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ABSTRACT

P. Ozsváth and Z. Szabó recently introduced Heegaard Floer homology, an invariant for

closed oriented 3-manifolds associating to each such manifold a sequence of finitely generated

abelian groups. The construction has also been extended to an invariant for knots, and then

for links.

The definition of Heegaard Floer homology involves many steps, such as Heegaard de-

compositions and pointed Heegaard diagrams of 3-manifolds, symmetric products of surfaces

and counting some holomorphic representatives of disks on the symmetric product. Certain

variations concerning these steps lead to four different types of homologies.

With additional basepoints in the Heegaard diagram, one can obtain knots or links in

a 3-manifold and consequently the Heegaard Floer homologies become invariants for knots

and links. They are called knot (or link) Floer homologies. In this thesis, only knots and

links in the 3-sphere are studied, but it should be noted that the ideas are applicable for

knots and links in an arbitrary closed oriented 3-manifold.

In the final chapter, we analyze a combinatorial way of computing knot and link Floer

homologies, due to C. Manolescu, P. Ozsváth, and S. Sarkar. The idea is to use some

special Heegaard diagrams, in order to project the knot to a grid diagram and compute the

differential map in a purely combinatorial way. We also include computations of knot Floer

homologies for the trefoil and the figure eight knot with the help of the MATLAB software.

iv



ÖZETÇE

Heegaard Floer homolojisi, yakın geçmişte ortaya çıkan, kapalı ve yönlü 3-çokkatlılara

sonlu üreteçli değişmeli grup dizisi eşleyen bir değişmezdir. Kullanılan yapılar düğüm ve

zincirler için de genişletilebilir.

Heegaard Floer homolojisinin tanımlanması birçok teknik detay gerektirmektedir. Bun-

lardan bazıları bir 3-çokkatlının Heegaard ayrışımları ve Heegaard diyagramları, yüzeylerin

simetrik çarpımları ve bu simetrik çarpım uzaylarında birtakım disklerin holomorfik temsil-

lerinin sayılmasıdır. Bu işlemlerin bazılarında yapılacak küçük değişiklikler, farkli homoloji

çeşitlerinin tanımlanmasına olanak tanır.

Bu yapılara birkaç ek veri ekleyerek, bir 3-çokkatlının içerisinde düğüm ve zincirler

belirlenebilir. Böylece, yukarıda bahsi geçen yapılar düğüm ve zincirler için değişmezler

olurlar. Bunlara düğüm (veya zincir) Floer homolojileri adı verilir. Bu çalışmada sadece 3

boyutlu küredeki düğüm ve zincirler incelenmiştir, ancak yapılanlar genel kapalı ve yönlü

3-çokkatlılar için de geçerlidir.

Son bölümde ise, bazı özel Heegaard diyagramları kullanılarak, düğüm ve zincir Floer

homolojilerine kombinatoryal bir bakış açısı sunulmuştur. Ayrıca, yonca ve sekiz şekli

düğümlerinin homoloji gruplarına dair hesaplar yapılmıştır.
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3.1.1 ĤFK(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 HFK−(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Link Floer Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Link Floer Homology with Multiple Basepoints . . . . . . . . . . . . . . . . . 34

vii



3.3.1 Multiple Pointed Surface . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Chain Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4: Combinatorial Approach to Heegaard Floer Knot and Link

Homologies 39

4.1 Grid Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The Chain Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Grading and Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Differential Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Relation Between Combinatorial Link Floer Homology and Link Floer Ho-

mology with Multiple Basepoints . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Computation of H̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Trefoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Figure Eight Knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Vita 63

Bibliography 64

viii



LIST OF TABLES

4.1 Homology ranks for the trefoil. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



LIST OF FIGURES

2.1 A Heegaard diagram for the 3-sphere. . . . . . . . . . . . . . . . . . . . . . . 5

4.1 A grid diagram for a 2-component link with each component being a trefoil. . 41

4.2 A stabilization move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Constructing the link from the dots on the grid diagram. . . . . . . . . . . . . 42

4.4 The generator corresponding to the permutation
(123456789

469815237

)
. . . . . . . . . . 43

4.5 The two rectangles in Rect(x,y). . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 The two rectangles in Rect(y,x). . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 The 3 possible types of domains that can be decomposed as two empty rect-

angles, in the case where x 6= w. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 The 2 possible decompositions of the third domain type into two empty rect-

angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 A grid diagram for the trefoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 Chain complex for the grid diagram Γ1 in Figure 4.9 representing the trefoil. 58

4.11 Another grid diagram for the trefoil . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Chain complex for the grid diagram Γ2 in Figure 4.11 representing the trefoil. 60

4.13 A grid diagram for the figure eight knot. . . . . . . . . . . . . . . . . . . . . . 60

4.14 Chain complex for the grid diagram Γ3 in Figure 4.13 representing the figure

eight knot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



NOMENCLATURE

Σ Heegaard surface
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Chapter 1

INTRODUCTION

Floer initially introduced the “Floer homology” in order to study some problems in Hamil-

tonian dynamics, and used it in his proof of Arnold conjecture in symplectic geometry

[12]. Since then, various adaptations of Floer homology emerged, such as “Instanton Floer

homology”, “monopole Floer homology”, and finally “Heegaard Floer homology”.

Heegaard Floer homology is an invariant for closed oriented 3-manifolds, recently in-

troduced by Peter S. Ozsváth and Zoltán Szabó in [16]. It is conjecturally equivalent to

Seiberg-Witten theory [11]. Some of the applications of Heegaard Floer homology include

knot and link invariants, invariants for 3-manifolds with boundary and also 4-manifolds,

and certain results in contact geometry [13].

We will initially review the definition of the Heegaard Floer homology for a closed

orientable 3-manifold, and later knot Floer and link Floer homologies for knots and links

in S3. Once we define these invariants, a combinatorial description of link Floer homology

will be reviewed, along with some examples.

In Chapter 2, we proceed into the preliminaries and the other steps which are necessary

for defining the Heegaard Floer homology. We first explain Heegaard decompositions and

(pointed) Heegaard diagrams of 3-manifolds. Then we will focus on the symmetric prod-

uct of the Heegaard surface (the surface arising from the Heegaard decomposition). Using

this symmetric product, we define the generators of a graded chain complex and homotopy

classes of the disks connecting these generators. A crucial ingredient in defining the dif-

ferential map of the chain complex is counting the pseudo-holomorphic representatives of

those disks which have zero dimensional moduli space of representatives (after modding out

a certain R-action). In the final section of Chapter 2, we define four types of Heegaard

Floer homologies for rational homology spheres, all obtained in similar ways, with only

small differences in the way they count the disks connecting the generators.
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In Chapter 3, we review the modification of the construction by adding more (an even

number of) basepoints into the Heegaard diagram and dividing them into pairwise disjoint

subsets each containing two points. Every such subset determines a knot, and consequently

the constructions of Chapter 2 induce a knot or link (based on the number of basepoints

in the diagram) invariant. This is called knot or link Floer homology. In this case, we have

also a filtration on the chain complex. We present two different versions of knot and link

Floer homologies. Finally, the Heegaard diagrams are modified further to define “link Floer

homology with multiple basepoints” to be used in the definition of combinatorial link Floer

homology afterwards.

In the final chapter, we review an algorithm of C. Manolescu, P. Ozsváth, and S. Sarkar

[8], which computes knot and link Floer homology. Unfortunately this algorithm comes

with a high computational complexity. This combinatorial approach can be considered

independent from the previous subjects, since it can be defined purely combinatorially

without making reference to any of the previous constructions. Nevertheless, we tried to

stress the relations between combinatorial and classical approaches in the text.

We also included computations of combinatorial knot Floer homology for the trefoil and

the figure eight knot. The complexity of the algorithm required computer assistance, for

which we made use of the software MATLAB. The code is available in the CD version of

this thesis, or via e-mail (taylanbil@gmail.com).
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Chapter 2

HEEGAARD FLOER HOMOLOGY

Heegaard Floer homology is a closed oriented 3-manifold invariant, associating to each such

manifold Y a chain of finitely generated abelian groups. It has four most common versions,

denoted by ĤF (Y ), HF∞(Y ), HF+(Y ), HF−(Y ). Many constructions will be needed in

order to define this homology, such as Heegaard decompositions of 3-manifolds, symmetric

products of surfaces, spinc-structures, Maslov index, etc.

From now on, Y will denote a closed, oriented, connected 3-manifold unless otherwise

stated.

2.1 Preliminaries

In this section we will give the preliminaries necessary for the definition of the Heegaard

Floer homologies.

2.1.1 Heegaard Decompositions and Heegaard Diagrams

A 3-manifold U is said to be a genus g handlebody whenever it is diffeomorphic to some

regular neighborhood of a bouquet of g circles in R3. Observe that the boundary of U is

a closed oriented surface of genus g. Heegaard decomposition of a 3-manifold Y uses the

idea of obtaining the manifold Y by gluing two genus g handlebodies along their common

boundary. Namely, whenever we have

Y = U0 ∪Σ U1 (2.1)

where U0, U1 are genus g handlebodies and Σ is their common boundary, this is called a

genus g Heegaard decomposition of the manifold Y . Observe that the same manifold Y can

have many different Heegaard decompositions. More specifically, two decompositions of Y

may have different genera, conversely, two decompositions of Y with same genus are not

necessarily identical. Note that Σ will be called the “Heegaard surface” associated to the

decomposition.
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A Heegaard diagram associated to a Heegaard decomposition is a triplet (Σ, α, β)

where Σ is a Heegaard surface of genus g, and α, β are g-tuples of simple closed curves (i.e.

α = (α1, . . . , αg), β = (β1, . . . , βg) for some simple closed curves αi’s and βj ’s) embedded

in Σ, satisfying the following:

• αi ∩ αj = βi ∩ βj = ∅ for all distinct i, j’s

• [αi]’s are linearly independent in H1(Σ,Z)

• [βi]’s are linearly independent in H1(Σ,Z)

• αi’s bound disjoint embedded disks in U0

• βi’s bound disjoint embedded disks in U1

• αi and βj meet transversally if they are not disjoint.

It is clear that similar to Heegaard decompositions, a manifold Y admits many different

Heegaard diagrams.

Example 2.1. Here is a genus 1 Heegaard decomposition of S3; think of S3 as R3 ∪ {∞},

and the Heegaard surface Σ as a torus sitting in R3. Then, the closure of the bounded

component of R3 \Σ is a handlebody. Call it U1. Observe that the closure of S3 \U1 is also

a genus 1 handlebody, and here it corresponds to U0. Then, a choice of the α curve may be

a circle on Σ bounding a disk in the unbounded component of R3 \ Σ , and a choice of the

β curve may be a circle on Σ generating H1(Σ,Z)
[α] . See Figure 2.1.

Given a Heegaard diagram (Σ, α, β), we say that α (resp. β) is a collection of attach-

ing circles for U0 (resp. U1). Indeed, this is justified by looking at the properties listed

above; curves satisfying these 5 conditions determine uniquely the way U0 and U1 are glued

together. See the Subsection 2.1.2 below. Therefore, the triplet (Σ, α, β) contains all the

information of the Heegaard decomposition of Y = U0 ∪Σ U1.

In general we will consider Heegaard diagrams with a basepoint z chosen from Σ \ (α∪

β). The diagram (Σ, α, β, z) will be called a “pointed Heegaard diagram”, although we
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Figure 2.1: A Heegaard diagram for the 3-sphere.

may occasionally refer to it as a Heegaard diagram, given that it will be used much more

frequently than diagrams without a basepoint.

It should now be clear that from a given Heegaard diagram, we can recover the han-

dlebodies and consequently, the underlying 3-manifold. What about the converse? Do all

closed oriented 3-manifolds admit a Heegaard decomposition?

Proposition 2.1. Every closed oriented 3-manifold Y admits a Heegaard decomposition.

Proof. Take any triangulation of the manifold Y . Observe that a triangulation exists since

Y is 3-dimensional, closed and orientable. Let F denote the set of vertices and edges of the

triangulation. Pick a small regular neighborhood of F . That neighborhood is a handlebody.

Call it U0. Y \ U0 is also handlebody, with the same boundary as U0.

Another way to prove the proposition above is through Morse theory. See Subsection

2.1.2.

We have already remarked that Y has infinitely many Heegaard diagrams associated to

it. Fortunately, we have a way to link all of those Heegaard diagrams together.

Heegaard Moves

There are 3 basic moves on a pointed Heegaard diagram, called “Heegaard moves” that do

not change the diffeomorphism class of the underlying manifold. These are the following;

• pointed isotopy
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• pointed handle-slide

• stabilization

Pointed isotopy moves the α or the β curves along with the basepoint in a one-parameter

family such that the curves remain disjoint from each other and from the basepoint. Handle-

slide is an operation of replacing an αi (or resp. βi) by a representative of [αi]+[αj ] (or resp.

[βi] + [βj ]), under the condition that the representative must be a simple closed curve of

course. What makes a handle-slide operation “pointed” is that the basepoint in the pointed

Heegaard diagram should not lie in the pair of pants bounded by αi, αj and the represen-

tative of [αi] + [αj ]. The last Heegaard move is the stabilization move, which is basically

splicing a 3-sphere to the underlying manifold. Consequently, the obtained manifold is dif-

feomorphic to the old underlying manifold Y . This happens in terms of Heegaard diagrams

in the following way; recall that in Example 2.1, we have given the description of the genus

1 diagram of S3. Applying stabilization to a diagram (Σ, α1, . . . , αg, β1, . . . , βg, z) yields a

new diagram (Σ′, α1, . . . , αg, αg+1, β1, . . . , βg, βg+1, z), where Σ′ is the surface obtained from

adjoining a torus to Σ and αg+1, βg+1 are exactly as described as in Example 2.1.

Under Heegaard moves, the underlying manifold does not change [16]. Moreover, given

two different pointed Heegaard diagrams for the same manifold Y, they can be joined with

a finite sequence of Heegaard moves. This will be a fundamental result in the construction

of Heegaard Floer homologies.

2.1.2 A Morse theoretic approach

Perhaps a more useful approach to existence of Heegaard diagrams is by using Morse theory.

Let Y be a differentiable manifold and f be a smooth function f : Y → R. The points on

Y where the exterior derivative of f vanishes are called critical points of f . If the Hessian

matrix (the matrix of second partial derivatives of f) at a critical point P is non-singular, P

is called a non-degenerate critical point (otherwise it is called a degenerate critical point).

