
A SCATTER SEARCH APPROACH FOR PROTEIN

FOLDING PROBLEM IN 2D HP-MODEL

by

Sibel Bilge Sonuç

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

March 2008

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Sibel Bilge Sonuç

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Ceyda Oğuz (Advisor)

Assist. Prof. Metin Türkay

Assist. Prof. Deniz Aksen

Date:

ABSTRACT

Proteins are complex molecules performing vital cellular activities. Each protein is

composed of an amino acid chain. These amino acid chains are found as folded in their

native state in the nature. The activity of a protein is mostly defined by its native

3 dimensional (3D) conformation. Determination of the native 3D conformation of

an amino acid chain is called the protein folding problem (PFP). On the other hand,

determination of the native state of a protein is not easy. In particular, protein folding

problem is proven to be NP-hard.

Determination of native states of protein molecules is vital since most of the med-

ical and genetic studies depend on knowing these native conformations. Therefore

many studies and investments are made on this topic. Researchers in various fields

such as biochemistry, biophysics, computer science, operations research, bioinformat-

ics, genetics and medical sciences are interested in solving this problem. Even, there

are sometimes collaborations between different research areas to merge their tech-

niques, knowledge and experience on this problem. One of these applications is the

application of metaheuristics to protein folding problem in minimum free energy con-

formation with HP-model based on a lattice structure, as a cooperation of all these

sciences.

This study is on developing a metaheuristic algorithm based on scatter search and

path relinking for the 2D lattice based PFP utilizing HP-model according to minimum

energy conformation theory. There are applications of well-known metaheuristics as

well as scatter search to the PFP in the literature. We have introduced new moves

and operators for the elements of scatter search for the PFP on 2D lattice HP-model.

We have also proposed several application options for these element of the scatter

iii

search application, as well as new measurements for the values of the solutions. We

introduced and experimented on some combinations of these elements for an effective

search algorithm and give the test results in this study. Although the results are

not as good as the results in the literature, we have tested a wide set of heuristic

elements based on scatter search and path relinking. The results of these experiments

are promising for further improvement on this topic.

ÖZET

Proteinler hücre aktivitelerinden sorumlu karmaşık moleküllerdir. Her bir pro-

tein bir amino asit zincirinden meydana gelir. Bu amino asit zincirleri doğada doğal

şekillerinde katlanmış halde bulunurlar. Bir proteinin aktivitesi büyük oranda doğal

üç boyutlu yapısı tarafından belirlenir. Bir proteinin en az serbest enerji yapısının bu-

lunmasına protein katlanma problemi denir. Öte yandan, bir proteinin doğal şeklinin

belirlenmesi kolay değildir. Özellikle, protein katlanma probleminin NP-zor olduğu

kanıtlanmıştır.

Tıbbi ve genetik çalışmalar bu doğal yapıların bilinmesine dayandığından dolayı

protein moleküllerinin doğal şekillerinin bulunması önemlidir. Bu nedenle, bu konu

üzerine bir çok çalışma ve yatırım yapılmıştır. Bilgisayar bilimi, yöneylem araştırması,

bioinformatik, genetik ve tıbbi bilimler gibi birçok daldaki araştırmacılar bu problemin

çüzülmesi ile ilgilidir. Hatta, farklı alanlar arasında yöntemlerin, bilginin ve deney-

imin birleştirilmesi için işbirligi yapılmaktadır. Bu alanlar arası uygulamalardan biri

de sezgisel üstü yöntemlerin HP-modelindeki en az serbest enerji yapısı için kafes

modelinde protein katlanma problemine uygulanmasıdır.

Bizim çalışmamız HP-modelini kullanan 2 boyutlu protein katlanma problemi

için dağınık arama ve path relinking üzerine dayalı sezgisel üstü bir algoritmanın

geliştirilmesidir. Literatürde, protein katlanma problemine sezgisel üstü yöntemlerin

ve dağınık aramanın çok bilinen uygulamaları bulunmaktadır. Biz HP-modelini kul-

lanan 2 boyutlu protein katlanma problemine dağınık aramanın elemanları için yeni

adımlar ve işlemler tanımladık. Ayrıca, dağınık aramanın elemanları ve çözümlerin

değerlendirmeleri için yeni ölçümler gibi birçok uygulama seçeneği önerdik. Bu çalışmada

verimli bir arama algoritması için bu elemanların farklı eşleşmelerini tanımladık ve test

v

edip, test sonuçlarını bildirdik. Bu sonuçlar literatürdeki sonuçlar kadar iyi olmasa

da, dağınık arama ve path relinking üzerine dayalı sezgisel üstü algoritma eleman-

larının geniş bir k ümesini test ettik. Bu sayısal deneylerin ile gelecek araştırmalar

için yararlı olacak sonuçlar elde ettik.

ACKNOWLEDGMENTS

I would like to thank my advisor, Ceyda Oğuz, for her guidance and support

during my study and research. I would like to thank members of my thesis committee

Metin Türkay and Deniz Aksen for their valuable comments, suggestions and their

patience.

I should also thank my friends Pelin Armutlu, Aslıhan Kırcalı, Pınar Kahraman,

Zehra Bilgintürk-Yalçın, Seda Tepe, Dilek Günneç, Kenan Arifoğlu, Uğur Kaplan and

Fadime Üney-Yüksektepe. I am grateful for their support and encouragement.

Finally and foremost, I cannot thank enough my mother. She has never lost her

belief and faith in me and has been the greatest source of support. I could not have

achieved what I have now without her.

vii

TABLE OF CONTENTS

List of Tables xi

List of Figures xii

Nomenclature xiii

Chapter 1: Introduction 1

1.1 Problem Definition . 1

1.1.1 Protein Folding Problem . 1

1.1.2 The structure of a protein . 1

1.1.3 Minimum Energy Conformation 4

1.1.4 The HP Model . 4

1.1.5 Lattice model . 6

1.2 Contributions of the thesis . 7

1.3 Outline of the thesis . 8

Chapter 2: Literature Review 9

2.1 Protein Folding Problem . 9

2.2 Scatter Search and Path Relinking 12

2.3 Contributions of the thesis . 13

Chapter 3: Scatter Search and Path Relinking 14

3.1 Elements of Scatter Search . 14

3.2 Path Relinking . 19

viii

Chapter 4: Moves to generate new valid conformations 22

4.1 Moves defined in the literature . 22

4.2 Moves defined in this thesis . 24

4.2.1 Push move . 25

4.2.2 Turn move . 26

4.2.3 Shift move . 27

Chapter 5: The Algorithm and Computational Experiments 29

5.1 Diversification Generator: Initial Solution Set 29

5.1.1 Random solution generation 29

5.1.2 Elite solution generation . 30

5.2 Subset Generation and Solution Combination Methods: All Pairs-Path

Relinking . 33

5.2.1 Path relinking using a 1-point crossover approach 33

5.2.2 Path relinking using a 2-point crossover approach 37

5.2.3 Two guiding solutions and their weighted combination 38

5.3 Diversity Measurement . 39

5.3.1 Comparison measurement . 40

5.3.2 Adding and subtracting the solutions 41

5.4 Improvement method: Shift move + Turn move 43

5.5 Feasibility: Backtracking vs. Turn move 44

5.6 Scatter search application on the protein folding problem 46

Chapter 6: Computational Results 50

6.1 Algorithmic elements . 50

6.2 Size of the Reference Sets . 56

6.3 Local optimality of the solutions found 65

Chapter 7: Conclusion 67

ix

Bibliography 69

Vita 73

x

LIST OF TABLES

1.1 Classification of amino acids according to their polarity [29] 5

6.1 turn: 2nd node, combination: 2 offsprings 51

6.2 turn: 1st node, combination: 2 offsprings 52

6.3 turn: 2nd node, combination: 1 offspring 53

6.4 turn: 1st node, combination: 1 offspring 54

6.5 test of diversity measures . 55

6.6 RefSet size (Test 1) . 56

6.7 RefSet size (Test 2) . 57

6.8 RefSet size (Test 3) . 58

6.9 RefSet size (Test 4) . 59

6.10 RefSet size (Test 5) . 60

6.11 RefSet size (Test 6) . 60

6.12 RefSet size (Test 7) . 61

6.13 RefSet size (Test 8) . 61

6.14 RefSet size (Test 9) . 62

6.15 RefSet size (Test 10) . 62

6.16 RefSet size (Test 11) . 63

6.17 RefSet size (Test 12) . 63

6.18 RefSet size (Test 13) . 64

6.19 Pool size . 65

xi

LIST OF FIGURES

1.1 Primary structure of a protein [29] 2

1.2 Basic structures of protein conformations [16] 3

1.3 Optimal conformation for problem HP20 6

3.1 Scatter search diagram . 17

3.2 path relinking . 19

4.1 three types of pull move . 23

4.2 push move . 25

4.3 turn move . 26

4.4 shift move . 27

5.1 Diversification Generator: random solution generation 30

5.2 Favorable motifs on an optimal conformation 31

5.3 Elite Solution Generation: solution generation using local motifs . . . 32

5.4 Path relinking: 1-point crossover . 34

5.5 Choosing trial solutions . 36

5.6 Path relinking: 2 guiding solutions 39

5.7 Diversity measurement: comparison 40

5.8 Diversity measurement: Addition and subtraction 42

5.9 Pseudocode for SS application to the PFP 47

6.1 N vs CPU . 54

6.2 A conformation of HP36 with fitness value 13 66

6.3 An optimal conformation of HP36 with fitness value 14 66

xii

NOMENCLATURE

PFP Protein Folding Problem

SS Scatter Search

GA Genetic Algorithm

TS Tabu Search

ACO Ant Colony Optimization

RefSet Reference Set

xiii

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1.1 Problem Definition

1.1.1 Protein Folding Problem

Proteins are complex molecules made of amino acid chains. They are constructive

components of a cell and also, they are responsible for vital activities in the cells.

These activities require them to interact with other proteins in their environment

such as involving in some biological reactions and transportation. The proteins com-

municate with their environment via a specialized part of their structure, which is

called the active part of the protein. The shape of the active part of a protein depends

on its 3 dimensional (3D) conformation. This is why finding 3D conformation of pro-

teins in human cells have important impacts on medicine as well as other medical and

genetic sciences. Thus, the protein folding problem (PFP) arises with the need for

determination of the conformations (i.e. native states) of the proteins in the nature,

especially the proteins in the human body.

1.1.2 The structure of a protein

The sequence on an amino chain chain corresponding to a protein is called its primary

structure. Figure 1.1 represents primary structure of one amino acid chain. However,

in its native state an amino acid chain is found as folded in a unique 3D conformation.

This conformation is called the tertiary structure of the protein. The researches show

that the secondary structure (2D conformation) defines the local folds and motifs of

the protein which are called helices, sheets, loops, etc. The combination of these local

Chapter 1: Introduction 2

Figure 1.1: Primary structure of a protein [29]

motifs in the 3D environment defines the tertiary structure of a protein. Hence, ter-

tiary structure of an amino acid chain depends on its secondary structure. Moreover,

the secondary structure of a protein also depends on its primary structure [9, 10].

Therefore, the model used in this study to predict conformations of proteins is based

on their primary structure (HP-model).

Some proteins may consist of more than one amino acid chain. In this case,

3D conformations of these chains come together to form the quaternary structure

of the protein. That is, quaternary structure of a protein is simply combination of

tertiary structures of separate amino acids chains of a protein. Figure 1.2 shows the

relationship between four basic structures of a protein.

Our study is focused on prediction of 2 dimensional (2D) conformation (secondary

structure) of a given amino acid chain. There are two main reasons for focusing on

2D model, instead of 3D model. First, secondary structure of a protein gives us

important clues about its tertiary structure, and thus native state of the protein.

Second, the secondary structure is computationally easier to solve compared to the

tertiary structure.

Chapter 1: Introduction 3

Protein

National Human Genome Research InstituteNational
Institutes
of Health Division of Intramural Research

Primary protein structure
is sequence of a chain of amino acids

Tertiary protein structure
occurs when certain attractions are present
between alpha helices and pleated sheets.

Secondary protein structure
occurs when the sequence of amino acids
are linked by hydrogen bonds

Quaternary protein structure
is a protein consisting of more than one
amino acid chain.

Amino Acids

Alpha helix

Pleated sheet

Alpha helixPleated sheet

Figure 1.2: Basic structures of protein conformations [16]

Chapter 1: Introduction 4

1.1.3 Minimum Energy Conformation

The amino acid chain of a protein folds to form a favorable and stable 3D structure.

The minimum energy conformation theory states that molecules are in the most

stable form in nature when they have the least amount of free energy. The folded

protein structure is stabilized with intramolecular (e.g. covalent) bonds, connecting

the non-consecutive amino acids on the chain. Thus, intramolecular bonds are the

key factor keeping a folded molecule in its most stable form. Therefore, minimizing

the free energy in a protein molecule is equivalent to maximizing the number of its

intramolecular bonds. In this study, our approach is based on the idea of maximizing

the number of amino acid pairs in contact which have the properties to create an

intramolecular bond together.

1.1.4 The HP Model

There are 20 types of amino acids found in the nature. They all have different

characteristics such as size, charge and polarity. In terms of polarity, we can classify

all 20 amino acids in two groups: polar (P) and apolar (H). Table 1.1 shows the

classification of amino acids according to their polarity. Polar amino acids can form

bonds with water molecules which are also polar molecules. Thus, polar amino acids

tend to be closer to water molecules in the environment. For this reason, they are also

called hydrophilic amino acids. Consequently, apolar molecules are repelled by the

water molecules and tend to move towards inner parts of the protein conformation.

