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ABSTRACT

PT-symmetric Hamiltonians and their relation with pseudo-Hermiticity are intro-

duced. For a diagonalizable Hamiltonian H with a discrete spectrum, equivalence

of the reality of its spectrum and its E-pseudo-Hermiticity for some positive definite

operator E is shown. For such an E-pseudo-Hermitian Hamiltonian H defined on a

Hilbert space HS, physical Hilbert space HS(phys) which is consistent with Quantum

Measurement Theory is constructed and its unitary equivalence with HS is shown.

Then using pseudo-Hermitian Theory the Hamiltonian H, defined on real line and

having a PT-symmetric double Delta function potential with a purely imaginary cou-

pling constant Z, is explored. The existence of a critical Z value Zc which ensures the

reality of the spectrum for those Z values whose absolute value is less than the absolute

value of Zc is shown. A biorthonormal system consisting of bounded eigenfunction

solutions of H and its adjoint is then chosen to construct a metric operator E up to

the first order terms in Z. The equivalent Hermitian Hamiltonian h up to the second

order terms in Z is then found. The result is used to calculate the energy expectation

values of some Gaussian wave packets and to examine the non-Hermiticity effect on

those expectation values. Both in position and momentum spaces interaction regions,

outside of which non-Hermiticity effect diminishes rapidly, are found.
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ÖZ

PT-Simetrik Hamiltonlar tanıtıldı ve pseudo-Hermisyenlikle olan ilişkileri gösterildi.

Kesikli spektrumu olan diyagonalleştirilebilir Hamiltonların spektrumlarının reelliği

ile bu Hamiltonların herhangi bir pozitif -belirli bir E operatörü için E-pseudo-Hermisyen

olmalarının eşdeğerliği gösterildi. Bir HS Hilbert uzayında tanımlanmış herhangi bir

E-pseudo-Hermisyen Hamilton H için Kuantum Ölçüm Teorisi ile uyumlu fiziksel

Hilbert uzayı HS(fiz) kuruldu ve bu uzayın HS Hilbert uzayıyla olan üniter eşdeğeliği

gösterildi. Daha sonra Pseudo-Hermisyen Teori kullanılarak reel eksen üzerinde tanımlı

ve potansiyel kısmı tamamiyle sanal bir Z eklenti sabitli PT-simetrik çift Delta fonksiy-

onundan oluşan Hamilton H incelendi. H’in spektrumunun, mutlak değeri belli bir kri-

tik değerden az olan bütün Z değerleri için reel olduğu gösterildi. Z’de birinci dereceye

kadar bir E metrik operatörü oluşturmak için H’in sınırlı özdeğer fonksiyonlarından

oluşan bir çiftdikey sistem seçildi. Daha sonra Z’de ikinci dereceye kadar eşdeğer

Hermisyen Hamilton h bulundu. Sonuç bazı Gausssal dalga paketlerinin beklenen

enerji değerlerini hesaplamak için kullanıldı ve H’in Hermisyen olmayan kısmının bu

beklenen enerji değerleri üstündeki etkisi incelendi. Hem pozisyon hem de momentum

uzaylarında, dışarısında bu etkilerin hızlıca yok olduğu etkileşim alanları bulundu.

iv



TABLE OF CONTENTS

List of Figures vii

Chapter 1: Preliminaries 1

1.1 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Postulates of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 8

Chapter 2: Introduction 12

Chapter 3: Characterization of the Reality of the Spectrum 14

Chapter 4: Physical Aspects 17

Chapter 5: Calculation Methods of the Metric Operator η+ and the

Equivalent Hermitian Hamiltonian h 20

Chapter 6: PT -Symmetric Delta Function Potential 22

6.1 Analysis of the Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Finding a Biorthonormal System . . . . . . . . . . . . . . . . . . . . 26

6.3 Construction of the Metric Operator . . . . . . . . . . . . . . . . . . 32

6.4 Physical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.5 Energy Expectation Value of Some Gaussian Wave Packets . . . . . . 35

Chapter 7: Conclusion 40

Appendices 42

Appendix A: Existence of a Critical G Value Gc 42

v



Appendix B: Boundedness of η+1 44

Bibliography 46

vi



LIST OF FIGURES

6.1 Plots of the solutions of Eq1 (the full curve) and Eq2 (the dashed

curve) on complex plane for different G values G1 = 0.35, G2 = 0.20,

G3 = 0.14 and G4 = 0.02. Horizontal and vertical axes represent

real and imaginary axes, respectively. In the first picture, there is no

intersection points in the left half plane, so we are in the safe region.

For G = 0.20 the full curve gets closer to the imaginary axis and there

is a pair of intersection points on the imaginary axis. This gives us

our critical G value. In the third picture the full curve shifts to the

left a little bit more and there appears a complex conjugate pair of

intersection points on the left half plane and we get our corresponding

complex energy eigenvalues. In the last one we see that while the first

pair keeping stay in the left half plane, now there comes a new pair of

intersection points to the left half plane as well. . . . . . . . . . . . . 27

6.2 Plots of B1 as a function of k0 for σ = 0.5, σ = 1, σ = 2, σ = 3, σ = 4

and σ = 5 in units where a = 1. . . . . . . . . . . . . . . . . . . . . . 38

6.3 Plots of B2 as a function of x0 for σ = 0.2, σ = 0.5, σ = 1, σ = 2,

σ = 6 and σ = 10 in units where a = 1. . . . . . . . . . . . . . . . . . 39

vii



Chapter 1: Preliminaries 1

Chapter 1

PRELIMINARIES

1.1 Linear Algebra

Definition: (Complex Inner Product Space) A Complex Inner Product

Space is a complex vector space V which is endowed with a complex inner

product function 〈 | 〉 : V× V −→ C satisfying the following properties:

∀ v, w, z ∈ V and ∀a ∈ C

• 〈v|v〉 ∈ R+ ∪ {0} (positivity)

• 〈v|v〉 = 0 ⇔ |v〉 = 0 (definiteness)

• 〈v|(w + z)〉 = 〈v|w〉+ 〈v|z〉 (additivity in second slot)

• 〈v|aw〉 = a〈v|w〉 (homogeneity in second slot)

• 〈v|w〉 = 〈w|v〉∗ (conjugate symmetry)

where z∗ means complex conjugate of z.

Definition: (Normed Vector Space) A Normed Vector Space is a complex

vector space V which is endowed with a norm function ‖ . ‖ : V −→ R satisfying

the following properties: ∀ v, w ∈ V and ∀ a ∈ C

• ‖av‖ = |a|‖v‖

• ‖v + w‖ ≤ ‖v‖+ ‖w‖

• ‖v‖ = 0 ⇔ v = 0
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Realize that every complex inner product space V becomes a normed vector space with

a norm ‖ . ‖ defined as ‖v‖ :=
√
〈v|v〉 ∀v ∈ V. So when we talk about a topological

property of an inner product space, we mean that the topological property exists with

respect to the norm induced from its inner product.

Definition: (Complete Normed Space) A normed vector space is called a

complete normed space if every Cauchy sequence in it converges, i.e., for every

sequence {vn}n∈N such that limM→∞ ‖vM − vM+n‖ = 0 whatever n is, then

limM→∞ vM = v for some v ∈ V.

Definition: (Hilbert Space) A complete inner product space is called a

Hilbert space.

When we represent vectors in a Hilbert space, instead of using letters, we gener-

ally use the Dirac notation in which vectors ψ are represented by ket’s |ψ〉 and the

corresponding dual vectors are represented by bra’s 〈ψ|.

Definition: (Orthonormal Basis) A countable subset U := {|un〉 ∈ H | n ∈
N} of an Hilbert spaceH is called an orthonormal basis if it satisfies the following

properties:

• 〈un|um〉 = δnm ∀|un〉, |um〉 ∈ U where δnm is the Kronecker Delta func-

tion which is defined as δnm = 0 for n 6= m, and δnm = 1 for n = m.

(orthonormality)1

• ∀|ψ〉 ∈ H, |ψ〉 = limm→∞
∑m

1 an|un〉 for some sequence {an}n∈N in C.

(completeness)

The Completeness property allows for a representation of every element ψ ∈ H in the

orthonormal basis as

|ψ〉 =
∞∑
n

an|un〉. (1.1)

1Note that orthogonality principle implies the linear independence of the elements of U
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Applying orthonormality principle to the completeness we have an = 〈un|ψ〉, ∀n ∈ N.

Together with (1.1) this means we can represent any ψ as follows

|ψ〉 =
∞∑
n

|un〉〈un|ψ〉. (1.2)

We should note that it may not be possible to represent elements of an arbitrary

Hilbert Space in such a way because an arbitrary Hilbert Space does not have to

admit such an orthonormal basis. So classification of such Hilbert Spaces which have

such an orthonormal basis is necessary.

Definition: (Separable Hilbert Space) A Hilbert space H is called a sepa-

rable Hilbert space if it has an orthonormal basis.2

For a finite dimensional Hilbert space an orthonormal basis always exists, so all finite

dimensional Hilbert spaces are separable. Therefore when we say separable Hilbert

space we mean infinite dimensional ones. In quantum mechanics one usually deals

with separable Hilbert spaces. Therefore we will use the term “Hilbert space” to

mean “a separable Hilbert space”, unless otherwise is clear from the context.

A Hilbert space with immediate application in quantum mechanics is the space

of square integrable functions, L2(R) := {f : R 7→ C| ∫
R
|f(x)|2dx < ∞}, with the

inner product 〈f |g〉 :=
∫

R
f ∗(x)g(x)dx.