Definition. A Morse function on a differentiable manifold Y is a smooth function f : Y →

Rwhose critical points are non-degenerate. The index of f at the non-degenerate critical

point P is the dimension of the largest subspace of the tangent space at P on which the

Hessian matrix at P is negative definite.
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Proposition 2.2. (see [9])(The Morse lemma) Given a Morse function on Y n and an

index i critical point P , there is a diffeomorphism h between a neighborhood W of P and a

neighborhood W ′ of 0 ∈ Rn such that h(0) = P and

f ◦ h(x1, . . . , xn) = −
i∑

j=1

x2
j +

n∑
j=i+1

x2
j + f(P ) (2.2)

Elementary Morse theory states that if y is a critical value of f with index i, the manifold

f−1(−∞, y+ ε) is topologically equivalent to f−1(−∞, y− ε) with an i-handle attached. A

simpler way to state that is, crossing a critical value with index i is equivalent to attaching

an i handle to the preimage.

Definition. A Morse function f is said to be “self-indexing”, if for every critical point P ,

the value of the Morse function f at P is equal to the index of f at P .

There exists a self-indexing Morse function f on any 3-manifold Y to [0,3]. See [9] for

more background on Morse theory. By the argument above, f−1[0, 3/2] corresponds to a

3-ball with a 1-handle attached for each critical point of f of index 1. That is precisely a

handlebody. Observe that f−1(3/2) is the Heegaard surface, and f−1[3/2, 3] is the other

handlebody with the same boundary.

It is customary to visualize a Morse function using the classical example of “height

function”. Referring to the terminology of that example, we can obtain a Heegaard diagram

from a self-indexing Morse function and a Riemannian metric on Y as follows;

First, modify the Morse function so that it contains only 1 index 0 and only 1 index 3

point. This can be done if Y is connected, as shown in [9]. Recall that there are as many

index 1 critical points as index 2 critical points, and there are exactly g of each, where g is

the genus of Σ. Denote the index 1 critical points of f by P1, . . . , Pg, and index 2 critical

points by Q1, . . . , Qg. Then, f−1(3/2) is the Heegaard surface, αi is the set of points in Σ

that flow ‘down’ to Pi (after some rearrangement of the points) with the flow of the vector

field −∇f , and similarly βj is the set of points in Σ that flow ‘up’ to Qj with ∇f . Using

Morse lemma, we can show that αi’s and βj ’s are simple closed curves. It suffices to prove

the claim locally, so assume Qj is the origin and f is given as in the Morse lemma. Then,
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the points (x1, x2, x3) belonging to f−1(3/2) that flow to 0 ∈ R3 with ∇f satisfy

dxi
dt

= −2xi for i = 1, 2

dx3

dt
= 2x3.

Then, we have

xi = Ci e
−2t for i = 1, 2

x3 = C3 e
+2t,

where Ci’s are constants and we parametrize such that when t = 0, we are at the point

P . The constraint of flowing to the origin implies that as t goes to infinity, xi’s go to zero.

Hence, we immediately see that C3 = 0. Since x1, x2, x3 has to satisfy f(x1, x2, x3) = 3/2

when t = 0, we observe that the desired set of points is the solution set for the equation

C2
1 +C2

2 = 2− 3/2. This is a simple closed curve. Consequently, its diffeomorphic image βj

is a simple closed curve. For the α curves, we proceed in the same manner, except that we

solve for the vector field −∇f .

It is clear that the Heegaard diagram obtained this way is compatible with the Heegaard

decomposition induced by the same Morse function.

Let’s return for a brief explanation of recovering the 3-manifold Y from a given Heegaard

diagram (Σ,α,β). Consider the 3-manifold-with-boundary Σ× [0, 1]. Think of the α curves

as lying in Σ× {0}, and the β curves in Σ× {1}. We will try to complete this object to a

closed 3-manifold. It is readily seen that we need to attach two 3-manifolds-with-boundary

to ∂ (Σ× [0, 1]), more precisely, one to Σ× {0}, and another to Σ× {1}. For the resulting

manifold to have no boundary, the attached 3-manifolds-with-boundary must have boundary

diffeomorphic to Σ× {0} ∼= Σ× {1} ∼= Σ. Therefore, they are genus g handlebodies, which

we denote by U0 and U1. It is now a question of how to attach those handlebodies. We

know that the α curves must bound disks in U0 and similarly for the β curves in U1. After

attaching a 2 handle D2 × S1 to one of the g α curves, we are reduced to a boundary

diffeomorphic to a genus g − 1 surface. Repeating this process g − 1 more times, we will

have boundary diffeomorphic to S2. Attaching D2, we get rid of the boundary. Doing the

same for Σ × {1}, we have recovered Y . Observe that the process is well-defined, i.e. the

resulting manifold Y is uniquely determined up to diffeomorphism.
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2.2 Symmetric Products

From now on, we will work with a given Heegaard diagram (Σ, α, β, z) of a manifold Y . The

g-fold symmetric product of the Heegaard surface Σ is denoted by Symg(Σ) and defined to

be the quotient space of the g-fold Cartesian product of Σ under the action of the symmetric

group of g letters Sg. That is, points in Symg(Σ) are unordered g-tuples of points in Σ.

The topology of the symmetric products is studied in [6]. We state here that Symg(Σ) is a

smooth manifold of dimension 2g and a complex structure on Σ induces a complex structure

on Symg(Σ) in such a way that the projection map from Σg onto Symg(Σ) is holomorphic.

We define the diagonal D in Symg(Σ) to be the g-tuples of points in Σ where the entries

are not all distinct.

It was no coincidence that we used the same letter as the genus of Σ when describing the

symmetric product. For purposes to be clear later, we consider the g-fold product where

g is the genus of Σ. In Symg(Σ), we have the g-dimensional tori Tα and Tβ, defined to

be the quotient of the (α1 × . . . × αg) and (β1 × . . . × βg) in the symmetric product. The

tori Tα and Tβ play a critical role in the construction of Heegaard Floer homology, such

as yielding the generators of the chain complex. Namely, the generators will be the points

in Tα ∩ Tβ.

Proposition 2.3. Let Σ be as above. Then, π1(Symg(Σ)) ∼= H1(Symg(Σ)) ∼= H1(Σ)

Proof. First, observe that there is a map

H1(Σ) −→ H1(Symg(Σ))

[γ] 7→ [(γ, x, . . . , x)]

where x is a generic point in Σ. It is easy to see that this map is well defined. The inverse

mapping can be found in the following way; a closed curve (in general position, i.e. missing

the diagonal) in Symg(Σ) corresponds to a map from a g-fold cover of S1 to Σ, thus gives

a collection of closed curves in Σ. Consequently, each homology class in the symmetric

product gives a homology class in H1(Σ). For the well-definedness of this map and the

identification π1(Symg(Σ)) ∼= H1(Symg(Σ)), see [16]
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Note that any cycle in Y can be deformed into a cycle in Σ. Recall that the curves

α1, . . . , αg, β1, . . . , βg bound disjoint embedded disks in Y . Using the proposition above, we

conclude the following.

Corollary. Let (Σ,α,β) be a Heegaard diagram associated to a manifold Y. Then,

H1(Y ) ∼=
H1(Σ)

[α1], . . . , [αg], [β1], . . . , [βg]
∼=

H1(Symg(Σ))
H1(Tα)⊕H1(Tβ)

,

where g is the genus of Σ.

The following definition will be useful.

Definition. Let x be a point on Σ. Define Vx := {x} × Symg−1(Σ).

We will generally consider Vz, where z is the basepoint in the given Heegaard diagram.

Note that the basepoint is disjoint from α and β, so Vz ∩ Tα = Vz ∩ Tβ = ∅.

We are going to work with the disks in the symmetric product. To this end, we introduce

a notation and present another result concerning the topology of Symg(Σ). But first, let

us define the action of π1(X) on πn(X), where X is a path-connected space.

Let x ∈ X be any basepoint. Recall that the choice of basepoint is irrelevant since X is

path-connected. Let then γ be a loop based at x. We associate, to each continuous mapping

f : (Bn, Sn−1) −→ (X,x), another continuous mapping γ · f : (Bn, Sn−1) −→ (X,x),

obtained by shrinking the domain of f into a smaller disk and completing it to Bn by

adjoining γ (with a shrunk domain too) to each radial segment. Then, we set

βγ : πn(X) −→ πn(X)

[f ] 7→ [γ · f ] .

This may be remodeled as follows. We can think of γ · f as a map from Sn to X, sending

the north pole to x, while at the northern hemisphere, it makes γ along each portion of

great circles containing the north pole. Hence, the equator is mapped to x. The southern

hemisphere with the equator is diffeomorphic to Bn, and γ · f restricted to that ball is the

same map as f . We can then identify the equator to get a map from Sn∨Sn. The northern

n-sphere can be replaced by a B1, with one boundary point at the north pole of the northern

hemisphere, and the other one at the south pole of the northern hemisphere, which is also

the point where B1 is wedged to the southern n-sphere. And since the boundary points are
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mapped to the same point under γ, B1 may further be replaced by an S1, taking the free

boundary point and identifying with the wedge point, i.e. the north pole of the southern

n-sphere. Hence, γ · f can also be viewed as a map from S1 ∨Sn to X. See also Proposition

2.4.

It is easy to check that βγ is a well-defined group isomorphism, and βγ1βγ2 = βγ1γ2 .

Moreover, [γ1] = [γ2] implies βγ1 = βγ2 . Consequently we get a group homomorphism

π1(X)→ Aut(πn(X)). That is, each class in the fundamental group of X acts on πn(X).

Let π
′
2(X) denote the quotient of π2(X,x) under the action of π1(X,x). Note that the

quotient group π
′
2(X) does not depend on the choice of x ∈ X. This is only for dealing with

the case where g = 2, since when g > 2, π1(Symg(Σ)) acts trivially. This is also proved in

the next proposition.

Proposition 2.4. Let Σ be a Riemann surface of genus g ≥ 2. Then,

π
′
2(Symg(Σ)) ∼= Z.

Moreover, when g > 2, the action of π1(Symg(Σ)) is trivial, hence

π2(Symg(Σ)) ∼= Z.

Proof. Let x, x
′
be distinct generic points in Σ, and τ be an orientation preserving involution

of Σ such that Σ/τ ∼= S2. Let S :=
{

(y, τ(y), x
′
, . . . , x

′
) : y ∈ Σ

}
. S is a sphere in Symg(Σ).

S turns out to be the generator of π
′
2(Symg(Σ)), via the use of the following map counting

the algebraic intersection number:

ϕ : π
′
2(Symg(Σ)) −→ Z

φ 7→ # {φ ∩ Vx}

This map is invariant under homotopy, which can be seen by intersecting the homotopy

with the subvariety {x} × Symg−1(Σ). The intersection will consist of 1-manifolds-with-

boundary (since the homotopy is 3 dimensional and the subvariety is 2g−2 dimensional), and

the boundaries of the 1-manifolds (which correspond to the intersection of the homotopic

disks with the subvariety) will cancel out to give zero. Since one of the homotopic disks is

then counted with the reverse orientation, the intersection numbers of the two disks with
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the subvariety must then be the same. Furthermore, given a loop in the symmetric product,

the generic intersection number with Vx is zero. Thus, the map above is also invariant under

the action of the fundamental group. Therefore, the map ϕ is well-defined.

It is clear that ϕ(S) = 1, since (x, τ(x), x
′
, . . . , x

′
) and (τ(x), τ2(x), x

′
, . . . , x

′
) are the

same points in the symmetric product. So, given n ∈ Z, ϕ(nS) = n, where nS is obtained

by splicing S to (n− 1)S for n ≥ 2, and −nS is nS with the reverse orientation. Note that

the splicing here does not specify any basepoints, so it takes place in π′2(Symg(Σ)).

We will now separate the cases g = 2 and g > 2. First, let g > 2 and θ be a sphere in the

kernel of ϕ. Then, if θ misses {x}×Symg−1(Σ) already, we can say that θ ∈ Symg(Σ\{x}).

If not, then moving θ in general position, we can assure that θ meets {x} × Symg−1(Σ) in

finitely many points. We want to obtain a sphere homotopic to θ but missing the diagonal.

For that, we splice homotopic translates of S with appropriate signs to θ at those points.

Namely, if at some point (x, x2, . . . , xg) ∈ Vx, θ intersects Vx positively (resp. negatively), we

splice −S (resp. S) to θ at that point. The algebraic count of intersections is zero, therefore

total number of S spliced to θ is equal to that of −S. Since S∗(−S) is homotopically trivial.

The new sphere obtained represents the same homotopy class as θ and is disjoint from Vx.

Therefore, it lies in Symg(Σ \ {x}). It only remains to see that π2(Symg(Σ \ {x})) = 0.

Note that Σ \ {x} is homotopically equivalent to C \ {z1, . . . , z2g} where zi are distinct

points. Then, Symg(Σ \ {x}) is homotopically equivalent to Symg(C \ {z1, . . . , z2g}), and

Symg(C \ {z1, . . . , z2g}) can be seen as the space of monic degree g polynomials p in one

variable, with p(zi) 6= 0 for all i ∈ {1, . . . , 2g}, via the map

(a1, . . . , ag) 7→ (x− a1) · . . . · (x− ag).

This is nothing but Cg minus 2g generic hyperplanes. A theorem of Hattori states that the

homology groups of the universal covering space of this complement are trivial except in

dimension 0 or g [16]. The claim follows. In the case where g = 2, Symg(Σ) is diffeomorphic

to the blowup of T 4 [16]. Then, the claim in the proposition holds.

Finally, we prove that the action of π1(Symg(Σ)) is trivial for g > 3. Let (x, . . . , x) be

a generic point in the symmetric product. Let

γ : S1 −→ Symg(Σ)

σ : S2 −→ Symg(Σ)
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be given maps based around (x, . . . , x). We want to prove that the map

γ ∨ σ : S1 ∨ S2 :−→ Symg(Σ)

is homotopic to the map

c(x,...,x) ∨ σ : S1 ∨ S2 :−→ Symg(Σ),

where S1 and S2 are wedged at a point which is mapped to (x, . . . , x) ∈ Symg(Σ), and

C(x,...,x) is the constant loop. By Proposition 2.3, we can replace γ by a homotopic curve

in the form (γ1, x, . . . , x) for some γ1 : S1 −→ Σ. Similarly, since π′2(Symg(Σ)) ∼= Z, by

choosing x as a fixed point of the involution when creating the generator S, we can find a map

σ1 : S2 −→ Symg(Σ) such that σ is homotopic to (σ1, x) for some σ1 : S2 −→ Symg−1(Σ).

Therefore, we get a map

γ1 × σ1 : S1 × S2 −→ Symg(Σ),

and the composition S1 ∨ S2 −→ S1 × S2 −→ Symg(Σ) is equal to γ ∨ σ, where the first

arrow is the map taking t ∈ S1 to (t, w2), and z ∈ S2 to (w1, z), with wi’s being the points

at which the 1 and 2-spheres are wedged. Observe that γ1(w1) = σ1(w2) = (x, . . . , x).

