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Koç University

August, 2007



Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Zeynep Akçay
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ABSTRACT

Fractional Brownian motion is a centered Gaussian process with stationary in-

crements that is stochastically self-similar. It is suggested as a model in various

disciplines, one of which is finance. Arbitrage is a trading strategy where positive

earning is guaranteed with no risk. It is not expected in fair markets. Despite the

fact that fractional Brownian motion allows for arbitrage, it has found a place in

finance by capturing the long-range dependence observed in stock prices.

We review the results recently obtained for arbitrage strategies when the stock

price process is based on fractional Brownian motion. These are fractional Bachelier

and fractional Black-Scholes models for the stock price or its logarithm. The sug-

gested modifications in the model or in the trading to avoid arbitrage opportunities

are analyzed. Existing stock price models which approximate a fractional Brownian

motion in the limit are also studied.

We construct two agent based stock price models as integrals with respect to a

Poisson random measure. These processes are analyzed as the trading occurs more

frequently and in smaller quantities. Fractional Brownian motion is obtained in the

limit in the sense of finite dimensional distributions. We show that our simplified

scaling is equivalent to time scaling used frequently for such limits.
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ÖZET

Kesirli Brown hareketi, duraǧan artışlara sahip ortalanmış, özbenzer bir Gauss

sürecidir. Pek çok disiplinde olduǧu gibi finans alanında da model olarak kullanılması

önerilmiştir. Arbitraj, risk almadan pozitif kazancın garanti edildiği bir alım satım

stratejisidir. Adil piyasalarda beklenilen bir olgu deǧildir. Kesirli Brown hareketi,

arbitraja izin vermesine raǧmen, hisse senedi fiyatlarındaki uzun sureli baǧımlılıǧı

modellemesi sayesinde finans alanında kendine bir yer edinmiştir.

Kesirli Brown hareketi temelli hisse senedi fiyatı modelleri için yakın zamanda bu-

lunmuş arbitraj stratejileri ile ilgili sonuçları gözden geçirmekteyiz. Bunlar, hisse

senedi fiyatı veya logaritmasi icin oluşturulmuş kesirli Bachelier ve kesirli Black-

Scholes modelleridir. Arbitrajı önlemek için alım satımda veya modellerde önerilen

deǧişiklikler incelenmiştir. Limitte kesirli Brown hareketine yaklaşan mevcut hisse

senedi modelleri de çalışılmıştır.

Poisson rastsal ölcüme göre integrallerden oluşan, çok sayıda acentaya dayanan iki

hisse senedi modeli kurmaktayız. Bu süreçler, alım satım sıklıǧının artması ve mik-

tarın küçülmesi durumlarında incelenmektedir. Sonlu boyutlu daǧılımlar anlamında,

limitte kesirli Brown hareketi elde edilir. Benzer limitlerde sıkça kullanılan zaman

ölçeklemesinin kullandıǧımız basitleştirilmiş ölçeklemeyle denk olduǧunu göstermekteyiz.
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perfect model for me in every aspect of life, my father Ali Rıza AKÇAY, who does
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ŞAHIN, Bilge ŞIPAL, my office mates Ahmet BATAL, Taylan BILAL, Ramazan
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Chapter 1

INTRODUCTION

Finding a stochastic process that fits best as a stock price process has occupied

many financial mathematicians for decades. Brownian motion and exponential Brow-

nian motion are the most common models. On one hand, they are preferred since they

model perfectly the fluctuations of price and do not allow arbitrage opportunities. On

the other hand, they are not the most suitable models since their increments are in-

dependent. This situation does not reflect the reality that stock price increments at

different times are dependent with each other. For this reason, a search for a better

model has continued.

Fractional Brownian motion (fBm) has recently been considered as a model for

stock prices [2, 8, 27, 37, 40]. Although it is known to allow for arbitrage and explicit

arbitrage strategies have been constructed, fBm models the long-range dependence

structure in the price process properly [5, 30].

Arbitrage is a trading strategy, in which positive earning is guaranteed without

taking any risk. The initial cost of the trading is zero, but the final result is a positive

gain. It occurs as a result of mispricing. It is an ”unfair earning”. Therefore, it is

not a desired event in economics. One of the first assumptions of economic theory

is that there is no arbitrage opportunity in the market. Therefore, in modeling the

stock prices, processes that lead to arbitrage are not preferred.

Brownian motion and geometric Brownian motion have widely been used as stock

price models [33, 42]. It is shown that since these processes are semimartingales

they do not allow arbitrage [14]. They are suitable to be used in modeling stock

prices from this perspective. On the other hand, they have independent increments
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in contradiction to the observation that price at different times depend on each other

in real markets [5, 30]. Although fBm is not a semimartingale and cannot satisfy the

NFLVR property [13], it is suggested since its increments are dependent.

In addition to stochastic analysis, there are several studies that model stock prices

using deterministic approach in which the price is determined by the total demand

[15, 45, 20, 4, 6]. In some of these studies, the agents are considered to be in two

categories as chartists and fundamentalist, according to their trading behavior [18,

21, 23].

In this thesis, we first review and compare the results recently obtained on the

interplay of fBm and arbitrage. We start by giving necessary definitions and results

from Probability and Finance in Chapter 2. In Chapter 3, we study the stock price

models that are related with fBm. In [2], there are N types of agents in a stock price

model based on a semi-Markov process and the limit of the price process is found to

be an integral with respect to fBm under certain scaling. Another stock price model

is constructed with a Poisson shot-noise process in [27]. In this model, the price is

assumed to be determined by the shocks that fall in the market, such as a political

decision or some rumor concerning a merger. The limit is again found to be fBm.

Although these studies suggest fBm as a limiting model, there are two well known

stochastic models based on fBm. These are fractional Bachelier model

Xt = 1, Yt = Y0 + νt+ σBH
t , t ∈ [0, T ]

and fractional Black- Scholes model

Xt = ert, Yt = Y0e
(r+ν)t+σBHt , t ∈ [0, T ]

where X and Y denote the bond and stock price processes, respectively, BH
t is an

fBm, ν is a real constant and σ is a positive constant on a filtered probability space

(Ω,F , (F)t∈R+ ,P). Fractional Brownian motion’s increments are positively correlated

at different times for the Hurst index H ∈ (1
2
, 1). This case is suitable for reflecting

the positive correlation on prices. But fBm is not a semimartingale, therefore, an
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equivalent martingale measure cannot be constructed for it. This leads to the oppor-

tunity of arbitrage. Explicit arbitrage strategies have been constructed in fBm models

[1, 8, 37, 40]. We analyze and compare these strategies in Chapter 3. Modifications

to avoid arbitrage opportunities in the model or trading are suggested in [8, 37]. We

will also review these suggestions.

In Chapter 4, we construct two agent based stochastic models for stock price

processes. In these models, every buy and sell order for a stock causes an increase or

a decrease in the logarithm of its price. These effects are aggregated and determine

the price by the following relation

X(t) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

(g(t− s, u, q)− g(−s, u, q))N(ds, du, dq) t ≥ 0.

where X(t) denotes the logarithm of the price, N is a Poisson random measure and

g is the effect function, also called a pulse, depending on the arrival time, amount of

the order and duration which are random. We analyze the scaling of these processes

as the trading occurs more and more frequently and in smaller and smaller quantities

so that the limit is a fBm.

The models which result from aggregating effects and approximate fBm have been

well studied [9, 10, 27, 25]. They are used for modeling stock prices [27], internet

traffic [10] and telecommunication processes [25]. In these studies, processes that

are obtained by aggregating the effects of some type of pulses are analyzed. Arrival

of these pulses constitutes a Poisson process in all of them. The pulses which are

generated according to a compound Poisson process are studied in [10] and in [25].

Also the kind of pulses that are generated continuously by a constant random rate are

studied in [25]. The effects do not vanish in time and there are no negative effects.

Every pulse that is born after time 0 is taken into consideration. Hence, the mean

value of the process increases to infinity as t tends to infinity. Therefore, to calculate

the limit of the process, first the mean is subtracted. On the other hand, pulses

whose effect vanish in a random amount of time are studied in [9]. Two kinds of

pulses are considered. In this case, the expected effect is simply zero and the mean

need not be subtracted. In [27], on the other hand, Poisson shot-noise processes in
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which the pulses have effects that last forever are studied. In this case, the pulses

come with a jump and decrease from that time onwards exponentially. In this case,

all of the pulses that were born before time t are considered. From this value, the

total value of pulses that are alive at time 0 are subtracted. When a pulse is born,

its effect never dies. The pulses can take positive and negative values coming from a

symmetric probability distribution, therefore the mean value stays at 0.

We study two kinds of pulses that are effective on the logarithm of the stock

price. One is the case studied in [9], and the other is studied partly in [25]. In both

situations, the pulse changes the price continuously. It does not cause a jump in the

price. In the first case, the effect can be of many different shapes satisfying certain

conditions. One example to this is the case when the effect increases in the beginning

and then decreases linearly until it takes back its effect totally in a finite amount

of time. This kind of pulses help us model the following situation. If a buy order

comes to the market, it causes the price increase for some amount and then when

its effect vanishes after a period the price falls back to its previous value. Even if

there are only buy orders for the stock, this will not cause a continuous increase in

the price. The effects vanish and the price before the order arrival is reached again.

In the second case, the effect of the pulse increases linearly and takes its maximum

value at the instant it dies. If a buy order comes to the market, it causes the price

increase some amount and then when its effect vanish in some period the price will

stay at this higher value and will not fall back to its previous value. So, in this case,

if there are only buy orders for the stock, the price will continuously increase since

these effects will never vanish. Therefore, we impose that the buy and sell orders come

from a symmetric distribution to have the mean stay at 0. However, the positive and

negative effects need not be symmetric for the mean of the price stay unchanged in

the first case. This is due to the vanishing effects of the pulses.