These amino acids are called hydrophobic amino acids. Therefore, the polarity of

amino acids play significant role in the resulting conformation of the protein.

Therefore in this study, instead of considering 20 different types of amino acids, we

use a simplified model based on the polarity of the amino acids. HP-model proposed

by Dill [8] is one of the simplest models used for the PFP. It is based on the polarity the

amino acids constructing the primary structure of the protein. In HP-model, the basic

idea is that type H amino acids are located at inner parts of the 3D conformation

and create bonds (HH bonds) within each other to keep their relevant locations.

Chapter 1: Introduction 5

Table 1.1: Classification of amino acids according to their polarity [29]

Amino acid name 3-letter symbol 1-letter symbol Polarity

Alanine Ala A apolar

Arginine Arg R polar

Asparagine Asn N polar

Aspartic acid Asp D polar

Cysteine Cys C polar

Glutamic acid Glu E polar

Glutamine Gln Q polar

Glycine Gly G apolar

Histidine His H polar

Isoleucine Ile I apolar

Leucine Leu L apolar

Lysine Lys K polar

Methionine Met M apolar

Phenylalanine Phe F apolar

Proline Pro P apolar

Serine Ser S polar

Threonine Thr T polar

Tryptophan Trp W apolar

Tyrosine Tyr Y apolar

Valine Val V apolar

Chapter 1: Introduction 6

These HH bonds are the key intramolecular bonds keeping the structure folded. With

combination of HP-model and minimum energy conformation theory, it is not wrong

to say that the most stable and favorable conformation of a protein corresponds to

the conformation with the highest number of HH bonds.

1.1.5 Lattice model

The PFP can be considered either on or off lattice. For the models studied off lattice,

any value for angle value between three consecutive amino acids is possible. On

the other hand, only orthogonal (±90o) or linear (180o) angle values are allowed.

Moreover, on lattice models assume that each amino acid is equal sized and shaped

and also, each pair of consecutive amino acids are equidistant. On a square lattice

based model, consecutive amino acids must occupy adjacent lattice nodes. Therefore,

any two amino acids which are even number of amino acids apart can never be adjacent

on the lattice. Consequently, they cannot create intramolecular bonds in between even

they qualify. However, this is not the case in nature. For this reason, different types

of lattice models (e.g. triangle) may be applied to differ the angle values on amino

acid chain. However, to reduce the effort in application, square lattice models are

popular in literature to estimate the conformations of proteins.

Figure 1.3: Optimal conformation for problem HP20

Chapter 1: Introduction 7

In Figure 1.3, the optimal 2D conformation of problem HP20 (one of the bench-

mark problems) on lattice model based on minimum free energy theory is given. In

the figure, black beads and white beads represent type H amino acids and type P

amino acids, respectively. The lines between pairs of beads represent the primary

structure of the protein. That is, the bead sequence (primary structure) on the line

represents the amino acid chain defining the protein. Each pair of beads on the chain

is at unit distance with respect to each other. Any two H (black) beads with unit

distance in between but not adjacent on the amino acid chain (i.e. with no singe line

connecting these two beads) make a HH bond.

1.2 Contributions of the thesis

In this thesis, we studied application of scatter search based heuristic algorithm on

lattice based PFP in 2D HP-model according to minimum energy conformation theory.

We have tested different methods for five elements of scatter search in combination

with path relinking. For diversification generator, we exploited the local motifs for the

initial solution generation including random solution generation. For improvement

method, the main focus is again on the local motifs. The method tries to embed

the favorable local motifs into the solutions whenever the objective function gets to

improve as a result of the move. We have also tested how dense the improvement

must be applied to trial solutions visited by the search procedure. For the diversity

measurement, we have introduced a new diversity measurement which also works on

the mirror image solutions. For the solution combination method, we have exploited a

path relinking approach with both single guiding solutions and two guiding solutions

with their objective function values as their weights. We have tested parameters for

our algorithm including RefSet size, improvement density, elite solution inclusion,

trial solutions set size and number of parents joining solution combination method.

We have also defined new moves for PFP on lattice model. Turn move is a well

performing move which turns infeasible solutions to feasible solutions in finite number

of moves, keeping most of the local motifs. Push move is based on the pull move

Chapter 1: Introduction 8

used in the literature. The difference of push move is its ability to perform on the

infeasible solutions. In addition, it is more loyal to the local motifs already constructed

compared to pull move. Shift move is a slight modification of push move that can

perform on both feasible and infeasible solutions and still keeping the local motifs if

they are not on the active beads of the move.

1.3 Outline of the thesis

In Chapter 2, we give a literature review on both the PFP and heuristics developed

to solve it, including scatter search (SS) and its implementations. First, we start

with the literature review of the PFP. We give a survey for the main metaheuristic

approaches to the PFP in the minimum free energy theory based HP-model on lattice.

Then, we introduce scatter search and path relinking (PR).

In Chapter 3, we give details about SS and PR methods. We explain five elements

of SS in detail with examples. We also explain the relation between SS and PR

structures. A general template for the SS elements is also provided in Chapter 3.

Chapter 4 presents solution generation moves and neighborhood structures for

the 2D PFP in HP-model used in the literature. We explain these moves in detail in

Section 4.1 and give their similarities and differences with respect to each other. In

Section 4.2, we introduce the move operators we have proposed for this study: push

move, shift move and turn move.

In Chapter 5, we introduce our algorithm and the proposed elements for SS struc-

ture. We explain the components of the algorithm proposed and tested for each of

the element. The settings for the computational experiments are also explained in

this chapter. In addition, we provide pseudo codes for some of the proposed algorith-

mic elements as well as the general structure of the whole search algorithm we have

applied.

Chapter 6 gives the results and tables for the computational experiments. Finally,

in Chapter 7, we give give our concluding remarks.

Chapter 2: Literature Review 9

Chapter 2

LITERATURE REVIEW

2.1 Protein Folding Problem

There are various methods applied to the PFP in HP-model in the literature. Some

of these methods are exact methods, based on biological and chemical knowledge

and involving high-tech equipment, such as X-ray and Nuclear Magnetic Resonance

(NMR). However, these techniques are experimental techniques that require too much

time, effort and resources. This is caused by the difficulty of the problem and large

number of possible conformations, i.e.,m size of the solution space. A typical solution

for a given PFP is represented by a sequence of angles. In addition, HP-model is

based on the lattice model, that is the angles defining a conformation (or a solution

to the PFP) are either 180o or ±90o. Since the number of possible solutions for a

problem of size N (where N is the number of amino acids on the primary structure)

is 3N , the solution space is very large. This leads to the conclusion that the PFP

is NP-hard [27]. Therefore, many heuristic approaches are used in the literature to

solve the PFP.

Pardalos et. al. [21] study a tabu search (TS) approach by adopting a lattice

based model. On a lattice, a conformation corresponds to a Hamiltonian path with

N number of vertices, where N is the size of the problem. Local search move is

similar to a 2-Opt move for the well-known traveling salesman problem (TSP). The

edges between two pairs of consecutive nodes are deleted and new edges are introduced

to keep the Hamiltonian path properties. Therefore, the pairs must be topological

neighbors on the lattice to each other. Their implementation is on the 3D PFP.

Blazewicz et al. [2] also study a TS approach for the PFP in HP-model. They

use a simple neighborhood structure which is constructed by a change in one or

Chapter 2: Literature Review 10

more consecutive angles. Thus, angles on each conformation define the attributes

of the corresponding solution. Moreover, the change in the values of angles define

the tabu status of that solution. Blazewicz et al. [2] were able to find the optimal

solutions to the same benchmark problems as we used up to problem size 64 with in

some reasonable CPU times. For larger problems, they found better solutions than

previous studies. Thus, their results are much better than [4, 17, 26, 28]. Although

we also defined the neighborhood structure based on change in consecutive angles,

we defined the moves to choose the set of angles to be changed under a set of rules.

The rules we have defined for the move operator are based on the local conformations

rather than random selection.

Unger and Moult [28] study a genetic algorithm (GA) application. They use 1-

point crossover neighborhood structure where at the crossover point the angle may

get any possible value in {−1, 0, 1}. They picked the angle value resulting in a valid

conformation. The crossover point is also randomly selected in their application.

However, for some pairs of solutions, none of the possible crossover points with any

one of the three angle choices can result in a feasible solution. In such cases, the

selected pair is ignored and another pair is selected instead. The offspring is accepted

only if its fitness value is larger than the average of the fitness values of its parents.

They could not find optimal solutions for problems with size larger than 50 and

also for the problem HP48. However, their results outperformed the results found by

Monte Carlo simulation. The solution combination method we have adopted is similar

to the 1-point crossover of Unger and Moult [28], with only a slight difference. In

our application, we have considered every crossover point possible to produce a new

solution, and among the ones generated we pick the solution with the best fitness

value. In addition, the infeasible solutions are not eliminated in our application.

Instead, we mutate them so that the outputs become feasible with the least change

on the angle values.

Another GA application to the PFP is by Cox et al. [4]. Like Unger and Moult

[28], they use 1-point crossover neighborhood structure. As a slight difference in

Chapter 2: Literature Review 11

their application of crossover operator, they copy parents as offsprings if no valid

conformation can be found by the combination of this pair instead of picking another

pair. They have reported the results for problems with up to size 50. They were

able to find the optimal for the problem HP48, which Unger and Moult [28] could

not find. However, Cox. et al. make more than twice as many number of evaluations

as Unger and Moult. In their study, Cox et al [4]. also define new moves and they

use them as mutation operators in GA application. These moves are defined so that

they classify moves according to whether they change angles or locations of beads on

the conformation. Some of them have resemblance to other moves in the literature.

These moves are studied in detail in Section 4.1.

Another heuristic application to the PFP is ant colony optimization (ACO) ap-

plication by Shmygelska and Hoos [26]. In their application of ACO, each ant is

responsible for producing a folded conformation. The starting folding point is cho-

sen uniformly on the sequence for each ant. After the solutions are constructed,

pheromone values are updated and then local search is applied. In local search, mu-

tation and Monte Carlo moves are used, such as crankshaft move also defined in

Cox et al. [4]. Shmygelska and Hoos [26] could solve all problems up to HP85 to

optimality. Thus their results are much better than the results of previous studies.

Lesh at el. [17] propose so-called pull move for HP-model. The main property of

the pull move is that it generates new solutions from a given feasible solution ensuring

feasibility of the output. Because of this property of the pull move and also since it

is not hard to implement, it is adopted in other approaches in the literature. For

example, the pull move is also used by Rego et al. [22] to define neighborhoods of SS

application to 2D lattice model of the PFP. They exploit filter-and-fan neighborhood

structure using pull moves as component moves. In addition, they classify pull moves

in a simpler manner similar to the way Cox et al. [4] does to classify mutation

operators. Their search procedure also detects all valid pull moves available and then

the pullMoveList generated in this way is used to define solutions in the filter-and-fan

neighborhood. We do not determine all the moves available in advance in our research

Chapter 2: Literature Review 12

but we apply all the possible moves when they are available, to enhance the use of

local conformations. The results of Rego et. al. [22] outperform those of Shmygelska

and Hoos [26] (ACO application) not only in terms of best objective function values

but also in CPU times.

2.2 Scatter Search and Path Relinking

Scatter search (SS) is a metaheuristic method proposed by Fred Glover [12]. It gener-

ally embeds the adaptive memory idea of TS into evolutionary search concept. SS is

an evolutionary algorithm working on a set of solutions. It constructs new solutions

by strategically combining other solutions and searching the local neighborhood of

the constructed solutions for elite solutions. The pairs to be combined are selected by

a predetermined rule due to the characteristics of the problem. This step is generally

a random process in other heuristic methods. Moreover, local search is applied to all

possible solutions even if the constructed solutions themselves may not be qualified

to join the rest of the process. The consequence of this idea is that not only the

constructed solutions are eligible for the search process but also those in their close

neighborhoods. By this approach, we are able to search through a wider range of

the solution space as well as we are more in control of intensification. This solution

combination methodology tries to capture high quality information found separately

in the solutions. In addition to all these, SS also handles diversification in a much

different way than most other heuristic methods. It exploits a diversification measure

accepted for the whole search process, and calculates diversity values of each solution

according to other solutions concurrently available at that period. Thus, it enables

to search process to choose the most diverse set of solutions to use for the rest of the

process. In [13, 14, 19, 20], the main principles of SS are explained.

Scatter search and path relinking also have applications on other optimization

problems. There are SS applications on scheduling problems such as project schedul-

ing [6] and project scheduling with resource availability costs [30]. Some other ap-

plications of scatter search are on the vehicle routing problem [23], the arc routing

Chapter 2: Literature Review 13

problem [3], the knapsack problem [5], software testing [24], warehouse layout prob-

lem [31], artificial neural networks [11], clustering problem [25], p-median problem [7]

and subset selection problem [18]. There are also some studies for application of the

SS to continuous optimization problems [15]. Parallelization strategies of SS are also

studied for various problems [1].

2.3 Contributions of the thesis

Our approach to PFP in lattice based 2D HP-model is both combination of the some

elements in the literature and new ideas we have developed utilizing the characteristics

of the problem. We see that there are various kinds of heuristics approaches in the

literature to our problem as well as scatter search. One of these heuristics GA and

crossover operator for solution combination method. We have embedded the idea

of the crossover operator into the path relinking to extend the space covering the

solutions which can be generated by a set of parent solutions. However, for the use of

offspring, our approach differentiates from the approach used in GA applications that

include mutation as well as improvement. Our aim is to keep the inherited attributes

of the offspring as much as possible while improving it by adding the attributes which

it misses out. This methodology helps us to increase intensification while eliminating

the randomness in the search process. Therefore, given the first initial set of solutions,

our algorithm always give the same output solutions and thus eliminating chance effect

in the search process.