But the action of π1(S1 × S2) on π2(S1 × S2) is trivial, so the first map in the above

composition is homotopic to {w1} ∨ ı, which takes all t ∈ S1 to (w1, w2), and z ∈ S2 to

(w1, z). Consequently, they are still homotopic when composed with γ1 × σ1, and this is

exactly what we wanted to prove.

We close this subsection by mentioning a structural property of Tα and Tβ .

Definition. Let Z be a complex manifold and J a complex structure on it. A submanifold

L ⊆ Z is called totally real if for all λ ∈ L, TλL ∩ JTλL = {0}, i.e. if the tangent spaces of

L does not contain a J-complex line.

Proposition 2.5. Let (Σ,α,β) be a Heegaard diagram. Then, Tα and Tβ are totally real

in Symg(Σ).

Proof. It is easy to see that Tα and Tβ are totally real in Σg with respect to the product

complex structure. Since the αj ’s are disjoint, the tori Tα and Tβ miss the diagonal D.

Therefore, the inverse image of some neighborhood of Tα consists of disjoint copies of this
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tori, and it restricts to a diffeomorphism at one of these copies. Similar for Tβ. The claim

follows.

2.2.1 Intersection points and disks in symmetric products

The aim of this subsection will be to prove Proposition 2.6. For that, we now introduce

some definitions, after which the reader is advised to glance at Proposition 2.6 on page 17

for motivation.

Let x,y ∈ Tα∩Tβ be two intersection points. Let a : [0, 1] −→ Tα, b : [0, 1] −→ Tβ be

two paths from x to y in Tα and Tβ respectively. Note that a− b is a loop in Symg(Σ).

Definition. Let ε(x,y) denote the image of a− b in H1(Y,Z) under the map presented in

the corollary to Proposition 2.3.

If a
′
, b
′

are other paths from x to y in Tα and Tβ respectively, then

(a− b)− (a
′ − b′) = (a− a′)− (b− b′),

and (a − a
′
) and (b − b

′
) are loops in Tα and Tβ respectively, which are killed when

working in H1(Y,Z). Therefore, ε(x,y) is independent from the choice of the paths a, b.

This immediately implies that ε is additive, i.e. if z is another point of intersection, then

ε(x, z) = ε(x,y) + ε(y, z)

Let D denote the unit disk in C. Let ρr denote the arc ∂D∩ {z ∈ C;Re(z) ≥ 0}, and ρl

denote ∂D ∩ {z ∈ C;Re(z) ≤ 0}.

Definition. Let x, y be a pair of intersection points. A Whitney disk connecting x to y is

defined to be a continuous map

φ : D −→ Symg(Σ)

satisfying the following:

• φ(i) = x, φ(−i) = y

• φ(ρl) ⊂ Tα, φ(ρr) ⊂ Tβ,
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We also define π2(x,y) to be the set of homotopy classes of Whitney disks connecting x

and y.

The set π2(x,y) is endowed with a multiplication;

π
′
2(Symg(Σ)) ∗ π2(x,y) −→ π2(x,y)

which splices the sphere nS to φ in order to get a new Whitney disk connecting x to y.

Furthermore, if z is another point of intersection, we have another multiplicative operation

∗ : π2(x,y)× π2(y, z) −→ π2(x, z)

(φ1, φ2) 7→ φ3

where φ3 is the disk obtained by gluing φ1 to φ2 at y.

We remark that if there is a Whitney disk φ connecting x to y, then ε(x,y) = 0, since

the boundary of that disk (which is homologically trivial of course) maps to ε(x,y) under

the homomorphism in the definition of ε(x,y). Therefore, we can introduce the following

equivalence class; We define the equivalence relation ∼ on Tα ∩ Tβ, where we declare two

points x and y to be equivalent iff ε(x,y) = 0. Note that transitivity of ∼ follows from the

additivity of ε.

Domains

We will now in some sense “project” the disks in the symmetric product to the Heegaard

surface. Let x,y ∈ Tα ∩ Tβ. In Proposition 2.4), we used a function giving the algebraic

intersection number of the spheres with the subvarieties determined by a basepoint. The

following additive assignment does the same for Whitney disks.

Definition. Pick w ∈ Σ \α ∪ β. Let

nw : π2(x,y) −→ Z

φ 7→ # {φ ∩ Vw}

be the map giving the algebraic intersection number of the disk φ and the submanifold Vw

For instance, φ and Vw are intersecting +1 (−1 resp.) at a point (w, x2, . . . , xg) if their

orientation add up to give the canonical orientation (opposite orientation resp.) of Symg(Σ).
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To justify the claim we have made that nw is additive, observe that φ1 ∗ φ2 intersects Vw

exactly at the points of intersection of φ1 and Vw and the points of intersection of φ2 and

Vw. That is because we splice the two disks together to obtain φ1 ∗ φ2. This assignment

has also another property for the sphere splicing operation; observe that # {S ∩ Vw} = 1

for any point w, so we have

nw(S ∗ φ) = 1 + nw(φ).

Definition. Let D1, . . . , Dm denote the closures of the connected components of

Σ \ (α1 ∪ . . . ∪ αg ∪ β1 ∪ . . . ∪ βg). For any φ ∈ π2(x,y), we define the domain associated to

φ to be the formal sum

D(φ) =
m∑
i=1

nzi(φ)Di ,

where zi is a generic point of interior of Di for any i ∈ {1, . . . ,m}.

Recall that the boundary of φ is on Tα ∪ Tβ, so the domain associated to φ does not

depend on the choice of points zi. We write D(φ) ≥ 0 if all the coefficients nzi(φ) in the

formal sum are nonnegative.

The results that nw is additive and nw(S) = 1 imply immediately the following.

D(φ1 ∗ φ2) = D(φ1) +D(φ2) (2.3)

D(S ∗ φ) = D(φ) +
m∑
i=1

Di (2.4)

Now, let’s see what happens in terms of the boundaries of the domains. Let

x = (x1, . . . , xg), y = (y1, . . . , yg) be two points of intersection, where

xi ∈ αi ∩ βi

yi ∈ αi ∩ βσ(i)

for all i, with σ being a permutation in Sm. Note that we have not specified anything

upto this point, since, the conditions above can be obtained by a simple re-indexing of the

coordinates of x and y. If φ ∈ π2(x,y), recall the notations in the definition of a Whitney

disk, and observe that φ(i) = x, φ(−i) = y, and φ(ρl) ⊂ Tα, φ(ρr) ⊂ Tβ imply that the

restriction of φ(ρl) to αi starts from xi and ends at yi. Similar for βi, with the exception

that it starts at yσ(i) and ends at xi. Therefore, we have established the following.
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1. ∂D(φ)|αi is a 1-chain with boundary yi − xi.

2. ∂D(φ)|βi is a 1-chain with boundary xi − yσ(i).

We say that a formal sum A =
∑m

i=1 aiDi connects x to y if ∂A connects x to y along

the α curves and y to x along the β curves. The properties above state that D(φ) connects

x to y.

Finally, we have arrived at the following.

Proposition 2.6. Assume g ≥ 3, let x, y be two intersection points. Then, ε(x,y) 6= 0

implies π2(x,y) = ∅, otherwise,

π2(x,y) ∼= Z⊕H1(Y,Z)

When g = 2, we have the same result except that ε(x,y) = 0 implies

π
′
2(x,y) ∼= Z⊕H1(Y,Z),

where π
′
2(x,y) can be constructed by modding out π2(x,y) with the relation: φ1 is equivalent

to φ2 iff D(φ1) = D(φ2).

Proof. Let Ω(Symg(Σ)) be the space of paths in Symg(Σ) with fixed endpoints, and Ω(Tα,Tβ)

be the subspace consisting of paths connecting Tα to Tβ. Note that the space π2(x,x) is

naturally identified with the fundamental group of the space Ω(Tα,Tβ) based at (x), the

constant path at the point x.

There is a natural evaluation map from Ω(Tα,Tβ) to Tα×Tβ, sending the path to its

endpoints. This map induces a fibration with fiber space Ω(Symg(Σ)).

Ω(Symg(Σ)) −→ Ω(Tα,Tβ) −→ Tα × Tβ

Looking at part of the associated homotopy long exact sequence, we obtain;

π2(Tα × Tβ) −→ π1(Ω(Symg(Σ))) −→ π1(Ω(Tα,Tβ)) −→ π1(Tα × Tβ) −→ π0(Ω(Symg(Σ))).

Observe that π1(Ω(Symg(Σ))) is the space of loops of paths based at the constant path x,

and the symmetric product is path connected, so this space is isomorphic to π2(Symg(Σ)),
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with the notation of Proposition 2.4. Additionally, we already have the three identifications

below.

π2(Tα × Tβ) ∼= π2(Tα)⊕ π2(Tβ) ∼= 0

π1(Tα × Tβ) ∼= π1(Tα)⊕ π1(Tβ)

π1(Ω(Tα,Tβ)) ∼= π2(x,x)

Hence, the exact sequence above becomes;

0 −→ π2(Symg(Σ)) −→ π2(x,x) −→ π1(Tα)⊕ π1(Tβ) −→ π1(Symg(Σ))

Suppose now g > 2. Recall, by Proposition 2.4, we have π2(Symg(Σ) ∼= Z. Moreover, by

Proposition 2.3, the fundamental group π1(Symg(Σ)) is equal to the first homology group,

which in turn is isomorphic to first cohomology group H1(Σ) by Poincaré duality. Under

that identification, π1(Tα) and π1(Tβ) correspond to H1(U0) and H1(U1) respectively.

Hence, we have

0 −→ Z −→ π2(x,x) −→ H1(U0)⊕H1(U1) −→ H1(Σ).

It now remains to see that the kernel of the map H1(U0)⊕H1(U1) −→ H1(Σ) is isomorphic

to H1(Y ). But this map is the direct sum of the maps induced by the inclusions

Σ −→ U0

Σ −→ U1.

Considering also the inclusions of U0 and U1 in Y , we obtain a cohomology exact sequence

H0(U0)⊕H0(U1) −→ H0(Σ) −→ H1(Y ) −→ H1(U0)⊕H1(U1) −→ H1(Σ)

The map on the very left is easily seen to be onto, therefore H1(Y ) injects onto the kernel

of the required map.

When g = 2, the proof is the same, but we need to mod out the action of π1(Symg(Σ))[16][11].

For the general case, whenever we have π2(x,y) 6= ∅, ε(x,y) = 0, i.e. it bounds a

disk D in the symmetric product. Then, we have a map from π2(x,x) to π2(x,y)which

concatenates the disk D, and another map from π2(x,y) to π2(x,x) splicing −D, where

−D is the disk obtained by rotating the plane by an angle of π. It is easy to see that these

maps are inverses of each other, so the two groups are isomorphic.
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Here, the summand Z corresponds to the subset “generated” by the sphere S, and the

summand H1(Y,Z) is related to the homology classes of 2-cycles in Y by the Poincaré

duality.

Moreover, when g ≥ 2, we have the following;

Proposition 2.7. [11] Let g ≥ 2. Suppose A is a domain connecting x to y. Then, there is

a homotopy class φ ∈ π2(x,y) such that D(φ) = A. Furthermore, φ is uniquely determined

by A when g > 2.

Therefore, homotopy classes π2(x,y) are in 1-1 correspondence with domains connecting

x to y.

2.3 Spinc Structures

In this section, we will attempt to derive a Spinc structure from each point of intersection

in Tα ∩ Tα. For this, let’s first introduce the concept of a Spinc structure.

There are various ways to define a Spinc structure, among which we will use the refor-

mulation for 3-manifolds due to Turaev.

Our ambient manifold Y is three dimensional, so it has Euler characteristic zero, there-

fore Y admits nowhere vanishing vector fields. Let v1, v2 be two such vector fields.

Definition. We say that v1 is homologous to v2 if there is a ball B such that v1|Y \B is

homotopic to v2|Y \B.

“Being homologous to” is a transitive relation, because given two balls, we can always

find a bigger one containing both of these balls, and transitivity of homotopy is carried on

to the desired transitivity outside the big ball.

Definition. We define the Spinc structures over Y to be the set of nowhere vanishing vector

fields over Y modulo the equivalence relation above. We denote this set by Spinc(Y ).

Given a Heegaard diagram (Σ,α,β, z), we can now introduce the method to obtain a

Spinc structure from an intersection point. Namely, we define here a map

sz : Tα ∩ Tβ −→ Spinc(Y )

in the following way.
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Take a self indexing Morse function f compatible with the diagram (Σ,α,β, z), with

only 1 index zero and only 1 index three point. Recall the discussion about the Morse

theoretic approach to Heegaard diagrams. For convenience, we re-state here that a point

x ∈ Σ in the intersection of αi and βj flows from an index 1 point Pi to an index 2 point Qj

with ∇f . Then, any x = (x1, . . . , xg) specifies a g-tuple of trajectories flowing from distinct

index 1 points to distinct index 2 points. Similarly, since z /∈ α∪ β, it specifies a trajectory

connecting the index 0 point to the index 3 point. Then, delete tubular neighborhoods of

these g + 1 trajectories. Observe that in the boundaries of these tubular neighborhoods,

the vector field ∇f has index zero because they all contain two singular points of different

parities. It follows that the vector field can be extended to a new non-vanishing vector field

over Y. Define sz(x) to be the homology class of this nowhere vanishing vector field. Observe

that sz(x) is uniquely determined because we can find a ball B containing all the tubular

neighborhoods we have deleted and re-filled, so any two extensions of ∇f are homotopic.

It is proved in [16] that sz(x)− sz(y) = PD [ε(x,y)].

2.4 Holomorphic disks and the Maslov index

Recall that a complex structure on Σ induces a complex structure on Symg(Σ). Given a

homotopy class φ ∈ π2(x,y), defineM(φ) to be the moduli space of holomorphic represen-

tatives of φ. One uses appropriate perturbations described in [3], [4], [5] in order to prove

that M(φ) is a smooth manifold.

We will make use of an R-action onM(φ) described as follows: Using Riemann Mapping

theorem, map the unit disk D to the infinite strip [0, 1]×iR ⊂ C, such that ρl is transformed

to {0} × iR and ρr is transformed to {1} × iR. Then, r ∈ R acts as a vertical translation

by r. It is the action of the group of complex automorphisms preserving i and −i [11]. We

will divide M(φ) by that action to get the unparametrized moduli space:

M̂(φ) =
M(φ)

R

By definition, the R action above is free, except the case where φ is constant, i.e. φ ∈

π2(x,x) with D(φ) = 0. In that case, M(φ) is a singleton corresponding to the constant

map.

We will count holomorphic disks in the unparametrized moduli space M̂(φ). For that
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to be significant, or non-trivial one might say, we will be interested in the cases where the

moduli space M(φ) is 1-dimensional, so that when we mod out the R action, we get a

zero dimensional manifold, i.e. a signed collection of points. The signs are induced by the

orientations. It is proved in [16] that there is a natural choice of orientations for all moduli

spaces which is coherent.