A type similar to ours is studied in [25]. Our model differs from [25] since only

positive effects are considered in [25] and then the mean needs to be subtracted to

analyze the asymptotic behavior of the process. We let the pulses take both positive
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and negative values coming from a symmetric distribution and hence we do not need to

subtract the mean to approximate an fBm which is always zero. Also in [27], effects

having positive and negative values from a symmetric distribution are considered.

Our model differs from it in the sense that our pulses have finite lifetime, whereas the

lifetime is infinite in [27].

Our study also contributes to the unification of the various scalings for an fBm

limit by reviewing their equivalence. Namely, all such scalings boil down to increasing

the arrival rate of Poisson events as well as decreasing the quantity. Chapter 5 includes

these conclusions and summarizes our findings on arbitrage strategies and fBm.
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Chapter 2

PRELIMINARIES

In this chapter, we give some facts from probability theory and finance that are

necessary for the development of the other chapters. Then, we state some definitions

from probability in Section 2.1 ,and from finance in Section 2.2. Finally, Section 2.3

covers some fundamental theorems about asset pricing and two examples.

2.1 Probability Preliminaries

Recall that a probability space (Ω,F ,P) is a special measure space [12] where the

measure has total mass 1. The subsets of Ω which belong to the σ-algebra F are called

events. A probability space is complete if all subsets of the events with probability

0 are in the σ-algebra. A real-valued random variable X : Ω → R is a mapping

such that {ω ∈ Ω : X(ω) ≤ x} is an event for each x ∈ R and a stochastic process

X = {Xt : t ∈ R} is a collection of random variables.

We begin with some definitions from [12]. Expectation notion is equivalent to

integration in measure theory. The integral of a measurable function X with respect

to a probability measure P corresponds to the expected value of X with respect to

that probability measure. The precise definition is given below.

Definition 2.1.1 Let X be an R valued random variable on (Ω,F ,P). We call its

integral with respect to the measure P, expected value of X and denote by any of

the following:

EX =

∫
Ω

P(dω)X(ω) =

∫
Ω

XdP.

If we have more that one probability measure on a measurable space (Ω,F) then we

denote the expectation with respect to the probability measure P as EP.
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The characteristic function ϕX of a random variable X is defined [24] on R as

ϕX = EeiuX .

The characteristic function of a random variable is its Fourier transform and it always

exists. As in ordinary functions, there is a one to one correspondence with the space

of random variables and their characteristic functions. Therefore, a characteristic

function is sufficient to characterize the probability distribution of a random variable.

We continue with the definitions of random measures and Poisson random mea-

sure.

Definition 2.1.2 Let (Ω,F ,P) be a probability space and (Ψ,G) be a measurable

space. A mapping N : Ω × G → R+ is called a random measure on (Ψ,G) if

ω → N(ω,A) is a random variable for each A ∈ G and A → N(ω,A) is a measure

on (Ψ,G) for each ω ∈ Ω.

Definition 2.1.3 Let µ be a measure on (Ψ,G). A Poisson random measure

(Prm) with mean µ on (Ψ,G) is a random measure on (Ψ,G) with the properties

a)for every A ∈ G, the random variable N(A) has the Poisson distribution with

mean µ(A),

b) whenever A1, . . . , An are in G and disjoint, the random variables N(A1), . . . , N(An)

are independent, for every n ≥ 2.

Let G+ denote all G-measurable functions on (Ψ,G) taking values in R+. For each

f ∈ G+, the Prm N defines a positive random variable N f with the relation

Nf(ω) =

∫
Ψ

N(ω, dx)f(x), ω ∈ Ω.

The expected value of this random variable is given by

EN f = µ f, (2.1)

its variance by

VarN f = µ (f 2)− (µ f)2, (2.2)
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and its characteristic function by

E eiN f = eµ(1−e−if ). (2.3)

We define convergence in probability below which is the same as convergence in

measure. This mode of convergence is central to much of modern stochastics. Stochas-

tic calculus and stochastic differential equations employ convergence in probability as

their basic mode of limit taking.

Definition 2.1.4 The sequence (Xn) is said to converge to X in probability if, for

every ε > 0,

lim
n→∞

P{|Xn −X| > ε} = 0.

We now give some definitions from [11] that are the building blocks of stochastic

calculus.

Definition 2.1.5 A random vector X = (X1, . . . , Xn) taking values in Rn is said

to be Gaussian provided that every possible linear combination of X1, . . . , Xn is

Gaussian. Let X = {Xt : t ∈ R+} be a stochastic process with state space R. It is

said to be a Gaussian process if the vector (Xt1 , . . . , Xtn) is Gaussian for every

choice of the integer n ≥ 1 and times t1, . . . , tn.

Definition 2.1.6 Let (Ω,F ,P) be a probability space. For each t ∈ R, let Ft be a

sub-σ-algebra of F . If

i) Fs ⊂ Ft for s ≤ t,

ii) Ft = ∩ε>0Ft+ε for every t and

iii) F0 contains all the P-null sets of F

then the family (Ft) ≡ {Ft : t ∈ R} is called a filtration. We refer to a probability

space (Ω,F , (Ft),P) satisfying these conditions as a filtered, complete probability space

satisfying the usual hypothesis. Let {Xt : t ∈ T} be a stochastic process. Let (Ft) be a

filtration such that Ft is the smallest σ-algebra that contains all the sets {Xt ≤ r} for

s ≤ t and r ∈ R. Then (Ft) is said to be the filtration generated by the process

X.
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Sometimes we need a different index set than R, and denote it by T. Then, the

notation (Ft)t∈T is used.

Definition 2.1.7 Let (Ft) be a filtration. Let X be a stochastic process. Then X is

said to be adapted to (Ft) if Xt is measurable with respect to Ft for each t. A random

time T : Ω→ R is said to be a stopping time of (Ft) if the process t→ 1[T,∞)(t) is

adapted to (Ft).

Definition 2.1.8 Let (Ω,F , (Ft),P) be a filtered probability space. The real-valued

process M = (Mt)t∈R is said to be a martingale with respect to the filtration (Ft)

provided that

a)M is adapted to (Ft),

b)Mt has a finite mean for each t,

c)for every s ≤ 0 and t > s,

E[Mt −Ms|Fs] = 0.

The process M = (Mt)t∈R is called a supermartingale if c) is replaced by E[Mt −

Ms|Fs] ≤ 0, and a submartingale if c) is replaced by E[Mt −Ms|Fs] ≥ 0.

Definition 2.1.9 A stochastic process X on Rn is stochastically continuous or

continuous in probability if, for every t ≥ 0 and ε > 0,

lim
s→t

P{|Xs −Xt| > ε} = 0.

The pth variation of a function X can defined as

lim
n→∞

2n−1∑
k=0

∣∣∣∣X (k + 1

2n
t

)
−X

(
k

2n
t

)∣∣∣∣p .
If X is a random variable, we consider the behavior of its sample paths, that is for

ω ∈ Ω, we evaluate a.s.

lim
n→∞

2n−1∑
k=0

∣∣∣∣X (ω, k + 1

2n
t

)
−X

(
ω,

k

2n
t

)∣∣∣∣p
The cases p = 1 and p = 2 are called the variation and the quadratic variation of

X, respectively. If the variation of X is finite, X is said to have finite variation.
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Definition 2.1.10 Let (Ft) be a filtration and let M = (Mt) be a continuous process

adapted to (Ft). Then, M is said to be a local martingale if there exists a sequence

of stopping times Tn with limn→∞ Tn = ∞ such that {Mt∧Tn : t ∈ R+} is a bounded

martingale for each n. We shall call a continuous process X a Stieltjes process if,

for almost every ω, the path t → Xt(ω) has finite variation over finite intervals. A

continuous process X is called a semimartingale if it can be decomposed as

X = M + V

where M is a local martingale and V is Stieltjes.

We can now describe stochastic integration. Let (Ft) be a filtration on some

probability space (Ω,F ,P). Let X be a continuous semimartingale, and F be a

continuous process both adapted to (Ft). Let σ be a subdivision of R+, that is, σ is

a sequence of times 0 = t0 < t1 < t2 < . . . with limn→∞ tn = ∞. We let ||σ|| denote

the mesh of σ, that is, ||σ|| = supi∈Z |ti+1 − ti|. We define

Fσ(ω, t) = F (ω, ti) for ti < t ≤ ti+1.

Thus, for each ω, the function t → Fσ(ω, t) is a left-continuous step function. For

such a function, we define the integral

Yσ(ω, t) =

∫
(0,t]

Fσ(ω, s)dX(ω, s) (2.4)

in the fashion

Yσ(ω, t) = F (ω, ti)
[
X(ω, t)−X(ω, ti)

]
+

i−1∑
j=0

F (ω, tj)
[
X(ω, tj+1)−X(ω, tj)

]
for ti < t ≤ ti+1. In this manner, for each subdivision σ, the integral (2.4) yields

a continuous process {Yσ(t) : t ≥ 0}, which is an integral in all possible senses of

the term. As ||σ|| → 0, it is clear that the paths s → Fσ(ω, s) approach the path

s → F (ω, s). Hence, if the process Yσ converges to some process Y in a reasonable

sense, then we call Y the integral of F with respect to X. This is accomplished by

the next theorem.
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Theorem 2.1.11 There exists a unique process Y such that

lim
||σ||→0

P{ sup
0≤s≤t

|Yσ(s)− Y (s)| > ε} = 0 (2.5)

for every ε > 0 and t <∞.

Definition 2.1.12 We define the stochastic integral of F with respect to X to be

the unique process Y described in Theorem 2.1.11 , that is, we set∫ t

0

FdX = Y (t), t ∈ R+.

The following is the simplest version of Itô’s Formula. The general ones can be

found in [11].

Theorem 2.1.13 (Itô’s Formula) Let X be an R-valued continuous semimartingale

adapted to the filtration (Ft). For f ∈ C2, f(X) is a semimartingale and

df(X) = f ′(X)dX +
1

2
f ′′(X)dX dX

where dX dX is a notation for dQ where Q is the quadratic variation process for X.

