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ABSTRACT

In this thesis we consider a single-buyer single-supplier supply chain. The market de-

mand is sensitive to the selling price set by the buyer. Constant-elasticity and linear demand

functions are adopted. The buyer and the supplier operate with unit product costs, inven-

tory holding costs, order placement costs, and transportation (freight) costs. We develop

models for determining the optimal lot sizing and pricing decisions in centralized and de-

centralized systems under various transportation cost sharing schemes. Existing models for

the problem do not consider the transportation costs with price sensitive market demand,

and they determine the optimal decisions through an exhaustive search. A novel approx-

imate solution procedure, along with simple search heuristic procedures, is proposed. We

report computational results on the effectiveness of the proposed procedures and the avail-

able methods from the literature. In addition to supply chain modeling, we evaluate the

effectiveness of coordination mechanisms in the same setting where the buyer is responsible

for the transportation cost. We also study the effectiveness of transportation cost sharing

contracts, quantity discounts, and volume discounts. We formulate models to determine op-

timal policies and evaluate their performance through a numerical study. The results of the

study demonstrate that transportation cost sharing contract is not an effective mechanism.

Volume discounts are more effective than quantity discounts, whereas the most effective

coordination mechanism is to offer quantity and volume discounts simultaneously.
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ÖZETÇE

Bu tezde bir tedarikçi ve bir alıcıdan oluşan temel bir tedarik zinciri ele alınmaktadır.

Tedarikçi ve alıcı ürün maliyetleri, envanter taşıma maliyetleri, sipariş verme maliyeti ve

taşıma maliyetleri ile çalışmaktadırlar. Bu ortamda sipariş miktarlarının ve ürün fiyatlarının

(ve dolayısıyla ürün talebinin) belirlenmesi ile ilgili kararlar bütünleşik bir yapı içerisinde ele

alınmakta ve bu kararların zincirin karlılığı üzerindeki etkileri incelenmektedir. Pazardaki

talep satış fiyatına bağlıdır ve aralarındaki ilişki doğrusal ve esnekliği sabit talep fonksiyon-

ları ile modellenmektedir. Modele göre tedarikçi veya alıcı taşıma maliyetini üstlenmektedir.

Dağınık ve merkezi sistemlerde, en iyi sipariş miktarı ve fiyatlandırma kararlarının en iyi

değerlerini bulmak üzere modeller geliştirilmektedir. Literatürdeki modeller taşıma maliyet-

lerini çoğunlukla ihmal etmekte ve en iyi kararları bulmak için etkin arama teknikleri sun-

mamaktadırlar. Bu çalışmada problemi çözmek için yeni bir yaklaşık çözüm metodu ve basit

bir sezgisel yöntem önerilmektedir. Algoritmaların performanslarının hesaplamalı sonuçları,

literatürdeki tekniklerle karşılaştırılarak sunulmuştur. Tedarik zincirinin modellenmesinin

yanı sıra, koordinasyon mekanizmalarının performansları da değerlendirilmektedir. Miktara

bağlı indirim, satış hacmine bağlı indirim ve taşıma maliyetleri paylaşma kontratı model-

lenmekte ve taşıma maliyetleri paylaşma kontratının fazla etkili olmadığı gösterilmektedir.

Bunun yanında satış hacmine bağlı indirimin miktara bağlı indirimden daha etkili olduğu ve

en etkili yöntemin miktara ve satış hacmine bağlı indirimlerin birlikte kullanılması olduğu

sayısal bir çalışma ile gösterilmektedir.
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Chapter 1

INTRODUCTION

Supply Chain Management, according to Chopra and Meindl [1], involves the management

of flows between and among stages in a supply chain to maximize total profitability. Since

this broad term includes numerous subtopics, supply chain activities can be grouped into

strategic, tactical, and operational levels of activities. One of the major purposes of supply

chain management is to increase the level of coordination and collaboration among supply

chain partners, thus increasing their overall profitability.

Supply chain management places a significant emphasis on lot sizing and pricing deci-

sions, and lowering logistics costs has been of interest for enterprises. Lot sizing is one of

the major considerations of inventory management, whereas pricing is crucial for revenue

management. Hence, a global approach considering lot sizing and pricing decisions gained

importance in reducing inventory costs and increasing revenue.

Transportation is another important consideration of logistics. Surveys of 1992 indicate

that the average ratio of transportation costs to total sales dollar is 10.5% in the United

States [2]. For certain industries transportation costs are relatively high. For instance,

transportation costs account for 16.64% of the sales dollar of the products on the average in

the food industry, whereas this ratio is 13.80% for chemicals, petroleum and rubber products,

11.10% for wood products [2]. For such items, transportation costs play a significant role

in the market price.

Although lot sizing and pricing problems have been intensively studied in the literature,

the effect of transportation costs has been generally neglected. Since transportation costs

can be almost 50% of the total logistics cost [3], incorporation of transportation costs into

lot sizing and pricing problems can have a significant value.

A basic two-stage supply chain consists of a manufacturer and a retailer, where the man-

ufacturer sells the goods to the retailer and the retailer sells the goods in a market. The
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manufacturer represents the upstream and the retailer represents the downstream partici-

pant in the supply chain. Considering the pricing and lot sizing decisions, the manufacturer

determines the wholesale price of the product. Consequently, the retailer determines the

market price and the order frequency. Accordingly, the manufacturer determines his order

frequency. Both enterprises maximize their overall profit independently and rationally. This

process can be defined as a sequential game and can be modeled as a Stackelberg game.

The Stackelberg leadership model is a strategic game in economics literature in which the

leader firm moves first and then the follower firm moves sequentially. This system is called a

decentralized supply chain where the enterprises independently determine their moves. An

alternative model is the centralized supply chain where the manufacturer and the retailer

are owned by the same enterprise and the decisions are made jointly.

Overall profit in a centralized supply chain is larger than the profit generated in a decen-

tralized supply chain due to the double marginalization effect. This concept is introduced by

Lerner [4] and can be defined as the exercise of market power at successive stages of a supply

chain. Hence, in order to improve the independent profits, coordination mechanisms are

exercised. Coordination in supply chain requires the partners of the supply chain to work

together to improve overall profitability rather than concentrating on their own profitability.

Channel coordination can be defined as the situation where the decentralized system offers

equivalent outputs to the market, i.e. market price, with the centralized system. Coordina-

tion mechanisms are extensively applied in business and supply chain coordination is one

of the most-studied topics of recent research in supply chain management.

Our main objective in this thesis is to analyze the impact of transportation costs on

pricing and ordering decisions and modeling coordination mechanisms. We model a supply

chain consisting of a single supplier supplying a product to a single buyer. Demand for

the product is deterministic, and price-elastic. We consider linear and constant elasticity

demand functions. The buyer buys the product from the supplier, sets the market price,

and determines her order replenishment period. Meanwhile, the supplier sets the wholesale

price, and determines his production quantity and frequency. They both incur procurement

costs, inventory holding costs and order placement costs, whereas the partner who takes on

the transportation cost additionally incurs freight cost, which depends on the lot shipment

size. The transportation cost consists of freight cost and the term transportation cost,
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designates the freight cost in the thesis. We further assume that production rates of both

the supplier and the buyer are infinitely large, which implies that production and storage

capacities are unlimited.

Both parties act independently as rational agents maximizing their own profits. Given

a wholesale price, the buyer determines the optimal retail price, and the order frequency

and quantity. Full information is available for the supplier, and he knows the consequences

of his wholesale price in the form of retail price and buyer’s order frequency and quantity.

Hence, the problem can be modeled as a Stackelberg game with the supplier acting as the

leader and the buyer acting as the follower. The equilibrium point is determined by the

solution of the Stackelberg game. Our first objective in this thesis is to develop algorithms

for approximating optimal pricing and lot sizing decisions in this equilibrium point. We

aim to develop an approximate procedure because the profit function of the supplier is

non-concave, and the freight cost function adds a discontinuity to it. In the core of this

approximate solution procedure is a novel approach for modeling the response of the buyer

to different values of the wholesale price. This in turn helps us model the supplier’s problem.

Our second objective in this thesis is to model the coordination mechanisms for the two

stage supply chain. We model quantity and volume discounts, which are well-known coor-

dination mechanisms in the literature. Additionally we propose and model a transportation

cost sharing contract for coordination. We further provide a detailed analysis of the results

and efficiencies of the mechanisms and compare them.

The remainder of the thesis is organized as follows: In Chapter 2, a review of the

literature on pricing, lot sizing decisions and supply chain coordination is presented. In

Chapter 3, problem description and solution procedures are presented. In Chapter 4, we

describe our supply chain models and propose methods for solving optimal strategies. In

Chapter 5, the coordination mechanisms are studied. Finally, we present some concluding

remarks in Chapter 6.
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Chapter 2

LITERATURE REVIEW

We categorize supply chain systems in the literature into three major groups:

• Lot Sizing Decisions in Supply Chain Management

• Lot Sizing and Pricing Decisions in Supply Chain Management

• Supply Chain Models Incorporating Transportation Costs

Subsequent to reviewing supply chain systems, supply chain coordination will be discussed.

Finally, quantity discounts will be reviewed.

2.1 Lot Sizing Decisions in Supply Chain Management

Lot sizing is choosing a lot size for procurement or production where the main objective is to

minimize the sum of ordering and holding costs. Lot sizing problem has been an important

aspect of procurement operations of enterprises and, there is substantial research on the

optimal lot sizing problem with deterministic demand, which are summarized in Table 2.1.

One of the essential papers in inventory theory is by Whitin [5], where the economic

order quantity (EOQ) is introduced. In this paper he considers a retailer buying goods

from a supplier and sells them in the market. He studies optimization of the total cost

through balancing setup and inventory holding cost. Porteus [6] investigates the effects of

investments in reducing setup costs in the EOQ model. Investment is modeled through a

convex and strictly decreasing function. Additionally, sensitivity analysis is provided with

respect to the parameters.

Roundy [11] introduces power-of-two and integer-ratio policies into the lot sizing problem

for multi-echelon inventory systems. Power-of-two policy requires the buyer to select an

order frequency in the form of Tb = (2nb)Ts, where Ts is the order frequency of the supplier

and nb is an integer selected by the buyer. On the other hand, integer-ratio policy requires



Chapter 2: Literature Review 5

Table 2.1: Papers on lot sizing decisions in supply chain.

Authors Paper Supply Chain Pricing Transportation Product

Whitin [5] Retailer - - Single

Porteus [6] Retailer - - Single

Lu [7] Retailer - - Single

Yao and Chiou [8] Retailer - - Single

Khouja [9] M-M-M - - Single

Chan and Kingsman [10] 1-M - - Single

the buyer to select an order frequency in the form of Tb = ( 1
nb

)Ts or nbTs, where nb is

a positive integer selected by the buyer. These policies have been extensively studied in

inventory theory.

Lu [7] considers the lot sizing problem in a supplier-buyer relationship adopting integer

ratio policy. Optimal solution for the single-supplier single-buyer case is derived, whereas a

heuristic approach is proposed for the single-supplier multi-buyer case. Yao and Chiou [8]

consider the study of Lu [7] and propose a heuristic providing shorter run time.

Khouja [9] formulates a three-stage, multi-customer, non-serial supply chain model,

where a firm can supply more than one customer. Three mechanisms are considered for

replenishment: Equal cycle time, integer multiplier, and integer powers-of-two multiplier

mechanisms. The analysis shows that the integer powers-of-two-multiplier mechanism has

the lowest cost, whereas the equal cycle time mechanism has the highest cost.

Chan and Kingsman [10] study a single-vendor multi-buyer supply chain model consid-

ering three replenishment policies: synchronized replenishment cycles, common order cycle

model, and independent policy. Through examples the paper further claims that the syn-

chronized cycles policy works better than independent optimization as well as restricting

buyers to adopt a common order cycle.
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Table 2.2: Papers on lot sizing and pricing decisions in supply chains.

Authors Paper Supply Chain Pricing Transportation Product

Kunreuther and Richard [12] Retailer + - Single

Arcelus and Srinivasan [13] Retailer + - Single

Rosenberg [14] Retailer + - Single

Cheng [15] Retailer + - Multiple

Chen and Min [16] Retailer + - Multiple

Kim and Lee [17] Retailer + - Single

2.2 Lot Sizing and Pricing Decisions in Supply Chain Management

Lot sizing and pricing problems have been extensively studied for the last three decades.

In this section, profit-maximizing models are reviewed and the papers are displayed in

Table 2.2.

Kunreuther and Richard [12] extend Whitin’s [5] study by incorporating pricing decision

and introducing decentralized and centralized decision making within a retailer. In the

paper, the marketing department decides on the price and purchasing department decides

on the lot size. The paper investigates the influence of simultaneously and sequentially

making the decisions. Besides, they show that the optimal lot size under finite production

rate is larger than the optimal lot size with an infinitely large production rate.

Arcelus and Srinivasan [13] derive the optimal pricing and lot sizing decisions for a

retailer facing a constant price-elasticity demand function under three different objectives:

Total profit, return on inventory investment and residual income, which is defined as the

difference between profit and the opportunity cost of the inventory investment. Rosenberg

[14] derives optimal solutions for the pricing and lot sizing problem of a retailer with profit

and return on inventory investment objectives.

Cheng [15] considers the optimal pricing and lot sizing decisions for multiple products of

a retailer facing a linear demand function. He incorporates storage capacity and inventory

investment constraints into the problem. The solution requires all of the products to be
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ordered with the same frequency. Chen and Min [16] reformulate Cheng’s [15] model to

satisfy equal replenishment cycle for each product in the optimal solution. They further

derive the optimal solution for linear demand function.

Kim and Lee [17] incorporate capacity investment decisions into the pricing and lot

sizing problem of a retailer. Geometric programming, which is a mathematical optimization

technique characterized by an objective function and constraint functions that have a special

form, is employed to derive optimal decisions for fixed and variable capacity models and

analysis of these models is provided.

2.3 Supply Chain Models Incorporating Transportation Costs

Above mentioned studies do not explicitly consider transportation costs and their impact on

supply chain. Carter and Ferrin [35] emphasize the explicit consideration of transportation

costs in lot sizing. For the joint pricing and lot sizing problem, limited literature exists

with explicit consideration of transportation costs, and the relevant papers are displayed

in Table 2.3. In fact, transportation cost has been modeled in various structures in the

literature. Mathematical formulations of the relevant structures studied in the pricing and

lot sizing problems are discussed in Section 3.1. Moreover, Section 3.1 reviews the literature

studying pricing and lot sizing problem including transportation cost.

Wehrman [18] considers the industries where transportation constitutes a significant

part of the overall material costs and studies lot sizing problem for a retailer considering

transportation costs. Transportation cost is determined by weight category, which is based

on unit weight and order quantity.

Early studies try to incorporate transportation cost into the EOQ problem. Aucamp

[19] incorporates freight cost, which is modeled by integer number of full truck loads, into

the EOQ problem. Lee [20] introduces discounted freight cost into the EOQ problem.

Freight cost is fixed at a certain interval and subject to economies of scale. Larson [21]

introduces economic transportation quantity model. The setting includes a retailer facing

deterministic demand incurs setup, holding and freight cost. Freight cost depends on the

units transported and is subject to economies of scale. Transportation modes considered

are air, full truck and less than truck load. Tersine et al. [22] consider a freight cost that

is constant for a level in a particular interval and sustains economies of scale. Besides,
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Table 2.3: Papers on supply chain models incorporating transportation costs.

Authors Paper Supply Chain Pricing Transportation Product

Wehrman [18] Retailer + + Single

Aucamp [19] Retailer + + Single

Lee [20] Retailer + + Single

Larson [21] Retailer + + Single

Tersine et al. [22] Retailer + + Single

Hwang et al. [23] Retailer + + Single

Tersine and Barman [24, 25] Retailer + + Single

Russell and Krajewski [26] Retailer + + Single

Carter et al. [27] Retailer + + Single

Shinn et al. [28] Retailer + + Single

Burwell et al. [29] Retailer + + Single

Swenseth and Godfrey [3] Retailer + + Single

Abad and Aggarwal [30] Retailer + + Single

Abad and Aggarwal [31] Retailer + + Single

Hoque and Goyal [32] 1-1 + + Single

Ertogral et al. [33] 1-1 + + Single

Lei et al. [34] 1-1-1 + + Single
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all-weight and incremental freight discounts are considered within the framework of EOQ

model.

Hwang et al. [23] introduces unit quantity discounts into the EOQ problem considering

freight costs. Freight cost is again fixed at a certain interval and subject to economies of

scale. Tersine and Barman [24, 25] study the lot sizing problem for a retailer facing all-

units/incremental quantity discounts and all-weight/incremental freight discounts. Russell

and Krajewski [26] study the same problem considering the effect of the transportation rate

structure for less-than-truckload (LTL) shipments. They enable the buyer to have the over-

declaring option, which refers to declaring a shipment amount that is larger than the real

shipment size in order to take advantage of lower freight costs. Carter et al. [27] correct the

algorithm of Russell and Krajewski [26], and avoid abnormalities due to the real-life freight

schedules.

Transportation cost has been considered within pricing and lot sizing problems for the

last decade. Shinn et al. [28] study optimal pricing and lot sizing decisions for a retailer

under conditions of permissible delay in payments. The paper assumes a discounted freight

cost scheme exerting economies of scale. Burwell et al. [29] consider a retailer that faces

price dependent demand, and determine optimal shipment lot size and price. The retailer

also receives quantity discount from supplier and freight discount from transporter. Freight

cost structure does not include over-declaring option. Algorithms are proposed for different

combinations of quantity and freight discounts. Swenseth and Godfrey [3] present a dis-

cussion of freight costs in literature and practice. Two freight rate functions, the inverse

and the adjusted inverse, are incorporated into the inventory replenishment problem. The

setting includes deterministic demand with setup, holding cost and freight costs. A heuris-

tic algorithm is proposed and its performance is measured against the optimal decision.

Abad and Aggarwal [30] consider a retailer that faces price sensitive demand with setup,

holding cost and transportation cost. The transportation cost structure of Swenseth and

Godfrey [3] is adopted, where the transportation cost structure is subject to economies of

scale, and includes over-declaring option. The shipment size is limited to a truck load, and

multiple truck load shipments are not allowed. The paper claims that the regular order

quantity will be less than or equal to one full truckload, since shipments spanning different

trucks can be timed so that they are received at different times to reduce inventory carrying
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costs. Moreover, optimal decisions are derived and an algorithm is proposed. The proposed

algorithm requires the solution of a set of equations through optimality conditions. The

equations are nonlinear and a methodology for solving the equations is not offered. The

example mentioned in the paper uses GOAL SEEK function of Excel to solve the set of

equations. Finally sensitivity analysis is generated in the paper. Abad and Aggarwal [31]

correct their formulation by adding per unit transportation cost into the carrying cost.

Hoque and Goyal [32] consider a centralized system in a single-vendor single-buyer set-

ting with deterministic demand and transportation cost. The vendor has a production

capacity, determines his price and adopts lot-for-lot methodology for shipping. The trans-

portation vehicle has a capacity. A model is derived to find the optimal centralized profit.

Ertogral et al. [33] consider a centralized system in a single-vendor single-buyer setting.

The buyer faces a price sensitive demand, determines his price and shipment size. The

supplier has a production capacity, determines his price and lot size multiplier. Algorithms

are devised for incremental freight discounts with and without over-declaring option.

Lei et al. [34] consider a supplier-transporter-buyer model with single participant at

each supply chain stage. The transporter charges the supplier the transportation cost,

which depends on shipment quantity. The supplier charges a unit price to the buyer and

the buyer charges a unit price in the market. Demand is price-elastic and deterministic in

the market. The supplier and the buyer operate under inventory holding costs, setup costs

and unit costs whereas the transporter operates under fixed costs, and unit costs. The buyer

determines his lot size, the supplier and transporter work with this lot size. The optimal

prices and lot sizes are derived for centralized and decentralized case. Finally a numerical

study is conducted and sensitivity analysis is provided.

2.4 Supply Chain Coordination

Supply chain coordination has been one of the major research topics in operations manage-

ment. Major coordination mechanisms in the deterministic setting include profit sharing

mechanisms, two part tariffs and discounts. Profit sharing mechanisms are designed to

share the benefit of coordination between the supply chain members, whereas a two part

tariff is a price discrimination technique in which the price is composed of a per-unit charge

and an additional fixed fee. Quantity discount is the offer of price discount in return for
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increased order quantity. On the other hand, volume discount is the offer of price discount

in return for increased annual demand. Moreover, simultaneous offering of quantity and

volume discounts is also applicable.

Coordination mechanisms have been of interest in two-stage supply chains with price-

elastic demand functions. Yano and Gilbert [36] provide a survey of research on supply

chain coordination.

Zahir and Sarker [37] consider single-supplier multi-buyer model and derive optimal lot

sizing and pricing decisions for the buyers and the supplier. Furthermore, the paper proposes

and models a coordination mechanism through compensating profits. Then the supplier has

the power to enforce the buyers to accept a higher order quantity to consequently increase

his profit.

Abad [38] studies a single-supplier multi-buyer supply chain and derive the Pareto ef-

ficient and Nash bargaining solutions. He proposes a profit-sharing mechanism, two-part

tariff and all-units quantity discount pricing schedules. The paper concludes that coordi-

nation can be achieved by the profit-sharing mechanism or the all-units quantity discount

schedule. Ingene and Parry [39] consider a single-supplier and two competing buyers with

a linear, downward-sloping demand curve. The costs of the enterprises entirely consist of

fixed costs and variable costs. Three pricing mechanisms; a channel-coordinating quantity-

discount schedule, a sophisticated Stackelberg two-part tariff, and a channel coordinating

menu of two part tariffs are evaluated in various scenarios with varying degree of competi-

tion and relative size of the retailers. Coordination is achieved through quantity-discount

schedule whereas channel coordinating wholesale-price strategy provides zero incremental

profit for the buyers. The paper further analyzes the use of imperfect information and

effects of the parameters.

Desai [40] considers coordination mechanisms in a single-supplier single-buyer supply

chain with seasonal demand. He derives optimal solutions for three cases: the general

case where they continuously change price and lot size, the case in which the supplier has a

constant price, and the case where the buyer has a constant procurement rate. Reyniers [41]

compares decentralized and centralized systems in the single-supplier single-buyer supply

chain. She claims that market price can be larger or smaller in the centralized system

depending on the market size. Ertek and Griffin [42] consider a single-supplier single-buyer
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supply chain and characterize the equilibrium solution to supplier-driven and buyer-driven

versions of the game.

An important area of research in supply chain coordination is the supply chain contracts,

which are studied in a stochastic setting. For recent surveys, see Cachon [43], Tsay et al. [44]

and Lariviere [45], who concentrate on the issues of wholesale or transfer prices, buy-back

provisions, franchise fees, and other financial agreements among the supply chain members.

Cachon and Netessine [46] provide a comprehensive survey of game theory in supply chain

analysis and outline game-theoretic concepts. Since we consider deterministic demand, this

line of research is beyond the scope of the thesis.

2.4.1 Optimal Decision Making under Discount Offers

This section reviews the literature of optimal policies under discount offers. The models

consider a retailer facing discounts and setting the market price and order quantity. The

mathematical formulation of the discount offers differs across the papers.

Crowther [47] was the first to study the lot sizing problem for a retailer facing quantity

discounts. Ladany and Sternlieb [48] study optimal product pricing and lot sizing problem

for a retailer facing continuous-linear and continuous-hyperbolic quantity discounts. The

paper concludes that the elasticity of the demand may change the optimal pricing policy at

a break even point. Brahmbhatt and Jaiswal [49] extend this study by incorporating finite

production rate.

Subramanyam and Kumaraswamy [50] study the optimal product pricing and lot sizing

problem for a retailer facing continuous quantity discounts incorporating advertisement

expenditures. Lee and Rosenblatt [51] further extend this model with modeling defective

items in the procurement. Arcelus and Srinivasan [52] study the optimal product pricing

and lot sizing problem for a retailer facing continuous quantity discounts who has a return

on inventory investment objective.

Abad [53] and Abad [54] study the optimal product pricing and lot sizing problem for a

retailer where there exist all-unit quantity discounts in the former and incremental quantity

discounts in the latter. Burwell et al. [55] argue that the procedure of Abad [53] does not

provide optimal solution for linear and constant elasticity demand functions.

Lee [56] derives optimal product pricing and lot sizing decisions for a retailer facing
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continuous quantity discounts through geometric programming approach.

Lee [57] studies optimal multi-product pricing and lot sizing problem for a retailer facing

order quantity discounts. The model utilizes a power-form quantity discount function and

incorporates storage capacity and inventory investment restrictions.

Abad [58] studies product pricing and lot sizing decisions for a retailer facing temporary

discounts, which encourage forward-buying.

