity principle applied to our system by defining nego-

tiation. A negotiation is the event of sending a message and waiting for a reply or

receiving a message and generating a reply. There are three types of negotiations:

• Type 1: Sending a video request and receiving an acknowledgement

• Type 2: Receiving a video request, handling it and sending an acknowledgement

• Type 3: Receiving a video request, sending a ”move” request, receiving a

”moveReply” message and sending an acknowledgement

Receiving a ”move” request and generating a reply is not considered as a negoti-

ation, since this request can be handled as a regular video request without causing

any deadlocks.

Negotiations are considered as atomic operations, so that a user cannot issue more

than one video request to different users at the same time and a user cannot process

more than one request for different users at the same time. This achieves that a user

in a negotiation cannot interact with another user in the same way and ensures that

a user is only in one negotiation phase. However, to cover the atomicity principle in

the specification of our distributed system, five steps are needed at most.

1. Send a video request to a user and enter a negotiation state (type 1)

Chapter 6: Formal Specification, Verification and Security Aspects 85

2. Receive the video request from receiveQueue to requestQueue, so that the re-

ceiving user enters a negotiation state (type 2)

3. Handle the video request. If required, send a ”move” request and enter a nego-

tiation (type 3)

4. Receive the reply from the moveReplyQueue and continue to handle the video

request state (type 1)

5. Send an acknowledgement to the requester and exit negotiation state (type 3).

Although the atomicity principle is not violated during these steps, it does not

prevent the system to interleave the steps when different users are in interaction.

This interleaving increases possible states of the system. To a user, it may look like

it is making one atomic operation when it is in negotiation with another user, but

to the system, this happens in five steps. As the number of the users increases,

the probability that these steps interleave is increased and thus, the state space is

increased as well.

Table 6.1: User states in the TLA+ specification with a correspondent in the proto-
type implementation.

State name State name in Brief

in TLA+ implementation explanation

Participant Participant Initial state; does not send or receive any video signal.

Relay Member Receives a video signal; forwards it to the next user.

Chainhead Chainhead Sends its own video signal; does not receive any video signal.

Chainhead Relay Chainhead Member Receives and forwards a video signal, and sends its own video signal.

Waiting - Negotiation state (type 1)

Processing - Negotiation state (type 2)

Processing II - Negotiation state (type 3)

Chapter 6: Formal Specification, Verification and Security Aspects 86

Table 6.2: Variables in the TLA+ specification with a correspondent in the prototype
implementation.

Variable Variable name

name in TLA+ in implementation Explanation

sendingToAsRelay relayNextId The id of the user that is next in the chain.

nextMember headNextId The id of the user that is the first member in this user’s chain.

lastMember lastMemberId The id of the user that is the last member in this user’s chain.

headId headId The id of the user that this user is watching.

receivingFrom receivingFromId The id of the user that this user is being relayed from.

sendingChainFull headSendingFull True if this user is sending its video signal in full quality.

sendingNextFull relaySendingFull True if this user is relaying in full quality.

currentState currentState ”Participant” in both,

”Relay” in TLA+; ”Member” in implementation,

”Chainhead” in both,

”Chainhead Relay” in TLA+; ”Chainhead Member” in implementation

chain chain The ordered list of the group that is watching this user’s video signal.

chainlength chain.size() The cardinality of the group that is watching this user’s video signal.

prevState - Indicates the state of the user before it went into one of the negotiation states.

myCurrentStatusTable - Each user’s own state variables define its status.

otherUsersStatusTable chain Chain vector elements are used to store the status of chain members.

requestQueue - All messages are handled in a thread-per-request fashion. The

receiveQueue - prioritization of the threads is achieved by using synchronization primitives

ackQueue - such as semaphores and locks.

updateQueue - Each sent message causes the entire system to be in a

infoQueue - different state as a whole. The model checking process handles

moveReplyQueue - the differences between different interleavings of the steps.

canPassThroughFull canPassThroughFull Temporary variable; indicates whether the user can relay full quality video.

canPassThroughHalf canPassThroughHalf Temporary variable; indicates whether the user can relay base quality video.

newNext sendNext Temporary variable; indicates the next member’s id in the ”update” message.

newFrom recvFrom Temporary variable; indicates the member’s id before this user in the ”update” message.

Table 6.3: Messages in the TLA+ specification with a correspondent in the prototype
implementation.

Message name Message name in

Message id in TLA+ implementation Explanation

1 request Video request Video request message.

2 ack Video request acknowledgement Acknowledgement message to inform the requester.

3 info Video keep-alive Information message to update the head.

4 move Video request move Move request message sent to the head.

5 update Video request update Update message to the chain members with the new relay information.

6 moveOK - These are the move reply message types in the TLA+. In the

7 moveNOTOK - prototype, video request update messages are used instead of

8 moveNOTOKSwap - these. The handling thread waits until the participant receives

9 moveNOTOKSwap2 - a video update message from the head and a notify event occurs.

Chapter 6: Formal Specification, Verification and Security Aspects 87

Peer States in TLA+ specification

According to the specification, a user can be in one of the states given in Table 6.1

at any time of the model-checking process. We will describe the states used only in

the TLA+ specification in detail.

Waiting: This is the state when a user in Participant or Chainhead state issued a

request to another user and waits for the result of that transaction. The user will be

in Relay or Chainhead Relay state after the reception of the result, respectively.

This is one of the negotiation states (type 1) defined to cover atomicity in the TLA+

specification. There is not a correspondent state in the prototype implementation;

rather a semaphore permit is acquired so that no other thread can execute at the same

time. When the ”video request acknowledgement” arrives, the semaphore permit is

released. This way, it is ensured that the user interacts only with one user.

Processing: This is the state when a user in Participant, Relay, Chainhead

or Chainhead Relay states received a video request from another participant and

processes the request according to the decision algorithm described above. If the

user is in one of the Participant or Chainhead states, the result of the algorithm

would be sent to the issuer of the request. An ”update” message may be sent to

affected chain members if a change in the chain configuration is needed. If the user

is in one of the Relay or Chainhead Relay states, a ”move” message is sent to

the head and this user goes into Processing II state to wait for the result. This

is one of the negotiation states (type 2) defined to cover atomicity in the TLA+

specification. There is not a correspondent state in the prototype implementation;

rather a semaphore permit is acquired so that no other thread can execute at the

same time. The request is granted according to the decision algorithm. When the

”video request acknowledgement” message is sent, the semaphore permit is released.

This way, it is ensured that the user interacts only with one user.

Processing II: This is the state when a user in Relay or Chainhead Relay states

received a video request from another participant and needs to send a ”move” request

to its chain head. According to the reply from the head, an appropriate acknowledge-

Chapter 6: Formal Specification, Verification and Security Aspects 88

ment would be sent to the issuer of the video request and possibly to another relay if

an update in the chain configuration is needed. This is one of the negotiation states

(type 3) defined to cover atomicity in the TLA+ specification. It is a continuation

of the state Processing. There is not a correspondent state in the prototype im-

plementation; rather a lock is used to synchronize the threads. The handling thread

waits a ”video update”. When it is received, the handling thread notifies the wait ing

thread. Since the semaphore permit was acquired as this user was in Processing

state and is not released yet, there can be only one thread executing. After the ar-

rival of the ”video update” message, the ”video request” is handled and the ”video

request acknowledgement” message is sent. The semaphore permit is released after

this.

State variables

Besides the state information given above, some state variables are also needed to

be used in the decision algorithm. These are given in Table 6.2. Variables without

a correspondent in the prototype implementation are described in detail. The states

Waiting, Processing and Processing II are not considered when describing the

variables, since these are negotiation states. The variables are kept also in these

states, but the users cannot stay in these states forever.

prevState: It indicates the state of the user before going to one of the negotiation

states. This information is used to determine in which state the user would be after

the decision algorithm ends. It can be any state except the negotiation states, because

the atomicity principle prevents that a user is in negotiation with more than one user

at the same time. Therefore, a user needs to go first to one of the four states other

than these negotiation states. If the user needs to go to the negotiation states, the

prevState variable is updated accordingly.

myCurrentStatusTable: Each user is a separate entity. The most simple way to

keep their states and their state variables is to use this table. It includes the cur-

rentState, chainlength, sendingToAsRelay, nextMember, lastMember, receivingFrom,

Chapter 6: Formal Specification, Verification and Security Aspects 89

headId, sendingChainFull, sendingNextFull and prevState information. In the imple-

mentation, each peer software keeps its information.

otherUsersStatusTable: This table is used to keep the information about users.

Whenever ”info” messages arrive, the information in this table is updated and later

used in the decision algorithm. Although it keeps all the users’ information, the

specification ensures that a user running the decision algorithm only accesses the

information about its members if it has any.

The message exchanges are handled using queues. Any message sent to a user is

appended to the corresponding queue and the user then picks the message from the

queue and acts accordingly. These are explained below.

receiveQueue: The receiveQueue is used to send request messages to this user.

These messages can either be ”video request” or ”move” messages. The user then

picks the message and changes its state to Processing.

requestQueue: The requestQueue is an internal queue. The peer receives messages

from requestQueue and append them to this queue. It allows to distinguish the current

state of the user and the actions according to it.

updateQueue: The updateQueue is used for messages related to updates. This only

can be used if the owner is a member of a chain, so that the head of that chain (i.e.,

the user specified by the headId of this user) makes some updates on who is sending

to whom and receiving from whom according to the requests it has received.

ackQueue: The answer to any of the video request messages are sent to this queue.

The user picks the message, and changes its state from Waiting to some state accord-

ing to its prevState variable (e.g., if the user were in Participant state, it goes into

Relay; if the user were in Chainhead state, then into Chainhead Relay state).

infoQueue: A user who is in one of the Relay or Chainhead Relay states may

send an ”info” message to its head in order to keep its updated. These messages are

sent into this queue. A user who is in Chainhead or Chainhead Relay state has

an infoQueue.

moveReplyQueue: This queue is used for receiving a reply for a ”move” request.

Chapter 6: Formal Specification, Verification and Security Aspects 90

A user who is in Processing II state can check whether any reply is present. If not,

it stays until there is one. The decision algorithm proceeds according to the type of

the reply.

One may wonder why more than one queue is used for the message exchange.

This is done so because the atomic operations would need message exchanges so that

any message triggered in the negotiation phase going to the regular queue would be

a problem. All the requests would also go the regular queue, so a user in negotiation

would not be allowed to receive any messages from the queue until the negotiation

is over (according to the atomicity principle), but the negotiation would not be over

until some negotiation messages are exchanged which are in the queue behind the

requests. This surely causes a deadlock, in which the regular request waits for the

negotiation to be over and the negotiation waits the messages to be handled so that

the negotiation message is next to be handled. On the other hand, different queues for

the negotiation messages allow the negotiation to finish so that the regular message

can be handled later. Therefore, besides the regular queue, receiveQueue, also an

ackQueue and a moveReplyQueue are used for negotiation messages.

Besides, an updateQueue is implemented as well, in order to handle update mes-

sages whenever a request is processed and a result for the decision algorithm is ob-

tained. This way, any update changing a state of the user would not affect the

negotiation with another user (i.e., a user might have requested another user’s video

with the state information at time t, but at time t’ that state information might have

changed so that the decision algorithm gets affected in the sense that it uses the state

information of the requester at time t, but at the time the decision is made the state

information has been changed, violating the atomicity principle).

With different queues, a priority scheme is needed. Since the atomicity principle

is not to be violated, updates are needed to be handled first. Secondly, only one

negotiation is allowed, so that before beginning another one, the previous one needs

to be finished. Therefore, the acknowledgements have a higher priority than regular

requests. To handle the requests, a user moves them first to the requestQueue from the

Chapter 6: Formal Specification, Verification and Security Aspects 91

receiveQueue, so in order to begin another negotiation the request in the requestQueue

needs to be processed first. The order is updateQueue, moveReplyQueue, ackQueue,

requestQueue, receiveQueue.

Until the higher priority queues are empty, the messages are kept waiting in the

queues. The usage of different queues for different type of messages ensures that the

system is deadlock-free along with the priority scheme.

Messages

In order to make transitions for a particular user as described above, some input and

output is required. In a distributed P2P application, they are messages exchanged

between the peers. These are explained in Table 6.3.