Definition: (Linear Operator) A linear operator is a function T : A 7→ B

from a vector space A to a vector space B with the following properties:

• Domain(T ) is a subspace of A.

• T (|v〉+ |w〉) = T |v〉+ T |w〉 ∀|v〉, |w〉 ∈ A.

• T (a|v〉) = aT |v〉 ∀|v〉 ∈ A and ∀a ∈ C.

2This definition is mathematically consistent i.e., a separable Hilbert space is separable in topo-
logical sense, and a Hilbert space which is a separable topological space is a separable Hilbert
space.
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Definition: (Anti-linear Operator) An Anti-linear operator is a function

A : A 7→ B from a vector space A to a vector space B with the following

properties:

• Domain(A) is a subspace of A.

• A(|v〉+ |w〉) = A|v〉+ A|w〉 ∀|v〉, |w〉 ∈ A.

• A(a|v〉) = a∗A|v〉 ∀|v〉 ∈ A and ∀a ∈ C.

Since a vast majority of operators used in physics are linear, we shall occasionally

use the term “operator” to mean a linear operator.

A trivial linear operator is the identity operator I : V 7→ V on a given vector

space V which maps every vector ψ ∈ V to itself, i.e., Iψ = ψ. In addition if the

vector space V is a separable Hilbert space then we can represent I with respect to

a given orthonormal basis U := {|un〉 ∈ V | n ∈ N}. Actually, since for an arbitrary

vector |ψ〉 ∈ V there exists a basis representation of |ψ〉 given as (1.2), the basis

representation of I is given by

I =
∞∑
n

|un〉〈un|. (1.3)

for the given orthonormal basis U . In general, for an arbitrary operator K : V 7→ V
we have

K =
∞∑

m,n

KU
mn|um〉〈un| (1.4)

where KU
mn := 〈um|K|un〉. More generally for a complete, linearly independent and

countable but not necessarily orthonormal set Ũ = {|ũn〉 ∈ V | n ∈ N} of V, it is

possible to characterize a linear operator K with a (finite or infinite) square matrix

K̃ Ũ with entries K̃ Ũ
mn defined by the following identity:

K|ũn〉 =
∞∑
m

K̃ Ũ
mn|ũm〉. (1.5)

Here the entries K̃ Ũ
mn are called the matrix elements of K with respect to the basis

Ũ . In addition if Ũ is an orthonormal basis, i.e., its elements satisfy orthonormality
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as well, then applying to both sides of (1.4) an element |uk〉 and comparing the result

with (1.5), we see that

K Ũ
mn = K̃ Ũ

mn. (1.6)

If we have an orthonormal basis U we will call the numbers KU
mn matrix elements of

K with respect to the orthonormal basis U .

Definition: (Eigenvalue, Eigenvector) For an operator T : V 7→ V on a

complex vector space V if there is a nonzero vector |v〉, and a number v ∈ C such

that T |v〉 = v|v〉, then |v〉 is called an eigenvector of T with the corresponding

eigenvalue v.

If there are linearly independent eigenvectors which correspond to the same eigenvalue

v, then v is called degenerate and the number of linearly independent eigenvectors

is called the geometric multiplicity or the degree of degeneracy of the eigenvalue. In

this case the subspace which is spanned by eigenvectors of v is called the degeneracy

subspace of v.

Note that if K has an orthonormal eigenbasis, i.e., eigenvectors |kn〉 of K with

eigenvalues kn forms an orthonormal basis of V , then the basis representation of K

with respect to its eigenbasis becomes

K =
∞∑
n

kn|kn〉〈kn|. (1.7)

The latter is called the spectral representation of K. Note that in this case the matrix

representation of K is a diagonal matrix with diagonal entries kn.

Definition: (Adjoint of an Operator, Unitary, Hermitian Operators)

Let V1 and V2 be two inner product spaces with the inner products 〈.|.〉1, and

〈.|.〉2, respectively, and let T : V1 7→ V2 be a linear operator between these

two spaces with a dense domain. Then the unique operator T † : V2 7→ V1

satisfying 〈ψ2|Tψ1〉2 = 〈T †ψ2|ψ1〉1, ∀ψ1 ∈ V1, ∀ψ2 ∈ V2 is called the adjoint of

the operator T .
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If T †T = I1 where I1 is the identity operator of the first space then T is called

a unitary operator.

In the case where V1 = V2, and 〈·|·〉1 = 〈·|·〉2 if T † = T then T is called

self-adjoint or Hermitian.

One of the most important properties of a Hermitian operator L : V 7→ V defined

on a Hilbert Space V is that its eigenvalues are real and the eigenvectors which

correspond to different eigenvalues are orthogonal [8]. It is also possible to choose

a set of orthogonal eigenvectors in each degeneracy subspace, which spans it. So if

eigenvectors of L satisfy the completeness property as well then it is possible to form

an orthonormal basis of V consisting of the eigenvectors of L.

Now let us examine a case in which there is a complex vector space which is

endowed with two different inner products. So assume that we have an operator

H : V 7→ V on a vector space V, and let H1 := (V, 〈·|·〉1) and H2 := (V, 〈·|·〉2) are two

Hilbert Spaces which are identical to V as a vector space but endowed with different

inner products 〈·|·〉1 and 〈·|·〉2 as Hilbert Spaces. Realize that it is possible that while

H is Hermitian with respect to one of the Hilbert Spaces, it may not be Hermitian

with respect to the other one. This also shows that Hermiticity of H can only be a

sufficient (not necessary) condition for H to have all its eigenvalues real since for an

operator, having real eigenvalues is just an algebraic property which only concerns V

as a complex vector space.

Now assume that H1 and H2 are separable as well and take a countable subset

U := {|un〉}n∈N ∈ V such that {|un〉}n∈N is an orthonormal basis of H1. Also assume

that H is Hermitian with respect to H1. In this case matrix elements H
(1)
mn should

satisfy the property

H(1)
mn = 〈um|H|un〉1 = 〈un|H†|um〉∗1 = 〈un|H|um〉∗1 = H(1)∗

nm . (1.8)

So matrix representation H̃ of H will be a self adjoint matrix which means it is equal

to its own transpose conjugate. However note that the numbers H
(2)
mn := 〈um|H|un〉2

do not have to satisfy such a property because H does not have to be Hermitian



Chapter 1: Preliminaries 7

with respect to H2. In this case realize that H
(2)
mn’s do not correspond to the matrix

elements of H with respect to the basis U since U is not an orthonormal basis for H2.

Definition: (Positive Definite Operator) A bounded Hermitian operator

M : H 7→ H on a Hilbert Space H is called a positive definite operator if it

satisfies 〈ψ|M |ψ〉 > 0, ∀ nonzero |ψ〉 ∈ H.

Here bounded means that there exists a positive constant c such that ∀ψ ∈ H,

‖Mψ‖ ≤ c‖ψ‖.
Using a positive definite operator M , and the inner product 〈·|·〉 of the Hilbert

space H on which positive definiteness of M is defined, it is possible to generate

another inner product function 〈·|·〉M . Actually if we define 〈·|·〉M := 〈·|M |·〉, it

is easy to see that 〈·|·〉M is really an inner product. Positivity and definiteness of

〈·|·〉M are satisfied by definition and linearity of M . Linearity of M also implies

additivity and homogeneity, and conjugate symmetry holds since M is Hermitian. It

is also important to mention that M has a unique positive-definite square root and

logarithm [8], i.e., there exist unique positive-definite operators µ and ν such that M

can be written in either form:

M = µ2, (1.9)

M = eν . (1.10)

Definition: (Ray) A ray in a complex vector space V is an equivalence class

of the equivalence relation ∼ defined as ∀u, v ∈ V u ∼ v if ∃a ∈ C\{0} such

that u = av .

Any two elements of a given ray differ from each other only by a scalar multiplication.

Note that the set which consists only of the zero element of the corresponding vector

space is also a ray which we call the zero-ray. All other rays are called non-zero-rays.

We will only deal with non-zero rays and drop the qualification “non-zero” hereafter.
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1.2 Postulates of Quantum Mechanics

Postulate 1: Every state of a particle is uniquely represented by a ray ∆ in a

Hilbert space H [9].

The elements of ∆ are called state vectors. In practice, instead of the ray ∆,

physicists choose a representative state vector |ψ〉 in ∆ to describe the state of the

particle. However we should note that the choice of the representative is arbitrary

and any other element |ψ̃〉 of ∆ can be equivalently chosen to describe the physical

state of the particle. In other words multiplication of our initial state vector |ψ〉 by a

nonzero scalar does not change the physical state it describes.

Postulate 2: The independent variables x and p of classical mechanics are rep-

resented by Hermitian operators X and P with the following matrix elements in the

eigenbasis of X [9]:

〈x|X|x′〉 = xδ(x− x′) 〈x|P |x′〉 = −i~δ′(x− x′). (1.11)

The operators corresponding to dependent variables ω(x, p) are given by complete

Hermitian operators

Ω(X,P ) = ω(x → X, p → P ). (1.12)

Here δ(x) is the Dirac delta function and complete operator means its eigenvectors

form a complete basis.

Note that the eigenbasis of X cannot be an orthonormal basis for any Hilbert

Space because it is uncountable. However it has analogous properties such as

• 〈x|x′〉 = δ(x− x′) (Dirac delta orhonormality)

• ∫
R dx|x〉〈x| = I. (completeness)
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The term “matrix elements” in Proposition 2 is somewhat misleading. Since position

and momentum operators have a continuous spectrum, these numbers cannot corre-

spond to the entries of a matrix representation of X. Actually for a general operator

Ω, we will call these elements position representation of Ω and denote it as Ω(x, x′).

