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ABSTRACT 

 

For supporting reliability in distributed content dissemination services, message loss 

recovery mechanism achieved via efficient buffer management is an indispensable 

component. The available approaches for buffer management concentrate on several 

aspects of the problem such as flow control, reducing the memory usage, providing 

message stability and the replacement of buffer items. 

In this thesis study, we consider buffer management problem in support of large-

scale bio-inspired peer-to-peer data dissemination services. Bio-inspired epidemic 

protocols have considerable benefits as they are robust against network failures, 

scalable and provide probabilistic reliability guarantees. Coupled with an efficient 

buffering mechanism, system wide buffer usage can be optimized while providing 

reliability and scalability in such protocols. We propose a novel algorithm, Stepwise 

Fair-share Buffering, that is shown to provide uniform load distribution in comparison 

to earlier approaches and reduces the overall buffer usage where every peer has the 

partial view of the system. A major aim of our approach is to be able to choose 

bufferers uniformly throughout the system so that the load of buffering will be well 

balanced among participating peers and the efficiency of content dissemination will be 

improved as a result. This also reduces the memory usage since only a small subset of 

the peers is chosen as bufferers for each message. Furthermore, it is applicable to large-

scale scenarios, provides reliable delivery and is adaptable to dynamic join and leaves 

to the system. It adjusts the buffer size to achieve message stability with a high 

probability. 

Performance evaluation of the buffering model and extensive comparisons with 

earlier approaches are performed. The evaluations include scalability, reliability, 

adaptivity to failures and uniformity analysis. We also derive analytical results for 

reliability of dissemination as a function of buffer levels. These results are based on a 

Markov chain analysis and are evaluated numerically. Comparison with simulations 

shows that they provide a good lower bound for reliability. For high level of reliability 

values, the bounds are very close to the simulation results. 
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ÖZETÇE 

 

Dağıtık içerik dağıtım servislerinde güvenilirliğin sağlanması için, etkin bir ara bellek 

yönetimi yoluyla başarılmış bir kayıp mesaj kurtarım mekanizması vazgeçilmez bir 

bileşendir. Ara bellek yönetimi konusundaki mevcut yaklaşımlar, akış kontrolü, bellek 

kullanımının azaltılması, mesaj dengesinin sağlanması ve bellek parçalarının yer 

değiştirmesi gibi çok sayıda problem bileşeni üzerinde yoğunlaşmaktadır.  

Bu tez çalışmasında, geniş ölçekli biyolojiden esinlenen eşler arası veri dağıtım 

servislerine yönelik ara bellek yönetimi problemi ele alınmıştır. Biyolojiden esinlenen 

epidemik protokoller; ağ hatalarına karşı dayanıklı ve ölçeklenir olmaları ve olasılıksal 

güvenilirlik garantisi sağlamaları açısından kayda değer avantajlara sahiptir. Bu tip 

protokollerde güvenilirlik ve ölçeklenirlik sağlamasının yanı sıra, etkin bir ara bellek 

mekanizması ile birleştirildiğinde, sistem genelindeki bellek kullanımı da iyileştirilebilir. 

Önceki yaklaşımlarla karşılaştırıldığında tekdüze bir yük dağılımı sağladığı kanıtlanan ve 

eşlerin her birinin sistemin kısmi bir görünümüne sahip olduğu bir koşulda genel ara bellek 

kullanımını azaltan ve Adımsal Eşit Dağılımlı Ara Bellek olarak adlandırılan yeni bir algoritma 

önermekteyiz.  Bu yaklaşımın başlıca hedeflerinden biri; sistem içerisindeki ara bellek 

tutucularının ara bellek yükü mevcut eşler arasında dengelenecek şekilde seçilmesi ve 

bunun sonucunda içerik dağıtımının etkinliğinin arttırılmasıdır.  Bu yaklaşım; her bir 

mesajın ara bellek tutucusu olarak yalnızca eşlerin küçük bir alt kümesi seçildiğinden, 

bellek kullanımını da azaltmaktadır. Aynı zamanda, geniş ölçekli senaryolara uygulanabilir, 

güvenilir bir dağıtım sağlar ve dinamik sistem giriş ve çıkışlarına adapte olabilir. Ara bellek 

boyutunu ayarlayarak, yüksek olasılıkla mesaj dengesini sağlar. 

Ara bellek modelinin başarım değerlendirmesi ve önceki yaklaşımlarla kapsamlı bir 

karşılaştırması gerçekleştirilmiştir. Değerlendirmeler; ölçeklenirlik, güvenilirlik, hatalara 

uyumluluk ve tekdüzelik analizlerini içermektedir. Ara bellek düzeylerinin bir fonksiyonu 

olarak dağıtım güvenilirliğine ilişkin analitik sonuçlar da türetilmiştir. Đlgili sonuçlarda 

Markov zincir analizi temel alınmıştır ve bu sonuçlar sayısal olarak değerlendirilmiştir. 

Benzetimlerle gerçekleştirilen karşılaştırmalar, sonuçların güvenilirlik açısından iyi bir alt 

sınır oluşturduğunu göstermektedir.  Yüksek düzeyli güvenilirlik değerleri için, elde edilen 

analitik sınırların benzetim sonuçları ile tutarlılığı gösterilmiştir.  
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Chapter 1 
 

INTRODUCTION 
 
 
 

For supporting reliability in distributed content dissemination services, message loss 

recovery mechanism achieved via efficient buffer management is an indispensable 

component. In this thesis study, we consider buffer management problem in support of 

large-scale bio-inspired peer-to-peer data dissemination services.  Coupled with an 

efficient buffering mechanism, system wide buffer usage can be optimized while 

providing reliability and scalability in such protocols. Bio-inspired epidemic protocols 

have considerable benefits as they are robust against network failures, scalable and 

provide probabilistic reliability guarantees. Hence, several distributed services such as 

failure detection [1], data aggregation, resource discovery and monitoring [2], and 

database replication [3] utilize epidemic algorithms. 

Peer-to-peer (P2P) distributed dissemination applications need dissemination of 

content which originates from a source to a large number of peers. In an epidemic 

algorithm, every peer of the system is potentially involved in the dissemination of 

messages. Therefore, the network load is distributed to all members. Every peer 

ordinarily buffers each message, the information unit; it receives up to the capacity of 

its buffer, which is called short-term buffer in this thesis. The reliability of information 

delivery depends both on these values as well as on the number of participants n in the 

system. According to the terminology of epidemiology, a peer holding information or 

an update it is willing to share is called infectious. A peer is called susceptible if it has 

not yet received the message. A popular distribution model based on the theory of 

epidemics is the anti-entropy. In the anti-entropy process, non-faulty peers are always 

either susceptible or infectious. Each peer periodically picks f (fan-out parameter) other 

peers at random, and sends them a digest including its recent message history, in other 
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words gossips. If a randomly selected node finds out missing messages in its own 

history, then it requests them from the infectious nodes. The gossiping mechanism 

provides high resilience to problems like network failures, slow links or a failure on a 

single node. Eventually the message will be received by all members with high 

probability in O(log(n)) rounds. No mechanism is needed to detect and reconfigure 

from failures, unlike reactive algorithms where processes react to failures by 

retransmitting missing information. In anti-entropy, there is a probabilistic guarantee of 

delivery which is directly related to the value of the dissemination parameters. These 

parameters can be tuned so that with arbitrarily high probability, the algorithm meets 

the guarantees that deterministic algorithms would provide. 

While implementing protocols using epidemic algorithms, two significant issues 

emerge, namely, membership information and buffer management. In large-scale and 

dynamic group applications, it is impractical for processes to have full membership 

information about all other processes in the system. Hence, the group members 

typically have only partial views. To ensure reliability, the peers exchange messages 

they have buffered in their short-term buffer. As buffer capacities are limited, efficient 

buffer management is important in providing reliable information dissemination. In this 

thesis, we develop, implement and analyze novel buffering approaches for bio-inspired 

epidemic dissemination where each peer has only partial membership information. 

Depending on the rate of new information production in the system, the short-term 

buffer capacity of peers may be insufficient to ensure that every message is buffered 

long enough so that it can be forwarded an adequate number of times to achieve 

acceptable reliability. Setting short-term buffer capacities as large as needed for reliable 

dissemination is an inefficient use of network resources. On the other hand, our 

buffering mechanism is based on an optimization where each message is buffered for 

sufficiently long periods of time by only a fraction of all members to achieve high 

reliability. These members, called the bufferers of a message, store the message at their 

long-term buffer. Upon receiving a digest, a peer requests the messages that it lacks 

from the sender of the digest message if the short-term buffer of the sender contains 
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them, otherwise it can request the messages from the bufferers indicated in the digest 

for retransmission. If a bufferer has crashed or cannot retransmit the message, the 

request can be forwarded to another bufferer if any.  

The available approaches for buffer management concentrate on four 

complementary aspects, namely reducing the memory usage [4, 5, 6, 7], flow control [8, 

9, 10], providing message stability [11, 12, 13] and the replacement of buffer items [14, 

15].  In approaches which optimize the memory usage, not all peers store every 

received message in their buffers but only some predetermined ones do. Our scheme 

falls into this category. In network flow control, the idea is to influence the application 

by regulating its rate when processes do not have enough resources and hence provide 

enough time to buffer and forward messages a sufficient number of times. Instead of 

increasing the resources, the rate of information flow is decreased. Another stream of 

approaches is those which detect message stability in the system. The members inform 

the other peers in their view about the messages they buffer. If all members detect that 

they have received a certain message, they all drop it from their buffers concluding that 

the message is stable in the system. Different policies for replacement of buffer items 

have also been compared in several studies. These approaches include the mechanisms 

for dropping which messages or when and reducing the number of nodes that buffer the 

messages. For deciding which message to be dropped, priorities may be given to 

messages. According to the priorities, the messages with low priorities are dropped 

when the buffer capacity is reached. These priorities can be based on age, application 

semantics or can be random. The age of a message is the number of times the message 

has been transmitted. This notion is not local to a process but to a message: the age of a 

message is incremented whenever the message is transmitted to a new member, and the 

message is tagged with its age. If the buffer of a member is full and it has to drop a 

message, instead of dropping a message in an arbitrary way, the member chooses the 

message with the highest age. The model in this study follows first in first out (FIFO) 

scheme, where in case of a buffer overflow the message which came first, that is the 

oldest message in the buffer, is dropped.  Application semantics depends on the 
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obsolescence relation which is defined by the programmer. For example message m1 

makes m2 obsolete when received. Thus, the second one is dropped when the buffer 

size is full. An alternative way is dropping messages randomly. Also a timer can be 

used to drop a message. Least recently used (LRU) method is comparable to FIFO 

scheme [16], which has not shown significant difference in our simulations. We 

describe the related work in Chapter 2.  

Our first model for the buffering problem, namely Stepwise Probabilistic Buffering 

[17] aims to distribute the load of buffering to the entire system. It provides a fairly 

uniform buffer distribution in a partial view scenario. However, we show that the 

uniformity is observed only when the number of generated messages approaches the 

total long-term buffer capacity of the system.  If a snapshot of the system is taken when 

the number of generated messages is equal to a small fraction of the total long-term 

buffer capacity, a large deviation is observed on the buffering load of the peers. We 

describe Stepwise Probabilistic Buffering and analyze it using our simulation model in 

Chapters 3 and 4, respectively. The optimizations of the scheme help to balance the 

buffering load further among the peers, but they lead to overhead on the buffering 

request message.  

Our main contribution in this thesis is a more robust scheme named Stepwise Fair-

share Buffering [18] which overcomes certain difficulties associated with the 

probabilistic algorithm. It is a novel approach which provides truly uniform load 

distribution and reduces the overall buffer usage while each peer has only a partial view 

of the system. The load of buffering is well balanced among participating peers and 

content dissemination takes place efficiently. Furthermore, it is applicable to large-scale 

scenarios, provides reliable delivery and is adaptable to dynamic join and leaves to the 

system. We explain the principles of Stepwise Fair-share Buffering in Chapter 5. The 

buffer size can be adjusted to achieve message stability with a high probability. A 

discrete event based simulation model for performance evaluation of the scheme is 

developed. The uniformity, scalability, reliability and adaptivity of the scheme are 

investigated using wide range of simulation scenarios. Stepwise Fair-share Buffering is 
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compared with the earlier approaches. These results are given in Chapter 6. Later in 

Chapter 7, we derive an analytical model for computing reliability of dissemination as a 

function of buffer levels as well as the number of bufferers. These results are based on a 

Markov chain analysis and are evaluated numerically. Comparison with simulations 

shows that they provide a good lower bound for reliability. For high level of reliability 

values, the bounds are very close to the simulation results.  Finally, the conclusions and 

future work are given in Chapter 8.  
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Chapter 2 
 

RELATED WORK 
 

 

 
In order to achieve reliability in group communication, the error recovery 

mechanism must be well designed. An efficient buffer management scheme is an 

indispensable part of an error recovery mechanism. The existing approaches are 

designed for various aspects of buffer management, namely, flow control, optimization 

of the memory usage, providing message stability and the replacement of buffer items. 

The classification of buffer management approaches is given in Fig. 2.1. In this section, 

we review the related work and compare with our approach.  

 

   

2.1 Reducing the Memory Usage 

 
The pioneering study [4] focuses on reducing the buffer requirement by buffering 

each message only over a small set of members. Upon receiving a message, a member 

determines whether it should buffer the message using a hash function based on its 

network address and the identifier of the message.  A commonly used identifier is 

[source address, sequence number]. This hash function will be described in detail in 

Buffer 
Management 

 
Reducing the 
Memory Usage 

 
Network Flow 
Control 

 
Achieving 
Stability 

 
Replacement 
Policy for 
Buffer Items 

Figure 2.1 Classification of buffer management approaches 
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section 4.1.  The hash function is devised so that the bufferers are chosen uniformly 

among the peers. However, when a new member joins the system it cannot become a 

bufferer as dynamic redefinition of the hash table is not considered.  

In Stepwise Fair-share Buffering, the messages are buffered by only a limited 

number of peers as well. The bufferers are selected through an adaptive scheme in order 

to distribute the buffering load uniformly. As a result, if a new member joins the 

system, it is eligible to be a bufferer.  