Table 6.4: Messages that cause transitions (input), messages that are sent during the
transition (output) and state variables that have an effect on the transition.

State transition id Message id (Input) Message id (Output) State variables

1 - 1 prevState = ”Participant”

2 - 1 prevState = ”Chainhead”

3 2 - prevState = ”Participant”

4 2 - prevState = ”Chainhead”

5 1 - prevState = ”Participant”

6 1 - prevState = ”Chainhead”

7 - 2 prevState = ”Participant” or ”Chainhead”

8 1 - prevState = ”Relay”

9 3 - -

10 4 6 or 7 or 8 or 9 -

11 1 - prevState = ”Chainhead Relay”

12 5 - -

13 3 - -

14 4 6 or 7 or 8 or 9 -

15 5 - -

16 - 4 prevState = ”Relay” or ”Chainhead Relay”

17 - 6 or 7 or 8 or 9 prevState = ”Relay” or ”Chainhead Relay”

Chapter 6: Formal Specification, Verification and Security Aspects 92

Figure 6.1: Finite State Machine. The numbers on the transition arrows indicate tran-
sition id. The messages causing this transition (input) and sent during the transition
(output) are given in Table 6.4.

6.1.2 Illustrating the Abstraction Map

In this part, the abstraction map between the TLA+ specification and the prototype

implementation will be illustrated with two crucial operations.

Sending a video request message

Video requests can be sent only by those users who are in either Participant state

or in Chainhead state. A participant that sends a video request message goes into

Waiting state in the TLA+ specification. Until the corresponding ”ack” message

arrives, the user stays in that state. During this time, it cannot send another video

request to another participant or receive and handle a video request from another

participant. This way the atomicity of ”sending a video request message” is preserved,

Chapter 6: Formal Specification, Verification and Security Aspects 93

since the sender of the video request message does not interact with another user

during the negotiation.

Likewise, a participant acquires a semaphore permit when it is sending a video re-

quest in the prototype. The semaphore permit is not released until the corresponding

”video request acknowledgement message” arrives. All video request messages that

are received by this user and the threads that are created to handle them, are queued

until the lock is released. The user cannot make a second video request until the

first one is resulted; this is handled by the GUI by blocking the user to make another

request. One can view both, TLA+ specification and prototype implementation in

Figures 6.2 and 6.3, respectively.

Handling a video request message

A participant in any state other than Waiting, Processing and Processing II, may

receive a request message. In other words, participants who are not in negotiation,

may receive a request from their receiveQueue to their requestQueue. Its prevState

variable is updated to have the value of the currentState variable, before the state

change. As soon as it does this, the participant goes into Processing state. Since it

is in a negotiation now, it cannot send and receive video request at this time.

If the participant’s prevState is equal to Participant or Chainhead, the par-

ticipant handles the request in its requestQueue and sends back the ”ack” message

according to the decision algorithm. If the participant’s prevState is equal to Relay

or Chainhead Relay, the participant goes into Processing II state and sends a

”move request” to the head of its chain. It stays until a ”move reply” message is

received into the moveReplyQueue.

After receiving the ”move reply” message, the participant handles the request in its

requestQueue and sends back the ”ack” message according to the decision algorithm.

A participant receiving a ”move request” message, handles this as a regular ”request”

message (i.e., updates its prevState variable, goes to ”Processing I” state, handles the

”request”, sends back the ”move reply” message).

Chapter 6: Formal Specification, Verification and Security Aspects 94

Figure 6.2: TLA+ specification of sending a video request.

Similarly, a participant may receive a ”video request” message in the prototype.

The handling thread is created, but blocked until a semaphore permit is acquired.

Since the semaphore allows only one thread to have the permit to execute, no other

threads can execute at the same time. If the currentState is Participant or Chain-

head, the video request message is handled and a video request acknowledgement

message is sent back. The permit is released after this event. If the participant’s cur-

rentState is equal to Member and Chainhead Member, sends the move request

to its respective head and the thread waits a lock to be notified. The notification

arrives as soon as the participant receives a ”video move reply” message.

After the reception of the ”video move reply”, the participant continues to handle

the video request according to the decision algorithm. It sends a ”video request

Chapter 6: Formal Specification, Verification and Security Aspects 95

Figure 6.3: Prototype implementation of sending a video request.

acknowledgement” message to the requester.

6.1.3 Formal Verification through Model Checking

The specifications written in TLA+ are verified using TLC model checker. The

verification makes sure that the specified system works deadlock-free. It also checks

the peer states and state variables. The type invariant of the system consists of these

variables and their allowed values. The model checking process uses the type invariant

and the next state action of the system and tests whether the results of the next state

action contradicts with the type invariant and causes any problems in the system’s

functioning.

The next state action of the system satisfies one of the following conditions. The

Chapter 6: Formal Specification, Verification and Security Aspects 96

actions that are taken when one of these is true are indicated in bold and italic.

There may be cases when more than one of these is true. Then TLC handles every-

thing in order and checks every possible case. The entire specification can be found

in Appendix CD.

• There can be a user in Participant or Chainhead state that may make a

request.

• There can be a user not in Processing, Processing II and Waiting state

whose updateQueue is empty, but receiveQueue is not and there is no other

request waiting in the requestQueue, then the user may receive the request

from the receiveQueue to the requestQueue.

• There can be a user in Processing state and therefore its requestQueue is

not empty, then the user may receive the request from the requestQueue and

process it according to the decision algorithm given.

• There can be a user in Processing II state and therefore its requestQueue is

not empty and its moveReplyQueue is not empty, so that it can receive the

reply and handle the request according to the decision algorithm given.

• There can be a user whose updateQueue is not empty, then it can receive the

update and change its variables accordingly.

• There can be a user in Waiting state and its ackQueue is not empty, then the

user can receive the ”ack” message and change its state and update

its variables accordingly.

• Nothing in the state and variables of the users may change.

As shown in Table 6.5, the number of states that the system can be in increases

as the number of users increases. This is related to the atomicity principle in our

distributed system described and explained in Section 6.1.1.

Chapter 6: Formal Specification, Verification and Security Aspects 97

Table 6.5: State information of TLC checks

of users # of states # of distinct states Depth of state graph

2 19 9 9

3 291 116 14

4 4341 1469 22

5 63326 18454 31

6 356736 236232 40

6.1.4 Discussions

The specification is verified using TLC model checker. It is shown that the system

works deadlock-free. There are no violations of the type invariant, so peers take legal

actions defined by the next-state action to go from one legal state to another.

Whenever a deadlock would occur, TLC would give the state graph starting from

the initial predicate. An example of this can be found in Appendix CD. The reason for

the problem in the appendix is that the system is not specified to allow that nothing

in the states and state variables of the peers changes. Another error caught by TLC

is that the system cannot find an action to do when none of the conditions specified

are satisfied. TLC reports that ”TLC encountered a CASE with no conditions true”.

This is a condition dependent action, so whenever one of the conditions is true, that

action is taken. However, in this case, there is no condition that is satisfied so that

the system can not find any action to take, and therefore stops. The example output

can be found in Appendix CD.

6.2 Secure Video Transmission

In this section, an approach for securing the authentication, integrity and non-repudia-

tion of transmitted video on our system is described. This approach is also applicable

to video transmission via an application level multicast system. The transmitted

video may be seen by everyone. The approach employs public key cryptography, so

that the private key is known only to the sender and the public key is freely available.

Chapter 6: Formal Specification, Verification and Security Aspects 98

6.2.1 Method

The approach introduced is independent of the encoding algorithm of the video since

it operates with packets independently. Integrity and authentication can be provided

either by encrypting the entire packet using chunks or by creating a unique digest

value and encrypting it. The real-time video demands imposes limits on the key size

on both methods. Therefore the encryption and decryption times should be very

short.

The first method describes encrypting and decrypting packets either entirely or

after dividing them into chunks. With larger key sizes, these operations take enough

time to decrease the performance of the solution. As the simulations will show,

operations on the entire packet do not work (because of the packet size) and dividing

into chunks would either require many packets to be sent (after each division) or to

be buffered to build one packet, which would complicate implementation.

The second method; however, can provide a high security level without increasing

the overhead much. The encryption and decryption operations take less time and

processing power which make it more suitable for secure video transmission. In this

method, the sender side generates a unique digest value for each packet. This unique

digest value is then encrypted by the private key of the sender creating a digital

signature which is appended to the end of the packet. Upon reception of the packet

at a receiver, the receiver extracts this signature part from the packet and decrypts

it with the public key of the sender. Also, it generates the unique digest value of

the packet and compares this with the value received from the sender. If the values

are the same, this means that the packet received was not altered along the way. If

not, the packet is dropped and appropriate action is taken (e.g., the source may be

informed that someone is trying to modify the contents of the packets).

6.2.2 Simulation Results

Simulations were performed on a Pentium IV 2.4 GHz processor with 512 MB of RAM

running a 2.4.20 kernel Linux. The bit rate of the video was assumed to be 200kbps

Chapter 6: Formal Specification, Verification and Security Aspects 99

which makes 25kBps. Packet size was set to 1400 bytes leading an approximate value

of 18 packets/sec. The public exponent used was 25-bit and the private key was

generated according to the corresponding key size for 50 runs of simulation.

Encryption and decryption of the entire packet

One approach is to treat the entire packet as a big message and encrypt/decrypt

it using the private/public key. This idea has both advantages and disadvantages.

First of all, treating the entire packet as a big message makes the implementation

easy. Also, encrypting and decrypting it, is a trivial task. However, if the packet

is large enough, then the message it represents (1400 bytes = 11200 bits, in our

experiments) can overflow the key size, so that the encryption/decryption function

would not be one-to-one. This means that an encrypted packet could not be restored

by decrypting it. Assuming that the key size is big enough to handle such cases,

performance becomes an issue. Since this operation needs to be done in one second

for several packets to meet the real-time demands of streaming video, this is clearly

not realizable.

Another approach is to divide packets into chunks so that each chunk can be

encrypted and decrypted independently: This idea’s advantage lies in the part that

chunks, a packet is divided into, can be independently encrypted and decrypted. The

encrypted and decrypted parts only need to be assembled back to back to form and

restore a packet. Since the packet is divided into smaller chunks, preserving the one-to-

one mapping of the operations becomes easier. However, this method requires either

many packets to be sent after each encryption which would increase communication

overhead or to be buffered to build one packet which complicates the implementation.

When considering this method, the issue of determining the chunk size arises. To

preserve one-to-one mapping of the encryption and decryption operations, the chunk

size should not exceed the key size. Figure 6.4 and Figure 6.5 show encryption and

decryption times with different chunk sizes for different key sizes. In Figure 6.4 and

Figure 6.5, it can be seen that the encryption and decryption times decrease as the

Chapter 6: Formal Specification, Verification and Security Aspects 100

Figure 6.4: Encryption times versus the chunk sizes. Corresponding series show the
key sizes.

Figure 6.5: Decryption times versus the chunk sizes. Corresponding series show the
key sizes.

Chapter 6: Formal Specification, Verification and Security Aspects 101

Figure 6.6: Encryption/Decryption times versus the key size. Chunk size is equal to
the key size.

chunk size is increasing. Increasing key size increases the encryption and decryption

times as shown in Figure 6.6. The optimum values for the key and chunk sizes can

be determined considering this information. To provide sufficient security, a large key

should be picked. To meet the real-time demands of the streaming video with that

key, the chunk size should also be large.

As can be seen from the figures, the encryption times are much larger than the

decryption times. This is because the public key exponent is a much smaller number

than the corresponding private key exponent generated according to it. These values

can be further optimized by using similar sized exponent pairs so that the encryption

and decryption times are closer to each other.

Encryption of the unique digest value of each packet

Another technique would be to create a unique digest value of the packet and encrypt

this value with the private key like done in digital signatures. Here, the entire packet

Chapter 6: Formal Specification, Verification and Security Aspects 102

Table 6.6: Total time spent on digest value calculation and encryption/decryption
times with corresponding key sizes

RSA with SHA-1

Key size (bits) 128 256 512 1024 2048

Encryption time (ms) 1.08 6.52 19.98 96.36 592.68

Decryption time (ms) 0.41 1.63 3.61 9.74 32.19

is treated as one large message. The digest operation is a one-way function so that

the message can not be restored from the digest value. This digest value is ensured to

be unique for each packet so that a malicious user would not be able to create another

message that goes with this valid digest value and deceive the next receiver. Instead

of the packet, its digest value is encrypted with the private key and appended to the

packet. The receiver then checks the validity of the digest value by simply decrypting

it with the public key.