2.2 Definitions in Finance

An investment instrument that can be bought and sold is frequently called an asset.

Examples of an asset is cash, real estate and other properties that are owned by an

individual or corporation which have economic value and could be converted to cash.

A security is an asset which is not a real good in the sense of having intrinsic value

but instead is traded in the financial markets only as pieces of paper, or as entries in

a computer database. Risk is defined as the uncertainty contained in the value of an

asset, in mathematical terms, an asset is a non-risky asset if its value is deterministic,

and it is a risky asset, if its value follows a stochastic process [31].

We assume that we are given a complete probability space (Ω,F ,P) on which

we will define the financial market. Let T be a time set. We will either have T =
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{0, 1, . . . , T} or T = [0, T ], where the points of T are the trading dates and T is the

terminal date of the economic activity being modeled [16].

A derivative or contingent claim is a security whose value or pay off de-

pends on the value of some underlying security. The underlying security on which a

derivative is based on could be a security in a financial market, such as a stock, bond

or a derivative itself. There are many types of contingent claims in financial markets.

We will only focus on European contingent claims with the following definition

[46].

Definition 2.2.1 A European contingent claim H is an FT measurable random vari-

able.

A European contingent claim is defined as the pay off or the value of a security

which is itself referred as the contingent claim in general. An example of a European

contingent claim is an option which is the right, but not the obligation, to buy (or

sell) an asset under specified terms [31]. The specifications include a description of

what can be bought or sold, the period of time for which the option is valid and the

exercise price, or strike price, which is the price at which the asset can be purchased

upon exercise of the option, denoted by K below. An option which gives the right to

purchase something is called a call option, whereas an option that gives the right to

sell something is called a put option. Usually an option itself has a price referred as

the option premium, denoted by C below. A European call option with strike price

K ∈ (0,∞) and expiration date T for a stock Y is represented by H = (YT −K)+.

We fix a natural number d, the dimension of the market model which is the number

of different risky assets that are tradable. We assume that (St)t∈T = (Xt, Y
1
t . . . , Y

d
t )t∈T

represents the time evolution of securities price process [16]. The process Xt de-

notes the price process of the riskless asset which is bond (or bank account) while

Y 1
t , Y

2
t , . . . Y

d
t , denote the price processes of the risky assets (for example stocks) at

time t. We assume that the information structure available to the investors is given

by the filtration (Ft) on (Ω,F ,P) where Ft = σ(Su : u ≤ t) and without loss of gen-

erality we will assume F = FT . We call the tuple (Ω,F ,P,T, (Ft), S) the securities
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market model [16]. In some cases we will need trading to be available only in bond

and the stocks. In this case, we call the model the primary market model.

We denote the interest rate with r > 0, and the discount factor with β. The

relation between these is given by β = (1 + r)−1 for discrete time trading and by

β = e−rt for continuous time trading. We denote the discounted process βX with X̄.

We require at least one of the processes to be strictly positive throughout, known

as the numéraire. Numéraire is any process Z with Zt > 0 ∀t ∈ T. It is the unit in

which prices are measured. It may be a currency, but in real models, the numéraire

is usually one of the goods such as a bond whose price is then set at 1 [16]. Without

loss of generality, we will in general assume X0 = 1 so that the initial value of X

yields the units relative to which all other quantities are expressed. The following

two definitions can be found in [16].

Definition 2.2.2 In a d-dimensional securities market or primary market, an in-

vestor’s portfolio at time t ∈ T is given by the Rd+1-valued random variable θt =

(θit)0≤i≤d which shows the amounts held in the assets during the time interval (t−1, t]

for t ∈ T = {0, 1, . . . , T}, t ≥ 1 or during the time interval (s, t] for s, t ∈ T =

[0, T ], 0 ≤ s ≤ t ≤ T . The stochastic process θ = {θt : t ∈ T} is called the trading

strategy.

In the above definition, θ0 represents the amount held in the bond while θ1, . . . , θd

represent the amount held in the risky assets. The following are some definitions

concerning the trading strategies [8].

Definition 2.2.3 Let a = τ1 ≤ . . . ≤ τn = b and {τj}nj=1 be (Ft)-stopping times.

Let g0 be an R-valued, Fa-measurable random variable and {gj}nj=1 are R-valued, Fτj -

measurable random variables for n ≥ 2.

i) The set of simple predictable integrands is given by

S((Ft)) :=
{
g01{a} +

∑n−1
j=1 gj1(τj ,τj+1]

}
. The set of simple predictable trading

strategies is given by ΘS((Ft)) := {θ = (θ0, θ1) : θ0, θ1 ∈ S((Ft))}.

ii) The set of almost simple predictable integrands is given by
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aS((Ft)) :=
{
g01{a} +

∑∞
j=1 gj1(τj ,τj+1] : P{∃ j such that τj = b} = 1

}
The set of al-

most simple predictable trading strategies is given by

ΘaS((Ft)) := {θ = (θ0, θ1) : θ0, θ1 ∈ aS((Ft))}.

Definition 2.2.4 The value process or the investor’s wealth of a trading strategy

θ ∈ ΘS at time t ∈ T = {0, 1, . . . , T} is denoted by Vt(θ) which is given by

V0(θ) = θ1 · S0,

Vt(θ) = θt · St = θ0
tXt +

d∑
i=1

θitY
i
t (t ∈ T, t ≥ 1).

where (·) denotes the usual dot product in Rd+1. The gains process associated with

θ is defined as

G0 = 0, Gt(θ) = θ1 ·∆S1 + θ2 ·∆S2 + . . .+ θt ·∆St

where ∆Zt = Zt − Zt−1 for any function Z on T.

We now define the replication strategy for a European contingent claim H below

[46].

Definition 2.2.5 A replicating strategy in the primary market for a European

contingent claim H is a trading strategy θ ∈ ΘS such that VT (θ) = H a.s. If there

exists such a replication strategy, the contingent claim is said to be attainable.

We define an important notion about trading strategies in the following definition

[16].

Definition 2.2.6 A trading strategy θ ∈ ΘS (resp. θ ∈ ΘaS) in the securities market

is self-financing if any changes in the value Vt(θ) result entirely from net gains (or

losses) realized on the investments. The set of simple simple self-financing trading

strategies are denoted by ΘS
sf (resp. ΘaS

sf ).

For the discrete time set T = {0, 1, . . . T} we have the following explanation. The

value of the portfolio after trading has occurred at time t and before stock prices at



Chapter 2: Preliminaries 15

time t+ 1 are known is given by θt+1 · St. If the total value of the portfolio has been

used for these adjustments, in other words, there are no withdrawals and no new

funds are invested, then this means that for all t = 1, 2, . . . , T − 1

θt+1 · St = θt · St. (2.6)

Using this equality for the calculation of the change in the value, we have

∆Vt(θ) = θt · St − θt−1 · St−1

= θt · St − θt · St−1 = θt ·∆St (2.7)

We therefore see that θ is self-financing if and only if

Vt = V0(θ) +Gt(θ) for all t ∈ T. (2.8)

where G is the gains process in Definition 2.2.4.

The continuous-time analogue of the self-financing condition is [46]

Vt(θ) = V0(θ) +

∫ t

0

θ0
sdXs +

∫ t

0

θ1
sdY

1
s + · · ·+

∫ t

0

θdsdY
d
s (2.9)

or

dVt(θ) = θ0
sdXs + θ1

sdY
1
s + · · ·+ θdsdY

d
s .

Thus, for both discrete and continuous cases, changes in the value Vt(θ) of the portfolio

result only from changes in the values of the assets so that there is no external infusion

of capital and no spending of wealth. We denote the set of all self-financing strategies

by Θ.

Definition 2.2.7 We call a trading strategy θ ∈ ΘS
sf (resp. θ ∈ ΘaS

sf ) admissible if

Vt(θ) ≥ 0 for all t ∈ [0, T ].

We denote the set they define with ΘS
adm (resp. ΘaS

adm). Furthermore, for c ≥ 0, we

call θ ∈ ΘaS
sf c-admissible if

inf
t∈[0,T ]

(Vt(θ)− V0(θ)) ≥ −c a.s.
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We now give the definition of an equivalent martingale measure which plays a

fundamental role in the analysis of arbitrage properties of financial markets [46].

Definition 2.2.8 Two probability measures, P and Q, defined on Ω,F are equivalent

provided for each A ∈ F , Q(A) = 0 if and only if P(A) = 0. An equivalent

martingale measure (EMM) (resp. equivalent local martingale measure) is a

probability measure Q on (Ω,F) such that Q is equivalent to P and the discounted

price process (Ȳ )t∈T is a martingale (resp. local martingale) under Q.

We now give the following definitions of arbitrage and related terms in continuous

markets from [8] with obvious simplifications.

Definition 2.2.9 Let the time set be either T = [0, T ] or T = {0, 1, . . . , T} and ξ be

a [0,∞]- valued random variable with P{ξ > 0} > 0.

i) A sequence of trading strategies {θ(n)}∞n=1 is a FLVR (free lunch with vanishing

risk) if

lim
n→∞

(VT (θ(n))− V0(θ(n))) = ξ in probability

lim
n→∞

∣∣(VT (θ(n))− V0(θ(n)))−
∣∣ = 0.

The sequence {θ(n)}∞n=1 is also called ξ-FLVR when ξ is to be indicated.

ii) A trading strategy θ is an arbitrage if VT (θ) − V0(θ) = ξ a.s.. The strategy θ is

also called a ξ−arbitrage when ξ is to be indicated.

iii) A trading strategy θ is a strong arbitrage if there exists a constant c > 0 such

that VT (θ)− V0(θ) ≥ c a.s..

The definition of arbitrage in the securities market is usually given as a trading

strategy θ ∈ Θas
adm such that

V0(θ) = 0 and E[VT (θ)] > 0 (2.10)

which is equivalent to what we have described in Definition 2.2.9. These definitions

state that arbitrage is a trading strategy in which the initial value is zero, the value

always stays positive and it has a nonzero expectation. The price of an asset in
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a securities market is said to be arbitrage free if no arbitrage strategy can be

constructed by using this asset. The securities market is called arbitrage free, if all

the assets have arbitrage free prices.