A novel protocol that reduces buffer requirements is Randomized Reliable Multicast 

Protocol (RRMP) [5] which uses epidemic error recovery. The protocol is an 

improvement over Bimodal Multicast [17]. In Bimodal Multicast, a receiver buffers 

messages for a fixed amount of time after their initial reception and then garbage 

collects them. In contrast, in RRMP the buffer space of the system is divided into two 

parts: a feedback based short-term buffer and a randomized long-term buffer. So the 

buffer space is reduced when compared to Bimodal Multicast. The members are 

grouped into local regions and the regions are formed according to their distance from 

the sender. A receiver has the information of the members in its local region and in its 

parent region. When a receiver receives a message, it keeps the message in its short-

term buffer until no request arrives for this message for a certain period of time. Then, 

the member makes a random choice, with a predetermined probability p, to be a long-

term bufferer for the message. This probability p is chosen so that the expected number 

of bufferers in a region is a constant C. The message is kept in the long-term buffer for 

a fixed amount of time if the member becomes a long-term bufferer for the message. 

There is a probability of discarding messages which can be requested afterwards. In 

RRMP, if a member detects that it has missed a message, then it sends request messages 

to all members in its local region. The drawback here is that search time to find the 

repair node can be considerably high when the number of members in the system 

increases. Also a message is kept in the long-term buffer for a fixed amount of time. In 

Stepwise Fair-Share Buffering, the messages remain in the buffers until the capacity of 

a buffer is reached. 
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A tree based reliable multicast protocol in this category is the reliable multicast 

transport protocol (RMTP) [6]. The protocol is designed for reliable delivery of data 

from one sender to a group of receivers. In RMTP a hierarchical tree-based approach is 

used. Receivers are grouped into local regions or domains and in each region there is a 

special receiver called designated receiver. Each designated receiver has the knowledge 

of the members in its local region and the sender. A designated receiver in each local 

region is responsible for sending acknowledgments periodically to the sender, for 

processing acknowledgment from receivers in its domain, and for retransmitting lost 

packets to the corresponding receivers. The sender multicasts data to all receivers but 

only designated receivers inform the sender about their status. Each receiver 

periodically sends an ACK to its designated receiver instead of sending an ACK for 

every received packet. This ACK contains the maximum packet number that each 

receiver has successfully received. However, error recovery is delayed by this periodic 

feedback policy.  Hence, RMTP is not suitable for applications that transmit time-

sensitive data. In addition, in RMTP the whole multicast session data is in the 

secondary storage of the repair node for retransmission. Therefore, it is not applicable to 

large groups or long-lived sessions.  

In Scalable Reliable Multicast (SRM) protocol [7] packets are not buffered at the 

transport level. But, the application regenerates packets if necessary. This depends on 

the principle of Application Level Framing (ALF) [10] which states that networking 

mechanisms should be coordinated with application-level objectives. In SRM, when a 

receiver detects missing data, it waits for a random time determined by its distance from 

the original source of the data before it sends a repair request. Repair requests are 

multicast to the whole group just as regular data packets are. Thus, although a number 

of hosts may all miss the same packet, a host close to the point of failure is likely to 

time out first and multicast the request. Other hosts that are also missing the same 

packet hear that request and suppress their own request. This prevents a request 

implosion. Any host that has a copy of the requested data can answer a request. 

However, it will set a repair timer to a random value depending on its distance from the 
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sender of the request message and multicast the repair when the timer goes off. Other 

hosts that had the packet and scheduled repairs will cancel their repair timers when they 

hear the multicast from the first host.  Also in SRM, if a single link to one member of 

the group has a high error rate, then all members of the multicast group will contend 

with a multicast request and one or more multicast responses. 

Another buffer management scheme which reduces memory usage is [13] where the 

members are organized as regions. In every region, the nodes with the most reliable 

links are responsible for buffering the data.  

 

2.2 Network Flow Control  

 
Flow control is an adaptive mechanism that deals with varying resources such as 

CPU speed and bandwidth in the end hosts. Buffer optimization techniques that fall into 

this category adjust the rate on the network so that the buffer overflows at the end hosts 

are minimized. In an earlier study of Mishra and Wu [8] which is a survey paper, they 

investigated the effect of buffering rate and flow control in some ACK based and NAK 

based reliable multicast protocols. It is concluded that rate-based protocols are the best 

since they are more scalable and have better reliability.  

In the NAK based retransmission control scheme given in [9], the sender reduces its 

transmission rate whenever it receives too many NAKs from the receivers. The sender 

also keeps a log of its past transmission rates to prevent high decrease in the rate. So, 

this mechanism helps to minimize the buffer overflows at the receivers. 

A different idea explored in [10] requires every process to calculate the average 

buffer capacity among all processes it communicates with and transmit that 

information. When the rate is too high with respect to the average, the process reduces 

that rate locally. Indirectly, the sources of the information get such a feedback and they 

reduce the rate of information production. The main drawback here is that the rate of 

information production is adjusted according to the process with the smallest buffer 

space. 
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2.3 Achieving Stability 

 
A message is said to be stable when it is delivered to all members of the group. 

There are buffer management approaches which explicitly take stability into account. 

In [12], there is a stability detection algorithm for discarding safe messages from the 

buffers. The members are partitioned into groups and every node is included in the error 

recovery. All members periodically exchange messages to inform each other about the 

messages they have received. When a member becomes aware of a message becoming 

stable, it safely discards the message. So the system wide buffer space is reduced. A 

drawback is the high traffic caused by frequent exchange of history messages. 

Search Party [13] is another protocol in which contribution of a timer helps to 

discard packets from the buffers. All the members discard packets after a fixed amount 

of time to achieve stability.  

A heuristic buffer management method based on both ACKs and NAKs is proposed 

in [11] to provide scalability and reliability. In every group of receivers, there are one or 

more members with higher error rates than the other members. These nodes are the ones 

with the least reliable and slowest links. The idea is that if a message is correctly 

received by these nodes, it has been probably received by all other nodes. In that case, 

the repair nodes that buffer the message can discard it.  

Our protocol adjusts several parameters such as the number of bufferers and the 

buffer size to achieve stability with a high probability.   

 

2.4 Replacement Policy on Buffer Items 

 
Network Friendly Epidemic Multicast [14] combines a standard epidemic protocol 

with a novel buffering technique that combines different selection techniques for 

discarding messages in case of a buffer overflow. The used selection strategies are 

random purging, age-based purging and semantic purging. Random purging refers to 

discarding an item from the buffer randomly. Age-based purging is simply discarding 
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the oldest message and semantic purging means that a message which has been 

recognized as obsolete is discarded. Obsolescence relation is determined by the 

application.  

Least recently used (LRU) buffer replacement scheme is considered in [15] for 

epidemic information dissemination. In LRU scheme, a new coming message is placed 

on the first position and the message at the rear is discarded as in our case. However, 

when a request arrives for a message in the buffer, that message is placed into the first 

place by moving the items in front one position down. Hence, the least used item stays 

at the rear of the stack possibly next to be discarded. 

 

2.5 Structured Peer-to-Peer Networks 

 
 The approaches explained up to this point have been built on unstructured 

networks. They are not embedded with a logically deterministic structure for organizing 

and managing the peers. These systems employ a message flooding for searching 

interested items. To prevent the high cost of flooding they use a time to live mechanism 

for the messages. On the other hand structured P2P protocols such as Chord [21], CAN 

[22], Pastry [23], Tapestry [24], manage the peers with an implicit and deterministic 

structure. These protocols offer a management on participating peers and published data 

items. CAN employs a multidimensional coordinate space, Chord is based on a ring, in 

Pastry and Tapestry hypercube is used. These systems name the participating peers and 

available data items with a distributed hash function. The data items are identified by 

hashing keys. A data item with hashing key k is managed by the peer whose hashing 

key is closest to k. To retrieve a data item with hashing key k , the request is forwarded 

to intermediate nodes whose hashing key are closer and closer to k. If a uniform 

hashing function is used, the number of stored data items will be approximately equal at 

each peer. By this way, the buffer load on the peers can be balanced.   

Chord [21] embeds peers with a single hash address space. As explained above, the 

data items and the IP-address of peers are hashed with a specified hash function. The 
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hash space is organized as a circular structure. All the participating peers are arranged 

in ascending order in a circle. Chord [21] assigns keys to nodes with consistent hashing. 

With high probability this function balances the load imposed on peers namely all nodes 

receive approximately the same amount of keys. Chord peers store a small amount of 

data and require partial membership information. A node resolves the hash function by 

communicating with other nodes because the hash function is distributed. In Chord, 

there is a concept of successor function. For key k, successor (k) corresponds to the first 

actual node following k around the circle. Linear searching in a large scale network is 

inefficient so in Chord every peer uses a ‘finger table’. Finger table has m entries, 

indexed by 0 through m-1 each one pointing to an actual node. Each node stores the IP 

addresses of relatively small number of nodes. In Fig. 2.2, the idea of Chord is 

illustrated with a simple scenario. In the illustration 1, 3, 6, 10 and 13 are actual nodes. 

The tables attached to the nodes represent the finger tables of the corresponding nodes. 

The first column represents the keys stored in the node and the second column 

represents the IP address of the key. For example, to look at key 15 from node 3, the 

finger table is consulted. The closest predecessor of 15 is 11, so the request is forwarded 

to IP address of 11’s entry namely that of node 13. Node 13 sees that node 15 lies 

between its IP address and its successor 1. So it returns the IP address of node 1. 

 

 

 

Figure 2.2. Illustration of Chord Protocol 
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2.6 Survey on Analytical Studies  

 
In this section, we review prior analytical studies in the context of buffer 

management. These are classified according to the approach they adopt, namely 

management of history buffer size, determination of buffer hit rate and ordinary 

differential equation models.  

 

2.6.1 Management of History Buffer Size 

 
In the study of B. Koldehofe [25], the focus is on the size of history buffer of every 

peer when a single source epidemic dissemination paradigm is used. It is highlighted 

that the size of history buffer must be chosen large enough to guarantee safe delivery 

and not to give rise to multiple deliveries of the same message to the application. The 

buffering mechanism is designed as a queuing system in which new coming messages 

are added to the queue as a random process. Let m be the number of rounds an event 

stays at most in the system and n be the number of nodes. Let [ta, ts] be the time interval 

of length m and ,i jX  be the random variable representing process j admits a new 

gossiping event at time at i+ . It is assumed that all ,i jX  occur independently, 

{ }, 1i jP X p= =  and { }, 0 1i jP X p= = − . Thus, the total number of gossiping events in 

[ ],a st t  is ,
1 1

:
n m

i j

j i

X X
= =

= ∑∑ . The process that describes the new incoming event is 

binomially distributed and the expected number of events in the queue in the interval 

[ ],a st t  is [ ]E X pnm= . According to the analysis, the history buffer size must be 

chosen greater then pnm to guarantee safe delivery. As a second step, a bound for the 

buffer size is determined to minimize the multiple deliveries of the same event. This 

bound is computed using the Chernoff bound for binomial distribution [26]. If the 

buffer size is chosen greater than 2pnm, multiple deliveries of the same event to the 

application are minimized.  
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Also, in the study [25] reliability properties of FIFO buffering scheme, estimated 

time to terminate approach and estimated time to potential approaches are compared. It 

is concluded that the scheme that uses the “estimated time to terminate” approach for 

buffering shows the best performance among others. This approach is based on the 

estimation of rounds a message needs to reach all participants and counting the number 

of hops a message has performed. The estimated potential approach is based on the fact 

that for a constant c > 1, placing cnlog(n) balls uniformly at random into n bins is 

sufficient for every bin to receive at least one ball with high probability. 

 

2.6.2 Determination of Buffer Hit Rate 

 
In [15], performance of Least Recently Used (LRU) buffering policy is evaluated 

and a model is developed for determining buffer hit rate on mobile devices for epidemic 

information dissemination. Buffer hit rate refers to the rate at which an item can be 

found in a buffer. In LRU scheme, a new coming message is placed on the first position 

and the message at the rear is discarded. However, when a request arrives for a message 

in the buffer, that message is placed into the first place by moving the items in front one 

position down. Hence, the least used item stays at the rear of the stack possibly next to 

be discarded. In the model, D data items are partitioned such as (1), (2),..., ( )D D D K  

where K is the number of distinct keys. Each key k matches a fraction of ( )kβ of the 

data items. Let ( , )b k j  denote the number of items of partition ( )D k in the top j 

positions of the LRU stack. Thus 
( , )

( )

b k j

k Dβ
is the hit probability in the top j stack 

positions. Let ( , )r k j  denote the rate for pushing down items of partition ( )D k  from 

stack position j to stack position j+1. Therefore 
( , )

( , ) ( ) 1
( )

b k j
r k j k

k D
λα

β
 

= − 
 

. Let 

( , )p k j  denote the probability that an item of partition ( )D k  is located at position j in 
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the LRU stack. It is computed approximately as

1

( , )
( , )

( , 1)
K

n

r k j
p k j

r n j
=

≈
−∑

. So ( , )b k j can 

be determined as 
1

( , )
j

n

p k n
=
∑ . As a result the hit rate of LRU scheme is computed as 

       
1

( ) ( , )

( )

K

LRU

k

k b k B
HR

k D

α
β=

≈∑                          (1) 

In the study, this idea is extended to compute the hit rate of LRU scheme for epidemic 

dissemination on mobile devices. Hit rate for the protocol 7DS is computed as:  

( ) ( )( )( )7
1

( ) 1 ( , ) 1 ( ) 1 ( )
K

DS local origin remote

k

HR k p k B p k p kα
=

= − − −∑       (2) 

where ( , )localp k B  is the probability for a hit for key k in the local buffer, ( )originp k is the 

probability for retrieving an item matching key k from the origin device and ( )remotep k  

is the probability for retrieving an item matching key k from a remote device other than 

the origin device. 

In [14], approximate analytical models for predicting the buffer hit rates for the 

LRU and FIFO schemes are developed. The study explained above uses the LRU 

model. For FIFO replacement policy, the buffer is considered as a queue where the item 

at position B is thought as the head of the queue and the item at the position 1 is thought 

as the tail. Parameter B is the buffer size. Similarly, D data items are partitioned into K 

partitions such as 1 2, ,..., KD D D  where K is the number of distinct keys. Let 

1, 2, ,( , ,..., )n n n B nX X X X=  denote the state of the buffer after nth request and ,i nX  denote 

the occupancy of the thi  entry in the buffer. Let ,k nY denote the number of items from 

partition kD  after thn  request and , ,
1

1( )
B

k n i n

i

Y X k
=

= =∑ where 1( ) 1P =  if the predicate P 

is true. The authors are interested in ,limk k n
n

Y Y
→∞

=  which is the number of items from 

partition kD  in the steady state.  In the FIFO policy, if a request is to an item already in 
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the buffer, then the buffer remains unchanged. If a request is to an item not in the 

queue, then the item is placed in position 1 (tail) and all of the items within the buffer 

are removed one position to the rear. Let R be the probability that the item is removed 

from the buffer if a request is served. This probability is equal to the probability that a 

new item is brought in so
1

[ ]
1

K

k
k

k k

E Y
R

D
α

=

 
= − 

 
∑ .  Then the probability that a new item 

from partition k is brought in is
[ ]kE Y

R
B

.  The probability that an item is brought in is 

[ ]
1 k

k

k

E Y

D
α

 
− 

 
. If the probabilities are equated, the expected number from partition Dk 

is obtained as [ ]
1

k
k

k

k

D
E Y

RD

Bα

=
+

.  