Since the digest value is just calculated and encrypted only once for the entire

packet, this has surely better performance than trying to encrypt all the chunks. In

our simulations, we used SHA-1 for digest generation, and RSA for public-key encryp-

tion of the digest. Table 6.6 gives the encryption and decryption times measured. As

can be seen, calculating a unique digest value and encrypting/decrypting it can meet

real-time demands without burdening the sender or the receiver, respectively.

6.2.3 Discussions

In order to achieve integrity, authentication and non-repudiation, encrypting the en-

tire video packet seemed to be a valid way; however, the simulations showed that the

security that could be achieved using such an idea would be limited. The maximum

key size that could be used in this part of simulation was 1024-bit with the given

public and corresponding private key exponent sizes. Although with the optimization

described above (using similar sized public and private key exponents) in practice, a

lower value is expected since the application would consume processing power while

Chapter 6: Formal Specification, Verification and Security Aspects 103

dividing the packets into chunks at the sender side and putting them back together

at the receiver side.

On the other hand, calculating a unique digest value and encrypting it worked

under all key sizes given, even without the optimization. The calculated digest value

is not large (20 bytes when SHA-1 is used) that the sender could not handle, and

the main advantage is that it is calculated once per packet. Calculating the digest

value is a one-way function, so that recovering the data is impossible. However, by

encrypting it, the sender can be sure that the receiver can check the integrity of

the packet. Also, source authentication and non-repudiation can be ensured without

considering confidentiality because the publicly available service does not need it.

Since the encryption is possible only by the sender side because of the private key, an

intermediate peer could not change the contents of the packet and send it to another

receiver, because the last receiver would notice after calculating the digest value and

comparing it with the decrypted one.

The distribution of the public keys of the peers can be done at the beginning of

the conference. Since only the public keys are distributed, there is no harm if any

malicious user eavesdrops the exchange. The reason is that the public key is used

only for verifying the received video packets and not generating new ones.

Chapter 7: Conclusion 104

Chapter 7

CONCLUSION

7.1 Concluding Remarks

We proposed and presented an extension to the P2P architecture for MP video con-

ferencing [3]. Employing layered video, this extension makes it possible to find a

feasible solution under all configurations, so that a participant’s video request can

always be granted at anytime. Simulations show that with the increasing number

of participants, the use of layers and thus, base quality video receivers is inevitable;

however, the ratio of the base quality receivers to the total number of participants

remains under 50%. We implemented the proposed architecture and developed the

fully distributed protocol. The effects of multiple output bandwidths are investigated.

Two layered video encoding techniques, Layered Coding and Multiple Description

Coding, that can be employed within our architecture are presented. We also have

shown that even with limited bandwidth (i.e., 30 kbps for base and 60 kbps for full

quality), the video is in acceptable quality.

Furthermore, we proposed a multi-objective optimization approach for a P2P video

conferencing system. The system makes compromises between the quality of the

video peers receive, delays experienced by peers and additional requests of peers

with sufficient bandwidth. Our multi-objective formulation successfully finds the

best-compromise solution. We have shown with a counter-example that the solution

should be calculated according to the preferences of all participants in the conference,

not just in a corresponding chain. The sensitivity analysis showed that our objective

function reacts to the changes in the preferences of the participants and satisfies them

in the best way. Although the employed solution causes more requests to receive base

layer video quality, simulation results show that this does not damage the system’s

Chapter 7: Conclusion 105

scalability. Since the intended group size is relatively small, generation of possible

chain configurations does not bring much computational burden. This makes the

system easy to implement.

The formal specification is made using TLA+ and verified with TLC model

checker. The correspondence between the TLA+ specification and the prototype

implementation has been described and explained. No error or deadlock has been

found on the protocol.

Since peers relay video to other peers, intermediate peers may alter the content.

To prevent this, a packet-based security scheme is proposed. In this scheme, the

sender calculates a digest per packet and encrypts it with its private key. The receivers

decrypt the digest value with the sender’s public key and compare the calculated value

with the piggybacked value. Simulations to show the efficiency and low overhead of

the proposed system have been carried out. It meets the demands of real-time video

even with large key-sizes and provides authentication, integrity and non-repudiation.

7.2 Future Work

It is shown that only two layers of video are required to grant each request in a

conference where participants have one input, one output and request to watch one

participant. We call this type of conference as a ”basic conference”. One can extend

this scheme for conferences where participants have n inputs and n outputs and

request to watch n other participants. Each request set of participants can be thought

as a basic conference and each request can be granted by using two layers. This brings

an upper bound of 2n to the number of required layers of video that can be used in

this type of conference to grant each request. Future work may try to determine the

lower bound.

Future work also includes exploring of other multi-objective optimization tech-

niques, in which greedy approaches may be employed. The number of additional

granted requests may be increased until the number of base layer receivers exceeds

some threshold. A possible threshold value is the half of the participant count. The

Chapter 7: Conclusion 106

number of base layer receivers does not exceed 50% of the participant count as shown

in [62]; so this would be a good candidate. However, this may require a mechanism

to exchange information about the number of base layer receivers between the chain

heads. Also, an algorithm for better estimation of the one-way delays between the

participants needs to be implemented, instead of assuming symmetric delays.

Bibliography 107

BIBLIOGRAPHY

[1] ITU-T Study Group XV - Recommendation H.231: Multipoint Control Units for

audiovisual systems using digital channels up to 1920 kbits/s, (1993).

[2] M. R. Civanlar, R. D. Gaglianello, G. L. Cash: Efficient Multi-Resolution, Multi-

Stream Video Systems Using Standard Codecs, Journal of VLSI Signal Process-

ing, (1997).

[3] M. R. Civanlar, O. Ozkasap, T. Celebi: Peer-to-peer multipoint video conferenc-

ing on the Internet, Signal Processing: Image Communication 20, pp. 743-754,

(2005).

[4] T. Celebi: Peer-to-peer Multipoint Video Conferencing, Master’s Thesis, Koc

University, Graduate School of Sciences and Engineering, (2005).

[5] Lamport L.: The Temporal Logic of Actions, ACM Toplas 16, 3 pp. 872-923,

(1994).

[6] http://research.microsoft.com/users/lamport/tla/tlc.html, (last accessed on

January 29, 2007).

[7] Y. Chu, S. G. Rao, H. Zhang: A case for end system multicast, Proceedings of

ACM Sigmetrics, (2000).

[8] Y. Chu, S. G. Rao, S. Seshan, H. Zhang: Enabling Conferencing Applications

on the Internet using an Overlay Multicast Architecture, Proceedings of ACM

SIGCOMM’01, San Diego, CA, (2001).

[9] Y. Chu, S. G. Rao, S. Seshan, H. Zhang: A Case for End System Multicast, IEEE

Journal on Selected Areas in Communications, vol.20, No.8, October (2002).

Bibliography 108

[10] S. Banerjee, B. Bhattacharjee, C. Kommareddy: Scalable application layer mul-

ticast, Proceedings of ACM SIGCOMM’02, Pittsburgh, Pennsylvania, (2002).

[11] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan: Resilient Multicast Using

Overlays, Proceedings of the 2003 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, San Diego, CA, (2003).

[12] D. A. Tran, K. A. Hua, T. Do: ZIGZAG: An efficient peer-to-peer scheme for

media streaming, Proceedings of IEEE Infocom, (2003).

[13] X. Jiang, Y. Dong, D. Xu, B. Bhargava: GnuStream: A P2P Media Streaming

System Prototype, Proceedings of the International Conference on Multimedia

and Exposure (ICME’03), Volume 2, pp. 325-328, (2003).

[14] Y. Guo, K. Suh, J. Kurose, D. Towsley: P2Cast: Peer-to-peer Patching Scheme

for VoD Service, Proceedings of the 12th international conference on World Wide

Web, pp. 301-309 (2003).

[15] T. T. Do, K. A. Hua, M. A. Tantaoui: P2VoD: Providing Fault Tolerant Video-

on-Demand Streaming in Peer-to-peer Environment, IEEE International Confer-

ence on Communications, vol. 3, pp. 1467-1472, (2004).

[16] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, A. Singh:

SplitStream: High-Bandwidth Multicast in Cooperative Environments, ACM

SIGOPS Operating Systems Review Volume 37, Issue 5 pp. 298-313, (2003).

[17] A. I. T. Rowstron, P. Druschel: Pastry: Scalable, Decentralized Object Lo-

cation, and Routing for Large-Scale Peer-to-Peer Systems, Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms Heidel-

berg, pp.329-350, (2001).

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan: Chord: A

scalable peer-to-peer lookup service for internet applications, Proceedings of the

Bibliography 109

2001 conference on Applications, technologies, architectures, and protocols for

computer communications, pp.149-160, San Diego, CA, (2001).

[19] M. Castro, P. Druschel, A. M. Kermarrec, A. Rowstron: SCRIBE: A large-scale

and decentralized application-level multicast infrastructure, IEEE JSAC, 20(8),

(2002).

[20] V. N. Padmanabhan, H. J. Wang, P. A. Chou, K. Sripanidkulchai: Distributing

streaming media content using cooperative networking, Proceedings of NOSS-

DAV’02, Miami, FL, (2002).

[21] V. N. Padmanabhan, H. J. Wang, P. A. Chou: Resilient Peer-to-Peer Streaming,

Proceedings of the 11th IEEE International Conference on Network Protocols,

ICNP’03, pp. 16-27, (2003).

[22] Y. Shen, Z. Liu, S. S. Panwar, K. W. Ross, Y. Wang: Streaming Layered Encoded

Video Using Peers, IEEE International Conference on Multimedia and Exposure

(ICME’05), (2005).

[23] I. Lee, L. Guan: Centralized peer-to-peer streaming with layered video, Interna-

tional Conference on Multimedia and Exposure, ICME’03, vol. 1, pp. 513-516,

(2003).

[24] Y. Cui, K. Nahrstedt: Layered Peer-to-Peer Streaming, Proceedings of NOSS-

DAV’03, Monterey, CA, (2003).

[25] T. Silverston, O. Fourmaux: Source vs. Data-driven Approach for Live P2P

Streaming, International Conference on Networking, International Conference on

Systems and International Conference on Mobile Communications and Learning

Technologies (ICNICONSMCL’06), (2006).

Bibliography 110

[26] M. Bawa, H. Deshpande, H. Garcia-Molina: Transience of Peers & Streaming

Media, ACM SIGCOMM Computer Communication Review, volume 33 issue 1

pp.107-112, (2003).

[27] H. Deshpande, M. Bawa, H. Garcia-Molina: Streaming Live Media over Peers,

Technical Report, Computer Science Department, Stanford University, April,

(2001).

[28] X. Zhang, J. Liu, B. Li, T. S. P. Yum: CoolStreaming/DONet: A Data-driven

Overlay Network for Peer-to-peer Live Media Streaming, Proceedings of the

IEEE INFOCOM, (2005).

[29] X. Liao, H. Jin, Y. Liu, L.M. Ni, D. Deng: AnySee: Peer-to-peer Live Streaming,

Proceedings of IEEE INFOCOM, (2006).

[30] S. T. Chanson, A. Hui, E. Siu, I. Beier, H. Koenig, M. Zuehlke: OCTOPUS -

A Scalable Global Multiparty Video Conferencing System, Proceedings of the

IEEE eight International Conference on Computer Communications and Net-

works (IC3N’99), (1999).

[31] M. Zuehlke, H. Koenig: Voting Based Bandwidth Management in Multiparty

Video Conferences, Proceedings of the Joint International Workshops on Inter-

active Distributed Multimedia Systems and Protocols for Multimedia Systems:

Protocols and Systems for Interactive Distributed Multimedia:, IDMS/PROMS

2002, pp.202-215, (2002).

[32] M. Hosseini, N. D. Georganas: Design of a Multi-Sender 3D Videoconferencing

Application over an End System Multicast Protocol, ACM, Multimedia2003,

Berkeley, CA, (2003).

[33] ISO 8807: LOTOS – A formal description technique based on the temporal

ordering of observational behaviour, (1989).