Munson and Rosenblatt [59] review the literature on quantity and volume discounts and

report the industry practices of quantity discounts from 39 companies. It is a comprehensive

study on discounts including motivations, assumptions, and industry trends. It is noted

that there is a literature gap for the discounts in vendor-buyer setting with transportation

cost. Sarmah et al. [60] provide a literature survey on quantity discounts in deterministic

environment.

2.4.2 Optimal Discount Design in Supply Chain Management

This section reviews the literature for designing optimal policies of discount offers. The

models consider sequential pricing and lot sizing decisions in two-echelon or three-echelon

supply chain systems. Dolan [61] provides a literature review on quantity discounts with a

managerial perspective, and illustrates the motivations of quantity discounts.

There are studies on quantity discounts in supply chains with constant demand. Lal

and Staelin [62] study optimal quantity discount design in a two-stage supply chain with

constant demand. They derive a closed form optimal solution for the single-supplier single-

buyer case, and propose an algorithm for the single-supplier multi-buyer case. Drezner and

Wesolowsky [63] derive the optimal all-units quantity discount scheme to be offered in a two-

stage supply chain with constant demand. Kohli and Park [64] study the lot sizing problem

in a single-supplier single-buyer supply chain with constant demand. They model quantity

discounts through incorporating bargaining and utility theory. Chakravarty and Martin [65]

study optimal quantity discount design in a two-stage supply chain. They further evaluate

the centralized system and consider finite production rate, investments in setup costs and

sensitivity analysis. Chiang et al. [66] study optimal quantity discount design in a single-

supplier single-buyer supply chain with constant demand. The paper utilizes geometric

programming and reveals the benefits of cooperation. Wang and Wu [67] study a single-
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supplier multi-buyer supply chain with constant demand. They propose a pricing policy for

the supplier that offers price discounts based on the percentage increase from the buyers’

order quantity before discount. Supplier’s optimal decision, which is explicitly available, is

a discrete all-unit quantity discount schedule with many break points and complies with

general fair trade laws.

There are also studies on quantity discounts in supply chains with price-sensitive de-

mand. Weng and Wong [68] investigate the effectiveness of all-unit quantity discount poli-

cies in supplier-buyer chains with deterministic demand. Single/multiple-buyer and con-

stant/price sensitive-demand models are considered. Parlar and Wang [69] study optimal

quantity discount design in a single-supplier single-buyer supply chain with linear demand

function. The discount scheme considered in the paper is an all-unit discount scheme.

Weng [70] develops optimal quantity discount policies and investigates their consequences

in a single-supplier single-buyer supply chain with general price sensitive demand functions.

The paper considers all-unit and incremental quantity discounts, and shows that both dis-

count schemes are equivalent in terms of the benefits to the agents. Weng [71] considers the

same setting, and models a profit sharing mechanism through franchise fees, together with

quantity discounts. The study reveals that quantity discounts alone cannot achieve channel

coordination.

Corbett and de Groote [72] consider a single-supplier single-buyer supply chain with

constant demand and asymmetric information in a principal-agent framework. The paper

derives the optimal quantity discount policy under asymmetric information and compare

with the full information case.

Chen et al. [73] study a single-supplier multi-buyer system with price sensitive demand

where the system operates using a power-of-two lot ratio policy. They show that quantity

discounts only may not be sufficient to achieve channel coordination where each buyer’s

demand is price-sensitive. They further show that channel coordination can be achieved

via periodically charged fixed fees and a nontraditional discount scheme that is based on

annual sales volume, order quantity and order frequency. In the coordination mechanism,

offers are special for each buyer, hence a buyer cannot choose to adopt another buyer’s

offer. Viswanathan and Wang [74] investigate effects of quantity and volume discounts in

a single-supplier single-buyer system with price-sensitive demand. Discounts are applied
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separately and simultaneously. Algorithms are proposed for finding the optimal pricing and

lot sizing decisions. The paper concludes that joint use of quantity and volume discounts

leads to channel coordination.

Wang [75] studies a single-supplier multi-buyer system with constant demand where the

system operates using a power-of-two lot ratio policy. He argues that the coordination

mechanism of Chen et al. [73] may be conflicting with the Robinson-Patman Act, which is

a United States federal law that prohibits anticompetitive practices through price discrimi-

nation, and proposes a common all-unit-quantity discount scheme for all of the buyers. He

further confirms the results of Chen et al. [73]. Wang [76] studies a single-supplier multi-

buyer system with constant demand and compares the effectiveness of quantity discounts

with integer-ratio and power-of-two time coordination. He concludes that integer-ratio time

coordination provides a better coordination mechanism for the supply chain.

Chen and Chen [77, 78] study a single-supplier multi-buyer system with multi-product

and constant demand. They adopt an integer-ratio time policy and propose algorithms for

finding optimal quantity discount schemes. Wang and Wang [79] analyze a supplier’s optimal

quantity discount policy (all-units and incremental) for a set of heterogeneous buyers with

price sensitive demand. The supplier designs a single break point (which corresponds to a

particular discount scheme consisting of discount and quantity) for each buyer such that

they choose the designed break point desired by the supplier and higher break points are

designed for larger (in annual demand) buyers. The supplier’s all-units quantity discount

policy is formulated as an NLP (nonlinear programming) model. A numerical algorithm

is subsequently developed to obtain an optimal solution and finally, an optimal quantity

discount policy is proposed for the supplier using a maximum lower bound formulation for

its inventory related cost. The supplier adopts a simple heuristic inventory replenishment

policy in the paper, and it is further claimed that this model provides a reasonably close

approximation and a desirable solution. Wang [80] derives optimal quantity and volume

discounts for a single-supplier multi-buyer system with constant demand. A buyer-specific

discount scheme is designed instead of a common discount scheme. The paper further shows

that discount policies are able to achieve nearly optimal system profit, hence provide efficient

coordination.
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Chapter 3

PROBLEM DESCRIPTION AND SOLUTION PROCEDURES

3.1 Problem Description

We analyze the pricing and lot sizing problem in two-echelon supply chain systems under

deterministic demand. Figure 3.1 depicts the decisions and interactions within the supply

chain. In the following chapters, technical derivations and numerical illustrations of the

models are presented.

Two widely used demand functions in the literature are implemented in the thesis. We

adopt a constant-elasticity demand function throughout the thesis, and models incorporat-

ing linear demand function are presented in Appendix B.

Transportation cost has been modeled in various structures in the literature. Section

2.3 reviewed relevant structures studied within pricing and lot sizing problems. We observe

three major types of transportation cost as follows:

1. • Unit based: Transportation cost depends directly on the total shipped load,

where distinct transportation loads cannot have the same costs.

• Transportation range based: There exist different transportation cost categories

and cost is determined by the category to which the total shipped load belongs.

As long as the shipped loads belong to the same category, transportation costs

are the same.

2. • Continuous: The transportation cost function is continuous.

• Discontinuous: The transportation cost function has discontinuities.

3. • Regular: The marginal transportation cost is the same for distinct transportation

loads.

• Economies of scale in transportation costs: The incremental transportation cost

decreases as the size of total shipped load increases, where per unit transportation
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Figure 3.1: Supply chain structure and decision variables.

cost decreases as well.

Aucamp [19] adopts a transportation range based, discrete and regular cost structure,

whereas Lee [20] and Hwang et al. [23] adopt a transportation range based, discrete cost

structure with economies of scale. One of the essential studies concerning the models in

this thesis is by Abad and Aggarwal [30], and they use a continuous transportation cost

structure, which is subject to economies of scale. Besides, the structure allows over declaring

option, which utilizes both unit and transportation range based cost structures within the

model.

Moreover, the transportation sector in Turkey is heavily competitive. According to

Turkish Statistical Institute’s transportation statistics [81] total number of cargo vehicles

by 2006 is 2,151,986 with 1,475,057 pick-up trucks and 676,929 trucks. This statistics is far

above the average in European Union countries. Therefore, we can say that almost perfect

competition exists in the sector and prices are close to marginal costs. Hence the economies

of scale effect is not likely to be observed in the sector.

We model transportation cost through a stepwise linear function, which is adopted by

Aucamp [19], as shown in Figure 3.2. We believe that this structure constitutes a relatively
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Figure 3.2: Freight cost as a function of the order quantity.

realistic representation of the transportation sector.

To compute F (Q), per truck cost R is multiplied by the number of trucks required by

the order quantity Q. We assume that the transportation cost is determined in terms of

truck loads, therefore the freight cost is computed as:

F (Q) =
⌈

Q

C

⌉
R. (3.1)

An interview with an expert from the transportation sector, (Arzu Aras, Quality and

Management Systems Development Director of Borusan Logistics) also confirms that this

transportation cost structure is a realistic approach for the market. She further notes that

the economies of scale effect can exist in contracts with extremely high transportation loads,

which is beyond the scope of this thesis.

We review the techniques from the literature and propose an approximation algorithm

for the pricing and lot sizing problem in two-echelon supply chain systems. The following

section briefly describes the solution methods considered in this thesis.

3.2 Solution Procedures

1. Approximation Algorithm
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We propose an approximation algorithm for the optimal pricing and lot sizing problem.

In the core of this approximate solution procedure is a novel approach for modeling

the response of the buyer to different values of the wholesale price. This in turn helps

us model the supplier’s problem. We characterize the buyer’s optimal order quantity

response and propose a search algorithm over wholesale price range. The order quan-

tity is constant in some of the wholesale price intervals whereas it is decreasing in

the remaining intervals. We derive the pricing and lot sizing decisions in the constant

order quantity ranges and approximate the solution in the remaining intervals.

2. Grid Search

A common approach for solving the problem is simply adopting a grid search. It is

the easiest way to solve the problem but a computationally intensive method since

computations are generated for every single grid interval.

Let us consider the optimization of a general function f : R → R. If we have k test

points x1, x2, ..., xk such that L ≤ x1 ≤ x2 ≤ ... ≤ xk ≤ U where the grid lengths are

constant as = = xi − xi−1, then the test point, xj leading to the best value f(xj), is

at maximum distance of = to the optimal point x∗. Hence optimal solution can be

achieved as an exact solution as = approaches 0.

The number of test points in each iteration step is crucial in the algorithm because

the speed of the algorithm heavily depends on that number.

3. Myopic Approach

Found in the literature, one way to solve the supplier’s problem is to ignore the

transportation cost. The supplier offers a wholesale price to the buyer assuming that

the buyer does not incur transportation cost. When the buyer determines the market

price, she takes transportation cost into account and does not move as the way supplier

expects. Henceforth, we will refer to this approach as the myopic procedure.

4. Golden Section Search: A Heuristic

Golden Section Search, which is introduced by Kiefer [82], is an unconstrained opti-

mization technique, where a unimodal function is optimized by successively narrowing
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the range of values inside which the extremum point is known to exist.

Definition 1. A function is quasi-concave f : X → R if

f(λx + (1− λ)x′) ≥ min{f(x), f(x′)} (3.2)

for all x, x′ ∈ X and all λ ∈ [0, 1].

The algorithm starts with two end points and two points, which are in between the

end points and determined by the golden ratio
√

5−1
2 . Through successive iterations,

several intervals are eliminated and the algorithm terminates when the accuracy bound

ε is achieved between the end points.

We propose using the golden section search algorithm as a heuristic procedure for the

non-quasiconcave and sometimes discontinuous profit functions in the thesis.
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Chapter 4

SUPPLY CHAIN MODELING

4.1 Decentralized System without Transportation Cost

The buyer’s profit function can be written as∏
B

(p, Q) = (p− v)D(p)− vI
Q

2
−A

D(p)
Q

(4.1)

Likewise, the supplier’s profit function is∏
S

(v, n) = (v −m)D(p∗(v))−mI(n− 1)
Q∗(v)

2
−
(

K

n

)
D(p∗(v))

Q∗(v)
(4.2)

where p∗(v) denotes the optimal price set by the buyer, and Q∗(v) denotes the buyer’s

optimal replenishment quantity when the supplier sets the wholesale price as v.

The Buyer’s Problem

In this section, we first discuss the solution of the pricing and lot sizing problems for the

buyer assuming that the supplier sets the wholesale price as v. We will later incorporate

these results into the supplier’s problem within a Stackelberg setting.

Incorporating the demand function, and for a fixed value of v, the profit function of the

buyer can be written as∏
B

(p, Q) = (p− v)ap−b − vI
Q

2
−A

ap−b

Q
(4.3)

The first-order condition for a local maximum with respect to p is obtained as below.

∂
∏

B(p, Q)
∂p

= ap−b − (p− v) ap−bb

p
+

A ap−bb

pQ
= 0, (4.4)

and we can state

p∗(Q) =
b (A + Qv)
Q (b− 1)

. (4.5)

We further take the second derivative and equate it to zero as:

∂2
∏

B(p, Q)
∂p2

= −abp−2−b(A(1 + b) + Q(p(1− b) + vQ(1 + b)))
Q

= 0 (4.6)
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Solving (4.6) gives the price

p
′
(Q) =

A + Qv + b (A + Qv)
Q (b− 1)

. (4.7)

Since p
′
(Q) > p∗(Q), and limp→∞

∏
B(p, Q) = 0, it can be shown that (4.5) gives the global

optimal solution. We can then substitute p by p∗(Q) in Equation (4.3). We rewrite the

buyer’s profit function as

∏
B

(Q) = (p∗(Q)− v)a(p∗(Q))−b − vI
Q

2
−A

a(p∗(Q))−b

Q
(4.8)

We write the first-order condition for a local maximum with respect to Q as

∂
∏

B(Q)
∂Q

= −vI

2
+

A a(p∗(Q))−b

Q2
, (4.9)

and by setting it equal to zero we obtain−vI

2
+

Aa
(

b(A+Qv)
Q(b−1)

)−b

Q2

 = 0 (4.10)

Equality (4.10) is the local optimality condition for the buyer’s order quantity. Q∗ can now

be obtained through a line search over the buyer’s profit function.

The Supplier’s Problem

Viswanathan and Wang [74] claim that local maxima for the supplier’s profit function

(as given in Equation (4.2)) can occur. We have also encountered examples where the

supplier’s profit function is not a quasiconcave function of v. We will study the structural

properties of the problem in the subsequent sections and review two solution procedures for

the problem in this section.

4.1.1 Grid Search

In this section, we present the grid search approach for solving the supplier’s problem. The

optimal wholesale price v and corresponding profit for the supplier is determined numerically

by a grid search within the range [m, vmax].

4.1.1.1 Derivation of the optimal lot size multiplier under a fixed value of the

wholesale price
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We derive the optimal lot size multiplier in this section. The first and second derivatives

of the supplier’s profit function (4.2) with respect to n are

∂
∏

S(v, n)
∂n

= −mI
Q∗(v)

2
+ K

D(p∗(v))
n2Q∗(v)

, (4.11)

and

∂2
∏

S(v, n)
∂n2

= −2K
D(p∗(v))
n3Q∗(v)

. (4.12)

Since K, v, D(p∗(v)), Q∗(v) are positive, ∂2
Q

S(v,n)
∂n2 is always negative. Therefore, the

profit function (4.2) is strictly concave with respect to n. Since the optimal lot size multiplier

n is an integer and the function is concave with respect to n, we can state the following two

optimality conditions for n∗ ∏
S

(v, n∗) ≥
∏
S

(v, n∗ + 1) (4.13)

and ∏
S

(v, n∗) ≥
∏
S

(v, n∗ − 1) (4.14)

n∗ will be denoted as n in the remaining part of this section. Expanding (4.13) and

(4.14) through (4.2) gives

mI(n− 1)
Q∗(v)

2
+ K

D(p∗(v))
nQ∗(v)

−mI(n)
Q∗(v)

2
−K

D(p∗(v))
(n + 1)Q∗(v)

≤ 0 (4.15)

and

mI(n− 1)
Q∗(v)

2
+ K

D(p∗(v))
nQ∗(v)

−mI(n− 2)
Q∗(v)

2
−K

D(p∗(v))
(n− 1)Q∗(v)

≤ 0 (4.16)

Simplifying (4.15) and (4.16), we obtain

−mI
Q∗(v)

2
+ K

D(p∗(v))
Q∗(v)n(n + 1)

≤ 0 (4.17)

and

mI
Q∗(v)

2
−K

D(p∗(v))
Q∗(v)n(n− 1)

≤ 0 (4.18)

Equating the inequality (4.17) to zero and solving for n gives the roots: −1
2

(
1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)
and 1

2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)
. The inequality is not satisfied in between the roots. Like-

wise, equating the inequality (4.18) to zero and solving for n gives the roots: 1
2

(
1−

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)
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and 1
2

(
1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)
. The inequality is satisfied in between the roots. We can con-

clude that n is between 1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)
and 1

2

(
1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)
. Since the

range is bounded to 1 and n is integer, optimal n can be written as

n∗ =

⌈
1
2

(
−1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌉
or

⌊
1
2

(
1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌋
. (4.19)

For a fixed wholesale price v, optimal price can be stated as p∗(Q) = b(A+Qv)
Q(b−1) , which is

given in (4.5). A line search for Q through solving

(
−vI

2 +
(A)a

�
b(A+Qv)
Q(b−1)

�−b

Q2

)
= 0 gives the

optimal order quantity, which is provided in (4.10). Finally, the optimal lot size multiplier

is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is stated in (4.19). We adopt a grid

size g = 10−3 in the computations.

The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be 0 with v = 0 and n = 0.

Step 2: Start with v = m and complete the following steps for each wholesale price from

the set {m,m + g,m + 2g, ..., vmax − 2g, vmax − g, vmax}.

2.1: Given v, find Q through a line search solving (4.10), compute p as defined in

(4.5) and
∏

B(Q) as defined in (4.2).

2.2: Compute n and
∏

S(v) as defined in (4.19) and (4.2) respectively. If
∏

S(v) is

greater than the optimal profit, update the optimal profit
∏∗

S , the wholesale price v∗ and

the lot size multiplier n∗.

4.1.2 Golden Section Search: A Heuristic

In this section, we present golden section search algorithm for solving the supplier’s problem.

The wholesale price v and corresponding profit for the supplier is determined numerically

through interval eliminations within the range [m, vmax]. Since the profit function is not

quasiconcave, convergence to optimality can not be guaranteed. However, Viswanathan and

Wang [74] claim that local maxima, if any, seem to occur only close to the global maximum.

Therefore, we present this approach as a heuristic procedure. We adopt the accuracy bound

ε = 0.001 in the computations.

For a fixed wholesale price v, optimal price can be stated as p∗(Q) = b(A+Qv)
Q(b−1) , which is

given in (4.5). A line search for Q through solving

(
−vI

2 +
(A)a

�
b(A+Qv)
Q(b−1)

�−b

Q2

)
= 0 gives the
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optimal order quantity, which is provided in (4.10). Finally, optimal lot size multiplier is

given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is stated in (4.19).

The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be 0 with v = 0 and n = 0. Start with v1 = m,

v2 = vmax, λ = v1 + (1−
√

5−1
2 )(v2 − v1), and µ = v1 +

√
5−1
2 (v2 − v1).

Step 2: Complete the following steps for wholesale prices v1, v2, λ, µ.

2.1: Find Q through a line search solving (4.10), compute p as defined in (4.5) and∏
B(Q) as defined in (4.8).

2.2: Compute n and
∏

S as defined in (4.19) and (4.2) respectively.

Step 3: If
∏

S(λ) <
∏

S(µ), update the wholesale prices as follows

v1 = λ

λ = µ

µ = v1 +
√

5−1
2 (v2 − v1).

Otherwise, update the wholesale prices as follows

v2 = µ

µ = λ

λ = v1 + (1−
√

5−1
2 )(v2 − v1).

Step 4: If v2 − v1 > ε go to Step 2, otherwise terminate the algorithm. λ and associated

n,
∏

S(λ) are found to be the best solution.

4.2 Centralized System without Transportation Cost

Viswanathan and Wang [74] study this problem and we restate the derivation of optimal

pricing and lot sizing decisions in this section for the sake of completeness.

The profit function can be stated as follows:∏
C

(p, Q, n) = (p−m)D(p)− (hs(n− 1) + hb)
Q

2
−
(

K

n
+ A

)
D(p)

Q
. (4.20)

The first order optimality condition with respect to Q is given by

∂
∏

C(p, Q, n)
∂Q

= −hs(n− 1) + hb

2
+
(

K

n
+ A

)
D(p)
Q2

= 0, (4.21)

and Q∗ can be written as:

Q∗ =

√
2
(

K
n + A

)
D(p)

hs(n− 1) + hb
. (4.22)
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Replacing Q∗ with Q in (4.20),

∏
C

(p, n) = (p−m)D(p)− (hs(n− 1) + hb)
Q∗

2
−
(

K

n
+ A

)
D(p)
Q∗

(4.23)

Rewriting the profit function,

∏
C

(p, n) = (p−m)D(p)−

√
2D(p)

(
K

n
+ A

)
(hs(n− 1) + hb). (4.24)

Replacing
(

K
n + A

)
(hs(n− 1) + hb) with L(n), we can write the profit function as follows:

∏
C

(p, n) = (p−m)D(p)−
√

2D(p)L(n) (4.25)

Maximizing
∏

C(p, n) is equivalent to minimizing L(n) with respect to n . Since n is integer

and L(n) is convex, n∗ satisfies the following equations. (n denotes n∗ in this section)

L(n) ≤ L(n− 1) and L(n) ≤ L(n + 1) (4.26)

Replacing L(n) and L(n− 1) in the first equality,(
K

n
+ A

)
(hs(n− 1) + hb)−

(
K

n− 1
+ A

)
(hs(n− 2) + hb) ≤ 0. (4.27)

The roots of the equation,(
K

n
+ A

)
(hs(n− 1) + hb)−

(
K

n− 1
+ A

)
(hs(n− 2) + hb) = 0 (4.28)

are 1
2

(
1−

√
1 + 4 Ahs

K(hb−hs)

)
and 1

2

(
1 +

√
1 + 4 Ahs

K(hb−hs)

)
. The inequality is satisfied in

between the roots.

Applying the same procedure to the second equality in (4.26), we can write the equality

as (
K

n
+ A

)
(hs(n− 1) + hb)−

(
K

n + 1
+ A

)
(hs(n) + hb) ≤ 0. (4.29)

The roots of the equation,(
K

n
+ A

)
(hs(n− 1) + hb)−

(
K

n + 1
+ A

)
(hs(n) + hb) = 0 (4.30)

are 1
2

(
−1−

√
1 + 4 Ahs

K(hb−hs)

)
and 1

2

(
−1 +

√
1 + 4 Ahs

K(hb−hs)

)
. The inequality is not sat-

isfied in between the roots. Since both inequalities must be satisfied, n∗ is in between
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1
2

(
−1 +

√
1 + 4 Ahs

K(hb−hs)

)
and 1

2

(
1 +

√
1 + 4 Ahs

K(hb−hs)

)
. The interval is bounded to 1 and

since n is integer, we can write n∗ as

n∗ =

⌊
1
2

(
1 +

√
1 + 4

Ahs

K(hb − hs)

)⌋
or

⌈
1
2

(
−1 +

√
1 + 4

Ahs

K(hb − hs)

)⌉
(4.31)

They return different values only if both of them have the same value L(n). The former is

proposed by Munson and Rosenblatt [83]. Replacing n∗ and the demand function, we can

now rewrite the profit function as

∏
C

(p) = (p−m)ap−b −
√

2ap−bL(n∗) (4.32)

The first order optimality condition is given by

∂
∏

C(p)
∂p

=
p−1−b

2

(√
2bpb

√
aL(n)p−b + 2a(b(m− p) + p)

)
= 0. (4.33)

∏
C(p) is maximized at the minimum value of p for which ∂

Q
C(p)

∂p ≥ 0. Hence, the optimal

price is found through a line search using (4.33)

4.3 Decentralized System where The Supplier Owns The Transportation Cost

(Freight On Board)

The buyer’s profit function can be written as

∏
B

(p, Q) = (p− v)D(p)− vI
Q

2
−A

D(p)
Q

(4.34)

Likewise, the supplier’s profit function is

∏
S

(v, n) = (v −m)D(p∗(v))−mI(n− 1)
Q∗(v)

2
−
(

K

n
+ F (Q)

)
D(p∗(v))

Q∗(v)
(4.35)

where p∗(v) denotes the optimal price set by the buyer, and Q∗(v) denotes the buyer’s

optimal replenishment quantity when the supplier sets the wholesale price as v.

The Buyer’s Problem

Incorporating the demand function, and for a fixed value of v, the profit function of the

buyer can be written as

∏
B

(p, Q) = (p− v)ap−b − vI
Q

2
−A

ap−b

Q
(4.36)
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The first-order condition for a local maximum with respect to p is obtained as below.