We now define Brownian motion [35]. Next, we state a result frequently referred

as Girsanov Theorem or Girsanov Transformation below [16]. This theorem will be

used in deriving the Black-Scholes option pricing formula below.

Definition 2.2.10 An adapted stochastic process B = (Bt)0≤t<∞ taking values in Rn

is called an n-dimensional Brownian motion (Bm) if

(i) for 0 ≤ s < t <∞, Bt −Bs is independent of Fs ;

(ii) for 0 < s < t, Bt−Bs is a Gaussian with mean zero and variance matrix (t−s)C,

for a given, non random matrix C.

A Bm has continuous sample paths. When C = I, the identity matrix, and B0 = x

for some x ∈ Rn, we call it a standard Brownian motion.

Theorem 2.2.11 Suppose (θt), t ∈ [0, T ], is an adapted measurable process such that∫ T
0
θ2
sds < ∞ a.s. and also so that the process Λt = exp(−

∫ t
0
θsdBs − 1

2
θ2
sds) is an

(Ft,P) martingale where B denotes one dimensional Brownian motion. Define a new

measure Qθ on FT by putting
dQθ

dP
|FT = ΛT .

Then the process Wt := Bt +
∫ t

0
θsds is a standard Brownian motion on (Ft,Qθ).

2.3 Pricing Stock Options

In this section, we first give an example of single period Binomial market model. Next,

we state the fundamental theorems of asset pricing. We then consider the problem of

pricing an option that would not allow arbitrage opportunities. We will demonstrate

the connection between the fair price, in other words the arbitrage-free price of a

European call option and a replicating portfolio with an example. Finally, we derive

the Black-Scholes option pricing formula.
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Let (Ω,F ,P,T, (Ft), S) be a two dimensional market composed of a bond X which

is the numèraire, a stock Y and a European contingent claim H. We take T = {0, 1}.

We will find a replicating strategy θ = (θ0, θ1) in the primary market for the given

European contingent claim H according to Definition 2.2.5. In other words, we seek

θ0, θ1 ∈ R such that

V1 = θ0X1 + θ1Y1 = H. (2.11)

The price process Y of the stock is as follows. At time 0, Y0 is known and Y1 is

random with the probabilities

P{Y1 = uY0} = p and P{Y1 = dY0} = 1− p

for some p ∈ (0, 1) and 0 < d < r < u where r is the interest rate. This is called a

Binomial model. Denoting by Hu and Hd the value of H when Y1 = uY0, the ”up”

price, and Y1 = dY0, the down price, respectively. We take X0 = 1 since it is the

numéraire. By Equation (2.11) we must have

θ0(1 + r) + θ1uY0 = Hu (2.12)

θ0(1 + r) + θ1dY0 = Hd. (2.13)

Solving for θ0, θ1 yields

θ0 =
1

1 + r

(
uHd − dHu

u− d

)
, (2.14)

θ1 =
Hu −Hd

(u− d)Y0

. (2.15)

The initial value of this strategy which is the wealth needed to finance the strategy is

V0(θ) = θ0X0 + θ1Y0

=
1

(1 + r)(u− d)

(
(1 + r − d)Hu + (u− (1 + r))Hd

)
=

1

1 + r

(
qHu + (1− q)Hd

)
= EQ[H̄], (2.16)

where Q is the equivalent martingale measure for H with

Q{YT = uY0} = q =
1 + r − d
u− d

. (2.17)
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We will now state a theorem that gives the arbitrage-free price of a European

contingent claim. For this purpose let θ = (θ̃0, θ̃1, θ̃2) be a portfolio in the securities

market according to Definition 2.2.2 where the F0-measurable random variables θ̃0,

θ̃1, and θ̃2 represent the number of units of the bond, shares of stock and units of the

contingent claim held over (0, 1] respectively. The initial and time 1 values of θ are

respectively V0(θ) = θ̃0X0 + θ̃1Y0 + θ̃2C and V1(θ) = θ̃0X1 + θ̃1Y1 + θ̃2H by Definition

2.2.4 where C is the price of the contingent claim. We now state the theorem.

Theorem 2.3.1 V0 = EQ[βH] is the unique arbitrage free price for the contingent

claim H where Q is defined by (2.17).

Proof: Let θ = (θ0, θ1) denote the replicating strategy in the primary market for the

contingent claim H given in Equations (2.14) and (2.15).

We will first show that there is an arbitrage opportunity in the securities market

if the price C of the contingent claim is different than V0.

Suppose that C > V0. Then an investor could sell one contingent claim (θ2 = −1)

for C, invest V0 in the replicating strategy θ = (θ0, θ1) and invest the remainder

C − V0, in bond. Thus, the trading strategy in the securities market would be θ̄ =

(θ0 +C−V0, θ
1,−1). By Equation (2.16) we obtain the value process for this portfolio

as follows

V0(θ̄) = θ0 + C − V0 + θ1Y0 − C = 0.

The value at time 1 is

V1(θ̄) = (θ0 + C − V0)X1 + θ1Y1 −H. (2.18)

But the strategy θ was chosen so that

θ0X1 + θ1Y1 = H, (2.19)

and so it follows that the value at time 1 of the portfolio is

(C − V0)X1 > 0 (2.20)
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showing that we have an arbitrage opportunity. For the case C < V0, if the investor

similarly uses the strategy (−θ0 + V0 − C,−θ1, 1) which is exactly -1 times θ̄ an

arbitrage with a total amount (V0 − C)X1 > 0 occurs. In either case, we would have

arbitrage opportunities if V0 6= C.

Conversely, if C = V0, then we will show that there is no arbitrage opportunity

in the securities market by contradiction. Assume that θ = (θ0, θ1, θ2) is a trading

strategy in the securities market with initial value V0(θ) = 0 and non-negative value

V1(θ) = θ0X1 + θ1Y1 + θ2H at time T . So we have

EQV1(θ) = (1 + r)θ0 + θ1EQY1 + θ2EQH

= (1 + r)θ0 + (1 + r)θ1Y0 + (1 +R)θ2C

= (1 + r)[θ0 + θ1Y0 + θ2C]

= (1 + r)V0(θ)

= 0,

where we have used the fact that θ0, θ1, θ2 are constants, the martingale property

of the discounted stock price process under the measure Q and the assumption that

C = V0 = EQ[H̄]. Thus, there cannot be an arbitrage opportunity. �

We now give two versions of the Fundamental Theorems of Asset Pricing related

with the no-arbitrage and completeness concepts of financial markets. Roughly speak-

ing, no-arbitrage principle is equivalent to the existence of a martingale measure for

the price process of the assets and completeness of the market is equivalent to the

uniqueness of this martingale measure.

We first state the first fundamental theorem of asset pricing for both discrete and

continuous time market models [46].

Theorem 2.3.2 There does not exist any arbitrage opportunities in the discrete time

market model if and only if there exists an equivalent martingale measure Q for the

price processes.

We will now give the general version of the previous theorem when the price

process is a semimartingale [13].
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Theorem 2.3.3 Let S be a bounded real valued semimartingale. There is an equiva-

lent martingale measure for S if and only if S satisfies NFLVR.

The previous theorem relates the existence of local martingales with the no FLVR

condition given in Definition 2.2.9. Now, we turn our attention to another important

property of financial markets: completeness. We define completeness as follows [28].

Definition 2.3.4 A financial market is complete if every contingent claim is at-

tainable.

We now state the second fundamental theorem of asset pricing again for discrete

and continuous time market models which relates the completeness concept of the

market with the uniqueness of martingale measures. We start with the discrete time

version.

Theorem 2.3.5 An arbitrage free discrete financial market is complete if and only

if it admits a unique equivalent martingale measure.

The continuous time version of this theorem is as follows.

Theorem 2.3.6 Suppose there is an equivalent martingale measure Q for the price

processes. Then, the following two conditions are equivalent.

(i) Q is the unique equivalent local martingale measure.

(ii) Every FT measurable random variable X satisfying EQ|X| <∞ is attainable.

We now give and analyze a numerical example of a single-term binomial model

[16, 46]. Let (Ω,F ,P,T, (Ft), S) be a two dimensional discrete time market model.

For simplicity, we set the interest rate r as zero. The time set is T = {0, 1}. There is

a bank account X0 = 1 that is used as a numéraire, and a stock Y and a European

call option H. The price process Y of the stock is as follows. Y0 = 10 and Y1 is

random with the probabilities

P{Y1 = 20} = p and P{Y1 = 7.5} = 1− p
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for some p ∈ (0, 1). Therefore, we find u = 20/10 = 2 and d = 7.5/10 = 0.75.

Let H be a given by H = (Y1 −K)+ where K = 15 is the strike price at time 1.

By the probability distribution of Y , we have

P{H = 5} = p and P{H = 0} = 1− p.

We look for an equivalent martingale measure Q on (Ω,F ,P,T, (Ft), S) which will

turn the process Y into a martingale and allow us to find the unique arbitrage free

price for H by Theorem 2.3.1. If Y is a martingale under the measure Q, then we

would have

EQ[Y1] = Y0. (2.21)

We take F0 = {∅,Ω} the trivial σ-algebra and F1 = σ(Y1). Putting the given data

into the Equation (2.21), we get

EQ Y1 = (20)Q{Y1 = 20}+ (7.5)Q{Y1 = 7.5}

= (20)Q ◦ Y −1
1 {20}+ (7.5)Q ◦ Y −1

T {7.5}

= 20q + 7.5(1− q) = 10.

Solving for q, we obtain the distribution of the equivalent martingale measure as

Q{Y1 = 20} = 0.2 and Q{Y1 = 7.5} = 0.8.