Bibliography 111

[34] http://www.run.montefiore.ulg.ac.be/Projects/Presentation/index.php?project=

Eucalyptus, (last accessed on January 27, 2007).

[35] http://www.run.montefiore.ulg.ac.be/Projects/Presentation/Apero/apero.html,

(last accessed on January 27, 2007).

[36] http://www.spinroot.com (last accessed on January 27, 2007).

[37] Holzmann G. J., Peled D.: An Improvement in Formal Verification, Proceedings

of FORTE Conference, Bern, Switzerland, (1994).

[38] Holzmann G. J.: An analysis of bitstate hashing, Formal Methods in Systems

Design, November, (1998).

[39] de Renesse R., Aghvami A.H.: Formal Verification of Ad-Hoc Routing Protocols

Using SPIN Model Checker, IEEE MELECON, Dubrovnik, Croatia, (2004).

[40] Ramasamy H. V., Cukier M., Sanders W. H.: Formal Specification and Verifi-

cation of a Group Membership Protocol for an Intrusion-Tolerant Group Com-

munication System, Proceedings of the Pacific Rim International Symposium on

Dependable Computing, PRDC’02, (2002).

[41] Abadi M., Lamport L., Merz S.: A TLA Solution to the RPC-Memory Specifi-

cation Problem, Formal Systems Specification: The RPC-Memory Specification

Case Study, LNCS 1169, pp. 21-66, (1996).

[42] Lamport L., Merz S.: Specifying and Verifying Fault-Tolerant Systems, Formal

Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, pp. 41-76,

(1994).

[43] Akhiani H., Doligez D., Harter P., Lamport L., Tuttle M., Yu Y,: TLA+ Verifi-

cation of Cache-Coherence Protocols, Compaq Project Report, (1999).

Bibliography 112

[44] Spanos, G. A., Maples, T. B.: Performance Study of a Selective Encryption

Scheme for the Security of Networked Real-time Video. Forth International Con-

ference on Computer Communications and Networks, pp. 2-10, (1995).

[45] Li, Y., Chen, Z., Tan, S. M., Campbell R. H.: Security Enhanced MPEG Player.

IEEE 1st International Workshop on Multimedia Software, (1996).

[46] Agi, I., Gong, L.: An Empirical Study of MPEG Video Transmission. Proceed-

ings of the Internet Society Symposium on Network and Distributed System

Security, pp. 137-144, (1996).

[47] Venkatramani, C., Westerink, P., Verscheure, O., Frossard, P.: Securing Media

For Adaptive Streaming, Proceedings of the eleventh ACM international confer-

ence on Multimedia, ACM Press, (2003).

[48] Baugher, M., McGrew, D., Naslund, M., Carrara, E., Norrman, K.: RFC3711

The Secure Real-time Transport Protocol (SRTP), (2004).

[49] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport

Protocol for Real-Time Applications, (2003).

[50] Tang, L.: Methods for Encrypting and Decrypting MPEG Video Data Efficiently,

Proceedings of the fourth ACM international conference on Multimedia, ACM

Press, (1997).

[51] Changgui, S., Bhargava, B.: A Fast MPEG Video Encryption Algorithm, Pro-

ceedings of the sixth ACM international conference on Multimedia, ACM Press,

(1998).

[52] Liu, F., Koenig, H.: A Novel Encryption Algorithm for High Resolution Video,

Proceedings of the international workshop on Network and operating systems

support for digital audio and video NOSSDAV ’05, (2005).

Bibliography 113

[53] Perrig A., Song D., Canetti R., Tygar J. D., Briscoe B.: RFC4082 Timed Efficient

Stream Loss-Tolerant Authentication (TESLA): Multicast Source Authentication

Transform Introduction, (2005).

[54] Wong, C. K., Lam, S. S.: Digital Signatures for Flows and Multicasts, EEE/ACM

Transactions on Networking (TON), Vol 7 Issue 4, IEEE Press, (1999).

[55] D. E. Meddour, M. Mushtaq, T. Ahmed: Open Issues in P2P Multimedia Stream-

ing, to appear in proceedings of the MULTICOMM2006, (2006).

[56] S. Kulkarni, J. Markham: Split and Merge Multicast: Live Media Streaming with

Application Level Multicast, IEEE International Conference on Communications

(ICC’05) vol. 2 pp. 1292-1298, (2005).

[57] S. Kulkarni: Video Streaming on the Internet Using Split and Merge Multicast,

Proceedings of the Sixth IEEE International Conference on Peer-to-peer Com-

puting (P2P’06), (2006).

[58] JSVM Software Available at CVS Repository of JSVM

pserver:jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt, (last accessed on Jan-

uary 27, 2007).

[59] Nokia H.264 codec Available at ftp://standards.polycom.com/

IMTC Media Coding AG/, (last accessed on July 20, 2007).

[60] Draft ITU-T Recommendation and Final Draft International Standard of Joint

Video Specification (ITU-T Rec. H.264 — ISO/IEC 14496-10 AVC), (2003).

[61] V. K. Goyal: Multiple Description Coding: Compression Meets the Network,

IEEE Signal Processing Magazine, Volume 18, Issue 5, pp. 74-93, (2001).

Bibliography 114

[62] I. E. Akkus, M. R. Civanlar, O. Ozkasap: Peer-to-peer Multipoint Video Confer-

encing Using Layered Video, Proceedings of the IEEE 13th International Con-

ference on Image Processing, ICIP2006, Atlanta, GA, (2006).

[63] L. Zadeh: Optimality and Non-Scalar-Valued Performance Criteria, IEEE Trans.

Automatica Control, vol.8, pp. 59-60, (1963).

[64] I. E. Akkus, O. Ozkasap, M. R. Civanlar: Secure Transmission of Video on

an End System Multicast Using Public Key Cryptography, Multimedia Content

Representation, Classification and Security, Lecture Notes in Computer Science,

Vol:4105, pp: 603-610, (2006).

Vita 115

VITA

İstemi Ekin Akkuş was born in İstanbul, Turkey on June 11, 1981. He received

his BSc. degrees in Mechanical Engineering and Computer Engineering from Koç

University, İstanbul. From September 2005 to August 2007, he worked as a teaching

and research assistant at the Network and Distributed Systems Laboratory (NDSL)

at Koç University. His project ”Peer-to-peer Multipoint Video Conferencing Using

Layered Video” was sponsored by TÜBİTAK.

Appendix A: Deadlock Example
TLC Version 2.0 of January 16, 2006
Model-checking
Parsing file Test9.tla
Parsing file D:\Courses\Ecoe560\project\tla\tlasany\StandardModules\Naturals.tla
Parsing file D:\Courses\Ecoe560\project\tla\tlasany\StandardModules\Sequences.tla
Parsing file D:\Courses\Ecoe560\project\tla\tlasany\StandardModules\TLC.tla
Semantic processing of module Naturals
Semantic processing of module Sequences
Semantic processing of module TLC
Semantic processing of module Test9
Warning: The subscript of the next-state relation specified by the specification
does not seem to contain the state variable myCurrentStatusTable
(Use the -nowarning option to disable this warning.)
Finished computing initial states: 1 distinct state generated.
Error: deadlock reached. The behavior up to this point is:
STATE 1: <Initial predicate>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Participant",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Participant",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 2: <Action line 147, col 41 to line 159, col 258 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = << << >>,
 << [chainlength |-> 0,
 msgType |-> "request",
 to |-> 2,
 from |-> 1,
 canPassThroughFull |-> "true",
 canPassThroughHalf |-> "true"] >> >>
/\ myCurrentStatusTable = << [currentState |-> "Waiting",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,

 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Participant",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 3: <Action line 175, col 57 to line 180, col 140 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Waiting",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Processing",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = << << >>,
 << [chainlength |-> 0,
 msgType |-> "request",
 to |-> 2,
 from |-> 1,
 canPassThroughFull |-> "true",
 canPassThroughHalf |-> "true"] >> >>
/\ ackQueue = <<<< >>, << >>>>

STATE 4: <Action line 182, col 53 to line 324, col 279 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Waiting",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,

 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Chainhead",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = << << [msgType |-> "ackAdd",
 to |-> 1,
 from |-> 2,
 newFrom |-> 2,
 newNext |-> 0,
 qualityNext |-> "none"] >>,
 << >> >>

STATE 5: <Action line 335, col 53 to line 338, col 103 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Relay",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Chainhead",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 6: <Action line 161, col 53 to line 173, col 260 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = << << [chainlength |-> 1,
 msgType |-> "request",

 to |-> 1,
 from |-> 2,
 canPassThroughFull |-> "false",
 canPassThroughHalf |-> "false"] >>,
 << >> >>
/\ myCurrentStatusTable = << [currentState |-> "Relay",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Waiting",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Chainhead"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 7: <Action line 175, col 57 to line 180, col 140 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Processing",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Relay"],
 [currentState |-> "Waiting",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Chainhead"] >>
/\ requestQueue = << << [chainlength |-> 1,
 msgType |-> "request",
 to |-> 1,
 from |-> 2,
 canPassThroughFull |-> "false",

 canPassThroughHalf |-> "false"] >>,
 << >> >>
/\ ackQueue = <<<< >>, << >>>>

STATE 8: <Action line 182, col 53 to line 324, col 279 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Chainhead_Relay",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 2,
 lastMember |-> 2,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Relay"],
 [currentState |-> "Waiting",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Chainhead"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = << << >>,
 << [msgType |-> "ackAdd",
 to |-> 2,
 from |-> 1,
 newFrom |-> 1,
 newNext |-> 0,
 qualityNext |-> "none"] >> >>

STATE 9: <Action line 335, col 53 to line 338, col 103 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Chainhead_Relay",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 2,
 lastMember |-> 2,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Relay"],
 [currentState |-> "Chainhead_Relay",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 1,
 headId |-> 1,

 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Chainhead"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

17 states generated, 17 distinct states found, 1 states left on queue.
The depth of the complete state graph search is 9.

Appendix B: No Conditions True
TLC Version 2.0 of January 16, 2006
Model-checking
Parsing file Test9.tla
Parsing file D:\Courses\Ecoe560\project\tla\tlasany\StandardModules\Naturals.tla
Parsing file D:\Courses\Ecoe560\project\tla\tlasany\StandardModules\Sequences.tla
Parsing file D:\Courses\Ecoe560\project\tla\tlasany\StandardModules\TLC.tla
Semantic processing of module Naturals
Semantic processing of module Sequences
Semantic processing of module TLC
Semantic processing of module Test9
Warning: The subscript of the next-state relation specified by the specification
does not seem to contain the state variable myCurrentStatusTable
(Use the -nowarning option to disable this warning.)
Finished computing initial states: 1 distinct state generated.
Error: In computing next states, TLC encountered a CASE with no conditions true.
line 107, col 46 to line 122, col 224 of module Test9

The behavior up to this point is:
STATE 1: <Initial predicate>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Participant",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Participant",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 2: <Action line 147, col 41 to line 159, col 258 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = << << >>,
 << [chainlength |-> 0,
 msgType |-> "request",
 to |-> 2,
 from |-> 1,
 canPassThroughFull |-> "true",
 canPassThroughHalf |-> "true"] >> >>
/\ myCurrentStatusTable = << [currentState |-> "Waiting",
 chainlength |-> 0,

 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Participant",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 3: <Action line 175, col 57 to line 180, col 140 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Waiting",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Processing",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = << << >>,
 << [chainlength |-> 0,
 msgType |-> "request",
 to |-> 2,
 from |-> 1,
 canPassThroughFull |-> "true",
 canPassThroughHalf |-> "true"] >> >>
/\ ackQueue = <<<< >>, << >>>>

STATE 4: <Action line 182, col 53 to line 324, col 279 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>

/\ myCurrentStatusTable = << [currentState |-> "Waiting",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Chainhead",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = << << [msgType |-> "ackAdd",
 to |-> 1,
 from |-> 2,
 newFrom |-> 2,
 newNext |-> 0,
 qualityNext |-> "none"] >>,
 << >> >>

STATE 5: <Action line 335, col 53 to line 338, col 103 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Relay",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Chainhead",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Participant"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 6: <Action line 161, col 53 to line 173, col 260 of module Test9>