∂
∏

B(p, Q)
∂p

= ap−b − (p− v) ap−bb

p
+

A ap−bb

pQ
= 0, (4.37)

and we can state

p∗(Q) =
b (A + Qv)
Q (b− 1)

. (4.38)

We further take the second derivative and equate it to zero as:

∂2
∏

B(p, Q)
∂p2

= −abp−2−b(A(1 + b) + Q(p(1− b) + v(1 + b)))
Q

= 0 (4.39)

Solving (4.39) gives the price

p
′
(Q) =

A + Qv + b (A + Qv)
Q (b− 1)

. (4.40)

Since p
′
(Q) > p∗(Q), and limp→∞

∏
B(p, Q) = 0, it can be shown that p∗(Q) is a global

optimal solution. We can then substitute p by p∗(Q) in Equation (4.36). We rewrite buyer’s

profit function as

∏
B

(Q) = (p∗(Q)− v)a(p∗(Q))−b − vI
Q

2
−A

a(p∗(Q))−b

Q
(4.41)

We write the first-order condition for a local maximum with respect to Q as

∂
∏

B(Q)
∂Q

= −vI

2
+

A a(p∗(Q))−b

Q2
, (4.42)

and by setting it equal to zero we obtain−vI

2
+

Aa
(

b(A+Qv)
Q(b−1)

)−b

Q2

 = 0 (4.43)

Equality (4.43) is the local optimality condition for the buyer’s order quantity. Q∗ can now

be obtained through a line search over the buyer’s profit function.

The Supplier’s Problem

Supplier’s profit function is not quasi-concave, and it is difficult to obtain a global

optimal solution. We will study the structural properties of the problem in the subsequent

sections and review three solution procedures for the problem.
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4.3.1 Approximation Algorithm

In this section we study the supplier’s problem of finding the optimal wholesale price. As

we have outlined in the previous section, a procedure that performs a finite number of line

searches can be used to compute Q∗(v). The supplier, however, wishes to determine v∗,

and, to be able to solve his problem, he needs to incorporate the buyer’s reaction as Q∗(v)

and p∗(v) into his problem. Because Q∗(v) is not available as an explicit function, and can

be computed only through a line search, we propose an approach through which Q∗(v) is

approximated.

4.3.1.1 Approximating optimal order quantity response of the buyer

In this section, we analyze how the buyer’s optimal order quantity, i.e., Q∗(v), changes

as we change v, and present an approximation of Q∗(v).

Let us first take a wholesale price, va and corresponding order quantity Q(va) obtained

by (4.43). Any vb larger than va will lead to Q(vb), which is strictly smaller than Q(va).

(see Proposition 2 in Appendix A)

Hence, an approximate procedure for determining the order quantity the buyer chooses

can be formally stated as follows:

Initialization: Let i = 1. Determine the smallest value of v, v1, for which Equality (4.43)

holds for t = 1 and Q = C. Assuming that optimal wholesale price can be at most vmax, the

order quantity response is linearly approximated in the interval [v1, vmax] through a linear

function that crosses points (v1, Q
∗(v1) = C) and (vmax, Q∗(vmax)).

Step 1:

• Let i = i + 1.

• Determine the smallest value of v, vi, for which (4.43) holds for t = i and Q = iC.

• Linearly approximate the order quantity between Q = iC and Q = (i − 1)C in the

interval [vi,vi−1]

Step 2: If i > T (maximum number of trucks) combine approximated Q values character-

izing the buyer’s optimal response, and stop; otherwise go to Step 1.

4.3.1.2 Derivation of the supplier’s optimal wholesale price under a fixed lot

size multiplier
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In the previous section, we have characterized the buyer’s response in terms of her order

quantity. In this section, we illustrate how the supplier can determine his optimal wholesale

price.

Let us assume that n is constant but Q is not constant, where the order quantity is

approximated as a linear decreasing function of v. Let this function be Q(v) = c− dQ for a

wholesale price range [vj+1, vj ]. Replacing Q with c−dQ in Equation (4.35), we approximate

the best solution in this interval through a line search over v values in the [vj+1, vj ] range

maximizing the supplier’s profit.

4.3.1.3 Derivation of the optimal lot size multiplier under a fixed value of the

wholesale price

After deriving the optimal wholesale price, we derive the optimal lot size multiplier.

The first and second order derivatives of the profit function are given by (4.11) and (4.12)

respectively. Hence the profit function is again strictly concave with respect to n. Besides,

the optimality conditions (4.13) and (4.14) reduce to (4.15) and (4.16). Hence the remaining

part of the derivation is the same with Section 4.1.1.1 and we conclude that optimal lot size

multiplier is given by (4.19).

4.3.1.4 The Approximate Algorithm

In this section, we present the approximate algorithm for solving the supplier’s problem

by combining the results that have been developed in the previous sections.

In order to solve the supplier’s problem, first the buyer’s response has to be character-

ized. Since the buyer’s optimal decision cannot be expressed in closed form, the supplier’s

decision cannot be immediately derived. Optimal market price as a function of the order

quantity can be determined by using Equation (4.38). Substituting this into the profit func-

tion, we obtain Equation (4.41). Using this function, we can then characterize the order

quantity as the wholesale price changes in Section 4.3.1.1. Hence we propose a search pro-

cedure with respect to the wholesale price. The algorithm can be formally stated as follows:

Step 1: Characterize the optimal response of the buyer utilizing the procedure outlined in

Section 4.3.1.1.

Step 2: Let the optimal profit
∏∗

S be 0 with v = 0.

Step 3: Consider each wholesale price interval where the truck option changes in the re-

sponse profile generated in Step 1, and complete the following steps for each interval:
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3.1: Replace the linear approximation function with Q in the supplier’s profit func-

tion (4.35). Find the optimal wholesale price and lot size multiplier maximizing the profit

function through a line search over (4.35) as an approximation. (We note that, as shown

in Section 4.3.1.3, when the wholesale price and the order quantity are fixed, the optimal

lot size multiplier can be readily computed in each objective function evaluation of the line

search.)

3.2: For the current wholesale price interval, compare the computed profit with

the optimal profit. If it is greater than the optimal profit, update the optimal profit, the

wholesale price and the lot size multiplier.

4.3.2 Grid Search

In this section, we present the grid search approach for solving the supplier’s problem. The

optimal wholesale price v and corresponding profit for the supplier is determined numerically

by a grid search within the range [m, vmax]. For a fixed wholesale price v, optimal price can

be stated as p∗(Q) = b(A+Qv)
Q(b−1) , which is given in (4.38). A line search for Q through solving(

−vI
2 +

(A)a
�

b(A+Qv)
Q(b−1)

�−b

Q2

)
= 0 gives the optimal order quantity, which is provided in (4.43).

Finally, optimal lot size multiplier is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is

stated in (4.19). We adopt a grid size g = 10−3 in the computations. The algorithm of

Section 4.1.1 is used with the decision variables and profit functions mentioned above.

4.3.3 Golden Section Search: A Heuristic

In this section, we adopt the golden section search algorithm for solving the supplier’s

problem. The details of the procedure have been previously stated in Section 4.1.2. The

algorithm, which is mentioned in the section is used with the decision variables and profit

functions stated above.

4.4 Decentralized System where The Buyer Owns The Transportation Cost

The buyer’s profit function can be written as:

∏
B

(p, Q) = (p− v)D(p)− (v +
F (Q)

Q
)I

Q

2
− (A + F (Q))

D(p)
Q

. (4.44)
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We note that the F (Q)
Q term in the holding cost reflects the impact of the transportation

cost on the value of the product (see Abad and Aggarwal [31] for details). Likewise, the

supplier’s profit function is:

∏
S

(v, n) = (v −m)D(p∗(v))−mI(n− 1)
Q∗(v)

2
−K

D(p∗(v))
nQ∗(v)

, (4.45)

where p∗(v) denotes the optimal price set by the buyer, and Q∗(v) denotes the buyer’s

optimal replenishment quantity when the supplier sets the wholesale price as v.

The Buyer’s Problem

We first discuss the solution of the pricing and lot sizing problems for the buyer assuming

that the supplier sets the wholesale price as v. We will later incorporate these results into

the supplier’s problem within a Stackelberg setting.

Abad and Aggarwal (2005) also derive the optimal pricing and lot sizing decisions for a

slightly different yet structurally equivalent freight cost function. For the sake of complete-

ness, we derive the optimal decisions here again.

Incorporating the demand function, and for a fixed value of v, the profit function of the

buyer can be written as

∏
B

(p, Q) = (p− v)ap−b − (v +
F (Q)

Q
)I

Q

2
− (A + F (Q))

ap−b

Q
, (4.46)

or

∏
B

(p, Q) = (p− v)ap−b − vI
Q

2
− I

F (Q)
2

− (A + F (Q))
ap−b

Q
. (4.47)

The first-order condition for a local maximum with respect to p is obtained as below.

∂
∏

B(p, Q)
∂p

= ap−b − (p− v) ap−bb

p
+

(A + F (Q)) ap−bb

pQ
= 0, (4.48)

and we can state

p∗(Q) =
b (A + Qv + F (Q))

Q (b− 1)
. (4.49)

We further take the second derivative and equate it to zero to find the p value at which the

second derivative changes sign:

∂2
∏

B(p, Q)
∂p2

= −abp−2−b((A + F (Q))(1 + b) + Q(p(1− b) + vQ(1 + b)))
Q

= 0 (4.50)
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Solving (4.50) gives the price

p
′
(Q) =

A + F (Q) + Qv + b (A + Qv + F (Q))
Q (b− 1)

. (4.51)

Since p
′
(Q) > p∗(Q), i.e., the second derivative changes sign after the local maximum

obtained at p∗(Q), and limp→∞
∏

B(p, Q) = 0, it can be shown that p∗(Q) is actually a

global optimal solution. We can then substitute p by p∗(Q) in Equation (4.46). We rewrite

buyer’s profit function as

∏
B

(Q) = (p∗(Q)− v)a(p∗(Q))−b − vI
Q

2
− (A + F (Q))

a(p∗(Q))−b

Q
. (4.52)

For a fixed number of trucks t, where (t− 1)C < Q ≤ tC, we can rewrite (4.52) as

∏
B

(Q) = (p∗(Q)− v)a(p∗(Q))−b − vI
Q

2
− (A + tR)

a(p∗(Q))−b

Q
. (4.53)

As F (Q) is a stepwise function of number of trucks used, t, where t =
⌈

Q
C

⌉
, we write the

first-order condition for a local maximum with respect to Q for a particular t value as

∂
∏

B(Q)
∂Q

= −vI

2
+

(A + tR) a(p∗(Q))−b

Q2
, (4.54)

and by setting it equal to zero we obtain−vI

2
+

(A + tR)a
(

b(A+Qv+tR)
Q(b−1 )

)−b

Q2

 = 0 (4.55)

Equality (4.55) is the local optimality condition for the buyer’s order quantity when the

number of trucks is fixed as t, and (t− 1)C < Q ≤ tC. The Q∗ value that satisfies Equality

(4.55) cannot be expressed in closed form, however it can be determined through a line

search. Since T is the maximum number of trucks, the buyer can perform T line searches

using (4.55) and obtain T many Q values. The buyer designates the order quantity that

provides the highest profit as her order quantity.

The Supplier’s Problem

The supplier’s profit function (4.45) is not quasi-concave. We prove this claim through

a counter example. Let us take an example with parameters a = 100000, b = 5, A =

$125/order, K = $250/order, I = 25%/year, m = $1/unit, C = 1000, R = $50 and examine
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Figure 4.1: The supplier’s profit function

quasi-concavity. We take two points [v = 1.22,
∏

S(1.22) = 1153.44], [v = 1.32,
∏

S(1.32) =

1148.80] and λ = 0.5. Since∏
S

(1.27) = 1096.30 < min{
∏
S

(1.22),
∏
S

(1.32)} = 1148.80, (4.56)

we conclude that the supplier’s profit function is not quasi-concave and hence not concave,

which is shown in Figure 4.1.

Viswanathan and Wang [74] claim that local maxima for the supplier’s profit function

(as given in Equation (4.45)) can occur even for the case where the buyer’s profit function

does not involve freight costs. We have also encountered examples where the supplier’s

profit function is not a quasiconcave function of v. Therefore, it is difficult to obtain a

global optimal solution, and we will study the structural properties of the problem in the

subsequent sections. We review four solution procedures for this problem.

4.4.1 Approximation Algorithm

In this section we study the supplier’s problem of finding the optimal wholesale price. We

will denote the order quantity selected by the buyer when the wholesale price is equal to v

as Q∗(v), and the price set by the buyer is p∗(Q∗(v)) or p∗(v). As we have outlined in the
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previous section, a procedure that performs a finite number of line searches can be used to

compute Q∗(v). The supplier, however, wishes to determine v∗, and, to be able to solve his

problem, he needs to incorporate the buyer’s reaction as Q∗(v) and p∗(v) into his problem.

Because Q∗(v) is not available as an explicit function, and can be computed only through

a line search, we propose an approach through which Q∗(v) is approximated.

4.4.1.1 Approximating optimal order quantity response of the buyer

In this section, we analyze how the buyer’s optimal order quantity, i.e., Q∗(v), changes

as we change v, and present an approximation of Q∗(v). Let us first assume that the buyer

uses only one truck, i.e. t = 1. Let v1 denote the v value for which the optimality condition

is satisfied with Q = C and t = 1. For v > v1, the optimal order quantity obtained from

(4.55) will be smaller than C (see Proposition 1 in Appendix A), and using more than one

truck would be more costly. Therefore, for v > v1, the optimal response of the buyer would

be to choose Q∗(v) from (4.55) with t = 1.

Now let v2 be the smallest value of v for which Equality (4.55) is satisfied with Q = 2C

and t = 2. From the results of Proposition 1 in Appendix A, v2 < v1, and for v2 < v < v1,

the optimal order quantity obtained from (4.55) with t = 2 would be between 2C and C.

The buyer has now two options for a given v value, where v2 < v < v1:

1. Order one full truck-load with Q = C,

2. Use two trucks, i.e., t = 2, and determine the order quantity from Equality (4.55)

with t = 2.

It can be readily shown that the profit function of the buyer as expressed in Equation

(4.53) is convex with respect to v when Q is fixed. In the second option with t = 2, as v

changes, Q∗(v) is determined through a line search, and it is not possible to express the

buyer’s profit function (4.53) in closed form. Therefore, as an approximation, we assume

that, in the v2 < v < v1 range, the buyer’s profit function (4.53) will be a linear function

that crosses the points (v2,
∏

B(Q∗(v2))) and (v1− ε,
∏

B(Q∗(v1− ε))). The profit functions

of the two options (the profit function of the second option being approximated as a linear

function) may intersect in the [v2, v1] interval. Note that when v = v1, one full truck-load

option dominates the options with two trucks; if that is also the case for v = v2, then we

will assume that the one full truck-load option dominates the second option in the [v2, v1]
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range, and the buyer’s optimal order quantity is equal to C. If the second option (i.e., use

two trucks, determine Q from (4.55) with t = 2) dominates the first option when v = v2, we

then find the value of v where the two options generate the same profit for the buyer. Let

b1
t=2 be the intersection point. Then in the v2 < v < b1

t=2 range, the optimal order quantity

is determined from (4.55) with t = 2, and for the b1
t=2 < v < v1 range the optimal order

quantity is equal to C.

By generalizing the above approach, an approximate procedure for determining the or-

der quantity the buyer chooses can be formally stated as follows:

Initialization: Let i = 1. Determine the smallest value of v, v1, for which Equality (4.55)

holds for t = 1 and Q = C. For v values greater than v1, the buyer will choose his order quan-

tity according to equality (4.55) with t = 1. Assuming that optimal wholesale price can be

at most vmax, the order quantity response is linearly approximated in the interval [v1, vmax]

through a linear function that crosses points (v1, Q
∗(v1) = C) and (vmax, Q∗(vmax)).

Step 1:

• Let i = i + 1.

• Determine the smallest value of v, vi, for which (4.55) holds for t = i and Q = iC.

• Define the upper envelope as the combination of the profit functions of the truck

options leading to the highest profit. Determine the upper envelope of the following

profit functions of the buyer in the vi < v < vi−1 range:

-
∏

B(p∗(Q), Q) where Q = jC, and t = j, j = 1, ..., i− 1.

-
∏

B(p∗(Q(v)), Q(v)) where t = i and Q(v) satisfies Equality (4.55).

• If
∏

B(p∗(Q(v)), Q(v)) at the point vi is higher than any evaluated function
∏

B(p∗(Q), Q)

for t = j where j = 1, ..., i − 1, first through a line search find the first break-point

where the optimal truck option changes, and then linearly approximate the order

quantity between the starting point of the interval and the break-point.

• Find the remaining break-points, if any, where the optimal truck option changes by a

line search. Within these ranges, the order quantity is a multiple of C.
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• Let bk
i , k = 1, .., l, be the break-points generated by the upper envelope. Note that,

from the fact that we are comparing i functions that are either convex or linear, l < 2i.

Step 2: If i > T (maximum number of trucks) combine upper envelopes generated for

intervals [vj+1, vj ] for j = 1, 2, .., T − 1, and their corresponding Q values characterizing the

buyer’s optimal response, and stop; otherwise go to Step 1.

The computational complexity of the above outlined procedure lies with the generation

of the upper envelope of at most T functions in Step 1. The upper envelope can be easily

generated by a number of line searches under the assumption that Q linearly decreases when

full truck option is not used. We provide an example to illustrate the steps of the algorithm

in Section 4.4.1.4.

4.4.1.2 Derivation of the supplier’s optimal wholesale price under a fixed lot

size multiplier

In the previous section, we have characterized the buyer’s response in terms of her order

quantity. Accordingly, in wholesale price intervals that have been computed in Step 1 of

the procedure presented in Section 5.1, the order quantity is either constant or linearly

approximated. In this section, we illustrate how the supplier can determine his optimal

wholesale price in each of these cases.

Case 1: If Q and n is constant for a wholesale price range [vj+1, vj ], then we can develop

a search algorithm with respect to v in the range [vj+1, vj ]. Replacing p∗(v) with p∗(Q) as

given in Equation (4.49), we can rewrite the supplier’s profit function as follows.

∏
S

(v) = (v −m) a

(
b (A + Qv + F (Q))

Q (b− 1)

)−b

− mI(n− 1)Q
2

−
Ka

(
b(A+Qv+F (Q))

Q(b−1)

)−b

nQ
. (4.57)

Taking the derivative of (4.57) with respect to v, we can write

∂
∏

S(v)
∂v

=
a
(

b(Qv+F (Q)+A)
Q(b−1)

)−b
(b(K + nQ(m− v)) + n(A + F (Q) + vQ)

n(A + F (Q) + vQ)
. (4.58)

Since
a
�

b(Qv+F(Q)+A)
Q(b−1)

�−b

n(A+F (Q)+vQ) is always positive, the sign of ∂
Q

S(v)
∂v changes where

(b(K + nQ(m− v)) + n(A + F (Q) + vQ) = 0, (4.59)
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which gives the wholesale price

v
′
=

bK + An + F (Q)n + bmnQ

nQ(b− 1)
. (4.60)

We further take the second derivative as follows:

∂2
∏

S(v)
∂v2

= −abQ((b + 1)K + n(2A + 2F (Q) + Q(m + bm + v − bv)))(
b(Qv+F (Q)+A)

Q(b−1)

)b
n(A + F (Q) + vQ)2

. (4.61)

Since
abQ

�
b(Qv+F(Q)+A)

Q(b−1)

�−b

n(A+F (Q)+vQ)2
is always positive, the sign of ∂2

Q
S(v)

∂v2 changes at

v
′′

=
(1 + b)K + 2(A + F (Q))n + (1 + b)mnQ

(b− 1)nQ
. (4.62)

For the wholesale price range [0, v
′′
] the profit function ΠS(v) is convex with respect to v.

Since the sign of ∂
Q

S(v)
∂v is negative for the wholesale price range (v

′′
,∞), optimal wholesale

price v∗ is given by v∗ = v
′
if vj+1 ≤ v

′ ≤ vj . We can conclude that v∗ = vj+1 if v
′
< vj+1

and v∗ = vj if vj < v
′
.

Case 2: If n is constant and Q is not constant, order quantity is approximated as a linear

decreasing function of v. Let this function be Q(v) = c − dQ for a wholesale price range

[vj+1, vj ]. Replacing Q with c − dQ in Equation (4.57), we approximate the best solution

in this interval through a line search over v values in the [vj+1, vj ] range maximizing the

supplier’s profit.

4.4.1.3 Derivation of the optimal lot size multiplier under a fixed value of the

wholesale price

The first and second derivatives of the supplier’s profit function (4.45) with respect to n

are given by (4.11) and (4.12) respectively. Furthermore, the optimality conditions for n∗

as given in (4.13) and (4.14) are the same with the equations (4.15) and (4.16). Hence, the

optimal lot size multiplier is given by (4.19) and the remaining part of the derivation is not

repeated here.

Note that above argument is valid for a fixed value of v. Since v∗ depends on n from

(4.60) and n∗ depends on v from (4.19), an iterative procedure is required for finding the

optimal decisions. We propose the following iterative process:

Step 1: Start with n = 1,

Step 2: Using n find v∗ from (4.60) and check the optimality condition (4.19). If the
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condition is not met, increment n by 1 and go to Step 2. Otherwise, optimal decisions are

found.

We conjecture that the procedure provides the optimal lot size multiplier, although we

cannot prove its optimality.

4.4.1.4 The Approximate Algorithm

In this section, we present the approximate algorithm for solving the supplier’s problem

by combining the results that have been developed in the previous sections.

In order to solve the supplier’s problem, first the buyer’s response has to be characterized.

Since the buyer’s optimal decision cannot be expressed in closed form, supplier’s decision

cannot be immediately derived. The optimal market price as a function of the order quantity

can be determined by using Equation (4.49). Substituting this into the profit function, we

obtain Equation (4.52). Using this function, we can then characterize the order quantity as

the wholesale price changes in Section 4.4.1.1. Hence we propose a search procedure with

respect to the wholesale price. The algorithm can be formally stated as follows:

Step 1: Characterize the optimal response of the buyer utilizing the procedure outlined in

Section 4.4.1.1.

Step 2: Let the optimal profit
∏∗

S be 0 with v = 0.

Step 3: Consider each wholesale price interval where the truck option changes in the

response profile generated in Step 1, and complete the following steps for each interval:

3.1: If the order quantity is constant, let n = 1 and go to the next step. If not,

replace the linear approximation function with Q in the supplier’s profit function (4.57).

Find the optimal wholesale price maximizing the profit function through a line search over

(4.57) as an approximation, and go to Step 3.5. (We note that, as shown in Section 4.4.1.3,

when the wholesale price and the order quantity is fixed, the optimal lot size multiplier can

be readily computed in each objective function evaluation of the line search.)

3.2: Compute the optimal wholesale price by (4.60).

3.3: Let the endpoints of the interval be vstart and vend. If the optimal wholesale

price of Step 3.2 is less than vstart, equate the wholesale price to vstart, whereas if the

wholesale is price greater than vend, equate the wholesale price to vend

3.4: If the optimality condition for the lot size multiplier holds by (4.19), go to Step

3.5. Else, increase n by 1 and go to Step 3.2.
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3.5: For the current wholesale price interval, compute the profit with the optimal

wholesale price and the lot size multiplier by (4.57) and compare it with the optimal profit.

If it is greater than the optimal profit, update the optimal profit, the wholesale price and

the lot size multiplier.

4.4.1.5 A Numerical Illustration of The Algorithm

Let us take an example with parameters a = 54496, b = 1.5166, A = $435.67/order,

K = $222.8/order, I = 35.572%, m = $1.9688/unit, C = 27.523, R = $60, T = 20. First,

we find the optimal response of the buyer using the procedure outlined in Section 4.4.1.1.

Step 1:

• For the single-truck option, we find v1 = 56.58 for solving (4.55) for Q = C = 27.523.

Let vmax = 1.2v1, which corresponds to vmax = 67.89. Solving the optimal order

quantity for vmax = 67.89 leads to Q = 21.64 with profit 1733.98. Hence we linearly

approximate the optimal order quantity between [v1 = 56.58, Q(v1) = 27.523] and

[vmax = 67.89, Q∗(vmax) = 21.64] as Q = 57.27− 0.52v.

• Next, the profit function for the two-truck option are evaluated at the endpoints

of the interval. We find v2 = 34.54 for solving Q = 2 × C = 55.046 with profit

2535.35, whereas the single-truck option at the wholesale price 34.54 provides the

profit 2480.82. Hence, in this interval best response is using the two-truck option for

small values, and, after a break even point, using the single-truck option. Through

a line search, we find that the break even point is v = 40.39 where the single-truck

option with Q = 27.523 and two-truck option with Q = 44.83 both generate a profit

of 2311.35. This is illustrated in Figure 4.2. Consequently we form the upper envelope

by approximating the order quantity in the first part and using the full-truck option

in the second part as it is graphically shown in Figure 4.3. Note that we approximate

the order quantity as a linear function between the points [v2 = 34.54, Q(v2) = 55.046]

and [b1 = 40.39, Q∗(b1) = 44.83]. Additionally, the order quantity after v = 40.41 is

constant and equals to 27.523.