We now use this EMM to price the contingent claim. The price C of the option

must be equal to the expected value H with respect to the measure Q by Theorem

2.17. Therefore, the arbitrage-free price of the option is

C = EQ[H] = 5(0.2) + 0(0.8) = 1.

We will now calculate the replicating portfolio for this option to analyze the ar-

bitrage opportunities. Let θ = (θ0, θ1) be the replicating portfolio for the European

option, where θ0 is the amount of cash held and θ1 the number of shares of stock held

during the time (0, T ]. By Definition 2.2.4 the value of this portfolio is

Vt = θ0 · 1 + θ1 · Yt t = 0, 1.
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By Definition 2.2.6 this is a self-financing portfolio since θ0 and θ1 are fixed and

∆V = θ0 + θ1 · Y1 − (θ0 + θ1 · Y0) = ∆Y · θ1. We have the following equalities for the

gain and value processes.

G1 = θ1 ·∆Y V1 = V0 +G1. (2.22)

By the choice of the probability measure Q, we have

V0 = EQ V0 = EQ[V1 −G1] = EQ V1 − EQG1 = EQ V1,

where the last equality comes from the fact that EQG1 = EQ[θ1 ·∆Y ] = θ1 EQ[Y1 −

Y0] = 0 by Equations (2.21) and (2.22). We observe that V is also a martingale which

prevents any arbitrage opportunities, since for any portfolio with V0 = 0 we will have

EV1 = 0.

By Theorem 2.3.6, H is attainable and hence we can find θ = (θ0, θ1) consisting

of a bank account and the stock that replicates the option by Definition 2.2.5. For

example, using Equations (2.14) and (2.15) with u = 2, d = 0.75 we obtain θ0 = −3

and θ1 = 0.4.

We now describe the trading strategy consisting of bank account, stock and option

as in the setting of Theorem 2.3.1. Let θ̃ = (θ̃0, θ̃1, θ̃2) be the trading strategy by

Definition 2.2.2, θ̃0, θ̃1, θ̃2 denoting the amount of cash, number of shares of stocks

and number of units of options held, respectively.

Our portfolio is θ̃0 = (3,−0.4, 1) which is constructed by buying the replicating

portfolio and selling one unit of option which can be explained as

borrowing 3 dollars,

buying 0.4 stock shares with a cost of 4 dollars,

selling the option with a gain of 1 dollar.

Here, selling the option means promising to sell one share of the stock at 15 dollars at

time 1 which is a written contract containing this information, instead of the formal

Definition 2.2.1. Time 0 value of this portfolio is V0(θ̃) = 3 + (−0.4)10 + 1 = 0 by

Definition 2.2.4 for the securities market model.
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At time 1, either if Y1 = 20, then the holder will exercise the option and the value

of this portfolio will be V1(θ̃) = −3 + (0.4)20− 5 = 0 explained by

repaying 3 dollars,

selling the shares with a gain of 8 dollars,

the cost of 5 dollars of the exercised option.

Or else if Y1 = 7.5, the holder will not exercise the option and the value will be

V1(θ̃) = −3 + (0.4)7.5 + 0 = 0 meaning

repaying 3 dollars,

selling the shares with a gain of 3 dollars,

zero cost of the option since it is not exercised.

In both cases, the V1(θ̃) = 0, so E[V1(θ̃)] = 0p + 0(1 − p) = 0, hence no arbitrage is

possible.

We now analyze the arbitrage opportunities if C = EQ[H] = 1 is not the case.

Suppose without loss of generality C = 1.5 > 1, then we construct our portfolio

as in the proof of Theorem 2.3.1. As we have constructed the trading strategy θ̃

above, we buy the replicating portfolio θ = (θ0
t , θ

1
t ) and sell one unit of option and

moreover invest the excess amount 1.5-1=0.5 in the account. This gives the portfolio

ϑ = (−3 + 0.5, 0.4, 1) and the value V0(ϑ) = 2.5− (0.4)10 + 1.5 = 0.

At time 1, either if Y1 = 20 then the holder of the option will exercise it and the

value will be V1(ϑ) = −2.5 + (0.4)20 − 5 = 0.5 or else if Y1 = 7.5, then the option

will not be exercised and the value will be V0(ϑ) = −2.5 + (0.4)7.5 + 0 = 0.5. We

have V0(ϑ) = 0, V1(ϑ) = 0.5 ≥ 0 and E[V1(ϑ)] = 0.5 > 0. Hence by Definition 2.10 an

arbitrage occurs.

We next cover Black-Scholes option pricing model as given in [46]. Let (Ω, F ,

P, [0, T ], (Ft), S) be a two dimensional securities market model consisting of a bond

with price process X and a stock with price process Y in the primary market given
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by

Xt = ert, t ∈ [0, T ] (2.23)

Yt = Y0 exp

((
µ− 1

2
σ2

)
t+ σBt

)
, t ∈ [0, T ] (2.24)

where r ≥ 0, µ ∈ R, σ > 0 and Y0 > 0 is a positive constant. We assume that (Ft)

is the standard filtration generated by the Brownian motion B and without loss of

generality we take F = FT . Since there is continuous trading, we have continuous

discount. The discounted price process of the stock is given by

Ȳt = Y0 exp

((
µ− r − 1

2
σ2

)
t+ σBt

)
(2.25)

and in particular, P-a.s.,

dȲt = (µ− r)Ȳtdt+ σȲtdBt, t ∈ [0, T ]. (2.26)

Our aim is to find an EMM Q to determine the arbitrage free price for a given

European contingent claim. We want the discounted price process Ȳ to satisfy a

differential equation like (2.26) but without the drift term (µ − r)Ȳtdt. We look for

an EMM Q for P that will serve for this purpose. To change the drift of a Bm, we

use Girsanov transformation 2.2.11. If we let

θ =
µ− r
σ

, (2.27)

Λt = exp

(
−θBt −

1

2
θ2t

)
, t ∈ [0, T ], (2.28)

then, (Λt)t∈[0,T ] is a positive martingale under P. On (Ω,F), our new probability

measure Q satisfies

dQ
dP

= ΛT that is Q{A} = EP[1AΛT ], A ∈ F .

We can check if Ȳ is a martingale under Q. Let

B̃t = Bt + θt, t ∈ [0, T ]. (2.29)
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By Girsanov Theorem (Theorem 2.2.11), {B̃t, t ∈ [0, T ]} is a standard Brownian

motion hence a martingale under Q and the same filtration (Ft). Thus, for each

t ∈ [0, T ], we have

Ȳt = Y0 exp

((
µ− r − 1

2
σ2

)
t+ σ

(
B̃t − θt

))
= Y0 exp

(
−1

2
σ2t+ σB̃t

)
, (2.30)

by Equations (2.25) and (2.27) and so Q-a.s.,

dȲt = σȲtdB̃t (2.31)

where B̃ is a standard Brownian motion under Q. Thus, Q is an EMM.

We now state a theorem which will be used to calculate the arbitrage free price of

a European call option below [46].

Theorem 2.3.7 The unique arbitrage free price process for the Q-integrable European

contingent claim H is a continuous modification of

Ct = {ertEQ[H̄|Ft], t ∈ [0, T ]}. (2.32)

We sketch the proof given in [46]. By Theorem 4.4.2 in [46], there is a replicating

strategy θ = (θ0, θ1) for H with value process (Vt(θ))t∈[0,T ] equal to {ertEQ[H̄|Ft], t ∈

[0, T ]}. Supposing Q{Ct 6= Vt(θ) for some t ∈ [0, T ]} > 0, an arbitrage strategy is

explicitly defined. Hence, pricing the contingent claim different than (2.32) results in

an arbitrage. Therefore, the unique arbitrage free price is (2.32).

Now, we can calculate the arbitrage free price of a European call option in other

words, derive the Black-Scholes option pricing formula using the tools given above.

We know that H = (YT − K)+ represents the value of a European call option

with strike price K ∈ (0,∞) and expiration time T . By Theorem 2.3.7 above, the

arbitrage free price process for the call option H is given by {Ct, t ∈ [0, T ]}. This is
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a continuous process such that for each t ∈ [0, T ], if C̄t = Cte
−rt as before, then we

have Q-a.s.,

C̄t = EQ[H̄|Ft] = EQ[(ȲT − K̄)+|Ft], (2.33)

where K̄ = e−rTK. By writing ȲT according to (2.30) and multiplying and dividing

the right hand side with Ȳt obtain Q-a.s., for each t ∈ [0, T ],

ȲT = Ȳt
Y0 exp

(
σB̃T − 1

2
σ2T

)
Y0 exp

(
σB̃t − 1

2
σ2t
)

= Ȳt exp

(
σ
(
B̃T − B̃t

)
− 1

2
σ2(T − t)

)
.

If we substitute this into (2.33) we get for t ∈ [0, T ],Q-a.s.,

C̄t = EQ

[(
Ȳt exp

(
σ
(
B̃T − B̃t

)
− 1

2
σ2(T − t)

)
− K̄

)+ ∣∣Ft] . (2.34)

By the fact Ȳt ∈ Ft and B̃T − B̃t is a normal random variable with mean zero and

variance T − t that is independent of Ft under Q, it follows that for t ∈ [0, T ),Q-a.s.,

the price of the contingent claim can be calculated as follows,

C0 = Y0Φ

(
log(Y0

K̄
)

σ
√
T

+
1

2
σ
√
T

)
− K̄Φ

(
log(Y0

K̄
)

σ
√
T
− 1

2
σ
√
T

)

which is the Black Scholes option pricing formula.
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Chapter 3

FRACTIONAL BROWNIAN MOTION AND ARBITRAGE

In this chapter, we study the use of fBm in finance as a stock price process. We

will consider two models that approximate fBm in the limit. These models aim to

provide an explanation for why the stock price process may follow a fBm. Then,

we study more common stock price models involving fBm directly, namely fractional

Bachelier and fractional Black-Scholes models. After introducing fBm as a suitable

model, we cover the arbitrage strategies constructed in [1, 8, 37, 40]. Then, we review

the remedies to prevent arbitrage opportunities, either by making minor changes in

the process or putting some restrictions on the trading rules.