2.6.3 Ordinary Differential Equation Models 

 
In another study [27], epidemic dissemination is modeled by an ordinary differential 

equation. Different variants of epidemic dissemination are studied and performance of 

epidemic dissemination with different buffer management schemes is modeled. 

Suppose N is the number of nodes, L is the average lifetime of a packet, ( )I t  is the 

number of infected nodes at time t and λ is the packet rate of the data flow. Thus 

0

( )I t
dt

L

∞

∫ gives the average number of copies of a packet. Average number of packets in 

the system is NλL by Little’s Law. Therefore, buffer occupancy in the network is 

0

[ ] ( )tE Q I t Ndt

∞

= ∫  and buffer occupancy per node is
0

[ ] ( )E Q I t dtλ
∞

= ∫ . In this model, 

storage capacity of the nodes is assumed as infinite. In the study, also models for 

different buffer management schemes such as drophead, droptail and drophead with 

high priority for source packet are developed. In droptail, when a peer’s buffer is full, it 

will not accept any packets. Thus, the loss probability is equal to the probability that a 
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peer’s buffer is full. This probability Pd is estimated using probabilistic forward ODE 

( )
dI

pI N I
dt

β= −  with p=1- Pd where p is the forwarding probability, N is number of 

nodes in the system and I is the number of infected nodes. Drophead policy behaves 

similar to the FIFO scheme. Let S(t) denote the number of susceptible nodes at time t 

and Ii(t) denote the average number of infected nodes where the copy of the packet is 

the i-th newest packet. The following equation is used to model the spreading for this 

case: 
1

( )i

i B

dS
S I t

dt
β

≤ ≤

= − ∑ where B is the buffer size per node and β is the infection rate.  

In drophead with high priority for source packets, if a source packet arrives to a 

node with a full buffer, the node drops oldest relay packets, then the oldest source 

packets. If a relay packet arrives to a full buffer, the node deletes the oldest relay 

packets; if all packets in the buffer are source packets, the relay packets are refused. For 

modeling of this scheme the following equation is used: 
1

(1 ) ( )S

f i i

i B

dS
P S I I

dt
β

≤ ≤

= − +∑  

where Ij
S
(t) denotes the probability of source node’s copy of the packet is the j-th 

newest source packet in the buffer and Pf is the probability that a node’s buffer is filled 

with its own packets. According to the comparative numerical results for different 

buffer sizes, drop tail causes the highest and drophead with high priority for source 

packets causes the least drop probability among these three approaches. 

 

2.7 Exploited Ideas in Stepwise Fair-share Buffering 

 
This thesis proposes an efficient buffering technique Stepwise Fair-share Buffering 

that uniformly distributes the buffering load to the entire system where members have 

only a partial view of the membership. The scheme aims to reduce the system wide 

buffer space. An explicit flow control mechanism is not arranged for the scheme. 

Members hold the history of messages up to a certain value and this value is chosen 

large enough to provide stability. A “first in first out” policy equivalent to age-based 
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purging is implemented in the case of a buffer overflow. LRU scheme is deployed to 

the scheme as well and no significant difference is found. The mechanism is applicable 

to large scale scenarios, provides reliable delivery and is adaptable to dynamic join and 

leaves to the system. 

In the scheme, the messages originate from a source and disseminated by an 

epidemic protocol. In epidemic multicast protocols data is propagated via gossiping. In 

the protocol, the repair phase works with the data dissemination phase. Namely, during 

gossiping if a member receives a digest message, then it detects the messages and it gets 

the missed message from the system. In our protocol, each peer periodically selects f 

(fan-out) random peers from its partial view and sends them a digest including its recent 

message history. Digest of a peer contains the state information for the last d messages 

the peer has received so far and identifiers of their bufferers. Upon receiving a digest, a 

peer may determine the messages that it lacks and can request them from the bufferers 

indicated in the digest for retransmission. If a bufferer has crashed or cannot retransmit 

the message, the request can be forwarded to another bufferer. 
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Chapter 3 
 

STEPWISE PROBABILISTIC BUFFERING 

 
 
P2P communication in large scale settings has many applications in today’s Internet 

and in these communication systems there is a need for a source to disseminate data to a 

large group of peers. Besides, a P2P dissemination system must be reliable, scalable and 

must provide a management of membership. Relying on these communication 

paradigms, epidemic or probabilistic protocols [1], [2] have significant advantages. 

They are simple to implement, inexpensive to run, robust and they impose a constant 

load on the links and receivers. The gossiping mechanism that is used to disseminate the 

data provides a high resilience to network problems like link failures, slow links or a 

failure on a single node. A significant issue is that these features of epidemic protocols 

are preserved as the scale of the system increases. However, during deployment of these 

protocols, real systems always have a limited capacity. Peers can exchange only the 

data messages they have buffered. Therefore, an efficient buffer management 

mechanism is a crucial issue in providing reliability for these protocols. Studies 

accomplished in this area emphasize several aspects of buffer management such as 

reducing memory usage, packet discarding policy and message stability. 

Our contribution in this area is a novel buffer management technique that reduces 

the memory usage of the system and distributes the load of buffering evenly to the 

entire system where all peers have only partial knowledge of the participants. In this 

model, only a small subset of the peer population keeps a data message in its long-term 

buffer so that buffering load on each peer does not increase as the system size increases. 

The long-term bufferers are determined through a stepwise search algorithm which is 

inspired by the random forwarding encountered in epidemic algorithms. The application 

area is P2P epidemic information dissemination where every peer has only a partial 

view of the system. Bufferer determination procedure is the novel part of Stepwise 
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Probabilistic Buffering which takes place concurrently with epidemic data 

dissemination. The major aim is to distribute the buffering load to the entire system 

evenly. 

In this chapter, details of the Stepwise Probabilistic Buffering method are given. We 

first describe the principles of Stepwise Probabilistic Buffering. After that the long-term 

and short-term buffering schemes are explained. Then, information about the network 

simulation topologies used for analyzing the buffer management scheme is given. 

Subsequently, the data dissemination part of the protocol described and the 

optimizations done to increase the uniformity of the scheme are explained. The 

parameters, data structures, message formats and algorithms of the scheme are given at 

the end of the chapter. 

 

3.1 Principles of the Stepwise Probabilistic Buffering 

 
Stepwise Probabilistic Buffering is designed to use the buffers of peers effectively 

where the system consists of peers connected through an overlay reflecting the 

properties of the underlying network topology. Each peer has a partial view of the 

system which is a quite plausible assumption considering a large scale distributed 

application scenario. A major aim of the study’s scheme is to be able to choose 

bufferers uniformly through the system so that the load of buffering would be well 

balanced among participating peers and the efficiency of content dissemination would 

be improved as a result. The approach also reduces the buffer usage since only a small 

subset of the peers is chosen as bufferers for each message. Furthermore, it is applicable 

to large scale scenarios, provides reliable delivery and is adaptable to dynamic join and 

leaves to the system. 

The process of determining the bufferers of a data message is initiated by the source. 

When the bufferers are determined their ids are piggybacked to the data message and 

sent to the bufferers firstly. Bufferer determination procedure is the significant part of 

the stated method which takes place concurrently with epidemic data dissemination. 
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The major aim is to distribute the buffering load to the entire system evenly. As 

bufferers are distributed evenly among the peers, the load of cooperative data 

dissemination would also be well distributed among the peers. 

For determining the bufferers of a data message, the source sends buffering request 

messages to randomly selected b peers in its partial view. Parameter b is the number of 

bufferers per message. For a data message, if b > 1 then its bufferers are determined in 

parallel. Buffer fullness ratio of a peer (BF) is the ratio of the number of messages that 

are stored in the peer’s buffer to its long-term buffer capacity. Steps-to-Live (STL) value 

attached to a buffering request message indicates the maximum number of times that 

request message can be forwarded among peers. When a peer receives a buffering 

request message for a particular data, it accepts the request with probability (1 – BF). 

Otherwise, it forwards the message to a randomly selected peer from its partial view 

with a probability equal to BF. For example, if 90% of the long-term buffer is full, then 

the peer becomes the bufferer of the message with probability of 0.1 and sends the 

buffering request to one of its neighbors with probability of 0.9. Fig. 3.1 shows the steps 

of bufferer selection mechanism. Initially, assuming that all buffers are empty, peers 

that are in the partial view of the source will accept the buffering requests with higher 

probabilities. Then, as the buffer level of these neighboring peers will approach their 

capacity, they will begin to forward the buffering requests with higher probabilities to 

their neighboring nodes. Likewise, as the data dissemination continues, the peers with 

one or more hops away from the source will begin to reach their buffer capacities and 

forward the buffering requests to their neighbors. Thus, a stepwise probabilistic 

buffering takes place. When a peer becomes bufferer of a message it announces that 

back to the source. When the entire bufferer announcement messages return to the 

source, the source includes the ids of these bufferers in the data, sends data to the 

bufferers firstly, and then epidemic data dissemination takes place. 
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In Fig. 3.2 a)-d), an illustration of Stepwise Probabilistic Buffering on a simple 

network is given. In this example, parameter b, number of bufferers per message is set 

to 2. Assume that the partial view of the source node is composed of node 1, 2 and 3. 

The source node sends 2 buffering request messages to 2 randomly chosen nodes (node 

1 and node 2) from its neighborhood as shown in Fig. 3.2.a). The percentage given for a 

node represents the buffer fullness ratio. For example 40 % and 75 % of the long-term 

buffers of nodes 1 and 2 are full respectively. When node 1 receives the buffering 

request, it generates a random number between 0 and 1, and then compares the number 

with its BF 0.4. Assume that the random number is greater than 0.4, node 1 becomes the 

bufferer of the message as shown in Fig. 3.2.b). Thus, it announces to the source that it 

Figure 3.1 Flow chart for determining the bufferers 
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has become the bufferer of the message. On the other hand, when node 2 receives the 

buffering request, the random number it has generated is less than its BF 0.75. Then, it 

forwards the buffering request to a randomly chosen neighbor node 4. The buffer 

fullness ratio of node 4 is 0.25. Node 4 becomes the second bufferer of the message. 

Afterwards, it announces to the source that it is a bufferer of the message as well in Fig. 

3.2.c). Lastly, in Fig. 3.2.d) the source node piggybacks the bufferer ids to the message 

and sends them to the bufferer nodes.   

            

 

 

            

 

 

Figure 3.2 a) Sending buffering requests Figure 3.2 b) Forwarding buffering request 

Figure 3.2 c) Bufferer announcements 

 

Figure 3.2 d) Sending data to bufferers 
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3.2 Long-term and Short-term Buffering 

 
In Stepwise Probabilistic Buffering, there is a two phase buffering algorithm. Every 

peer has a short-term buffer for gossiping and long-term buffer for retransmissions. 

Message discarding policy is not time dependent like [6] or [17]. In [6] and [17], every 

message in the buffer has a predefined duration to be discarded. FIFO message 

discarding policy is used in both of the buffers. A new coming message is placed on the 

first position in the buffer stack. The oldest message in the buffer which is at the rear of 

the stack is discarded in case of the capacity of the buffer is reached. Also LRU 

message discarding policy is deployed to compare the performance with FIFO policy. 

In LRU scheme, a new coming message is placed on the first position and the message 

at the rear is discarded. However, when a request arrives for a message in the buffer, 

that message is placed into the first place by moving the items in front one position 

down. Hence, the least used item stays at the rear of the stack possibly next to be 

discarded. 

Each peer has a short-term and long-term buffer. Once a data message is received by 

a peer, it is kept in its limited short-term buffer until it becomes old enough to discard. 

The short-term buffer is useful during epidemic dissemination intervals. On the other 

hand, when a peer becomes bufferer for a particular data, the data is kept in its long-

term buffer. The long-term buffer is useful for achieving reliability in data 

dissemination. For both short and long-term buffers, either FIFO or LRU drop policy is 

employed.  

When a message is generated, a set of bufferers for the message is determined by the 

stepwise algorithm and ids of these bufferer nodes are piggybacked to the message as 

explained in the previous section. When the bufferers of the messages are determined, 

the messages are directly forwarded to the bufferer nodes by the source. In addition, 

number of bufferers must be chosen large enough not to increase the overhead in the 

system. The bufferer processes hold the corresponding messages in their long-term 

buffers infinitely if there is a buffer space. The long-term buffer is used for the 
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retransmission of missed messages. If a process detects that it has missed a message, it 

can request the message from one of the bufferers of that message. The parameters must 

be chosen so that the probability that a missed message is removed from the long-term 

buffers of all bufferers and there exists a process missing the message is small. 

 

3.3 Network Topology 

 
Existence of an overlay among peers reflecting the properties of the underlying 

network topology is assumed, and a transit-stub model as a good approximation of the 

Internet topology is considered in the scheme. The Internet can be viewed as a set of 

interconnected routing domains where each domain can be classified as either a stub or 

a transit domain. Stub domains correspond to interconnected local area networks and 

the transit domains model wide or metropolitan area networks. A transit domain is 

composed of backbone nodes which are well connected to each other with high 

bandwidth links. Every transit node is connected to one or more stub domains. View of 

a sample transit-stub overlay is given in Fig. 3.3. 

 

 

 

 

 

Transit domain  

Stub domains 

Figure 3.3 Overlay topology 
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3.4 Data Dissemination 

 
A popular distribution model based on the theory of epidemics is the anti-entropy 

[28]. According to the terminology of epidemiology, a peer holding information or an 

update it is willing to share is called infectious. A peer is called susceptible if it has not 

yet received an update. In the anti-entropy process, non-faulty peers are always either 

susceptible or infectious. In this model, periodically, each peer picks f (fan-out) other 

peers at random, and exchanges its state information with the selected one. For 

spreading information, a pull-based approach is used in which data dissemination is 

triggered by susceptible peers when they are picked as gossip destinations by infectious 

peers. 