• For the three-truck option, we find v3 = 26.16 for solving Q = 3 × C = 82.569 with

profit 2946.08. In the interval [26.16, 34.54) we now have three functions to compare.

At v = 34.54, the three-truck option lead to Q = 57.3 with profit 2489.0. Comparing
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these endpoint values with the single-truck and two-truck options, which is illustrated

in Figure 4.4, the two-truck option dominates the other options. Since the two-truck

option leads to higher profit at both of the endpoints, optimal response is Q = 55.046

in this interval. Note that the profit function is convex and it decreases as the wholesale

price increases. Therefore the three-truck option is dominated and we do not need to

evaluate this function within this interval.

• After evaluating v1, v2, v3 and finding the response of the buyer, we similarly evalu-

ate v4, v5, ..., v12 and find the optimal response. Finally, the buyer’s order quantity

response as a function of the wholesale price is illustrated in Figure 4.5. Note that the

order quantity is approximated only in the intervals [34.54, 40.39] and [56.58, 67.89].

In the remaining intervals, order quantity response is available as an exact solution.

Step 2:

• After characterizing the order quantity, we start searching for the optimal wholesale

price. The first interval is v ∈ [0, 3.33] where order quantity is constant as 550.46.

For n = 1 we solve (4.60) and the resultant wholesale price is 12.72 satisfying (4.19).
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Figure 4.5: Optimal response of the buyer.

Since this value is greater than 3.33, optimal profit in this interval is obtained with

the point v = 3.33 and n = 1. We update the current optimal profit as 624.10 with

the optimal decisions.

• The next interval is v ∈ (3.24, 3.56] where order quantity is constant as 522.937. For

n = 1 we solve (4.60) and the resultant wholesale price is 12.86 satisfying (4.19). Since

this value is greater than 3.56, optimal profit in this interval is the point v = 4.56 and

n = 1. We update the optimal profit as 713.14 with the optimal decisions.

• We continue to apply the procedure. Note that we have not approximated the order

quantity but exactly found the solution for the first two intervals. Omitting the next

several interval evaluations, where the optimal profit is found to be 1342.41 with

v = 10.77, n = 2 and Q = 192.66, let us consider the interval v ∈ (34.54, 40.39] where

the order quantity is linearly approximated between 55.046 and 44.83. Replacing Q

with the linear approximation function in the supplier’s profit function (4.57), optimal

wholesale price is found by a line search. In this interval, the best profit is generated

by v = 34.54 leading to 1007.60. Since 1007.60 < 1342.41, the optimal profit is not
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updated.

• After completing the evaluation of the remaining intervals, the optimal profit for

the supplier is found to be 1342.41 with v = 10.77, n = 2. The supplier’s profit

function is shown in Figure 4.6 and Figure 4.7 illustrates the details from the wholesale

price range [5, 15] with additional information on the order quantity. Note that

the algorithm determines the break-points where the order quantity changes and the

supplier’s problem is solved in each interval. The profit functions within these intervals

are smooth and the order quantity changes cause the supplier’s function to shift.

4.4.1.6 A Note on The Performance of The Algorithm

Let us take another example with parameters a = 100000, b = 5, A = $125/order,

K = $250/order, I = 25%/year, m = $1/unit, C = 1000, R = $50. Grid Search with 10−3

precision finds the best solution as
∏

S(1.233) = $1202.38. Moreover, the approximation

algorithm leads to the profit
∏

S(1.233654) = $1204.66. Hence it leads to a slightly better

solution then the grid search. As the precision of the grid search is decreased, the solu-

tion converges to the solution of the approximation algorithm. However, there are some

cases that approximation algorithm perform better than the grid search regardless of the
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Figure 4.7: Wholesale price intervals.

grid search precision. Since optimal wholesale price may be computed by (4.60) in the

approximation algorithm, optimal solution can be explicitly known.

4.4.2 Grid Search

In this section, we present the grid search approach for solving the supplier’s problem.

The optimal wholesale price v and corresponding profit for the supplier is determined

numerically by a grid search within the range [m, vmax]. For a fixed wholesale price v,

optimal price can be stated as p∗(Q) = b(A+Qv+F (Q))
Q(b−1) , which is given in (4.49). A line

search for Q through solving

(
−vI

2 +
(A+tR)a

�
b(A+Qv+tR)

Q(b−1)

�−b

Q2

)
= 0 gives the optimal or-

der quantity, which is provided in (4.55). Finally, optimal lot size multiplier is given by

n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is stated in (4.19). We adopt a grid size g = 10−3

in the computations. An algorithm similar to the one of Section 4.1.1 is used with the de-

cision variables and profit functions mentioned above. Since the buyer needs to determine

the profit function for T many truck options, T line searches are performed to find the order

quantity in the algorithm.
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4.4.3 Myopic Approach

In this section, we present the algorithm of myopic approach for solving the supplier’s prob-

lem. The supplier optimizes his profit assuming that the buyer does not incur transportation

cost. Hence, the supplier determines the wholesale price according to the results of Section

4.1. However, the buyer determines her decision variables taking the transportation cost

into account for the wholesale price of the supplier. Finally, the supplier re-determines his

lot size multiplier according to the buyer’s actions.

The optimal wholesale price v and corresponding profit for the supplier is determined nu-

merically by a grid search within the range [m, vmax]. For a fixed wholesale price v, optimal

price can be stated as p∗(Q) = b(A+Qv)
Q(b−1) , which is given in (4.5). A line search for Q through

solving

(
−vI

2 +
(A)a

�
b(A+Qv)
Q(b−1)

�−b

Q2

)
= 0 gives the optimal order quantity, which is provided

in (4.10). The optimal lot size multiplier is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
,

which is stated in (4.19). After wholesale price is determined, optimal price is determined

by p∗(Q) = b(A+Qv+F (Q))
Q(b−1) which is stated in (4.49). Afterwards, optimal order quantity is

determined by solving

(
−vI

2 +
(A+tR)a

�
b(A+Qv+tR)

Q(b−1)

�−b

Q2

)
= 0, which is stated in (4.55). Fi-

nally, optimal lot size multiplier is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
. We adopt

a grid size g = 10−3 in the computations.

The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be 0 with v = 0 and n = 0.

Step 2: Start with v = m and complete the following steps for each wholesale price from

the set {m,m + g,m + 2g, ..., vmax − 2g, vmax − g, vmax}.

2.1: Find Q through a line search solving (4.10), compute p as defined in (4.5) and∏
B(Q) as defined in (4.2).

2.2: Compute n and
∏

S(v) as defined in (4.19) and (4.2) respectively. If
∏

S(v) is

greater than the optimal profit, update the optimal profit
∏∗

S , the wholesale price v∗ and

the lot size multiplier n∗.

Step 3: Solve (4.55) for v∗ and determine Q∗(v). Recalculate n∗ by (4.19).

In order to emphasize the significance of the freight cost effect, we illustrate an extreme
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case, and compare the results. Let us take an example with parameters a = 100000, b = 5,

A = $125/order, K = $250/order, I = 25%/year, m = $1/unit, C = 200, R = $100. If the

supplier does not consider the buyer’s freight cost, he optimizes his profit with wholesale

price v∗ = $1.281, and expects to achieve a profit of
∏

S = $1494.8 assuming that the buyer

will choose her order quantity as Q = 2472. With the wholesale price v = $1.281, the

buyer does not select Q = 2472 but Q∗ = 800 since she considers the freight cost. After

observing Q∗, the supplier sets the lot size multiplier n = 2. Finally he receives a profit of∏
S = $49.82. Had the supplier considered the freight cost, he would have optimized his

profit at the wholesale price v∗ = $1.63. Consequently the buyer would have set Q = 600,

and then he would have set n = 2. Ultimately he would have received
∏

S = $122.65.

Comparing $122.65 and $49.82, the supplier misses 59.57% of his optimal profit by ignoring

the freight cost.

4.4.4 Golden Section Search: A Heuristic

In this section, we adopt the golden section search algorithm for solving the supplier’s

problem. The details of the procedure have been previously stated in Section 4.1.2. An

algorithm similar to the one of the section is used with the decision variables and profit

functions mentioned above. Since the buyer needs to determine the profit function for

T many truck options, T line searches are performed to find the order quantity in the

algorithm.

4.5 Centralized System with Transportation Cost

We can state the profit function as follows:∏
C

(p, Q, n) = (p−m)D(p)− (hs(n− 1) + hb)
Q

2
−
(

K

n
+ A + F (Q)

)
D(p)

Q
− I F (Q)

2
.(4.63)

Fixing F (Q) as tR, first order optimality condition can be stated as below.

∂
∏

C(p, Q, n)
∂Q

= −hs(n− 1) + hb

2
+
(

K

n
+ A + tR

)
D(p)
Q2

= 0 (4.64)

Solving (4.64) gives the optimal order quantity as follows:

Q∗ =

√
2
(

K
n + A + tR

)
D(p)

hs(n− 1) + hb
(4.65)
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Replacing Q∗ with Q in (4.63) we can rewrite the profit function as∏
C

(p, n) = (p−m)D(p)− (hs(n− 1) + hb)
Q∗

2
−
(

K

n
+ A + tR

)
D(p)
Q∗

− I tR

2
. (4.66)

The profit function can be restated as follows:

∏
C

(p, n) = (p−m)D(p)−

√
2D(p)

(
K

n
+ A + tR

)
(hs(n− 1) + hb)−

I tR

2
(4.67)

Replacing
(

K
n + A + tR

)
(hs(n− 1) + hb) with L(n), we rewrite the profit function as∏

C

(p, n) = (p−m)D(p)−
√

2D(p)L(n)− I tR

2
. (4.68)

Maximizing
∏

C(p, n) is equivalent to minimizing L(n) with respect to n . Since n is integer

and L(n) is convex, n∗ satisfies the following equations. (n denotes n∗ in this section)

L(n) ≤ L(n− 1) & L(n) ≤ L(n + 1) (4.69)

Replacing L(n) and L(n− 1) in the first equality, we get(
K

n
+ A + tR

)
(hs(n− 1) + hb)−

(
K

n− 1
+ A + tR

)
(hs(n− 2) + hb) ≤ 0. (4.70)

The roots of(
K

n
+ A + tR

)
(hs(n− 1) + hb)−

(
K

n− 1
+ A + tR

)
(hs(n− 2) + hb) = 0 (4.71)

are given by 1
2

(
1−

√
1 + 4 (A+tR)hs

K(hb−hs)

)
and 1

2

(
1 +

√
1 + 4 (A+tR)hs

K(hb−hs)

)
. The inequality is sat-

isfied in between these roots. Applying the same procedure to the second equality,(
K

n
+ A + tR

)
(hs(n− 1) + hb)−

(
K

n + 1
+ A + tR

)
(hs(n) + hb) ≤ 0 (4.72)

The roots of(
K

n
+ A + tR

)
(hs(n− 1) + hb)−

(
K

n + 1
+ A + tR

)
(hs(n) + hb) = 0 (4.73)

are given by 1
2

(
−1−

√
1 + 4 (A+tR)hs

K(hb−hs)

)
and 1

2

(
−1 +

√
1 + 4 (A+tR)hs

K(hb−hs)

)
. The inequality is

not satisfied in between the roots. Since both inequalities must be satisfied, n is between
1
2

(
−1 +

√
1 + 4 (A+RlBl)hs

K(hb−hs)

)
and 1

2

(
1 +

√
1 + 4 (A+RlBl)hs

K(hb−hs)

)
. The interval is bounded to 1

and since n is integer, we can write n∗ as

n∗ =

⌊
1
2

(
1 +

√
1 + 4

(A + tR)hs

K(hb − hs)

)⌋
or

⌈
1
2

(
−1 +

√
1 + 4

(A + tR)hs

K(hb − hs)

)⌉
(4.74)
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Replacing n∗, we can now rewrite the profit function as

∏
C

(p) = (p−m)ap−b −
√

2ap−bL(n∗)− I tR

2
(4.75)

First order optimality condition is given as follows:

∂
∏

C(p)
∂p

=
p−1−b

2

(√
2bpb

√
aL(n)p−b + 2a(b(m− p) + p)

)
= 0. (4.76)

∏
C(p) is maximized at the minimum value of p for which ∂

Q
C(p)

∂p ≥ 0. Hence, optimal

price is found through a line search using (4.76) Since T is the maximum number of trucks,

the resultant profit functions of T many truck options are evaluated and the highest profit

is selected with the associated decision variables.

4.6 Computational Results

4.6.1 Problem Generation

We test the algorithms’ effectiveness over a set of problems that are created by considering

various parameter values. Initially, we fix the unit procurement cost of the supplier to $1,

and express all other cost and price parameters in multiples of the unit procurement cost.

We let the supplier’s order placement cost be 10 times, 25 times, 100 times, and 250

times the unit procurement cost. The buyer’s order placement cost is designed to be 50%,

100%, 200% of the supplier’s order placement cost. The capacity of a single truck is assumed

to be 200, 400, and 1000 units. The truck cost is assumed to be $10, $20, $50, and $100.

For the demand function, we fix the parameter a to 100000, and select the price elasticity

parameter b as 1.25, 2, 3.5, and 5. Finally, we take the annual holding cost rate as 25%

and vmax as 1.2v1. The combinations of these parameters lead to a set of 576 problems.

The algorithms not incorporating transportation cost are tested with a set of 144 problems.

They do not consider transportation cost however truck capacities are valid for the problems.

Table 4.1 summarizes the parameter values used in creating the test problems. We solve

five different problems with the algorithms mentioned. In the approximation algorithms,

for finding the optimal shipment size for a given v, the line search procedure is terminated

when the length of the uncertainty interval is less than 0.001. The golden section search

algorithm for solving the optimal order quantity is used as a line search method in all of
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Table 4.1: Parameter values in computational analysis.

m 1

a 100000

I 25%

K {10, 25, 100, 250}

A {0.5K, K, 2K}

b {1.25, 2, 3.5, 5}

C {200, 400, 1000}

R {10, 20, 50, 100}

the problems. The length of the uncertainty interval is 0.001 in the line search. We also

run the grid search with increments of size 0.001.

Under this precision scheme, the test problems have been solved in Matlab 6.5 in Mi-

crosoft Windows XP on a computer with an Intel Pentium M 1.60 GHz processor, and 512

MB of RAM.

4.6.2 Performance of the Algorithms Considering Profit Function

The summary of the computational results are provided in Table 4.2. It displays the ratios

of the supplier’s profit obtained by the algorithm to the supplier’s profit obtained by the

grid search for the decentralized case. This is an indicator of the quality of the solutions gen-

erated by our approximation approach. Cells include the minimum, maximum, average and

standard deviation values for the performance measures. We also report the performance

of the myopic approach, where the supplier chooses the wholesale price by neglecting the

buyer’s transportation cost. We have given a detailed example illustrating this approach

in Section 4.4.3. The figures reported under the myopic approach column correspond to

the percentage of the optimal profit (as computed by the grid search) that the supplier can

capture when the transportation costs are neglected.

The maximum performance of the approximation algorithm is higher than golden section

search algorithm for the supply chain modeling where the buyer owns the transportation
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Table 4.2: Performance of the algorithms considering supplier’s profit.

S. Chain Method Section Minimum Maximum Average S. Deviation

SC1 Golden Section S. 4.1.2 0.999980 1.000140 1.000001 0.000013

SC3 Approximation A. 4.3.1 0.000000 1.000000 0.940110 0.127242

Golden Section S. 4.3.3 0.000000 1.001053 0.931347 0.229649

SC4 Approximation A. 4.4.1 0.535505 1.001893 0.984540 0.050154

Myopic A. 4.4.3 0.404301 1.000000 0.974522 0.048081

Golden Section S. 4.4.4 0.814464 1.001607 0.995880 0.014674

SC1: Decentralized system without transportation cost

SC3: Decentralized system where the supplier owns the transportation cost

SC4 :Decentralized system where the buyer owns the transportation cost

cost. The average values are similar for three algorithms, whereas the golden section search

offers the best performance and the myopic approach naturally offers the worst performance.

Besides, some values in Table 4.2 are over 1. The reason for this is the base performance

is obtained by the grid search with the grid size 10−3. Since approximation algorithm and

golden section search algorithm may find better solutions, the results may outperform the

grid search algorithm with the grid size 10−3. Factor analysis for the computational results

is provided in Table 4.3 and Table 4.4. The factor analysis is based on parameters K, A,

b, C, and R. Treatment levels are stated in the second column. Moreover, minimum, mean

and maximum values of the algorithms are displayed. Algorithms of Section 4.1 and Section

4.3 are evaluated in Table 4.3 whereas algorithms of Section 4.4 are evaluated in Table 4.4.

On average, the approximate algorithm achieves 98.45% and 94.01% of the profits that

can be achieved by the grid search for the supply chains in Sections 4.3 and 4.4 respectively.

The proposed algorithm works on an approximation with fixed truck options, and when the

optimal shipment size is less than or equal to a single truck load, the performance of the

algorithm decreases. This is a natural outcome, because, if the optimal shipment size is less



Chapter 4: Supply Chain Modeling 52

Table 4.3: Factor analysis for algorithms of Section 4.1 and Section 4.3.

Section: 4.1.2 GSS 4.3.1 AA 4.3.3 GSS

Factor T. Level MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX

K 10 1.00 1.00 1.00 0.00 0.92 1.00 0.00 0.86 1.00

25 1.00 1.00 1.00 0.00 0.93 1.00 0.00 0.94 1.00

100 1.00 1.00 1.00 0.32 0.95 1.00 0.00 0.97 1.00

250 1.00 1.00 1.00 0.00 0.96 1.00 0.00 0.96 1.00

A 0.5K 1.00 1.00 1.00 0.00 0.96 1.00 0.00 0.97 1.00

K 1.00 1.00 1.00 0.00 0.94 1.00 0.00 0.95 1.00

2K 1.00 1.00 1.00 0.00 0.92 1.00 0.00 0.87 1.00

b 1.25 1.00 1.00 1.00 0.52 0.96 1.00 0.90 1.00 1.00

2 1.00 1.00 1.00 0.78 0.98 1.00 0.76 0.99 1.00

3.5 1.00 1.00 1.00 0.59 0.95 1.00 0.00 0.93 1.00

5 1.00 1.00 1.00 0.00 0.87 1.00 0.00 0.81 1.00

C 200 1.00 1.00 1.00 0.00 0.91 1.00 0.00 0.92 1.00

400 1.00 1.00 1.00 0.16 0.95 1.00 0.00 0.93 1.00

1000 1.00 1.00 1.00 0.52 0.96 1.00 0.00 0.94 1.00

R 10 1.00 1.00 1.00 0.52 0.98 1.00 0.96 1.00 1.00

20 1.00 1.00 1.00 0.71 0.98 1.00 0.00 0.97 1.00

50 1.00 1.00 1.00 0.63 0.94 1.00 0.00 0.96 1.00

100 1.00 1.00 1.00 0.00 0.86 1.00 0.00 0.80 1.00
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Table 4.4: Factor analysis for algorithms of Section 4.4.

Section: 4.4.1 AA 4.4.4 GSS 4.4.3 MA

Factor T. Level MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX

K 10 0.54 0.98 1.00 0.96 1.00 1.00 0.89 0.99 1.00

25 0.68 0.99 1.00 0.90 1.00 1.00 0.82 0.98 1.00

100 0.79 0.99 1.00 0.90 0.99 1.00 0.76 0.97 1.00

250 0.55 0.98 1.00 0.81 0.99 1.00 0.40 0.96 1.00

A 0.5K 0.78 0.99 1.00 0.90 1.00 1.00 0.76 0.98 1.00

K 0.66 0.98 1.00 0.81 0.99 1.00 0.40 0.97 1.00

2K 0.54 0.98 1.00 0.90 1.00 1.00 0.41 0.98 1.00

b 1.25 0.54 0.97 1.00 0.98 1.00 1.00 0.95 0.99 1.00

2 0.97 1.00 1.00 0.97 1.00 1.00 0.93 0.99 1.00

3.5 0.85 0.99 1.00 0.86 0.99 1.00 0.85 0.97 1.00

5 0.55 0.97 1.00 0.81 0.99 1.00 0.40 0.95 1.00

C 200 0.55 0.99 1.00 0.94 1.00 1.00 0.40 0.96 1.00

400 0.74 0.99 1.00 0.95 1.00 1.00 0.78 0.98 1.00

1000 0.54 0.98 1.00 0.81 0.99 1.00 0.83 0.98 1.00

R 10 0.54 0.98 1.00 0.93 1.00 1.00 0.90 0.99 1.00

20 0.73 0.98 1.00 0.93 1.00 1.00 0.83 0.99 1.00

50 0.85 0.99 1.00 0.96 1.00 1.00 0.86 0.98 1.00

100 0.55 0.98 1.00 0.81 0.99 1.00 0.40 0.95 1.00
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than a truck load, there is no need to incorporate the transportation cost, and it can be

taken as fixed. Therefore, omitting the problems having less than or equal to a single truck

load shipment size the approximate algorithms achieves 94.58% and 98.94% of the profit

that can be achieved with the grid search respectively.

Moreover, an important consideration is that the algorithm is specially designed for the

supply chain there the buyer owns the transportation cost. Computational results show

that the algorithm outperforms existing methods and when more than one truck load order

is optimal, the algorithm provide excellent results.

When we consider the myopic approach, the average profit obtained deviates 2.25% from

the profit obtained by the grid search. However, there are instances where the deviation is

about 60%, such as the example in reported Section 4.4.3.

The third column of Table 4.3 shows that golden section search algorithm performs

very well for the supply chain model without transportation cost. For the supply chain

model with FOB origin, minimum performances of the algorithms are not promising. The

main reason is that golden section search algorithm may be trapped in a local optimal

point, whereas the approximation algorithm may provide loose approximations and miss

the optimal solution. As capacity of a single truck increases, the minimum performance of

approximation increases, whereas the does not change for golden section search algorithm.

As the elasticity parameter of the demand function increases, the approximation algorithm

outperforms the golden section search algorithm on the average.

Table 4.4 studies the supply chain modeling with transportation cost and the perfor-

mance of golden section search algorithm is quite fine on the average. Furthermore, when

the effect of the experimental factors are studied in detail, it can be observed that ignoring

transportation costs may be more costly for large values of K, b, and R. In other words,

when the supplier’s order placement cost is large, or the demand is highly sensitive to price,

or when the transportation costs are high, potential benefits of employing our approach

might be larger.

4.6.3 Performance of the Algorithms Considering CPU Time

The CPU times of the algorithms are provided in Table 4.5. It displays the ratios of the

CPU time of the algorithms to the CPU time of grid search algorithm for the decentralized
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Table 4.5: Performance of the algorithms considering CPU times.

S. Chain Method Section Minimum Maximum Average S. Deviation

SC1 Golden Section S. 4.1.2 0.000000 0.041899 0.005683 0.006196

SC3 Approximation A. 4.3.1 0.000000 0.073111 0.005028 0.008180

Golden Section S. 4.3.3 0.000000 0.051195 0.007038 0.007537

SC4 Approximation A. 4.4.1 0.000000 0.009840 0.000442 0.000470

Golden Section S. 4.4.4 0.002220 0.004376 0.002728 0.000208

case. The ratios reveal the efficiency of the algorithms utilized in the thesis. On the average

grid search algorithm takes 1.44 time seconds for the supply chain model in Section 4.1,

1.25 time seconds for Section 4.3, and 34.60 time seconds for Section 4.4.

Although maximum CPU times of the golden section search algorithms are higher than

maximum CPU time of the approximation algorithm for Sections 4.3 and 4.4, the approxi-

mation algorithm is faster on the average. On the average, it is 1.4 times faster for Section

4.3, and it is 6.17 times faster for Section 4.4, comparing with the golden section search

algorithm.
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Chapter 5

SUPPLY CHAIN COORDINATION

In this chapter, we evaluate the performance of the following coordination mechanisms

• Transportation Cost Sharing Contract (TCSC)

• Quantity Discounts (QD)

• Volume Discounts (VD)

• Simultaneous Offer of Quantity and Volume Discounts (QVD)

We propose the transportation cost sharing contract, which requires the supplier to share

a predetermined portion of the transportation cost of the buyer. Quantity and volume

discounts are the common coordination mechanisms that are extensively studied in the

literature. We model these mechanisms together with the simultaneous offer of quantity

and volume discounts considering transportation cost and provide numerical analysis.

The study in this chapter is extensively computational and numerical. Viswanathan

and Wang [74] model discount mechanisms through a grid search. The paper neglects the

transportation cost. Despite the difficulty of the problem, we show that transportation cost

can be incorporated into the problem, more realistic and accurate results can be obtained.