Now assume that the operator representation Ω(X,P ) of Ω involves only polyno-

mial factors of X and P . In this case (1.12) together with (1.11) implies that the

position representation 〈x|Ω|x′〉 is given by

Ω(x, x′) = Ω

(
x,−i~

d

dx

)
δ(x− x′) (1.13)

If Ω(x, x′) has such a form we call it local. Because in such a case, position represen-

tation of the image of a state vector ψ ∈ H at position x is given by

(Ωψ)(x) := 〈x|Ω|ψ〉
=

∫

R
dx′〈x|Ω|x′〉〈x′|ψ〉

= Ω

(
x,−i~

d

dx

)
ψ(x), (1.14)

which only depends on the behavior of ψ(x) in a small neighborhood of x. In other

words, the image (Ωψ)(x) at x0 is not effected by how ψ(x) behaves away from x0.

Since the factor δ(x− x′) in the representation of Ω(x, x′) kills the integral under

which the representation operates, it is convenient to write

Ω(x) := Ω

(
x,−i~

d

dx

)
(1.15)

as the position representation of Ω which applies only to the position representations

of the state vectors in the position space such that

Ω(x)ψ(x) = (Ωψ)(x). (1.16)

Postulate 3: Observables are represented by Hermitian operators Ω. Under the

assumption that Ω has a non-degenerate, discrete spectrum; if a particle is in a state

represented by the state vector |ψ〉, a measurement of an observable Ω yields one of



Chapter 1: Preliminaries 10

the eigenvalues ω with probability P (ω) ∝ |〈ω|ψ〉|2, and the state vector of the system

will change from |ψ〉 to |ω〉 as a result of the measurement [9].

Numbers 〈ω|ψ〉 correspond to the coefficients of the basis representation of |ψ〉
in the eigenbasis of Ω. The scale of the proportionality can be found using the

completeness of the eigenbasis of ω. Actaully

〈ψ|ψ〉 =
∑

n

|〈ωn|ψ〉|2 ∝





probability of the result of

the measurement to be any

one of the possible results!





= 1. (1.17)

Hence if both the state vectors |ψ〉 and |ω〉 are normalized, i.e., they have norms

‖ψ‖ = ‖ω‖ = 1, then the proportionality at the above postulate becomes equality.

If ‖ψ‖ 6= 1 then it is always possible to choose a normal state vector |ψ̃〉 from the

corresponding ray of |ψ〉; such that |ψ̃〉 = |ψ〉/‖ψ‖. So from now on we will only deal

with normalized state vectors without loss of generality.

An important physical quantity for physicists is the expectation value 〈Ω〉ψ of an

observable Ω in a state vector |ψ〉 which is equal to
∑

n ωnP (ωn). Using the spectral

representation of Ω we can easily see that 〈Ω〉ψ = 〈ψ|Ω|ψ〉. Actually the latter is how

we define the expectation value for a given normalized state vector and observable.

Realize that Hermiticity of Ω guarantees the number 〈ψ|Ω|ψ〉 to be real which should

be the case if it really corresponds to the expectation value of a physical observable.

Postulate 4: An evolving state vector |ψ(t)〉 obeys the Schrödinger Equation:

i~| d
dt

ψ(t)〉 = H|ψ(t)〉, (1.18)

where H(X, P ) = H(x → X, p → P ) is the quantum Hamiltonian operator, H is

the Hamiltonian for the corresponding classical problem, and t corresponds to the

physical time [9].

A physical system in which the physical states evolve is represented by the cor-

responding quantum Hamiltonian operator H, whose eigenvectors correspond to the
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possible energy levels of the system. According to Postulate 4, state vectors evolve in

time according to the Schrödinger Equation (1.18).

It is important to note that time evolution of a state vector |ψ(t)〉 should be

unitary, i.e., it should satisfy the property that 〈ψ(t)|ψ(t)〉 = 1. In other words if we

represented a physical state by a normalized state vector |ψ(t0)〉 at time t0, it should

stay normalized at a later time t. This is because we want the total probability

〈ψ(t)|ψ(t)〉 to be equal to 1 for all time values t. This requirement is satisfied because

of the Hermiticity of H. Taking the derivative of the square norm of |ψ(t)〉 and using

the Schrodinger equation we have

d

dt
〈ψ(t)|ψ(t)〉 =

1

i~
(〈ψ(t)|H|ψ(t)〉 − 〈ψ(t)|H|ψ(t)〉∗) = 0. (1.19)

From the above arguments we see that using Hermitian operators is important in

Quantum Theory not only because they guarantee real eigenvalue requirement, but

they also guarantee other reuirements of Quantum Measurement Theory such as the

reality of the expectation values and the unitarity of the time evolution.
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Chapter 2

INTRODUCTION

In conventional Quantum Mechanics, observables are represented by Hermitian

operators acting on a Hilbert space H. The choice of the operators to be Hermitian

ensures their eigenvalues to be real which is an indispensable requirement since any

possible measurement of an observable corresponds to one of the eigenvalues of the

corresponding operator. However Hermiticity of an operator is only a sufficient condi-

tion for the reality of its eigenvalues. There is no mathematical reason for not using a

non-Hermitian operator as a representation of an observable if it has real eigenvalues.

Recently there has been a great amount of research activity in trying to examine the

properties of such non-Hermitian Hamiltonians. Historically first thoroughly exam-

ined non-Hermitian Hamiltonians H with real eigenvalues were the ones which are

PT -symmetric [1, 2] i.e.,

PT H(PT )−1 = PT HPT = H (2.1)

where P is the parity and T is the time reversal operators which are defined as

(Pψ)(x) = ψ(−x), (T ψ)(x) = ψ(x)∗, ∀ψ ∈ H = L2(R). (2.2)

The observation that some PT -symmetric Hamiltonians have real spectra led to the

idea that these Hamiltonians might be used for a generalized Quantum Mechanics.

This in turn led to a further investigation of PT -symmetric Hamiltonians. However

it is easy to show that PT -symmetry is neither a necessary nor a sufficient condition

for an operator to have real eigenvalues. In general one of the main properties of
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PT -symmetric Hamiltonians is that [1, 2, 3, 4]:

Either the eigenvalues of the Hamiltonian is real (PT -symmetry is exact)

or there are real as well as complex-conjugate pairs of complex eigenvalues

(PT -symmetry is broken).

(2.3)

Since PT -symmetry does not characterize the Hamiltonians with real eigenvalues,

the need for finding necessary and sufficent conditions for an operator to have a real

spectrum emerged. Finally in [5, 6, 7], Mostafazadeh made a complete mathematical

investigation of the properties of the PT -symmetric Hamiltonians (in general any

Hamiltonian which has an anti-linear symmetry), and gave a characterization of the

(diagonalizable) Hamiltonians with a discrete real spectrum [6].
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Chapter 3

CHARACTERIZATION OF THE REALITY OF THE

SPECTRUM

In this section we give some definitions and theorems stated in [5, 6] in order to

characterize the Hamiltonians which have real eigenvalues. This section involves the

main mathematical tool we use in this thesis, and one can consult the references for

a more detailed discussion.

Definition: Let H be a separable Hilbert Space, then a linear operator H :

H → H is said to be pseudo-Hermitian if there exists a linear, Hermitian,

invertible operator η such that

H† = ηHη−1. (3.1)

As can be seen from the definition, pseudo-Hermiticity of H does not address the

operator η. It is enough that there exists at least one η which satisfies (3.1). Actually

there are infinitely many η which satisfy (3.1) if there exists one. If we want to

emphasize the existence of a specific operator η0 within the operators satisfying (3.1),

we call H η0-pseudo-Hermitian.

Property (2.3) is a consequence of the requirement that H has an anti-linear

symmetry, i.e., if H satisfies [H, A] = 0 for some invertible anti-linear operator A, then

either the eigenvalues of H are real or they come in complex conjugate pairs. In [5]

under the assumption that H has a discrete spectrum and that it is diagonalizable, it

is proven that H is pseudo-Hermitian if and only if it satisfies (2.3). As a consequence

all PT -symmetric Hamiltonians are pseudo-Hermitian. The case where all eigenvalues

of H are real corresponds to H to be η+-pseudo-Hermitian for some positive-definite

operator η+. The latter is stated explicitly by the following theorem [6]:
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Theorem 1: Let H : H → H be a Hamiltonian that acts in a Hilbert space H,

has a discrete spectrum, and admits a complete set of biorthonormal eigenvec-

tors {|ψn〉, |φn〉}, i.e.,

H|ψn〉 = En|ψn〉, H†|φn〉 = E∗
n|φn〉

〈φm|ψn〉 = δmn,
∑

n |ψn〉〈φn| = I

(3.2)

where En ∈ C ∀n ∈ N+. Then the Spectrum of H is real if and only if there

is an invertible linear operator w : H → H such that H is η+-pseudo-Hermitian

where η+ = w†w.

Proof: Let {|n〉} be a complete orhonormal basis of H, i.,e.