The messages are disseminated to all members epidemically by the anti-entropy 

model. At every predefined time interval called gossip interval, all members choose f 

(fan-out) peers randomly and then send the information of the messages received up to 

that time. This history information of received messages is called a digest message. In 

our scheme, the digest message also contains the ids of the long-term bufferers and the 

information that whether the node that sent the digest message has discarded the 

corresponding message or it has the message in the short-term buffer. Relying on this 

information, the node that has received the digest message requests the data from the 

source of the digest or from one of the long-term bufferers. The short-term buffer is 

preferred. If the owner of the digest cannot serve the request from its short-term buffer, 

then the requester can ask one of the long-term bufferers for the missing message. The 

aim is to distribute the load of buffering over the network. If the long-term bufferer fails 

to retransmit the message, the request can be forwarded to another bufferer. The events, 

parameters and data structures are listed in the tables 3.1-3.3 at the end of the chapter. 

When a member receives a new message, it takes the message to its short-term buffer. If 

the short-term buffer is full, the oldest message is removed. 

Fig.’s 3.4.a and b illustrate our idea with a simple scenario. The columns next to the 

nodes represent the long-term and the short-term buffers of the members respectively. 
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The list written in curly braces is the message history, that is, the messages received up 

to that time by the node. There are 6 messages sent to the group. In Fig. 3.4.a, node 4 

gossips to 2 and node 3 to 1. When node 2 gets the digest message of node 4, it realizes 

that it has not received message 1 which node 4 received. Then it requests message 1 

from node 4, but since node 4 dropped message 1 from its short-term buffer it cannot 

handle that request. Then, since the digest message contains the bufferers of the 

messages, node 2 requests the message from the bufferer of message 1 which is node 3 

as shown in Fig. 3.4.b. Similarly, node 1 also detects that it missed messages 3 and 5. It 

gets message 5 from node 3, but cannot retrieve message 3 which it requests from the 

bufferer, namely node 2.  

 

3.5 Improvements  

 
There is a trade-off in the decision for the STL value of bufferer request messages. 

If the STL value is chosen large enough, uniform selection of bufferers would be easily 

achieved since the request message will be able to visit more peers in the overlay and 

find a suitable buffer place for itself. On the other hand, in case of large STL, there is a 

disadvantage of higher delays caused due to the bufferer determination rounds. In order 

to provide uniform selection of bufferers, we integrate the following optimizations to 

our approach. 

(a)     (b) 

Figure 3.4 Illustrating Stepwise Probabilistic Buffering 

a) Gossiping             b) Requesting missed messages 
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3.5.1 Last forwarders 

 
In this optimization, the ids of the last n forwarders are included in the buffering 

request messages. Via this information, a bufferer request is not resent to the last n 

forwarders and the STL mechanism is used more efficiently. Typically, this n value is 

chosen about the size of a stub domain. The idea is that the peers that have forwarded 

the request have probably approached their buffer capacities. Therefore, resending the 

buffering request to such a peer is a redundant task. If a member receives a buffering 

request, the member writes its id to the buffering request and sends it to a random 

neighbor. If the last forwarders list, size of which is set as a parameter, is full, the 

receiving node deletes the id of the node that is at the rear of the list and writes the id of 

itself at the front of the list. When a member receives a buffering request, it checks the 

forwarders of the buffering request and chooses the destination node among its 

neighbors excluding the ones in the last forwarders list.  

Fig. 3.5 illustrates the mechanism with an example for the case n = 3. Assume that 

the partial views of the peers include one hop neighbors. P1 invokes the buffering 

mechanism for a particular data, writes its id to the buffering request and forwards it to 

P2. Similarly, P2 writes its id to the buffering request and sends it to P3. Next, P3 does 

the same process and forwards the request to P4. Since P2 and P3 are in the last 

forwarders list, P4 does not send the buffering request to these nodes and sends it to P5. 

In the same way, P5 does not send the request to P3 or P4, but to P6.  

 

 
Figure 3.5 Example of last forwarders 



 
 
Chapter 3: Stepwise Probabilistic Buffering      29 

 

 

3.5.2 Considering Overlay Topology 

 
This optimization is also incorporated for providing uniform bufferer selection. The 

idea is to assign different forwarding probabilities to peers according to their 

topological properties on the overlay. Therefore, this mechanism provides topology-

awareness. 

We define three types of nodes according to their location on the transit-stub 

overlay, namely transit (T), intermediate (I) and stub (S). An intermediate node 

connects a transit node to a stub domain. For example, the nodes labeled r and t in Fig. 

3.6 are intermediate nodes. Two transit nodes are connected by high-delay intra-transit 

links (TT). A transit and an intermediate link are connected via intermediate delay stub-

transit links (TI, and IT). Likewise, there exist low delay intra-stub (SS, IS, and SI) 

links in stub domains of the overlay. In our model, we assign forwarding probabilities 

Pxy to peers according to their topological properties as follows: 

For a T node: PTT > PTI 

For an I node: PIT > PIS 
For a S node: PSI > PSS 

As an example, assume that node p in Fig. 3.6 is the message source. If the transit 

source p sends the buffering request with equal probabilities to the nodes in its partial 

view (i.e. one-hop neighbors), then the nodes in stub-domains 3, 4 and 5 will accept the 

buffering requests less than the nodes in the stub-domains 1 and 2 that are directly 

connected to the source. Considering topology-awareness, if the source is a transit node 

then a higher probability of forwarding the request is assigned to transit neighbors than 

forwarding the request to stub neighbors. 
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Non-source transit nodes also send the request to their transit neighbors with a 

higher probability. An intermediate node sends the request to the transit node with a 

higher probability than its other neighbors, namely stub nodes. A node in stub-domain 

forwards the request to one of its neighbors with equal probabilities. In Fig. 3.6, when 

node q receives the buffering request from node p, it sends the request to node s with a 

higher probability than sending it to its neighbor in stub-domain 5. If node t receives a 

buffering request from a node in its stub domain, then it sends the request to p with a 

higher probability. 

 

3.6. Events, Variables, Data Structures and Message Formats 

 
In this section we give descriptions for the events, variables and data structures of 

the Stepwise Probabilistic Buffering model in Tables 3.1, 3.2 and 3.3. There are four 

types of messages namely data, gossip, buffering request and request, used. The 

message formats and their descriptions are given in Table 3.4. 

p 

1 

2 
3 

4 

r 

q 

5 

s 

t 

Figure 3.6.  Forwarding probabilities 
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Table 3.1. The events of the scheme 

Event Description 
Bufferer Selection Selection of bufferer ids of a data message 

Long-term Buffer Insertion Insertion of a data message into the long-term buffer 

Short-term Buffer Insertion Insertion of a data message into the short-term buffer 

Buffering Request Reception Reception of a buffering request message 

Buffering Request Transmission of a buffering request message 

Data Generation Generation of data by the source node 

Data Reception Reception of a data message 

Gossip Propagation Gossip dissemination procedure operated periodically 

Digest Message Reception Reception of a digest message of a neighboring node 

Request Message Reception Reception of a request message 

 

Variable Description 

Message_Id Unique id of each data message 

Gossip_Round Gossip round counter increased in each gossip round 

Fan-out Number of nodes chosen for gossiping each gossip round 

Number_Of_Bufferers Number of bufferer nodes for the data messages 

Generation_Interval Time interval of data generation determined by the source node  

Digest_Size Number of entries in the digest message 

 Long-term_Buffer_Capacity Number of messages that can be stored in the long-term buffer 

 Short-term_Buffer_Capacity 

 

Number of messages that can be stored in the short-term buffer 

Buffer_Fullness Number of messages over long-term buffer capacity 

Number_of_Last_Forwarders Number of nodes that the buffering request would not be sent 

Steps_To_Live Max number of hops the a buffering request can travel 

 STL_Counter Remaining lifetime of buffering request as number of hops 

Source_Probtt Prob. of sending from transit to transit node if node is source 

Non-source_Probtt Prob. of sending from transit to transit node if node is not source 

Non-Source_Probts Prob. of sending from transit to stub node if node is not source 

Probst Prob. of sending from stub to transit node 

Forwarder-Probst 
Prob. of sending from stub to transit when every neighbor is one 

of the LAST_FORWARDERS 

 

Table 3.2. The special variables 
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Bufferer Id: The id of one of the bufferers corresponding to the message. 

Indicator value: Boolean value for representing the existence of the corresponding 

message  

STL value: Remaining life of the buffering request as number hops  

Source Id: Unique id of the source of the message 

Last Forwarders: Ids of nodes that forwarded the request 

Size of Message: The size of the payload  

Data Structure Description 
DATA_MESSAGE Data message received 

DIGEST_MESSAGE Digest message to be send 

REQUEST_MESSAGE Request message to be send for data reception  

BUFFERING_REQUEST Buffering request message sent by the source node 

LONG_TERM_BUFFER Long-term buffer of the current node 

SHORT_TERM_BUFFER Short-term buffer of the current node 

MESSAGE_ENTRY Message id and bufferers of the message 

RECEIVED_MESSAGES Message entries of received messages 

ACCEPTED_REQUESTS List of buffering requests accepted for buffering 

NEIGHBOR_LIST List of neighboring nodes in the partial view of current node 

LAST_FORWARDERS_LIST List of nodes that forwarded the buffering request 

Table 3.3. The data structures  
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3.7. Algorithms for Determining Bufferers and Data Generation  

The following are the algorithms for each event of the bufferer determination phase, 

described in the previous section.  

 

 

Choose Fan-out destinations from NEIGHBOR_LIST 
For all destinations; 
     Send BUFFERING_REQUEST  
End for  
If (All BUFFERING_REQUESTs returned) then; 
   Piggyback the bufferer ids to the DATA_MESSAGE  
   Send the DATA_MESSAGE to Fan-out members in NEIGHBOR_LIST 

Bufferer Selection: 

Table 3.4. Message formats  

Message 
type 
1 octet 

 

 Gossip Contents 
[  (message id, bufferer id, indicator value), (message id, bufferer id, 

indicator value) ... ] Max.  2048 octets 

Source Id 
1 octet 

 
age 

STL value 
1 octet 

 
2 octets 

Last Forwarders 
Max. 1024 octets 

 
age 

Message Id  
1 octet 

 

Message 
type 
1 octet 

 

 

2 octets 

Message Id 
1 octet 

Bufferer Id 
1 octet 

Data Contents 
1024 octets 

Message 
type 
1 octet 

 

2 octets Request Contents 
Max. 1024 octets 

 
age 

 

  DATA_MESSAGE: 
 

 

  GOSSIP_MESSAGE: 
 

 

  BUFFERING_REQUEST_MESSAGE: 
 

 

  REQUEST_MESSAGE: 
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If (size of the SHORT_TERM_BUFFER = short-term_buffer_capacity) then; 
   Remove the last DATA_MESSAGE from SHORT_TERM_BUFFER 

Endif 
Add the new coming DATA_MESSAGE to SHORT_TERM_BUFFER 

 Short-term Buffer Insertion: 

If (size of the LONG_TERM_BUFFER = long-term_buffer_capacity) then; 
   Remove the last DATA_MESSAGE from LONG_TERM_BUFFER 

Endif 
If (BUFFERING_REQUEST of the DATA_MESSAGE  is in the ACCEPTED_REQUESTS ) then; 
   Add the new coming DATA_MESSAGE to LONG_TERM_BUFFER 

 Long-term Buffer Insertion: 

If (Is_Message_Source (BUFFERING_REQUEST)) then; 
   Increase the STL_Counter of BUFFERING_REQUEST 
   Buffering Request Transmission (BUFFERING_REQUEST) 
Else 
   Decrease the STL_Counter of BUFFERING_REQUEST 
   If (LONG-TERM_BUFFER contains DATA_MESSAGE) then; 
      If (TTL_Counter=0) then; 
         Increase the STL_Counter 
      Else 
         Buffering Request Transmission (BUFFERING_REQUEST) 
      Endif  
   Else 
      If (TTL_Counter=0) then; 
         If (size of the LONG_TERM_BUFFER = long-term_buffer_capacity) then; 
            Remove the last DATA_MESSAGE from LONG_TERM_BUFFER 

         Endif 
          Add the BUFFERING_REQUEST to ACCEPTED_REQUESTS 
      Else 
         Generate a random number between 0 and 1 
         If (Generated number > Buffer_Fullness) then; 
            If (size of the LONG_TERM_BUFFER = long-term_buffer_capacity) then; 
               Remove the last DATA_MESSAGE from LONG_TERM_BUFFER 

            Endif 
            Add the BUFFERING_REQUEST to ACCEPTED_REQUESTS 
         Else 
            Buffering Request Transmission (BUFFERING_REQUEST) 
         Endif 
   Endif 
Endif 

Buffering Request Reception: 
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The following are the algorithms for each event of the data generation phase. 

 

 

 

 

If (DATA_MESSAGE is not duplicate ) then; 
  Add MESSAGE_ENTRY to RECEIVED_MESSAGES 
  If (Is_bufferer(DATA_MESSAGE) ) then; 
    Long-term Buffer Insertion (DATA_MESSAGE) 
  Else 
    Short-term Buffer Insertion (DATA_MESSAGE) 
Endif 

 

Data Reception: 

Short-term Buffer Insertion (DATA_MESSAGE) 
Choose destinations from NEIGHBOR_LIST 
For all destinations; 
   Create a BUFFERING_REQUEST 
   Set the STL_Counter of BUFFERING_REQUEST as Steps_To_Live 
   Buffering Request Forwarding (BUFFERING_REQUEST) 
End for 
Buffering Request Reception (BUFFERING_REQUEST) 
Bufferer Selection (DATA_MESSAGE) 

Data Generation: 

Find the members in NEIGHBOR_LIST different from LAST_FORWARDERS_LIST 
If (Size of different members is not zero) then; 
   If (Node is a transit node) then; 
      If (Node is the message source) then; 
          Send the BUFFERING_REQUEST to a transit neighbor with prob. Source_Probtt 
      Else 
          Send the BUFFERING_REQUEST to a stub neighbor with a prob. Non-Source_Probts 
          Send the BUFFERING_REQUEST to a transit neighbor with a prob. 1-#of stubs*Non-Source_Probts 
   Else 
       Send the BUFFERING_REQUEST to a transit neighbor with prob. Probst 
   Endif 
Else 
   If (Node is a transit node) then; 
      Send the BUFFERING_REQUEST randomly to a node from NEIGHBOR_LIST 
   Else 
      Send the BUFFERING_REQUEST to a transit neighbor with Forwarder-Probst 
      Send the BUFFERING_REQUEST to a stub neighbor randomly  
    Endif 
Endif 

Buffering Request Transmission: 
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If (size of RECEIVED_MESSAGES < Digest_Size) then; 
   Put all MESSAGE_ENTRIES to the DIGEST_MESSAGE 
Else 
   Put the last Digest_Size MESSAGE_ENTRIES to the DIGEST_MESSAGE 

Endif  
Choose Fan-out destinations from NEIGHBOR_LIST 
For all destinations; 
   Send the DIGEST_MESSAGE 
End for 

Gossip Propagation: 

If (Is_bufferer (DATA_MESSAGE) ) then; 
   Scan the long-term_buffer 
   Send the DATA_MESSAGE to the request sender 
Else 
   Scan the short-term_buffer  
   Send the DATA_MESSAGE to the request sender 
 

Request Message Reception: 

Compare the DIGEST_MESSAGE with RECEIVED_MESSAGES  
For all missing messages 
   Send REQUEST_MESSAGE to the digest sender 
End for 

Digest Message Reception: 



 
 
Chapter 4: Simulation Model and Analysis of Stepwise Probabilistic Buffering           37 

 

 

 

Chapter 4 
 

SIMULATION MODEL AND ANALYSIS OF  

STEPWISE PROBABILISTIC BUFFERING 

 

 

 
 In this chapter, details of our simulation model and simulation results of Stepwise 

Probabilistic Buffering are given. First, the model that is used in the simulations is 

described. After that, the simulation environment and the steps of topology generation 

are explained. In the last section, simulation results obtained to evaluate the 

performance of Stepwise Probabilistic Buffering are presented.   