5.1 Coordination

Section 4.4 considers the decentralized supply chain where the buyer owns the transportation

cost, whereas Section 4.5 considers the centralized supply chain with transportation cost.

Due to the double marginalization effect, there is an important gap between the total

supply chain profits in these systems. The gap between
∏

C and (
∏

B +
∏

S) derive an

important motivation for the supply chain members of the decentralized system to recover

the additional profit generated by the centralized system.
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The solution of the centralized system provides the coordinated price and order quan-

tity. The coordination mechanisms tend to induce the supply chain members to choose

coordinated price and order quantity and achieve coordination in the supply chain.

5.2 Initial Market Equilibrium

In this chapter, the decentralized supply chain considered in Section 4.4 is evaluated as the

base supply chain. Moreover, the equilibrium point given by the solution of the Stackelberg

game is considered as the initial market equilibrium. Let v∗, n∗, p∗, Q∗ be the equilibrium

decisions of the game and
∏

S(v∗, n∗),
∏

B(p∗, Q∗) be the equilibrium profits.

5.3 Transportation Cost Sharing Contract

The transportation cost sharing contract is modeled in this section. The mechanism requires

the supplier to share a predetermined portion of the transportation cost of the buyer. The

supplier shares (1 − α) portion of the total transportation cost, i.e., when α is 0, the

system is based on freight on board (FOB) origin, whereas if α is 1, the buyer pays for

the transportation. α is in between 0 and 1. Distinct α values are tested and the value

providing the highest profit is selected as the optimal transportation cost sharing contract.

The Buyer’s Problem

To obtain profit functions, we replace F (Q) with (α)F (Q) in (4.44) and insert (1 −

α)F (Q)D(p)
Q into the supplier’s profit function (4.45).

The buyer’s profit function can be rewritten as follows:

∏
B

(p, Q, α) = (p− v)D(p)− (v +
αF (Q)

Q
)I

Q

2
− (A + αF (Q))

D(p)
Q

. (5.1)

Likewise, the supplier’s profit function is:

∏
S

(v, n, α) = (v −m)D(p∗(v))−mI(n− 1)
Q∗(v)

2
−
(

K

n
+ (1− α)F (Q)

)
D(p∗(v))

Q∗(v)
, (5.2)

We follow the derivation steps in Section 4.4 for the buyer’s problem. We obtain first

and second order optimality conditions with respect to p. The second derivative changes

sign after the local maximum obtained at p∗(Q), and limp→∞
∏

B(p, Q, α) = 0, it can be

shown that p∗(Q) is actually a global optimal solution. Equating the first-order condition
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to zero we obtain the following optimal market price:

p∗(Q) =
b (A + Qv + αF (Q))

Q (b− 1)
. (5.3)

We can replace p∗(Q) and rewrite the buyer’s profit function as follows:∏
B

(Q) = (p∗(Q)− v)a(p∗(Q))−b − vI
Q

2
− (A + αF (Q))

a(p∗(Q))−b

Q
− αF (Q)I

2
. (5.4)

For a fixed number of trucks t, where (t− 1)C < Q ≤ tC, we can rewrite (5.4) as∏
B

(Q) = (p∗(Q)− v)a(p∗(Q))−b − vI
Q

2
− (A + αtR)

a(p∗(Q))−b

Q
− αtRI

2
. (5.5)

We write the first-order condition for a local maximum with respect to Q for a particular t

value as

∂
∏

B(Q)
∂Q

= −vI

2
+

(A + αtR) a(p∗(Q))−b

Q2
, (5.6)

and by setting it equal to zero we obtain−vI

2
+

(A + αtR)a
(

b(A+Qv+αtR)
Q(b−1 )

)−b

Q2

 = 0 (5.7)

Equality (5.7) is the local optimality condition for the buyer’s order quantity when the

number of trucks is fixed as t, and (t−1)C < Q ≤ tC. Q∗ value that satisfies Equality (5.7)

cannot be expressed in closed form, however it can be determined through a line search.

Since T is the maximum number of trucks, the buyer can perform T line searches using

(5.7) and obtain T many Q values. The buyer designates the order quantity that provides

the highest profit as her order quantity.

The Supplier’s Problem

We solve the problem utilizing the grid search. If Q and n are constant, replacing p∗(v)

with p∗(Q) as given in Equation (5.3), we can rewrite the supplier’s profit function as follows.

∏
S

(v) = (v −m) a

(
b (A + Qv + αF (Q))

Q (b− 1)

)−b

− mI(n− 1)Q
2

−

(
K
n + (1− α)F (Q)

)
a
(

b(A+Qv+αF (Q))
Q(b−1)

)−b

Q
. (5.8)

5.3.1 Derivation of the optimal lot size multiplier under a fixed value of the

wholesale price
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The first and second order derivatives of the profit function are given by (4.11) and

(4.12) respectively. Hence the profit function is again strictly concave with respect to n.

Besides, the optimality conditions (4.13) and (4.14) reduce to (4.15) and (4.16). Hence

the remaining part of the derivation is the same with Section 4.1.1.1 and we conclude that

optimal lot size multiplier is given by (4.19).

5.3.1 The Algorithm for Transportation Cost Sharing Contract

In this section, we present the methodology, grid search approach, for solving the optimal

transportation cost sharing contract for the supplier. The optimal contract and correspond-

ing profit for the supplier is determined numerically by a grid search within the wholesale

price range [m, vmax] and sharing ratio (1−α) range [0,1]. For a fixed wholesale price v and

sharing ratio 1 − α, optimal price can be stated as p∗(Q) = b(A+Qv+αF (Q))
Q(b−1) , which is given

in (5.3). A line search for Q through solving

(
−vI

2 +
(A+αtR)a

�
b(A+Qv+αtR)

Q(b−1)

�−b

Q2

)
= 0 gives

the optimal order quantity, which is provided in (5.7). Finally, optimal lot size multiplier is

given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is stated in (4.19). We adopt a grid size

g = 10−3 for the wholesale price and g = 10−2 for the sharing ratio in the computations.

The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be
∏∗

S(v∗, n∗) with α = 1.

Step 2: Start with α = 0 and complete the following steps for each sharing ratio from the

set {0, g, 2g, ..., 1− 2g, 1− g, 1}.

2.1: Let the best profit
∏∗

S be 0 with v = 0 and n = 0.

2.2: Start with v = m and complete the following steps for each wholesale price from

the set {m,m + g,m + 2g, ..., vmax − 2g, vmax − g, vmax}.

2.2.1: For each truck option t = 1, 2, .., T find Q through a line search solving

(5.7), compute p as defined in (5.3) and
∏

B(Q) as defined in (5.5). Select (p, Q) corre-

sponding to the highest profit
∏

B(Q) among T many truck options.

2.2.2: Compute n and
∏

S(v) as defined in (4.19) and (5.8) respectively. If
∏

S(v)

is greater than the best profit, update the best profit
∏∗

S , the wholesale price v∗ and the

lot size multiplier n∗.

Step 3: If
∏

S(v) is greater than the optimal profit, update the optimal profit
∏∗

S , the

wholesale price v∗, the lot size multiplier n∗ and the sharing ratio α.
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5.4 Quantity Discounts

The motivation for the supplier to offer quantity discount is to increase the buyer’s order

quantity and thereby decrease his own set up and holding costs. Although the main intention

is to decrease cost, the quantity discount offer may also lead to a decreased price and increase

the revenue of the supply chain members. In this section, we consider the optimal quantity

discount offer of the supplier. The supplier offers a wholesale price vQD if the order quantity

of the buyer is at least QQD. In other words, if the order quantity is larger than or equal

to QQD, a quantity discount is offered on all units.

The solution of the Stackelberg game is available for the supplier and the buyer a priori.

Therefore, the buyer does not accept a wholesale price vQD and an order quantity QQD that

would lead to a profit less than
∏

B(p∗, Q∗). Hence, the order quantity Q∗QD is determined by

finding the value of Q∗QD where Q∗QD ≥ Q∗v∗ for which
∏

B(QQD) ≥
∏

B(p∗, Q∗). Likewise,

the supplier will not offer a quantity discount if the optimal wholesale price offer v∗QD leads

to a profit less than
∏

S(v∗, n∗). In such a situation, we may conclude that a feasible quantity

discount does not exist. However, there exists a feasible quantity discount for the supply

chain for all of the examples in our test in Section 5.8.

Let us restate the profit function of the buyer as a function of the market price. Since

the supplier offers a discount based on the order quantity, the buyer does not select an order

quantity but a market price.∏
B

(p) = (p− v)D(p)− (v +
F (Q)

Q
)I

Q

2
− (A + F (Q))

D(p)
Q

. (5.9)

The supplier offers quantity discounts (vQD, QQD) where vQD < v∗ and QQD > Q∗. The

optimization formulation for the optimal quantity discount offer of the supplier can be stated

as follows:

max
∏
S

(vQD, n,QQD) = (vQD −m)D(p∗(vQD))−mI(n− 1)
QQD

2

−
(

K

n

)
D(p∗(vQD))

QQD
(5.10)

s.t.
∏
B

(p∗(QQD)) ≥
∏
B

(p∗, Q∗), where (5.11)
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∏
B

(p∗(QQD)) = (p∗(QQD)− vQD)a(p∗(QQD))−b − vQDI
QQD

2

−(A + F (QQD))
a(p∗(QQD))−b

QQD
(5.12)

If the buyer accepts the discount scheme where
∏

B(p∗(QQD)) ≥
∏

B(p∗, Q∗), through

(4.49) the optimal market price can be stated as follows:

p∗(QQD) =
b (A + vQQD + F (QQD))

QQD (b− 1)
(5.13)

Optimal quantity offer QQD and discounted wholesale price offer vQD can be determined by

a grid search through the ranges (Q∗(v∗), TR] and (m, v∗) respectively. Furthermore, (4.19)

provides the optimal lot size multiplier for a fixed whole price, which can be restated as

n∗ =

⌈
1
2

(
−1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌉
or

⌊
1
2

(
1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌋
. (5.14)

5.4.1 The Algorithm for Optimal Quantity Discount

We adopt a grid size g = 5.10−3 for the wholesale price and g = 100 for the order quantity

in the computations. The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be
∏∗

S(v∗, n∗).

Step 2: Start with v = m and Q = Q∗(v∗) and complete the following step for each whole-

sale price and order quantity from the sets {m, m + g,m + 2g, ..., v∗ − 2g, v∗ − g, v∗} and

{Q∗(v∗), Q∗(v∗) + g,Q∗(v∗) + 2g, ..., TR− 2g, TR− g, TR} respectively.

2.1: Compute n,
∏

S(vQD) and
∏

B(p∗(QQD) as defined in (4.19), (5.10) and (5.9)

respectively. If
∏

B(p∗(QQD)) is higher than
∏

B(Q∗) and
∏

S(vQD) is greater than the

optimal profit, update the optimal profit
∏∗

S , the wholesale price v∗QD, order quantity Q∗QD

and the lot size multiplier n∗.

5.5 Volume Discounts

Since the market demand is sensitive to the price, a discount on the wholesale price given

by the supplier based on the annual volume of demand motivates the buyer to decrease

the market price. Therefore the motivation for the supplier to offer a volume discount is

to increase the market demand and thereby increase his own revenue. Assuming that the



Chapter 5: Supply Chain Coordination 62

market demand is deterministic, annual demand is determined by the market price. Thus,

any discount based on annual volume of demand may be associated with the market price.

In this section, we consider the optimal volume discount offer of the supplier. The

supplier offers a wholesale price vV D if the market price is at most pV D. In other words, if

the market price is lower than or equal to pV D, a volume discount is offered on all units.

The solution of the Stackelberg game is available for the supplier and the buyer a priori.

Therefore, the buyer does not accept a wholesale price vV D and a market price pV D that

would lead to a profit less than
∏

B(p∗, Q∗). Hence, the market price p∗V D is determined by

finding the value of p∗V D where p∗V D ≤ p∗v∗ for which
∏

B(pV D) ≥
∏

B(p∗, Q∗). Likewise, the

supplier will not offer a volume discount if the optimal wholesale price offer v∗V D leads to

a profit less than
∏

S(v∗, n∗). In such a situation, we may conclude that a feasible volume

discount does not exist. However, there exists a feasible volume discount for the supply

chain for all of the examples in our test in Section 5.8.

Proposition 3 in Appendix A proves that as the wholesale price v increases, the optimal

market price p∗(v) increases. The opposite of this claim is also valid and the proof follows

the same steps. As the wholesale price decreases, optimal market price decreases and

consequently market demand increases. Therefore, the objective of the supplier is to reduce

the wholesale price through offering a discount, and force the buyer to order at a demand

rate higher than his initial optimal demand.

Let us restate the profit function of the buyer as a function of the order quantity, given

the market price. Since the supplier offers a discount based on the market price, the supplier

does not select a market price but an order quantity.∏
B

(Q) = (p− v)D(p)− (v +
F (Q)

Q
)I

Q

2
− (A + F (Q))

D(p)
Q

. (5.15)

The supplier offers volume discounts (vV D, pV D) where vV D < v∗ and pV D < p∗. The

optimization formulation for the optimal volume discount offer of the supplier can be stated

as follows:

max
∏
S

(vV D, pV D, n) = (vV D −m)D(pV D)−mI(n− 1)
Q∗(vV D)

2

−
(

K

n

)
D(pV D)
Q∗(vV D)

(5.16)

s.t.
∏
B

(Q∗(vV D)) ≥
∏
B

(p∗, Q∗), where (5.17)
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∏
B

(Q∗(vV D)) = (pV D − vQD)a(pV D)−b − vV DI
Q∗(vV D)

2

−(A + F (Q∗(vV D)))
a(pV D)−b

Q∗(vV D)
(5.18)

Incorporating the demand function into (5.15), the first order optimality condition for a

particular truck interval, t, can be stated as follows:

∂
∏

B(Q)
∂Q

=
a (A + tR) p−b

Q2
− iv

2
= 0 (5.19)

Since the second derivative is always negative as follows, the function is convex.

∂2
∏

B(Q)
∂p2

= −2 a (A + tR)
pb Q3

< 0 (5.20)

Hence, solving (5.19) for Q gives the optimal order quantity

Q∗(v) =

√
2a(A + tR)

Iv pb
(5.21)

If the buyer accepts the discount scheme where
∏

B(Q∗) ≥
∏

B(p∗, Q∗), the optimal order

quantity can be stated as:

Q∗(vV D) =

√
2a(A + tR)

I(vV D) (pb
V D)

(5.22)

The optimal market price offer pV D and the discounted wholesale price offer vV D can be

determined by a grid search through the ranges (m, p∗] and (m, v∗) respectively. Further-

more, (4.19) provides the optimal lot size multiplier for a fixed whole price, which can be

restated as

n∗ =

⌈
1
2

(
−1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌉
or

⌊
1
2

(
1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌋
. (5.23)

5.5.1 The Algorithm for Optimal Volume Discount

We adopt a grid size g = 2.5.10−2 for the wholesale price and g = 5.10−2 for the market

price in the computations. The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be
∏∗

S(v∗, n∗).

Step 2: Start with v = m and p = m and complete the following step for each wholesale

and market price from the sets {m,m+ g,m+2g, ..., v∗−2g, v∗− g, v∗} and {m,m+ g,m+

2g, ..., p∗ − 2g, p∗ − g, p∗} respectively.
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2.1: Compute n,
∏

S(vV D, pV D, n) and
∏

B(Q∗(vV D) as defined in (4.19), (5.16) and

(5.15) respectively. If
∏

B(QV D) is higher than
∏

B(Q∗) and
∏

S(vQD) is greater than the

optimal profit, update the optimal profit
∏∗

S , the wholesale price v∗V D, market price p∗V D

and the lot size multiplier n∗.

5.6 Simultaneous Offer of Quantity and Volume Discounts

We now consider the model, where the supplier offers both quantity and volume discounts

simultaneously. By offering the discounts simultaneously, the supplier’s motivation is to

obtain higher through larger demand volume and lower inventory costs through larger order

quantities. When offering both the discounts simultaneously, the supplier tends to control

the supply chain. In this mechanism, the supplier sets the market price and order quantity

as well as the wholesale price and the lot size multiplier. Hence the only decision for the

buyer is to whether accept the discount offer or not. Since we assume that the buyer accepts

any offer providing a profit equal to
∏

B(p∗, Q∗) or higher, the supplier tend to offer her

exactly
∏

B(p∗, Q∗). Therefore, the buyer receives zero additional profit in this mechanism.

In this section, we consider the optimal quantity and volume discount offer of the sup-

plier. The supplier offers a wholesale price vQV D if the market price is at least pQV D and

the order quantity is at least QQV D.

The solution of the Stackelberg game is available for the supplier and the buyer a priori.

The market price p∗QV D and the order quantity Q∗QV D are determined by finding the value

of p∗QV D and Q∗QV D where p∗QV D ≤ p∗v∗ and Q∗QV D ≥ Q∗v∗ for which
∏

B(pQV D, QQV D) ≥∏
B(p∗, Q∗). Likewise, the supplier will not offer a volume discount if the optimal wholesale

price offer v∗QV D leads to a profit less than
∏

S(v∗, n∗). In such a situation, we may conclude

that a feasible discount does not exist. However, there exists a feasible discount for the

supply chain for all of the examples in our test in Section 5.8.

The supplier offers quantity and volume discounts (vQV D, pQV D, QQV D) where vQV D <

v∗, pQV D < p∗, QQV D > Q∗. The optimization formulation for the optimal volume discount

offer of the supplier can be stated as follows:

max
∏
S

(vQV D, QQV D, pQV D, n) = (vQV D −m)D(pQV D)−mI(n− 1)
QQV D

2

−
(

K

n

)
D(pQV D)

QQV D
(5.24)
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s.t.
∏
B

(pQV D, QQV D) ≥
∏
B

(p∗, Q∗) (5.25)

Since, the supply chain variables are controlled by the supplier, the buyer’s profit function

can be equated to the initial market equilibrium profit and the discounted wholesale price

can be determined based on the price and order quantity. Solving
∏

B(pQV D, QQV D) =∏
B(p∗, Q∗) gives the optimal discounted wholesale price as follows:

v∗QV D =
2
(
pb
∏

B(p∗, Q∗) Q + a (p Q−A− F (Q))
)

Q (2 a + I pb Q)
(5.26)

5.6.1 The Algorithm for Optimal Quantity and Volume Discount

We adopt a grid size g = 100 for the order quantity and g = 10−2 for the market price in

the computations. The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be
∏∗

S(v∗, n∗).

Step 2: Start with Q = Q∗(v∗) and p = m and complete the following step for each

wholesale and market price from the sets {Q∗(v∗), Q∗(v∗) + g,Q∗(v∗) + 2g, ..., tR− 2g, tR−

g, tR} and {m,m + g,m + 2g, ..., p∗ − 2g, p∗ − g, p∗} respectively.

2.1: Compute v∗, n,
∏

S(vQV D, QQV D, pQV D, n) and
∏

B(pQV D, QQV D) as defined in

(5.26), (4.19), (5.24) and (4.44) respectively. If
∏

S(vQV D, QQV D, pQV D, n) is greater than

the optimal profit, update the optimal profit
∏∗

S , the wholesale price v∗QV D, market price

p∗QV D, order quantity Q∗QV D and the lot size multiplier n∗.

5.7 Myopic Approach

One way of modeling the discount mechanisms is simply to neglect the transportation

cost. Viswanathan and Wang [74] model quantity discount offer, volume discount offer and

their simultaneous offer without considering the transportation cost. We call this approach

myopic approach because it takes the transportation cost as part of the fixed cost and

neglects its effect. The following three discount mechanisms are modeled according to the

procedures of Viswanathan and Wang [74].

• Quantity Discounts

• Volume Discounts
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• Simultaneous Offer of Quantity and Volume Discounts

We assume that the initial market equilibrium is the solution of the Stackelberg game

without transportation cost, which is considered in Section 4.1. Hence, the results of this

section constitute the initial equilibrium.

After finding the optimal policies for the supplier (as in Viswanathan and Wang [74]),

the buyer takes transportation cost into consideration and computes her profit with the

discounted price. If the offer is not beneficial, the offer is not accepted. As a result, both

the supplier and the buyer receive zero additional profit.

We do not review the derivations of the paper but the computational results are provided

in the following sections.

5.8 Effectiveness of The Alternative Coordination Mechanisms

The relative performance of the alternative coordination schemes are evaluated through a

numerical study. We use the same dataset of Section 4.6.

Table 5.1 provides a summary of the markup and profit results of the decentralized

supply chain comparing with centralized supply chain. Considering the average values,

the supplier’s and the buyer’s markups are very similar (2.63 and 2.60). At the same

time, centralized system’s markup is only slightly higher (2.83) than these values. Besides,

standard deviation in decentralized system is very high (11.83) compared to the centralized

system (1.84). Moreover, the maximum markup in decentralized system is close to 50%,

which is extremely high.

On the average, the supplier receives about one third of the total profit, whereas the

buyer receives about two thirds of the total profit. The supplier can get 94.35% of the

total profit at most, whereas the buyer can get 85.05% of the total profit at most. On

the average the decentralized system can achieve 73.23% of the total profit in the supply

chain whereas these value ranges in between 28.14 and 83.50. Consequently, 26.77% of the

centralized profit constitutes a potential for the supply chain members, since this is a strong

motivation.

Table 5.2 provides a summary of the computational results of the coordination mecha-

nisms. Some percentage values are above 100% because the inventories are valued differently
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Table 5.1: Markup and profit sharing levels in supply chains.

Minimum Maximum Mean S. Deviation

Supplier’s markup
(

v
m

)
1.18 8.97 2.63 1.80

Buyer’s markup
(p

v

)
1.27 5.78 2.60 1.57

Markup of decentralized s.
( p

m

)
1.52 48.92 9.59 11.83

Markup of centralized s.
( p

m

)
1.27 8.44 2.83 1.84

Profit % of the supplier
(
100

Q
SQ

B +
Q

S

)
14.95 94.35 33.68 11.56

Profit % of the buyer
(
100

Q
BQ

B +
Q

S

)
5.65 85.05 66.32 11.56

Centralization effect
(
100

Q
B +

Q
SQ

C

)
28.14 83.50 73.23 5.74

in decentralized and centralized supply chains. The results of the study evidently demon-

strate that the effectiveness of the coordination mechanisms increase in the following order:

transportation cost sharing contract, quantity discounts, volume discounts, simultaneous

offer of quantity and volume discounts. Hence the least effective mechanism is the trans-

portation cost sharing contract. Table 5.3 further displays a factor analysis on the results of

the mechanism. Likewise, Tables 5.4, 5.5 and 5.6 provides a factor analysis for the results

of the coordination mechanisms.

The simultaneous offer of quantity and volume discount is obviously the most effective

coordination mechanism. On the other hand, volume discounts are more effective than

quantity discounts. On the average, the simultaneous offer of quantity and volume discount

can achieve 98.42% of the centralized profit. This means an additional profit of 25.18% of

the centralized system is captured.