The moduli space M(φ) has an expected dimension called the Maslov index, denoted

by µ(φ). See [18] for details. The Maslov index is additive, i.e.

µ(φ1 ∗ φ2) = µ(φ1) + µ(φ2)

and it is zero for the homotopy class of the constant disk. Furthermore, it satisfies the

following.

Proposition 2.8. [11] Let φ ∈ π2(x,y), then the Maslov index satisfies

µ(kS ∗ φ) = µ(φ) + 2k

Using properties of holomorphic disks, we establish,

Proposition 2.9. Let φ ∈ π2(x,y), then M(φ) 6= ∅ implies that D(φ) ≥ 0.

Proof. Pick a generic point zi in each Di. Since Vzi is a submanifold with the induced

complex structure, the holomorphic disk φ must meet it with correct orientation, given that

it does meet it.

The next result is proved in [16].

Theorem 2.1. There is a family of perturbations with the property that if µ(φ) = 1 then

M̂(φ) is a compact zero dimensional manifold.

2.5 Chain Complexes and Homology Groups

We will define the Heegaard Floer homology groups for the cases where Y is a rational

homology sphere, i.e. the rational homology groups of Y are the same as the three sphere

S3. This will be sufficient in order to proceed to knot and link invariants in the next chapter.

Let Y be a rational homology sphere, (Σ,α,β, z) be a genus g Heegaard diagram, and t be

a Spinc structure over Y .
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2.5.1 ĤF (Y, t)

Let ĈF (Σ,α,β, t) denote the free Z-module generated by the intersection points

x ∈ Tα ∩ Tβ such that sz(x) = t. We define a relative grading called the Maslov grading

on the generators as follows:

gr(x,y) = µ(φ)− 2nz(φ),

where φ is any homotopy class in π2(x,y).

On the other hand, a relative grading is by definition additive, which in this case follows

easily from the additivity of the Maslov index and the function nz. To see that this relative

grading is independent of the choice of the homotopy class, recall propositions 2.6 and 2.8.

Since Y is a rational homology sphere, H1(Y,Z) = 0, therefore π2(x,y) ∼= Z. So, any other

choice of homotopy class would be of the form kS ∗ φ, and the result follows.

Definition. Given a homotopy class φ ∈ π2(x,y), we define c(φ) to be the signed number

of points in M̂(φ). If µ(φ) is different from 1, we declare c(φ) to be zero.

We remark that the definition above makes sense in view of Theorem 2.1. Second part

of the definition is just a convention in order to ignore unparametrized holomorphic disks

with bigger or no dimension in the definition of the differential operator below. This count

geometrically is a signed count of points in a compact oriented 0-dimensional manifold.

We endow ĈF (Σ,α,β, t) with the following differential map which is extended linearly:

∂ : ĈF (Σ,α,β, t) −→ ĈF (Σ,α,β, t)

x 7→ ∂x =
∑


y∈Tα∩Tβ
φ∈π2(x,y)

| nz(φ) = 0

ff c(φ) · y

First of all, note that we always encounter finite formal sums since there is a unique

homotopy class φ satisfying nz(φ) = 0 since < S > = π2(x,y) ∼= Z. Moreover, the count

in the definition of the map ∂ does not exceed ĈF (Σ,α,β, t), since the existence of a disk

connecting x to w implies sz(w) = sz(x) = t.

Of course, we need to justify that the map defined above is a differential, i.e. ∂2 = 0.

The next theorem establishes that and contains arguments that will be referred later.

Theorem 2.2. The pair
(
ĈF (Σ,α,β, t), ∂

)
is a chain complex.
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Proof. First of all, applying the map ∂ twice, we obtain the following.

∂2x =
∑


w ,y ∈Tα∩Tβ
φ∈π2(x,w)

ff
∑

(
φ1 ∈π2(x,y)
φ2 ∈π2(y,w)

|
nz(φ1) = 0
nz(φ2) = 0
φ1∗φ2 =φ

) c(φ1)c(φ2) ·w

µ(φ) 6= 1 implies that c(φ) = 0, therefore the generators y appearing in the expression of ∂x

all satisfy gr(x,y) = 1, since we only count classes φ with nz(φ) = 0. Therefore, using this

argument twice, we conclude that the generators w appearing in the expression of ∂2(x)

are in relative grading −2 with respect to x. That is,

gr(x,w) = µ(x,w) = 2.

Therefore, For any fixed φ ∈ π2(x,w), M̂(φ) is 1-dimensional. Hence, we will analyze

the “ends” of the compactification of the moduli space M̂(φ). By Floer theory, this space

has 3 kinds of ends;

1. “broken flow-lines”, i.e. a concatenation of two classes φ1 ∈ π2(x,y), φ2 ∈ π2(y,w)

with µ(φ1) = µ(φ2) = 1.

2. those which correspond to a sphere “bubbling off”, i.e. a φ ∈ π2(x,w) and a holo-

morphic sphere Θ in the symmetric product that meets φ.

3. those which correspond to “boundary bubbling”, i.e. a φ ∈ π2(x,w) and a holomor-

phic map u from the disk whose boundary is mapped into Tα or Tβ, which meet in

a point on that boundary.

We will see that “bubbling off” and “boundary bubbling” cannot occur in our case.

First, By Proposition 2.9, a holomorphic sphere satisfying nz(φ) = 0 can be considered as

lying in Symg(Σ \ {z}) . Therefore, we only count disks in Symg(Σ \ {z}) when applying

the differential map above. But in view of an argument used in the proof of Proposition

2.4, there are no nontrivial spheres in Symg(Σ \ {z}). Therefore “bubbling off” of a sphere

is ruled out. Also, a disk u with boundary lying in Tα or in Tβ will admit a domain D(u)

greater than or equal to Σ [16] (the boundary of the domain will be in the α curves, but

Σ \α is connected). This similarly is not the case since a degeneration of our type of disks

cannot intersect Vz. Hence, only boundary components are the broken flow-lines. That is,
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the boundary of the compactification of M̂(φ), which is a 1-dimensional compact manifold

(therefore has zero dimensional boundary, i.e. isolated points with signs, whose algebraic

count is zero), consist of all the broken flow-lines disjoint from Vz, and nothing else (since

if there is a flow between two points of intersection, they produce the same Spinc structure

via the method given in 2.3). That is, for any φ flowing from x to w, we have∑
(

y∈Tα∩Tβ
φ1 ∈π2(x,y)
φ2 ∈π2(y,w)

| nz(φ1) =nz(φ2) =0
φ1∗φ2 =φ

) c(φ1)c(φ2) ·w = 0

Then, summing over all possible flows from x to w, we get∑
y∈Tα∩Tβ

∑

φ1 ∈π2(x,y)
φ2 ∈π2(y,w)

| nz(φ1) = 0
nz(φ2) = 0

ff c(φ1)c(φ2) ·w = 0

Finally, to include all the terms in the expression of ∂2(x), summing over all intersection

points in ĈF (Σ,α,β, t) gives the desired result;

∂2x =
∑


w ,y ∈Tα∩Tβ
φ∈π2(x,w)

ff
∑

(
φ1 ∈π2(x,y)
φ2 ∈π2(y,w)

|
nz(φ1) = 0
nz(φ2) = 0
φ1∗φ2 =φ

) c(φ1)c(φ2) ·w = 0

Definition. The Heegaard Floer homology groups ĤF (Σ,α,β, t) are the homology groups

of the chain complex
(
ĈF (Σ,α,β, t), ∂

)
.

It is proved in [16] that the Heegaard Floer homology constructed this way remains

invariant under the Heegaard moves explained in the paragraph 2.1.1. More explicitly, an

other choice of any of the constructions used in the definition such as the Heegaard diagram,

complex structure, etc., yields a chain homotopy equivalent complex. Recall that any two

different pointed Heegaard diagrams for the same manifold Y can be joined with a finite

sequence of Heegaard moves. Hence, we have the following theorem:

Theorem 2.3. Let Y be a closed orientable 3-manifold, (Σ,α,β, z), (Σ′,α′,β′, z′) be two

Heegaard diagrams of Y , t ∈ Spinc(Y ) be a Spinc structure over Y. Then, the Heegaard

Floer homology groups ĤF (Σ,α,β, t) and ĤF (Σ,α′,β′, t) are isomorphic.

Therefore, we are allowed to drop out Σ, α, β in the expression of the Heegaard Floer

homology groups and write ĤF (Y, t) instead of ĤF (Σ,α,β, t).
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2.5.2 HF∞(Y, t), HF−(Y, t), HF+(Y, t)

Recall that when defining ĤF (Y, t), we only took into account the holomorphic disks disjoint

from the subvariety Vz determined by the basepoint z ∈ Σ. On the other hand, another

construction without this preliminary elimination is possible. However, the basepoint z will

still play a role.

Let U be an indeterminate over Z. Now, in contrast with the previous subsection, we

will define CF∞(Σ,α,β, t) to be the free Z(U)-module generated by the intersection points

x ∈ Tα ∩ Tβ with sz(x) = t. We will give the generators the same Maslov grading as

before, and add the condition that multiplication by U drops the grading by two. That is,

we extend the previous grading as follows;

gr(U i x, U j y) = gr(x,y) + 2(j − i)

We introduce the differential map ∂∞ on generators below. Note that this map is

extended linearly, so we have ∂∞ (U i x) = U i ∂∞ x .

∂∞ : CF∞(Σ,α,β, t) −→ CF∞(Σ,α,β, t)

x 7→ ∂∞ x =
∑


y∈Tα∩Tβ
φ∈π2(x,y)

ff c(φ) · U nz(φ) y

Observe that the sum is again finite, since, similar to the previous subsection, if µ(φ) 6= 1,

c(φ) vanishes, and there is only one homotopy class φ ∈ π2(x,y) satisfying µ(φ) = 1.

Moreover, if U j y appears in ∂∞x, we have j = nz(φ) for some φ ∈ π2(x,y), and then

gr(x, U j y) = µ(φ)− 2nz(φ) + 2j = µ(φ) = 1

so each term in ∂∞x is in relative Maslov grading −1 with respect to x.

The proof for ∂∞◦∂∞ = 0 is similar to Theorem 2.2 but requires further technical detail,

so we skip it here.

Definition. Let CF−(Σ,α,β, t) be the subgroup of CF∞(Σ,α,β, t) generated by the same

intersection points as before, but over Z[U ]. Define CF+(Σ,α,β, t) to be the quotient group

CF∞(Σ,α,β, t)/CF−(Σ,α,β, t)

We will denote the induced differential maps by ∂− and ∂+ respectively.
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In view of Proposition 2.9 and assuming that CF∞(Σ,α,β, t) is a chain complex we

prove the next result;

Proposition 2.10. The subgroup CF−(Σ,α,β, t) is a subcomplex of CF∞(Σ,α,β, t).

Moreover, the sequence

0→ CF−(Σ,α,β, t) −→ CF∞(Σ,α,β, t) −→ CF+(Σ,α,β, t)→ 0

of chain complexes, where the first map is inclusion and the second is projection, is exact.

Proof. The related result on the boundary maps of CF−(Σ,α,β, t) and CF+(Σ,α,β, t)

follows from the skipped fact that ∂∞ ◦ ∂∞ = 0 . We only need to see that CF−(Σ,α,β, t)

is closed under the differential map ∂− = ∂∞.

Assume U j y appears in ∂∞(U i x). Then, there is a homotopy class φ ∈ π2(x,y) with

c(φ) 6= 0, such that nz(φ) = j − i. Moreover, by Proposition 2.9, nz(φ) ≥ 0. Therefore,

U i x ∈ CF−(Σ,α,β, t) ⇐⇒ i ≥ 0 =⇒ j ≥ 0 ⇐⇒ U j y ∈ CF−(Σ,α,β, t)

so CF−(Σ,α,β, t) is a chain complex.

The exactness of the sequence is trivial.

Definition. The Heegaard Floer homology groupsHF∞(Σ,α,β, t), HF+(Σ,α,β, t), HF−(Σ,α,β, t)

are defined to be the homology groups of CF∞(Σ,α,β, t), CF+(Σ,α,β, t), CF−(Σ,α,β, t)

respectively.

It is proved in [15] that for rational homology spheres, HF∞(Σ,α,β, t) is always iso-

morphic to Z(U). We also have an invariance result as in the previous case of ĤF , proved

in [16], allowing to drop Σ, α, β from the notation and define

HF+(Y, t) = HF+(Σ,α,β, t)

HF−(Y, t) = HF−(Σ,α,β, t).

2.5.3 Heegaard Floer Homologies when b1(Y ) 6= 0

We have constructed several homology groups for rational homology spheres. These mani-

folds Y satisfy b1(Y ) = 0, and consequently we obtained π2(x,y) ∼= Z in view of Proposition
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2.6. For manifolds with nonzero b1(Y ), π2(x,y) is larger. The arising difficulties in this

case is solved using special Heegaard diagrams. The only difference is the Floer homologies

may not admit relative grading [11].
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Chapter 3

KNOT FLOER AND LINK FLOER HOMOLOGIES

The homologies constructed in the previous chapter can be extended to obtain knot or link

invariants for knots or links in closed oriented three manifolds via use of extra basepoints on

the Heegaard surface. In this chapter, we will establish the adaptation of these invariants,

which will also include an alternate way to define the same homologies. More details on

this subject can be found on [11], [8].

3.1 Knot Floer Homology

A knot in S3 is an oriented embedding of S1 into S3. It is by definition a 1-dimensional

closed submanifold of S3. Two knots are said to be “isotopic” if there exists a continuous

transformation between them.

Recall the discussion in Section 2.3. In the definition of the function sz, where z ∈ Σ

is a basepoint, using a compatible Morse function, we described a way to obtain a flow

connecting the index 0 point to the index 3 point. Therefore, if we consider the Heegaard

diagrams (Σ,α,β, z, w) with an additional base point w, we get two such flows. Then, it is

obvious that these two flows piece together to form a knot in Y .

Knot Floer homology deals with knots in 3-manifolds, but we will only work in S3 in

order to simplify the discussion. Let (Σ,α,β, z, w) be a 2-pointed Heegaard diagram for

S3. Another way to obtain a knot using the basepoints w, z is as follows. Let a be a path

joining w and z in Σ \α, and b be another path connecting the basepoints in Σ \ β. Push

a and b into U0 and U1, respectively. The result is a knot K in S3, which is isotopic to the

one explained in the previous paragraph. We say that the 2-pointed diagram (Σ,α,β, z, w)

is compatible with the knot K.