We have defined new moves to enhance the trial solutions which the search proce-

dure visits. Since our algorithmic approach allows infeasible solutions to occur during

search process and even let then involve in the procedure, we need fast but effective

moves giving feasible and improved results, but able to work both infeasible and fea-

sible solutions. Therefore, by exploiting the mutation moves defined in the literature,

we have defined turn move, push move and shift move. The advantage of these

moves is that they can be used in any heuristic approach although they have been

defined for characteristics needs of scatter search.

Chapter 3: Scatter Search and Path Relinking 14

Chapter 3

SCATTER SEARCH AND PATH RELINKING

3.1 Elements of Scatter Search

Basically, scatter search has five main defined components [13, 14, 19, 20]:

1. Diversification Generator

2. Improvement Method

3. Reference Set Update Method

4. Subset Generation Method

5. Solution Combination Method

Diversification Generator: It is a tool to initialize the search procedure. Since

the main idea of SS is to combine diverse solutions so that the offspring in-

herits the most eligible characteristics of its parents, the initial set of solutions

must consist of diverse solutions. In addition, the solutions must be of as high

quality as possible. Although it is subject to alter due to the requirements of

the problem of interest, it generally starts with one solution constructed either

randomly or by a construction heuristic. This solution is called the seed solu-

tion. Then, by using the same diversity measure described above, it generates

new diverse solutions by some diversification operator [12, 13]. This operator

may generate infeasible solutions. Infeasibility at initial step is not a problem

for this application because the solutions for the next step, only the feasible

Chapter 3: Scatter Search and Path Relinking 15

offsprings will be transfered even though the parent solutions might be infea-

sible. On the other hand, using a diversification operator is not mandatory.

Depending on the structure of the problem and the solution representation de-

fined for the algorithm, all initial solutions may be generated independently. In

this case, we must still ensure that they obey the diversity requirement under

the diversification measure defined.

Improvement Method: This is the procedure where local search procedure is de-

fined. Although it is not mandatory to use improvement method, it is highly

recommended for most of the problems. It handles intensification during the

process, and from the SS point of view, it is also used to search the neighborhood

of the newly generated offsprings. It may either be used to improve the solution

quality of the initial solution set generated via diversification generator, or it

may be used to search the neighborhood of the solutions generated via solution

combination method.

Reference Set: The SS procedure works on the reference set (RefSet). RefSet is a

set of elite solutions of size b. The following three components (reference set

update method, subset generation method) and solution combination method of

SS performs on the elements of RefSet. Thus, it is the core of the whole SS

process. The RefSet is generally composed of two main parts: RefSet1 (of size

b1) and RefSet2 (of size b2) so that b1 + b2 = b . RefSet1 contains the high

quality solutions in terms of the fitness value (or the objective function value),

where RefSet2 contains diverse solutions in terms of the diversification measure

defined. In some problems, a RefSet3 (of size b3) may be used to introduce

other qualities of measurement for the solutions. In this case, we would have

b1 + b2 + b3 = b

Reference Set Update Method: This is the procedure by which the elements of

the RefSet are chosen. The selection of elements in RefSet1 is generally straight

Chapter 3: Scatter Search and Path Relinking 16

forward: We pick b1 solutions with the highest fitness value from the Pool. The

Pool is the set of all solutions we deal with at that iteration of the algorithm.

Initially, Pool is equivalent to the set of initial solutions generated by the di-

versification generator, and then may be improved by improvement method. In

the later steps of the search procedure, Pool is the set of all offsprings gener-

ated combined with the set of parent solutions (which is RefSet in terms of SS).

The essential idea while selecting the elements in RefSet2 is to compute the

diversities of the solutions according to the solutions already selected for Ref-

Set1. Then the b2 solutions from the set Pool\RefSet1 with the highest diversity

values are selected as the elements of RefSet2.

Subset Generation Method: This method declares the rules to select the pairs of

parents that will be combined later to generate new solutions. The subsets may

be of size 2 or more. If the size is of 2, then we have a pair of parents which

is similar to the idea in GA. However, SS lets us combine 3 or more solutions

to generate an offspring. In this case, the common choice is to use weighted

combinations of the parent solutions. The weights can be any measure of the

parent solutions as well as their objective function value.

Solution Combination Method: This is the method that is used to generate new

solutions using the existing solutions. The procedure for solution combination

must be decided concurrently with the subset generation method. This is be-

cause the solution combination method must be applicable to the subset of the

size returned by the subset generation method. Moreover, solution combination

method must be constructed so that it enhances the good characteristics of the

solutions and these characteristic are inherited to the offspring in an efficient

way. These characteristics may be either eliteness in terms of fitness value or

diversity value.

The general diagram of scatter search is given in Figure 3.1. The first step is the

diversification generation where the initial solution set (Pool) of size P is generated.

Chapter 3: Scatter Search and Path Relinking 17

Figure 3.1: Scatter search diagram

Chapter 3: Scatter Search and Path Relinking 18

Pool is a set of diverse solution with respect to a diversification measurement of

choice. This diversification measurement depends on the problem as well as on

the algorithm. In the original structure of SS proposed by Fred Glover [12, 13], a

seed solution is used to generate other solutions in Pool. The seed solution may be

constructed either randomly or by a construction heuristic.

To increase the chance of hitting the global optimum with as least computational

effort as possible, we may choose to start the algorithm with high quality solutions

in terms of their objective function value. For this purpose, we may improve the

solutions in Pool via an improvement method. This is the second step depicted in

Figure 3.1. At this step, improvement method is applied to all solutions in Pool.

The third step shown in Figure 3.1 is the RefSet update method. At this step,

the algorithm searches in the Pool for high quality solutions in terms of both their

objective function value and their diversity value. These high quality solutions will be

used in the next steps of SS. The high quality solutions in terms of objective function

values become the elements of RefSet1. Similarly, the solutions picked because of

their high diversity values compose the set RefSet2. The elements of these two sets

play different roles in the general structure of SS.

The elements of RefSet1 and RefSet2 are paired as parents in the subset generation

method. This method is the fourth step in Figure 3.1. In this step, the solution groups

that will be combined are determined as subsets of RefSet. In our application, these

subsets contain at least one solution from RefSet1 and one solution from RefSet2.

The last step in Figure 3.1 is the solution combination method. In this step, the

parents determined by the subset generation method in the previous step are combined

to generate a new set of solutions, called trial solutions set. The trial solutions set

acts as the new Pool for the next iteration of SS, starting from the second step

(improvement method).

The procedure depicted in Figure 3.1 continues until the stopping condition is met.

The stopping requirement for SS is divergence of RefSet. Therefore, the procedure

continues until no change (i.e. improvement) is observed in RefSet1 for MaxIter

Chapter 3: Scatter Search and Path Relinking 19

Figure 3.2: path relinking

number of iterations. MaxIter is a positive integer large enough to ensure that the

algorithm has diverged to a solution and no more improvement on the high quality

solutions can be observed.

3.2 Path Relinking

Path relinking (PR) is a generalization of SS. It also works on a set of solutions to

generate a new solution (or solution set) that has inherited attributes from the parent

set of solutions. On the other hand, PR has some unique characteristics. In particular,

we name solutions as either a guiding solution or a initiating solution. As the names

clearly state, the initiating solution is the initiating point of the procedure, and the

procedure is guided by the guiding solution(s). Path relinking procedure is depicted

in Figure 3.2. Initially, we have the initiating solution, which is depicted as a black

bead in Figure 3.2. The guiding solution is shown as a white bead. The attributes

of the initiating solution which are not shared by any of the guiding solutions form

the attribute set from-attribute, and the attributes of the guiding solutions which the

initiating solution does not have form the attribute set to-attribute [14]. Although

we may have as many guiding solutions as we like, the number of initiating solutions

is limited to one. This is because the PR procedure introduces only one solution at

each step.

At the first step of PR, we drop one of the attributes in the from-attribute set

Chapter 3: Scatter Search and Path Relinking 20

from the initiating solution and add corresponding attribute from the to-attribute set.

Thus, we get a new solution, which is the first point on the path that path relinking

procedure is generating. We continue dropping the attributes in the from-attribute

set one-by-one and adding the corresponding attribute from the to-attribute set until

we cover all the attributes in these sets. Hence, we generate a path of solutions from

initiating solution toward guiding solutions. The solutions on this path are depicted

as gray beads in Figure 3.2 since these solutions have a mixture of the attributes from

both solutions. The solutions closer to the initiating solution (black bead) are dark

gray and the solutions closer to the guiding solution are light gray. In some cases, two

guiding solutions may have different candidates in the to-attribute set to be added

to the new solution. Then, we may apply weighted-combination for these attributes

where the weights are determined by some fitness measurement of choice.

It is clear that the initiating solution of PR corresponds to RefSet1 of SS, and the

only difference is that the number of initiating solutions is limited to one. Similarly,

the equivalent of guiding solutions of PR is RefSet2 in SS. Moreover, solution com-

bination method is outlined in PR by to-attribute vs. from-attribute sets. Therefore,

PR may be integrated with SS and may be used as the solution combination method

in SS. PR also allows us to search the neighborhood of the path generated. Thus, PR

also has the improvement method component of SS. In addition to these, reference set

update method can be applied similarly. We pick the best solution in terms of fitness

value of the problem from the neighborhood defined by the path generated by PR,

and set of guiding solutions are updated based on a diversity measure of choice. On

the other hand, we do not need reference set update method or improvement method

when we use PR as the solution combination method in SS. In this case, the path

generated or the best solution on path is the output of PR procedure.

In our study, we used SS approach to guide path relinking that is working in

a similar way to the crossover operators used in the literature [4, 28]. Since path

relinking also lets us explore the neighborhood of the solution generated on the path,

we have defined new moves based on the pull move idea to guide the local search.

Chapter 3: Scatter Search and Path Relinking 21

In Figure 3.2, the neighborhood of one of the solutions on the path is shown with a

circle, and a solution in this neighborhood is also shown. That is, the output of path

relinking method may be a solution not on the path, but in the neighborhood of the

same path.

Chapter 4: Moves to generate new valid conformations 22

Chapter 4

MOVES TO GENERATE NEW VALID

CONFORMATIONS

Before defining the moves and the neighborhood structure, we must define some

terms related to a valid conformation for some protein sequence. A valid conformation

corresponds to a feasible solution for our problem. A feasible solution means a self-

avoiding protein structure. In a self-avoiding conformation, no two different beads

share the same location on the plane (or in the space if we consider a 3D model).

Thus, while defining the moves, we must ensure that the resulting conformation is self-

avoiding. That is, the neighborhood of a solution must consist of feasible solutions.

In addition, we must keep connectivity along the moves. If two consecutive beads on

the sequence are at unit distance from each other also on the conformation, then we

say that it is connected.

4.1 Moves defined in the literature

In this study, our aim was to define the moves that would generate new solutions

such that each move would introduce a favorable local motif to the conformation.

The move that we define may involve displacement of more than one bead when it

is necessary. It is based on the pull move defined by Lesh et al [17]. Pull moves

are defined to create feasible solutions when a feasible solution is given as input. It

simply searches for possible locations at unit distance to the conformation, to relocate

a bead of choice. Generally this choice is random. However, since pull move requires

the chosen bead to be replaced to a diagonal point according to its current location,

the selection is made among the beads with such availability. After the relocation

of the chosen bead, one or more beads may be required to be pulled so that the

Chapter 4: Moves to generate new valid conformations 23

conformation is still connected, thus resulting in a new feasible solution. Pull moves

are also used in [22] as component moves for the filter-and-fan neighborhood. In [22],

the authors also identify three types of pull moves that we may encounter: 1. filling

move, 2. single-pull move, and 3. multiple-pull move. In filling move, we do not need

to relocate beads other than the chosen bead. In single-pull move, if bead j is the

chosen one, then we also need to replace either bead j + 1 or bead j−1 depending on

the direction of the replacement. As it can be understood from its name, multiple-pull

move requires replacement of multiple beads to keep connectivity. Figure 4.1 depicts

examples of these moves.

Figure 4.1: three types of pull move

Multiple-pull move resembles a mutation operator defined in [4], which is called

snake move by the authors. In snake move, the beads are pulled along the trace of the

chain, each one replacing a previous bead on the sequence, imitating a snake’s walk

Chapter 4: Moves to generate new valid conformations 24

on the ground. Other mutation operators defined in [4] are in-plane move, out-of-

plane move, crank-shaft move and kink move. An in-plane move is simply mutation

of an angle on the sequence. In out-of-plane move, a bead is picked at random on

the sequence and then from this selected bead to any of the two ends, the sub-chain

is rotated along either x-axis or y-axis. Crank-shaft move is similar to out-of-plane

move, but only a portion of the chain is rotated. That is, this portion may be a local

motif of the conformation. Kink move is exactly the same as filling move defined in

[22].

In [4, 28], GA approach is used for the PFP and 1-point crossover neighborhood

structure is used. However, the crossover point is selected so that the offspring is

valid. If no feasible offsprings can be found, then in [4] parents are returned as

offsprings, and in [28] another parent pair is picked. In either case, in the worst

case scenario, both algorithms may converge too early since we may not be able to

update the generation. If the offspring becomes non-self-avoiding after the mutation

operator, backtracking is performed. In backtracking procedure, starting form the

collision point, we change some angles by going one bead back at each step until

we get a self-avoiding conformation. However, in the worst case, we may need to

backtrack all the way back, and thus reconstructing almost the whole conformation.