Moreover, the results show that as the effectiveness of the mechanism increases, the sup-

plier’s profit share significantly increases. Hence, we may conclude that a supplier dominant

supply chain is more profitable. Since the supplier controls the supply chain decisions in

the simultaneous offer of quantity and volume discount, a supplier controlled supply chain

is more effective considering the coordination of the supply chain.
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Table 5.2: Summary of the computational results of the coordination mechanisms.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

TCSC Minimum 28.14 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 83.50 4.97 20.77 0.06 2.89 12.77 7.37

Mean 73.25 0.01 2.08 0.00 0.01 0.03 0.02

S. Deviation 5.73 0.21 2.29 0.00 0.12 0.53 0.31

QD Minimum 65.11 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 86.98 36.97 20.77 152.64 1.12 77.29 131.40

Mean 76.55 3.31 2.08 11.35 0.00 1.03 5.03

S. Deviation 3.33 3.79 2.29 13.44 2.29 3.55 8.14

VD Minimum 76.62 15.21 0.00 25.95 0.00 0.00 18.37

Maximum 100.07 48.48 25.35 226.98 1.85 52.25 172.31

Mean 97.47 24.24 14.56 103.21 0.00 3.84 33.88

S. Deviation 2.41 4.35 3.03 33.10 3.03 5.86 10.64

QVD Minimum 86.76 15.15 3.82 49.20 0.00 0.00 18.18

Maximum 103.43 58.62 27.70 260.71 0.00 0.00 208.35

Mean 98.41 25.18 16.51 111.73 0.00 0.00 35.29

S. Deviation 1.39 4.96 1.92 28.88 1.92 0.00 12.41

CR1: Centralization effect
(
100

Q
B +

Q
SQ

C

)
CR2: Incremental centralization effect

(
100

QCM
B +

QCM
S −

Q
B −

Q
SQ

C

)
CR3: Suppliers incremental profit ratio in the supply chain

( QCM
SQCM

S +
QCM

B

−
Q

SQ
S +

Q
B

)
CR4: Incremental profit of the supplier as a percentage

(
100(

QCM
S −

Q
S)Q

S

)
CR5: Buyers incremental profit ratio in the supply chain

( QCM
BQCM

S +
QCM

B

−
Q

BQ
S +

Q
B

)
CR6: Incremental profit of the buyer as a percentage

(
100(

QCM
B −

Q
B)Q

B

)
CR7: Total Increment of the supply chain profit

(
100

QCM
S +

QCM
B −

Q
S −

Q
BQ

S +
Q

B

)
∏CM

S : The supplier’s profit in the coordination mechanism∏CM
B : The buyer’s profit in the coordination mechanism
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Table 5.3: Factor analysis of transportation cost sharing contract.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 74.63 0.01 0.01 0.00 0.00 0.02 0.01

25 74.21 0.00 0.01 0.00 0.00 0.01 0.01

100 73.03 0.00 0.03 0.00 0.00 0.00 0.00

250 71.11 0.04 0.04 0.00 0.00 0.09 0.05

A 0.5K 73.49 0.00 0.02 0.00 0.00 0.01 0.00

K 73.37 0.03 0.02 0.00 0.00 0.07 0.04

2K 72.87 0.00 0.02 0.00 0.00 0.01 0.01

b 1.25 79.57 0.00 0.01 0.00 0.00 0.00 0.00

2 73.38 0.00 0.01 0.00 0.00 0.00 0.00

3.5 71.18 0.00 0.03 0.00 0.00 0.01 0.01

5 68.86 0.04 0.04 0.00 0.00 0.11 0.06

C 200 73.31 0.03 0.02 0.00 0.00 0.07 0.04

400 73.00 0.00 0.02 0.00 0.00 0.01 0.01

1000 73.43 0.00 0.02 0.00 0.00 0.01 0.00

R 10 74.07 0.00 0.02 0.00 0.00 0.01 0.01

20 73.93 0.04 0.02 0.00 0.00 0.10 0.06

50 72.96 0.00 0.02 0.00 0.00 0.01 0.00

100 72.02 0.00 0.02 0.00 0.00 0.01 0.00
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Table 5.4: Factor analysis of quantity discounts.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 75.99 1.37 0.01 3.88 -0.01 0.67 1.91

25 76.30 2.09 0.01 6.37 -0.01 0.78 2.93

100 76.89 3.85 0.03 13.06 -0.03 0.96 5.55

250 77.00 5.93 0.04 22.08 -0.04 1.73 9.72

A 0.5K 76.56 3.08 0.02 10.06 -0.02 0.97 4.43

K 76.69 3.34 0.02 11.50 -0.02 1.23 5.26

2K 76.38 3.51 0.02 12.47 -0.02 0.91 5.38

b 1.25 80.20 0.63 0.01 4.80 -0.01 0.04 0.79

2 75.12 1.75 0.01 6.79 -0.01 0.31 2.41

3.5 75.17 4.00 0.03 12.51 -0.03 1.11 5.75

5 75.69 6.87 0.04 21.29 -0.04 2.67 11.15

C 200 76.85 3.57 0.02 11.99 -0.02 1.58 5.73

400 76.45 3.45 0.02 11.86 -0.02 0.91 5.11

1000 76.34 2.91 0.02 10.19 -0.02 0.62 4.24

R 10 76.86 2.79 0.02 9.48 -0.02 0.80 3.95

20 76.74 2.85 0.02 9.72 -0.02 0.76 4.04

50 76.39 3.43 0.02 11.91 -0.02 0.80 5.06

100 76.20 4.18 0.02 14.28 -0.02 1.77 7.05
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Table 5.5: Factor analysis of volume discounts.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 98.88 24.26 0.15 100.07 -0.15 2.94 32.83

25 98.42 24.21 0.14 100.72 -0.14 3.54 33.07

100 97.10 24.07 0.14 102.85 -0.14 4.16 33.55

250 95.49 24.42 0.15 109.22 -0.15 4.73 36.07

A 0.5K 97.57 24.08 0.14 101.21 -0.14 4.11 33.24

K 97.30 23.95 0.15 102.89 -0.15 3.48 33.68

2K 97.56 24.69 0.15 105.54 -0.15 3.94 34.72

b 1.25 98.97 19.40 0.16 151.50 -0.16 0.05 24.41

2 98.34 24.96 0.16 101.19 -0.16 1.53 34.15

3.5 97.15 25.97 0.14 83.20 -0.14 4.24 36.79

5 95.44 26.62 0.12 76.96 -0.12 9.55 40.17

C 200 97.46 24.19 0.15 103.88 -0.15 3.93 34.10

400 97.38 24.38 0.15 103.85 -0.15 3.74 34.02

1000 97.58 24.15 0.14 101.91 -0.14 3.86 33.53

R 10 97.88 23.81 0.14 101.07 -0.14 3.79 32.52

20 97.79 23.89 0.14 101.16 -0.14 3.98 32.74

50 97.30 24.34 0.15 103.86 -0.15 3.76 34.00

100 96.94 24.92 0.15 106.77 -0.15 3.85 36.25
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Table 5.6: Factor analysis of quantity and volume discounts.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 99.43 24.80 0.16 105.87 -0.16 0.00 33.59

25 99.09 24.88 0.16 107.89 -0.16 0.00 34.01

100 98.12 25.09 0.17 112.34 -0.17 0.00 35.01

250 97.01 25.94 0.17 120.81 -0.17 0.00 38.57

A 0.5K 98.19 24.70 0.16 108.52 -0.16 0.00 34.13

K 98.42 25.08 0.16 111.48 -0.16 0.00 35.41

2K 98.63 25.76 0.17 115.18 -0.17 0.00 36.34

b 1.25 98.97 19.40 0.16 151.73 -0.16 0.00 24.41

2 98.70 25.32 0.17 105.79 -0.17 0.00 34.64

3.5 98.28 27.10 0.16 93.28 -0.16 0.00 38.39

5 97.71 28.89 0.16 96.10 -0.16 0.00 43.73

C 200 98.37 25.10 0.16 112.09 -0.16 0.00 35.55

400 98.36 25.36 0.17 112.64 -0.17 0.00 35.47

1000 98.50 25.08 0.16 110.45 -0.16 0.00 34.86

R 10 98.71 24.64 0.16 109.40 -0.16 0.00 33.71

20 98.61 24.71 0.16 109.76 -0.16 0.00 33.91

50 98.33 25.37 0.17 112.85 -0.17 0.00 35.52

100 98.00 25.98 0.17 114.90 -0.17 0.00 38.04
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5.8.1 Myopic Approach Results

Myopic approach for the coordination mechanisms does not provide promising results. The

main problem is that since the supplier neglects the transportation cost, the buyer does

not accept the discount offer because it does not offer a higher profit than the profit of the

solution of the Stackelberg game.

The buyer accepts the offer in 49 problems of the 576 test problems for quantity dis-

counts, 2 problems for volume discounts and does not accept any of the offers for the

simultaneous offer of quantity and volume discount. Since the feasible discount offers are

very few, we do not provide detailed analysis in this section.

The major reason for the inferiority of the myopic approach is the neglected transporta-

tion cost. Since the supplier designs the contracts according to the break even points where

the buyer receives the profit provided by the solution of the Stackelberg game, with the in-

corporation of the transportation cost the offer becomes unprofitable for the buyer. Hence,

most of the myopic discount offers are not feasible offers for the buyer.

In conclusion, we can claim that the incorporation of transportation cost into the coor-

dination problem significantly change the nature of the problem.
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Chapter 6

CONCLUSION

Operations management literature places a significant emphasis on lot sizing and pricing

decisions. A global approach considering lot sizing and pricing decisions is essential in

reducing inventory costs and increasing revenue in supply chain management.

Moreover, transportation is another important consideration of inventory management.

Although lot sizing and pricing problems have been intensively studied in the literature, the

effect of transportation costs has been generally neglected. Incorporation of transportation

costs into lot sizing and pricing problems can have a significant value.

In this thesis, we analyzed the impact of transportation costs on pricing and ordering

decisions in a two stage supply chain. We incorporate transportation costs into the lot

sizing and pricing problems, and present an approximate algorithm together with conven-

tional techniques and heuristics to solve the resulting optimization problem. Although the

emphasis on lowering the logistics costs has been of interest, the problem stated in this

thesis has not been addressed in the literature, possibly due to its complexity. The approx-

imate solution procedure we propose generates acceptable solutions in less than one CPU

second. Since neglecting the transportation cost in pricing and lot sizing decisions may

cause a noticeable decrease in the profit, it is worthwhile to include transportation costs,

and the approximate algorithm constitutes a practical approach with a good performance.

Additionally, we proposed alternative solution procedures for different supply chain models

depending on the ownership of the transportation cost.

Besides, we considered supply chain coordination in this setting. We modeled quantity

and volume discounts, which are well-known coordination mechanisms in the literature.

Additionally, we propose and model a transportation cost sharing contract for coordination.

The transportation cost sharing contracts do not provide promising performance for supply

chain coordination, whereas quantity discounts significantly improve the supply chain profit.

Volume discounts, on the other hand, provide better results comparing with the performance
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of the quantity discounts. Furthermore, the simultaneous offer of quantity and volume

discounts is found to be the most effective coordination mechanism. We further provide a

detailed analysis of the results and efficiencies of the mechanisms.

On the other hand, the demand structure and the sensitivity of the price are the most

determinant factors. They drastically affect the performance of the algorithms and coordi-

nation mechanisms.

Moreover, the golden section search algorithm is used as a heuristic in the thesis. Al-

though heuristics for the problem are not popular in the literature, we show that it may

outperform existing techniques in the literature. More importantly, the algorithm is signif-

icantly faster to implement.

We show that, incorporation of transportation cost into the lot sizing and pricing prob-

lems and supply chain coordination problem can be modeled. In addition to the complication

of introducing the transportation cost into the problem, structural properties of the complex

problem lets us use efficient algorithms. This can be considered as the major contribution

of the thesis.

The performance of the approximation algorithm can be improved in several ways. In

the thesis, we only consider linear approximation of the buyer’s response and complicated

techniques may lead to better results. Besides, the region of approximation can be divided

into smaller intervals and the quality of the approximation can be increased. Implementation

of such procedures would be beneficial for increasing the performance of the algorithm.

We considered a two-stage supply chain with single participants at each stage. As a

future research area, the model can be improved with a complex transportation structure.

In the thesis, transportation costs are taken as fixed, however the transportation company

can be integrated into the problem as another decision making entity. Another improvement

can be extending the supply chain structure. Multiple buyers can be introduced into the

problem and the effects of the coordination mechanisms can be observed.
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Appendix A

STRUCTURAL RELATIONS OF THE OPTIMAL DECISIONS

Proposition 1. For a fixed number of trucks t, as the wholesale price increases, regular

shipment size decreases.

Proof: Suppose we fix the truck option t. Although there is a feasibility consideration

for the shipment size, let us first show that there are distinct optimal shipment sizes for

a pair of distinct wholesale prices. Let us state the optimality condition (4.55) for a pair

[v1,Q1] and [v2,Q2]. Qi corresponds to the optimal shipment quantity when wholesale price

is vi. Let v1 < v2 and using (4.49) we can write the demand function as follows:

D(p∗(v)) = a

(
b (A + Qv + F (Q))

Q (b− 1)

)−b

. (A.1)

We state the optimality condition (4.55) for the pairs as follows:

−v1I

2
+

(A + F (Q1 ))D(p∗(v1 ))
Q2

1

= 0, (A.2)

and

−v2I

2
+

(A + F (Q2 ))D(p∗(v2 ))
Q2

2

= 0. (A.3)

Subtracting (A.3) from (A.2) gives the following

v2I

2
− v1I

2
+

(A + F (Q1 ))D(p∗(v1 ))
Q2

1

− (A + F (Q2 ))D(p∗(v2 ))
Q2

2

= 0. (A.4)

Given that −v1I
2 + v2I

2 > 0, we can claim (A+F (Q1 ))D(p∗(v1 ))
Q2

1
− (A+F (Q2 ))D(p∗(v2 ))

Q2
2

< 0. After

simplification, we obtain

D(p∗(v1))
Q2

1

− D(p∗(v2))
Q2

2

< 0, (A.5)

or

D(p∗(v1))Q2
2 < D(p∗(v2))Q2

1. (A.6)
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Since p∗(v) increases as v increases, (proof in Proposition 3) D(p∗(v)) decreases as v in-

creases. It is known that D(p∗(v1)) > D(p∗(v2)), hence (A.6) implies Q1 > Q2.

The previous argument is valid for Q satisfying (t−1)C < Q ≤ tC. From Lemma 1, it is

known that there are distinct wholesale prices vt and vt−1 that solve (4.55) for (t− 1)C and

tC. For the range [vt,vt−1], the argument is valid and the optimal shipment size decreases

as the wholesale price increases.

Now, let us take a wholesale price v
′

lower than vt. Previous argument suggests that

Q
′
> tC should hold; however the feasibility consideration and the concavity of the buyer’s

profit force Q
′

= tC. Hence the optimal shipment size is constant in the wholesale price

interval (0, vt). A similar argument is valid for the wholesale price interval (vt−1,∞) where

optimal shipment size Q
′
equals to (t− 1)C.

Proposition 2. As the wholesale price increases, regular shipment size decreases. (Decen-

tralized system where the buyer owns the transportation cost)

Proof: Let us state the optimality condition (4.43) for a pair [v1,Q1] and [v2,Q2]. Qi

corresponds to the optimal shipment quantity when wholesale price is vi. Let v1 < v2 and

using (4.38) we can write the demand function as follows:

D(p∗(v)) = a

(
b (A + Qv)
Q (b− 1)

)−b

. (A.7)

We state the optimality condition (4.43) for the pairs as follows:

−v1I

2
+

(A)D(p∗(v1))
Q2

1

= 0, (A.8)

and

−v2I

2
+

(A)D(p∗(v2))
Q2

2

= 0. (A.9)

Subtracting (A.9) from (A.8) gives the following

v2I

2
− v1I

2
+

(A)D(p∗(v1))
Q2

1

− (A)D(p∗(v2))
Q2

2

= 0. (A.10)

Given that −v1I
2 + v2I

2 > 0, we can claim (A)D(p∗(v1))
Q2

1
− (A)D(p∗(v2))

Q2
2

< 0. After simplification,

we obtain

D(p∗(v1))Q2
2 < D(p∗(v2))Q2

1. (A.11)
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Since p∗(v) increases as v increases, (proof in Proposition 4) D(p∗(v)) decreases as v in-

creases. It is known that D(p∗(v1)) > D(p∗(v2)), hence (A.11) implies Q1 > Q2.

Proposition 3. As wholesale price v increases, optimal market price p∗(v) increases.

Proof: Restating (4.49),

p∗(v) =
b (A + Qv + F (Q))

Q (b− 1)
(A.12)

Taking the first derivative,

∂p∗(v)
∂v

=
b

b− 1
(A.13)

Since b > 1, first derivative is positive. Hence p∗(v) increases as v increases.

Proposition 4. As wholesale price v increases, optimal market price p∗(v) increases. (De-

centralized system where the buyer owns the transportation cost)

Proof: Restating (4.38),

p∗(v) =
b (A + Qv)
Q (b− 1)

(A.14)

Taking the first derivative,

∂p∗(v)
∂v

=
b

b− 1
(A.15)

Since b > 1, first derivative is positive. Hence p∗(v) increases as v increases.

Lemma 1. For a full truck load shipment, there is a unique wholesale price satisfying (4.55)

when F (Q)=tR is fixed.

Proof: Let us restate (4.55) here as:

f(v) = −vI

2
+

(A + tR)a
(

b(A+Qv+tR)
Q(b−1 )

)−b

Q2
(A.16)

Both−vI
2 and

(A+tR)a
�

b(A+Qv+tR)
Q(b−1)

�−b

Q2 decreases as v increases since b > 1. Since limv→0f(v) =

(A+tR)a
�

b(A+tR)
Q(b−1)

�−b

Q2 > 0 and limv→∞f(v) = −∞, we conclude that for Q = tR, there is a

unique v satisfying f(v) = 0.
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Lemma 2. For a full truck load shipment, there is a unique wholesale price satisfying

(4.43).

Proof: Let us restate (4.43) here as:

f(v) = −vI

2
+

(A)a
(

b(A+Qv)
Q(b−1)

)−b

Q2
(A.17)

Both −vI
2 and

(A)a
�

b(A+Qv)
Q(b−1)

�−b

Q2 decreases as v increases since b > 1. Since limv→0f(v) =

(A)a
�

b(A)
Q(b−1)

�−b

Q2 > 0 and limv→∞f(v) = −∞, we conclude that for any Q, there is a unique

v satisfying f(v) = 0.
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Appendix B

SUPPLY CHAIN MODELING WITH LINEAR DEMAND FUNCTION

In this chapter, we review the models in Chapter 4 and the coordination mechanisms

of Chapter 5 with linear demand function. Following the same notation, demand function

D(p) = a− bp is used, where a is the scale parameter and −b is the slope of demand.

B.1 Decentralized System without Transportation Cost

The buyer’s and the supplier’s profit functions can be written as (4.1) and (4.2).

The Buyer’s Problem

In this section, we first discuss the solution of the pricing and lot sizing problems for the

buyer assuming that the supplier sets the wholesale price as v. We will later incorporate

these results into the supplier’s problem.

Incorporating the linear demand function, and for a fixed value of v, the profit function

of the buyer can be written as∏
B

(p, Q) = (p− v)(a− bp)− vI
Q

2
−A

(a− bp)
Q

(B.1)

The first-order condition for a local maximum with respect to p is obtained as below.

∂
∏

B(p, Q)
∂p

= a + b

(
−2 p +

A

Q
+ v

)
= 0, (B.2)

and we can state

p∗(Q) =
A b + aQ + b Q v

2 b Q
. (B.3)

since the second derivative ∂2
Q

B(p,Q)
∂p2 = −2b, (B.3) provides the global optimal price. We

can then substitute p by p∗(Q) in Equation (B.1). We rewrite buyer’s profit function as∏
B

(Q) = (p∗(Q)− v)(a− bp∗(Q))− vI
Q

2
−A

(a− bp∗(Q))
Q

(B.4)

We write the first-order condition for a local maximum with respect to Q as

∂
∏

B(Q)
∂Q

=
(A) (− (b (A)) + aQ)−Q

(
b (A) + I Q2

)
v

2 Q3
. (B.5)
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and by setting it equal to zero we obtain three roots. The following root is the only real

and positive root.

Q∗(v) =

(
1 + i

√
3
)

(aA−A b v)

2
2
3

(
27 A2 b I2 v2 +

√
729 A4 b2 I4 v4 − 108 I3 v3 (aA−A b v)3

) 1
3

+

(
1− i

√
3
) (

27 A2 b I2 v2 +
√

729 A4 b2 I4 v4 − 108 I3 v3 (aA−A b v)3
) 1

3

6 2
1
3 I v

(B.6)

Note that i is the complex number
√
−1. Although a complex number appears in the

equation, complex numbers are cancelled and a real number is obtained when computed.

Hence, the optimal order quantity can be expressed as closed form expression. An important

fact is that, it cannot be explicitly stated with a constant elasticity demand function, where

we have stated an optimality condition for the order quantity. This constitutes the major

difference of the models between constant elasticity and linear demand functions.

The Supplier’s Problem

The supplier’s problem is not quasi-concave, however we follow the method in Chapter

4 to approximate the optimal solution.

B.1.1 Grid Search

In this section, we present the grid search approach for solving the supplier’s problem. The

optimal wholesale price v and corresponding profit for the supplier is determined numerically

by a grid search within the range [m, vmax].

B.1.1.1 Derivation of the optimal lot size multiplier under a fixed value of

the wholesale price

Since we derive the optimal lot size multiplier without replacing the demand function,

the derivation is the same with Section 4.4.1.3. Hence we may state that (4.19) gives the

optimal lot size multiplier.

For a fixed wholesale price v, optimal price can be stated as p∗(Q) = A b+a Q+b Q v
2 b Q , which

is given in (B.3). Q∗ provides the optimal order quantity, which is provided in (B.6). Finally,

optimal lot size multiplier is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is stated in

(4.19). We adopt a grid size g = 10−3 in the computations. The algorithm of Section 4.1.1

is used with the decision variables and profit functions mentioned above.
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B.2 Centralized System without Transportation Cost

We can state the profit function as follows:

∏
C

(p, Q, n) = (p−m)D(p)− (hs(n− 1) + hb)
Q

2
−
(

K

n
+ A

)
D(p)

Q
. (B.7)

First order optimality condition can be stated as below.

∂
∏

C(p, Q, n)
∂p

= a− b p− b (−m + p) +
b
(
A + K

n

)
Q

= 0 (B.8)

Solving (B.8) gives price below:

p∗ =
an Q + b (K + n (A + m Q))

2 b n Q
(B.9)

Since the second derivative is −2b and b is always positive, the function is concave and the

p∗ is the optimal market price. Replacing p∗ with p in (B.7), we can rewrite the profit

function as

∏
C

(p, n) =
a2 n2 Q2 + b2 (K + n (A + m Q))2

4 b n2 Q2

−
2 b n Q

(
I mn2 Q2 + a (K + n (A + m Q))

)
4 b n2 Q2

. (B.10)

We write the first-order condition for a local maximum with respect to Q as

∂
∏

B(Q)
∂Q

=
−
(
b (K + (A) n)2 − (a− b m) n (K + (A) n) Q + I mn3 Q3

)
2 n2 Q3

. (B.11)

Setting (B.11) equal to zero we obtain three roots where the following root is the only real

and positive root.

Q∗(v) =

(
1 + i

√
3
) (

aK n− b K m n + aA n2 −A b mn2
)

2
2
3 Z

+

(
1− i

√
3
)

Z

6 2
1
3 I mn3

where

Z =
(

M +
√

M2 − 108 I3 m3 n9 (aK n− b K m n + aA n2 −A b mn2)3
) 1

3

, and

M = 27 b I2 K2 m2 n6 + 54 A b I2 K m2 n7 + 27 A2 b I2 m2 n8 (B.12)

Note that i is the complex number
√
−1. Although a complex number appears in the

equation, complex numbers are canceled and a real number is obtained when computed.
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Hence, the optimal order quantity can be expressed as a closed form expression. Finally,

we can claim that the optimal lot size multiplier does not depend on the demand function.

Hence the derivation is the same with Section 4.2. We can state the result of this section

here as:

n∗ =

⌊
1
2

(
1 +

√
1 + 4

Ahs

K(hb − hs)

)⌋
or

⌈
1
2

(
−1 +

√
1 + 4

Ahs

K(hb − hs)

)⌉
(B.13)

B.3 Decentralized System where The Supplier Owns The Transportation Cost

The buyer’s and supplier’s profit functions can be written as (4.34) and (4.35).

The Buyer’s Problem

Incorporating the demand function, and for a fixed value of v, the profit function of the

buyer can be written as∏
B

(p, Q) = (p− v)(a− bp)− vI
Q

2
−A

(a− bp)
Q

(B.14)

The first-order condition for a local maximum with respect to p is obtained as below.

∂
∏

B(p, Q)
∂p

= a + b

(
−2 p +

A

Q
+ v

)
= 0, (B.15)

and we can state

p∗(Q) =
A b + aQ + b Q v

2 b Q
. (B.16)

since the second derivative ∂2
Q

B(p,Q)
∂p2 = −2b, (B.16) provides the global optimal price. We

can then substitute p by p∗(Q) in Equation (B.14). We rewrite buyer’s profit function as∏
B

(Q) = (p∗(Q)− v)(a− bp∗(Q))− vI
Q

2
−A

(a− bp∗(Q))
Q

(B.17)

We write the first-order condition for a local maximum with respect to Q as

∂
∏

B(Q)
∂Q

=
(A) (− (b (A)) + aQ)−Q

(
b (A) + I Q2

)
v

2 Q3
. (B.18)

and by setting it equal to zero we obtain three roots. The following root is the only real

and positive root.

Q∗(v) =

(
1 + i

√
3
)

(aA−A b v)

2
2
3

(
27 A2 b I2 v2 +

√
729 A4 b2 I4 v4 − 108 I3 v3 (aA−A b v)3

) 1
3

+

(
1− i

√
3
) (

27 A2 b I2 v2 +
√

729 A4 b2 I4 v4 − 108 I3 v3 (aA−A b v)3
) 1

3

6 2
1
3 I v

(B.19)
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Note that i is the complex number
√
−1. Although a complex number appears in the

equation, complex numbers are cancelled and a real number is obtained when computed.

Hence, the optimal order quantity can be expressed as a closed form expression. An impor-

tant fact is that, it cannot be explicitly stated with a constant elasticity demand function,

where we have stated an optimality condition for the order quantity. This constitutes the

major difference of the models between constant elasticity and linear demand functions.