 

4.1 Simulation Model  

 
In order to analyze the performance of Stepwise Probabilistic Buffering, a discrete 

time event based simulation model is developed. In this model, time is incremented via 

discrete intervals and at the end of every interval; occurrence of new events is checked. 

If a new event is encountered, it is processed accordingly. This process continues until 

all simulation data are disseminated. The basic structure is of the form: 

 

The events (explained in the previous chapter) are placed in a queue according to 

their times of occurrence.  

Before the development of simulation software, we examined existing P2P network 

simulators. In the remainder of this section we overview some of these simulators.  

While dissemination not finished: 
     t = t + dt 
     Update the system state for the new time interval  
     state(t) = old_state(t)+ changes 
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Peersim [29] is a Java based search framework that allows modeling of P2P overlay 

search algorithms. To provide scalability and focus on self-organization properties of 

large scale systems, some assumptions have been made in this simulator. These 

assumptions include ignoring the details of the transport communication protocol stack. 

SimP2 [30] is a graph-based simulator for analysis ad-hoc P2P networks. The analysis is 

based on uniform random graph model, and is limited to study basic properties such as 

reachability and nodal degree. P2Psim [31] is another simulator that provides overlay 

lookup, join and leave. It provides no support at the network level for controlling or 

modeling bandwidth. Also it does not support IP layer topology. Only end to end delays 

are calculated. There are only lookup and join methods for the nodes that are to be 

implemented.  

 

4.2 Simulation Environment and Topology Generation 

 
Simulations for Random Buffering [32], Stepwise Probabilistic Buffering [17], and 

Hash-based approach [4] are implemented with Java programming language. Java 

S.D.K. 1.5.0 is used and the simulations are run on machines with 2 GB RAM and 2.4 

GHz CPU speed. 

GT-ITM (Georgia Tech. Internetwork Topology Tool) [33] is used for transit-stub 

topology generation in simulations. This software package implements a collection of 

topology generation methods, including standard random graphs, Waxman's variant on 

random graphs, and the transit-stub method. The transit-stub uses the other methods to 

build up a topology whose high-level structure arguably reflects the high-level structure 

of the Internet, and it is probably the most widely used method in GT-ITM. In the 

simulator, a Linux script is used for generation of topology. The user enters number of 

transit domains, stub domains, average number of nodes in a transit or a stub domain as 

the program parameters. The probabilities of having a link between any two nodes in a 

transit domain and stub domain are set by the user. Connectivity of links in a transit 
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domain is higher than the ones in stub domains. Thus, it is conventional to give a higher 

probability for the link connectivity in a transit domain than the links in a stub domain.    

In the simulations, partial view of each node is composed of its one hop neighbors.  

For computing the delays of the links, the propagation delays is considered because the 

bandwidths of the links in the network are assumed to be 100 Mbit/sec and transmission 

delays are very small compared to the propagation delays. As the propagation delay for 

each link in the network, the random delays that the GT-ITM software generates are 

used. The messages in the network follow the shortest path computed by the Dijkstra’s 

Algorithm [34].  

 

4.3 Simulation Results 

 
In this section the behavior of Stepwise Epidemic Buffering and the effects of 

parameters on the system performance are examined. The parameters of the scheme 

clearly affect the performance results. By varying the parameters, the system is driven 

to work more optimally.  

 

4.3.1 Uniform Bufferer Selection 

 
In the first part of the experiments, we investigate how well Stepwise Probabilistic 

Buffering achieves uniform bufferer selection on a controlled topology. The messages 

are generated from a single source where the total number of messages generated is 

equal to the total long-term buffer capacity of the system. Our aim is to observe whether 

the messages are distributed evenly to the long-term buffers or not. There are 100 nodes 

in the system where 4 of them are transit and every transit node is connected to 2 stub 

domains on the average. The mean number of nodes in each stub-domain is 12. The 

transit nodes are connected to each other with the probability of 0.8 and each node in a 

stub-domain is connected to another node in its domain with the probability of 0.5. Fig. 

4.1 shows the sketch of the topology where node numbers are indicated. The long-term 
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buffer capacity of a node is 100 messages. We let the source node generate 10,000 

messages just equal to the capacity of all long-term buffers in a network of 100 nodes. 

The performance metrics for these set of simulations are as follows: 

Retention ratio is the ratio of the number of messages retained in all long-term 

buffers to the total number of messages generated. 

Scattering ratio is the ratio of the number of distinct stub-domains a message is 

buffered to the total number of bufferers of the message.  

 

 

In Fig. 4.2 through 4.4, the source node is varied in terms of its position in the 

overlay. Fig. 4.2 shows the total number of messages buffered by each peer when a 

transit node, id 2, is chosen to be the message source. Initial forwarding probability 

values and improvements over these values are used to obtain two sets of results. The 

improvements are obtained by trials on the forwarding probabilities. In these trials, we 

aim to provide a more uniform buffering load distribution in view of the topology of 

Fig. 4.1. The standard deviation of the messages buffered among all nodes is given as a 

distinguishing metric for comparison of uniformity over all buffers. In the experiments, 

Figure 4.1 Simulation Topology 
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when a forwarding probability distribution leads to buffering of larger number of 

messages in certain domains such as those close to the source, the probability of 

bouncing back to the transit nodes from those domains is increased. Several trials have 

yielded a more uniform buffer load.  

As a stub node, node 72 is chosen to be the source in Fig. 4.3. In this case, the 

variance is somewhat higher than the transit source. This can be explained by the larger 

variation in the number of peers connected in a stub domain. In Fig. 4.4, the message 

source is an intermediate node, node 93, which is directly attached to a transit node.  

The uniformity of the buffer load distribution is close to that in Fig. 4.3 where the 

source is a transit node. In all cases, some nodes belonging to the domain of the nodes 

72-87 buffer fewer messages. The reason for this is the relatively higher number of 

nodes in this domain, namely 16, compared to the expected value 12. Besides, it is 

connected to transit node 2 which has 3 stub domains, a higher number than the average 

number 2.  As a result, the buffering requests reach to this domain less frequently. 

 
Figure 4.2 Source is a transit node 
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Transient behavior of the uniformity of buffer fullness by monitoring the standard 

deviation of the buffer levels as the message generation proceeds is investigated. For 

this purpose, the standard deviation scaled by the mean of the used buffer space of all 

nodes is plotted against the proportion of messages generated in Fig. 4.5. When the 
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Figure 4.3 Source is a stub node 
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Figure 4.4 Source is stub node that has a transit neighbor 

 



 
 
Chapter 4: Simulation Model and Analysis of Stepwise Probabilistic Buffering           43 

 

number of generated messages approaches the full long-term buffer capacity of the 

system, the variability decreases which indicates a more uniform buffer load 

distribution.  

 

In Fig. 4.6, effect of varying the source node on retention ratio is examined. Recall 

that the total number of messages generated equals the total capacity of all buffers in the 

overlay network. Here, the total capacity of the system is the total long-term capacity of 

all peers. Therefore, retention ratio can be at most 1 and the closer is the better. The 

retention ratio is quite uniform for different locations of the source which shows that 

this study’s scheme is robust in this respect. What is more, the retention ratio is above 

97%, that is, approximately only 3% of the messages are discarded due to buffer 

overflows.  

The effect of steps to live and the number of forwarders parameters of buffering 

request on retention ratio is examined in Fig. 4.7. The maximum value is obtained when 

STL is 40 and the number of forwarders is 35. Also it can be inferred that an increase in 

steps to live value has a positive effect on the retention ratio and the number of 

Figure 4.5 Ratio of Standard Deviation to Mean Used Buffer Space 

Through Message Generation  
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forwarders affects positively after the value of 30. For further studies of Stepwise 

Probabilistic Buffering, these values can be optimized by trial and error.  
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Figure 4.6 Effect of source change on the retention ratio 
 

Figure 4.7 Effect of steps to live and number of forwarders on the retention ratio 
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The number of bufferers b of a message has been set to 1 in the results given above. 

If b is set to a value greater than 1, the metric scattering ratio is used to evaluate the 

performance. In this case, a key aim of Stepwise Probabilistic Buffering is to minimize 

the average number of hops from all peers to the nearest bufferer for each message. In 

the simulation, 2000 messages are generated from a single source and b is set to 5. So, 

after the generation of all messages, 10,000 messages pass through the long-term 

buffers of the members. In the best case, the scattering ratio is 1 when 5 copies of the 

message are buffered in 5 different domains. It is concluded from Fig. 4.8 that for more 

than half of all 2000 messages, the scattering ratio is 0.8 or 1. Namely, the 5 bufferers 

are selected from 4 or 5 different domains which should help in the data dissemination 

phase. 

 

4.3.2 Data Dissemination and Comparative Results 

 
Comparison of Stepwise Probabilistic Buffering with the hash-based approach [16] 

and our preliminary work Random Buffering [32] in terms of distribution of the 

buffering load among peers is performed. In this set of simulations, the number of peers 

is set to 1000, long-term buffer size of each peer is equal to 50, and 50,000 messages 

Figure 4.8 Scattering of bufferers to different domains 
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are generated which is equal to the system-wide long-term buffer capacity. The number 

of messages buffered by each peer is depicted in Fig. 4.9. In the hash-based and random 

buffering approaches, all peers have the full membership information of all the other 

peers so uniform distribution of buffering load is expected. In Stepwise Probabilistic 

Buffering, although every member has a partial view, buffering load is distributed 

almost as uniformly as the other approaches.  In this simulation, standard deviation of 

buffering load is approximately 5 messages in random and hash-based approaches and 7 

messages in Stepwise Probabilistic Buffering. 

In the hash-based buffering [4], each message is buffered on a random subset of the 

membership. The subset has a desired constant size C. Link failures and other 

randomized effects in the approach can cause messages to be buffered on more or fewer 

than the desired member count C. A hash function is used to map a bitstring to a 

number between 0 and 1. The bitstring is formed by the message identifier and member 

address. A member with address A, with a view of membership of size n, buffers a 

message M if and only if ( , )H M A n C< > × < . The hash function uses a table of 256 

randomly chosen integers, called the shuffle table. The algorithm is given below: 

 

If a member detects that it lacks a message, it calculates the set of bufferers for the 

message using the hash-function and picks one bufferer at random. The member then 

sends a retransmission request directly to the bufferer, specifying the message identifier 

and the destination address. A bufferer, on receipt of such a request, determines if it has 

the message buffered. If so, it satisfies the request. If not, it ignores the request.  

unsigned integer hash = 0; 
for each byte b do; 
    hash = hash XOR shuffle[b XOR least_signif_byte ( hash ) ]; 
return hash / MAX_INTEGER; 
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Evaluation of the behavior of Stepwise Probabilistic Buffering in terms of message 

dissemination metrics as a function of parameters of the model is also done. The 

following performance metrics are used for this purpose: 

• Reliability is the ratio of total number of received messages by peers over the 

total generated messages. Namely it shows how reliable the generated messages 

are delivered by the receivers. 

• Long-term / Short-term Buffering Time is the mean time that a message is stored 

on a member’s long-term / short-term buffer. 

• Message Delay is the duration between the generation of the message from the 

message source and the delivery of it by a receiver node. 

• Dissemination Time is the time that passes for dissemination of the content to all 

peers.  

Long-term and short-term buffer sizes are the main parameters that have a 

significant effect on the performance of Stepwise Probabilistic Buffering. When the 

long-term buffer size of the nodes is increased, the reliability of the dissemination is 

affected directly. The impact of the long-term and short-term buffer sizes on reliability 

is given in Fig 4.10. In these simulations, short-term and long-term buffer sizes of the 
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Figure 4.9 Comparison of buffering load distribution in large scale 
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nodes are raised from 2 to 20 messages. It is observed that, long-term buffer size has a 

positive effect on the reliability of the dissemination. Similarly, short-term buffer size 

of the nodes also increases the reliability but this increase occurs until a certain value of 

long-term buffer size. After this threshold, the reliability is almost %100.  

 

As the message generation rate is increased, the buffers of the peers are loaded and 

unloaded faster. Since the gossip interval stays constant for each message generation 

rate, the number of messages entered to the system in each gossip round grows up. 

Digest message size is constant for each generation rate as well. Thus, if the generation 

rate is raised to a certain value, state information that passes through the digest 

messages is updated too fast. Because of these facts, peers may not get timely 

information on the bufferers of some messages that they lack, or some messages may be 

removed from the buffers of the bufferers before they are received by some receivers. 

Therefore, if the message generation rate is increased keeping the other parameters 

constant, the reliability of dissemination is reduced. Fig. 4.11 shows the results of the 

simulations which support these facts. 

Figure 4.10 Effect of long-term buffer size and short-term buffer size on reliability 
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When the gossip interval is increased, similar effects are observed as shown in Fig. 