In this case, inheritance from the parents will be severely lost.

TS strategy is applied in [2] where generating a new solution from a given solution

is done by changing one or more consecutive angles on the sequence so that the output

is feasible. It is a fast procedure since the move operator does not have requirements

other than feasibility. Besides, generation of move is random. However, random

moves cannot be used if we want to add some conditions on the output of the move

operator.

4.2 Moves defined in this thesis

In our study, we exploited the favorable motifs found in the optimal conformations.

These motifs correspond to subsequences of size 4 HPPH and PHHP, and the motif

Chapter 4: Moves to generate new valid conformations 25

is a square where each of the 4 beads is at a corner. However, all moves in the

literature are defined on feasible solutions to generate new feasible solutions. However,

sometimes it is hard to find a properly defined move on some conformations. In our

application, where we exploit motifs in the neighborhood definition, it is even harder.

Moreover, sometimes there is no feasible move that constructs a desired motif on a

given conformation. Therefore, we need to define new moves that will also work in

case of infeasibility.

4.2.1 Push move

When we need to move a bead to a certain location which is already occupied, we

might also relocate that bead occupying that location, namely we may push that bead

away. So, the subsequence including the bead that need to be pushed away is pushed.

In figure 4.2, the push move is depicted.

Figure 4.2: push move

The direction of the push move can be either along the x-axis or y-axis. The di-

rection satisfying self-avoiding conformation requirements may be selected. However,

since a segment of the chain is pushed away from the other segment, there is a very

small possibility that both directions will lead to an invalid conformation. A collision

may occur if one of the segments is surrounded by the other segment.

Chapter 4: Moves to generate new valid conformations 26

4.2.2 Turn move

As explained before, there may occur some infeasible solutions in the search process

because the moves that we have defined are based on the favorable motifs. Hence,

we need an efficient procedure to turn infeasible solutions into feasible solutions. In

the literature, backtracking is used as explained in Section 4.1. Though, it may omit

inherited attributes. Thus, we define turn moves (Figure 4.3).

Figure 4.3: turn move

First, the turn move detects the point of collision, and then it carries away the

whole subsection causing it. The carrying procedure of turn move resembles out-of-

plane move defined in [4]. After detection of the collision point, turn move detects

the bead closest to the collision point and has the highest (or lowest) x-value and the

highest (or lowest) y-value. This bead is defined as the turn point and the subsequence

will be rotated along the axis defined by this point. So, the turn point is on the out-

most line on the sub-conformation, and there is a low probability that there will be

collision after a turn move. If we got a non-self-avoiding conformation again, after

a turn move, we may repeat the procedure on the new conformation until we get

Chapter 4: Moves to generate new valid conformations 27

a valid one. It is obvious that we need to apply the turn move at most N times,

where N is the problem size (size of the sequence). On the other hand, we have

observed that we are able to get a self-avoiding conformation after 2 or 3 moves,

depending on the problem size. It is clearly much faster than backtracking since

backtracking requires determining the available positions for beads and reconstructing

the conformation, whereas turn move just multiplies the angle subsequence to be

rotated by -1. Moreover, turn move keeps most of the inherited attributes unchanged.

4.2.3 Shift move

When we apply pull move to a given conformation, and if we need to apply a multiple-

pull move, then because of the relocation of some beads previously formed motifs

will be deformed. This is not preferred since the precious steps of the improvement

method will be undone. On the other hand, push move is defined for situations where

infeasibility is the main issue. Moreover, push move relocates the subsegment not

defining the local motif but the subsegment that is in conjunction with the local

motif that we are interested in to build. Then we need to define a move where it does

not disturb the motifs on the other parts of the conformation while it is also defined

for self-avoiding walks.

Figure 4.4: shift move

We can integrate the conditions required for pull move and the relocation idea of

Chapter 4: Moves to generate new valid conformations 28

push move. That is, we may detect the beads that defined pull move, but instead

of sneak move like pulling the remaining chain, we may shift that subconformation

without disturbing the angles of the corresponding subsequences. Figure 4.4 depicts

an example of shift move. The shift values for the x and y coordinates are calculated

for only the bead chosen for the move, and the conformation corresponding the subse-

quences up to this chosen bead is shifted by the same values. Hence, not only a local

motif is formed, but also the local motifs formed by the corresponding subsequence

are saved.

Chapter 5: The Algorithm and Computational Experiments 29

Chapter 5

THE ALGORITHM AND COMPUTATIONAL

EXPERIMENTS

5.1 Diversification Generator: Initial Solution Set

5.1.1 Random solution generation

Scatter search requires diverse solutions to initialize the algorithm [20, 14, 13]. The

most basic condition for the initial solution set is that it should contain diverse

solutions so that the algorithm would not converge to a local optima. It is easy

to generate random diverse solutions for the PFP since each angle value is ±1 or 0

and each angle is independent of the others. Thus, we can randomly generate each

angle independently. On the other hand, for metaheuristic algorithms, it is always

recommended to start with some high quality solutions. Hence, we want the initial

solution set to be composed of both high quality solutions and also diverse solutions.

These conditions are required since these are also the characteristics that we want

RefSet to carry for good performance of the search procedure. The characteristics of

RefSet are explained in more detail in Section 3.1.

The pseudo code for random solution generation is given in Figure 5.1. This

procedure gives a random solution of size N , since a conformation of size N is defined

by N ∗ 2 angles. The procedure is repeated for each solution to be generated. In our

application, we also kept track of each three consecutive angles and made sure that

an angle value of 1 or −1 will not be repeated three times, consecutively. This is

because in this case, conjunction among beads and thus infeasibility will occur. This

requirement is satisfied by changing the third angle value to value of opposite sign

(i.e. 1 ↔ −1) whenever there occurs such repetition of angle values.

Chapter 5: The Algorithm and Computational Experiments 30

for i ← 0 to N − 2

r ← (3 ∗ rand()) / (RAND MAX + 1)

if r < 1

then a(i) ← 1

else

if r < 2

then a(i) ← 0

else

then a(i) ← −1

Figure 5.1: Diversification Generator: random solution generation

5.1.2 Elite solution generation

The high quality solutions are generated by introducing favorable motifs to the an-

gle sequence whenever there is a corresponding subsequence of amino acid types by

elite solution generation method. The two basic favorable motifs are HPPH

and PHHP . The angle sequence for these motifs generally is either . . . 1 1 . . . or

. . .−1 −1 The occurance of these favorable motifs and the corresponding 2D

shapes are depicted in Figure 5.1.2 on the optimal conformation of HP20 problem.

The motifs are marked with semi-lines.

The elite solution generation procedure locates all the motif sequences on

a given HP sequence. Then, starting from the first motif located, the angle values

corresponding to the current motif are set to 1. Then angle sequence of the constructed

subconformation is multiplied by −1 so that we get the mirror image of it. Then,

the next motif is added to both conformations with angles value equal to 1. After

the addition of the next motif to all the subconformations, the angle sequences of

these conformations are again multiplied by −1. If there is space in between motifs,

then these angles values are simply assigned to 0, not to increase the possibility of

Chapter 5: The Algorithm and Computational Experiments 31

Figure 5.2: Favorable motifs on an optimal conformation

conjunction among beads. This procedure is repeated until all motifs are inserted

and all angle values are defined. Hence, we get a set of solutions where all possible

conformations and combinations of motifs are considered. For example, for a solution

with 5 favorable motifs, there are 25 = 32 such solutions. However, only the self-

avoiding conformation will be eligible for the initial solution set. In our approach, we

have added all such constructed solutions directly to RefSet1 to have a representation

of motifs in the initial Refset.

There is an example of elite solution generation in Figure 5.3 for an artificial

problem of size 14. There are 12 angles to determine for this problem, since the first

and the last beads do not form an angle. There are three favorable motifs for this

problem in the example given in Figure 5.3.

The feasible elite solutions generated are directly passed to RefSet1 for the first

iteration of SS procedure. The remaining slots (if there is any) in RefSet1 and all of the

solutions in RefSet2 is filled by RefSet update method. This is because, the procedure

behaves as if the initial solution set is actually the initial trial solution set

(i.e. Pool).

Chapter 5: The Algorithm and Computational Experiments 32

Example: H P P H H P H P H H P (N = 14)

We do not have an angle value for the first and the last beads.

We put 1’s for the first two angles (to construct the first motif: HPPH):

1 1 - - - - - - - , then we multiply all by −1:

-1-1 - - - - - - -

We put 1’s for the second motif, PHHP to all solutions:

1 1 1 1 - - - - -

-1-1 1 1 - - - - -

Then we multiply all by −1:

-1-1-1-1 - - - - -

1 1-1-1 - - - - -

We do not have any local motifs for the next three angles (PHP):

1 1 1 1 0 0 0 - -

-1-1 1 1 0 0 0 - -

-1-1-1-1 0 0 0 - -

1 1-1-1 0 0 0 - -

We put 1’s for the last motif, PHHP:

1 1 1 1 0 0 0 1 1

-1-1 1 1 0 0 0 1 1

-1-1-1-1 0 0 0 1 1

1 1-1-1 0 0 0 1 1

Then we multiply all by −1:

-1-1-1-1 0 0 0-1-1

1 1-1-1 0 0 0-1-1

1 1 1 1 0 0 0-1-1

-1-1 1 1 0 0 0-1-1

There are four feasible solutions:

-1-1 1 1 0 0 0 1 1

1 1-1-1 0 0 0 1 1

1 1-1-1 0 0 0-1-1

-1-1 1 1 0 0 0-1-1

Figure 5.3: Elite Solution Generation: solution generation using local motifs

Chapter 5: The Algorithm and Computational Experiments 33

5.2 Subset Generation and Solution Combination Methods: All Pairs-

Path Relinking

5.2.1 Path relinking using a 1-point crossover approach

We have applied path relinking in three different ways as solution combination method.

Both of the path relinking applications we have applied are similar to crossover op-

erator of GA. Thus, the offsprings are the combinations of motifs of its parents. The

first application is similar to the idea of 1-point crossover operator of GA. In this

solution combination method, first the initiating and guiding solutions are defined.

Then starting, from the first angle of the initiating solution, the angles are replaced

one by one with the values of the angle sequence defining guiding solution. In other

words, the parent solutions are combined at every possible point on the sequence.

Figure 5.4 depicts an example of path relinking for two given solutions. In part a of

Figure 5.4, initiating solution is given in normal font and guiding solution is given

in italic font. After completing the path of solutions by path relinking procedure, we

exchange the roles of the solutions as initiating and guiding solutions. The second

path created after exchange of roles is given in part b of Figure 5.4.

This application of path relinking is similarly applied by Unger and Moult [28] in

GA application to the PFP, although they did not name it so. In their application,

all possible crossover points were tried and the offspring with the best fitness value

was picked. However, they had additional conditions to accept the offspring as a trial

solution. First, it has to be a self-avoiding conformation. Second, its fitness value has

to be better than the average of its parents. The purpose of first condition is clear

since GA only works on feasible solutions. The purpose of the second condition is to

increase intensification.

Another difference of Unger and Moults’s application of path relinking is about

selecting the pairs to be combined. In SS terms, they have adopted a different subset

generation method. In their approach, the parents were selected randomly and a pair

of parents who cannot generate a valid conformation is neglected and a new pair of

Chapter 5: The Algorithm and Computational Experiments 34

Example:

a)

1 0 0-1-1 0 1 1 0-1 1-1 : initiating solution

0 0 0-1-1 0 1 1 0-1 1-1

0-1 0-1-1 0 1 1 0-1 1-1

0-1 1 -1-1 0 1 1 0-1 1-1

0-1 1 1 -1 0 1 1 0-1 1-1

0-1 1 1-1 1 1 1 0-1 1-1

0-1 1 1-1 1 0 1 0-1 1-1

0-1 1 1-1 1 0-1 0-1 1-1

0-1 1 1-1 1 0-1-1 -1 1-1

0-1 1 1-1 1 0-1-1 1 1-1

0-1 1 1-1 1 0-1-1 1 1 0 : guiding solution

b) after exchange of roles of initiating and guiding solutions:

0-1 1 1-1 1 0-1-1 1 1 0 : initiating solution

1-1 1 1-1 1 0-1-1 1 1 0

1 0 1 1-1 1 0-1-1 1 1 0

1 0 0 1-1 1 0-1-1 1 1 0

1 0 0-1-1 1 0-1-1 1 1 0

1 0 0-1-1 1 0-1-1 1 1 0

1 0 0-1-1 0 0-1-1 1 1 0

1 0 0-1-1 0 1-1-1 1 1 0

1 0 0-1-1 0 1 1-1 1 1 0

1 0 0-1-1 0 1 1 0 1 1 0

1 0 0-1-1 0 1 1 0-1 1 0

1 0 0-1-1 0 1 1 0-1 1-1 : guiding solution

Figure 5.4: Path relinking: 1-point crossover

Chapter 5: The Algorithm and Computational Experiments 35

parents is selected to replace them. This procedure continues until they get a pre-

determined number of offsprings to form the trial solution set. Conversely, Cox et.

al. [4] did not compare the result of every available crossover point. The crossover

operator they have adopted returned the first self-avoiding offspring it finds. That is,

if a crossover operation does not return a feasible solution, then a 1-point crossover

is applied at a different point on the same parents. Otherwise, the resulting solution

is returned as the offspring of these parents without trying other possible crossover

points. Unlike Unger and Moult, if no self-avoiding offsprings can be found from these

parents, then one of the parents is returned as the offspring.