Note that we will not mention Spinc structures when defining Knot Floer homology. It

is proved in [11] that Spinc(Y ) is in one-to-one correspondence with H2(Y,Z). Therefore,

H2(S3,Z) = 0 implies that there is a unique Spinc structure on S3.
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Using Morse theory, one can show that every knot in S3 has a compatible 2-pointed

Heegaard diagram. Namely, let f be a self-indexing Morse function on K with only two

critical points, one index 0 and one index 3. Then, extend f to a self-indexing function f̃

on S3 in such a way that the index 1 and index 2 critical points of f̃ are disjoint from K.

Consider the Heegaard diagram induced by f̃ . Let the basepoints be the two intersection

points of K with f̃−1(3/2). Note that there are no more than two intersection points since

then we would obtain another critical point of f .

3.1.1 ĤFK(K)

Let (Σ,α,β, z, w) be a Heegaard diagram compatible with the knotK, and let CK(Σ,α,β, z, w)

be the free Z-module generated by the intersection points x ∈ Tα∩Tβ. An immediate adap-

tation of the Heegaard Floer homology group ĤF (Y, t) is the following.

Consider the map

∂K : CK(Σ,α,β, z, w) −→ CK(Σ,α,β, z, w)

x 7→
∑


y∈Tα∩Tβ
φ∈π2(x,y)

| µ(φ) = 1
nz(φ) =nw(φ) = 0

ff c(φ) · y,

where c(φ) is as defined in Section 2.5.

Observe that we merely apply the natural use of the extra basepoint here, i.e. we only

count holomorphic disks disjoint from the subvarieties Vw as well as Vz.

Proposition 3.1. ∂K ◦ ∂K = 0

Proof. Recall the proof of Theorem 2.2. The 1-dimensional moduli space M̂(φ), where

φ ∈ π2(x, z), has 3 kinds of ends, “broken flow-lines”, “boundary bubbles”, “bubbling offs”.

By the same argument in the proof, there are no “bubbling off” of a sphere, nor there

are “boundary bubbles”. Hence, we only encounter broken flow-lines. Since a compact

1-dimensional manifold has zero dimensional boundary with algebraic count zero, we have

0 =
∑

(
φ1 ∈π2(x,y)
φ2 ∈π2(y,z)

|
nz(φ1) =nz(φ2) =0
nw(φ1) =nw(φ2) =0

φ1∗φ2 =φ

) c(φ1)c(φ2) · z

Summing over all possible flows from x to z, and then summing over all intersection

points z, we obtain the desired result.
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Consequently, the pair (CK(Σ,α,β, z, w), ∂K) is a chain complex. It is also true that

the induced homology is invariant under Heegaard moves. Consequently, it is independent

from the Heegaard diagram representing K.

Definition. Let ĤFK(K) denote the homology of the chain complex (CK(Σ,α,β, z, w), ∂K).

We introduce here a bigrading on the generators of CK(Σ,α,β, z, w), both relative.

Let x and y be two intersection points and let φ be a holomorphic disk in π2(x,y).

Definition. We define the relative Alexander grading by

A(x,y) = nz(φ)− nw(φ).

We also have a natural extension of the Maslov grading in ĈF .

Definition. We provide the generators of CK(Σ,α,β, z, w) with another relative grading,

called the Maslov grading, by

gr(x,y) = µ(φ)− 2nw(φ).

We observe at once that these gradings are independent of the choice of the homotopy

class, in virtue of the Propositions 2.6 and 2.8.

It should be remarked here that a generator appearing in ∂K(x) is in relative Maslov

grading −1 with respect to x. On the other hand, it is in the same Alexander grading.

From this point of view, the Alexander grading does not seem to help matters, but it will

come into play once we will start counting holomorphic disks intersecting Vz or Vw.

Another remark would be in the roles of the basepoints z and w in these gradings. It

is clear that interchanging z and w, we get the same knot with the reverse orientation. In

this case, there is no problem there since we only count holomorphic disks that are disjoint

from both Vz and Vw.

Similarly, we can mimic the construction of the homology groups CF∞, CF+ and CF−

to obtain analogues for the knots. However, we will only make room for HFK−(K), the

adaptation of HF−, since the recipe for the other groups can be easily derived from the

data already present.
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3.1.2 HFK−(K)

This subsection presents a direct way to define the homolog group HFK−(K). The idea is

easily applicable to the previous chapter.

Let (Σ,α,β, z, w) be a Heegaard diagram for the knotK. This time, let C−K(Σ,α,β, z, w),

the free Z [U ]-module generated by all the intersection points, where U is an indeterminate.

We will introduce a new differential map, and modify the relative gradings accordingly.

As before, this is to put the disks intersecting Vw into play. For doing so, we have to

keep track of the intersection numbers by the use of the indeterminate U . On the other

hand, we will force the intersection number of Vz with the holomorphic disks that we count

to be zero, for the vanishing of the square of the differential map.

We introduce the differential map ∂−:

∂− : C−K(Σ,α,β, z, w) −→ C−K(Σ,α,β, z, w)

x 7→
∑


y∈Tα∩Tβ
φ∈π2(x,y)

| µ(φ) = 1
nz(φ) = 0

ff c(φ) · U nw(φ) y .

Next, we extend the Maslov grading on the generators of C−K(Σ,α,β, z, w) with the

formula below;

gr(U i x, U j y) = gr(x,y) + 2(j − i)

Consequently, whenever a term U j y appears in ∂−x, we have j = nw(φ) for some

φ ∈ π2(x,y), and then

gr(x, U j y) = µ(φ)− 2nw(φ) + 2j = µ(φ) = 1

so all the terms appearing in the differential of x are in relative Maslov grading −1 with

respect to x.

In similarity with the extension above, the relative Alexander grading is now given by

the formula below.

A(U i x, U j y) = A(x,y) + (j − i)

Therefore, if U j y appears in ∂−(U i x), keeping in mind that there exists a holomorphic

disk flowing from x to y with the property nw(φ) = j − i, we have

A(U i x, U j y) = nz(φ)− nw(φ) + j − i = nw(φ) + j − i = 0



Chapter 3: Knot Floer and Link Floer Homologies 32

One may also affirm equivalently that the indeterminate U drops Maslov grading by 2,

while it drops Alexander grading by 1.

Definition. We defineHFK−(K) to be the homology of the chain complex
(
C−K(Σ,α,β, z, w), ∂−

)
,

which is independent of the Heegaard diagram compatible with K.

It is possible to advance one step further with these ideas in order to obtain link invari-

ants. This is the subject of the next section.

3.2 Link Floer Homology

A link in S3 is a 1-dimensional closed submanifold of the 3-sphere whose connected com-

ponents are knots. We say that L is an “l-component link” if the number of connected

components of the link L is equal to l.

Recall that two distinct basepoints in the Heegaard surface Σ yield a knot in S3. The

idea here is to allow more basepoints, partitioned into groups of 2, where each group gives

a knot in S3. Then, for instance, if z1, w1, . . . , zl, wl are 2g distinct points on Σ \ (α ∪ β),

we get an l-component link in S3 following the same method in the previous section. The

result concerning the existence of a Heegaard diagram for an arbitrary knot K is also valid

for links.

Let now (Σ,α,β, z1, w1, . . . , zl, wl) be a Heegaard diagram for an l-component link L.

For convenience, let Z and W denote the set of basepoints z1, . . . , zl and w1, . . . , wl respec-

tively. The adaptation of the concepts of the previous section is then almost straightfor-

ward. However, we will now proceed in a slightly different way, first establishing the group

HFL−(L) and then acquiring ĤFL(L). Even so, the only significant modification will be

the one concerning the Alexander grading. In fact, it will be a “filtration” (see the definition

below) instead of being a grading.

Let U1, . . . , Un be indeterminates over the ring Z. Consider the partial ordering “�” on

Zl, where (a1, . . . , al) � (b1, . . . , bl) if for all i = 1, . . . , l we have ai ≤ bi. We remark here

that (a1, . . . , al) ≺ (b1, . . . , bl) iff (a1, . . . , al) � (b1, . . . , bl) and for some i, ai 6= bi. For the

sake of simplicity, let n be a positive integer, g be a function g : {1, . . . , n} → Zl such that

(0, . . . , 0) � g(i) for all i ∈ {1, . . . , n}.
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Definition. A Zl filtration on a Z[U1, . . . , Un]-module M is a collection of Z[U1, . . . , Un]-

submodules {Fs(M)}s∈Zl satisfying the properties:

• Fs(M) ⊆ Ft(M) if s � t

• there exists s ∈ Zl such that Fs(M) = M .

• U iFs(M) ⊆ Fs−g(i)(M)

Moreover, we define “the filtration level” of x ∈ M to be s ∈ Zl such that x ∈ Fs(M) and

x /∈ Ft(M) whenever t ≺ s.

Definition. We say that a chain complex C is “filtered” if there is a filtration on C.

The additional data n is digressive for now (we will set n to be equal to l), though it

will be necessary in the next chapter. We had to introduce numerous technical details for

a relatively easy concept, but we are ready to start now.

Let C−L (Σ,α,β,Z,W) be the free Z[U1, . . . , Ul]-module generated by the intersection

points. The differential map ∂− is given by:

∂− : C−L (Σ,α,β,Z,W) −→ C−L (Σ,α,β,Z,W)

x 7→
∑


y∈Tα∩Tβ
φ∈π2(x,y)

| µ(φ) = 1
nz1 (φ) = ···=nzl (φ) = 0

ff c(φ) · U nw1 (φ)
1 · · ·U nwl (φ)

l y

In terms of the Maslov grading, we have a straightforward extension;

gr(x,y) = µ(φ)− 2
l∑

i=1

nwi(φ)

gr(U i1
1 · · ·U

il
l · x, U

j1
1 · · ·U

jl
l · y) = gr(x,y) + 2(j1 + . . .+ jl)− 2(i1 + . . .+ il)

Again, all the terms appearing in ∂−x are in relative Maslov grading −1 with respect

to x.

Finally, the Alexander grading of Knot Floer homology now becomes the Alexander

filtration on C−L (Σ,α,β,Z,W). We set g : {1, . . . , l} → Zl, where g(i) is the ith standard

basis vector in Zl.
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Definition. For s = (s1, . . . , sl) ∈ Zl, we define Fs(C−L (Σ,α,β,Z,W)) to be the submodule

generated over Z by the points Ua1
1 · · ·U

al
l ·x where (−a1, . . . ,−al) � (s1, . . . , sl). Moreover,

we set that multiplication by Ui drops the filtration level by g(i), i.e. the ith term of the

filtration level is dropped by 1. Finally, we define A : C−L (Σ,α,β,Z,W) → Zl to be the

function giving the filtration level.

It is elementary to check that the Alexander filtration defined above is a filtration. A

simplified but equivalent way to re-describe the Alexander filtration may be to assert that,

for every x,y ∈ Tα ∩ Tβ,

1. A(x)−A(y) = (nz1(φ)− nw1(φ) , . . . , nzl(φ)− nwl(φ)) where φ flows from x to y

2. A
(
Ua1

1 · · ·U
al
l · x

)
= A(x)−

∑l
i=1 ai · g(i)

We define HFL−(L) to be the homology of the chain complex
(
C−L (Σ,α,β), ∂−

)
.

Definition. The associated graded object of a filtered chain complex is defined as the chain

complex

gr(C) =
⊕
s∈Zl

grs(C),

where grs(C) is the quotient module of Fs(C) by the submodule generated by Ft(C) for all

t ≺ s. Moreover, grs(C) is endowed with the differential induced from the differential map

in C.

We may recuperate ĤFL(L) , which only counts holomorphic disks disjoint from each

of the subvarieties determined by the basepoints, merely by setting U1 = · · · = Ul = 0 in

C−L (Σ,α,β) and taking the associated graded object. It is easy to see that we have the

same generators as in the other way of construction, and the differential map is also the

same since Ui = 0 for all i implies we only count disks disjoint from all the basepoints.

It is not difficult to check that link Floer homology becomes knot Floer homology when

l = 1, i.e. when the link L is in fact a knot.

3.3 Link Floer Homology with Multiple Basepoints
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In the process of establishing Heegaard Floer homology and the knot and link invariants

of the previous sections, we needed the α curves that constitute α to span half of the first

homology group of the Heegaard surface, as well as the β curves (recall that there are as

many α (or β) curves as the genus of Σ and we required those curves to be homologically

linearly independent). But then, the same span may also be acquired with more curves,

some of them homologically redundant. Of course, if that is the case, the extra α and

β curves would lead us to an augmented number of intersection points, and consequently

to a seemingly more complicated way to compute Heegaard Floer homology. In Chapter

4, we will see that this method can have its own advantages, such as yielding an easy to

understand, nevertheless computationally expensive algorithm. Note that this formulation

require the coefficients to come from the field F2 = Z/2Z.

The result is the so-called “combinatorial link Floer homology”, studied in the next chap-

ter. From that viewpoint, introducing multiple basepoints is just an auxiliary step, mainly

for establishing the connection between combinatorial and classical link Floer homology.

3.3.1 Multiple Pointed Surface

Let k be a positive integer. Suppose we are given a genus g Heegaard surface Σ, two sets

of pairwise disjoint simple closed curves α = {α1, . . . , αg+k−1} , β = {β1, . . . , βg+k−1} such

that they both span a g dimensional subspace of the first homology group H1(Σ) which is

2g dimensional. This is in correspondence between the previous setting which included g

linearly independent curves, therefore, the g + k − 1 curves specify a genus g handlebody.

The α (resp. β) curves are pairwise disjoint, therefore Σ \ {α} (resp. Σ \ {β}) have

k connected components. Let {Ai}ki=1 (resp. {Bi}ki=1) denote these components. Now,

let z1, . . . , zk, w1, . . . , wk be 2k basepoints on the surface disjoint from α and β, such that

each connected component contains 2 basepoints, one from the zi’s and the other from the

wj ’s. Without loss of generality, after a relabeling, we can assume that for all i = 1, . . . , k,

zi, wi ∈ Ai and zσ(i), wi ∈ Bi for some permutation σ on k letters. This data determines

a link by a similar manner; connect zi to wi by a path in Ai, wi to z by a path in Bi for

all i. Pushing the paths in Ai’s into the handlebody U0, and the ones in Bi’s into U1, we

get an l-component oriented link L, where l is an integer satisfying l ≤ k. We say that the

diagram (Σ,α,β, z1, . . . , zk, w1, . . . , wk) is a 2k-pointed Heegaard diagram compatible with
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the link L.

In contrast with the previous sections, we will now work in the g+ k− 1 fold symmetric

product of Σ. Then, the necessary definitions such as Tα, Tβ, intersection points, π2(x,y), c(φ)

are all adapted in a straightforward way. In particular, Tα is now α1 × . . .× αg+k−1.