/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = << << [chainlength |-> 1,
 msgType |-> "request",
 to |-> 1,
 from |-> 2,
 canPassThroughFull |-> "false",
 canPassThroughHalf |-> "false"] >>,
 << >> >>
/\ myCurrentStatusTable = << [currentState |-> "Relay",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Participant"],
 [currentState |-> "Waiting",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Chainhead"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = <<<< >>, << >>>>

STATE 7: <Action line 175, col 57 to line 180, col 140 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Processing",
 chainlength |-> 0,
 sendingToAsRelay |-> 0,
 nextMember |-> 0,
 lastMember |-> 0,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "false",
 sendingNextFull |-> "false",
 prevState |-> "Relay"],
 [currentState |-> "Waiting",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Chainhead"] >>
/\ requestQueue = << << [chainlength |-> 1,
 msgType |-> "request",

 to |-> 1,
 from |-> 2,
 canPassThroughFull |-> "false",
 canPassThroughHalf |-> "false"] >>,
 << >> >>
/\ ackQueue = <<<< >>, << >>>>

STATE 8: <Action line 182, col 53 to line 324, col 279 of module Test9>
/\ updateQueue = <<<< >>, << >>>>
/\ receiveQueue = <<<< >>, << >>>>
/\ myCurrentStatusTable = << [currentState |-> "Chainhead_Relay",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 2,
 lastMember |-> 2,
 receivingFrom |-> 2,
 headId |-> 2,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Relay"],
 [currentState |-> "Waiting",
 chainlength |-> 1,
 sendingToAsRelay |-> 0,
 nextMember |-> 1,
 lastMember |-> 1,
 receivingFrom |-> 0,
 headId |-> 0,
 sendingChainFull |-> "true",
 sendingNextFull |-> "false",
 prevState |-> "Chainhead"] >>
/\ requestQueue = <<<< >>, << >>>>
/\ ackQueue = << << >>,
 << [msgType |-> "ackAdd",
 to |-> 2,
 from |-> 1,
 newFrom |-> 1,
 newNext |-> 0,
 qualityNext |-> "none"] >> >>

The error occurred when TLC was evaluating the nested
expressions at the following positions:
0. Line 335, column 56 to line 338, column 103 in Test9
1. Line 335, column 56 to line 336, column 103 in Test9
2. Line 335, column 56 to line 335, column 103 in Test9
3. Line 336, column 84 to line 336, column 102 in Test9
4. Line 338, column 84 to line 338, column 95 in Test9
5. Line 106, column 20 to line 135, column 224 in Test9
6. Line 107, column 45 to line 124, column 224 in Test9
7. Line 107, column 46 to line 122, column 224 in Test9

28 states generated, 15 distinct states found, 1 states left on queue.
The depth of the complete state graph search is 8.

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 1

1 ----------------------------- MODULE Test15Chain -- ----------------------

2 EXTENDS Naturals, Sequences, TLC

3
4 CONSTANTS Userid, quality, state, participantMessag eList, MemberMessageList,

5 chainheadMessageList, chainhead_MemberMessageList, length, booleanValues, qLen, Clients, Resources
6
7 VARIABLES myCurrentStatusTable, receiveQueue, reque stQueue, ackQueue, updateQueue, chain,

8 infoQueue, otherUsersStatusTable, moveReplyQueue

9
10 qConstraint == /\ \A u \in Userid \{0} : Len(reques tQueue[u]) \leq qLen

11 /\ \A z \in Userid \{0} : Len(ackQueue[z]) \leq qLen

12 /\ \A g \in Userid \{0} : Len(receiveQueue[g]) \ leq qLen

13 /\ \A e \in Userid \{0} : Len(updateQueue[e]) \l eq qLen

14 /\ \A h \in Userid \{0} : Len(moveReplyQueue[h]) \leq qLen

15
16 TypeInvariant == /\ myCurrentStatusTable \in [Useri d \ {0} -> [currentState: state,

17 chainlength: Nat,

18 sendingToAsRelay: Userid,

19 nextMember: Userid,

20 lastMember: Userid,

21 receivingFrom: Userid,

22 headId: Userid,

23 sendingChainFull: booleanValues,

24 sendingNextFull: booleanValues,

25 prevState: {"Participant", "Member", "Chainhead" , "Chainhead_Member"}]]

26
27 /\ \A z \in Userid \{0} : myCurrentStatusTable[z].c hainlength \leq 5

28
29
30 --- ---------------------

31
32 SystemInit == /\ myCurrentStatusTable = [v \in User id \{0} |-> [currentState |-> "Participant",

33 chainlength |-> 0,

34 sendingToAsRelay |-> 0,

35 nextMember |-> 0,

36 lastMember |-> 0,

37 receivingFrom |-> 0,

38 headId |-> 0,

39 sendingChainFull |-> "false",

40 sendingNextFull |-> "false",

41 prevState |-> "Participant"]]

42 /\ requestQueue = [w \in Userid \{0} |-> << >>]

43 /\ receiveQueue = [z \in Userid \{0} |-> << >>]

44 /\ ackQueue = [b \in Userid \{0} |-> << >>]

45 /\ updateQueue = [a \in Userid \{0} |-> << >>]

46

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 2

47 /\ chain = [h \in Userid \{0} |-> << >>]

48

49 /\ infoQueue = [g \in Userid \{0} |-> << >>]

50 /\ otherUsersStatusTable = [u \in Userid \{0} |-> [chainlength |-> 0,

51 currentState |-> "Participant",
52 order |-> 0,

53 headid |-> 0,

54 after |-> 0,

55 before |-> 0]]

56

57 /\ moveReplyQueue = [v \in Userid \{0} |-> << >>]

58

59 Send(msg) == /\ CASE msg.msgType = "request"

60 -> (receiveQueue' = [receiveQueue EXCEPT ![msg.to] = Append(receiveQueue[msg.to], msg)]

61 /\ myCurrentStatusTable' = [myCurrentStatusTable E XCEPT ![msg.from].prevState = myCurrentStatusTable[msg.from].currentState,

![msg.from].currentState = "Waiting"]

62 */\ PrintT("request sent")

63 /\ UNCHANGED << ackQueue, requestQueue, updateQueue , chain, infoQueue, otherUsersStatusTable, moveRepl yQueue >>)

64
65 [] (msg.msgType = "ack")

66 -> (ackQueue' = [ackQueue EXCEPT ![msg.to] = Append (ackQueue[msg.to], msg)]

67 */\ PrintT("ack sent")

68 */\ PrintT("request handled, ack sent!")

69)

70
71 [] msg.msgType = "info"

72 -> (infoQueue' = [infoQueue EXCEPT ![msg.to] = Appe nd(infoQueue[msg.to], msg)]

73 */\ PrintT("info sent")

74)

75
76 [] msg.msgType = "move"

77 -> /\ receiveQueue[msg.to] = << >>

78 /\ (receiveQueue' = [receiveQueue EXCEPT ![msg.to] = Append(receiveQueue[msg.to], msg)]

79 /\ myCurrentStatusTable' = [myCurrentStatusTable E XCEPT ![msg.from].currentState = "Processing_II"]

80 /\ UNCHANGED << ackQueue, requestQueue, updateQueue , chain, infoQueue, otherUsersStatusTable, moveRepl yQueue >>)

81
82 ReceiveRequest(t) == /\ requestQueue' = [requestQue ue EXCEPT ![t] = Append(requestQueue[t], Head(recei veQueue[t]))]

83 /\ receiveQueue' = [receiveQueue EXCEPT ![t] = Tai l(receiveQueue[t])]

84 */\ PrintT(Head(receiveQueue[t]).msgType)

85 /\ CASE Head(receiveQueue[t]).msgType = "request"

86 -> (myCurrentStatusTable' = [myCurrentStatusTable EXCEPT ![t].prevState = myCurrentStatusTable[t].cur rentState,
![t].currentState = "Processing"]

87 /\ UNCHANGED << ackQueue, updateQueue, chain, info Queue, otherUsersStatusTable, moveReplyQueue >>)

88 [] OTHER

89 -> UNCHANGED << ackQueue, updateQueue, chain, info Queue, otherUsersStatusTable, moveReplyQueue, myCur rentStatusTable >>

90

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 3

91
92 HandleAck(t) == /\ CASE (Head(ackQueue[t]).msgType = "ack")

93 -> (myCurrentStatusTable' = [myCurrentStatusTab le EXCEPT ![t].currentState = IF myCurrentStatusTab le[t].prevState =

"Participant"

94 THEN "Member"
95 ELSE "Chainhead_Member",

96 ![t].headId = Head(ackQueue[t]).from,

97 ![t].receivingFrom = Head(ackQueue[t]).newFrom,

98 ![t].sendingToAsRelay = Head(ackQueue[t]).newNext ,

99 ![t].sendingNextFull = IF Head(ackQueue[t]).quali tyNext = "full"

100 THEN "true"

101 ELSE "false"]

102 */\ PrintT("handled ack")

103 /\ ackQueue' = [ackQueue EXCEPT ![t] = Tail(ackQueu e[t])]

104 /\ UNCHANGED << receiveQueue, requestQueue, updateQ ueue, chain, infoQueue, otherUsersStatusTable, move ReplyQueue >>)

105
106 ReceiveInfo(t) == /\ otherUsersStatusTable' = [othe rUsersStatusTable EXCEPT ![Head(infoQueue[t]).from] .chainlength =

Head(infoQueue[t]).chainlength,

107 ![Head(infoQueue[t]).from].currentState = Head(info Queue[t]).currentState]

108 /\ infoQueue' = [infoQueue EXCEPT ![t] = Tail(inf oQueue[t])]

109 */\ PrintT("info received")

110 /\ UNCHANGED << receiveQueue, requestQueue, ackQu eue, myCurrentStatusTable, updateQueue, chain, move ReplyQueue >>

111
112
113 ReceiveUpdate(u) == /\ (CASE Head(updateQueue[u]).m sgType = "update"

114 -> myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![u].receivingFrom = IF Head(updateQueue[u]).n ewFrom # "nochange"

115 THEN (Head(updateQueue[u]).newFrom)

116 ELSE (@),

117 ![u].sendingToAsRelay = IF Head(updateQueue[u]).new Next # "nochange"

118 THEN (Head(updateQueue[u]).newNext)

119 ELSE (@)])

120
121 /\ updateQueue' = [updateQueue EXCEPT ![u] = Tail(u pdateQueue[u])]

122 */\ PrintT("update handled")

123 /\ UNCHANGED << receiveQueue, requestQueue, ackQueu e, chain, infoQueue, otherUsersStatusTable, moveRep lyQueue >>

124
125 ReceiveMoveReply(v) == /\ (*PrintT("move reply rec eived.") /\

126 (CASE Head(moveReplyQueue[v]).msgType = "moveOK"

127 -> (\E a \in [msgType: {"ack"}, to: {Head(reques tQueue[v]).from}, from: {v}, newNext: {0}, qualityN ext: {"none"},

newFrom: {v}]:

128 Send(a)

129 /\ myCurrentStatusTable' = [myCurrentStatusTable EXCEPT ![v].currentState = "Chainhead_Member",

130 ![v].chainlength = @+1,

131 ![v].nextMember = Head(requestQueue[v]).from,

132 ![v].lastMember = Head(requestQueue[v]).from,

133 ![v].sendingChainFull = "true"]

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 4

134 /\ chain' = [chain EXCEPT ![v] = Append(chain[v], Head(requestQueue[v]).from)]

135 */\ PrintT("Added to chain")

136 /\ otherUsersStatusTable' = [otherUsersStatusTab le EXCEPT ![Head(requestQueue[v]).from].currentStat e =

Head(requestQueue[v]).nextStatus,

137 ![Head(requestQueue[v]).from].chainlength = Head(r equestQueue[v]).chainlength,
138 ![Head(requestQueue[v]).from].order = (myCurrentSt atusTable[v].chainlength+1),

139 ![Head(requestQueue[v]).from].headid = v,

140 ![Head(requestQueue[v]).from].before = v

141]

142 /\ moveReplyQueue' = [moveReplyQueue EXCEPT ![v] = Tail(moveReplyQueue[v])]

143 /\ requestQueue' = [requestQueue EXCEPT ![v] = T ail(requestQueue[v])]

144 /\ (\E m \in [msgType: {"info"}, from: {v}, to: {myCurrentStatusTable[v].headId},

145 currentState: {"Chainhead_Member"},

146 chainlength: {myCurrentStatusTable[v].chainlength+ 1}]:

147 Send(m))

148 /\ UNCHANGED << receiveQueue, updateQueue >>

149
150)

151 [] Head(moveReplyQueue[v]).msgType = "moveNOTOKS wap"

152 -> ((\E a \in [msgType: {"ack"}, to: {Head(reque stQueue[v]).from}, from: {v}, newNext: {0}, quality Next: {"none"},

newFrom: {v}]:

153 Send(a)

154 /\ myCurrentStatusTable' = [myCurrentStatusTable EXCEPT ![v].currentState = "Chainhead_Member",

155 ![v].chainlength = @+1,

156 ![v].nextMember = Head(requestQueue[v]).from,

157 ![v].lastMember = Head(requestQueue[v]).from,

158 ![v].sendingToAsRelay = Head(moveReplyQueue[v]).n ewNext,

159 ![v].receivingFrom = Head(moveReplyQueue[v]).newF rom,

160 ![v].sendingNextFull = "false",

161 ![v].sendingChainFull = "false"]

162)

163 /\ chain' = [chain EXCEPT ![v] = Append(chain[v], H ead(requestQueue[v]).from)]

164 */\ PrintT("Added to chain")

165 /\ otherUsersStatusTable' = [otherUsersStatusTab le EXCEPT ![Head(requestQueue[v]).from].currentStat e =

Head(requestQueue[v]).nextStatus,

166 ![Head(requestQueue[v]).from].chainlength = Head(r equestQueue[v]).chainlength,

167 ![Head(requestQueue[v]).from].order = (myCurrentSt atusTable[v].chainlength+1),

168 ![Head(requestQueue[v]).from].headid = v,

169 ![Head(requestQueue[v]).from].before = v

170]

171
172 /\ moveReplyQueue' = [moveReplyQueue EXCEPT ![v] = Tail(moveReplyQueue[v])]

173 /\ requestQueue' = [requestQueue EXCEPT ![v] = T ail(requestQueue[v])]

174 /\ (\E m \in [msgType: {"info"}, from: {v}, to: {myCurrentStatusTable[v].headId},

175 currentState: {"Chainhead_Member"},

176 chainlength: {myCurrentStatusTable[v].chainlength+ 1}]:

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 5

177 Send(m))

178 /\ UNCHANGED << receiveQueue, updateQueue >>

179
180)

181 [] Head(moveReplyQueue[v]).msgType = "moveNOTOKS wap2"
182 -> ((\E a \in [msgType: {"ack"}, to: {Head(reque stQueue[v]).from}, from: {v}, newNext: {0}, quality Next: {"none"},

newFrom: {v}]:

183 Send(a)

184 /\ myCurrentStatusTable' = [myCurrentStatusTable EXCEPT ![v].currentState = "Chainhead_Member",

185 ![v].chainlength = @+1,

186 ![v].nextMember = Head(requestQueue[v]).from,

187 ![v].lastMember = Head(requestQueue[v]).from,

188 ![v].sendingNextFull = "false",

189 ![v].sendingChainFull = "false"]

190)

191 /\ chain' = [chain EXCEPT ![v] = Append(chain[v], H ead(requestQueue[v]).from)]

192 */\ PrintT("Added to chain")

193 /\ otherUsersStatusTable' = [otherUsersStatusTab le EXCEPT ![Head(requestQueue[v]).from].currentStat e =

Head(requestQueue[v]).nextStatus,

194 ![Head(requestQueue[v]).from].chainlength = Head(r equestQueue[v]).chainlength,

195 ![Head(requestQueue[v]).from].order = (myCurrentSt atusTable[v].chainlength+1),

196 ![Head(requestQueue[v]).from].headid = v,

197 ![Head(requestQueue[v]).from].before = v

198]

199
200 /\ moveReplyQueue' = [moveReplyQueue EXCEPT ![v] = Tail(moveReplyQueue[v])]

201 /\ requestQueue' = [requestQueue EXCEPT ![v] = T ail(requestQueue[v])]

202 /\ (\E m \in [msgType: {"info"}, from: {v}, to: {myCurrentStatusTable[v].headId},

203 currentState: {"Chainhead_Member"},

204 chainlength: {myCurrentStatusTable[v].chainlength+ 1}]:

205 Send(m))

206 /\ UNCHANGED << receiveQueue, updateQueue >>

207)

208 [] Head(moveReplyQueue[v]).msgType = "moveNOTOK"

209 -> (*PrintT("check chainlengths") /\

210 (CASE otherUsersStatusTable[myCurrentStatusTable[v].lastMember].chainlength > Head(requestQueue[v]).c hainlength + 1

211 -> (PrintT("adding half")

212 /\ (\E b \in [msgType: {"update"}, to: {myCurrentSt atusTable[v].lastMember}, from: {v}, newNext:

{Head(requestQueue[v]).from}, qualityNext: {"true"}]:

213 updateQueue' = [updateQueue EXCEPT ![b.to] = Append (updateQueue[b.to], b)]

214 */\ PrintT("update sent")

215)

216 /\ (\E a \in [msgType: {"ack"}, to: {Head(requestQu eue[v]).from}, from: {v}, newNext: {0}, qualityNext : {"none"},

newFrom: {myCurrentStatusTable[v].lastMember}]:

217 Send(a))

218 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].chainlength = @+1,

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 6

219 ![v].lastMember = Head(requestQueue[v]).from]

220 /\ chain' = [chain EXCEPT ![v] = Append(chain[v], H ead(requestQueue[v]).from)]

221 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT ![Head(requestQueue[v]).from].currentState =

Head(requestQueue[v]).nextStatus,

222 ![Head(requestQueue[v]).from].chainlength = H ead(requestQueue[v]).chainlength,
223 ![Head(requestQueue[v]).from].order = (myCurrentS tatusTable[v].chainlength+1),

224 ![Head(requestQueue[v]).from].headid = v,

225 ![Head(requestQueue[v]).from].before = myCurrentS tatusTable[v].lastMember

226]

227)

228 [] OTHER

229 -> (*PrintT("inserting before the last") /\

230 (\E b \in [msgType: {"update"}, to: {myCurrentSt atusTable[v].lastMember}, from: {v}, newFrom:
{Head(requestQueue[v]).from}, newNext: {"nochange"}]:

231 updateQueue' = [updateQueue EXCEPT ![b.to] = Append (updateQueue[b.to], b)]

232 /\ (\E bb \in Userid \{0}:

233 (otherUsersStatusTable[bb].headid = v

234 /\ otherUsersStatusTable[bb].order = (myCurrentStat usTable[v].chainlength - 1)

235 /\ (\E m \in [msgType: {"update"}, to: {bb}, from: {v}, newNext: {Head(requestQueue[v]).from}]:

236 Send(m))

237 /\ (\E mm \in [msgType: {"ack"}, to: {Head(requestQ ueue[v]).from}, from: {v}, newFrom: {bb}, newNext:
{myCurrentStatusTable[v].lastMember}, qualityNext: {"half"}]:

238 Send(mm)

239 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT ![myCurrentStatusTable[v].lastMember].order = @+1,

240 ![Head(requestQueue[v]).from].order = myCurrentSt atusTable[v].chainlength,

241 ![Head(requestQueue[v]).from].before =

otherUsersStatusTable[myCurrentStatusTable[v].lastM ember].before,

242 ![Head(requestQueue[v]).from].after = myCurrentSt atusTable[v].lastMember,

243 ![myCurrentStatusTable[v].lastMember].before = He ad(requestQueue[v]).from,

244 ![otherUsersStatusTable[myCurrentStatusTable[v].l astMember].before].after =

Head(requestQueue[v]).from

245]

246 /\ chain' = [chain EXCEPT ![v] = (SubSeq(chain[v], 1, Len(chain[v] - 1) \o Head(requestQueue[v]).from)) \o
myCurrentStatusTable[v].lastMember]

247 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].chainlength = @+1]

248)

249)

250)

251)

252)

253 /\ (\E j \in [msgType: "info", to: {myCurrentStatus Table[v].headId}, from: {v}, chainlength:
{myCurrentStatusTable[v].chainlength+1}, currentSta te: {"Chainhead_Member"}]:

254 Send(j))

255)

256 /\ moveReplyQueue' = [moveReplyQueue EXCEPT ![v] = Tail(moveReplyQueue[v])]

257 /\ requestQueue' = [requestQueue EXCEPT ![v] = T ail(requestQueue[v])]

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 7

258 /\ (\E m \in [msgType: {"info"}, from: {v}, to: {myCurrentStatusTable[v].headId},

259 currentState: {"Chainhead_Member"},

260 chainlength: {myCurrentStatusTable[v].chainlength+ 1}]:

261 Send(m))

262 /\ UNCHANGED << receiveQueue, updateQueue >>
263
264)

265

266)

267)

268
269 firstNonChainhead(t) == LET firstNon(a) == otherUse rsStatusTable[a].currentState \in {"Member"}

270 IN SelectSeq(chain[t], firstNon)

271

272 SystemNext == (\/ (\E u \in Userid \{0}: /\ (myCurr entStatusTable[u].currentState = "Participant")

273 /\ receiveQueue[u] = << >>

274 /\ (\E m \in [msgType: {"request"}, from: {u}, to: Userid\{0, u}, nextStatus: {"Member"}, canPassThro ughFull:
{"true"}, canPassThroughHalf: {"true"}, chainlength : {myCurrentStatusTable[u].chainlength}]:

275 /\ ackQueue[m.to] = << >>

276 /\ Send(m)

277))

278
279 \/ (\E u \in Userid \{0}: /\ (myCurrentStatusTabl e[u].currentState = "Chainhead")

280 /\ receiveQueue[u] = << >>

281 /\ (\E m \in [msgType: {"request"}, from: {u}, to: Userid\{0, u}, nextStatus: {"Chainhead_Member"},
canPassThroughFull: {"false"}, canPassThroughHalf: {"false"}, chainlength: {myCurrentStatusTable[u].chainlength}]:

282 /\ ackQueue[m.to] = << >>

283 /\ Send(m)

284))

285
286 \/ (\E t \in Userid \{0}: /\ updateQueue[t] = << > >

287 /\ receiveQueue[t] # << >>

288 /\ requestQueue[t] = << >>

289 /\ ((myCurrentStatusTable[t].currentState # "Proc essing"

290 /\ myCurrentStatusTable[t].currentState # "Waitin g"

291 /\ myCurrentStatusTable[t].currentState # "Processi ng_II")

292 \/ ((myCurrentStatusTable[t].prevState = "Chainhead "

293 \/ myCurrentStatusTable[t].prevState = "Chainhead_M ember")

294 /\ Head(receiveQueue[t]).msgType = "move"))

295 /\ ReceiveRequest(t))

296
297 \/ (\E v \in Userid \{0}: /\ myCurrentStatusTable [v].currentState = "Processing"

298 /\ requestQueue[v] # << >>

299 */\ PrintT("will handle request...")