One of the main differences of our approach from the other crossover applications

is that, every pair of parents returns an offspring as a trial solution for the next

iteration of SS procedure. Moreover, the offsprings returned are always different than

both of the parents, but yet carrying their favorable characteristics. That is, the

subset generation method that we have adopted for the first kind of path relinking

application is all-pairs combination. That is, each solution in RefSet1 is combined

with every solution in RefSet2. In this way, we get b1 ∗ b2 different combinations

and thus, b1 ∗ b2 new solutions. In addition, for path relinking if we exchange the

roles of initiating solution and guiding solution that is, if we use the current initiating

solution to guide the next path relinking execution and the current guiding solution

to initiate it, then we get a completely different offspring. If we apply this exchange

of roles approach to all the pairs selected by the subset generation method, then the

number of offsprings get doubled. For our approach, we get b1 ∗ b2 ∗ 2 different

trial solution as candidates for RefSet of the next iteration of SS procedure. In our

approach, every pair of parents has two offspring they are all considered for the rest

of the search procedure. If the offspring is infeasible, then by turn move we have

defined in Section 4.2, a feasible solution is generated with few changes on the angle

sequence of the offspring.

In addition to all these, there are two possible ways of choosing the candidate

trial solutions. Figure 5.5 shows these options for choosing the trial solutions.

Chapter 5: The Algorithm and Computational Experiments 36

offspring1 = PR(parent1 → parent2)

offspring2 = PR(parent2 → parent1)

a) 2 offsprings

trial solution set = {offspring1} ∪ trial solution set

trial solution set = {offspring2} ∪ trial solution set

b) 1 offspring

if obj.fnc.value(offspring1) > obj.fnc.value(offspring2)

then trial solution set = {offspring1} ∪ trial solution set

else trial solution set = {offspring2} ∪ trial solution set

Figure 5.5: Choosing trial solutions

The first way is the most obvious method where all generated offsprings are added to

the trial solution set. This is option a in Figure 5.5. In this case, trial solution set has

the most number of elements because it contains the results of all 2-pair combination

possibilities. In this case, the refset update method has to deal with larger number

of solutions. The second option is to determine a method to eliminate some of these

offsprings constructed even before they enter to the trial solution set. This is shown

in part b in Figure 5.5. The methodology we have adopted and found quite successful

during this study is to pick the one with better objective function value among two

offsprings of a pair of parents. Therefore, every pair of parent solutions will give one

trial solution as output of solution combination method.

It is hard to comment on this case (whether giving the best of or both of offsprings

as output) about how intensification and diversification aspects of the algorithm will

be affected. For intensification, assume that two parents have the attributes of a

local optima. Then both offsprings generated from these parents will also have the

attributes of this local optima and thus they will have high potential to be in the

neighborhood of the local optima. Then, there will be high possibility that both

of these solutions will be chosen by the RefSet update method. This selection will

Chapter 5: The Algorithm and Computational Experiments 37

result in intensification toward local minimum. On the other hand, with the same

logic, eliminating one of these two offsprings may result in increase in the number of

iterations of whole search procedure (since then intensification will decrease) if they

were actually in the neighborhood of the global optima. It follows that allowing both

offsprings to the trial solution set will increase intensification. This is the first conse-

quent result about intensification. To discuss about diversification, it is obvious that

we should examine the change in number of solutions. Eliminating some of the off-

springs before they enter to the trial solution set means selection of only some eligible

solutions. Thus, the solutions with only favorable attributes will be selected, and this

directly implies intensification. In other words, decrease in the number of candidate

solutions will also result in decrease in diversification because only some high quality

solutions will be kept to enter trial solution set. As a result, elimination of some

solution will increase intensification. This is the second result about intensification.

However, this result contradicts with the previous result. Consequently, the impact

of trial solution set construction method on intensification and diversification aspects

of the algorithm highly depends on the characteristics of the solutions at that step.

5.2.2 Path relinking using a 2-point crossover approach

The second application of path relinking results in solutions in a similar way with 2-

point crossover operator of GA. A middle segment of the offspring is from the guiding

solution, where to edges of the offspring solution is from the initiating solution. This

middle segment is selected according to the similarity comparison of two parents.

They are compared starting from the first angle until a common angle value for the

same bead if found. This bead becomes the similarity point, and the middle segment

is defined according to this similarity point. Path relinking starts from this similarity

point and extends the middle segment toward two ends by adding the angle values

from the guiding solution instead of the values from the initiating solution. If there

is no similarity point or the similarity point is at the first bead, then path relinking

performs as in the first application described above and acts as an 1-point crossover

Chapter 5: The Algorithm and Computational Experiments 38

operator.

At the crossover point, we adopt the same procedure for both applications of path

relinking. The angle value at the crossover point can get any of the three possible

value: ±1 or 0. All three values are tried for any crossover point, and the solution

with highest objective function value is picked. The advantage of this combination

approach is that, we do not only try one solution generated by the crossover but

also try its two other neighbors. Thus, we extend the solution space that the search

is done. Unger and Moult also use the same approach for their 1-point crossover

operator.

Cox et. al. [4] report that 1-point crossover performs much better than 2-point

crossover. Our computational experiments gave the same conclusion about com-

parison of the first type of application of path relinking and the second type of its

application. The possible explanation for this difference is that 1-point crossover car-

ries local motifs from the parents to the offsprings slightly less changed compared to

2-point crossover operator. The further details about computational results are given

in Chapter 6.

5.2.3 Two guiding solutions and their weighted combination

Another path relinking approach we have studied works on subsets of three, where we

have two guiding solutions from RefSet2. These solutions are given weights based on

their normalized diversity values. The diversity values are measured according to the

initiating solution picked from RefSet1. Similarly, we adopt an all-pairs resembling

subset generation method. That is, each solution in RefSet1 is combined with every

pair of solutions from RefSet2. Hence, we get b1 ∗ C(b2, 2) number of subsets. As

a difference from the previous two applications of path relinking given above, here

we cannot exchange the roles of initiating and guiding solutions and we get only one

offspring from each subset defined by the subset generation method.

Figure 5.6 shows how the path of solutions behave in the case of multiple guiding

solutions. There is a basic difference of PR with multiple guiding solutions from PR

Chapter 5: The Algorithm and Computational Experiments 39

Figure 5.6: Path relinking: 2 guiding solutions

with single guiding solution. When we have more than one guiding solution, the path

of solutions do not end at one of the guiding solutions. The reason is that other

guiding solutions will cause the path to variate from any of them, so that the path

will not touch any of the guiding solutions. It is obvious that this statement holds

only for positive weight. For example, in a case with two guiding solutions, if the

weight of one of these guiding solutions is zero then it will be equivalent to a single

guiding solution case, and the solution with non-zero weight will be the only guiding

solution.

5.3 Diversity Measurement

We have tested two different diversity measurement methods. The first one is a

simple comparison method where each angle value is compared one by one. The

second method defines a measurement by adding and then subtracting the solutions

to/from each other.

Chapter 5: The Algorithm and Computational Experiments 40

5.3.1 Comparison measurement

When we have two solutions, we can compare these solutions by comparing each of

their angle values one by one. Then the diversity values will increase as the number

of angles with different values on each solution increases. However, this measurement

method cannot detect the mirror images. When we have two solutions, one being

the mirror image of the other, the comparison method will only give penalty for the

angle values of zero. It cannot detect that they are actually the same conformation

since for angle value of 1 in one of them, the corresponding angle value is -1 in the

other one, and vice versa. Consequently, the diversity value measured will be nonzero

although it should have been zero since they are the same conformation.

Example (a):

1 0 0-1-1 0 1 1 0-1 1-1 : solution 1

0-1 1 1-1 1 0-1-1 1 1 0 : solution 2

0 0 0 0 1 0 0 0 0 0 1 0 : similarity vector

similarity value = 2

Example (b):

0 1 1-1-1 0 1 1 0-1 1-1 : solution 1

0-1-1 1 1 0-1-1 0 1-1 1 : solution 2

1 0 0 0 0 1 0 0 1 0 0 0 : similarity vector

similarity value = 3

Example (c):

0 1 1-1-1 0 1 1 0-1 1-1 : solution 1

0 1 1-1-1 0 1 1 0-1 1-1 : solution 2

1 1 1 1 1 1 1 1 1 1 1 1 : similarity vector

similarity value = 12

Figure 5.7: Diversity measurement: comparison

Chapter 5: The Algorithm and Computational Experiments 41

In Figure 5.7, three examples for diversity measurement with comparison are

given. In example a, two random solutions are compared and their similarity value

is found as 2. This means that they are only similar at two points. In example b,

two mirror images are compared and the similarity value here is 3. This is because

diversity measurement with comparison can only detect 0 valued angles as common

angles on mirror images. Thus, these mirror images are found to be different solutions

although the corresponding protein structures have the same conformation in the

space. In example c, two solutions with exactly same angle sequences are compared.

In this case, diversity measurement with comparison is able to catch their similarity

on all angles on the sequence.

In the algorithmic sense, introduction of mirror images may increase the diversity.

However, for SS, we want RefSet to converge but we cannot evaluate the convergence

of RefSet properly because of the mirror images and methodology of comparison

measurement.

5.3.2 Adding and subtracting the solutions

When we have two solutions as mirror images of each other, we may add the angles

on each bead of two solutions instead of comparing them. Since 0 + 0 = 0, the zero

angle values are not the problem again. However, in this case, for non-zero angles we

have −1 + 1 = 0. Hence, when we add two mirror images, we get a sequence of zeros

identifying zero diversity value.

On the other hand, when we have two solutions with exactly the same angle values,

we need to subtract them from each other. Actually, this is the same as taking the

mirror image of one of them by multiplying its angle values by −1 and then adding

them together as described above.

Therefore, for any two solutions given to be compared, we will have two values: the

sum and the difference. If we accept the minimum of these two values as their diversity

measurement, we have an accurate measurement for diversity of the solutions.

Figure 5.8 shows three examples for the diversity measurement by adding and

Chapter 5: The Algorithm and Computational Experiments 42

Example (a):

1 0 0-1-1 0 1 1 0-1 1-1 : solution 1

0-1 1 1-1 1 0-1-1 1 1 0 : solution 2

1 1 1 0 2 1 1 0 1 0 2 1 : absolute values of sums

1 1 1 2 0 1 1 2 1 2 0 1 : absolute values of differences

diversity value = min(total sum, total difference)= min (11,13) = 11

Example (b):

0 1 1-1-1 0 1 1 0-1 1-1 : solution 1

0-1-1 1 1 0-1-1 0 1-1 1 : solution 2

0 0 0 0 0 0 0 0 0 0 0 0 : absolute values of sums

0 2 2 2 2 0 2 2 0 2 2 2 : absolute values of differences

diversity value = min(total sum, total difference)= min (0,18) = 0

Example (c):

0 1 1-1-1 0 1 1 0-1 1-1 : solution 1

0 1 1-1-1 0 1 1 0-1 1-1 : solution 2

0 2 2 2 2 0 2 2 0 2 2 2 : absolute values of sums

0 0 0 0 0 0 0 0 0 0 0 0 : absolute values of differences

diversity value = min(total sum, total difference)= min (18,0) = 0

Figure 5.8: Diversity measurement: Addition and subtraction

subtracting the solutions. In example a, we have two random solutions to be com-

pared. We add each angle pair on the sequences to get a sums sequence but we keep

the absolute values for each sum value. When we add the values on this sums sequence,

we get a diversity value, which is 11. Then we repeat the same procedure but taking

the differences of angles pairs on two solutions. Thus, we get a second diversity value,

which is 13. The minimum of these two diversity values is passed to the algorithm as

the real diversity measurement result for this two solutions (min(11, 13) = 11). In

example b of Figure 5.8, we have two mirror images. We see that the addendum of the

Chapter 5: The Algorithm and Computational Experiments 43

angle values results in 0 diversity value. So, we are able to catch the mirror images as

the same solutions with this method of diversity measurement, which was not the

case with the measurement by comparison. In example c, we have two exactly same

solutions. In this case, the difference vector gives 0 diversity measurement value,

meaning exact match. Thus, we are able to catch similar solutions with diversity

measurement by adding and subtracting the solutions.

In particular, the second diversity measurement where we add and subtract the

solutions gives better results than the comparison method in all of the experimental

runs. The details of this comparison is given in Chapter 6.

5.4 Improvement method: Shift move + Turn move

The procedure of improvement method is based on the favorability of moves defined

in this study. Shift move is the final state of the moves we have studied during our

research study. The other moves that have been applied pull move introduced by

Lesh et. al. [17] and push move defined in Section 4.2.

First of all, starting from the first bead of the problem, the procedure checks

whether there is already a constructed motif. If not, then the algorithm applies the

move we have chosen on this subsequence. This checking requires constant time since

all we need to check is to see whether the first and the forth beads are topologically

neighbors. If so, then we do not need a local improvement procedure for this motif.

If the motif is not already in the conformation, then the movement of the beads

that are actually defining these motifs are similar to pull move. On the other hand, the

movement of the subconformation is more like a push move approach where we can

keep almost all of the motifs constructed on the conformation. Thus, computational

studies are done comparing pull move, push move and shift move. These moves

have the difference that comes from the idea keeping the connectivity of beads. They

are all explained in more details in Section 4.2.