3.3.2 Chain Complex

Consider again the intersection points between the tori Tα and Tβ. Let CFL−m(Σ,α,β)

be the free module generated by these intersection points over the polynomial algebra

F2[U1, . . . , Uk], where the subscript m stands for “multiple basepoints”.

We give the generators the generalized versions of Maslov grading and Alexander filtra-

tion. The Maslov grading is generalized in a trivial way.

gr(x,y) = µ(φ)− 2
k∑
i=1

nwi(φ)

gr(U m1
1 · · ·U mk

k · x, U j1
1 · · ·U

jk
k · y) = gr(x,y) + 2(j1 + . . .+ jk)− 2(m1 + . . .+mk)

Remember that Alexander filtration contains data about the link components. In Section

3.2, there was a one-to-one correspondence between wi’s and the link components. In this

case, more than 1 basepoint may belong to the same link component. In order to deal with

that problem, we relabel the basepoints in the following way. Let ki denote the number

of basepoints on the ith link component, for i = 1, . . . , k. Then, let S be the index set

consisting of the pairs (i, j) such that i ∈ {1, . . . , k} and j ∈ {1, . . . , ki} for fixed i. Then,

Alexander filtration is defined by the following two equalities.

A(x)−A(y) =

 k1∑
j=1

(
nz1,j (φ)− nw1,j (φ)

)
, . . . ,

kl∑
j=1

(
nzl,j (φ)− nwl,j (φ)

)
A
(
U
m1,1

1,1 · · ·Um1,k1
1,k1

· · ·Uml,1l,1 · · ·Uml,kll,kl
· x
)

= A(x)− (
k1∑
j=1

m1,j , . . . ,

kl∑
j=1

ml,j)

The second equality may be rephrased as, multiplication by Ui,j drops the filtration level

by g(i), the ith basis vector.

With this setting, there are various ways of defining knot and link invariants, simply

by changing which disks to count [14]. First, let’s consider the analogue of CFL−, whose

differential map is formed by counting disks disjoint from the subvarieties determined by
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the basepoints zj for all j. Let d(φ) denote c(φ) modulo 2, and let ∂− : CFL−m(Σ,α,β) −→

CFL−m(Σ,α,β) be defined as

∂−(x) =
∑


y∈Tα∩Tβ
φ∈π2(x,y)

|
µ(φ) = 1

nzi,j (φ) =0 ∀(i,j)∈S

ff d(φ) ·

 ∏
(i,j)∈S

U
nwi,j (φ)

i,j

 · y .

It is clear that this map again drops the Maslov grading by 1 and preserves the Alexander

filtration. Moreover, from [17], it results that this construction is a link invariant. Conse-

quently, let HFL−m(L) denote the homology of the chain complex (CFL−m(Σ,α,β), ∂−).

Another invariant is obtained by counting all disks with Maslov index equal to 1. Let

CFL′m(Σ,α,β) denote again the free module generated by these intersection points over

the polynomial algebra F2[U1, . . . , Uk]. Define the differential map by

∂′(x) =
∑


y∈Tα∩Tβ
φ∈π2(x,y)

| µ(φ) = 1

ff d(φ) ·

 ∏
(i,j)∈S

U
nwi,j (φ)

i,j

 · y ,

and let HFL′m(L) denote the homology of the complex (CFL′m(Σ,α,β), ∂′). This version

is going to re-appear in Chapter 4, when we review the combinatorial approach.

It is sometimes more useful to make use of the simpler complex
(
ĈFLm(Σ,α,β), ∂

)
,

where ĈFLm(Σ,α,β) is the free F2 module generated by the intersection points and ∂ is

the endomorphism of ĈFLm(Σ,α,β) given by

∂(x) =
∑


y∈Tα∩Tβ
φ∈π2(x,y)

|
µ(φ) = 1

nwi,j (φ)=nzi,j (φ) =0 ∀(i,j)∈S

ff d(φ) · y .

Let ĤFLm(L) denote the homology of the complex
(
ĈFLm(Σ,α,β), ∂

)
[17].

Theorem 3.1 conveys the relation between classical link Floer homology and link Floer

homology with multiple basepoints. We are unable to provide proof for this theorem due

to its depth of technical details. Later, we will establish the connection between link Floer

homology with multiple basepoints and the combinatorial link floer homology (see Theorem

4.1), and consequently we will have a bridge connecting classical and combinatorial link

Floer homology.

Theorem 3.1. [8][1] Let (Σ,α,β, z1, . . . , wk) be a 2k-pointed Heegaard diagram for the l-

component link L, with ki pairs of basepoints for the ith link component for all i = 1, . . . , l.
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Then, there are multi-graded identifications

ĤFLm(L) ∼= ĤFL(L)⊗
l⊗

i=1

V
⊗(ki−1)
i ,

where Vi is the 2 dimensional vector space spanned by one generator in Maslov grading

and Alexander filtration zero, and another in Maslov grading -1 and Alexander filtration

corresponding to −g(i).
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Chapter 4

COMBINATORIAL APPROACH TO HEEGAARD FLOER KNOT

AND LINK HOMOLOGIES

In this final chapter, we will present another way to construct knot and link Floer

homologies, which is more pleasing to the eye. Essentially, the following could have been

constructed independently from everything we have established up to this point, but then

it would mean to overlook the bridge that led to the goal, which would then be somewhat

mystical.

We will establish the results mostly for a general link, but the reader should know that

when the link in hand is composed of a unique component (itself - a knot), everything boils

down to knot Floer homology.

Recall Example 2.1. It presented the simplest genus 1 Heegaard decomposition of S3.

This will be our basic data throughout this chapter. More precisely, the underlying Heegaard

surface of our decomposition will always be the torus.

4.1 Grid Diagrams

We will consider several α curves on the torus. Recall that these curves are not allowed

to intersect each other. Hence, if all the curves are homologically nontrivial, there is only

one possibility of placing them up to isotopy and renaming. Note that it is unnecessary to

consider the case where there is a null-homologous curve. The case for the β curves is exactly

similar. Consequently, visualizing the torus as a square with opposite sides identified, after

some isotopy, the α and β curves will constitute a so-called “grid diagram”, in which the α

curves are all horizontal and β curves are vertical.

Given a link L, we shall try to associate a “sufficiently nice” grid diagram, whose meaning

will be clear soon. Let us specify a couple more notation valid for throughout this chapter;

along the usual notations used up to this point, “l” will stand for the number of components

for the link L, n will denote the number of α curves in the grid diagram. Note that from
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now on, we will only be interested in grid diagrams with an equal number of horizontal and

vertical curves, and this number will be called “the grid number” of the grid diagram. So,

a grid diagram with grid number n has n× n cells.

Let there be a a grid diagram of grid number n, together with a collection of black and

white dots on it, with the following properties;

• each dot lies in some cell

• there is at most one dot in any cell

• each horizontal strip contains exactly one black and one white dot

• each vertical strip contains exactly one black and one white dot

Such a grid diagram is called a “toroidal grid diagram”, referring to the fact that the

horizontal (resp. vertical) edges of the grid are identified. However, for the sake of simplicity,

we will use “a grid diagram” to refer to a toroidal grid diagram.

A grid diagram supports a link, obtained by connecting black and white dots lying

in the same vertical (resp. horizontal) strip with a vertical (resp. horizontal) segment,

and whenever two of those segments intersect, letting the vertical segment to overpass the

horizontal one. The orientation is specified by orienting the vertical segments from the black

dots to the white dots, and the horizontal segments from the white dots to the black dots.

The conditions above guarantee that the segments add up to form a link. Figure 4.1 shows

a grid representation of two trefoils linked together.

The starting point of the combinatorial approach is that we can find a grid diagram

representing L with the above properties [8]. This is the point where the presence of a

null-homologous curve on the Heegaard surface becomes uninteresting.

Let now L be an l-component link. By [2], any two grid diagrams representing the same

link can be connected by a sequence of the following three moves.

• Cyclic permutation; permuting the rows and the columns of the grid diagram. This

basically corresponds to changing the way the torus is cut to form a square. See figures

4.9 and 4.11.



Chapter 4: Combinatorial Approach to Heegaard Floer Knot and Link Homologies 41

Figure 4.1: A grid diagram for a 2-component link with each component being a trefoil.

Figure 4.2: A stabilization move.

• Commutation; we can think of the black and white dot in a column as specifying a

division of the vertical strip into two parts. Then, if both the black and the white dot

in one of the adjacent column belong to the same part, we can interchange the two

columns’ decorations. Note that there is a similar move for rows.

• Stabilization; this is nothing but adding two consecutive breaks to a link component.

This move adds one to the grid number of the diagram, i.e. inserts a new row and a

column. See Figure 4.2

The algorithm we are about to review is independent from these moves, as proved in [7]

using only combinatorial techniques. Independence from cyclic permutation will be easy to

see once we prove propositions 4.1 and 4.2.

It turns out that it is possible to construct link Floer homology groups using only that
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Figure 4.3: Constructing the link from the dots on the grid diagram.

grid diagram.

We remark that the dots in this setting correspond in some sense to basepoints in Chapter

3, because the black dots determine the point in the Heegaard surface (up to diffeomorphism

of a square) where the link passes from U0 to U1. See Figure 4.3 for an illustration on the

unknot.

4.2 The Chain Complex

From this point, we will work with grid diagrams, and construct a homology with F2 = Z/2Z

coefficients. We will later see that it will be equivalent to the link Floer homology of the

previous chapter with coefficients reduced.

In link Floer homology, the generators were the intersection points in the symmetric

product. Let us find out the analogue of an intersection point in the symmetric product

in order to have a more clear idea about what the generators will be in the combinatorial

case. Let (x1, . . . , xg) be an intersection point in Symg(Σ). After some re-indexing of xi’s

(which does not change the point itself by definition of the symmetric product) , we can

assume that xi belongs to αi for all i ∈ {1, . . . , g}. Then, there is a permutation σ in the

symmetric group with g letters, such that xi ∈ βσ(i) for all i ∈ {1, . . . , g}. This is still true

for the present case. Furthermore, in a grid diagram, any given α curve intersects any β

curve at a single point. Therefore, the permutation σ uniquely determines the intersection

point in a grid diagram. Hence, the generators of the chain complex will be in one-to-one

correspondence with the permutations in g letters. See Figure 4.4. Given a grid diagram



Chapter 4: Combinatorial Approach to Heegaard Floer Knot and Link Homologies 43

Figure 4.4: The generator corresponding to the permutation
(123456789

469815237

)
.

Γ with grid number n, let P denote the set of intersection points, and consider the free

F2[U1, . . . , Un] module generated by P , where U1, . . . , Un are n indeterminates. Each Ui is

assigned to one of the n white dots via a one-to-one correspondence. We may denote the

white dot assigned to Ui by wi. We denote this module by C−(Γ). First, we endow C−(Γ)

with a grading and a filtration, then we introduce the differential.

4.2.1 Grading and Filtration

The grading and the filtration described in this subsection will be the adaptations of the

Maslov grading and the Alexander filtration of the previous chapter. However, the defini-

tions will not be as straightforward as one might expect. We have to introduce an auxiliary

function.

Note that throughout this subsection, we presume that among the identified top and

bottom horizontal edges, only the bottom one is included in the diagram. Similarly, we

omit the right vertical edge from the diagram in order to leave the left vertical edge as the

only representative.

Given two finite collections of points A,B in the grid diagram, we define I(A,B) to be
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the number of pairs (a1, a2) ∈ A, (b1, b2) ∈ B such that a1 < b1 and a2 < b2. Then, define

J (A,B) := (I(A,B) + I(B,A)) /2, and extend it bilinearly over formal sums of subsets.

Let now Γ be a grid diagram supporting an l-component link L. Let Z, W denote the

set of black and white dots in the grid diagram respectively. For a generator x, we define

the (absolute) Maslov grading as follows.

gr(x) = J (x−W,x−W) + 1

= J (x,x)− 2J (W,x) + J (W,W) + 1

Moreover, we define the filtration level A(x) = (A1(x), . . . , Al(x)) of the generator x in the

following way.

Ai(x) = J (x− 1
2

(Z +W) ,Zi −Wi) +
n− 1

2

where Zi,Wi are the subsets of Z,W corresponding to the ith component of L [7]. It is

seen that the filtration levels can also take half-integer values.

We also adopt the convention that multiplication by Ui drops the Maslov grading by

2, and the Alexander filtration level by the jth basis vector if wi belongs to the jth link

component. That is, the element Umi · x has grading and filtration level

gr(Umi · x ) = gr(x)− 2 ·mi

A(Umi · x ) = A(x)−m · g(j).

We may then decompose C−(Γ);

C−(Γ) =
⊕

d∈Z,h∈Zl
C−d (Γ, h),

where C−d (Γ, h) is generated by expressions Um1
1 · · ·Umnn · x , where

gr(Um1
1 · · ·Umnn · x) = d

A(Um1
1 · · ·Umnn · x ) = h.

A priori, it may seem that the grading and filtration levels depend on the choice of how

the torus is cut to form a square. The propositions below show that this is not the case.

Proposition 4.1. The Maslov grading is invariant under cyclic permutation.
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Proof. We can place the grid diagram in R2 with the following conventions. The bottom

left corner is at the origin, and the side of each square has length 1, so that the top right

corner has coordinates (n, n). The black and white dots on the diagram have half-integer

coordinates.

Let Γ be a grid diagram, and Γ′ be the one obtained by replacing the bottom strip on

top of the top strip. Let x be the representation of a generator in Γ, and let x′ be the same

generator represented in Γ′. Similarly, let W and W ′ be the collection of white dots in Γ

and Γ′ respectively. We will show that gr(x) = gr(x′).

Now, there is a point x′m with coordinates (m,n) in x′. The corresponding point xm

is at (m, 0) in x. Other than that, the components of both representations are the same.

Let xi denote those components for i ∈ {0, . . . , m̂, . . . n}, where the hat denotes as usually

an element omitted from the list, and the indices representing the horizontal projections.

Similarly, W contains a point with coordinates (l − 1
2 ,

1
2). When forming W ′, the only

modification is changing this point with (l − 1
2 , n+ 1

2).

For m < i < n, the pair (xm, xi) contributes 1 to J (x,x), whereas the corresponding

pair (x′m, xi) fails to do so for J (x′,x′). On the other hand, for 0 ≤ i < m, the pair (xi, xm)

does not contribute to J (x,x), but (x′m, xi) does add 1 to J (x′,x′). Therefore,

J (x,x) = J (x′,x′) + n− 2m− 1

Similarly, we find

2J (x,W) = 2J (x′,W) + n− 2m

2J (x′,W ′) = 2J (x′,W) + 2l − n

J (W,W) = J (W ′,W ′)− 2l + n+ 1

Hence, we have obtained;

gr(x)− 1 = J (x,x)− 2J (x,W) + J (W,W)

= J (x′,x′)− 2m+ n− 1− 2J (x′,W ′) + 2m+ 2l − 2n

+J (W ′,W ′)− 2l + n+ 1

= J (x′,x′)− 2J (x′,W ′) + J (W ′,W ′)

= gr(x′)− 1
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Therefore, using the above argument repeatedly, we conclude that the grading is invariant

under vertical rotation. The independence under horizontal rotation can be proved with a

similar calculation.