3.1 Properties of fBm

Let (Ω,F ,P) be a probability space. A fractional Brownian motion is a centered

Gaussian process with stationary increments that is stochastically self-similar. It

has continuous sample paths and zero quadratic variation. We give three equivalent

definitions of fBm [29].

Definition 3.1.1 A centered Gaussian process {BH
t : 0 ≤ t ≤ ∞} with BH

0 = 0 is a

fBm, if

i.
(
BH
t2
−BH

t1
, BH

s2
−BH

s1

) D
= (BH

t2+h−BH
t1+h, B

H
s2+h−BH

s1+h) for all t1, t2, s1, s2 and

h ≥ 0.

ii. There is an H ∈ (0, 1) such that

BH
t+τ −BH

t
D
= h−H(BH

t+hτ −BH
t )

for all t, τ, h ≥ 0.
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Definition 3.1.2 A centered Gaussian process {BH
t : 0 ≤ t <∞} with BH

0 = 0 is a

fBm, if

Var(BH
t −BH

s ) = |t− s|2H · Var(BH
1 )

for all s, t ≥ 0.

Definition 3.1.3 A centered Gaussian process {BH
t : 0 ≤ t <∞} with BH

0 = 0 is a

fBm, if

Cov(BH
t , B

H
s ) =

1

2
Var(BH

1 )(t2H + s2H − |t− s|2H)

for all t, s ≥ 0.

We go over the proof of the following theorem given in [37], while providing further

details.

Theorem 3.1.4 The fBm BH with self-similarity parameter H ∈ (0, 1/2) ∪ (1/2, 1)

is a semimartingale only if H = 1
2
.

Proof: We fix the parameter H of fBm and consider for p > 0 fixed

Zn,p :=
2n∑
j=1

∣∣∣∣BH(
j

2n
)−BH(

j − 1

2n
)

∣∣∣∣p (2n)pH−1.

We see that the following holds

EZn,p = 2npH2−n
2n∑
j=1

E
∣∣∣∣BH(

j

2n
)−BH(

j − 1

2n
)

∣∣∣∣p
D
= 2npH E

∣∣∣∣BH(
1

2n
)

∣∣∣∣p
= E

∣∣∣∣2nHBH(
1

2n
)

∣∣∣∣p
D
= E

∣∣∣∣BH(2n
1

2n
)

∣∣∣∣p = E
∣∣BH

1

∣∣p (3.1)

where the equalities in distribution come from stationarity and self-similarity, respec-

tively. If we now consider

Z̃n,p := 2−n
2n∑
j=1

|BH
j −BH

j−1|p,
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for each n, this has the same law as Zn,p, that is,

Zn,p = 2−n
2n∑
j=1

2npH
∣∣∣∣BH(

j

2n
)−BH(

j − 1

2n
)

∣∣∣∣p

= 2−n
2n∑
j=1

∣∣∣∣2nHBH(
j

2n
)− 2nHBH(

j − 1

2n
)

∣∣∣∣p
D
= 2−n

2n∑
j=1

∣∣∣∣BH(2n
j

2n
)−BH(2n

j − 1

2n
)

∣∣∣∣p
D
= 2−n

2n∑
j=1

|BH
j −BH

j−1|p = Z̃n,p (3.2)

where again the two equalities in distribution come from self-similarity and stationar-

ity, respectively. Noticing that the sequence (BH
k −BH

k−1)k∈Z is stationary and ergodic,

the ergodic theorem tells us that

Z̃n,p −→ E|BH
1 −BH

0 |p =: cp

as n→∞ a.s. and in L1 due to Equations (3.1) and (3.2). Hence,

Zn,p −→ cp

as n→∞ in probability. Therefore,

Vn,p :=
2n∑
j=1

∣∣∣∣BH(
j

2n
)−BH(

j − 1

2n
)

∣∣∣∣p −→
 0 if pH > 1

+∞ if pH < 1
. (3.3)

n→∞. Now, we consider the cases H < 1/2 and H > 1/2 separately.

i) H < 1
2

We can choose p > 2 such that pH < 1, so the pth variation of X on [0, 1] must be

∞. Then the quadratic variation of X is also ∞, otherwise the pth variation would

be zero. But the quadratic variation of a continuous semimartingale is finite ([36],

Proposition 1.18). Hence, for H < 1/2, X cannot be a semimartingale.

ii) H > 1
2

We can choose p ∈ ( 1
H
, 2) then pH > 1 so, Vn,p → 0 in probability by (3.3), therefore

there exists a subsequence vn,p of Vn,p such that vn,p → 0 a.s. Since p < 2, the
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quadratic variation is also zero. On the other hand, for p ∈ (1, 1
H

), we have pH < 1,

it follows that Vn,p →∞ in probability. Hence there exists a subsequence vn,p of Vn,p

such that vn,p → 0 a.s. and by scaling, variation on any interval is infinite. So, X has

infinite total variation and finite quadratic variation. A continuous semimartingale

X = M + A, where M is a local martingale and A is a Stieltjes process has a

finite quadratic variation and the quadratic variation of X and M are equal ([36],

Proposition 1.18). If X were a semimartingale, we would get that the quadratic

variation of M is zero. But, then M = 0 ([26], Theorem 7.8). This will imply that

X = A, a Stieltjes process, which contradicts to the fact that X has infinite variation.

Hence, X cannot be a semimartingale. �

We now define the stochastic integral with respect to fBm BH with H ∈ (1/2, 1)

[40]. We suppose that f : R → R belongs to C1. If we apply Taylor’s formula with

remainder term in the integral form [44] to

F (x) = F (0) +

∫ y

0

f(y)dy

around the point y, we get

F (x) = F (y) + f(y)(x− y) +

∫ x

y

f ′(u)(x− u)du. (3.4)

For each sequence T n :=
{
t(n)(m),m ≥ 1

}
, n ≥ 1, of times t(n)(m) with 0 = t(n)(1) ≤

t(n)(2) ≤ . . ., we have the following equality from 3.4

F
(
BH
t

)
− F

(
BH

0

)
=
∑
m

[
F
(
BH
t∧t(n)(m+1)

)
− F

(
BH
t∧t(n)(m)

)]
=
∑
m

f
(
BH
t∧t(n)(m)

)(
BH
t∧t(n)(m+1) −B

H
t∧t(n)(m)

)
+R

(n)
t , (3.5)

where

R
(n)
t =

∑
m

∫ B
t∧t(n)(m+1)

B
t∧t(n)(m)

f ′(u)
(
Bt∧t(n)(m+1) − u

)
du.

Since f ∈ C1, we have P
{

sup0≤u≤t
∣∣f ′ (BH

u

)∣∣ <∞} = 1. Also, since quadratic varia-

tion of BH
u is zero for H ∈

(
1
2
, 1
)

([29],Theorem 2.1), we obtain∣∣∣R(n)
t

∣∣∣ ≤ 1

2
sup

0≤u≤t

∣∣f ′ (BH
u

)∣∣ ·∑
m

∣∣Bt∧t(n)(m+1) −Bt∧t(n)(m)

∣∣2 → 0
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where the limit is in probability.

The left hand side of (3.5), that is, F
(
BH
t

)
− F

(
BH

0

)
is independent of n and

R
(n)
t → 0 in probability. So,

P− lim
n

∑
m

f
(
Bt∧t(n)(m)

) (
Bt∧t(n)(m+1) −Bt∧t(n)(m)

)
denoted by ∫ t

0

f
(
BH
u

)
dBH

u (3.6)

exists and is called the stochastic integral with respect to fractional Brownian

motion BH = (BH
u )u≤t, H ∈

(
1
2
, 1
)
, f ∈ C ′.

3.2 Stock price Models with fBm

We study the use of fBm in modeling stock prices in this section. We will first give a

model from [27] that approximates fBm in the limit. Then, we will give another model

from [2] which approximates an integral with respect to fBm in the limit. Finally, we

will introduce two types of stock price models involving fBm following [33, 42].

3.2.1 fBm as a Limit of a Stock Price Process

In [27], Poisson shot-noise processes are used to model the stock prices. The model

converges weakly to fractional Brownian motion under a regular variation condition.

Whereas fBm allows for arbitrage, the shot-noise process itself can be constructed

not to allow arbitrage. Also, an economic reason for the long-range dependence in

asset returns is provided. A possible economic explanation of logarithmic stock price

processes to follow fBm is given.

The suggested model is given by,

Y (t) = eB(t)+S(t), t ≥ 0

where B is a Brownian motion and S is a shot-noise model defined by

S(t) =

N(t)∑
i=1

Xi(t− Ti) +
−∞∑
i=−1

[Xi(t− Ti)−Xi(−Ti)], t ≥ 0. (3.7)
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Here, Xi = (Xi(t))t∈R+ , i ∈ Z\{0}, are independent and identically distributed

stochastic processes on R, such that Xi(t) = 0 for t < 0. Xi is also independent of the

two-sided homogeneous Poisson process N with rate α > 0, and points Ti, i ∈ Z\{0}.

This shot-noise model S demonstrates the information provided from various

sources. The arrival times of information constitutes a Poisson process N . The

arrival of information acts like a shock to the market and may change the price as

well as having some influence on future price movements. Some effects may vanish but

certain information has a long lasting effect on the price. Long memory is introduced

into the model by this way.

The case when Xi(u) = g(u)Yi, u ≥ 0, where Yi are i.i.d. innovations with EY1 = 0

and EY 2
1 ∈ (0,∞) is considered only. The function g : R+ → R is a continuously

differentiable function with g′(u) = O(u−1/2−ε), u→∞, for some ε > 0.

With these choices, S is shown to be a semimartingale with its natural filtration.

A probability measure Q ∼ P is found explicitly such that S is a local Q-martingale.

Therefore, by Thm 2.3.3, there is NFLVR.