Chapter 5: The Algorithm and Computational Experiments 44

5.5 Feasibility: Backtracking vs. Turn move

For TS application, feasibility problem is not hard to handle. In TS, infeasible so-

lutions are not even considered to be in the search space. In [2], they do not even

mention about any feasibility issues, yet about how they handle it. Since they have

used a very simple move operator, which is change of one or more consecutive angles,

it is easy to find a move resulting in a feasible solution.

For the other application where solution combination is considered and thus in-

feasible solutions are inevitable, the general application if there is a non-self avoiding

conformation is to first determine the point of conjunction, j. The conjunction point,

j is the first point where a common location is shared with a bead with a lower rank

value. After determination of this point, the bead j leading to the conjunction is tried

to be replaced. If there is no place for bead j where we can have a both feasible and

connected solution, then we also need to replace j − 1. All conditions are the same

for bead j and bead j − 1. So we keep backtracking until we can finally have feasible

and connected conformation. Cox et. al. [4] clearly note they have used backtracking

procedure to handle infeasible solutions. In the worst case, we will need to backtrack

the sequence all the way back to the first node. Then any information carried on this

subsegment of the solution will be completely lost since it will be reconstructed. Not

only it is very time consuming since it involves reconstruction of the whole solution

in the worst case, but also it loses any inherited information on the solution.

On the other hand, although Unger and Moult [28] also studied GA, they have not

adopted and methodology to handle infeasible solutions. Instead, they have decided

to ignore any infeasible solutions from the search procedure. So, it is pretty much the

same approach that Blazewicz et. al. [2] used for TS application. The only exception

is that in GA, the solutions are generated but they are not considered as candidates

for next population. However in TS, the infeasible solutions are never generated.

Shmygelska and Hoos [26] also try to avoid generating infeasible solutions. They use

random mutation moves the diversify the solutions, but yet they do not implement

any move resulting in an infeasible solutions.

Chapter 5: The Algorithm and Computational Experiments 45

So, if we sum up, there are two basic methods in the literature to handle infeasi-

bility: 1 - ignoring the infeasible solution, and 2 - backtracking. In this thesis study,

we proposed a new move called turn move that turns infeasible solutions into feasible

solutions. Its details are explained in Section 4.2. It can be easily seen that turn

move is faster since there is no reconstruction or search for optional conformations. It

only consists of taking a mirror image of a subsequence so that it will be turned over

an axes defined. One of the other most important characteristics of turn move is

that, it does not disturb any of the local motifs constructed. This is because in prac-

tice, it is just a change (180o rotation) on only one angle. So, the inheritance from the

parents after combination method is secured as well as we can keep the improvement

we have achieved on solutions enhanced by the improvement method.

Consequently, we got an open question: When should be apply turn move? We

may apply it both after solution combination method and improvement method, as

well as we may only apply is after improvement method. In addition, we may integrate

turn move into shift move. That is, after each shift move, if the resulting solution is

infeasible turn move can be applied. This will not lead to unnecessary computational

method because according to our observations during the experiments, after at most

2-3 turn moves, we get a feasible solution. That is, it is acceptable to use turn move

after each single shift move.

There was another decision that we should decide on about turn move: the turn

point, T. The turn point T may be either the first bead that cannot go any further

from the conjunction point (without going back first) or the second bead that cannot

go any further on the other axes value. That is, starting from the conjunction point,

we keep following the chain, and x and y values on the coordinate plain for the beads.

While moving along the chain, at first, these x and y values will either be always

decreasing or increasing. So we keep following the chain as the change in the x and

y values remains in the same direction. In this way, we got two different points:

one is the bead at which x value will be changing in the reverse direction and the

second bead is for the y value. Selection on either points change the axes of rotation.

Chapter 5: The Algorithm and Computational Experiments 46

However, the results indicate that the turn point T at the second bead that change

is redirected dominates the results with turn point T at the first such point.

5.6 Scatter search application on the protein folding problem

The algorithmic approach we have studied in this thesis for the protein folding problem

(PFP) is based on the general structure of scatter search (SS). In Figure 5.9, we can

see the pseudo code for the general structure of our algorithm.

In Figure 5.9, lines 1-8 are the initialization steps for main SS procedure. However,

it also includes one of the main elements of SS: diversification generator. As common

to the general SS, we start with diversification generator operator to create set of

initial solutions, Pool. These solutions are generated completely randomly and inde-

pendent of each other as described in Section 5.1. However, different from the general

template of SS, we have elite solution generator operator to create a set elite

solutions with some desired attribute. The desired attributes for the PFP are fa-

vorable motifs. Therefore, elite solution generator generates feasible solutions

with favorable motifs. The details for this procedure is given in Section 5.1. Different

than Pool, all solutions in elite solution set (Elite in Figure 5.9), directly enter

to RefSet1 for the first iteration of SS. If the number of elements in Elite exceeds b1,

then we pick the first b1 elements in Elite. If the number of elements in Elite is less

than b1, then the rest of the open slots in RefSet1 are filled by RefSet update method.

The procedure for RefSet update method is basic, and we use the same idea as in

the general template (Section 3.1). We simply pick best elements (in terms of objective

function value) in Pool to enter RefSet1 until we get b1 solutions in RefSet1. Then

RefSet2 elements are picked by the RefSet2 update method. This method calculates

the diversity values according to the chosen diversity measurement method of all

the elements remained in Pool with respect to elements in RefSet1. The solution with

the highest diversity value enters to RefSet2. Then the diversity values are updated

with respect to all the solutions in RefSet (RefSet = RefSet1 ∪ RefSet2). We

keep adding solutions to RefSet2 with the same methodology until we get b2 diverse

Chapter 5: The Algorithm and Computational Experiments 47

1 . Pool = DiversificationGenerator();

2 . Elite = EliteSolutionGenerator(”motif set”);

3 . maxE ← size(Elite);

4 . for i ← 0 to min(maxE,b1)

5 . RefSet1(i) ← Elite(i);

6 . RefSet1 = RefSet1Update(Pool,b1−min(maxE,b1));

7 . RefSet2 = RefSet2Update(Pool,RefSet1);

8 . NumIter ← 0;

9 . do the following (steps 10-21) while NumIter < MaxIter:

10. for i ← 0 to b1

11. for j ← 0 to b2

12. offspring1 = PR(RefSet1(i) → RefSet2(j));

13. offspring2 = PR(RefSet2(j) → RefSet1(i));

14. if obj.fnc.value(offspring1) > obj.fnc.value(offspring2)

15. then Trial ← {offspring1} ∪ Trial;

16. else Trial ← {offspring2} ∪ Trial;

17. RefSet1 = RefSet1Update(Trial,b1));

18. RefSet2 = RefSet2Update(Trial,RefSet1);

19. if ”there are new solutions in RefSet1”

20. then NumIter ← 0;

21. else NumIter ← NumIter + 1;

22. OUTPUT: RefSet1

Figure 5.9: Pseudocode for SS application to the PFP

Chapter 5: The Algorithm and Computational Experiments 48

solutions in RefSet2.

The subset generation method is controlled by the commands in lines 10-11, that

let the algorithms traverse each solution in RefSet2 (by incrementing j from 0 to b2)

for each solution in RefSet1 (by incrementing i from 0 to b1). Thus, the algorithm

performs an all-pair solution combination method on RefSet1xRefSet2. The

details are explained in Section 5.2.

The lines 12-16 says that two different offsprings are generated by interchanging

the roles of parent solutions as initiating and guiding solutions in PR (as solution

combination method). However, only the best one of these two offsprings can enter

trial solution set. As described in Section 5.2 in details, there are other variants of PR

we have applied in this thesis such as adding both of the offspring to trial solution

set and using weight combination with multiple guiding solutions. Moreover, we

have discussed in Section 3.2 that we are allowed to search the neighborhood of

the path of solutions generated. Therefore, for each solution on the path, we apply

improvement method as explained in Section 5.4. The output solutions are feasible

since improvement method also handles feasibility of the solutions by application of

turn move (Section 4.2) during or after the local search moves.

Finally, RefSet is updated by RefSet update method with the solutions in trial so-

lution set (Trial). Then solution combination method and RefSet update method(lines

10-21) are repeated until the stopping condition is met, which is divergence to a set

of solutions.

In Figure 5.9, MaxIter value on line 9 refers to the maximum number of iterations

of SS allowed without any improvement in RefSet1. That is, we increment NumIter

value by one, whenever there is no new solution in RefSet1. In our approach, we do

not renew RefSet1 completely. Any solution in RefSet1 is replaced by a new trial

solution if and only if there is a better solution in trial solution set. We set

NumIter to 0 whenever a trial solution achieves to enter to RefSet1. This control

procedure is done on lines 19-21 in Figure 5.9.

The output of the whole search procedure is RefSet1 of the last iteration. It is also

Chapter 5: The Algorithm and Computational Experiments 49

the set of solutions converged by the algorithm. All of the solutions in this output set

are feasible because all solutions in trial solution set are feasible by construction, and

elements of RefSet are picked from trial solution set by RefSet update method

(line 17). The solutions in trial solution set are feasible since they are originally

the offspring generated by PR procedure. Turn moves that handle infeasible solutions

are embedded in the local search procedure (improvement method) for all solutions

generated during PR (Section 5.4). Hence, the solutions in the output set of our

algorithm are feasible.

Chapter 6: Computational Results 50

Chapter 6

COMPUTATIONAL RESULTS

The computational experiments are done to test the different parameters and

components of the proposed algorithm in Chapter 5: diversity measurement, solution

combination method, turn point, improvement method, diversity control, and Ref-

Set size. The test runs are done on nine benchmark problems found in the literature.

The algorithm is coded in C++ using Visual Studio 6.0. The experimantal runs are

done on KUMPEM server (Intel Xeon 3.20 GHz with 2 GB RAM) in Koc University.

6.1 Algorithmic elements

The first 8 columns in the Tables 6.1, 6.2, 6.3 and 6.4 give the parameters for the

algorithm. The first column is the problem name depicting also the problem size.

For example, HP20 is a problem of size 20 and HP24 is of size 24. Thus, HP20 is

a PFP of an amino acid chain with 20 amino acids on the primary structure. The

next value is max e and it is the total number of feasible elite solutions generated

by the elite solution generation method. By definition, it is also the maximum

number of elite solutions we can use as input to the search procedure. e1 is the actual

number of elite solutions given as input to the algorithm. It is set to min{max e, b1}

as default since we want to utilize the favorable motifs. Then we have b1 and b2 on

the tables, which are the sizes of RefSet1 and RefSet2, respectively. MaxIter is the

limit for the number of consecutive iterations without any improvement. That is, the

algorithm aborts when the procedure cannot improve ResfSet1 for MaxIter number

of iterations. M gives the total number of favorable motifs sequences found on the

primary structure of the HP chain. Finally, opt is the optimal or best known objective

function value for the corresponding problem.

Chapter 6: Computational Results 51

Table 6.1: turn: 2nd node, combination: 2 offsprings

b1 = b2 = N/2 and other settings as default M*M (improve) M*1 (improve)

problem max e e1 b1 b2 MaxIter M opt best CPU(sec.)1 best CPU(sec.)1

hp20 8 8 10 10 5 9 9[28] 9 3.313 9 2.188

hp24 2 2 12 12 5 7 9[28] 7 29.630 7 9.218

hp25 2 2 13 13 5 4 8[28] 7 4.500 7 5.921

hp36 4 4 18 18 5 7 14[28] 12 106.391 12 69.657

hp48 4 4 24 24 5 9 23[26] 21 679.000 21 418.656

hp50 400 25 25 25 5 10 21[26] 17 84.297 17 155.625

hp60 16 16 30 30 5 5 35[28] 31 339.084 31 551.578

hp64 8 8 32 32 5 19 42[17] 34 9828.440 33 3317.760

hp85 2 2 43 43 5 6 53[22] 48 6750.880 48 5200.770

Tables 6.1, 6.2, 6.3 and 6.4 compare the effect of the change in the improvement

method. The M ∗M column gives the results when the shift move along the chain

is repeated M times. The M ∗ 1 column gives the results when for each local motif

shift move is applied only once for each motif in the order of their appearance on

the sequence. Thus, we make M shift moves. The difference is that for the case of

M ∗M column, after the shift move for the last motif is completed, we restart the

procedure for the whole sequence again starting from the first motif. The advantage

of repeating the procedure is that the algorithm may catch a shift move on a motif

which it was not able to make before due to the conformation. In addition, it repairs

the motifs decomposed because of the turn moves performed in between the repeats

in case of infeasibility.

Table 6.1 depicts the results when the turn point is the second node as described

in Section 4.2, and solution combination method gives both of the offsprings as outputs

as elements of the trial solution set. We can see that M ∗ 1 case of the improvement

method performs better in terms of computation time. This is an expected result

Chapter 6: Computational Results 52

Table 6.2: turn: 1st node, combination: 2 offsprings

b1 = b2 = N/2 and other settings as default M*M (improve) M*1 (improve)

problem max e e1 b1 b2 MaxIter M opt best CPU(sec.)1 best CPU(sec.)1

hp20 8 8 10 10 5 9 9 9 20.818 9 6.953

hp24 2 2 12 12 5 7 9 7 57.859 7 22.250

hp25 2 2 13 13 5 4 8 7 41.562 7 26.187

hp36 4 4 18 18 5 7 14 12 1177.560 11 325.015

hp48 4 4 24 24 5 9 23 20 2140.030

hp50 400 25 25 25 5 10 21

hp60 16 16 30 30 5 5 35

hp64 8 8 32 32 5 19 42

hp85 2 2 43 43 5 6 53

because it performs less number of shift moves compared to the M ∗M case. On

the other hand, M ∗M case finds a better result for the problem HP64.