The Supplier’s Problem

The supplier’s problem is not quasi-concave. Therefore, it is difficult to obtain a global

optimal solution, and we will study the structural properties of the problem in the subse-

quent sections. Besides, we review three solution procedures for the problem.

B.3.1 Approximation Algorithm

In this section we study the supplier’s problem of finding the optimal wholesale price. The

supplier wishes to determine v∗, and, to be able to solve his problem, he needs to incorporate

the buyer’s reaction as Q∗(v) and p∗(v) into his problem. We propose an approach through

which Q∗(v) is approximated.

B.3.1.1 Approximating optimal order quantity response of the buyer

In this section, we analyze how the buyer’s optimal order quantity, i.e., Q∗(v), changes

as we change v, and present an approximation of Q∗(v).

Let us first take a wholesale price, va and corresponding order quantity Q(va) obtained

by (B.19). Any vb larger than va will lead to Q(vb), which is strictly smaller than Q(va).

Hence, an approximate procedure for determining the order quantity the buyer chooses

can be formally stated as follows:

Initialization: Let i = 1. Determine the smallest value of v, v1, for which Equality (B.19)

holds for t = 1 and Q = C. Assuming that optimal wholesale price can be at most vmax, the

order quantity response is linearly approximated in the interval [v1, vmax] through a linear

function that crosses points (v1, Q
∗(v1) = C) and (vmax, Q∗(vmax)).

Step 1:

• Let i = i + 1.

• Determine the smallest value of v, vi, for which (B.19) holds for t = i and Q = iC.
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• Linearly approximate the order quantity between Q = iC and Q = (i − 1)C in the

interval [vi,vi−1]

Step 2: If i > T (maximum number of trucks) combine approximated Q values character-

izing the buyer’s optimal response, and stop; otherwise go to Step 1.

B.3.1.2 Derivation of the supplier’s optimal wholesale price under a fixed lot

size multiplier

In the previous section, we have characterized the buyer’s response in terms of her order

quantity. In this section, we illustrate how the supplier can determine his optimal wholesale

price.

Let us assume that n is constant and Q is not constant, where the order quantity is

approximated as a linear decreasing function of v. Let this function be Q(v) = c− dQ for a

wholesale price range [vj+1, vj ]. Replacing Q with c−dQ in Equation (4.35), we approximate

the best solution in this interval through a line search over v values in the [vj+1, vj ] range

maximizing the supplier’s profit.

B.3.1.3 Derivation of the optimal lot size multiplier under a fixed value of

the wholesale price

Since we derive the optimal lot size multiplier without replacing the demand function,

the derivation is the same with Section 4.3.1.3. Hence (4.19) gives the optimal lot size

multiplier.

B.3.1.4 The Approximate Algorithm

In this section, we present the approximate algorithm for solving the supplier’s problem

by combining the results that have been developed in the previous sections.

In order to solve the supplier’s problem, first the buyer’s response has to be character-

ized. Optimal market price as a function of the order quantity can be determined by using

Equation (B.16). Substituting this into the profit function, we obtain Equation (B.17).

Using this function, we can then characterize the order quantity as the wholesale price

changes in Section B.3.1.1. Hence we propose a search procedure with respect to the whole-

sale price. The algorithm of Section 4.3.1.4 is used with the decision variables and profit

functions mentioned above.
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B.3.2 Grid Search

In this section, we present the grid search approach for solving the supplier’s problem. The

optimal wholesale price v and corresponding profit for the supplier is determined numer-

ically by a grid search within the range [m, vmax]. For a fixed wholesale price v, optimal

price can be stated as p∗(Q) = A b+a Q+b Q v
2 b Q , which is given in (B.16). Optimal order

quantity Q∗ is computed through (B.19). Finally, optimal lot size multiplier is given by

n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is stated in (4.19). We adopt a grid size g = 10−3

in the computations. The algorithm of Section 4.3.2 is used with the decision variables and

profit functions mentioned above.

B.3.3 Golden Section Search: A Heuristic

In this section, we adopt the golden section search algorithm for solving the supplier’s

problem. The details of the procedure have been previously stated in Section 4.1.2. The

algorithm, which is mentioned in the section is used with the decision variables and profit

functions stated above.

B.4 Decentralized System where The Buyer Owns The Transportation Cost

The buyer’s and supplier’s profit functions can be written as (4.44) and (4.45).

The Buyer’s Problem

Incorporating the demand function, and for a fixed value of v, the profit function of the

buyer can be written as∏
B

(p, Q) = (p− v)(a− bp)− (v +
F (Q)

Q
)I

Q

2
− (A + F (Q))

(a− bp)
Q

, (B.20)

or ∏
B

(p, Q) = (p− v)(a− bp)− vI
Q

2
− I

F (Q)
2

− (A + F (Q))
(a− bp)

Q
. (B.21)

The first-order condition for a local maximum with respect to p is obtained as below.

∂
∏

B(p, Q)
∂p

= a +
b (A + F (Q)− 2 p Q + Qv)

Q
= 0, (B.22)

and we can state

p∗(Q) =
aQ + b (A + F (Q) + Qv)

2 b Q
. (B.23)
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We further check the second derivative as follows:

∂2
∏

B(p, Q)
∂p2

= −2b (B.24)

Since b is positive, second derivative is always negative and (B.23) provides the optimal

price. We rewrite buyer’s profit function as∏
B

(Q) = (p∗(Q)− v)(a− b(p∗(Q)))− vI
Q

2
− (A + F (Q))

(a− b(p∗(Q)))
Q

. (B.25)

For a fixed number of trucks t, where (t− 1)C < Q ≤ tC, we can rewrite (B.25) as∏
B

(Q) = (p∗(Q)− v)(a− b(p∗(Q)))− vI
Q

2
− (A + tR)

(a− b(p∗(Q)))
Q

. (B.26)

As F (Q) is a stepwise function of number of trucks used, t, where t =
⌈

Q
C

⌉
, we write the

first-order condition for a local maximum with respect to Q for a particular t value as

∂
∏

B(Q)
∂Q

=
(A + tR) (− (b (A + tR)) + aQ)−Q

(
b (A + tR) + I Q2

)
v

2 Q3
. (B.27)

and by setting it equal to zero we obtain three roots. The following root is the only real

and positive root.

Q∗(v) =

(
1− i

√
3
)

G
1
3

6 2
1
3 I v

+

(
1 + i

√
3
)

(aA + a tR−A b v − b tR v)

2
2
3 G

1
3

, where

G = 27 b (A + tR)2 I2 v2

+
√

27
√

(A + tR)3 I3 v3 (−4 a3 + 3 b (4 a2 + 9 b (A + tR) I) v − 12 a b2 v2 + 4 b3 v3)(B.28)

Note that i is the complex number
√
−1. Although a complex number appears in the

equation, complex numbers are cancelled and a real number is obtained when computed.

Hence, the optimal order quantity can be expressed as closed form expression. An important

fact is that, it cannot be explicitly stated with a constant elasticity demand function, where

we have stated an optimality condition for the order quantity. This constitutes the major

difference of the models between constant elasticity and linear demand functions.

Since T is the maximum number of trucks, the buyer obtains T many Q values. The

buyer designates the order quantity that provides the highest profit as her order quantity.

The Supplier’s Problem

The supplier’s profit function (4.45) is not quasi-concave. However, we follow the method

in Chapter 4 to approximate the optimal solution. We review four solution procedures for

this problem.
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B.4.1 Approximation Algorithm

In this section we study the supplier’s problem of finding the optimal wholesale price. We

follow the same notation and propose an approach through which Q∗(v) is approximated.

An important consideration is that the optimal order quantity and the wholesale price

where the truck option changes can be computed by an equation, whereas a line search is

performed in the supply chain with constant-elasticity demand.

B.4.1.1 Approximating optimal order quantity response of the buyer

In this section, we analyze how the buyer’s optimal order quantity, i.e., Q∗(v), changes

as we change v, and present an approximation of Q∗(v). Let us first assume that the buyer

uses only one truck, i.e. t = 1. Let v1 denote the v value for which the optimality condition

is satisfied with Q = C and t = 1. For v > v1, the optimal order quantity obtained

from (B.28) will be smaller than C, and using more than one truck would be more costly.

Therefore, for v > v1, the optimal response of the buyer would be to compute Q∗(v) from

(B.28) with t = 1.

Now let v2 be the smallest value of v for which Equality (B.28) is satisfied with Q = 2C

and t = 2. Since v2 < v1, and for v2 < v < v1, the optimal order quantity obtained from

(B.28) with t = 2 would be between 2C and C. The buyer has now two options for a given

v value, where v2 < v < v1:

1. Order one full truck-load with Q = C,

2. Use two trucks, i.e., t = 2, and determine the order quantity from Equality (B.28)

with t = 2.

It can be readily shown that the profit function of the buyer as expressed in Equation

(B.26) is concave with respect to v when Q is fixed. In the second option with t = 2, as v

changes, Q∗(v) is determined through an approximation. Therefore, as an approximation,

we assume that, in the v2 < v < v1 range, the buyer’s profit function (B.26) will be a linear

function that crosses the points (v2,
∏

B(Q∗(v2))) and (v1 − ε,
∏

B(Q∗(v1 − ε))). The profit

functions of the two options (the profit function of the second option being approximated

as a linear function) may intersect in the [v2, v1] interval. Note that when v = v1, one full

truck-load option dominates the options with two trucks; if that is also the case for v = v2,
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then we will assume that the one full truck-load option dominates the second option in the

[v2, v1] range, and the buyer’s optimal order quantity is equal to C. If the second option

(i.e., use two trucks, determine Q from (B.28) with t = 2) dominates the first option when

v = v2, we then find the value of v where the two options generate the same profit for the

buyer. Let b1
t=2 be the intersection point. Then in the v2 < v < b1

t=2 range, the optimal

order quantity is determined from (B.28) with t = 2, and for the b1
t=2 < v < v1 range the

optimal order quantity is equal to C.

By generalizing the above approach, an approximate procedure for determining the or-

der quantity the buyer chooses can be formally stated as follows:

Initialization: Let i = 1. Determine the smallest value of v, v1, for which Equality (B.28)

holds for t = 1 and Q = C. For v values greater than v1, the buyer will choose his order quan-

tity according to equality (B.28) with t = 1. Assuming that optimal wholesale price can be

at most vmax, the order quantity response is linearly approximated in the interval [v1, vmax]

through a linear function that crosses points (v1, Q
∗(v1) = C) and (vmax, Q∗(vmax)).

Step 1:

• Let i = i + 1.

• Determine the smallest value of v, vi, for which (B.28) holds for t = i and Q = iC.

• Define the upper envelope as the combination of the profit functions of the truck

options leading to the highest profit. Determine the upper envelope of the following

profit functions of the buyer in the vi < v < vi−1 range:

-
∏

B(p∗(Q), Q) where Q = jC, and t = j, j = 1, ..., i− 1.

-
∏

B(p∗(Q(v)), Q(v)) where t = i and Q(v) satisfies Equality (B.28).

• If
∏

B(p∗(Q(v)), Q(v)) at the point vi is higher than any evaluated function
∏

B(p∗(Q), Q)

for t = j where j = 1, ..., i − 1, first through a line search find the first break-point

where the optimal truck option changes, and then linearly approximate the order

quantity between the starting point of the interval and the break-point.

• Find the remaining break-points, if any, where the optimal truck option changes by a

line search. Within these ranges, the order quantity is a multiple of C.
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• Let bk
i , k = 1, .., l, be the break-points generated by the upper envelope. Note that,

from the fact that we are comparing i functions that are either convex or linear, l < 2i.

Step 2: If i > T (maximum number of trucks) combine upper envelopes generated for

intervals [vj+1, vj ] for j = 1, 2, .., T − 1, and their corresponding Q values characterizing the

buyer’s optimal response, and stop; otherwise go to Step 1.

The computational complexity of the above outlined procedure lies with the generation

of the upper envelope of at most T functions in Step 1. The upper envelope can be easily

generated by a number of line searches under the assumption that Q linearly decreases when

full truck option is not used.

B.4.1.2 Derivation of the supplier’s optimal wholesale price under a fixed lot

size multiplier

In the previous section, we have characterized the buyer’s response in terms of her order

quantity. Accordingly, in wholesale price intervals that have been computed in Step 1 of

the procedure presented in Section 5.1, the order quantity is either constant or linearly

approximated. In this section, we illustrate how the supplier can determine his optimal

wholesale price in each of these cases.

Case 1: If Q and n is constant for a wholesale price range [vj+1, vj ], then we can develop

a search algorithm with respect to v in the range [vj+1, vj ]. Replacing p∗(v) with p∗(Q) as

given in Equation (B.23), we can rewrite the supplier’s profit function as follows.

∏
S

(v) =
(v −m)

(
a− b (A+F (Q)+Q v)

Q

)
2

− (I m (−1 + n) Q)
2

−
K
(
a− b (A+F (Q)+Q v)

Q

)
2 n Q

(B.29)

Taking the derivative of (B.29) with respect to v, we can write

∂
∏

S(v)
∂v

=
an Q + b (K − n (A + F (Q)−m Q + 2 Qv))

2 n Q
. (B.30)

Since the second derivative is −b and always negative, we can equate (B.30) to zero and

find the optimal wholesale price as follows:

v∗ =
b (K − (A + F (Q)) n) + (a + b m) n Q

2 b n Q
. (B.31)
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Case 2: If n is constant and Q is not constant, order quantity is approximated as a linear

decreasing function of v. Let this function be Q(v) = c − dQ for a wholesale price range

[vj+1, vj ]. Replacing Q with c − dQ in Equation (B.29), we approximate the best solution

in this interval through a line search over v values in the [vj+1, vj ] range maximizing the

supplier’s profit.

B.4.1.3 Derivation of the optimal lot size multiplier under a fixed value of

the wholesale price

Since we derive the optimal lot size multiplier without replacing the demand function,

the derivation is the same with Section 4.4.1.3. Hence (4.19) gives the optimal lot size

multiplier.

B.4.1.4 The Approximate Algorithm

In this section, we present the approximate algorithm for solving the supplier’s problem

by combining the results that have been developed in the previous sections.

In order to solve the supplier’s problem, first the buyer’s response has to be character-

ized. Optimal market price as a function of the order quantity can be determined by using

Equation (B.23). Substituting this into the profit function, we obtain Equation (B.25). Us-

ing this function, we can then characterize the order quantity as the wholesale price changes

in Section B.4.1.1. Hence we propose a search procedure with respect to the wholesale price.

The algorithm can be formally stated as follows:

Step 1: Characterize the optimal response of the buyer utilizing the procedure outlined in

Section B.4.1.1.

Step 2: Let the optimal profit
∏∗

S be 0 with v = 0.

Step 3: Consider each wholesale price interval where the truck option changes in the re-

sponse profile generated in Step 1, and complete the following steps for each interval:

3.1: If the order quantity is constant let n = 1 and go to the next step. If not,

replace the linear approximation function with Q in the supplier’s profit function (B.29).

Find the optimal wholesale price maximizing the profit function through a line search over

(B.29) as an approximation, and go to Step 3.5.

3.2: Compute the optimal wholesale price by (B.31).

3.3: Let the endpoints of the interval be vstart and vend. If the optimal wholesale

price of Step 3.2 is less than vstart, equate the wholesale price to vstart, whereas if the whole-
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sale is price greater than vend, equate the wholesale price to vend.

3.4: If the optimality condition for the lot size multiplier holds by (4.19), go to Step

3.5. Else, increase n by 1 and go to Step 3.2.

3.5: For the current wholesale price interval, compute the profit with the optimal

wholesale price and the lot size multiplier by (B.29) and compare it with the optimal profit.

If it is greater than the optimal profit, update the optimal profit, the wholesale price and

the lot size multiplier.

B.4.2 Grid Search

In this section, we present the grid search approach for solving the supplier’s problem. The

optimal wholesale price v and corresponding profit for the supplier is determined numerically

by a grid search within the range [m, vmax]. For a fixed wholesale price v, optimal price can

be stated as p∗(Q) = a Q+b (A+F (Q)+Q v)
2 b Q , which is given in (B.23). Q∗(v) is computed by

(B.28). Finally, optimal lot size multiplier is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
,

which is stated in (4.19). We adopt a grid size g = 10−3 in the computations. An algorithm

similar to the one of Section B.1.1 is used with the decision variables and profit functions

mentioned above. Since the buyer needs to determine the profit function for T many truck

options, T line searches are performed to find the order quantity in the algorithm.

B.4.3 Myopic Approach

In this section, we present the algorithm of myopic approach for solving the supplier’s prob-

lem. The supplier optimizes his profit assuming that the buyer does not incur transportation

cost. Hence, the supplier determines the wholesale price according to the results of Section

B.1. However, the buyer determines her decision variables taking the transportation cost

into account for the wholesale price of the supplier. Finally, the supplier re-determines his

lot size multiplier according to the buyer’s actions.

The optimal wholesale price v and corresponding profit for the supplier is determined nu-

merically by a grid search within the range [m, vmax]. For a fixed wholesale price v, optimal

price can be stated as p∗(Q) = A b+a Q+b Q v
2 b Q , which is given in (B.3). Q is computed through

(B.6). The optimal lot size multiplier is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
,

which is stated in (4.19). After wholesale price is determined, optimal order quantity is
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re-determined through (B.28). Afterwards, optimal lot size multiplier is recomputed by

n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
. We adopt a grid size g = 10−3 in the computations.

The algorithm can be formally stated as follows:

Step 1: Let the optimal profit
∏∗

S be 0 with v = 0 and n = 0.

Step 2: Start with v = m and complete the following steps for each wholesale price from

the set {m,m + g,m + 2g, ..., vmax − 2g, vmax − g, vmax}.

2.1: Find Q through (B.6), compute p as defined in (B.3) and
∏

B(Q) as defined in

(4.2).

2.2: Compute n and
∏

S(v) as defined in (4.19) and (4.2) respectively. If
∏

S(v) is

greater than the optimal profit, update the optimal profit
∏∗

S , the wholesale price v∗ and

the lot size multiplier n∗.

Step 3: Compute (B.28) for v∗ and determine Q∗(v). Recalculate n∗ by (4.19).

B.4.4 Golden Section Search: A Heuristic

In this section, we adopt the golden section search algorithm for solving the supplier’s

problem. The details of the procedure have been previously stated in Section 4.1.2. An

algorithm similar to the one of the section is used with the decision variables and profit

functions mentioned above. Since the buyer needs to determine the profit function for T

many truck options, T function evaluations are performed to find the order quantity in the

algorithm.

B.5 Centralized System with Transportation Cost

We can state the profit function as follows:∏
C

(p, Q, n) = (p−m)D(p)− (hs(n− 1) + hb)
Q

2
−
(

K

n
+ A + F (Q)

)
D(p)

Q

−I F (Q)
2

. (B.32)

First order optimality condition can be stated as below.

∂
∏

C(p, Q, n)
∂p

= a− b p− b (−m + p) +
b
(
A + F (Q) + K

n

)
Q

= 0 (B.33)

Solving (B.33) gives the price below:

p∗ =
an Q + b (K + n (A + F (Q) + m Q))

2 b n Q
(B.34)
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Since the second derivative is −2b and b is always positive, the function is convex and the

p∗ is the optimal market price. Replacing p∗ with p in (B.32), we can rewrite the profit

function as

∏
C

(p, n) =
a2 n2 Q2 + b2 (K + n (A + F (Q) + m Q))2

4 b n2 Q2

−
2 b n Q

(
I mn2 Q2 + a (K + n (A + F (Q) + m Q))

)
4 b n2 Q2

− I F (Q)
2

. (B.35)

Considering a truck interval, we replace F (Q) with tR and write the first-order condition

for a local maximum with respect to Q as

∂
∏

B(Q)
∂Q

= −b (K + (A + tR) n)2 − (a− b m) n (K + (A + tR) n) Q

2 n2 Q3

−I mn

2
. (B.36)

Setting (B.36) equal to zero we obtain three roots where the following root is the only real

and positive root.

Q∗(v) =

(
1 + i

√
3
) (

aK n− b K m n + aA n2 + aF n2 −A b mn2 − b F m n2
)

2
2
3 Z

+

(
1− i

√
3
)

Z

6 2
1
3 I mn3

where

Z =
(

M +
√

M2 + 108 I3 m3 (−a + b m)3 n12 (K + (A + F (Q)) n)3
) 1

3

, and

M = 27 b I2 m2 n6 (K + (A + F (Q)) n)2 (B.37)

Note that i is the complex number
√
−1. Although a complex number appears in the

equation, complex numbers are canceled and a real number is obtained when computed.

Hence, the optimal order quantity can be expressed as closed form expression. Finally, we

can claim that optimal lot size multiplier does not depend on the demand function. Hence

the derivation is the same with Section 4.4.1.3. We can state the result of this section here

as:

n∗ =

⌊
1
2

(
1 +

√
1 + 4

(A + tR)hs

K(hb − hs)

)⌋
or

⌈
1
2

(
−1 +

√
1 + 4

(A + tR)hs

K(hb − hs)

)⌉
(B.38)

Since T is the maximum number of trucks, the resultant profit functions of T many truck

options are evaluated and the highest profit is selected with the associated decision variables.
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Table B.1: Demand parameter values in the computational analysis.

a 20000

b {625, 1000, 1750, 2500}

B.6 Computational Results

B.6.1 Problem Generation

We test the algorithms’ effectiveness over a set of problems similar to the one in Section 4.6.

The combinations of these parameters again lead to a set of 576 problems. The algorithms

not incorporating transportation cost are tested with a set of 144 problems. They do not

consider transportation cost however truck capacities are valid for the problems. We take

the maximum wholesale price, vmax, as 20 and fixed. Table B.1 displays the parameter

values for the demand function used in creating the test problems. The remaining part of

the parameter values are adopted from Table 4.1. We solve five different problems with the

algorithms mentioned. In the approximation algorithms, for finding the optimal shipment

size for a given v, the line search procedure is terminated when the length of the uncertainty

interval is less than 0.001. Golden section search algorithm for solving the optimal order

quantity is used as a line search method in all of the problems. The length of the uncertainty

interval is 0.001 in the line search. We also run the grid search with increments of size 0.001.

Under this precision scheme, the test problems have been solved in Matlab 6.5 in Mi-

crosoft Windows XP on a computer with an Intel Pentium M 1.60 GHz processor, and 512

MB of RAM.

B.6.2 Performance of the Algorithms Considering Profit Function

The summary of the computational results are provided in Table B.2. It displays the ratios

of the supplier’s profit obtained by the algorithm to the supplier’s profit obtained by the

grid search for the decentralized case. This is an indicator of the quality of the solutions

generated by our approximation approach. Cells include the minimum, maximum, average

and standard deviation values for the performance measures.
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Table B.2: Performance of the algorithms considering supplier’s profit (linear demand).

Method Appendix Minimum Maximum Average S. Deviation

Approximation A. B.4.1 0.048201 1.000001 0.927405 0.185793

Myopic A. B.4.3 0.990023 1.000024 0.999857 0.000907

Golden Section S. B.4.4 1.000396 1.173842 1.020948 0.030862

Furthermore, the performance of the myopic approach is significantly satisfactory. Hence,

neglecting the transportation cost in linear demand environment may be effective. On the

other hand, golden section search algorithm’s performance is outstanding. The perfor-

mance of the approximation algorithm is not better than golden section search algorithm.

The quality of its performance can be considered as moderately acceptable. On average,

the approximate algorithm achieves 92.74% of the profits that can be achieved by the grid

search. The proposed algorithm works on an approximation with fixed truck options, and

when the optimal shipment size is less than or equal to a single truck load, the performance

of the algorithm decreases. This is a natural outcome, because if the optimal shipment size

is less than a truck load, there is no need to incorporate the transportation cost, and it can

be taken as fixed. Therefore, omitting the problems having less than or equal to a single

truck load shipment size the approximate algorithm achieves 99.83% of the profit that can

be achieved with the grid search. Hence, the performance of the approximation algorithm

is promising if less than truck load shipments are discarded. Factor analysis for the compu-

tational results is provided in Table B.3. The factor analysis is based on parameters K, A,

b, C, and R. Treatment levels are stated in the second column. Moreover, minimum, mean

and maximum values of the algorithms are displayed. Algorithms of Section B.4 are evalu-

ated. An important consideration is that, the performance of the approximation algorithm

increases as the slope of the demand increases. Hence, we can say that potential benefits of

employing the approximation algorithm become larger in price sensitive environments.
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Table B.3: Factor analysis for algorithms of Appendix B.4 with linear demand.