〈m|n〉 = δmn,
∑

n

|n〉〈n| = I, (3.3)

and w : H → H and H0 : H → H be defined by

w :=
∑

n

|n〉〈φn|, H0 :=
∑

n

En|n〉〈n|, (3.4)

then w is invertible with the inverse given by

w−1 =
∑

n

|ψn〉〈n| (3.5)

and

wHw−1 = H0. (3.6)

Now suppose that the spectrum of H is real. Then, H0 is Hermitian and taking

the adjoint of both sides (3.6), we have

wHw−1 = (w−1)†H†w† (3.7)

or equivalently

H† = w†wH(w†w)−1 = η+Hη−1
+ (3.8)

Then H is η+-pseudo-Hermitian.
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Now assume H is η+-pseudo-Hermitian, i.e.;

H† = η+Hη−1
+ , (3.9)

where η+ = w†w for some invertible linear operator w : H → H. First of all

realize that η+ is positive definite: it is Hermitian and for all nonzero state

functions ψ ∈ H, it satisfies 〈ψ|η+|ψ〉 = 〈ψ|w†w|ψ〉 = 〈wψ|w|ψ〉 > 0 (since w is

invertible as a consequence w|ψ〉 is nonzero). Now let us rewrite (3.9) as

H†η+ = η+H. (3.10)

If we apply a dual eigenvector 〈ψn| from left and an eigenvector |ψm〉 from right

to (3.10), we get

〈ψn|H†η+|ψm〉 = 〈ψn|η+H|ψm〉
⇒ E∗

n〈ψn|η+|ψm〉 = Em〈ψn|η+|ψm〉
⇒ (E∗

n − Em)〈ψn|η+|ψm〉 = 0.

(3.11)

Since η+ is positive definite, if we take m = n in (3.11) we see that E∗
n = En

which implies the spectrum of H is real. ¤

Note that the operator η+ is not unique. It depends on the choice of the biorthonor-

mal system. Also as we showed in the proof, it is positive definite. Actually we can

restate Theorem 1 such that the spectrum of H is real if and only if it is η+-pseudo-

Hermitian for some positive definite operator η+.
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Chapter 4

PHYSICAL ASPECTS

Positive-definiteness of η+ is essential for us to be able to use such non-Hermitian

but η+-pseudo-Hermitian Hamiltonians (for some positive-definite η+) as energy oper-

ators whose eigenvectors correspond to the energy levels of a physical system. Actually

in Quantum Mechanics reality of eigenvalues of a Hamiltonian operator is a necessary

condition but it is by no means sufficient. The use of such Hamiltonians for the de-

scription of a physical system should also be consistent with Quantum Measurement

Theory. As we explained in Chapter 1, in addition to the requirement of having real

eigenvalues, there are also other requirements such as the reality of the energy ex-

pectation values 〈ψ|H|ψ〉 and unitarity of time evolution., i.e., 〈ψ(t)|ψ(t)〉 = 1. Such

conditions would automatically be satisfied if we were using a Hermitian Hamilto-

nian. However for a general non-Hermitian but η+-pseudo-Hermitian Hamiltonian,

even if it exhibits real eigenvalues, these other requirements are not guaranteed to

be satisfied. At the first glance to attempt to use such η+-pseudo-Hermitian Hamil-

tonians in the description of a physical system seems to cause fatal inconsistencies,

in general. However the problem is not due to the incapability of such Hamiltonians

but our insistence on using the standard inner product of the Hilbert Space. It turns

out that one who wishes to use non-Hermitian Hamiltonians in the description of a

quantum system should also change the usual inner product, or equivalently the stan-

dard Hilbert space H in accordance with the requirements of Quantum Measurement

Theory.

In order to find the “suitable” inner product we use the fact that up to the unitary

equivalence, there is a unique separable Hilbert Space! In other words, any pair of

separable Hilbert spaces H1 and H2 are related by a unitary operator U : H1 → H2,
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i.e., ∀ψ, φ ∈ H1

〈Uψ|Uφ〉2 = 〈ψ|φ〉1 (4.1)

where 〈.|.〉1 and 〈.|.〉2 are inner products of the Hilbert spaces H1 and H2, respectively

[8].

Given an η+-pseudo-Hermitian Hamiltonian H defined on a Hilbert space H with

the inner product 〈·|·〉, we form another Hilbert space Hphys called physical Hilbert

space which has the same structure with H but its inner product differs from 〈·|·〉
such that

〈ψ|φ〉+ := 〈ψ|η+|φ〉, ∀|ψ〉, |φ〉 ∈ H. (4.2)

Note that 〈·|·〉+ is well defined as we explained in Chapter 1. In this case unitary

equivalence of Hphys and H is satisfied by the unique positive definite square root

ρ+ of η+, which satisfies ρ2
+ = η+. In fact unitarity of ρ+ : Hphys 7→ H immediately

follows from the definition of 〈·|·〉+:

〈ψ|φ〉+ := 〈ψ|η+|φ〉 = 〈ρ+ψ|ρ+φ〉, ∀|ψ〉, |φ〉 ∈ H. (4.3)

It is easy to see that using H in the new inner product 〈·|·〉+ is consistent with

Quantum Measurement Theory unlike the initial one. Actually using Hermiticity of

η+ and η+-pseudo-Hermiticity of H, we see that 〈ψ|H|φ〉+ = 〈φ|H|ψ〉∗+ ∀ψ, φ ∈ Hphys.

In fact H is a Hermitian operator acting in Hphys and therefore it guarantees all the

requirement of Quantum Measurement Theory when we use Hphys as our Hilbert

Space. However this is not the only way we must follow to analyze the physical

system described by H. Unitary equivalence of Hphys and H implies that both Hilbert

spaces can be used to represent the same physical system. However if we want to use

H as our Hilbert Space we should modify our Hamiltonian H and observables in a

suitable way. Actually one can get the same physical quantities such as energy levels,
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expectation values, probability distributions whether he uses

picture1 :

state vectors |ψ〉, |φ〉 ∈ Hphys

Hamiltonian H

observables O

inner product 〈·|·〉+

(4.4)

or

picture2 :

state vectors ρ+|ψ〉, ρ+|φ〉 ∈ H
Hamiltonian h := ρ+Hρ−1

+

observables o := ρ+Oρ−1
+

inner product 〈·|·〉

. (4.5)

Note that at the beginning what we know about the physical system is the non-

Hermitian Hamiltonian H in the first picture and the usual Hermitian observables o

(such as position x and momentum p operators) in the second picture. Therefore one

who wants to use the first picture should compute the non-Hermitian observables O

using the usual Hermitian ones according to

O = ρ−1
+ oρ+, (4.6)

and one who wants to use the second picture should compute the Hermitian Hamil-

tonian h using the non-Hermitian one (H) by the formula

h = ρ+Hρ−1
+ . (4.7)

Each picture might be used according to the physical problem. However we should

note that in the first picture observables O and in the second picture Hermitian

Hamiltonian h are generally non-local operators. Non-locality of such operators might

cause some computational difficulties in each picture.
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Chapter 5

CALCULATION METHODS OF THE METRIC

OPERATOR η+ AND THE EQUIVALENT HERMITIAN

HAMILTONIAN H

By definitions of the metric operator η+ and w in Theorem 1, we can easily find

that η+ can be expressed in the form:

η+ =
∑

n

|φn〉〈φn|. (5.1)

After finding the functions φn, η+ can be calculated in a suitable basis such as x or p

using the representation (5.1).

There are several methods to calculate the metric operator η+, non-Hermitian op-

erators O, and Hermitian Hamiltonian h for a given pseudo-Hermitian Hamiltonian

H. These methods are explained in detail in [11, 15, 13, 14]. One of the methods

uses the spectral representation η+ =
∑

n εn|εn〉〈εn| of η+, where |εn〉 is its eigenba-

sis with corresponding eigenvalues εn, as well as (5.1) to calculate O and h. This

method is explained in detail and applied to the PT -symmetric square well problem

in [11]. However it is not applicable to the Hamiltonian we examine in section 2, since

spectrum of our Hamiltonian is not discrete.

The method we will use is explained in [13]. It applies to the η+-pseudo-Hermitian

Hamiltonians of the form

H = H0 + εH1, (5.2)

where ε is a real perturbation parameter, H0 and H1 are ε-independent Hermitian

and anti-Hermitian operators, respectively. Also we express the metric operator η+
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and minus of its logarithm Q, which means η+ = e−Q [15], as

η+ = 1 +
∑
n=1

η+nε
n, (5.3)

Q =
∑
n=1

Qnε
n, (5.4)

where η+n’s and Qn’s are ε independent. Realizing ρ+ = e−Q/2, and then imposing

(5.2), (5.4) into (4.7) and applying the Baker-Campbell-Hausdorff identity, which says

that for any operator A, B

e−ABeA = B + [B,A] +
1

2!
[[B,A] , A] +

1

3!
[[[B, A] , A] , A] + . . . , (5.5)

we see that the Hermitian Hamiltonian h can be expressed as

h = H0 +

{
H1 +

1

2
[H0, Q1]

}
ε +

{
1

23
[[H0, Q1] , Q1] +

1

2
[H0, Q2]

}
ε2 +O(ε3). (5.6)

On the other hand, using the identity η+ = e−Q, and imposing (5.2) and (5.4) into η+-

pseudo-Hermiticity condition (3.8) of H, and applying the Baker-Campbell-Hausdorff

identity, we find an infinite sequence of operator equations for Qn. The first two of

the equations are

[H0, Q1] = −2H1 and [H0, Q2] = 0. (5.7)

In view of (5.7) and (5.6), we can rewrite h as

h = H0 +
1

4
[H1, Q1]ε

2 +O(ε3). (5.8)

Note also that if we use (5.3), (5.4), and identity η+ = e−Q, we can write Qi in terms

of η+j’s. In particular Q1 is related to η+1 as

Q1 = −η+1. (5.9)
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Chapter 6

PT -SYMMETRIC DELTA FUNCTION POTENTIAL

In this chapter we apply the pseudo-Hermiticity Theory to the PT -symmetric

delta function potential. Before starting our analysis we want to mention that there

have been other studies examining the properties of complex delta function poten-

tials [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Among these there are studies

investigating some properties such as symmetries, scattering, bound state solutions,

and band structures of different types of complex potentials consisting of Dirac delta

functions. Our analysis focuses on the physical aspects of the PT -symmetric delta

function potential. A similar analysis is applied to a single Dirac delta potential with

a complex coupling in [14]. In [26] spectral properties of general PT -symmetric delta

function potentials are studied but investigation of physical aspects of such potentials

has not been made.