Table 6.2 depicts the case when the solution combination method gives two off-

springs as output and the turn point is the first node. When we compare Table 6.1

and Table 6.2, we can say that turn point at the second node performs much better

both in terms of computation time and objective function value. In Table 6.2, the

CPU times are extremely large compared to the Table 6.1. Moreover, it performs

worse even for the medium size problems, such as HP36 and HP48.

Table 6.3 gives the results for the case when the turn point is at the second node

and the solution combination method gives only the best one over two offsprings as

output. If we compare Table 6.1 and Table 6.2, we see that the CPU times are almost

the same for all problems except for the problem HP85. The computation times are

smaller for the case when we have both of the offsprings as trial solutions for the next

iteration of SS. However, it is not straight forward to compare both cases in terms of

the objective function value. For small and medium sized problems up to HP60, the

Chapter 6: Computational Results 53

Table 6.3: turn: 2nd node, combination: 1 offspring

b1 = b2 = N/2 and other settings as default M*M (improve) M*1 (improve)

problem max e e1 b1 b2 MaxIter M opt best CPU(sec.)1 best CPU (sec.)1

hp20 8 8 10 10 5 9 9 9 3.984 9 2.031

hp24 2 2 12 12 5 7 9 7 32.359 7 9.796

hp25 2 2 13 13 5 4 8 7 6.891 7 5.547

hp36 4 4 18 18 5 7 14 13 124.172 13 74.109

hp48 4 4 24 24 5 9 23 23 675.610 21 362.656

hp50 400 25 25 25 5 10 21 18 145.515 18 145.906

hp60 16 16 30 30 5 5 35 31 561.781 31 530.641

hp64 8 8 32 32 5 19 42 33 5711.610 32 3095.420

hp85 2 2 43 43 5 6 53 45 5044.090 33 11199.200

objective function values in Table 6.2 are better. In particular, the optimal solution

is found for problem HP48 with M ∗M as the improvement method. But, for the two

largest problems the objective function values are better in Table 6.1.

The graph in the Figure 6.1 gives the relation between the problem size N and

corresponding CPU time (in seconds) to solve that problem for the results in Table 6.3

with M ∗M case for improvement method. We see that there is no obvious correlation

between the problem size and the time required to solve it. This is because the CPU

time also depends on the HP pattern of the amino acid chain i.e., the primary stucture

of the protein.

Table 6.4 depicts the case of turn point at the first node and the solution com-

bination method giving one offspring as a new trial solution. The results in this

table are worse than the other three tables, both in terms of computation time and

objective function value.

In all cases, we were able to find the optimum for the smallest problem HP20. In

1The runs are done on KUMPEM (Koç University) server (Intel Xeon 3.20 GHz with 2 GB RAM)

Chapter 6: Computational Results 54

Figure 6.1: N vs CPU

Table 6.4: turn: 1st node, combination: 1 offspring

b1 = b2 = N/2 and other settings as default M*M (improve) M*1 (improve)

problem max e e1 b1 b2 MaxIter M opt best CPU(sec.)1 best CPU (sec.)1

hp20 8 8 10 10 5 9 9 9 14.093 9 6.281

hp24 2 2 12 12 5 7 9 7 35.344 7 22.375

hp25 2 2 13 13 5 4 8 7 31.406 7 28.719

hp36 4 4 18 18 5 7 14 11 983.703 11 282.625

hp48 4 4 24 24 5 9 23 21 5765.800 16 2134.140

hp50 400 25 25 25 5 10 21

hp60 16 16 30 30 5 5 35

hp64 8 8 32 32 5 19 42

hp85 2 2 43 43 5 6 53

Chapter 6: Computational Results 55

Table 6.5: test of diversity measures

M*M, T:2nd node, 1 offspring RefSet: kept the same RefSet* -1

problem e1 b1 b2 MaxIter M opt min(+,-) comparison min(+,-) comparison

hp20 8 10 10 5 9 9 9 9 9 9

hp24 2 12 12 5 7 9 7 7 7 7

hp25 2 13 13 5 4 8 7 7 7 7

hp36 4 18 18 5 7 14 13 10 13 10

hp48 4 24 24 5 9 23 23 20 23 20

hp50 25 25 25 5 10 21 18 16 18 16

hp60 16 30 30 5 5 35 31 28 31 28

hp64 8 32 32 5 19 42 33 30 33 30

hp85 2 43 43 5 6 53 45 41 45 41

addition, for all cases, the improvement method with M ∗M shift moves finds solutions

with better objective function values than M ∗ 1 moves. For the location of the turn

point, it is clear that turn point on the second node performs much better than

turn point on the first node. This may be explained by a simple observation: If we

choose the second point to be the turn point, then the conformation is expanded

on a larger plane (or lattice). This is because the second node refers to a point

with a larger distance to the conjunction point. When we compare the cases for one

offspring output or two offsprings output for the solution combination method, we

may say that for problems of size larger than 60, the procedure taking both of the

offsprings as trial solutions performs better. Since in real life cases, the protein

molecules are of size larger than 60, we may also conclude that this procedure is also

preferable for the real life cases.

Table 6.5 gives the results for the diversity measurement procedures. The first

pair of columns giving test results which is named as ”RefSet: kept the same” corre-

spond to the case where the RefSet1 was passed to the next iteration as is. On the

Chapter 6: Computational Results 56

Table 6.6: RefSet size (Test 1)

M*M, T:2nd node, 1 offspring, div=min(+,-)

problem e1 b1 b2 MaxIter M opt best

hp20 8 20 20 5 9 9 9

hp24 2 20 20 5 7 9 7

hp25 2 20 20 5 4 8 7

hp36 4 20 20 5 7 14 11

hp48 4 20 20 5 9 23 20

hp50 25 20 20 5 10 21 16

hp60 16 20 20 5 5 35 28

hp64 8 20 20 5 19 42 31

hp85 2 20 20 5 6 53 42

other hand, the next pair of columns gives the case where each solution in RefSet1 is

multiplied by −1 while they are passed to the next iteration whenever there is no im-

provement in RefSet1. The aim in this application was to increase the diversity since

once they enter the solution combination method, i.e., path relinking, the direction of

the guidance would change. However, we see that it has no effect on the solutions.

When we compare two diversity measurement methods in Table 6.5, we see that

addition and subtracting method either gives better or same results comparison

method in all problems. This is probably because the addition and subtracting

method let the algorithm avoid similarities more than the comparison method.

6.2 Size of the Reference Sets

Table 6.6 gives the results for the case where both b1 and b2 are set to 20 for all

problems. We have chosen 20 as the test value for both b1 and b2 because this is the

recommended value in [13, 20]. The other components of the algorithm are fixed to

Chapter 6: Computational Results 57

Table 6.7: RefSet size (Test 2)

M*M, T:2nd node, 1 offspring, div=min(+,-)

problem e1 b1 b2 MaxIter M opt best

hp20 8 30 20 5 9 9 9

hp24 2 30 20 5 7 9 7

hp25 2 30 20 5 4 8 7

hp36 4 30 20 5 7 14 12

hp48 4 30 20 5 9 23 20

hp50 25 30 20 5 10 21 18

hp60 16 30 20 5 5 35 31

hp64 8 30 20 5 19 42 33

hp85 2 30 20 5 6 53 43

the best working elements defined and tested during this study (Section 6.1). The

results in this table shows that the performance of the algorithm depends on the size

of the RefSet. For small sized problems such as HP20, HP24 and HP25, the results are

not affected. On the other hand, the results for the larger problems has got worse.

The reason can be connected to the decrease in the size of the trial solution set.

Consequently, diversification and the area of the search space has decreased. This

change led the procedure to be pulled to the local optima.

In Tables 6.12 and 6.8, we have increased the values of b1 and b2 to 30 indepen-

dently. Both of the tables show better results compared to the results in Table 6.6.

In addition, the results in Table 6.8 are slightly better for large problems. On the

other hand, when we compare these results with the results in Section 6.1, we see

that increasing both b1 and b2 to a very large number (it is N/2 for Table 6.3) does

not improve the solutions.

The following results are with the best algorithmic elements we have found in

Chapter 6: Computational Results 58

Table 6.8: RefSet size (Test 3)

M*M, T:2nd node, 1 offspring, div=min(+,-)

problem e1 b1 b2 MaxIter M opt best

hp20 8 20 30 5 9 9 9

hp24 2 20 30 5 7 9 7

hp25 2 20 30 5 4 8 7

hp36 4 20 30 5 7 14 12

hp48 4 20 30 5 9 23 21

hp50 25 20 30 5 10 21 18

hp60 16 20 30 5 5 35 31

hp64 8 20 30 5 19 42 35

hp85 2 20 30 5 6 53 45

the previous computational experiments. These elements are M ∗M moves in the

improvement method, the addition and subtraction method for the diversity

measurement, turn move on the second node and 1 offspring utilization from the

solution combination method. In addition, MaxIter value is set to 5.

In Tables 6.9 through 6.18, we have tested the RefSet1 and RefSet2 sizes which

are b1 and b2 respectively. the values for both b1 and b2 ranges in {14, 20, 24, 30, 34}.

These tests are also done with respect to inclusion of elite solutions in the initial

RefSet1. In Tables 6.9, 6.10, 6.11, 6.12 and 6.13, the number of elite solutions

included into process is equal to the maximum number of solutions generated by

elite solution generation method but still bounded by b1. In Tables 6.14, 6.15,

6.16, 6.17 and 6.18 the number of elite solutions used in initialization is set to 0.

When we compare the results given in Tables 6.9, 6.10, 6.11, 6.12 and 6.13, we

see that in Table 6.11, the results are either as good as or better than those in the

other tables. Therefore, we should say that b1 = 24 is the best coice for RefSet1 size

Chapter 6: Computational Results 59

Table 6.9: RefSet size (Test 4)

b1 = 14, e1 = min{b1, max e}

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 8 9 9 8 9 9 9 9

hp24 2 7 9 7 7 7 7 7

hp25 2 4 8 5 7 7 7 7

hp36 4 7 14 10 11 11 12 11

hp48 4 9 23 20 20 20 21 20

hp50 25 10 21 16 16 18 16 16

hp60 16 5 35 28 28 28 28 28

hp64 8 19 42 31 31 31 31 31

hp85 2 6 53 41 41 41 41 41

we have found. When we compare the same tables column-wise, we see that the best

results are found in either columnn b2 = 24. However, in neither of these tables, best

known solution in the literature was achived except for problems HP20 and HP48.

Among Tables 6.9, 6.10, 6.11, 6.12 and 6.13, Table 6.9 gives the worst result ehich

has the smallest RefSet1 size value, thus smallest number of high quality solutions.

However, we see that objective function value of the output solutions is not positively

correlated with b1 value. If we look at Table 6.12, we see that most of the results are

not as good as for the results with b1 = 20 or b1 = 24.

The results in Tables 6.14, 6.15, 6.16, 6.17 and 6.18 show the results with no use

of elite solutions. We see that the results in these tables is not as good as the

results in Tables 6.9, 6.10, 6.11, 6.12 and 6.13 except for 2 or 3 results for each table.

For example if we compare none of the results in Table 6.16 is better than those in

Table 6.11 (both with b1 = 24), and even some of them are worse. This is true also for

the results in the other tables. Therefore, we should say that introduction of elite

Chapter 6: Computational Results 60

Table 6.10: RefSet size (Test 5)

b1 = 20, e1 = min{b1, max e}

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 8 9 9 8 9 9 9 9

hp24 2 7 9 7 7 7 7 7

hp25 2 4 8 5 7 7 7 7

hp36 4 7 14 10 11 11 12 11

hp48 4 9 23 20 20 20 21 21

hp50 25 10 21 16 16 18 18 18

hp60 16 5 35 28 28 28 31 28

hp64 8 19 42 31 31 33 35 35

hp85 2 6 53 41 42 43 45 45

Table 6.11: RefSet size (Test 6)

b1 = 24, e1 = min{b1, max e}e

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 8 9 9 8 9 9 9 9

hp24 2 7 9 7 7 7 7 7

hp25 2 4 8 5 7 7 7 7

hp36 4 7 14 10 11 11 11 11

hp48 4 9 23 20 21 23 21 20

hp50 25 10 21 16 18 18 18 16

hp60 16 5 35 28 28 28 31 28

hp64 8 19 42 31 33 33 35 31

hp85 2 6 53 41 42 43 45 42

Chapter 6: Computational Results 61

Table 6.12: RefSet size (Test 7)

b1 = 30, e1 = min{b1, max e}

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 8 9 9 8 9 9 9 9

hp24 2 7 9 7 7 7 7 7

hp25 2 4 8 5 7 7 7 7

hp36 4 7 14 10 12 11 11 11

hp48 4 9 23 20 20 23 20 20

hp50 25 10 21 16 18 18 18 16

hp60 16 5 35 31 31 31 31 28

hp64 8 19 42 30 33 33 33 31

hp85 2 6 53 41 43 43 43 42

Table 6.13: RefSet size (Test 8)

b1 = 34, e1 = min{b1, max e}

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 8 9 9 8 9 9 9 9

hp24 2 7 9 7 7 7 7 7

hp25 2 4 8 5 7 7 7 7

hp36 4 7 14 10 12 12 11 11

hp48 4 9 23 20 20 21 20 20

hp50 25 10 21 16 18 18 18 16

hp60 16 5 35 28 31 31 31 28

hp64 8 19 42 31 33 33 35 31

hp85 2 6 53 41 42 43 45 42

Chapter 6: Computational Results 62

Table 6.14: RefSet size (Test 9)