300 */\ PrintT(Head(requestQueue[v]).msgType)

301 /\ (CASE Head(requestQueue[v]).msgType = "request"

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 8

302 -> (CASE (myCurrentStatusTable[v].prevState = "Part icipant" \/

303 (myCurrentStatusTable[v].prevState = "Member" /\ my CurrentStatusTable[v].sendingToAsRelay = 0)) * member at

the end of a chain

304 -> (\E a \in [msgType: {"ack"}, to: {Head(requestQu eue[v]).from}, from: {v}, newNext: {0}, qualityNext :

{"none"}, newFrom: {v}]:
305 Send(a)

306 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].currentState = IF

myCurrentStatusTable[v].prevState = "Participant"

307 THEN "Chainhead"

308 ELSE "Chainhead_Member",

309 ![v].chainlength = @+1,

310 ![v].nextMember = Head(requestQueue[v]).from,

311 ![v].lastMember = Head(requestQueue[v]).from,

312 ![v].sendingChainFull = "true"]

313 /\ chain' = [chain EXCEPT ![v] = Append(chain[v], H ead(requestQueue[v]).from)]

314 */\ PrintT("Added to chain")

315 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT ![Head(requestQueue[v]).from].currentState =
Head(requestQueue[v]).nextStatus,

316 ![Head(requestQueue[v]).from].chainlength =

Head(requestQueue[v]).chainlength,

317 ![Head(requestQueue[v]).from].order =
(myCurrentStatusTable[v].chainlength+1),

318 ![Head(requestQueue[v]).from].headid = v,

319 ![Head(requestQueue[v]).from].before = v,

320 ![Head(requestQueue[v]).from].after = 0]

321 /\ requestQueue' = [requestQueue EXCEPT ![v] = Tail (requestQueue[v])]

322 /\ (CASE myCurrentStatusTable[v].prevState = "Membe r"

323 -> (*/\ PrintT("sending info") /\

324 (\E m \in [msgType: {"info"}, from: {v}, to: {myCur rentStatusTable[v].headId},

325 currentState: {"Chainhead_Member"},

326 chainlength: {myCurrentStatusTable[v].chainl ength+1}]:

327 Send(m))

328 /\ UNCHANGED << receiveQueue, updateQueue, moveRepl yQueue >>

329)

330 [] myCurrentStatusTable[v].prevState = "Participant "

331 -> /\ UNCHANGED << receiveQueue, updateQueue, infoQ ueue, moveReplyQueue >>

332)

333)

334
335 [] (myCurrentStatusTable[v].prevState = "Member" /\ myCurrentStatusTable[v].sendingToAsRelay # 0)

336 -> (CASE myCurrentStatusTable[v].sendingNextFull = "false"

337 -> (\E a \in [msgType: {"ack"}, to: {Head(requestQu eue[v]).from}, from: {v}, newNext: {0}, qualityNext :

{"none"}, newFrom: {v}]:

338 Send(a)

339 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].currentState = "Chainhead_Member",

340 ![v].chainlength = @+1,

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 9

341 ![v].nextMember = Head(requestQueue[v]).from,

342 ![v].lastMember = Head(requestQueue[v]).from,

343 ![v].sendingChainFull = "false",

344 ![v].sendingNextFull = "false"]

345 /\ chain' = [chain EXCEPT ![v] = Append(chain[v], H ead(requestQueue[v]).from)]
346 */\ PrintT("Added to chain 2")

347 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT ![Head(requestQueue[v]).from].currentState =

Head(requestQueue[v]).nextStatus,

348 ![Head(requestQueue[v]).from].chainlength =
Head(requestQueue[v]).chainlength,

349 ![Head(requestQueue[v]).from].order =

(myCurrentStatusTable[v].chainlength+1),

350 ![Head(requestQueue[v]).from].headid = v,

351 ![Head(requestQueue[v]).from].before = v,

352 ![Head(requestQueue[v]).from].after = 0]

353 /\ requestQueue' = [requestQueue EXCEPT ![v] = Tail (requestQueue[v])]

354 /\ (\E ag\in [msgType: {"info"}, to: {myCurrentStat usTable[v].headId}, from: {v}, chainlength:
{myCurrentStatusTable[v].chainlength+1}, currentSta te: {"Chainhead_Member"}]:

355 Send(ag))

356 /\ UNCHANGED << receiveQueue, updateQueue, moveRepl yQueue >>)

357 [] myCurrentStatusTable[v].sendingNextFull = "true"

358 -> (\E m \in [msgType: {"move"}, from: {v}, to: {my CurrentStatusTable[v].headId}, chainlength:

{myCurrentStatusTable[v].chainlength}, status: {myC urrentStatusTable[v].prevState}]:

359 (Send(m)

360 */\ PrintT("move request sent")

361)

362)

363)

364
365
366 [] (myCurrentStatusTable[v].prevState = "Chainhead"

367 \/ (myCurrentStatusTable[v].prevState = "Chainhead_ Member" /\ myCurrentStatusTable[v].sendingToAsRelay = 0))

368 -> ((CASE Head(requestQueue[v]).canPassThroughFull = "true"

369 -> ((\E b \in [msgType: {"update"}, to: {myCurrentS tatusTable[v].nextMember}, from: {v}, newFrom:

{Head(requestQueue[v]).from}, newNext: {"nochange"}]:

370 updateQueue' = [updateQueue EXCEPT ![b.to] = Append (updateQueue[b.to], b)]

371 */\ PrintT("update sent")

372)

373 /\ (\E a \in [msgType: {"ack"}, to: {Head(requestQu eue[v]).from}, from: {v}, newNext:

{myCurrentStatusTable[v].nextMember}, newFrom: {v}, qualityNext: {"full"}]:

374 Send(a))

375 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].chainlength = @+1,

376 ![v].nextMember = Head(requestQueue[v]).from]

377 /\ chain' = [chain EXCEPT ![v] = << Head(requestQue ue[v]).from >> \o chain[v]]

378 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT ![Head(requestQueue[v]).from].currentState =
Head(requestQueue[v]).nextStatus,

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 10

379 ![Head(requestQueue[v]).from].chainlength =
Head(requestQueue[v]).chainlength,

380 ![Head(requestQueue[v]).from].order =

(myCurrentStatusTable[v].chainlength+1),

381 ![Head(requestQueue[v]).from].headid = v,
382 ![Head(requestQueue[v]).from].before = v,

383 ![Head(requestQueue[v]).from].after = myCurrentSt atusTable[v].nextMember,

384 ![myCurrentStatusTable[v].nextMember].before = He ad(requestQueue[v]).from]

385)

386
387 [] Head(requestQueue[v]).canPassThroughFull = "fals e"

388 -> (CASE otherUsersStatusTable[Last(chain[v])].curr entState = "Member"

389 -> ((\E b \in [msgType: {"update"}, to: {myCurrentS tatusTable[v].lastMember}, from: {v}, newNext:
{Head(requestQueue[v]).from}, newFrom: {"nochange"}]:

390 updateQueue' = [updateQueue EXCEPT ![b.to] = Append (updateQueue[b.to], b)]

391 */\ PrintT("update sent")

392)

393 /\ (\E a \in [msgType: {"ack"}, to: {Head(requestQu eue[v]).from}, from: {v}, newNext: {0}, qualityNext :

{"none"}, newFrom: {myCurrentStatusTable[v].lastMem ber}]:

394 Send(a))

395 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].chainlength = @+1,

396 ![v].lastMember = Head(requestQueue[v]).from]

397 /\ chain' = [chain EXCEPT ![v] = Append(chain[v], H ead(requestQueue[v]).from)]

398 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT ![Head(requestQueue[v]).from].currentState =

Head(requestQueue[v]).nextStatus,

399 ![Head(requestQueue[v]).from].chainlength =

Head(requestQueue[v]).chainlength,

400 ![Head(requestQueue[v]).from].order =

(myCurrentStatusTable[v].chainlength+1),

401 ![Head(requestQueue[v]).from].headid = v,

402 ![Head(requestQueue[v]).from].before = myCurrentS tatusTable[v].lastMember,

403 ![Head(requestQueue[v]).from].after = 0,

404 ![myCurrentStatusTable[v].lastMember].after = Hea d(requestQueue[v]).from]

405)

406
407 [] otherUsersStatusTable[Last(chain[v])].currentSta te # "Member"

408 -> (*PrintT("checking chainlengths") /\

409 (CASE otherUsersStatusTable[myCurrentStatusTable[v] .lastMember].chainlength >

Head(requestQueue[v]).chainlength + 1

410 -> (PrintT("adding half") /\

411 (\E b \in [msgType: {"update"}, to: {myCurrentSt atusTable[v].lastMember}, from: {v}, newNext:
{Head(requestQueue[v]).from}, newFrom: {"nochange"}]:

412 updateQueue' = [updateQueue EXCEPT ![b.to] = App end(updateQueue[b.to], b)]

413 */\ PrintT("update sent")

414)

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 11

415 /\ (\E a \in [msgType: {"ack"}, to: {Head(reques tQueue[v]).from}, from: {v}, newNext: {0},
qualityNext: {"none"}, newFrom: {myCurrentStatusTab le[v].lastMember}]:

416 Send(a))

417 /\ myCurrentStatusTable' = [myCurrentStatusTable EXCEPT ![v].chainlength = @+1,

418 ![v].lastMember = Head(requestQueue[v]).from]
419 /\ chain' = [chain EXCEPT ![v] = Append(chain[v] , Head(requestQueue[v]).from)]

420 /\ otherUsersStatusTable' = [otherUsersStatusTab le EXCEPT ![Head(requestQueue[v]).from].currentState

= Head(requestQueue[v]).nextStatus,

421 ![Head(requestQueue[v]).from].chainlength =
Head(requestQueue[v]).chainlength,

422 ![Head(requestQueue[v]).from].order =

(myCurrentStatusTable[v].chainlength+1),

423 ![Head(requestQueue[v]).from].headid = v,

424 ![Head(requestQueue[v]).from].before =

myCurrentStatusTable[v].lastMember,

425 ![Head(requestQueue[v]).from].after = 0,

426 ![myCurrentStatusTable[v].lastMember].after =
Head(requestQueue[v]).from]

427)

428 [] OTHER

429 -> (*PrintT("inserting before the last") /\

430 (\E b \in [msgType: {"update"}, to: {myCurrentStatu sTable[v].lastMember}, from: {v}, newFrom:

{Head(requestQueue[v]).from}, newNext: {"nochange"}]:

431 (\E m \in [msgType: {"update"}, to:

{otherUsersStatusTable[myCurrentStatusTable[v].last Member].before}, from: {v}, newNext:
{Head(requestQueue[v]).from}, newFrom: {"nochange"}]:

432 updateQueue' = [updateQueue EXCEPT ![b.to] = Append (updateQueue[b.to], b),

433 ![m.to] = IF m.to # v

434 THEN Append(updateQueue[m.to], m)

435 ELSE @])

436 /\ (\E mm \in [msgType: {"ack"}, to: {Head(requestQ ueue[v]).from}, from: {v}, newFrom:

{otherUsersStatusTable[myCurrentStatusTable[v].last Member].before}, newNext:

{myCurrentStatusTable[v].lastMember}, qualityNext: {"half"}]:

437 Send(mm)

438 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT

![myCurrentStatusTable[v].lastMember].order = @+1,

439 ![Head(requestQueue[v]).from].order =
myCurrentStatusTable[v].chainlength,

440 ![myCurrentStatusTable[v].lastMember].before =

Head(requestQueue[v]).from,

441 ![otherUsersStatusTable[myCurrentStatusTable[v].l astMember].before].after
= Head(requestQueue[v]).from,

442 ![Head(requestQueue[v]).from].after =

myCurrentStatusTable[v].lastMember,

443 ![Head(requestQueue[v]).from].before =
otherUsersStatusTable[myCurrentStatusTable[v].lastM ember].before]

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 12

444 /\ chain' = [chain EXCEPT ![v] = (SubSeq(chain[v], 1, Len(chain[v]) - 1) \o <<
Head(requestQueue[v]).from >>)\o << myCurrentStatu sTable[v].lastMember >>]

445 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].chainlength = @+1]

446)

447)
448)

449)

450)

451)

452)

453 /\ requestQueue' = [requestQueue EXCEPT ![v] = Tail (requestQueue[v])]

454 /\ (CASE myCurrentStatusTable[v].prevState = "Chain head"

455 -> (UNCHANGED << receiveQueue, infoQueue, moveRepl yQueue >>)

456
457 [] (myCurrentStatusTable[v].prevState = "Chainhead_ Member" /\ myCurrentStatusTable[v].sendingToAsRelay = 0)

458 -> ((\E j \in [msgType: {"info"}, to: {myCurrentSta tusTable[v].headId}, from: {v}, chainlength:

{myCurrentStatusTable[v].chainlength+1}, currentSta te: {"Chainhead_Member"}]:

459 Send(j))

460 /\ UNCHANGED << receiveQueue, moveReplyQueue >>)

461)

462)

463 [] (myCurrentStatusTable[v].prevState = "Chainhead_ Member" /\ myCurrentStatusTable[v].sendingToAsRelay # 0)

464 -> (\E m \in [msgType: {"move"}, from: {v}, to: {my CurrentStatusTable[v].headId}, chainlength:

{myCurrentStatusTable[v].chainlength}, status: {myC urrentStatusTable[v].prevState}]:

465 (Send(m)

466 */\ PrintT("move request sent")

467)

468)

469)*end prevState

470
471 [] Head(requestQueue[v]).msgType = "move"

472 -> (*PrintT("move received.*********************** ***************") /\

473 (CASE (otherUsersStatusTable[myCurrentStatusTable [v].lastMember].currentState = "Member"