Our analysis and method have been established for systems with a discrete spec-

trum. Nevertheless we want to apply the same method to examine the physical aspects

of the PT -Symmetric delta function potential which has a continuous real spectrum.

Consider the Hamiltonian

H =
p2

2m
+ V (x) (6.1)

where V (x) is

V (x) = iζ[δ(x− a)− δ(x + a)], ζ, a ∈ R+. (6.2)

First we study the solutions of the time-independent Schrodinger Equation,

Hψ = Eψ, E ∈ C. (6.3)

Substituting (6.1) and (6.2) in (6.3) we get

− ~
2

2m
ψ
′′
(x) + iζ[δ(x− a)− δ(x + a)]ψ(x) = Eψ(x). (6.4)
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For simplicity we introduce the dimensionless quantities:

x :=
x

a
, z :=

2maζ

~2
, E :=

2ma2E

~2
, (6.5)

and use the fact that δ(x/a) = aδ(x) to rewrite (6.4) as

−ψ
′′
(x) + iz [δ(x− 1)− δ(x + 1)] ψ(x) = Eψ(x). (6.6)

In this case E belongs to the spectrum of the dimensionless Hamiltonian

H :=
2ma2

~2
H = − d2

dx2
+ iz [δ(x− 1)− δ(x + 1)] . (6.7)

The solution of (6.6) has the form

ψ(x) = ψk(x) :=





ψ1k(x) := A+eikx + A−e−ikx for x < −1

ψ2k(x) := B+eikx + B−e−ikx for − 1 < x < 1

ψ3k(x) := C+eikx + C−e−ikx for x > 1





(6.8)

where A±, B±, C± ∈ C, and k is the principal square root of E (k :=
√

E). We have

the boundary conditions:

ψk(±1−) = ψk(±1+)

ψ
′
k(±1+)− ψ

′
k(±1−) = ±izψk(±1).

(6.9)

The first boundary condition is the continuity requirement of ψk, and the second

boundary condition can be achieved by integrating (6.6) on infinitesimal neighbor-

hoods of −1 and 1 and demanding the derivative of ψk to be continuous. Substituting

(6.8) into (6.9) we get the following two matrix equations:


 A+

A−


 = O


 B+

B−


 and


 C+

C−


 = R


 B+

B−


 (6.10)

where

O :=


 1 + z

2k
z
2k

e2ik

− z
2k

e−2ik 1− z
2k


 and R :=


 1 + z

2k
z
2k

e−2ik

− z
2k

e2ik 1− z
2k


 . (6.11)
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Realize that the determinants of O and R are 1 and they have the inverses

O−1 :=


 1− z

2k
− z

2k
e2ik

z
2k

e−2ik 1 + z
2k


 and R−1 :=


 1− z

2k
− z

2k
e−2ik

z
2k

e2ik 1 + z
2k


 , (6.12)

respectively. The transition matrix S which connects A± to C± according to

 A+

A−


 = S


 C+

C−


 , (6.13)

can be computed as

S = OR−1 =




1 + (e4ik−1)z2

4k2

iz(2k+z)sin(2k)
2k2

iz(2k−z)sin(2k)
2k2 1 + (e−4ik−1)z2

4k2


 . (6.14)

6.1 Analysis of the Spectrum

For all positive real k values, ψk is a solution of (6.6) with a real energy value E. These

ψk’s are not square integrable but bounded functions, and have physical meanings

since they represent scattering states. However mathematically there is no restriction

on k not to be a complex number. If there are bounded solutions ψk of (6.6) with

complex k, and so with complex or negative energy value E, then our system does not

have a physical meaning. Therefore we want to examine the possibility of a bounded

solution ψk of (6.6) with a k that has a nonzero imaginary part.

Suppose that ψk is a solution of (6.6) of the form (6.8) where the imaginary part

of k is greater than 0, i.e.;

Im(k) > 0. (6.15)

From (6.8) we can easily see that in order for the solution ψk not to blow up at

infinities, the coefficients A+ and C− have to be zero.1 If we insert this requirement

into (6.13), together with (6.14) we see that k needs to satisfy the following condition

in addition to (6.15):

1 +
(e4ik − 1)z2

4k2
= 0. (6.16)

1Note that in this case boundedness of ψk automatically implies its square integrability.
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Conditions (6.15) and (6.16) can be rewritten as

(eu − 1)

u2
= G, (6.17)

and

Re(u) < 0, (6.18)

where

u := 4ik, and G :=
1

4z2
. (6.19)

If we started with a k value such that Im(k) < 0, and force the solution ψk to be

bounded again, we would get the same conditions (6.17) and (6.18), but then instead

of (6.19) we would have u := −4ik.

It can be shown that there exists a critical G value Gc such that if G > Gc there is

no complex number u satisfying both (6.17) and (6.18) (See Appendix A). Together

with (6.19) this means that there exists a critical z value zc which ensures the reality

of the spectrum and nonexistence of the energy eigenvalues. In other words just

for those z values z < zc our system has a physical meaning, and when z becomes

greater than zc there appear discrete complex conjugate pairs of energy eigenvalues

in addition to the continuous real spectrum.

We can easily see this fact using some graphical solutions. In Figure 6.1 we

simultaneously plotted the solutions of the equations Eq1 : Re
(

eu−1
u2

)
= Gi and Eq2 :

Im
(

eu−1
u2

)
= 0 on complex plane for four different Gi values G1 = 0.35, G2 = 0.20,

G3 = 0.14 and G4 = 0.02. The full curve represents the solution points of Eq1 and the

dashed curve represents the solution points of Eq2. So the intersection points gives

us the u values which satisfies eu−1
u2 = Gi. First of all realize that both curves are

symmetric with respect to real axis, so the intersection points are always in complex

conjugate pairs. They also extend through imaginary axis repeating the finger-like

shape infinitely many times. For the dashed curve the edges of these finger shaped

curves always extend to the region where Re(u) < 0. For the full curve the edges of

these finger shaped curves get closer to the imaginary axis as G increases and pass

through it starting from the closest ones to the real axis. This let the dashed and the
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full curves intersect in the region where Re(u) < 0. Therefore we start to get complex

conjugate pairs of energy eigenvalues E = −u2/4 for those intersection points u where

Re(u) < 0.

From Figure 6.1, we see that critical G value is Gc ' 0.20 which gives us cor-

responding critical z value zc ' 1.11. Note that in our analysis we just showed

the existence of zc and numerically calculated what its value is. Actually while we

were working on this thesis Haydar Uncu and Ersan Demiralp [26] investigated the

bound state (square integrable) solutions of PT -symmetric potential with Dirac delta

functions represented as

V (x) =
N∑

i=1

[σiδ(x− xi) + σ∗i δ(x + xi)] (6.20)

where N is any integer, σi is an arbitrary complex valued coupling constant, and xi

is real. In the case where N = 1 and σi is purely imaginary, V (x) reduces to our

potential in (6.2). For this case, using complex analysis, Uncu and Demiralp showed

that bound state (consequently bounded) solutions with complex eigenvalues do not

exist if

|σi|x1 ≤
√

2π

4
, (6.21)

and there are 2n number of them if

(2n− 1)

√
2π

4
< |σi|x1 ≤ (2n + 1)

√
2π

4
. (6.22)

In our case x1 = 1 and |σi| = z. Hence (6.21) implies that for z ≤ √
2π/4 =

1.1058, there is no bounded solution with complex eigenvalue which is in perfect

match with our numerical approximation zc = 1.11. Furthermore (6.22) implies that

as z increases there appear bound state solutions with complex conjugate eigenvalues

as we mentioned when analyzing Figure 6.1.

6.2 Finding a Biorthonormal System

From now on we will assume z ≤ zc. So all bounded solutions ψk have real k values.

This automatically implies that k is positive since k is the principal square root of

k2 = E.
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Figure 6.1: Plots of the solutions of Eq1 (the full curve) and Eq2 (the dashed
curve) on complex plane for different G values G1 = 0.35, G2 = 0.20, G3 = 0.14
and G4 = 0.02. Horizontal and vertical axes represent real and imaginary axes,
respectively. In the first picture, there is no intersection points in the left half
plane, so we are in the safe region. For G = 0.20 the full curve gets closer to
the imaginary axis and there is a pair of intersection points on the imaginary
axis. This gives us our critical G value. In the third picture the full curve
shifts to the left a little bit more and there appears a complex conjugate pair
of intersection points on the left half plane and we get our corresponding
complex energy eigenvalues. In the last one we see that while the first pair
keeping stay in the left half plane, now there comes a new pair of intersection
points to the left half plane as well.
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First we want to write the eigenfunction solutions of (6.6) explicitly. As seen from

(6.10), there are actually two arbitrary coefficients B+, B− in the expression (6.8) of

eigenfunctions ψk. This shows that energy levels are doubly degenerate. Inserting

(6.10), and (6.11) into (6.8) and choosing first that B+ = 1√
2π

, B− = 0, and then

B+ = 0, B− = 1√
2π

; for each value of k, we can write two linearly independent

eigenfunction solutions ψk,1, and ψk,2, respectively:

ψk,1(x) =





1√
2π

{
(1 + z

2k
)eikx − z

2k
e−2ike−ikx

}
for x < −1

1√
2π

eikx for − 1 < x < 1

1√
2π

{
(1 + z

2k
)eikx − z

2k
e2ike−ikx

}
for x > 1





, (6.23)