For the limiting result, it is assumed that g is a normalized regularly varying at

∞ with index δ ∈ (−1/2, 1/2). For t > 0, the scaled process is

Sn(t) =
S(xt)

δ(t)
,

where n ∈ [0,∞) and σ2(t) = Var[S(t)] is introduced. The main result is the fact

that Sn tends to BH as n → ∞, where the convergence holds in D[0,∞) equipped

with the metric of uniform convergence on compacta.

In [2], the effect of investor inertia on stock price fluctuations is studied. Investor

inertia refers to the tendency of investors to remain inactive in trading. Long uninter-

rupted periods of inactivity may be viewed as a form of investor inertia. In this model,

incoming buy orders increase the price while sell orders decrease it. The fact that

infrequent trading gives rise to long-range dependence in stock prices and arbitrage

opportunities for other more sophisticated traders is demonstrated in this study. A

functional central limit theorem for stationary semi-Markov processes is also proven.

There assumed to be N agents in the market, namely A := {a1, a2, . . . , aN}.
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For each agent a, a stationary semi-Markov process xa = (xat )t≥0 is defined on a

probability space (Ω,F ,P) with finite state space E. The process xa denotes the

agent’s propensity for trading. It can be positive, negative or zero indicating that the

agent is buying, selling or in inactive state, respectively. It has heavy-tailed sojourn

times in inert states and relatively thin-tailed sojourn times in other states.

The size of trading in the stock market is defined by the random variable Ψ, where

Ψt > 0 denotes the size of a typical trading at time t. It is assumed that the agents

are homogeneous, xa and Ψ are independent.

The process xa is determined in terms of the random variables ξn : Ω → E and

Tn : Ω→ R+ by the relation

xt =
∑
n≥0

ξn1[Tn,Tn+1)(t),

in other words, the agent’s mood in the random time interval [Tn, Tn+1) is given by

the random variable ξn. The process x is assumed to be homogeneous under P, that

is,

P{ξn+1 = j, Tn+1 − Tn ≤ t|ξn = i} = Q(i, j, t)

does not depend on n ∈ N .

With these assumptions, the holdings of the agent a ∈ A and the market imbalance

at time t ≥ 0 are given by∫ t

0

Ψsx
a
sds and INt :=

∑
a∈A

∫ t

0

Ψsx
a
sds

respectively. On the other hand, the pricing rule is

dSNt =
∑
a∈A

Ψtx
a
t dt so SNt = S0 + INt

for the evolution of the logarithmic stock price process SN .

A scaling parameter ε > 0 is introduced and the rescaled process xat/ε is considered

which denotes a speeded-up semi-Markov process when ε is small. The aggregate order

at time t is given by

Y ε,N
t =

∑
a∈A

Ψtx
a
t/ε.
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Finally, the price process Xε,N
t = (Xε,N

t )0≤t≤T is defined by

Xε,N
t :=

∫ t

0

∑
a∈A

Ψs(x
a
s/ε − µ)ds

where µ := Ext.

Under further technical assumptions, the following result is obtained

lim
ε→0

lim
N→∞

(
Xε,N
t

ε1−H
√
NL(ε−1)

)
0≤t≤T

=

(
c

∫ t

0

ΨsdB
H
s

)
0≤t≤T

,

and in the special case when Ψ ≡ 1, fBm is obtained in the limit, that is

lim
ε→0

lim
N→∞

(
Xε,N
t

ε1−H
√
NL(ε−1)

)
0≤t≤T

=
(
cBH

t

)
0≤t≤T .

where L is a function that is slowly varying at infinity, the limits are in probability

and H is restricted to be greater than 1/2.

3.2.2 Stock Price Models Involving fBm

In financial mathematics, there are two ”classical” models which form a basis for

description of dynamics of the stock prices [42]. The first one, the Bachelier model,

is described in one dimensional primary markets [33] as

Xt = 1, Yt = Y0 + νt+ σBt, t ∈ [0, T ],

where X and Y denote the bond and stock price processes, respectively, B is a Brow-

nian motion, ν ∈ R and σ, T ∈ R+ on a filtered probability space (Ω,F , (F)t∈[0,T ],P).

The constant σ is called the volatility. The fractional Bachelier model is the

version of the Bachelier model where Brownian motion Bt is replaced by fBm.

Xt = 1, Yt = Y0 + νt+ σBH
t , t ∈ [0, T ]. (3.8)

The second one, generally referred as the Black-Scholes model, (also as Samuelson-

Black-Merton-Scholes model), can be described as follows

Xt = ert, Yt = Y0e
(r+ν)t+σBt , t ∈ [0, T ] (3.9)
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where r ∈ R+ is the interest rate. Similarly, the fractional Black-Scholes model

is the version of the Black-Scholes model where Bt is replaced with fBm. We will use

the following model and refer as the fractional Black-Scholes model

Xt = ert, Yt = Y0e
(r+ν)t+σBHt , t ∈ [0, T ]. (3.10)

3.3 Arbitrage with fBm models

In this section, we review construction of arbitrage strategies for the models intro-

duced in Section 3.2.2. Since it is known that fBm is not a semimartingale, we cannot

conclude that there does not exist any arbitrage opportunities in financial market

models from Theorem 2.3.3. Recently, research efforts have gone to find out arbitrage

strategies in the fractional models [1, 8, 37, 40]. We will review these strategies and

the suggested solutions to exclude arbitrage.

In [37], only fBm-modulated Bachelier model is examined. In [40], fractional

versions of both Bachelier and Black-Scholes models are analyzed. In [8],four cases

are examined which are the combinations of the Bachelier and Black-Scholes models

with the cases H ∈ (0, 1
2
) and H ∈ (1

2
, 1). Finally, in [1] a different case is analyzed

where the volatility is a stochastic process rather than a constant. The fractional

Bachelier model with H ∈ (0, 1] is studied.

We will analyze arbitrage strategies constructed in fBm models and their modi-

fications to avoid such opportunities since in fair markets arbitrage is not expected.

These studies imply that fBm is not a perfect candidate for modeling stock prices due

to arbitrage but can be made suitable with some changes.

3.3.1 Arbitrage with Fractional Bachelier Model

Arbitrage strategies with the fractional Bachelier model have been found by [8],[37]

and [40]. In [8], model (3.8) is considered in its general case while only the case ν = 0
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is given in [37] and only the case H ∈
(

1
2
, 1
)

is given in [40]. We will now study these

strategies in detail.

In [8], an arbitrage strategy for a one dimensional fractional Bachelier model is

described. Money in the money market evolves according to (Xt)t∈[0,T ] and the stock

price follows (Yt)t∈[0,T ] in the securities market (Ω,F ,P, [0, T ], (Ft), S). We let X be

the numéraire as usual. We will denote the filtration generated by a price process Z

with (Ft)Z and Z̄ will again denote the discounted price process. We state the results

of [8] below.

Theorem 3.3.1 Suppose ν ∈ C1[0, T ] and σ > 0,

Ȳt = ν(t) + σBH
t , t ∈ [0, T ],

Then, in both cases i)H ∈ (1
2
, 1) and ii)(0, 1

2
), for every constant c > 0 and all n ∈ N,

there exists θ1(n) ∈ S((Ft)Ȳ ) such that

a) P
{∫ T

0

θ1(n)dȲ = c

}
> 1− 1

n
and

b) inf
t∈[0,T ]

∫ t

0

θ1(n)dȲ ≥ − 1

n
.

In particular, the strategies θ(n) = (θ0(n), θ1(n)) ∈ ΘS
adm((Ft)Ȳ ), n ∈ N, where θ0(n)

is given by

θ0
t (n) =

(
θ1(n) · Ȳ

)
t
− θ1

t (n)Ȳt, t ∈ [0, T ], n ∈ N

form a c-FLVR. In the second case, θ1(n) can be chosen such that

c)
∣∣θ1(n)

∣∣ ≤ 1

n
.

We go over the proof by sketching the facts shown in [8] as well as providing extra

details in some places for clarification.

Proof: It is enough to prove the theorem for T = 1 since BH is self-similar.

(i) H ∈
(

1
2
, 1
)
:

Since (Ȳt)t∈[0,1] is a Gaussian process, it satisfies P{Ȳ0 = Ȳ1} = 0. The function ν is
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in C1[0, T ], so it is Lipschitz continuous. Almost all paths of (BH
t )t∈[0,1] are Hölder

continuous of order α for every α ∈ (0, H) [43]. We get

max
t∈[0,1]

n−1∑
j=0

(
Ȳ j+1

n
∧t − Ȳ j

n
∧t

)2

= max
t∈[0,1]

n−1∑
j=0

[(
ν(
j + 1

n
∧ t) + σBH(

j + 1

n
∧ t)

)
−
(
ν(
j

n
∧ t) + σBH(

j

n
∧ t)

)]2

= max
t∈[0,1]

n−1∑
j=0

[(
ν(
j + 1

n
∧ t)− ν(

j

n
∧ t)

)
+

(
σBH(

j + 1

n
∧ t)− σBH(

j

n
∧ t)

)]2

= max
t∈[0,1]

n−1∑
j=0

[(
ν(
j + 1

n
∧ t)− ν(

j

n
∧ t)

)2

+

(
σBH

t (
j + 1

n
∧ t)− σBH

t (
j

n
∧ t)

)2

+

(
ν(
j + 1

n
∧ t)− ν(

j

n
∧ t)

)(
σBH

t (
j + 1

n
∧ t)− σBH

t (
j

n
∧ t)

)]
≤ max

t∈[0,1]

[
n−1∑
j=0

C2
1

(
1

n

)2

+
n−1∑
j=0

C2
2

(
1

n

)2α

+
n−1∑
j=0

2C1 · C2
1

n

(
1

n

)α]

= max
t∈[0,1]

[
C2

1 · n
(

1

n2

)
+ C2

2 · n
(

1

n2α

)
+ 2C1 · C2 · n

(
1

nα+1

)]
= max

t∈[0,1]

[
C2

1

(
1

n

)
+ C2

2

(
1

n2α−1

)
+ 2C1 · C2

(
1

nα

)]
−→ 0 (3.11)

as n→∞ a.s., since α > 1
2
. This implies convergence in probability also. So, (Ȳt)t∈[0,1]

satisfies the hypothesis of Lemma 3.3 in [8]. Therefore, for all n ∈ N, there exists

β(n) ∈ S((Ft)Ȳ ) such that

(a) P {(β(n) · Y )1 < c} < 1

n
and (b) inf

t∈[0,1]
(β(n) · Ȳ )t ≥ −

1

n
. (3.12)

For every n ∈ N,

ξn := inf
{
t :
(
β(n) · Ȳ

)
t

= c
}

(we set inf ∅ = 1)

is an (Ft)Z stopping time. We set θ1(n) := β(n)1[0,ξn] ∈ S((Ft)Ȳ ). Hence, θ1(n)

satisfies the statements (a) and (b) of the theorem.