474 \/ otherUsersStatusTable[myCurrentStatusTable[v].la stMember].chainlength <

(Head(requestQueue[v]).chainlength + 1))

475 -> (*PrintT("moving to end...") /\

476 (\E b \in [msgType: {"update"}, to: {otherUsersStat usTable[Head(requestQueue[v]).from].before}, from:
{v}, newNext: {myCurrentStatusTable[v].lastMember}, newFrom: {"nochange"}]:

477 (\E bb \in [msgType: {"update"}, to: {otherUsersSta tusTable[Head(requestQueue[v]).from].after}, from:

{v}, newFrom: {myCurrentStatusTable[v].lastMember}, newNext: {"nochange"}]:

478 (\E bbb \in [msgType: {"update"}, to:
{otherUsersStatusTable[myCurrentStatusTable[v].last Member].before}, from: {v}, newNext:

{Head(requestQueue[v]).from}, newFrom: {"nochange"}]:

479 updateQueue' = [updateQueue EXCEPT ![b.to] = IF (b. to # v /\ b.to # Head(requestQueue[v]).from)

480 THEN Append(updateQueue[b.to], b)

481 ELSE @,

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 13

482 ![bb.to] = IF (bb.to # myCurrentStatusTable[v].l astMember /\ bb.to #
Head(requestQueue[v]).from)

483 THEN Append(updateQueue[bb.to], bb)

484 ELSE @,

485 ![bbb.to] = IF (bbb.to # Head(requestQueue[v]).f rom)
486 THEN Append(updateQueue[bbb.to], bbb)

487 ELSE @

488]

489 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT
![otherUsersStatusTable[Head(requestQueue[v]).from] .before].after = IF (b.to # v /\ b.to #

Head(requestQueue[v]).from)

490 THEN

myCurrentStatusTable[v].lastMember

491 ELSE @,

492 ![otherUsersStatusTable[Head(requestQueue[v]).fr om].after].before =

IF (bb.to # myCurrentStatusTable[v].lastMember /\ b b.to #

Head(requestQueue[v]).from)

493 THEN

myCurrentStatusTable[v].lastMember

494 ELSE @,

495 ![otherUsersStatusTable[myCurrentStatusTable[v]. lastMember].before].after
= IF (bbb.to # Head(requestQueue[v]).from)

496 THEN

Head(requestQueue[v]).from

497 ELSE @,

498 ![Head(requestQueue[v]).from].order =

otherUsersStatusTable[myCurrentStatusTable[v].lastM ember].order,

499 ![myCurrentStatusTable[v].lastMember].order =

otherUsersStatusTable[Head(requestQueue[v]).from].o rder

500]

501 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].lastMember =

Head(requestQueue[v]).from]

502 /\ (\E aaa \in [msgType: {"moveOK"}, to: {Head(requ estQueue[v]).from}, from: {v}, newFrom:
{otherUsersStatusTable[myCurrentStatusTable[v].last Member].before}, newNext: {0}]:

503 moveReplyQueue' = [moveReplyQueue EXCEPT ![aaa.to] = Append(moveReplyQueue[aaa.to], aaa)])

504 */\ PrintT("appended to moveReplyQueue")

505 /\ chain' = [chain EXCEPT ![v] = ((SubSeq(chain[v], 1,
otherUsersStatusTable[otherUsersStatusTable[Head(re questQueue[v]).from].before].order)

506 \o << myCurrentStatusTable[v].lastMember >>)

507 \o SubSeq(chain[v],

otherUsersStatusTable[otherUsersStatusTable[Head(re questQueue[v]).from].after].order,
(myCurrentStatusTable[v].chainlength-1)))

508 \o << Head(requestQueue[v]).from >>]

509 /\ requestQueue' = [requestQueue EXCEPT ![v] = Tail (requestQueue[v])]

510 /\ UNCHANGED << ackQueue, receiveQueue, infoQueue > >

511)

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 14

512)

513)

514)

515
516 [] Head(requestQueue[v]).status = "Member"
517 -> (*PrintT("swap") /\

518 *PrintT("find first-nonchainhead from the end") / \

519 (\E b \in [msgType: {"update"}, to: {otherUsersSt atusTable[Head(requestQueue[v]).from].before}, from :

{v}, newNext: {Last(firstNonChainhead(v))}, newFrom : {"nochange"}]:

520 (\E bb \in [msgType: {"update"}, to: {otherUsersSta tusTable[Head(requestQueue[v]).from].after}, from:

{v}, newFrom: {Last(firstNonChainhead(v))}, newNext : {"nochange"}]:

521 (\E bbb \in [msgType: {"update"}, to: {otherUsersSt atusTable[Last(firstNonChainhead(v))].before},

from: {v}, newNext: {Head(requestQueue[v]).from}, n ewFrom: {"nochange"}]:

522 (CASE otherUsersStatusTable[Last(firstNonChainhead(v))].order >

otherUsersStatusTable[Head(requestQueue[v]).from].o rder

523 -> (updateQueue' = [updateQueue EXCEPT ![b.to] = I F (b.to # v /\ b.to #

Head(requestQueue[v]).from)

524 THEN Append(updateQueue[b.to], b)

525 ELSE @,

526 ![bb.to] = IF (bb.to # Last(firstNonChainhead(v)) /\ bb.to #

Head(requestQueue[v]).from)

527 THEN Append(updateQueue[bb.to], bb)

528 ELSE @,

529 ![bbb.to] = IF (bbb.to # Head(requestQueue[v]).f rom)

530 THEN Append(updateQueue[bbb.to], bbb)

531 ELSE @

532]

533 /\ otherUsersStatusTable' = [otherUsersStatusTable EXCEPT

![otherUsersStatusTable[Head(requestQueue[v]).from] .before].after = IF (b.to # v /\ b.to #
Head(requestQueue[v]).from)

534 THEN Last(firstNonChainhead(v))

535 ELSE @,

536 ![otherUsersStatusTable[Head(requestQueue[v]).fr om].after].before
= IF (bb.to # Last(firstNonChainhead(v)) /\ bb.to #

Head(requestQueue[v]).from)

537 THEN Last(firstNonChainhead(v))

538 ELSE @,

539 ![otherUsersStatusTable[Last(firstNonChainhead(v))].before].after

= IF (bbb.to # Head(requestQueue[v]).from)

540 THEN

Head(requestQueue[v]).from

541 ELSE @,

542 ![Head(requestQueue[v]).from].order =

otherUsersStatusTable[Last(firstNonChainhead(v))].o rder,

543 ![Last(firstNonChainhead(v))].order =
otherUsersStatusTable[Head(requestQueue[v]).from].o rder

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 15

544]

545 /\ myCurrentStatusTable' = [myCurrentStatusTable EX CEPT ![v].lastMember =

Head(requestQueue[v]).from]

546 /\ (\E aaa \in [msgType: {"moveOK"}, to: {Head(requ estQueue[v]).from}, from: {v}, newFrom:

{otherUsersStatusTable[Last(firstNonChainhead(v))]. before}, newNext:
{otherUsersStatusTable[Last(firstNonChainhead(v))]. after}]:

547 moveReplyQueue' = [moveReplyQueue EXCEPT ![aaa.to] = Append(moveReplyQueue[aaa.to], aaa)])

548 */\ PrintT("appended to moveReplyQueue 2a")

549 /\ chain' = [chain EXCEPT ![v] = (((SubSeq(chain[v] , 1,
otherUsersStatusTable[otherUsersStatusTable[Head(re questQueue[v]).from].before].order)

550 \o << Last(firstNonChainhead(v)) >>)

551 \o SubSeq(chain[v],

otherUsersStatusTable[otherUsersStatusTable[Head(re questQueue[v]).from].after].order,
otherUsersStatusTable[Last(firstNonChainhead(v))].o rder))

552 \o << Head(requestQueue[v]).from >>)

553 \o SubSeq(chain[v], otherUsersStatusTable[Last(firs tNonChainhead(v))].order,

myCurrentStatusTable[v].chainlength)]

554 /\ requestQueue' = [requestQueue EXCEPT ![v] = Tail (requestQueue[v])]

555 /\ UNCHANGED << ackQueue, receiveQueue, infoQueue > >

556)

557 [] OTHER

558 -> (*PrintT("do nothing") /\

559 (\E aaa \in [msgType: {"moveNOTOKSwap2"}, to: {Head (requestQueue[v]).from}, from: {v}]:

560 moveReplyQueue' = [moveReplyQueue EXCEPT ![aaa.to] = Append(moveReplyQueue[aaa.to], aaa)]

561)

562 */\ PrintT("appended to moveReplyQueue 2b")

563 /\ requestQueue' = [requestQueue EXCEPT ![v] = Tail (requestQueue[v])]

564 /\ UNCHANGED << chain, myCurrentStatusTable, otherU sersStatusTable, updateQueue, ackQueue,

receiveQueue, infoQueue >>

565
566)

567)

568)

569)

570)

571)

572
573
574 [] Head(requestQueue[v]).status = "Chainhead_Member "

575 -> (*PrintT("do nothing") /\

576 (\E aaa \in [msgType: {"moveNOTOK"}, to: {Head(requ estQueue[v]).from}, from: {v}]:

577 moveReplyQueue' = [moveReplyQueue EXCEPT ![aaa.to] = Append(moveReplyQueue[aaa.to], aaa)])

578 */\ PrintT("appended to moveReplyQueue 3")

579 /\ requestQueue' = [requestQueue EXCEPT ![v] = Tail (requestQueue[v])]

580 /\ UNCHANGED << ackQueue, receiveQueue, infoQueue, chain, myCurrentStatusTable, updateQueue,
otherUsersStatusTable >>

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 16

581)

582)

583)

584) *end of msgType

585) *end of "processing"
586
587 \/ (\E u \in Userid \{0}: /\ myCurrentStatusTable [u].currentState = "Processing_II"

588 /\ moveReplyQueue[u] # << >>

589 */\ PrintT("will handle move reply...")

590 /\ ReceiveMoveReply(u)

591)

592
593 \/ (\E u \in Userid \{0}: /\ updateQueue[u] # << >>

594 */\ PrintT("will handle update...")

595 /\ ReceiveUpdate(u)

596 */\ PrintT("-----------------------")

597)

598
599 \/ (\E b \in Userid \{0}: /\ myCurrentStatusTable [b].currentState = "Waiting"

600 /\ ackQueue[b] # << >>

601 */\ PrintT("will handle ack...")

602 /\ HandleAck(b)

603 */\ PrintT("----------------------")

604)

605
606 \/ (\E u \in Userid \{0}: /\ (myCurrentStatusTable[u].currentState = "Chainhead" \/ myCurrentStatusTab le[u].currentState =

"Chainhead_Relay")

607 /\ requestQueue[u] = << >>

608 /\ ackQueue[u] = << >>

609 /\ infoQueue[u] # << >>

610 /\ ReceiveInfo(u))

611
612 \/ (/\ UNCHANGED << requestQueue, receiveQueue, a ckQueue, myCurrentStatusTable, updateQueue, chain, infoQueue,

otherUsersStatusTable, moveReplyQueue >>

613 */\ PrintT(myCurrentStatusTable)

614)

615)

616 */\ PrintT(myCurrentStatusTable)

617 --- -----

618
619 SystemSpec == SystemInit /\ [] [SystemNext]_<< requ estQueue, receiveQueue, ackQueue, updateQueue, info Queue, moveReplyQueue >>

620 --- -----

621 (* Used for symmetry reduction with TLC *)

622 NonZeroUserId == Userid \ {0}

623 Perms == Permutations(NonZeroUserId) *\cup Permuta tions(NonZeroUserId)

624

jEdit - Test15Chain.tla

10/5/06 1:36 PM :: page 17

625 *Symmetry == Permutations(Userid) \{0}

626 (* Used for symmetry reduction with TLC *)

627 *Symmetry == Permutations(Clients)* \cup Permutat ions(Resources)

628
629 --- -----
630
631 THEOREM SystemSpec => []TypeInvariant

632 === =================

	istemi_ekin_akkus_tez.pdf
	Appendix_A_TLC_deadlock.pdf
	Appendix_B_TLC_no_conditions_true.pdf
	Appendix_C_TLA_specification.tla.pdf