ψk,2(x) =





1√
2π

{
z
2k

e2ikeikx + (1− z
2k

)e−ikx
}

for x < −1

1√
2π

e−ikx for − 1 < x < 1

1√
2π

{
z
2k

e−2ikeikx + (1− z
2k

)e−ikx
}

for x > 1





.2 (6.24)

Comparing these expressions, it is seen that

ψ−k,1 = ψk,2. (6.25)

Any eigenfunction ψk is a linear combination of ψk,1, and ψk,2, i.e.;

ψk = β1ψk,1 + β2ψk,2 (6.26)

where in general β1 and β2 are complex valued coefficients which may depend on z

and k. However, since our Hamiltonian is PT -Symmetric, we want our eigenfunctions

to be PT -Symmetric, too, i.e.; we impose the condition

ψk(x) = ψk(−x)∗ (6.27)

2The choice of the coefficients is made under the demand that ψk,1 and ψk,2 tend to ordinary
δ-function-normalized free particle solutions 1√

2π
eikx and 1√

2π
e−ikx, respectively, as coupling con-

stant z tends to 0.
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on our eigenfunctions ψk(x). It is seen from the expressions (6.23) and (6.24) that

PT -Symmetry condition (6.27) is satisfied if and only if β1 and β2 are real. So we

will only take real linear combinations of ψk,1, and ψk,2 in each degeneracy subspace.

Construction of the metric operator η+ involves {φk}k>0 where φk is the solution

of the eigenfunction equation H†φk = Ekφk where Ek = k2. Since the expression of

H† is as the expression of H with z replaced by −z, we can obtain the expression for

φk by changing z to −z in the expression for ψk. This yields

φk,1(x) :=





1√
2π

{
(1− z

2k
)eikx + z

2k
e−2ike−ikx

}
for x < −1

1√
2π

eikx for − 1 < x < 1

1√
2π

{
(1− z

2k
)eikx + z

2k
e2ike−ikx

}
for x > 1





, (6.28)

and

φk,2(x) :=





1√
2π

{− z
2k

e2ikeikx + (1 + z
2k

)e−ikx
}

for x < −1

1√
2π

e−ikx for − 1 < x < 1

1√
2π

{− z
2k

e−2ikeikx + (1 + z
2k

)e−ikx
}

for x > 1





. (6.29)

Again every PT -Symmetric solution of H†φk = Ekφk can be written as a linear

combination of φk,1 and φk,2:

φk = α1φk,1 + α2φk,2 (6.30)

where α1 and α2 are real valued coefficients which may depend on z and k. In

the non-degenerate case, system of functions {ψk, φk}k>0 automatically gives us a

biorthonormal system after suitable normalization. However in the degenerate case, in

order to satisfy biorthonormality, we should choose two proper pairs of eigenfunctions

ψ̃k,1, ψ̃k,2; and φ̃k,1, φ̃k,2 in each degeneracy subspace spanned by ψk,1, ψk,2; and φk,1,
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φk,2 respectively, which satisfy the following conditions:

〈ψ̃l,1|φ̃k,1〉 = δ(k − l) 〈ψ̃l,1|φ̃k,2〉 = 0

〈ψ̃l,2|φ̃k,1〉 = 0 〈ψ̃l,2|φ̃k,2〉 = δ(k − l).

(6.31)

This condition can be rewritten in a matrix form

 〈ψ̃l,1|
〈ψ̃l,2|


 .

(
|φ̃k,1〉, |φ̃k,2〉

)
= δ(k − l)I (6.32)

where (.) stands for the usual matrix product and I is 2 × 2 identity matrix. In

order to construct an appropriate biorthonormal system we first compute the inner

products 〈ψl,i|φk,j〉, i, j ∈ {1, 2}:

〈ψl,i|φk,j〉 =

∫ ∞

−∞
〈ψl,i|x〉〈x|φk,j〉dx =

∫ ∞

−∞
ψ∗l,i(x)φk,j(x)dx (6.33)

Inserting (6.23), (6.24) and (6.28), (6.29) into (6.33) and using the facts that δ(k±l) =

limρ→∞
sin(ρ(k±l))

π(k±l)
and k + l > 0, we find

〈ψl,1|φk,1〉 =
(
1− z2

2k2

)
δ(k − l) 〈ψl,1|φk,2〉 =

(
z
k
− z2

2k2

)
δ(k − l)

〈ψl,2|φk,1〉 = −
(

z
k

+ z2

2k2

)
δ(k − l) 〈ψl,2|φk,2〉 =

(
1− z2

2k2

)
δ(k − l).

(6.34)

We can rewrite (6.34) in matrix form as

 〈ψl,1|
〈ψl,2|


 . (|φk,1〉, |φk,2〉) = δ(k − l)J (6.35)

where

J =




1− z2

2k2
z
k
− z2

2k2

− z
k
− z2

2k2 1− z2

2k2


 . (6.36)

Note that J is invertible for all z, k > 0 with the inverse

J−1 =




1− z2

2k2 − z
k

+ z2

2k2

z
k

+ z2

2k2 1− z2

2k2


 . (6.37)
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So comparing (6.32) and (6.35), and using the fact that J has an inverse, we can

see that an initial choice for our biorthonormal system {φ̃initial
l,i , ψ̃initial

k,j }, i, j ∈ {1, 2}
would be 

 ψ̃initial
l,1

ψ̃initial
l,2


 = J−1


 ψl,1

ψl,2


 and


 φ̃initial

k,1

φ̃initial
k,2


 =


 φk,1

φk,2


 . (6.38)

However this initial choice is not a proper biorthonormal system. By “not proper”

we mean that the metric operator ηinitial
+ constructed from this initial system fails

to satisfy some necessary properties such as boundedness and squarability ((ηinitial
+ )2

does not exist). Therefore we need to switch to a new, proper biorthonormal system.

This can be done by realizing the fact that any other system {φ̃l,i, ψ̃k,j} in the form


 ψ̃k,1

ψ̃k,2


 = (K†)−1


 ψ̃initial

k,1

ψ̃initial
k,2


 ;


 φ̃k,1

φ̃k,2


 = K


 φ̃initial

k,1

φ̃initial
k,2


 (6.39)

can be chosen as a biorthonormal system for our Hamiltonian where K is any invertible

complex valued 2 × 2 matrix possibly depending on k and z. However we have a

requirement such that KK† must tend to identity as z tends to zero to ensure that

the Hermitian limit of the metric operator is identity.

Here we do not have a systematic procedure to calculate K which will give us a

non-problematic metric operator. However looking for a more symmetric choice of

the biorthonormal system we are able to find a K which at least fixes the first order

problems in the metric operator.

To obtain a more symmetric choice realize that J−1 has a square root, namely

J−
1
2 := −i




z
2k

1− z
2k

−1− z
2k

z
2k


 . (6.40)

We claim that K would be in the form

K = iJ−
1
2 +O(z2). (6.41)

Note that such a choice of K is in agreement with the requirement KK† is identity

in the Hermitian limit; and comparing (6.38) and (6.39), it is easy to see that it gives
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us a more symmetric choice of the biorthonormal system such that


 ψ̃k,1

ψ̃k,2


 = −i(J−

1
2 )T


 ψk,1

ψk,2


 +O(z2) (6.42)

and 
 φ̃l,1

φ̃l,2


 = iJ−

1
2


 φl,1

φl,2


 +O(z2). (6.43)

More explicitly, we have3

ψ̃k,1 = − z
2k

ψk,1 +
(
1 + z

2k

)
ψk,2 +O(z2),

ψ̃k,2 =
(−1 + z

2k

)
ψk,1 − z

2k
ψk,2 +O(z2);

(6.44)

φ̃k,1 = z
2k

φk,1 +
(
1− z

2k

)
φk,2 +O(z2),

φ̃k,2 =
(−1− z

2k

)
φk,1 + z

2k
φk,2 +O(z2).

(6.45)

6.3 Construction of the Metric Operator

Now we are ready to construct the metric operator η+. To construct η+, we are going

to use the continuous and degenerate analog of equation (5.1) which is

η+ =

∫

0

∞
dk

[
|φ̃k,1〉〈φ̃k,1|+ |φ̃k,2〉〈φ̃k,2|

]
. (6.46)

What we want to find is the position representation of the metric operator

η+(x, y) = 〈x|η+|y〉
=

∫

0

∞
dk

[
〈x|φ̃k,1〉〈φ̃k,1|y〉+ 〈x|φ̃k,2〉〈φ̃k,2|y〉

]

=

∫

0

∞
dk

[
φ̃k,1(x)φ̃∗k,1(y) + φ̃k,2(x)φ̃∗k,2(y)

]
. (6.47)

Examining the equations (6.28), (6.29), and (6.45) we see that φ̃−k,1(x) = −φ̃k,2(x).

This means that the integrand of (6.46) is an even function of k which enables us to

extend the integral from −∞ to +∞. So we are going to express η+(x, y) in the form:

3Realize that there happened a switch between eigenfunctions in the sense that while ψk,1 and ψk,2

were tending to ordinary normalized free particle solutions 1√
2π

eikx and 1√
2π

e−ikx , respectively,

now ψ̃k,1 and ψ̃k,2 tend to 1√
2π

e−ikx and 1√
2π

eikx, respectively, as coupling constant z tends to 0.
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η+(x, y) =
1

2

∫ ∞

−∞
dk

[
φ̃k,1(x)φ̃∗k,1(y) + φ̃k,2(x)φ̃∗k,2(y)

]
. (6.48)

Since φ̃k,.(x) has three different representations in three different regions for x < −1,

−1 < x < 1, and x > 1, in order to find η+(x, y) , we need to consider the integral

(6.48) in 9 different regions. However Hermiticity of η+, i.e.; η∗+(x, y) = η+(y, x),

reduces the necessity to examine all 9 cases to just 5. Then using the Hermiticity we

are able to find the representation of η+(x, y) for other 4 cases.