Appendix: B.4.1 B.4.3 B.4.4

Factor T. Level MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX

K 10 0.05 0.85 1.00 0.99 0.99 1.00 1.00 1.02 1.17

25 0.13 0.90 1.00 1.00 1.00 1.00 1.00 1.02 1.17

100 0.45 0.97 1.00 0.99 0.99 1.00 1.00 1.02 1.17

250 0.81 0.99 1.00 0.99 0.99 1.00 1.00 1.02 1.17

A 0.5K 0.20 0.95 1.00 0.99 0.99 1.00 1.00 1.02 1.17

K 0.10 0.93 1.00 0.99 0.99 1.00 1.00 1.02 1.17

2K 0.05 0.90 1.00 0.99 0.99 1.00 1.00 1.02 1.17

b 625 0.05 0.88 1.00 0.99 0.99 1.00 1.00 1.01 1.03

1000 0.07 0.92 1.00 0.99 0.99 1.00 1.00 1.01 1.06

1750 0.11 0.95 1.00 0.99 0.99 1.00 1.00 1.02 1.11

2500 0.13 0.96 1.00 0.99 0.99 1.00 1.00 1.04 1.17

C 200 0.97 1.00 1.00 0.99 0.99 1.00 1.00 1.04 1.17

400 0.65 0.99 1.00 0.99 0.99 1.00 1.00 1.02 1.08

1000 0.05 0.79 1.00 0.99 0.99 1.00 1.00 1.01 1.04

R 10 0.05 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.02

20 0.16 0.90 1.00 1.00 1.00 1.00 1.00 1.01 1.03

50 0.42 0.95 1.00 0.99 0.99 1.00 1.00 1.02 1.08

100 0.70 0.98 1.00 0.99 0.99 1.00 1.00 1.05 1.17
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Appendix C

SUPPLY CHAIN COORDINATION WITH LINEAR DEMAND

FUNCTION

In this chapter, we evaluate the performance of the following coordination mechanisms

under linear demand function.

• Transportation Cost Sharing Contract (TCSC)

• Quantity Discounts (QD)

• Volume Discounts (VD)

• Simultaneous Offer of Quantity and Volume Discounts (QVD)

We model these mechanisms considering transportation cost and provide numerical analysis.

Besides, we further model the simultaneous offer of quantity and volume discounts.

C.1 Initial Market Equilibrium

In this chapter, the decentralized supply chain considered in Section B.4 is evaluated as the

base supply chain. Moreover, the equilibrium point given by the solution of the Stackelberg

game is considered as the initial market equilibrium. Let v∗, n∗, p∗, Q∗ be the equilibrium

decisions of the game and
∏

S(v∗, n∗),
∏

B(p∗, Q∗) be the equilibrium profits.

C.2 Transportation Cost Sharing Contract

The transportation cost sharing contract is modeled in this section. The mechanism requires

the supplier share a predetermined portion of the transportation cost of the buyer. The

supplier shares (1 − α) portion of the total transportation cost and the α value providing

the highest profit is selected as the optimal transportation cost sharing contract.

The Buyer’s Problem
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To obtain profit functions, we replace F (Q) with (α)F (Q) in (4.44) and insert (1 −

α)F (Q)D(p)
Q into the supplier’s profit function (4.45).

The buyer’s profit function can be rewritten as follows:∏
B

(p, Q, α) = (p− v)D(p)− (v +
αF (Q)

Q
)I

Q

2
− (A + αF (Q))

D(p)
Q

. (C.1)

Likewise, the supplier’s profit function is:∏
S

(v, n, α) = (v −m)D(p∗(v))−mI(n− 1)
Q∗(v)

2
−
(

K

n
+ (1− α)F (Q)

)
D(p∗(v))

Q∗(v)
,(C.2)

We follow the derivation steps in Section B.4 for the buyer’s problem. We obtain first

and second order optimality conditions with respect to p. Equating the first-order condition

to zero we obtain the following global optimal solution for optimal market price:

p∗(Q) =
aQ + b(A + F (Q) + Qv)

2bQ
. (C.3)

We can replace p∗(Q) and rewrite the buyer’s profit function as follows:∏
B

(Q) = (p∗(Q)− v)(a− bp∗(Q))− vI
Q

2
− (A + αF (Q))

(a− bp∗(Q))
Q

− αF (Q)I
2

. (C.4)

For a fixed number of trucks t, where (t− 1)C < Q ≤ tC, we can rewrite (C.4) as∏
B

(Q) = (p∗(Q)− v)(a− bp∗(Q))− vI
Q

2
− (A + αtR)

(a− bp∗(Q))
Q

− αtRI

2
. (C.5)

We write the first-order condition for a local maximum with respect to Q for a particular t

value as

∂
∏

B(Q)
∂Q

=
(A + αtR) (− (b (A + αtR)) + aQ)−Q

(
b (A + αtR) + I Q2

)
v

2 Q3
. (C.6)

and by setting it equal to zero we obtain the single positive and real root

Q∗(v) =

(
1− i

√
3
)

G
1
3

6 2
1
3 I v

+

(
1 + i

√
3
)

(aA + aαtR−A b v − b αtR v)

2
2
3 G

1
3

, where

G = 27 b (A + αtR)2 I2 v2

+
√

27
√

(A + αtR)3 I3 v3 (−4 a3 + 3 b (4 a2 + 9 b (A + αtR) I) v − 12 a b2 v2 + 4 b3 v3)(C.7)

Equality (C.7) provides the optimal order quantity when the number of trucks is fixed as t,

and (t− 1)C < Q ≤ tC. Since T is the maximum number of trucks, the buyer can perform
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T evaluations using (C.7) and obtain T many Q values. The buyer designates the order

quantity that provides the highest profit as her order quantity.

The Supplier’s Problem

We solve the problem utilizing the grid search. If Q and n is constant, replacing p∗(v)

with p∗(Q) as given in Equation (C.3), we can rewrite the supplier’s profit function as

follows.∏
S

(v) = (v −m)D(p∗(Q))−mI(n− 1)
Q

2
−
(

K

n
+ (1− α)F (Q)

)
D(p∗(Q))

Q
. (C.8)

C.2.1 Derivation of the optimal lot size multiplier under a fixed value of the

wholesale price

As in Section 5.3, we state first and second derivatives of the supplier’s profit function

(C.2) with respect to n, and state two optimality conditions. Since the equations do not

depend on the demand function, the derivation is the same. Hence, we do not repeat the

derivation and state the optimal lot size multiplier as follows:

n∗ =

⌈
1
2

(
−1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌉
or

⌊
1
2

(
1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌋
. (C.9)

The optimal contract and corresponding profit for the supplier is determined numerically

by a grid search within the wholesale price range [m, vmax] and sharing ratio (1− α) range

[0,1]. For a fixed wholesale price v and sharing ratio 1− α, optimal price can be stated as

p∗(Q) = b(A+Qv+αF (Q))
Q(b−1) , which is given in (C.3). Optimal order quantity is given by (C.7).

Finally, optimal lot size multiplier is given by n∗ =
⌈

1
2

(
−1 +

√
1 + 8KD(p∗(v))

mI[Q∗(v)]2

)⌉
, which is

stated in (C.9). We adopt a grid size g = 10−3 for the wholesale price and g = 10−2 for the

sharing ratio in the computations. The algorithm of Section 5.3.1 is used with the decision

variables and profit functions mentioned above.

C.3 Quantity Discounts

In this section, we model the optimal quantity discount offer of the supplier with linear

demand. The solution of the Stackelberg game is available for the supplier and the buyer

as a priori. Therefore, the buyer does not accept a wholesale price vQD and an order

quantity QQD that would lead to a profit less than
∏

B(p∗, Q∗). Hence, the order quantity

Q∗QD is determined by finding the value of Q∗QD where Q∗QD ≥ Q∗v∗ for which
∏

B(QQD) ≥
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∏
B(p∗, Q∗). Likewise, the supplier will not offer a quantity discount if the optimal wholesale

price offer v∗QD leads to a profit less than
∏

S(v∗, n∗). In such a situation, we may conclude

that a feasible quantity discount does not exist. However, there exists a feasible quantity

discount for the supply chain for all of the examples in our test in Section C.6.

Let us restate the profit function of the buyer as a function of the market price. Since

the supplier offers a discount based on the order quantity, the supplier does not select an

order quantity but a market price.∏
B

(p) = (p− v)D(p)− (v +
F (Q)

Q
)I

Q

2
− (A + F (Q))

D(p)
Q

. (C.10)

The supplier offers quantity discounts (vQD, QQD) where vQD < v∗ and QQD > Q∗.

The optimization formulation for the optimal quantity discount offer of the supplier can be

stated as follows:

max
∏
S

(vQD, n,QQD) = (vQD −m)D(p∗(vQD))−mI(n− 1)
QQD

2

−
(

K

n

)
D(p∗(vQD))

QQD
(C.11)

s.t.
∏
B

(p∗(QQD)) ≥
∏
B

(p∗, Q∗), where (C.12)

∏
B

(p∗(QQD) = (p∗(QQD)− vQD)(a− bpQD)− vQDI
QQD

2

−(A + F (QQD))
(a− bpQD)

QQD
(C.13)

If the buyer accepts the discount scheme where
∏

B(p∗(QQD)) ≥
∏

B(p∗, Q∗), through

(B.23) the optimal market price can be stated as follows:

p∗(QQD) =
aQQD + b (A + F (QQD) + QQD v)

2 b QQD
(C.14)

Optimal quantity offer QQD and discounted wholesale price offer vQD can be determined by

a grid search through the range (Q∗(v∗), TR] and (m, v∗) respectively. Furthermore, (4.19)

provides the optimal lot size multiplier for a fixed whole price, which can be restated as

n∗ =

⌈
1
2

(
−1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌉
or

⌊
1
2

(
1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌋
. (C.15)

We adopt a grid size g = 5.10−3 for the wholesale price and g = 100 for the order quantity

in the computations. The algorithm of Section 5.4 is used with the decision variables and

profit functions mentioned above.



Appendix C: Supply Chain Coordination with Linear Demand Function 102

C.4 Volume Discounts

In this section, we consider the optimal volume discount offer of the supplier. The supplier

offers a wholesale price vV D if the market price is at least pV D. In other words, if the market

price is lower than or equal to vV D, a volume discount is offered on all units.

The solution of the Stackelberg game is available for the supplier and the buyer as a

priori. Therefore, the buyer does not accept a wholesale price vV D and a market price pV D

that would lead to a profit less than
∏

B(p∗, Q∗). Hence, the market price p∗V D is determined

by finding the value of p∗V D where p∗V D ≤ p∗v∗ for which
∏

B(pV D) ≥
∏

B(p∗, Q∗). Likewise,

the supplier will not offer a volume discount if the optimal wholesale price offer v∗V D leads to

a profit less than
∏

S(v∗, n∗). In such a situation, we may conclude that a feasible volume

discount does not exist. However, there exists a feasible volume discount for the supply

chain for all of the examples in our test in Section C.6.

Let us restate the profit function of the buyer as a function of the order quantity, given

the market price. Since the supplier offers a discount based on the market price, the supplier

does not select an order quantity but a market price.

∏
B

(Q) = (p− v)D(p)− (v +
F (Q)

Q
)I

Q

2
− (A + F (Q))

D(p)
Q

. (C.16)

The supplier offers volume discounts (vV D, pV D) where vV D < v∗ and pV D < p∗. The

optimization formulation for the optimal volume discount offer of the supplier can be stated

as follows:

max
∏
S

(vV D, pV D, n) = (vV D −m)D(pV D)−mI(n− 1)
Q∗(vV D)

2

−
(

K

n

)
D(pV D)
Q∗(vV D)

(C.17)

s.t.
∏
B

(Q∗(vV D)) ≥
∏
B

(p∗, Q∗), where (C.18)

∏
B

(Q∗(vV D)) = (pV D − vQD)(a− bpV D)− vV DI
Q∗(vV D)

2

−(A + F (Q∗(vV D)))
(a− bpV D)
Q∗(vV D)

(C.19)
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Incorporating the demand function into (C.16), first order optimality condition for a

particular truck interval, t, can be stated as follows:

∂
∏

B(Q)
∂Q

=
(A + tR) (a− b p)

Q2
− I v

2
= 0 (C.20)

Since the market demand is positive, second derivative is always negative as follows.

∂2
∏

B(Q)
∂Q2

=
−2 (A + tR) (a− b p)

Q3
< 0 (C.21)

Hence, solving (C.20) for Q gives the optimal order quantity

Q∗(v) =

√
2 (A + tR) (a− b p)

I v
(C.22)

If the buyer accepts the discount scheme where
∏

B(Q∗) ≥
∏

B(p∗, Q∗), the optimal

order quantity can be stated as:

Q∗(vV D) =

√
2 (A + tR) (a− b pV D)

I vV D
(C.23)

Optimal market price offer pV D and discounted wholesale price offer vV D can be deter-

mined by a grid search through the range (m, p∗] and (m, v∗) respectively. Furthermore,

(4.19) provides the optimal lot size multiplier for a fixed whole price, which can be restated

as

n∗ =

⌈
1
2

(
−1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌉
or

⌊
1
2

(
1 +

√
1 +

8KD(p∗(v))
mI[Q∗(v)]2

)⌋
. (C.24)

We adopt a grid size g = 2.5.10−2 for the wholesale price and g = 5.10−2 for the market

price in the computations. The algorithm of Section 5.5 is used with the decision variables

and profit functions mentioned above.

C.5 Simultaneous Offer of Quantity and Volume Discounts

In this section, we consider the optimal quantity and volume discount offer of the supplier.

The supplier offers a wholesale price vQV D if the market price is at least pQV D and the order

quantity is at least QQV D.

The solution of the Stackelberg game is available for the supplier and the buyer as a

priori. The market price p∗QV D and the order quantity Q∗QV D are determined by finding the

value of p∗QV D and Q∗QV D where p∗QV D ≤ p∗v∗ and Q∗QV D ≥ Q∗v∗ for which
∏

B(pQV D, QQV D) ≥
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∏
B(p∗, Q∗). Likewise, the supplier will not offer a volume discount if the optimal wholesale

price offer v∗QV D leads to a profit less than
∏

S(v∗, n∗). In such a situation, we may con-

clude that a feasible discount does not exist. However, there exists a feasible discount for

the supply chain for all of the examples in our test in Section C.6.

The supplier offers quantity and volume discounts (vQV D, pQV D, QQV D) where vQV D <

v∗, pQV D < p∗, QQV D > Q∗. The optimization formulation for the optimal volume discount

offer of the supplier can be stated as follows:

max
∏
S

(vQV D, QQV D, pQV D, n) = (vQV D −m)D(pQV D)−mI(n− 1)
QQV D

2

−
(

K

n

)
D(pQV D)

QQV D
(C.25)

s.t.
∏
B

(pQV D, QQV D) ≥
∏
B

(p∗, Q∗) (C.26)

Since, the supply chain variables are controlled by the supplier, the buyer’s profit func-

tion can be equated to the initial market equilibrium profit and the discounted wholesale

price can be determined based on the price and order quantity. Solving
∏

B(pQV D, QQV D) =∏
B(p∗, Q∗) gives the optimal discounted wholesale price as follows:

v∗QV D =
2 (a− b p) (−A− F (Q) + p Q)− 2 Q

∏
B(p∗, Q∗)

Q (2 a− 2 b p + I Q)
(C.27)

We adopt a grid size g = 100 for the order quantity and g = 10−2 for the market price

in the computations. The algorithm of Section 5.6 is used with the decision variables and

profit functions mentioned above.

C.6 Effectiveness of The Alternative Coordination Mechanisms

The relative performance of the alternative coordination schemes are evaluated through a

numerical study. We use the same dataset of Section B.6.

Table C.1 provides a summary of the markup and profit results of the decentralized

supply chain comparing with centralized supply chain. The results for the supply chain are

significantly different than the results of the supply chain with constant elasticity demand

function. Comparing the results of the supply chain with constant elasticity demand func-

tion, markup of the supplier is significantly higher than the buyer. Centralized system’s
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Table C.1: Markup and profit sharing levels in supply chains.

Minimum Maximum Mean S. Deviation

Supplier’s markup
(

v
m

)
3.82 16.46 9.25 4.60

Buyer’s markup
(p

v

)
1.40 1.59 1.47 0.03

Markup of decentralized s.
( p

m

)
6.01 24.47 13.68 6.95

Markup of centralized s.
( p

m

)
4.51 16.84 9.52 4.63

Profit % of the supplier
(
100

Q
SQ

B +
Q

S

)
60.77 70.39 67.17 0.94

Profit % of the buyer
(
100

Q
BQ

B +
Q

S

)
29.61 39.23 32.83 0.94

Centralization effect
(
100

Q
B +

Q
SQ

C

)
68.05 79.43 73.40 1.47

markup is higher than the decentralized system. On the average, the buyer receives one

third of the total profit and the supplier receives two thirds of the total profit. The situa-

tion was vise versa for the supply chain with constant elasticity demand function. Hence,

the results seem to depend on the functional form of the demand. Moreover, decentralized

system can cover 73.40% of the centralized system’s profit, therefore there is an important

motivation for the supply chain members to coordinate.

Moreover, Table C.2 provides a summary of the computational results. On the other

hand, Tables C.3, C.4, C.5 and C.6 provides a factor analysis for the results of the coordi-

nation mechanisms. The results of the study evidently demonstrate that the effectiveness

of the coordination mechanisms increase in the following order: transportation cost sharing

contract, quantity discounts, volume discounts, simultaneous offer of quantity and volume

discounts. Hence the least effective mechanism is transportation cost sharing contract.

Quantity discounts are better than the transportation cost sharing contract. However, the

performance of the simultaneous offer of quantity and volume discounts is very similar to

the performance of the volume discounts. When constant elasticity demand function is

used, there is a significant difference between them but for the linear demand case, the

simultaneous offer of quantity and volume discounts do not have a significant superiority

over volume discounts.
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Table C.2: Summary of the computational results of the coordination mechanisms with
linear demand.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

TCSC Minimum 68.05 0.00 -0.16 0.00 0.00 0.00 0.00

Maximum 79.43 2.79 1.02 0.66 2.54 12.23 3.96

Mean 73.44 0.03 0.18 0.00 0.03 0.14 0.05

S. Deviation 1.44 0.24 0.18 0.03 0.21 1.01 0.34

QD Minimum 69.57 0.05 -0.16 0.10 -1.02 0.00 0.07

Maximum 79.98 2.78 1.02 5.43 0.16 1.82 4.08

Mean 74.07 0.66 0.18 1.18 -0.18 0.35 0.91

S. Deviation 1.19 0.43 0.18 0.84 0.18 0.39 0.62

VD Minimum 82.79 10.43 4.19 21.03 -8.45 0.00 13.62

Maximum 99.43 26.54 8.45 54.95 -4.19 1.95 38.69

Mean 92.46 19.05 6.54 38.47 -6.54 0.47 26.03

S. Deviation 5.23 5.59 1.56 11.39 1.56 0.36 7.85

QVD Minimum 82.79 10.20 4.10 20.68 -8.53 0.00 13.46

Maximum 99.43 26.54 8.53 55.52 -4.10 0.00 38.97

Mean 92.46 19.06 6.66 38.70 -6.66 0.00 26.03

S. Deviation 5.28 5.64 1.61 11.58 1.61 0.00 7.92
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Table C.3: Factor analysis of transportation cost sharing contract.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 74.34 0.00 0.00 0.00 0.00 0.00 0.00

25 74.01 0.00 0.00 0.00 0.00 0.00 0.00

100 73.31 0.07 0.00 0.01 0.00 0.31 0.10

250 72.09 0.06 0.00 0.01 0.00 0.25 0.08

A 0.5K 73.09 0.04 0.00 0.00 0.00 0.17 0.06

K 73.37 0.05 0.00 0.01 0.00 0.22 0.07

2K 73.85 0.01 0.00 0.00 0.00 0.03 0.01

b 625 73.93 0.02 0.00 0.00 0.00 0.08 0.03

1000 73.73 0.01 0.00 0.00 0.00 0.06 0.02

1750 73.38 0.06 0.00 0.01 0.00 0.27 0.09

2500 72.70 0.04 0.00 0.00 0.00 0.16 0.05

C 200 73.51 0.00 0.00 0.00 0.00 0.00 0.00

400 73.42 0.05 0.00 0.00 0.00 0.21 0.07

1000 73.38 0.05 0.00 0.01 0.00 0.21 0.07

R 10 73.44 0.05 0.00 0.00 0.00 0.20 0.07

20 73.44 0.04 0.00 0.00 0.00 0.18 0.06

50 73.47 0.03 0.00 0.00 0.00 0.10 0.04

100 73.41 0.02 0.00 0.00 0.00 0.08 0.03
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Table C.4: Factor analysis of quantity discounts.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 74.74 0.39 0.00 0.65 0.00 0.30 0.53

25 74.53 0.52 0.00 0.89 0.00 0.30 0.70

100 74.01 0.77 0.00 1.39 0.00 0.38 1.06

250 72.99 0.97 0.00 1.80 0.00 0.41 1.36

A 0.5K 73.81 0.76 0.00 1.38 0.00 0.36 1.05

K 73.98 0.66 0.00 1.20 0.00 0.32 0.91

2K 74.41 0.57 0.00 0.98 0.00 0.37 0.78

b 625 74.30 0.39 0.00 0.73 0.00 0.13 0.53

1000 74.22 0.50 0.00 0.92 0.00 0.21 0.69

1750 74.05 0.74 0.00 1.33 0.00 0.35 1.01

2500 73.69 1.02 0.00 1.76 0.00 0.71 1.42

C 200 74.01 0.50 0.00 0.81 0.00 0.43 0.69

400 74.02 0.65 0.00 1.12 0.00 0.41 0.89

1000 74.17 0.84 0.00 1.62 0.00 0.21 1.16

R 10 74.06 0.67 0.00 1.23 0.00 0.29 0.93

20 74.06 0.67 0.00 1.21 0.00 0.33 0.92

50 74.10 0.66 0.00 1.17 0.00 0.37 0.91

100 74.04 0.65 0.00 1.13 0.00 0.40 0.89
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Table C.5: Factor analysis of volume discounts.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 93.45 19.11 0.07 38.18 -0.07 0.46 25.72

25 93.10 19.09 0.07 38.27 -0.07 0.46 25.82

100 92.18 18.95 0.07 38.38 -0.07 0.49 25.96

250 91.09 19.06 0.07 39.05 -0.07 0.46 26.61

A 0.5K 92.02 18.97 0.07 38.42 -0.07 0.47 26.06

K 92.44 19.12 0.07 38.63 -0.07 0.44 26.14

2K 92.91 19.07 0.07 38.37 -0.07 0.49 25.87

b 625 85.12 11.20 0.04 22.51 -0.04 0.23 15.16

1000 90.28 16.56 0.06 33.35 -0.06 0.39 22.48

1750 96.77 23.45 0.08 47.40 -0.08 0.56 32.02

2500 97.66 25.00 0.08 50.62 -0.08 0.69 34.45

C 200 92.63 19.12 0.07 38.57 -0.07 0.50 26.08

400 92.47 19.09 0.07 38.54 -0.07 0.48 26.09

1000 92.28 18.95 0.07 38.30 -0.07 0.43 25.90

R 10 92.43 19.04 0.07 38.48 -0.07 0.47 26.01

20 92.41 19.01 0.07 38.43 -0.07 0.43 25.97

50 92.47 19.03 0.07 38.42 -0.07 0.46 25.98

100 92.53 19.14 0.07 38.55 -0.07 0.51 26.15
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Table C.6: Factor analysis of quantity and volume discounts.

CR1 CR2 CR3 CR4 CR5 CR6 CR7

K 10 93.44 93.44 0.07 38.38 -0.07 0.00 25.71

25 93.08 19.07 0.07 38.47 -0.07 0.00 25.80

100 92.20 18.97 0.07 38.65 -0.07 0.00 25.98

250 91.12 19.09 0.07 39.31 -0.07 0.00 26.64

A 0.5K 92.02 18.97 0.07 38.65 -0.07 0.00 26.06

K 92.44 19.12 0.07 38.84 -0.07 0.00 26.15

2K 92.92 19.08 0.07 38.62 -0.07 0.00 25.88

b 625 85.06 11.15 0.04 22.52 -0.04 0.00 15.08

1000 90.24 16.52 0.06 33.45 -0.06 0.00 22.42

1750 96.82 23.51 0.08 47.78 -0.08 0.00 32.09

2500 97.72 25.05 0.08 51.06 -0.08 0.00 34.53

C 200 92.62 19.11 0.07 38.80 -0.07 0.00 26.07

400 92.46 19.09 0.07 38.77 -0.07 0.00 26.09

1000 92.30 18.97 0.07 38.54 -0.07 0.00 25.93

R 10 92.44 19.05 0.07 38.74 -0.07 0.00 26.03

20 92.41 19.02 0.07 38.66 -0.07 0.00 25.98

50 92.46 19.02 0.07 38.63 -0.07 0.00 25.97

100 92.52 19.13 0.07 38.79 -0.07 0.00 26.14
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