4.12. As it is discussed above, when the generation rate is increased the peers may not 

retrieve some missed messages. When the gossip interval is reduced, peers begin to 

inform each other about their message history more frequently. In larger gossip 

intervals, peers begin to discard the messages from their buffers more rapidly. Besides, 

probability that the bufferers remove the same messages also increases. Therefore, the 

reliability of the system decreases if the gossip interval is increased.  
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Figure 4.12 Gossip Interval – Reliability 
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In addition, Fig 4.13 shows average message delay as a function of message 

generation rate at the source. As soon as the bufferers of a message are selected, it is 

directly sent to the bufferers. When number of generated messages per unit time 

increases, the long-term buffers of the nodes would store more messages in a given time 

interval and a node can achieve a missed message in a shorter time. Thus, average 

message delay decrease as the rate of message generation grows up.  

 

In the simulations explained up to this point, the data messages are generated by a 

single source. The effect of number of sources on reliability of the dissemination is 

examined in Fig. 4.14. Each message source operates its own stepwise buffering 

selection mechanism concurrently with other sources. Since the message number and 

the source id make a unique descriptor for the buffering requests, each source node can 

activate its bufferer selection mechanism. When the number of sources is increased, 

simultaneous message generation from different network positions is triggered. 

Therefore, number of messages spread to the system increases. By this way probability 

of retrieving a missed message in the time interval that the corresponding message is 

achievable decreases. Thus the reliability of the system decreases as number of sources 

is increased.  

Figure 4.13 Message generation rate – Average Message Delay 
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Comparison of stepwise probabilistic model with the hash-based approach [4] and 

random buffering [32] in terms of dissemination time in a 1000 node scenario is given 

in Fig. 4.15. In these simulations, 500,000 messages are generated from a single source.  

Message generation rate is 10 msgs /sec. and gossip interval is 1 sec. As shown in Fig. 

4.15, when Stepwise Probabilistic Buffering is used, lower dissemination times than the 

hash-based approach are achieved. In Stepwise and Random, the bufferers are 

determined when a message is generated and the message is directly sent to the 

bufferers. However, in the hash-based approach, a peer decides to be a bufferer for a 

message when it receives the message through gossiping eventually. The smallest 

dissemination time occurs with Random which serves as a baseline for comparison. The 

bufferers are selected at random immediately in this approach because the sender is 

assumed to have a full knowledge of the overlay network. 

 

Comparison of the mean long-term buffering time of each peer is given in Fig. 4.16. 

These results indicate that in Stepwise, a peer serves for a message for a longer time 

close to the average time that Random achieves. Therefore, during dissemination the 

availability of a message is more likely in Stepwise than the hash-based approach.  

Figure 4.14 Number of Data Sources – Reliability 
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Figure 4.16: Comparison of long-term buffering times 

 

Figure 4.15: Comparison of content dissemination times 
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Chapter 5 
 

STEPWISE FAIR-SHARE BUFFERING 

 
 
In Stepwise Probabilistic Buffering which is explained in detail in the last two 

chapters, the primary aim is to be able to choose bufferers uniformly throughout the 

system so that the buffering load will be well balanced among the peers where every 

peer has a partial view of the system. Here the buffering load is defined as the total 

number of messages (information unit) which are buffered by a peer during the 

dissemination of information. The scheme uses a probabilistic algorithm that works on 

every peer to determine the bufferers of a message. Every peer sends the buffering 

requests randomly to one of its neighbors with a probability equal to its buffer fullness 

ratio. The scheme provides a fairly uniform distribution in a partial view scenario. 

The probabilistic algorithm works when the number of generated messages is lower 

than the total long-term buffer capacity of the system. When the long-term buffers of 

the peers become full, if a member receives a buffering request message it directly 

sends the buffering request to one of its neighbors and the receiving neighbor does the 

same process again. Therefore the buffering request is forwarded peer by peer until the 

steps-to-live value expires. The nodes on which the STL value expires would buffer the 

corresponding message in that case.  

The uniformity of buffering load distribution of the probabilistic algorithm is 

observed only when the number of generated messages approaches the total long-term 

buffer capacity of the system. The algorithm does not provide uniformity before the 

nodes reach their long-term buffer sizes similar to the case when the number of 

generated messages exceeds the total long-term buffer capacity. In the scheme, initially, 

assuming that all buffers are empty, peers that are in the partial view of the source will 

accept the buffering requests with higher probability than the other ones. Thus, if a 
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snapshot of the system is taken when the number of generated messages is equal to a 

small fraction of the total long-term buffer capacity, a large deviation is observed on the 

buffering load of the peers. Specifically, the buffer levels of the nodes close to the 

source node are much higher and the buffer levels of the ones far from the source are 

approximately zero.  

The improvements of the scheme help to balance the buffering load among peers 

but they lead to an overhead on the buffering request message and the computations 

become infeasible for a large scale network. Besides, these optimizations are specific to 

the given network topology. When the algorithm is deployed on another network 

topology the necessary computations must be done particular to that topology. Since the 

ids of the nodes forwarding the buffering request are also included; the size of the 

buffering request message increases and this gives rise to an overhead on the network. 

For the other optimization given in section 3.5, some specific forwarding probabilities 

must be computed for the network. In the numerical experiments of the Stepwise 

Probabilistic Buffering scheme, these probabilities are computed for a small scale 

particular network topology. For a large scale scenario, the computations of the 

probabilities are infeasible. 

A more robust scheme Stepwise Fair-share Buffering is developed to remove the 

inconveniences of the probabilistic algorithm. Stepwise Fair-share Buffering provides 

more uniform load distribution. It is scalable, simple and applicable to any kind of 

underlying network topology. It does not bring an additional overhead on the buffering 

request message. In this chapter, the details of the fair-share scheme are given. 

 

5.1 Fair-share Buffering Algorithm 

 
The Stepwise Fair-share Buffering is designed as an improved and robust version of 

Stepwise Probabilistic Buffering scheme. It is based on assumptions and is developed 

for epidemic information dissemination as the probabilistic approach. Every peer has 
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partial membership knowledge and anti-entropy model is used for dissemination. The 

two phase buffering mechanism is used also in this scheme.  

In the method, every peer stores the number of messages that its neighbors have 

ever buffered. This is called the neighbor history information (NH). This information is 

used for determination of the bufferers. At specific time intervals, the peers update their 

neighbor history information. The bufferer determination phase is initiated by the 

source to one of its neighbors through a selection mechanism. Steps-to-live (STL) value 

attached to a buffering request message indicates the maximum number of times that 

request message can be forwarded among peers. When a peer receives a buffering 

request it decreases the STL value attached to a buffering request message. If the STL 

value becomes zero, then the peer accepts the buffering request. If STL value is greater 

than zero, the peer multicasts neighbor history request messages to its neighbors. As 

soon as the peer receives all the responses from the neighbors, it updates its neighbor 

history information. Then, it detects the peers with the minimum number of messages 

buffered. If the corresponding peer is the peer itself it accepts the buffering request, 

otherwise if it is one of the neighboring peers it sends the buffering request to that 

neighbor. If there is more than one peer with the minimum number of buffered 

messages, the peer chooses randomly one of them. Similarly, if the peer is one of these 

candidate peers and it chooses itself then it accepts the request.  Fig. 5.1 shows the steps 

of the fair-share algorithm. There is no last forwarder mechanism or forwarding 

probabilities in this scheme. Only, the receiving node does not send the buffering 

request message to the peer that it has received the message from.   

 
5.2 Improvements 

 
To ensure that the algorithm works in all cases, we made some certain 

improvements. In this section, we describe the details of these improvements. 
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5.2.1. Handling Fast Request Rate 

 
When a buffering request is received by a peer, it multicasts neighbor history 

request messages to its neighbors as explained above. Then, a certain time passes until 

all the response messages are received by the peer. Therefore, a key point in the 

mechanism is to make adjustments when the rate of receiving a buffering request 

message is faster than the rate of updating the neighbor history. In this case, before the 

peer receives the responses from its neighbors, more than one buffering requests 

accumulate in the buffering request list (BL) of the peer. When the peer updates its 

neighbor history, it employs the same algorithm and updates its neighbor history for 

Figure 5.1 Flow chart of the fair-share algorithm 
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each buffering request in the buffering request list one by one. This mechanism 

balances the load in case of faster reception of buffering requests.  

Let us illustrate this idea with a simple scenario. In the network topology given in 

Fig. 5.2 a) and b), peer 1 has three neighbors. Peer 2, 3 and 4 has 2, 3 and 5 messages in 

their long-term buffers respectively as it is indicated in Fig 5.2.a). Assume that until 

peer 1 receives the response messages from its neighbors, five messages accumulate in 

its buffering request list. Then, it sends message 1 to peer 2 because it has the minimum 

number of messages. As a result, the number of messages that peer 2 and 3 have in 

buffer become equal to 3. After that, peer 1 selects randomly peer 3 and sends message 

2 to it. Then, it sends message 3 to peer 2, message 4 to peer 3 and message 5 to peer 2 

as it can be observed from Fig. 5.2.b). Consequently, every peer receives 5 buffering 

request messages and the load is distributed evenly. 

 

5.2.2. Timeout Mechanism 

 
Every peer waits for the response messages before it detects the peer with the 

minimum number of messages. If there is a link failure on one of the links that is 

attached to a neighbor, or one of the neighbors crashes, the peer should wait forever. 

Figure 5.2 Handling Fast Request Rate: Example Scenario 
a) 5 request messages accumulated    b) Load is distributed evenly 
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Not to lead to such a situation, a timeout mechanism is developed. For this purpose, in 

the scheme a peer waits for the response messages up to a timeout value T. This time-

out value T can be set greater than the maximum round trip time among the neighbors 

of the peer.  

 
5.3. Events, Data Structures and Variables  

 
In this section the events, data structures and variables of the Stepwise Fair-share 

Buffering mechanism are described. The events, data structures and variables indicated 

with a * are specific to Stepwise Fair-share Buffering. The others are the same with the 

Stepwise Probabilistic Buffering. The events are given in table 5.1, the data structures 

are given in table 5.2 and the variables are given in table 5.3 with the corresponding 

descriptions.  

 

Table 5.1. The events  

Event Description 

Data Reception Reception of a data message 

Request Message Reception Reception of a request message 

*Buffering Request Reception Reception of a buffering request message 

*Neighbor History Request Reception Reception of a neighbor history request message 

Gossip Propagation Gossip dissemination procedure operated periodically 

Digest Message Reception Reception of a digest message of a neighboring node 

Long-term Buffer Insertion Insertion of a data message into the long-term buffer 

Short-term Buffer Insertion Insertion of a data message into the short-term buffer 

Data Generation Generation of data by the source node 

Bufferer Selection Selection of bufferer ids of a data message 
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Variable Description 
Message_Id Unique id of each data message 

Gossip_Round Gossip round counter increased in each gossip round 

Fan-out Number of nodes chosen for gossiping each gossip round 

Number_Of_Bufferers Number of bufferer nodes for the data messages 

Generation_Interval Time interval of data generation determined by the source node  

Digest_Size Number of entries in the digest message 

Long-term_Buffer_Capacity Number of messages that can be stored in the long-term buffer 

Short-term_Buffer_Capacity Number of messages that can be stored in the short-term buffer 

*Timeout Waiting time until all response messages received 

Steps_To_Live Max number of hops the a buffering request can travel 

STL_Counter Remaining lifetime of buffering request as number of hops 

 

Table 5.3. The special variables 

Data Structure Description 

DATA_MESSAGE Data message received 

REQUEST_MESSAGE Request message to be send for data reception  

BUFFERING_REQUEST Buffering request message sent by the source node 

*NEIGHBOR_HISTORY Number of messages that the neighbors buffered 

*BUFFERING_REQUEST_LIST List of buffering requests received by the peer 

*MIN_PEERS List of peers with the minimum number of buffered messages 

MESSAGE_ENTRY Message id and bufferers of the messages 

RECEIVED_MESSAGES Message entries of received messages 

ACCEPTED_REQUESTS List of buffering requests accepted for buffering 

NEIGHBOR_LIST List of neighboring nodes in the partial view of current node 

DIGEST_MESSAGE Digest message to be sent 

 

Table 5.2. The data structures  
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There are three message types special to the Stepwise Fair-Share Buffering. These 

are buffering request message, neighbor history request message and response message. 

Formats of these messages are provided in table 5.4. 

 

 
 
 

5.5. Algorithms of the Events for Stepwise Fair-share Buffering 

 
In this section, algorithms for bufferer determination phase are given. The 

algorithms for the data dissemination phase are the same as Stepwise Probabilistic 

Buffering. The following are the algorithms special to the buffering request reception 

and neighbor history request message reception events of Stepwise Fair-Share 

Buffering. 

 

Table 5.4. Message formats  

 
BUFFERING_REQUEST_MESSAGE: 

 
Source Id 
1 octet 

STL value 
1 octet 

Size of Message 
2 octets 

Message Id  
1 octet 

Message 
Type  
1 octet 

 
 
NEIGHBOR_HISTORY_REQUEST_MESSAGE: 

 

 
RESPONSE_MESSAGE: 

 

Size of Message 
2 octets 

Sender Id  
1 octet 

Message 
Type  
1 octet 

 

 

Source Id 
1 octet 

Number of Buffered 
Messages 

Max 1024 octets 

Size of Message 
2 octets 

Message Id  
1 octet 

Message 
Type  
1 octet 
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Determine the id of the sender from NEIGHBOR_HISTORY_REQUEST_MESSAGE 
Piggyback the number of messages in the long-term buffer to the RESPONSE_MESSAGE 

Send the the RESPONSE_MESSAGE to the sender 

Neighbor History Request Message Reception: 

If (Is_Message_Source (BUFFERING_REQUEST)) then; 
   Increase the STL_Counter of BUFFERING_REQUEST 
   Buffering Request Transmission (BUFFERING_REQUEST) 
Else 
   Decrease the STL_Counter of BUFFERING_REQUEST 
   If (LONG-TERM_BUFFER contains DATA_MESSAGE) then; 
      If (STL_Counter=0) then; 
         Increase the STL_Counter 
      Else 
         Buffering Request Transmission (BUFFERING_REQUEST) 
      Endif  
   Else 
      If (STL_Counter=0) then; 
         If (size of the LONG_TERM_BUFFER = long-term_buffer_capacity) then; 
             Remove the last DATA_MESSAGE from LONG_TERM_BUFFER 

         Endif 
         Add the BUFFERING_REQUEST to ACCEPTED_REQUESTS 
      Else 
         Multicast NEIGHBOR_HISTORY_UPDATE_MESSAGE to peers in the NEIGHBOR_LIST 
         If (all RESPONSE_MESSAGES are received) then; 
            For all BUFFERING_REQUESTs in the BUFFERING_REQUEST_LIST; 
               Determine peers with min number of buffered messages 
               Choose a peer randomly from MIN_PEERS 
               If (Min_peer) then; 
                  Add the BUFFERING_REQUEST to ACCEPTED_REQUESTS 
               Else  
                  Buffering Request Transmission (BUFFERING_REQUEST) 
               Endif 
            Endfor 
         Else 
            Wait for the Timeout 
            For all BUFFERING_REQUESTs in the BUFFERING_REQUEST_LIST; 
               Determine peers with min number of buffered messages 
               Choose a peer randomly from MIN_PEERS 
               If (Min_peer) then; 
                  Add the BUFFERING_REQUEST to ACCEPTED_REQUESTS 
               Else  
                  Buffering Request Transmission (BUFFERING_REQUEST) 
               Endif 
            Endfor  
        Endif  
Endif 

Buffering Request Reception: 
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Chapter 6 
 

SIMULATION MODEL AND ANALYSIS OF  

STEPWISE FAIR-SHARE BUFFERING 

 

 

 
To evaluate the performance of Stepwise Fair-Share Buffering scheme, the 

simulation platform explained in Chapter 4 is used. In this chapter, first the 

experimental results of Stepwise Fair-share Buffering and its comparison with the 

Stepwise Probabilistic Buffering in terms of distributing the buffering load are 

exhibited. After that, evaluation of the model in terms of data dissemination metrics and 

comparison with Hash-based [4], and Stepwise Probabilistic Buffering [17], Random 

[32] schemes are given.  