b1 = 14, e1 = 0

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 0 9 9 8 9 9 9 9

hp24 0 7 9 7 7 7 7 7

hp25 0 4 8 5 5 7 7 5

hp36 0 7 14 10 10 11 12 11

hp48 0 9 23 20 20 21 20 20

hp50 0 10 21 16 16 18 18 16

hp60 0 5 35 28 28 28 28 28

hp64 0 19 42 31 31 31 31 31

hp85 0 6 53 41 41 41 42 41

Table 6.15: RefSet size (Test 10)

b1 = 20, e1 = 0

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 0 9 9 8 9 9 9 9

hp24 0 7 9 7 7 7 7 7

hp25 0 4 8 5 7 7 7 7

hp36 0 7 14 10 11 11 12 11

hp48 0 9 23 20 20 20 21 21

hp50 0 10 21 16 16 18 18 18

hp60 0 5 35 28 28 28 31 28

hp64 0 19 42 31 31 33 33 33

hp85 0 6 53 41 41 43 43 43

Chapter 6: Computational Results 63

Table 6.16: RefSet size (Test 11)

b1 = 24, e1 = 0

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 0 9 9 8 9 9 9 9

hp24 0 7 9 7 7 7 7 7

hp25 0 4 8 5 7 7 7 7

hp36 0 7 14 10 11 11 11 11

hp48 0 9 23 20 21 21 21 20

hp50 0 10 21 16 18 18 16 16

hp60 0 5 35 28 28 28 28 28

hp64 0 19 42 31 31 33 33 31

hp85 0 6 53 41 41 42 42 42

Table 6.17: RefSet size (Test 12)

b1 = 30, e1 = 0

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 0 9 9 8 9 9 9 9

hp24 0 7 9 7 7 7 7 7

hp25 0 4 8 7 7 7 7 7

hp36 0 7 14 10 11 11 11 11

hp48 0 9 23 20 20 21 21 20

hp50 0 10 21 16 16 18 18 16

hp60 0 5 35 28 28 28 28 28

hp64 0 19 42 30 31 33 33 30

hp85 0 6 53 41 41 42 42 41

Chapter 6: Computational Results 64

Table 6.18: RefSet size (Test 13)

b1 = 34, e1 = 0

problem e1 M opt b2 = 14 b2 = 20 b2 = 24 b2 = 30 b2 = 34

hp20 0 9 9 8 9 9 9 9

hp24 0 7 9 7 7 7 7 7

hp25 0 4 8 7 7 7 7 7

hp36 0 7 14 10 11 11 11 11

hp48 0 9 23 20 20 21 20 20

hp50 0 10 21 16 16 16 18 16

hp60 0 5 35 28 28 28 31 28

hp64 0 19 42 31 31 33 31 31

hp85 0 6 53 41 41 41 42 42

solutions to the initial set of solutions improves the output of the algorithm.

To see the effect of number of randomly generated initial solutions, we have per-

formed experiments with different sizes for initial Pool. The algorithmic elements

are set to the best performing elements in the other tests. The RefSet size is set as

b1 = 24 and b2 = 24 (with e1 = min{b1, max e}). The results are given in Table 6.19.

As we see in Table 6.19, |Pool| = 100 is sufficiently large. Moreover, since improve-

ment method is applied to all the solutions in Pool, intensification increases too much

because we get more solutions converging to a local optimum. By the characteristic

of RefSet1, the best b1 solutions are picked from improved Pool. When we already

have a convergent Pool to pick from, the probability to converge to a local optimum

increases. A similar argument also holds for trial solution set and it is discussed in

Section 5.2.

Chapter 6: Computational Results 65

Table 6.19: Pool size

problem e1 M opt |Pool| = 100 |Pool| = 200 |Pool| = 500 |Pool| = 1000

hp20 0 9 9 8 9 9 9

hp24 0 7 9 7 7 7 7

hp25 0 4 8 7 7 7 7

hp36 0 7 14 11 11 11 10

hp48 0 9 23 23 23 21 20

hp50 0 10 21 18 18 18 16

hp60 0 5 35 28 28 28 28

hp64 0 19 42 33 33 33 30

hp85 0 6 53 43 43 43 41

6.3 Local optimality of the solutions found

It is easy to see that even the best found solution over all tests is a local optimum.

For example, if we look at Figure 6.2 depicting a solution for HP36 problem and

Figure 6.3 showing an optimal conformation for the same problem, we can see that

we cannot define a proper shift move on conformation for HP36 in Figure 6.2 which

will improve objective function value. Therefore, we should say that this is the local

optimum for HP36 instance of the PFP.

Chapter 6: Computational Results 66

Figure 6.2: A conformation of HP36 with fitness value 13

Figure 6.3: An optimal conformation of HP36 with fitness value 14

Chapter 7: Conclusion 67

Chapter 7

CONCLUSION

The protein folding problem is a crucial and vital problem for almost all of the

biological sciences. Therefore, it is an open challenge for other sciences such as com-

puter science and operations research as an application area. Since the PFP is also

proved to be NP-hard, it is an open area for application of metaheuristic methods.

Our motivation for this study was developing a metaheuristic method for the PFP.

Our approach was based on scatter search procedure. Thus, we have proposed sev-

eral options for each of the elements of scatter search. Although we could not find an

efficient combination of these elements to be used together, we were able to compare

various kinds of application options.

For diversification generator, we have proposed a method for construction of some

elite solutions that have some favorable motifs already configured. This idea aims to

introduce the favorable motifs from the beginning of the search procedure. For the

subset generation method, the classic all-pairs combination strategy is adopted. Three

new moves are proposed for the PFP: push move, shift move and turn move, where

push move and shift move are used as improvement method components, turn move

is proposed to handle infeasible solutions. We have also proposed a new measurement

for the diversification values of the solutions. This measurement is based adding

ans subtracting the corresponding angles of the solutions to be compared. This new

diversification measurement method is able to catch mirror images in contrast to

measurement by angle comparison. There are also several options for handling trial

solution set and RefSet update method since there are large number of solutions to

choose from for the algorithm and a number of measurement values to differentiate

the solutions.

Chapter 7: Conclusion 68

In our study, we could not find any improved results compared to the literature.

On the other hand, during the study, we have tried a number of possibilities for algo-

rithmic components and parameters. For the scatter search, we see that RefSet size

plays crucial role in the performance of the search procedure. In addition, the balance

between the subsets of the RefSet is equally important to balance intensification and

diversification on the search space. Another key element influencing this balance is

the size of the Pool which collects the candidate solutions for the next iteration of

the search algorithm. Increasing the Pool size may seem to increase diversification.

However, when we apply improvement method for a local search on the solutions in

the trial solution set, they may or may not converge to the same local optimum. This

behavior depends on the attributes of the problem instance. Likewise, the density of

the improvement procedure is an important factor keeping this balance at a desirable

level to reach to global optimum. Applying the improvement method intensly may

result in getting the algorithm stuck in some local optimum. However, we need an

efficient improvement method to be able to converge to the global optimum.

The future research should focus on identifying such elements affecting inten-

sification and diversification balance and study their behavior with respect to the

output since this is one of the key ideas in the metaheuristic methods. In addition,

moves defining the local neighborhood for the problem instances should be defined

well so that these moves should respect both the method requirements and problem

attributes.

Bibliography 69

BIBLIOGRAPHY

[1] B. Adenso-Diaz, S. Garcia-Carbajal, and S. Lozano. An emprical investigation

on a parallelization strategies for scatter search. European Journal of Operational

Research, 169:490–507, 2006.

[2] J. Blazewicz, K. Dill, P. Lukasiak, and M. Milostan. A tabu search strategy for

finding low energy structures of proteins in hp-model. Computational Methods

in Science and Technology, 10:7–19, 2004.

[3] F. Chu, N. Labadi, and C. Prins. A scatter search for the periodic capacitated

arc routing problem. European Journal of Operational Research, 169:586–605,

2006.

[4] G. A. Cox, T. V. Mortimer-Jones, R. P. Taylor, and R. L. Johnston. Development

and optimisation of a novel genetic algorithm for studying model protein folding.

Theoretical Chemistry Accounts, 112:163–178, 2004.

[5] C.G. da Silva, J. Climaco, and J. Figueira. A scatter serach method for bi-criteria

0,1-knapsack problems. European Journal of Operational Research, 169:373–391,

2006.

[6] D. Debels, B. de Reyck, R. Leus, and M. Vanhoucke. A hybrid scatter

search/electromagnetism meta-heuristic for project scheduling. European Jour-

nal of Operational Research, 169:638–653, 2006.

[7] J. A. Diaz and E. Fernandez. Hybrid scatter search and path relinking for

the capacitated p-median problem. European Journal of Operational Research,

169:570–585, 2006.

Bibliography 70

[8] K. A. Dill. Theory for the folding and stability of globular proteins. Bichemistry,

24:1501–1509, 1985.

[9] K.A. Dill. Polymer principles and protein folding. Protein Science, 8:1166–1180,

1999.

[10] K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas, and H.S.

Chan. Principles of protein folding: A perspective from simple exact methods.

Protein Science, 4:561–602, 1995.

[11] A. El-Fallahi, R. Marti, and L. Lasdon. Path relinking and grg for artificial

neural networks. European Journal of Operational Research, 169:508–519, 2006.

[12] F. Glover. Heuristics for integer programming using surrogate constraints. De-

cision Sciences, 8:156–166, 1977.

[13] F. Glover. A template for scatter search and path relinking. In J.K. Hao, E. Lut-

ton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Lecture Notes in Com-

puter Science, number 1363, pages 13–54. ., 1997.

[14] F. Glover, M. Laguna, and R. Marti. Fundamentals of scatter search and path

relinking. Control and Cybernetics, 29(3):653–682, 2000.

[15] F. Herrera, M. Lozano, and D. Molina. Continuous scatter search: An analysis

of the integration of some combination methods and improvement strategies.

European Journal of Operational Research, 169:450–476, 2006.

[16] National Human Genome Resarch Institute. Protein. World Wide Web,

http://www.genome.gov/Pages/Hyperion/DIR/VIP/Glossary/Illustration/Pdf/protein.pdf,

2007.

Bibliography 71

[17] N. Lesh, M. Mitzenmacher, and S. Whitesides. A complete and effective move

set for simplified protein folding. In RECOMB, pages 188–195, Berlin, Germany,

April 10-13 2003.

[18] F.G. Lopez, M.G. Torres, B.M. Batista, J.A.M. Perez, and J.M. Moreno-Vega.

Solving feature subset selection problem by a parallel scatter search. European

Journal of Operational Research, 169:477–489, 2006.

[19] R. Marti. Scatter search - wellsprings and challenges. European Journal of

Operational Research, 169:351–358, 2006.

[20] R. Marti, M. Laguna, and F. Glover. Principles of scatter search. European

Journal of Operational Research, 169:359–372, 2006.

[21] P. M. Pardalos, Xin Liu, and G.L. Xue. Protein conformation of a lattice model

using tabu search. Journal of Global Optimization, 11:55–68, 1997.

[22] C. Rego, H. Li, and F. Glover. A filter-and-fan approach to the 2d lattice model of

the protein folding problem. Master’s thesis, School of Business Administration,

University of Mississippi, 2006.

[23] R. A. Russell and W.C. Chiang. Scatter search for the vehicle routing problem

with time windows. European Journal of Operational Research, 169:606–622,

2006.

[24] R. Sagarna and J.A. Lozano. Scatter search in software testing, comparison and

collaboration with estimation of distribution algorithms. European Journal of

Operational Research, 169:392–412, 2006.

[25] S. Scheuerer and R. Wendolsky. A scatter search heuristic for the capacitated

clustering problem. European Journal of Operational Research, 169:533–547,

2006.

Bibliography 72

[26] A. Shmygelska and H.H. Hoos. An ant colony optimization algorithm for the

2d and 3d hydrophobic polar protein folding problem. BMC Informatics, 6(30),

2005.

[27] R. Unger and J. Moult. Finding the lowest free energy conformation of a protein

is an np-hard problem: proof and implications. Bulletin of Mathematical Biology,

55(6):1183–1198, 1993.

[28] R. Unger and J. Moult. Genetic algorithms for protein folding simulations. Jour-

nal of Molecular Biology, 231:75–81, 1993.

[29] Wikipedia. Amino acid. World Wide Web,

http://en.wikipedia.org/wiki/Amino acid, 2007.

[30] D.S. Yamashita, V.A. Armentano, and M. Laguna. Scatter search for project

scheduling with resource availability cost. European Journal of Operational Re-

search, 169:623–637, 2006.

[31] G.Q. Zhang and K.K. Lai. Combining path relinling and genetic algorthms for

the multiple-level warehouse layout problem. European Journal of Operational

Research, 169:413–425, 2006.

Vita 73

VITA

Sibel Bilge Sonuç was born in İstanbul, Turkey on March 27, 1982. She graduated

from Kultur Fen Lisesi, İstanbul, Turkey in 2000. She received her B.S. degrees in

Industrial Engineering and Mathematics from Koç University, İstanbul, Turkey in

2005. She has started her M.S. study in Koç University in September 2005, joining

Industrial Engineering department as a research and teaching assistant. Since August

2008, she is a Ph.D. student in University of Florida, Gainesville, FL, U.S.A.