Proposition 4.2. The Alexander filtration is invariant under cyclic permutation.

Proof. Place the grid diagram Γ as in the proof of Proposition 4.1. Then, the intersection

points of α and β curves correspond to points with integer coordinates. For such a point p,

the numbers I(Zi −Wi, p ) and I( p ,Zi −Wi) both give the winding number of the ith

component around p.

Suppose p is an intersection point with first coordinate being in between the first coor-

dinates of the black and white dots in the bottom horizontal strip. Then, when the bottom

strip is replaced by a new one added on top of the diagram, the winding number will be

changed by ±1 according to the orientation of the link component. The only complication

in verifying this may be for the case where the intersection point is on the very bottom of

the diagram, but keep in mind that when the new strip is added, that very point is also

carried onto the bottom of the new strip. Since the old winding number was zero, and the

new one is ±1, the same change takes place. On the other hand, if the point is outside

the horizontal strip determined by the black and white dots, the winding number does not

change. Furthermore, it is clear that for any other link component, the winding numbers

stay the same.

Whereas for a point q with half-integer coordinates, it may be possible for a black or

white dot to lie on q, so the number I(Zi −Wi, q ) is not necessarily the winding number

around q. Anyhow, it is easy to see that it is always equal to the winding number of the ith

link component around the point (q − 1
2 , q −

1
2). Similarly, I( q ,Zi −Wi) is nothing but

the winding number around the point (q + 1
2 , q + 1

2).

We recall here for convenience that Ai(x)− n−1
2 = J (x− 1

2(Z+W),Zi−W−i). Suppose

that there are m vertical segments between the black and white dots to be replaced. Then,

there are m components of x for which the winding number will be changed by ±1. The

orientation of the link is constant, so the sign of the change is the same for every such point.

So, the total change is ±m. On the other hand, for each such vertical segment, Z and W

contributes a count of 2 intersection points. So, for a fixed segment, they contribute a
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change of −1
2 (±2). Counting the m segments, we find that the total contribution is ∓m.

They cancel out, and we get the desired invariance result. A similar reasoning takes care of

horizontal rotation.

4.2.2 Differential Map

Now we are ready to proceed into providing the chain complex C−(Γ) a differential map.

In order to do that, we will use analogues of the holomorphic representatives of Whitney

disks connecting two intersection points.

Rectangles

Let r be a rectangle in Γ whose edges are 4 of the intersection points of α and β curves.

We remark that r can be split into 2 or 4 sub-rectangles if it is cut up while forming the

grid diagram out of the torus Σ. Let x, y be two generators. We say that r connects x to y

if all but two of the components of x and y are the same, the remaining 4 components

are the vertices of r, r is traversed by the orientation induced from that of Γ (that is, the

boundary of r restricted to α connects y to x), and the horizontal components of r connects

the component of x to the component of y.

Definition. The set of all rectangles connecting x to y is denoted by Rect(x,y). A rect-

angle r is said to be empty if Int(r)∩x = ∅. The set of empty rectangles connecting x to y

is denoted by Rect◦(x,y).

Observe that if x and y agree along all but two horizontal segments, then Rect(x,y)

has two rectangles. Otherwise it is empty. See Figures 4.5 and 4.6.

Differential

Given a pair of generators x,y ∈ C−(Γ) and a rectangle r ∈ Rect◦(x,y), we define wi(r) to

be the number of times wi appears in Int(r). We endow the module C−(Γ) with the map

∂− : C−(Γ) −→ C−(Γ) defined as follows.

∂−(x) =
∑
{y∈P}

∑
{r∈Rect◦(x,y)}

U
w1(r)
1 · · ·Uwn(r)

n · x.
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Figure 4.5: The small dark circles are the generator x and the hollow ones are y. The two

rectangles in Rect(x,y) are presented with a dark shading. The rectangle on the left is

empty, whereas the one on the right is not.

Figure 4.6: The two rectangles in Rect(y,x). Neither of them is empty.
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We will verify that the square of this map vanishes. Before that, we will see the relation

of ∂− with the Maslov grading and the Alexander filtration.

Proposition 4.3. Let x ∈ C−(Γ) be a generator. Then, ∂−(x) is either zero or a sum of

elements with Maslov grading gr(x)− 1.

Proof. Let y be a generator such that Rect◦(x,y) is nonempty, and let r ∈ Rect◦(x,y).

Then, form the grid diagram in such a way that the lower left corner of r coincides with

the lower left corner of the diagram. By Proposition 4.1, the gradings are independent of

this choice. Recall that gr(x) = J (x,x)− 2J (W,x) + J (W,W) + 1.

In this setting, it is obvious that J (x,x) = J (y,y) + 1, the difference arising from the

different pair of components. Moreover, I(W,x) = I(W,y) + # {r ∩W}, since the only

difference is that for wi ∈ r, the pair (wi, xk) adds one to I(W,x) where xk is the upper

right corner of r. Similarly, the lower left corner comes into play for I(x,W) and we have

I(x,W) = I(y,W) + # {r ∩W}.

Plugging these results in the definition of the grading, we get,

gr(x) = gr(y) + 1− 2
n∑
i=1

wi(r).

Finally,

gr(x, Uw1(r)
1 · · ·Uwn(r)

n · y) = gr(x,y) + gr(y, Uw1(r)
1 · · ·Uwn(r)

n · y)

= gr(x,y) + 2
n∑
i=1

wi(r)

= 1

Proposition 4.4. Let x ∈ C−(Γ) be a generator. Then, ∂−(x) is either zero or a sum

of elements with filtration levels ≤ A(x). In other words, the map ∂− respects Alexander

filtration.

Proof. Let again y be a generator such thatRect◦(x,y) is nonempty, and let r ∈ Rect◦(x,y).

Assume the Ui belongs to the f(i)th link component for some f : {1, . . . , n} −→ {1, . . . , l}.

By a similar analysis as in the proof of Proposition 4.3, it is not difficult to see that

A(x)−A(y) =
n∑
i=1

(zi(r)− wi(r)) · g(f(i)) .
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Here, zi is a black dot which belongs to the same link component as wi, and zi is different

from zj if i 6= j. Compare the corresponding Alexander filtration formula in Subsection

3.3.2.

Therefore,

A(x)−A(Uw1(r)
1 · · ·Uwn(r)

n · y) = A(x)−A(y) +A(y)−A(Uw1(r)
1 · · ·Uwn(r)

n · y)

=
n∑
i=1

zi(r) · g(f(i)) ≥ (0, . . . , 0)

Let’s introduce a final useful definition concerning a generalization of rectangles, in order

to ease our way in proving Proposition 4.5.

Definition. Given x,y ∈ C−(Γ), a path from x to y is a closed oriented path γ composed

of arcs on α and β curves, with orientation dictated by the grid diagram Γ, and with corner

points coinciding with components of x and y. A domain p from x to y is a two chain in Γ,

such that ∂p is a path γ from x to y. Let π(x,y) denote the space of domains from x to y.

Observe that for p1 ∈ π(x,y), p2 ∈ π(y,w), the concatenation p1∗p2 belongs to π(x,w).

Furthermore, wi(p1 ∗ p2) = wi(p1) + wi(p2).

Now we are ready to proceed in the proof of ∂− ◦ ∂− = 0.

Proposition 4.5. The map ∂− : C−(Γ) −→ C−(Γ) satisfies ∂− ◦ ∂− = 0.

Proof. It suffices to check the vanishing of ∂−2 on the generators. Let x ∈ C−(Γ) be a

generator. Observe that

∂− ◦ ∂−(x) =
∑
{w∈P}

∑
{p∈π(x,w)}

N(p) · Uw1(r)
1 · · ·Uwn(r)

n ·w ,

where N(p) counts modulo 2 the number of ways in which p can be decomposed into

two rectangles p = r1 ∗ r2 where r1 ∈ Rect◦(x,y), r2 ∈ Rect◦(y,w) for some generator

y ∈ C−(Γ).

Let now w 6= x be a generator and p ∈ π(x,w) such that p can be decomposed into two

empty rectangles. Then, we claim that there are exactly two ways of decomposing p into
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Figure 4.7: The 3 possible types of domains that can be decomposed as two empty rectan-

gles, in the case where x 6= w.

two rectangles. Indeed, there are three possibilities for p, depicted in Figure 4.7. In the

first two cases, the two orders in which rectangles are concatenated give 2 possible ways to

recover p from the two rectangles. It is easy to see that there is no other way. It is also true

for the third case, see Figure 4.8. Since we count modulo 2, the sum corresponding to these

domains is therefore zero. We need finally to check for the domains connecting x to x that

can be decomposed into two empty rectangles. Or, such a domain has to be an annulus.

And if this annulus has height or width greater than 1, any decomposition will have at least

one nonempty rectangle. Therefore, we consider height 1 horizontal and width 1 vertical

annuli. On the other hand, any such annuli p has a unique decomposition p = r1 ∗ r2, where

r1 ∈ π(x,y), r2 ∈ π(y,w)for fixed y.

There are 2n such annuli, n vertical and n horizontal. Any given vertical annulus

contributes Ui · x to the differential for some i. But the vertical annulus corresponding to

that Ui also contributes Ui · x, so in total, they cancel out to give zero.

Therefore, the pair (C−(Γ), ∂−) is a chain complex.

Definition. The homology of the chain complex (C−(Γ), ∂−) is denoted by H−(Γ).

We remark here that although there are l link components, the free module C−(Γ) is

generated over a polynomial algebra with n indeterminates, where n > l. But we have a
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Figure 4.8: The 2 possible decompositions of the third domain type into two empty rectan-

gles. The gray dots in the figures stand for two (different) auxiliary generators.

result proved in the next proposition linking the indeterminates corresponding to the same

link component.

Proposition 4.6. Suppose that wi and wj belong to the same link component. Then,

multiplication by Ui is filtered chain homotopic to multiplication by Uj.

Proof. The composition of filtered chain homotopies is itself a filtered chain homotopy,

therefore it is enough to check for wi and wj such that there exists zk in the same row as

wi and same column as wj . Then, define

H : C−(Γ) −→ C−(Γ)

x 7→
∑
{y∈P}

∑
n
r∈Rect◦(x,y)

zk∈r
oUw1(r)

1 · · ·Uwn(r)
n · y .

The map H counts only the rectangles containing zk. Using similar decompositions as in the

proof of Proposition 4.5, we find that ∂−◦H+H ◦∂− = Ui−Uj . Namely, all the domains on

the left hand side have 2 decompositions, except the horizontal and vertical annuli, which

contribute Ui and Uk since they are on the same row and column (respectively) as zk.
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Corollary. Suppose the link L in the diagram has l components, and relabelW = {wj}nj=1 so

that wi belongs to the ith link component for i = 1, . . . , l. Then, the filtered chain homotopy

type of C−(Γ) viewed as a free module over F2[U1, . . . , Ul] is independent of the ordering of

W.

There is also a simpler invariant (introduced in [8]), which corresponds to ĤFL in the

classical approach. First, we set Ui = 0 for all i, and then we take the graded object

associated to the Alexander filtration. Recall that

gr(C−(Γ)) =
⊕
s∈Z[ 1

2
]

grs(C−(Γ)) ,

where grs(C−(Γ)) is the submodule generated by the generators at filtration level s. Then,

gr(C−(Γ)) corresponds to the free F2-module generated by the intersection points, endowed

with the differential

∂̃x =
∑
y∈P

∑


r∈Rect◦(x,y)
Wi(r)=Zi(r)=0 ∀i∈{1,...,n}

ffy.

Observe that here we do not count the empty rectangles intersecting with Z∪W. It is clear

that setting Ui = 0 guarantees that the rectangles intersecting with W do not contribute to

the differential. Moreover, those intersecting with Z are eliminated while taking the graded

object; recall that in the proof of Proposition 4.4, we have proved that if there exists a

rectangle r connecting x to y, we have A(x) − A(y) = (Z1(r), . . . ,Zn(r)). Hence, if r has

a black dot in it, the contribution of y to the differential of x is killed when we pass to

the graded object associated to Alexander filtration. To put it another way, not only the

differential ∂̃ respects the Alexander filtration, but it also respects the filtration level.

The homology of this complex is denoted by H̃(Γ). Observe, if we denote by grs,t(C−(Γ))

the sub-subcomplex generated by the generators at filtration level s and at grading t, we

have

H̃(Γ) =
⊕
s∈Z[ 1

2
]

⊕
t∈Z

H̃s,t(Γ) ,

where the homology groups H̃s,t(Γ) are

H̃s,t(Γ) =
ker
(
∂̃s,t : grs,t(C−(Γ)) −→ grs,t−1(C−(Γ))

)
Im
(
∂̃s,t+1 : grs,t+1(C−(Γ)) −→ grs,t(C−(Γ))

) .
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4.3 Relation Between Combinatorial Link Floer Homology and Link Floer Ho-

mology with Multiple Basepoints

Recall that the grid diagram is a special case of a multiple-pointed Heegaard diagram (see

the beginning of Section 3.3), so we can associate both homologies to such a diagram. The

main result about these homologies is Theorem 4.1, but it uses the fact that the Alexander

filtrations and Maslov gradings of both invariants are the same. For the proof of these

identifications, see [8], Lemmas 3.1 and 3.2. We will take those granted in the next theorem,

which states that combinatorial link Floer homology and link Floer homology with multiple

basepoints are basically the same.

Theorem 4.1. [8] Let Γ be a grid diagram with grid number n and (Σ,α,β, z1, . . . , wn)

be the associated 2n-pointed Heegaard diagram, for the l-component link L, with ki pairs of

basepoints for the ith link component for all i = 1, . . . , l. Then, we have

H̃(Γ) ∼= ĤFLm(L)

Consequently, using Theorem 3.1, we obtain the identification

H̃(Γ) ∼= ĤFL(L)⊗
l⊗

i=1

V
⊗(ki−1)
i ,

where Vi is the 2 dimensional vector space spanned by one generator in Maslov grading

and Alexander filtration zero, and another in Maslov grading -1 and Alexander filtration

corresponding to −g(i).

Proof. We assume that both homologies possess the same grading and filtration, so there

should be no confusion when we write A(x) or gr(x) for any generator x in the grid diagram.