 

6.1 Uniform Bufferer Selection 

 
We evaluate the performance of Stepwise Fair-share Buffering in terms of 

distributing the buffering load. In the first group of experiments, a 100-node transit-stub 

topology is used. Long-term buffer capacity of the nodes is 100 messages, and 10,000 

messages are disseminated from a single source. This value is equal to the total long-

term buffer capacity of the nodes. STL value is set to 20 which was 30 in the 

experiments of Stepwise Probabilistic Buffering. Each message is buffered only by a 

single bufferer in our simulations. 

In Fig. 6.1-6.3 similar to Fig. 4.3-4.5, the source node is varied in terms of its 

position in the overlay. The source (represented by a diamond on the x-axis) is a transit 

node (id-2) in Fig. 6.2, a stub node (id-72) in Fig. 6.3 and an intermediate node (id-93) 

in Fig. 6.4. An intermediate node connects a transit node to a stub domain. In 

comparison to stepwise probabilistic buffering, the uniformity of the distribution of 
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buffering load is significantly higher in the fair-share scheme. When the location of the 

source node on the topology is varied, namely source is positioned on a transit or a stub 

node, we have observed similar results. Besides, the distribution behaves the same for 

all the stub-domains. For example, the load of the nodes close to the source node is not 

higher or lower in contrast to the stepwise probabilistic approach. The comparison of 

numerical values of the standard deviations of buffering load for three types of sources 

is given in Table 6.1. These values also show the significant difference in the standard 

deviations of the two approaches. 

 

 

 

 

Table 6.1. Standard deviation of buffering load in figures 6.1-6.3 

Source Std. Dev. in Probabilistic Std. Dev. In Fair-share 
Transit source 7.78 1.10 

Stub source 10.32 1.07 

Intermediate source 8.03 0.92 

 

Figure 6.1 Comparison of buffering load (Source is a transit node) 
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Figure 6.3 Comparison of buffering load (Source is an intermediate node) 

 

Figure 6.2 Comparison of buffering load (Source is a stub node) 
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Transient behavior of the uniformity of the buffer levels also has a great importance 

for dissemination. Standard deviation of the buffer levels as the message generation 

proceeds is monitored to investigate the transient behavior of the uniformity of buffer 

fullness. For this purpose, the standard deviation scaled by the mean of the used buffer 

space of all nodes is plotted against the proportion of messages generated in time.  As it 

can be seen from Fig. 6.4 the variability decreases dramatically in the Stepwise 

Probabilistic Buffering scheme. However, there is not such a big difference in the 

deviation of buffer levels in the fair-share scheme and the variability is low throughout. 

In Stepwise Fair-share Buffering, since the ratio of the standard deviation to the mean 

of the used buffer spaces of the nodes does not change considerably, the distribution of 

the buffering load during dissemination process is also uniform.   

 

In Fig. 6.5, buffering load of the nodes is given for various dissemination 

percentages. Long-term buffer capacity of the nodes is equal to 50 messages on a 100-

node network topology as shown in the figure; the scheme provides stability of 

uniformness over time which will be helpful for message dissemination. 

Figure 6.4 Comparison of standard deviation over mean used buffer space 
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Fig. 6.6 shows the resultant retention ratio for different source nodes. Recall that, 

retention ratio is the ratio of the number of messages retained in all long-term buffers to 

the total number of messages generated. In each simulation step, one individual node is 

chosen as the source and the retention ratio is calculated for that particular source. This 

simulation is repeated for every individual node in the system. The figure shows that the 

retention ratio does not change significantly as the source changes for both approaches. 

It can also be inferred that the retention ratio in the fair-share approach is higher than 

the probabilistic one. This result is due to more uniform buffering load distribution in 

the fair-share scheme.  

Comparison of buffering load distribution on a 1000 node topology is given in Fig. 

6.7.  In this network topology, there are 10 transit nodes. Each transit node is connected 

to 11 stub domains and each stub domain contains 99 nodes on the average. In these 

simulations, forwarding probabilities for the Stepwise Probabilistic Buffering are 

optimized by trial and error. When the scale of the system increases determining these 

probabilities becomes hard. In the probabilistic approach, the bufferers are determined 

according to the buffer fullness level and the computed forwarding probabilities. As the 

Figure 6.5 Uniformity of the fair-share scheme in time 
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scale of the network increases, the uniformity disappears. But, in the fair-share scheme 

the data is distributed uniformly for a large scaled system using its unique idea 

explained in Chapter 5.  

 

 

Figure 6.6 Comparison of the effect of source change on the retention ratio 

 

Figure 6.7 Comparison of buffering load distribution in large scale (1000 node) 
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6.2 Data Dissemination 

 
In this section, the evaluation of Stepwise Fair-share Buffering and its comparison 

with other approaches are given in terms of data dissemination metrics. The metrics 

investigated are reliability, content dissemination time, buffering times, message delay 

and the minimum buffer requirement of the system. 

In Fig 6.8, the minimum buffer requirement per node is investigated as the scale of 

the system increases from 500 to 2000 peers. The simulations are done on the transit-

stub topologies of various sizes and the other parameters are kept the same. In these 

simulations, short-term buffer size per node is zero, that is, only the long-term buffer is 

used. The message generation rate is 100 messages/sec and the gossip interval is 200 

msec. Analysis results show that the minimum buffer requirement decreases as the 

system size scales up. Since the number of nodes increases, the rate of being bufferer 

per node decreases and the waiting time of a message in the buffer increases. Thus, 

smaller buffer sizes begin to be sufficient for a message to be delivered by all members 

if the size of the network gets larger.  

 

Figure 6.8 Minimum buffer requirements for a reliable dissemination in small 

to large scale networks 
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In consistency with Fig. 6.8, the results in Fig. 6.9 indicate the reliability of the data 

dissemination as a function of the long-term buffer size. The system achieves full 

reliability for the buffer sizes labeled as the minimum buffer size in Fig. 6.8.  

 

Stepwise Fair-share scheme is compared with the hash-based approach [4], 

Stepwise Probabilistic Buffering [17] as well as a third approach called random 

buffering given in [32]. Random buffering is used as a basis for comparison because it 

assumes full membership information on the source side. Therefore, the buffer selection 

occurs at once as well as being very uniform due to completely random selection of the 

bufferers. The dissemination times in a 1000 node scenario are given in Fig. 6.10. 

50,000 messages are generated from a single source and the message generation rate is 

20 messages /sec, so that all messages are generated in 2500 sec. The gossip interval is 

set to 200 msec. In the random and hash-based buffering methods, every peer has the 

full view of the system. As inferred from Fig. 6.10, dissemination time of Stepwise 

Fair-share Buffering is close to that of random buffering even though in the first scheme 

every peer has only partial membership information. On the other hand, Stepwise Fair-

share Buffering has a lower dissemination time than the hash-based approach because 

Figure 6.9 Reliability as a function of long-term buffer size in like Fig. 6.8 scale networks 
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in Fair-share and random, the bufferers are determined when a message is generated 

and the message is directly sent to the bufferers. However, in the hash-based approach, 

a peer decides to be a bufferer for a message when it receives the message through 

gossiping eventually. As expected, random approach has a better dissemination time 

than Fair-share because the bufferers are selected at random immediately.  There is no 

significant difference between the Probabilistic buffering and Fair-share buffering in 

terms of dissemination time. Basically, the last message is sent out from the source at 

time 2500 sec., and is received by all nodes in the next few gossip rounds for both 

approaches. 

 

Fig. 6.11 gives the average long-term buffering time of a message in each peer for 

the three approaches. Average long-term buffering time of a message in random, 

probabilistic and fair-share is equal on the average and it is smaller in the hash-based 

approach.  As before, the reason is that in the hash-based scheme, the messages are to 

be buffered eventually, but in the random and fair-share methods, the bufferers are 

determined at the beginning of the dissemination of a message. Long-term buffering 

Figure 6.10. Comparison of content dissemination times 
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times of random, probabilistic and fair-share approaches close to each other on the 

average but random and stepwise show more variability. Uniform buffering load 

distribution of Fair-share provides a uniform long-term buffering time distribution also. 

On the other hand, buffering times of physically close nodes are close to each other in 

probabilistic approach. This is due to the fact that the distribution of buffering load 

differs among the stub domains in this approach.  

  
Comparison of the average message delays on 1000-node topology simulations is 

given in Fig. 6.12. Stepwise Fair-share and Probabilistic buffering approaches lead to 

slightly higher average message delays per node, in comparison to Hash-based and 

Random buffering. This is due to the fact that the former approaches use additional time 

to determine the bufferer of each data message disseminated. However, when 

distributing a large content consisting of thousands of messages, bufferer determination 

and message dissemination phases take place concurrently, and total dissemination time 

for the content is not affected adversely as discussed for the results of Fig.6.10. Besides, 

there is no need to have full membership information in Stepwise Fair-share as well as 

probabilistic buffering at the expense of only slightly higher average message delays.  

Figure 6.11 Comparison of long-term buffering times 



 
 
Chapter 6: Simulation Model and Analysis of Stepwise Fair-Share Buffering              72 

 

 

6.3 Scalability Results 

 
In this group of results, the performance of Stepwise Fair-share Buffering is 

observed as the system size scales up. In the simulations of Fig. 6.13 to 6.16, number of 

nodes is increased from 1000 to 10000. Number of transit nodes and number of stub 

domains for each topology are provided in Table 6.2. Average number of stub nodes in 

each domain is 30. In these simulations, the message generation rate is 100 messages 

/sec, gossip interval is 200 msec and 500000 messages are disseminated to whole 

network. 

 In Fig. 6.13, the minimum buffer requirement per node is given for increasing 

scale. This figure is an extended version of Fig 6.8 and it can be observed that the 

minimum buffer requirement decreases as the group size increases. In Fig. 6.14, the 

standard deviation of buffering load namely the standard deviation of number of 

messages buffered is investigated. As it can be deduced from the figure, the standard 

Figure 6.12 Comparison of average message delays 
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deviation of buffering load does not increase significantly as the scale of the system 

increases.  

 

 
 

Figure 6.13 Minimum required buffer size as a function of group size 

Table 6.2. Node distribution for the simulation topologies 

Number of nodes Number of transit nodes Number of stub domains 

1000 8 32 

2000 20 60 

3000 24 96 

4000 32 128 

5000 40 160 

6000 60 180 

7000 56 224 

8000 64 256 

9000 90 270 

10000 80 320 

 



 
 
Chapter 6: Simulation Model and Analysis of Stepwise Fair-Share Buffering              74 

 

 
 

Fig. 6.15 shows the comparison of average message delays for Stepwise Fair-share 

Buffering with benchmark approaches as a function of network size. Stepwise Fair-

share and Probabilistic buffering approaches result in higher average message delays 

per node, when compared to Hash-based and Random buffering, by the same reasoning 

given for Fig. 6.12 earlier. This is due to the fact that the former approaches use 

additional time to determine the bufferer of each data message disseminated. This result 

shows the drawback of not having the full membership information for the stepwise 

approaches. However, when distributing a large content consisting of thousands of 

messages, bufferer determination and message dissemination phases take place 

concurrently, and total dissemination time for the content is not affected adversely as 

depicted in Fig. 6.16. In this figure, content dissemination times are close to each other 

as the scale of the system increases. Hash-based method leads to a higher dissemination 

time since the bufferer peers receive the messages eventually during dissemination as 

explained in chapter 4. 

Figure 6.14 Standard deviation of buffering load as a function of group size 
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Figure 6.16 Comparison of dissemination time as a function of group size 

 

Figure 6.15 Comparison of average message delays as a function of group size 
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6.4 Failure Cases 

 
In this group of experiments, the performance of Stepwise Fair-share Buffering is 

investigated in case of link failures. For the experimental results provided up to this 

point, there is no failure in the links of the underlying network.  Certain link drop 

probabilities are assigned for each message traversing the network. Suppose the link 

drop probability in the network is p, then any message traveling on the link has a chance 

of not being delivered to the destination with probability p. When the link drop 

probability is 0.01 any message reaches its destination node with 99 % chance in one 

link and with 95 % in one link if the probability is 0.05. 

In the simulations given in Fig.s 6.17 and 6.18, a 1000 node network topology is 

used for message dissemination and 50000 messages are disseminated from a single 

source. Short-term buffer size of a peer is set to zero in order to observe the long-term 

buffer performance. The long-term buffer size is set to 5 because since minimum long-

term buffer size is 5 if there is no link drop probability on the network as it can be 

observed from Fig. 6.12. The message generation rate is 100 messages /sec and the 

gossip interval is 200 msec. In the first result given in Fig. 6.17, the link drop 

probability of the network is increased from 0.01 to 0.05. Minimum number of 

bufferers needed for the reliability of the system is 5 messages. Fig. 6.18 gives the 

minimum buffer size needed for reliable dissemination when the number of bufferers b 

of a message is set to 6. Minimum buffer size is 5 messages if the drop probability is 

0.01 as consistent with Fig. 6.17 and its settings. On the other hand, this increases to 11 

if the drop probability is 0.05. 