Using (6.28), (6.29), (6.45), (6.48), and the identity 1
2π

∫∞
−∞ dk eikα

kn = inαn−2|α|
2(n−1)!

and

after tedious calculations and surprising simplifications, we find the metric operator

η+(x, y) as

η+(x, y) = δ(x− y) + η+1(x, y)z +O(z2), (6.49)

in which

η+1(x, y) =
i

2
sign(y − x)[Θ(x + y − 2)−Θ(x + y + 2)], (6.50)

where

sign(x) =





−1 for x < 0

1 for x > 0

0 for x = 0





, (6.51)

and

Θ(x) =





0 for x ≤ 0

1 for x > 0



 . (6.52)

It is easy to check that η+(x, y) is Hermitian and at the Hermitian limit z → 0,

η+(x, y) → δ(x, y). However boundedness of η+1(x, y) so of η+ is not that much clear

and we therefore give a detailed proof in Appendix B.

Before finishing this section we want to mention that while we were working on

this thesis, Mostafazadeh achieved a differential realization of pseudo-Hermiticity in

[14]. He used the fact that when it is realized in the ~x-basis, pseudo-Hermiticity

condition (3.1) for a general Hamiltonian

H =
~p2

2m
+ v(~x) (6.53)
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acting on L2(Rn) gives a partial differential equation for the metric operator η(x, y),

namely (
−52

x +52
y +

2m

~2
[v(~x)∗ − v(~y)]

)
η(x, y) = 0, (6.54)

where 52
x =

∑n
j ∂/∂x2

j . Using (6.54) he found a perturbative calculation method

for η(x, y) without making any spectral analysis. He applied this method to some

toy models including our Hamiltonian. He found that for the potential type v(x) =

i
∑N

n=1 zn[δ(x − an) − δ(x − an)], where N ∈ Z+, zn, an ∈ R, most general metric

operator η(x, y) which reduces to the identity in the Hermitian limit is given by

η(x, y) = δ(x− y) +
N∑

n=1

znη1n(x, y) +O(z2
n), (6.55)

where

η1n(x, y) := wn+(x− y) + wn−(x + y) +
i

2
Θ(x + y − 2an)sign(y − x), (6.56)

and wn± : R 7→ C is any arbitrary function satisfying wn±(x)∗ = wn±(∓x). Note that

when we take N = 1, a1 = 1 and w1± = 0, it reduces to our metric operator η+(x, y).

6.4 Physical Analysis

After getting our metric operator η+(x, y) we are ready to analyze the physical system

we have. As we explained in subsection 1.2 we can use whichever picture we want,

picture 1 or picture 2. Here we choose to use picture 2, i.e., we want to work on usual

Hilbert Space H = L2(R) with the conventional inner product. So what we need

to do is just to calculate the corresponding dimensionless Hermitian Hamiltonian

h := ρ+Hρ−1
+ . In order to calculate h we are going to use the perturbative method

explained in Chapter 5. Realize that in our dimensionless Hamiltonian H our real

perturbation parameter is z, and H is in the form

H = H0 + zH1, (6.57)

where H0 is the Hermitian and H1 is the anti-Hermitian parts of H whose position

representations are

H0(x, y) = 〈x|H0|y〉 := − d2

dx2
δ(x− y), (6.58)



Chapter 6: PT -Symmetric Delta Function Potential 35

and

H1(x, y) = 〈x|H1|y〉 := −iδ(x− y) [δ(x− 1)− δ(x + 1)] , (6.59)

respectively. So, following the argument of Chapter 5 and using (5.8) and (5.9) we

see that we can express our dimensionless Hermitian Hamiltonian as

h = H0 − 1

4
[H1, η+1]z

2 +O(z3), (6.60)

where η+1 is the operator whose position representation is η+1(x, y). Now using (6.50),

(6.58), (6.59) and (6.60) we can write the position representation h(x, y) of h up to

second order in z according to

h(x, y) = 〈x|h|y〉 = − d2

dx2 + z2

8
{δ(x + 1)[Θ(y + 1)−Θ(y − 3)]

+ δ(x− 1)[Θ(y + 3)−Θ(y − 1)] + δ(y + 1)[Θ(x + 1)−Θ(x− 3)]

+ δ(y − 1)[Θ(x + 3)−Θ(x− 1)]}+O(z3).

(6.61)

This is the position representation of the dimensionless Hermitian Hamiltonian h.

The position representation of dimensional Hermitian Hamiltonian h = ρHρ−1 (up to

second order in ζ) can be found by substituting first two identities of (6.5) into (6.62)

and multiply it by ~2
2ma2 . Using the identities δ(x/a) = aδ(x) and Θ(x/a) = Θ(x) for

a > 0 we then get

h(x, y) = 〈x|h|y〉 = − ~2
2m

d2

dx2 + maζ2

4~2 {δ(x + a)[Θ(y + a)−Θ(y − 3a)]

+δ(x− a)[Θ(y + 3a)−Θ(y − a)] + δ(y + a)[Θ(x + a)−Θ(x− 3a)]

+ δ(y − a)[Θ(x + 3a)−Θ(x− a)]}+O(ζ3).

(6.62)

In view of this relation h acts on a wave function ψ(x) in L2(R) as follows:

(hψ)(x) = − ~2
2m

ψ
′′
(x) + maζ2

4~2 {δ(x + a)
∫ −a

3a
ψ(y)dy − δ(x− a)

∫ a

−3a
ψ(y)dy

+[Θ(x + a)−Θ(x− 3a)]ψ(−a)− [Θ(x− a)−Θ(x + 3a)]ψ(a)}+O(ζ3).
(6.63)

6.5 Energy Expectation Value of Some Gaussian Wave Packets

We can analyze the physical aspects of our system in exactly the same way as in

conventional Quantum Mechanics. The only unusual feature of our system is the fact
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that our Hamiltonian is non-local. This non-locality and the complicated appearance

of h(x, y) in (6.62), do not however cause any difficulties in computing certain physical

quantities for our system. For example we can evaluate the energy expectation values

of two kinds of Gaussian wave packets. First, we consider a Gaussian wave packet that

stays at the center with a nonzero mean momentum. Next we examine a Gaussian

wave packet with zero mean momentum but nonzero mean position. The position

representation of the first wave packet is

G1(x) =
1

(πσ)1/4
e−

x2

2σ2 +ik0x, (6.64)

and of the second one is

G2(x) =
1

(πσ)1/4
e−

(x−x0)2

2σ2 , (6.65)

where σ > 0 is the width and x0, k0 ∈ R.

The reason why we choose these Gaussian wave packets is that they represent

some localized particles in the actual physical space. Note that if we had chosen to

work in picture 1 instead of picture 2, we would have to calculate ρ−1G1 and ρ−1G2 to

find the mathematical representations of these localized particles in the first picture.

This again shows that despite the fact that H is local in the first picture (unlike

h in the second one), it might still be much harder to work in picture 1 because

the only thing we know in the first picture is H itself and every other mathematical

representation of the actual physical system has to be calculated by transforming the

corresponding known representations from the second picture. Moreover this is not

just a problem about calculation, it is also a problem about intuition. In the first

picture, the relation between physical entities and their mathematical representations

is not intuitively clear except maybe H whereas in the second picture this fuzzyness

in intuition may only occur for h.

Now we proceed with finding the corresponding energy expectation values

E1 := 〈G1|h|G1〉 =

∫ ∞

−∞

∫ ∞

−∞
G1(x)h(x, y)G∗

1(y)dxdy (6.66)
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and

E2 := 〈G2|h|G2〉 =

∫ ∞

−∞

∫ ∞

−∞
G2(x)h(x, y)G∗

2(y)dxdy. (6.67)

Substituting (6.62), (6.64) into (6.66), and (6.62), (6.65) into (6.67), and using the

properties of delta and theta functions and performing the necessary integrations we

obtain

E1 =
~2

2m
(k2

0 +
1

2σ2
) +

mζ2

4~2
B1 +O(ζ3) (6.68)

and

E2 =
~2

2m
(
x2

0

σ4
+

3

4σ2
) +

mζ2

4~2
B2 +O(ζ3) (6.69)

where

B1 := 2
√

2e−
1
2
( a2

σ2 +k2
0σ2)Re

(
eiak0

(
Erf[3a−ik0σ2√

2σ
] + Erf[a+ik0σ2√

2σ
]
))

, (6.70)

B2 :=
√

2e−
(a+x0)2

2σ2 ×(
Erf[a+x0√

2σ
] + e

2ax0
σ2

(
−Erf[−a+x0√

2σ
] + Erf[3a+x0√

2σ
]
)

+ Erf[3a−x0√
2σ

]
)

.
(6.71)

Here Erf[z] is the error function defined as Erf[z] := 2√
π

∫ z

0
e−t2dt for z ∈ C. Actually

B1 and B2 are more important for us than actual expectation values since they rep-

resent the non-Hermiticity effects on the energy expectation values of Gaussian wave

packets. In order to see these effects we plotted several graphs of B1 and B2 keeping

all variables constant except central position and momentum.