Hence, it only remains to see that the differential maps are the same. Let then x be any

generator. Explicitly, we want to prove∑


y∈P
φ∈π2(x,y)

|
µ(φ) = 1

nwi,j (φ)=nzi,j (φ) =0 ∀(i,j)∈S

ff d(φ) · y =
∑
y∈P

∑


r∈Rect◦(x,y)
wi(r)=zi(r)=0 ∀i∈{1,...,n}

ffy.

In [8], the Maslov grading is defined using the relation

gr(x)− gr(y) = Px(D)− Py(D)−
n∑
i=1

wi(D),
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where D is any domain connecting x to y, Px(D) =
∑

x∈x px(D), and px(D) is defined as

the number of the squares contained in D among the 4 squares surrounding x. We will use

this relation without proving.

By Proposition 2.7, a Whitney disk φ ∈ π2(x,y) is uniquely determined by its domain,

and such domains on the grid diagram are of the form

D(φ) =
∑

1≤i,j≤n
ai,jDi,j ,

where Di,j is the square lying in the ith vertical and jth horizontal strip, and ai,j is equal

to the algebraic intersection number np(φ) for some p ∈ Di,j . This is because the boundary

of φ is mapped on the α and β curves.

Assume now ∂(D(φ)) ∩ αi = 0 for all but one i ∈ {1, . . . , n}. Then, it must be zero on

all the α circles by the equality

∂D(φ) =
∑

1≤i,j≤n
ai,j∂Di,j .

Hence, D(φ) is some formal sum of the vertical annuli. But then, x = y, and the Maslov

index µ(φ) is even in view of Proposition 2.8.

A similiar reasoning works for the β curves. Therefore, we can assume that ∂D(φ) is

non-zero on αj1 , αj2 , βi1 and βi2 . But then, there are permutations σ and τ such that

1/2 ≤ p(i1,σ(i1))(D(φ)) + p(i2,σ(i2))(D(φ)) ≤ Px(D(φ))

1/2 ≤ p(i1,τ(i1))(D(φ)) + p(i2,τ(i2))(D(φ)) ≤ Py(D(φ))

but φ cannot intersect the subvarieties determined by the basepoints if it is counted in the

differential, therefore 1 = µ(φ) = Px(D(φ)) +Py(D(φ)) [8], so the inequalities above are all

equal. Therefore, D(φ) is zero everywhere but on αj1 , αj2 , βi1 and βi2 . Hence, D(φ) is one of

the two rectangles with vertices (i1, j1), (i1, j2), (i2, j1), (i2, j2). It is seen at once that D(φ)

is an empty rectangle, and no basepoints lie in its interior. We have proved that a disk with

non-negative multiplicities and Maslov index equal to 1 must admit a domain in the form

of an empty rectangle. Therefore, all the generators counted in the differential of link Floer

homology with multiple basepoints are also counted in the differential of combinatorial link

Floer homology. Conversely, suppose we are given an empty rectangle r connecting x to
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Figure 4.9: A grid diagram for the trefoil.

y, containing no basepoints. In that case, it is proved in [8] that the number of pseudo-

holomorphic representatives is odd, therefore d(r) = 1. Consequently, the two differentials

are the same. The result follows from Theorem 3.1.

Finally, we will work an example for the trefoil and the figure eight knot. However, the

calculations for the homology H−(Γ) where Γ is a diagram for the trefoil are too extensive

to carry out in the thesis, so we will calculate H̃(Γ) which is easier to compute since it

involves a fewer number of differentials.

4.4 Computation of H̃

4.4.1 Trefoil

In this section, we are going to compute H̃(Γ1) explicitly, where Γ1 is the grid diagram for

the trefoil depicted in Figure 4.9. The results without the calculations can also be found in

[8]. Γ has grid number 5, therefore has 5! = 120 generators. For the sake of simplicity, we

will denote the generator consisting of the intersection of ith horizontal segment with σ(i)th

vertical segment as (σ(1)σ(2)σ(3)σ(4)σ(5)).

Recall that when computing H̃(Γ), we are only interested in empty rectangles that are
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also disjoint from W and Z. Let’s now list these rectangles by looking at which generators

they connect. For instance, there is one such rectangle connecting the generator (12345) to

(21345). First of all, it is seen at once that the only possible width, height values for these

rectangles are, 1-by-1, 2-by-1 and 1-by-2.

Let’s first classify 1-by-1 rectangles;

(12 ∗ ∗∗)→ (21 ∗ ∗∗) (34 ∗ ∗∗)→ (43 ∗ ∗∗) (45 ∗ ∗∗)→ (54 ∗ ∗∗)

(∗23 ∗ ∗)→ (∗32 ∗ ∗) (∗45 ∗ ∗)→ (∗54 ∗ ∗) (∗51 ∗ ∗)→ (∗15 ∗ ∗)

(∗ ∗ 12∗)→ (∗ ∗ 21∗) (∗ ∗ 34∗)→ (∗ ∗ 43∗) (∗ ∗ 51∗)→ (∗ ∗ 15∗)

(∗ ∗ ∗12)→ (∗ ∗ ∗21) (∗ ∗ ∗23)→ (∗ ∗ ∗32) (∗ ∗ ∗45)→ (∗ ∗ ∗54)

(3 ∗ ∗ ∗ 2)→ (2 ∗ ∗ ∗ 3) (4 ∗ ∗ ∗ 3)→ (3 ∗ ∗ ∗ 4) (1 ∗ ∗ ∗ 5)→ (5 ∗ ∗ ∗ 1)

For every type of arrows above, there are 3! = 6 differentials. In total, there are 15 · 6 = 90

arrows.

The 2-by-1 rectangles are of the form;

(35 ∗ ∗∗)→ (53 ∗ ∗∗)

(∗41 ∗ ∗)→ (∗14 ∗ ∗)

(∗ ∗ 52∗)→ (∗ ∗ 25∗)

(∗ ∗ ∗13)→ (∗ ∗ ∗31)

(4 ∗ ∗ ∗ 2)→ (2 ∗ ∗ ∗ 4)

So, there are 30 such rectangles. Finally, there also are 30 1-by-2 rectangles and they are;

(∗ ∗ 1 ∗ 2)→ (∗ ∗ 2 ∗ 1)

(3 ∗ ∗2∗)→ (2 ∗ ∗3∗)

(∗4 ∗ ∗3)→ (∗3 ∗ ∗4)

(4 ∗ 5 ∗ ∗)→ (5 ∗ 4 ∗ ∗)

(∗5 ∗ 1∗)→ (∗1 ∗ 5∗) .
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Figure 4.10: Chain complex for the grid diagram Γ1 in Figure 4.9 representing the trefoil.

Using MATLAB, we compute the Maslov gradings and Alexander filtration levels for the

generators, connect them with rectangles and plot the chain complex in Figure 4.10. The

hollow circles correspond to generators, and the segments connecting two generators indicate

that the generator below appears in the image of the generator above under the differential

map. The homology ranks can be found in Table 4.1 below.

Note that our computations agree with the results presented in [8]. Moreover, let Γ2 be

the grid diagram for the trefoil presented in Figure 4.11. The computations result in the

exact same homology rank table, consistent with the independence of the homology under

cyclic permutation. The chain complex of Γ2 is plotted in Figure 4.12.

4.4.2 Figure Eight Knot

A grid diagram for the figure eight knot is given in Figure 4.13. We may denote this grid

diagram by Γ3. This is the diagram presented in [7]. Similar to the trefoil case, we find
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Rank of H̃s,t(Γ1) t = −4 t = −3 t = −2 t = −1 t = 0 t = 1 t = 2

s = −5 1 0 0 0 0 0 0

s = −4 0 5 0 0 0 0 0

s = −3 0 0 11 0 0 0 0

s = −2 0 0 0 14 0 0 0

s = −1 0 0 0 0 11 0 0

s = 0 0 0 0 0 0 5 0

s = 1 0 0 0 0 0 0 1

Table 4.1: Homology ranks for the trefoil. Γ1 is presented in Figure 4.9. s stands for the

Alexander filtration level, and t for the Maslov grading. Note that the ranks are zero at the

half-integer valued filtration levels.

Figure 4.11: Another grid diagram for the trefoil, obtained by applying one horizontal cyclic

permutation to Γ1.
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Figure 4.12: Chain complex for the grid diagram Γ2 in Figure 4.11 representing the trefoil.

Figure 4.13: A grid diagram for the figure eight knot.
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6! = 720 generators, and below is the list of types of empty rectangles, consisting of all 58

templates.

(23 ∗ ∗ ∗ ∗)→ (32 ∗ ∗ ∗ ∗) (∗ ∗ 12 ∗ ∗)→ (∗ ∗ 21 ∗ ∗) (∗ ∗ ∗ ∗ 45)→ (∗ ∗ ∗ ∗ 54)

(24 ∗ ∗ ∗ ∗)→ (42 ∗ ∗ ∗ ∗) (∗ ∗ 13 ∗ ∗)→ (∗ ∗ 31 ∗ ∗) (∗ ∗ ∗ ∗ 46)→ (∗ ∗ ∗ ∗ 64)

(2 ∗ 3 ∗ ∗∗)→ (3 ∗ 2 ∗ ∗∗) (∗ ∗ 14 ∗ ∗)→ (∗ ∗ 41 ∗ ∗) (∗ ∗ ∗ ∗ 41)→ (∗ ∗ ∗ ∗ 14)

(2 ∗ ∗3 ∗ ∗)→ (3 ∗ ∗2 ∗ ∗) (∗ ∗ 1 ∗ 2∗)→ (∗ ∗ 2 ∗ 1∗) (5 ∗ ∗ ∗ 4∗)→ (4 ∗ ∗ ∗ 5∗)

(34 ∗ ∗ ∗ ∗)→ (43 ∗ ∗ ∗ ∗) (∗ ∗ 23 ∗ ∗)→ (∗ ∗ 32 ∗ ∗) (6 ∗ ∗ ∗ 4∗)→ (4 ∗ ∗ ∗ 6∗)

(56 ∗ ∗ ∗ ∗)→ (65 ∗ ∗ ∗ ∗) (∗ ∗ 24 ∗ ∗)→ (∗ ∗ 42 ∗ ∗) (∗ ∗ ∗ ∗ 56)→ (∗ ∗ ∗ ∗ 65)

(51 ∗ ∗ ∗ ∗)→ (15 ∗ ∗ ∗ ∗) (∗ ∗ 34 ∗ ∗)→ (∗ ∗ 43 ∗ ∗) (∗ ∗ ∗ ∗ 51)→ (∗ ∗ ∗ ∗ 15)

(61 ∗ ∗ ∗ ∗)→ (16 ∗ ∗ ∗ ∗) (∗ ∗ 3 ∗ 4∗)→ (∗ ∗ 4 ∗ 3∗) (6 ∗ ∗ ∗ 5∗)→ (5 ∗ ∗ ∗ 6∗)

(6 ∗ 1 ∗ ∗∗)→ (1 ∗ 6 ∗ ∗∗) (∗ ∗ 56 ∗ ∗)→ (∗ ∗ 65 ∗ ∗) (∗6 ∗ ∗5∗)→ (∗5 ∗ ∗6∗)

(∗12 ∗ ∗∗)→ (∗21 ∗ ∗∗) (∗ ∗ ∗12∗)→ (∗ ∗ ∗21∗) (∗ ∗ ∗ ∗ 61)→ (∗ ∗ ∗ ∗ 16)

(∗13 ∗ ∗∗)→ (∗31 ∗ ∗∗) (∗ ∗ ∗34∗)→ (∗ ∗ ∗43∗) (2 ∗ ∗ ∗ ∗1)→ (1 ∗ ∗ ∗ ∗2)

(∗1 ∗ 2 ∗ ∗)→ (∗2 ∗ 1 ∗ ∗) (∗ ∗ ∗35∗)→ (∗ ∗ ∗53∗) (4 ∗ ∗ ∗ ∗3)→ (3 ∗ ∗ ∗ ∗4)

(∗1 ∗ 3 ∗ ∗)→ (∗3 ∗ 1 ∗ ∗) (∗ ∗ ∗45∗)→ (∗ ∗ ∗54∗) (5 ∗ ∗ ∗ ∗3)→ (3 ∗ ∗ ∗ ∗5)

(∗1 ∗ ∗2∗)→ (∗2 ∗ ∗1∗) (∗ ∗ ∗4 ∗ 5)→ (∗ ∗ ∗5 ∗ 4) (6 ∗ ∗ ∗ ∗3)→ (3 ∗ ∗ ∗ ∗6)

(∗23 ∗ ∗∗)→ (∗32 ∗ ∗∗) (5 ∗ ∗4 ∗ ∗)→ (4 ∗ ∗5 ∗ ∗) (∗4 ∗ ∗ ∗ 3)→ (∗3 ∗ ∗ ∗ 4)

(∗2 ∗ 3 ∗ ∗)→ (∗3 ∗ 2 ∗ ∗) (∗ ∗ ∗61∗)→ (∗ ∗ ∗16∗) (5 ∗ ∗ ∗ ∗4)→ (4 ∗ ∗ ∗ ∗5)

(∗45 ∗ ∗∗)→ (∗54 ∗ ∗∗) (∗ ∗ ∗62∗)→ (∗ ∗ ∗26∗) (6 ∗ ∗ ∗ ∗4)→ (4 ∗ ∗ ∗ ∗6)

(∗61 ∗ ∗∗)→ (∗16 ∗ ∗∗) (∗ ∗ ∗6 ∗ 1)→ (∗ ∗ ∗1 ∗ 6) (6 ∗ ∗ ∗ ∗5)→ (5 ∗ ∗ ∗ ∗6)

(∗62 ∗ ∗∗)→ (∗26 ∗ ∗∗) (∗ ∗ ∗ ∗ 23)→ (∗ ∗ ∗ ∗ 32) (∗6 ∗ ∗ ∗ 5)→ (∗5 ∗ ∗ ∗ 6)

(∗63 ∗ ∗∗)→ (∗36 ∗ ∗∗) .

Consequently, there are 58 ·4! = 1392 rectangles. At this point we may remark that despite

the fact that the grid number is grown by only 1, the numbers of generators and rectangles

grow much more. In fact, our MATLAB code was unable to compute the homology rank

table of Γ3. Nevertheless, we presented the chain complex in Figure 4.14. We may notice

once more the complexity of the algorithm by comparing figures 4.11 and 4.14.
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Figure 4.14: Chain complex for the grid diagram Γ3 in Figure 4.13 representing the figure

eight knot.
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[7] C. Manolescu, P. Ozsváth, Z. Szabó, D. Thurston, “On Combinatorial Link Floer

Homology”, Geom. Topol. 11, 2339–2412, 2007.
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[13] P. Ozsváth and Z. Szabó, “Heegaard Diagrams and Holomorphic Disks”,

arXiv:math/0403029v1, Different faces of geometry, 301–348, Int. Math. Ser. (N. Y.),

3, Kluwer/Plenum, New York, 2004.
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