Fig. 6.19 and 6.20 show the comparative behavior of the systems as the drop 

probability of the links increases. In these simulations, 500000 messages are 

disseminated to the network, network size is 1000 peers, message generation rate is 100 

message/sec, gossip interval is 200 msec. Short-term buffer size is 10, long-term buffer 

size is 20 and number of bufferers per message is 5 so that a reliable dissemination is 

achieved for all the scenarios. These simulations have the same settings with Fig. 6.19 
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and 6.20. Fig. 6.19 shows that average message delay increases as a function of the link 

failure rate. The average message delay in stepwise probabilistic and fair-share 

approaches is higher than the hash-based and random approaches throughout all failure 

rates. Content dissemination time also increases when the failure rate of the link 

increases. Hash- based approached leads to a greater dissemination time and Stepwise 

Fair-share Buffering shows a close performance to the other approaches with this 

metric. 

 

 Figure 6.18 Minimum buffer size needed for reliability as a function of link drop probability 

Figure 6.17 Minimum number of bufferers for reliability as a function of link drop 
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Figure 6.19 Comparison of average message delays as a function of link drop probability 

 

Figure 6.20 Comparison of dissemination time as a function of link drop probability 
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6.5 Distributing the Bufferers to Domains 

As a last part of this chapter, distribution of bufferers to different domains is 

examined. In these simulations number of bufferers is set to 5, number of generated 

messages is 2000 and the 100 node topology is used. Fig. 6.21 gives the scattering ratio 

of the bufferers for Stepwise Fair-Share Buffering in the original case, namely when 

number of forwarders is equal to 1. Recall that scattering ratio is defined as the ratio of 

the number of distinct sub-domains a message is buffered to the total number of 

bufferers of the message. As it can be observed from Fig. 6.21 the bufferers of each 

message are distributed to one domain in the network. To increase the scattering ratio of 

the bufferers, number of forwarders parameter is introduced as in section 3.5 and is set 

to 15. This number is obtained by trial and error. Recall that the last forwarders is a list 

of nodes that the buffering request would not be sent. Also a modification on the 

algorithm is done for this purpose: when a buffering request is received, if the long-term 

buffer contains the corresponding message and STL is zero, then STL value is set to its 

initial value so that a different node can buffer the next copy of the same message.  

 
Figure 6.21 Distribution of bufferers to domains for number of forwarders=1 
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The scattering ratio for the modified version is given in Fig. 6.22. In this case 

scattering ratio increases in general. On the other hand, the uniformity of the scheme 

slightly decreases when compared to the original case as given in Fig 6.23.    

 

Figure 6.22 Distribution of bufferers to domains for number of forwarders=15 

Figure 6.23 Comparison of buffering load with number of forwarders approach 
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Chapter 7 
 

RELIABILITY BOUND FOR  

STEPWISE FAIR-SHARE BUFFERING 

 

 

In this chapter, an analytical lower bound for reliability for each buffer size is 

obtained and compared with simulations. A Markov chain formulation is considered for 

finding the distribution of the dissemination time. Clearly, if the buffering time of a 

message is longer than its dissemination time, it can be safely discarded. In a random 

environment, the probability of this event represents the reliability of dissemination. 

The main feature of Stepwise Fair-share Buffering is its long-term buffer 

mechanism and one of the major aims is providing reliability. In the experimental 

analysis of Chp. 6, the minimum long-term buffer requirement of the fair-share scheme 

is found for different networks and network conditions. In this section, a Markov Chain 

model is developed to find the buffer requirement of the peers. First mathematical 

preliminaries that are needed for the analysis are provided. Secondly, the details of the 

analytical model for the scheme are described. Then, a comparison of analytical work 

with the simulation results is given. 

 

7.1 Markov Chains and Time to Absorption 

 
A Markov chain { Xn : n≥0} is a stochastic process with a countable state space 

J Z+⊂  that has the following property: 

 1 0 0 1 1 1[ | ,..., , ] [ | ]n n n n n n ijP X j X i X i X i P X j X i P+ − − += = = = = = = =       (1) 

0 1,..., , ,ni i i j J− ∈  and  0,1,...n =     
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where the random variables Xn denote the states of the Markov Chain. The transition 

probabilities from one state to another are given by the transition probability matrix 

P=[Pij] which is a square matrix, 0≤ Pij ≤1 ,i j J∈  and  

          
0

1  ij

j

P i J
∞

=

= ∈∑                 (2) 

The states of a Markov Chain are classified according to the accessibility from one 

to another. A state i is an absorbing state if Pii=1. Such states do not communicate with 

the other ones namely if the process enters an absorbing state it cannot leave the state. A 

state i is a transient state if 1 1 0[ , ,..., | ] 1n nP X i X i X i X i−= ≠ ≠ = < , namely there is a 

non-zero probability that the process will never visit state i. A state is recurrent if 

1 1 0[ , ,..., | ] 1n nP X i X i X i X i−= ≠ ≠ = = . This means that the state will be revisited again 

in the future.  

The transition matrix P of an absorbing Markov chain with t transient states and r 

absorbing states can be written in the form of a fundamental matrix such that  

          
0

Q R
P

I

 
=  

 
                          (3) 

where Q is a t by t matrix that consists of the transient states, R is a r by r matrix that 

consists of the absorbing states. 0 is the zero matrix that is t by r and I is the r by r 

identity matrix.  

The probability mass function f, the cumulative distribution function F and the 

expected value µ of the time to absorption of a Markov chain containing absorbing 

states can be found explicitly as  

    0

1

0
( )

1k

k
f k

Q R k

β
β −

=
= 

≥
             (4) 

    0( ) 1 0kF k Q e kβ β= + − ≥             (5) 

     ( ) 1
I Q eµ β −

= −             (6) 
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where k Z+∈  denotes the time to absorption, β0 and β denote the probability and the 

probability vector that the Markov Chain starts at the absorbing and transient states, 

respectively, and e is the vector consisting of all 1’s [35,36].  

 

7.2 Reliability Bound for Stepwise Fair-share Buffering 

 
In this section, the details of the analytical model that have been developed for the 

buffering scheme are explained. Let α denote the message generation rate of the source 

node, λ denote the rate of receiving a new message to be buffered, n denote the number 

of nodes in the system, B denote the size of the long-term buffer of a node (namely 

number of messages in the long-term buffer when the buffer is full) and T denote the 

time that passes for one message to reach all the nodes. Our aim is to find the minimum 

buffer size B that guarantees reliable delivery of a message to all nodes.  

Let the rate of receiving a new message to buffer be denoted by λ for a given node. 

Then, we can approximate the expected time between two buffer updates by 
1

λ
. Since 

FIFO replacement scheme is used in Stepwise Fair-share Buffering, a message that has 

been recently received will be dropped from the buffer if B new messages are received 

after the reception of that message as illustrated in Fig. 7.1.  

 

 So, the expected waiting time of one message in the long-term buffer of a node can be 

approximated as: 

           
1

W B
λ

= ⋅               (7) 

Figure 7.1 FIFO replacement scheme 
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By virtue of the results obtained in the experiments, it can be assumed that load of being 

bufferer is distributed uniformly to all n nodes. Thus, the rate of being bufferer can be 

computed as:  

        
n

α
λ =          (8) 

Therefore, in view of (7) and (8) the average waiting time of one message in the long-

term buffer of a node becomes 

             
n

W B
α

= ⋅                (9) 

To provide perfectly reliable dissemination, the waiting time of one message in the 

long-term buffer of a node should be greater than the time T that passes for one message 

to reach all the nodes. That is, we must have W T≥ in order to have a reliable 

dissemination. Approximating the waiting time in the buffer as a deterministic quantity 

with its average value (9), we require [ ]
Bn Bn

F P T
α α

  = < 
 

 to 1 or very close to 1. 

Clearly this serves as a lower bound for reliability in presence of short-term buffers. 

Hence, the missing part is the computation of F. For this purpose, a Markov Chain 

model is developed for epidemic dissemination of messages. Suppose that the states of 

the Markov chain {Xt : 0 ≤ Xt ≤ n , t = 0,1,2,… } are defined as the number of infected 

nodes for one message in the system at time t. The transition probabilities from one 

state to another will be determined by the epidemic mechanism. This is an absorbing 

Markov chain and absorbing state is the total number of nodes n. Therefore, the results 

in (4) , (5) and (6) will be used to find the distribution of T.   

Exact transition probabilities for different epidemic dissemination models are 

obtained in [37]. The models are pull, push and hybrid. In the pull model, an infectious 

peer selects a susceptible peer randomly and sends its digest message to a susceptible 

peer. In the push model, the process is the reverse namely a susceptible peer selects an 

infectious peer randomly and sends its digest message to the infectious peer. The hybrid 

model is the combination of these two models. In the analytical analysis below, push 
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model is used. In the push model, the transition probability that there will be j infected 

nodes at the next stage when there are k infectious peers at present is found as: 

       1

( 1)

[ | ]
( 1)

j k n j

kj t t n k

n k
k n k

j k
P P I j I k

n

− −

+ −

− 
− − − = = = =

−
, j=1,2,…,n-k              (10) 

Using this information the matrices Q and R are constructed and used in Equation (5). 

The cdf 0( ) 1 kF k Q eβ α= + − , is evaluated for 
Bn

k
α

 =   
 because k should be an 

integer. In this model β which is the probability vector that the Markov chain starts at 

the transient state is (1,0,…,0) since initially only the source node has the copy of the 

message and β0 which is the probability that the Markov chain starts at the absorbing 

state is 0. Then, the following result is obtained: 

  [ ] [ ]
1

1
1

1 1 0 ... 0 1 ... 1 1
BnBn n

T

j

j

Bn
F Q Q

αα

α

 
  

  −
  

=

  = − = − 
 

∑        (11) 

 Therefore,
Bn

F
α

 
 
 

 is equal to 1 - (sum of the first row of 
Bn

Q α
 
   ) . Using this 

information the minimum buffer size B needed for reliable dissemination is computed 

for each level of reliability. 

The transition probability that is given in (10) for push model uses the assumption 

that the fan-out parameter is 1. For fan-out parameter f greater than 1, the transition 

probability that is computed in [38] is used. It is given by 

    1

j k n j

kj

n k n k

n k f f
P

n nj k

f f

− −
− −      

      −        = − ⋅     −     
      

      

,  j=1,2,…,n-k     (12) 

with the slight correction that the susceptible peer can select peers among n-1 

possibilities excluding itself.  
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7.3 Comparison with Simulation Results 

 
In this section, the results obtained from the analytical model explained above are 

compared with the results obtained from the simulation of Stepwise Fair-share 

Buffering scheme. Reliability of the scheme with different buffer sizes in analytical and 

simulation results are compared. In the evaluations, there are 100 node in the system   

(n = 100), message generation rate α is 100 messages/sec. 100 simulations are 

performed for each point on the graphs and their average is taken.  

In Fig. 7.2, analytical and simulation results are compared when fan-out is 1. In 

other words, for the matrix Q the probabilities given in (10) are used. As it can be 

inferred from the figure, the results obtained from the analytical computations and 

simulations are close to each other for higher buffer sizes and different for the smaller 

buffer sizes.  The discrepancy occurs in small buffer sizes because, in the push model 

the nodes have full membership information and in the simulations the nodes have 

partial membership information. Besides, the waiting time 
Bn

α
 is only an average 

value. On the other hand, the analytical results are consistent with the simulation results 

for large reliability values. Therefore, the analytical model can be used for designing a 

highly reliable system.   
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The results are similar to f=1 case except that the reliability is achieved with a 

smaller buffer size since the increase in fan-out increases the speed of the epidemic 

spread. So, a message reaches all nodes in a shorter time period and smaller buffer size 

becomes enough in this case.  

 

In Fig. 7.4, the reliability computed by the analytical model is compared for 

different fan-out parameters.  As expected, if fan-out increases, the same buffer size 

provides more reliable dissemination. 

Figure 7.3 Reliability versus buffer size for model and simulation (f=3) 

Figure 7.2 Reliability versus buffer size for model and simulation (f=1) 
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 Figure 7.4 Comparison of the analytical results for different fan-out values 
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Chapter 8 
 

CONCLUSION AND FUTURE WORK 

 

 

In this thesis, buffer management problem for P2P epidemic information 

dissemination systems is investigated. Novel buffer management models are developed 

for these systems. Performance evaluation of these models is done using simulation and 

analytical models.  

The first model used is the Stepwise Probabilistic Buffering that distributes the load 

of buffering to the entire system where all peers have partial knowledge of the overlay. 

It reduces the memory usage; it is applicable to dissemination of data to a large group of 

peers where epidemic dissemination idea is used. In this study, the existence of an 

overlay among peers reflecting the properties of the underlying network topology is 

assumed, and transit-stub model is used which is a good approximation of the Internet 

topology. It is shown that Stepwise Probabilistic Buffering scheme distributes the 

buffering load to all peers, reduces the dissemination time and the buffer space of all 

data, and improves the utilization of buffers and the reliability of dissemination. 

A more robust scheme Stepwise Fair-share Buffering is developed to remove the 

inconvenience of the probabilistic algorithm for a large scale network where the 

computations of the probabilities are infeasible. Stepwise Fair-share Buffering provides 

a more uniform buffering load distribution among the peers. It is scalable, simple and 

applicable to any kind of underlying network topology. It does not impose additional 

overhead on the buffering request message still with only partial knowledge of the 

system.  As a result, the efficiency of content dissemination is improved.  

The performance of the buffering approaches has been evaluated through 

simulations. Hash-based buffering scheme and a completely randomized approach with 
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full membership information are used as benchmark for comparison. Stepwise Fair-

share Buffering performs well; it is scalable for large networks also in the case of any 

failures in the links. Thus, it can take place of the Hash-based buffering scheme. 

Analytical results for reliability of epidemic dissemination as a function of buffer 

levels are derived. These results are based on a Markov chain analysis and are evaluated 

numerically. Comparison with simulations of Stepwise Fair-share scheme shows that 

the analytical model provides a good lower bound for reliability. For high level of 

reliability values, the bounds are very close to the simulation results 

As future work, we aim to include link failures in the underlying network topology 

to the analytical model. In case of link failures, one bufferer will not be sufficient for 

reliable delivery of a message. We plan to compute the minimum number of bufferers 

required for reliability in this scenario and compare the analytical results with the 

simulations. 

In order to measure the accuracy of our simulator, an application can be developed 

and deployed on a set of testbed nodes.  Then, the simulation results for the buffering 

algorithms can be compared with those obtained from the testbed. 
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