In Figures 6.2 and 6.3 we see some plots of B1 versus k0, and B2 versus x0 for

various values of σ. It is clearly seen from both of the figures that the effect of

non-Hermiticity diminishes as σ goes to 0 or ∞, and it attains its maximum around

σ = 2a. Also in Figure 6.2, we see that non-Hermiticity effect decays rapidly for the

central momentum values p0 = ~k0 outside the region [−~a−1, ~a−1]. There is also an

oscillation pattern for σ > 1 in addition to the decay, which seems to have a period

T = π/2a regardless of the value of σ.

In the Figure 6.3 local effects of non-Hermiticity can be seen more clearly. For

small values of σ non-Hermiticity effect exists for only those stationary packets which

have central position around a and −a with an effective region [−a− σ,−a + σ] and



Chapter 6: PT -Symmetric Delta Function Potential 38

k0

B
1

-4 -2 2 4

1

2

3

Σ=3.0

-4 -2 2 4

1

2

3

Σ=4.0

-4 -2 2 4

1

2

3

Σ=5.0

-4 -2 2 4

1

2

3

Σ=0.5

-4 -2 2 4

1

2

3

Σ=1.0

-4 -2 2 4

1

2

3

Σ=2.0

Figure 6.2: Plots of B1 as a function of k0 for σ = 0.5, σ = 1, σ = 2, σ = 3,
σ = 4 and σ = 5 in units where a = 1.

[a− σ, a + σ]. As σ increases these effective regions extend and superpose on to each

other.

.
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Figure 6.3: Plots of B2 as a function of x0 for σ = 0.2, σ = 0.5, σ = 1, σ = 2,
σ = 6 and σ = 10 in units where a = 1.
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Chapter 7

CONCLUSION

In this thesis we explained how we can use some non-Hermitian but pseudo-

Hermitian Hamiltonians in Quantum Mechanics. We showed that for a Hamilto-

nian with discrete spectrum, its η+-pseudo-Hermiticity for some positive definite η+

is equivalent to the reality of its spectrum. We then showed how we can change

our Hilbert space or equivalently our inner product and other mathematical objects

such as mathematical representation of physical observables and states to be consis-

tent with Quantum Measurement Theory. We also addressed the unitary equivalence

of separable Hilbert Spaces and suggested another picture in which we use conven-

tional inner product and usual mathematical representations but we transform the

initial non-Hermitian Hamiltonian H to the corresponding Hermitian Hamiltonian

h = ρ+Hρ−1
+ .

Next we applied our theory to the PT -Symmetric delta function potential with a

real coupling constant ζ. We proved the existence of a critical ζ value ζc which ensures

the reality of the spectrum of this system. After we ensured the reality of the spectrum

we mimicked the method we explained for discrete systems to find an appropriate

metric operator η+ and the corresponding Hermitian Hamiltonian h for a system which

has a continuous spectrum. In the non-degenerate case eigenfunctions of H and H†

automatically give a biorthonormal system. However in the doubly degenerate case

we deal with here, it is not clear how to choose biorthonormal pairs in each degeneracy

subspace. We decided to make a symmetric choice for our biorthonormal system with

respect to our initial eigenfunctions which reduce to usual free particle solutions as

coupling constant tends to zero. After making our choice, we calculated η+ up to

first order in z = 2maζ
~2 . What we found is that it reduces to the identity in the
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Hermitian limit and it is a bounded operator up to our perturbation limit. This is

quite remarkable because an arbitrary choice for the biorthonormal system would in

general lead to an unbounded η+.

After getting the metric operator η+ up to first order in z, we were able to calculate

the corresponding Hermitian Hamiltonian h up to second order in z. We calculated

h since we chose to work on usual inner product space H with the conventional inner

product. The reason why we made this choice is that in this picture mathematical

representations of physical entities are easier to form and the results we obtain are

easy to interpret. For example magnitude square of a state function in position basis

represents the probability density of finding the physical particle at the corresponding

space region in the actual physical world. This is in contrast to the first picture where

we use the Hilbert Space Hphys instead of the usual Hilbert Space H = L2(R).

To get some idea about the physical system our Hamiltonian describes, we chose

two Gaussian wave packets, one of which stays at the center in position space but has

varying mean momentum and the other has zero mean momentum but varying mean

position. We looked at the non-Hermiticity effect on the energy expectation values of

these localized functions. The result showed that despite the non-local appearance of

h(x, y) it behaves like a local operator. Actually we do not see almost any effect of

h on the expectation value of wave packets which are localized around any position

but a and −a. This is what we expect in a sense since the corresponding position

representation of our Hamiltonian in Hphys only has Dirac delta potentials which are

ultra local.
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Appendix A

EXISTENCE OF A CRITICAL G VALUE GC

Theorem: Let u be a complex number which satisfies the conditions

−1 + eu

u2
= G, and Re(u) < 0 (A.1)

where G is a positive real number and Re(u) represents the real part of u. Then

G cannot be arbitrarily large, i.e. ; there exists a critical Gc such that ∀G > Gc,

@ u which satisfies (A.1).

Proof: Suppose that there does not exist such a critic Gc. Then ∀Mk > 0,

where k and Mk ∈ N , ∃ Gk such that Gk > Mk and ∃uk ∈ C such that

−1 + euk

uk
2

= Gk, and Re(uk) < 0. (A.2)

Lett M1 = 1, then find a G1 and u1 which satisfy (A.2). Then choose an

M2 > G1 and find a G2 and u2 which satisfy (A.2). Follow the same procedure

for k = 2, 3, 4, ... as well. In this way we can construct two sequences {Gn}n∈N

and {un}n∈N. The sequence {Gn}n∈N diverges to infinity by construction.

Now let xn = Re(un) < 0, and yn = Im(un), so un = xn + iyn. Then we can

rewrite (A.2) as
−1 + exn+iyn

un
2

=
−1 + exneiyn

un
2

= Gn (A.3)

Since Gn is real this also means that

| − 1 + exneiyn|
|un|2

= Gn (A.4)

Together with the fact that exn < 1 the last equality implies

Gn ≤ 2

|un|2 ⇒ |un| ≤
√

2√
Gn

(A.5)
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So we get

0 ≤ lim
n→∞

|un| ≤ lim
n→∞

√
2√

Gn

= 0 ⇒ lim
n→∞

|un| = 0 ⇒ lim
n→∞

un = 0. (A.6)

Now let us rewrite (A.2) as

−1 + eun

un

= Gnun. (A.7)

Hence

lim
n→∞

−1 + eun

un

= lim
n→∞

Gnun, (A.8)

as well. Using the fact that limn→∞ un = 0 and applying the L’Hospital Rule,

it can be easily seen that the left hand side of (A.8) is 1. Hence we get

lim
n→∞

Gnun = 1, (A.9)

which also implies that

lim
n→∞

Gnxn = 1. (A.10)

However the fact that Gn > 0 and xn < 0, ∀n ∈ N, implies that

Gnxn < 0 ∀n ∈ N. (A.11)

Equation (A.10) together with (A.11) leads to a clear contradiction. ¤
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Appendix B

BOUNDEDNESS OF η+1

Consider the absolute value of η+1(x, y) of (6.50):

|η+1(x, y)| =




1
2

if − 2 < x + y < 2

0 otherwise



 . (B.1)

This implies that

∫ ∞

−∞
|η+1(x, y)|dy =

∫ ∞

−∞
|η+1(x, y)|dx = 2. (B.2)

Also consider the map G : R2 7→ R2 defined as

G(u, v) :=

(
u + v

2
,
u− v

2

)
. (B.3)

Then the composition function |η+1(G(u, v))| does not depend on v:

|η+1(G(u, v))| =




1
2

if − 2 < u < 2

0 otherwise



 . (B.4)

Note also that G is a one to one and onto map with Jacobian JG(u, v) = (Determinant

of G′(u, v))= −2.

We need to show that ∃c > 0 such that ∀ψ ∈ H, ‖η+1ψ‖ ≤ c‖ψ‖ or equivalently
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‖η+1ψ‖2 ≤ c2‖ψ‖2. Actually

‖η+1ψ‖2 =

∫ ∞

−∞
dx

∣∣∣∣
∫ ∞

−∞
dy η+1(x, y)ψ(y)

∣∣∣∣
2

(B.5)

≤
∫ ∞

−∞
dx

(∫ ∞

−∞
dy|η+1(x, y)||ψ(y)|

)2

(B.6)

=

∫ ∞

−∞
dx

(∫ ∞

−∞
dy|η+1(x, y)| 12 |η+1(x, y)| 12 |ψ(y)|

)2

(B.7)

≤
∫ ∞

−∞
dx

∫ ∞

−∞
dy|η+1(x, y)|.

∫ ∞

−∞
dy|η+1(x, y)||ψ(y)|2 (B.8)

= 2

∫ ∞

−∞
dx

∫ ∞

−∞
dy|η+1(x, y)||ψ(y)|2 (B.9)

= 2

∫ ∞

−∞
du

∫ ∞

−∞
dv|JG(u, v)||η+1(G(u, v))||ψ(G(u, v))|2 (B.10)

= 4

∫ ∞

−∞
du

∫ ∞

−∞
dv|η+1(G(u, v))||ψ((u− v)/2)|2 (B.11)

= 4

∫ ∞

−∞
du|η+1(G(u, v))|

∫ ∞

−∞
dv|ψ((u− v)/2)|2 (B.12)

= 8‖ψ‖2. (B.13)

At first step (B.5) we used the Hermiticity of η+1(x, y). At step (B.9) we used the

Schwartz inequality. Also at step (B.10) it should be understood that when we write

ψ(G(u, v)) what we actually mean is ψ(π2(G(u, v))) where π2 : R2 7→ R is the projec-

tion function defined as π2(x, y) = y. ¤
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