(ii) H ∈ (0, 1
2
), Ȳt = ν(t) + σBH

t , t ∈ [0, 1] :
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Let L > 0. It follows from Lemma 3.5 in [8] a) with p = 1 and q = H that

lim
n→∞

1

n

n−1∑
j=0

∣∣∣BH
j+1
n

−BH
j
n

∣∣∣ = 0 in L1.

Hence,

n−1∑
j=0

2

∣∣∣∣(ν (j + 1

n

)
− ν

(
j

n

))(
σBH

j+1
n

− σBH
j
n

)∣∣∣∣ ≤ 2‖ν ′‖∞
1

n
σ
n−1∑
j=0

∣∣∣BH
j+1
n

−BH
j
n

∣∣∣
where ||(a1, . . . , an)||∞ = max{|a1|, . . . , |an|} for (a1, . . . , an) ∈ Rn. The right hand

side of the above term goes to 0 in L1, so does the left hand side. This implies

convergence in probability. In particular, there exists n1 ∈ N, such that for all n ≥ n1,

P

{
n−1∑
j=0

2

∣∣∣∣(ν(
j + 1

n
)− ν(

j

n
))
(
σBH

j+1
n

− σBH
j
n

)∣∣∣∣ > L

}
<

1

2L
. (3.13)

On the other hand, there exists n2 ∈ N, such that for all n ≥ n2,

P

{
n−1∑
j=0

(
σBH

j+1
n

− σBH
j
n

)2

< 2L

}
<

1

2L
(3.14)

with p = 1 and q = H in Lemma 3.5 [8] b). Hence, for all n ≥ max(n1, n2),

P

{
n−1∑
j=0

(
Ȳ j+1

n
− Ȳ j

n

)2

< L

}

≤ P

{
n−1∑
j=0

(
σBH

j+1
n

− σBH
j
n

)2

+ 2(ν(
j + 1

n
)− ν(

j

n
))
(
σBH

j+1
n

− σBH
j
n

)
< L

}

≤ P

{
n−1∑
j=0

(
σBH

j+1
n

− σBH
j
n

)2

< 2L

}

+P

{
n−1∑
j=0

2

∣∣∣∣(νt(j + 1

n
)− ν(

j

n
))
(
σBH

j+1
n

− σBH
j
n

)∣∣∣∣ > L

}

<
1

L
.

The last inequality follows from (3.13) and (3.14). The second one follows from the

argument C ⊂ (A ∪B) where

A :=

{
ω :

n−1∑
j=0

(
σBH

j+1
n

(ω)− σBH
j
n

(ω)
)2

≥ 2L

}
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B :=

{
ω :

n−1∑
j=0

2

∣∣∣∣(ν(
j + 1

n
)− ν(

j

n
))
(
σBH

j+1
n

(ω)− σBH
j
n

(ω)
)∣∣∣∣ ≤ L

}
and

C :=

{
ω :

n−1∑
j=0

(
σBH

j+1
n

− σBH
j
n

)2

+ 2

(
ν

(
j + 1

n

)
− ν

(
j

n

))(
σBH

j+1
n

− σBH
j
n

)
≥ L

}

so, P (C) ≤ P (A∪B) ≤ P (A)+P (B). This shows that Ȳt∈[0,1] satisfies the conditions

in Lemma 3.4 in [8] which implies that θ1(n) can be constructed as in (i). The result

follows. �

Theorem 3.3.2 In both cases of Theorem 3.3.1 there exists for every constant c > 0,

a 1
c
-admissible c-arbitrage θ ∈ ΘaS

adm((Ft)Ȳ ). In the second case, θ can be chosen such

that |θ1| ≤ 1
c
.

Proof: Since BH is self-similar, it is enough to prove the theorem for T = 1. We

split (0, 1] into the subintervals

In := (an = 1− 21−n, bn = 1− 2−n], n ∈ N

Ȳn denotes the restriction of Ȳ to In and (F Ȳnt )t∈In the filtration generated by Ȳn.

F Ȳnt ⊂ F Ȳt for all n ∈ N and t ∈ In since Ȳn is the restriction of Ȳ .

Since BH has stationary increments, from Theorem 3.3.1 there exists for all n ∈ N, a

β(n) ∈ S((Ft)Ȳn) such that

(a) P
{∫ bn

0

β(n)dȲn = c+
1

c

}
> 1− 1

n
so

P
{∫ bn

0

β(n)dȲn < c+
1

c

}
+ P

{∫ bn

0

β(n)dȲn > c+
1

c

}
<

1

n

P
{∫ bn

0

β(n)dȲn < c+
1

c

}
<

1

n

(b) inf
t∈In

∫ t

0

β(n)dȲn ≥ −
2−n

c
.
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For β :=
∑∞

n=1 β(n)1In , the random variable ξ := inf
{
t ∈ [0, 1] :

∫ t
0
βdȲ = c

}
is

an (Ft)Ȳ -stopping time. We see from (b) that

inf

∫ 1

0

βdȲ ≥
∞∑
n=1

− 1

2nc
= −1

c

We also obtain from (a) by letting n go to infinity that

P
{∫ 1

0

βdȲ < c+
1

c

}
= 0

So, a.s.
∫ t

0
βdȲ = c for some t < 1. Hence P{ξ < 1} = 1. Therefore,

θ1 := β1[0,1] belongs to aS((Ft)Ȳ ) and (θ0, θ1) is a 1
c
-admissible c-arbitrage in ΘaS

adm

where

θ0
t :=

∫ t

0

θ1dȲ − θ1
t Ȳt, t ∈ [0, T ].

In the second case |θ1| ≤ 1
c

can be obtained by choosing |β(n)| ≤ 1
c
. �

Another arbitrage strategy for the fractional Bachelier model is given in [37] where

a discrete time strategy for the case ν = 0 in the model (3.8) is described. We analyze

the result of [37] next.

The arbitrage strategy in [37] is constructed by splitting [−1, 0) into the union

of intervals
(
− 1

2n−1 ,− 1
2n

)
. Trading is restricted to some special time intervals which

are called promising since they promise a positive expected value of the price. The

price of the asset stays in a price interval during trading. If it gets too high or too

low, the asset is immediately sold. In this way, bounded gains are obtained on each

interval. It is first shown that there exist time intervals which look promising. Then,

it is concluded that they are infinitely many by stationarity. For each n ∈ Z, the

process

Yn(t) :=

{
BH

(
t

2n
− 1

2n−1

)
−BH

(
−1

2n−1

)}
2nH , (0 ≤ t ≤ 1)

is defined. The sequence (Yn)n∈Z of C([0, 1])-valued random variables is stationary

and ergodic by the scaling properties of BH and is adapted to Gn := σ(−2−n). There

exist α < 0 < β and ε > 0 such that

P{E[Yn(τn)|Gn−1] ≥ ε} ≥ ε with τn := inf{t : Yn(t) 6∈ [α, β]} ∧ 1. (3.15)
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By the ergodic theorem, it is concluded that

P{E[Yn(τn)|Gn−1] ≥ ε for infinitely many n ≥ 0} = 1. (3.16)

A period is called promising if E[Y (τn)|Gn−1] ≥ ε. Trading is allowed only in promising

periods. If the price process Yn leaves [α, β] during a promising period, the shares are

immediately sold and no trade is done until the next promising period. Thus, the gain

made during a promising period is bounded and has positive mean. The accumulated

gain at the end of period n is denoted by ηn. We have α ≤ ηn − ηn−1 ≤ β, since the

gains are bounded, and E[ηn − ηn−1|Gn−1] ≥ ε, since the period is promising. We can

write the following Taylor expansion

E
[
e−ληn − e−ληn−1|Gn

]
= (−λ)(ηn − ηn−1)e−ληn−1 + (−λ)2 (ηn − ηn−1)2

2!
e−λξ

Since the terms other than λ are positive, by choosing λ > 0 small enough, we can

have this equation less than or equal to zero. Then, we have for all n

E[e−ληn|Gn−1] ≤ e−ληn−1 .

Thus e−ληn is a non-negative supermartingale. It is decreasing and bounded by zero,

so convergent. It is clear that it converges to zero. If we stop η at the first time ν

that ν < α, then we have

P{ν <∞} ≤ exp(λα) = 1− θ < 1

and ηn →∞, on the event {ν = +∞}.

By the self-similarity and stationarity properties of fBm, we observe that

Yn(t) =

{
BH

(
t

2n
− 1

2n−1

)
−BH

(
− 1

2n−1

)}
2nH

D
= BH(t− 2)−BH(−2)

D
= BH(t)

We describe the arbitrage strategy as follows. We invest only in promising periods.

We start with investing an amount of |α| in the stock. We stop if the accumulated

gain η rises to 1 or falls below α. If it falls below α, we loose |α|+ |α| = 2|α|. Then we
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invest |α|
2

in the next promising period and stop if the accumulated gain η rises to 1 or

falls below 2|α|+ |α|
2

= 5|α|
2

. If the latter happens we loose |α|
2

+ 5|α|
2

= 3|α|. Similarly,

in the next promising period, we invest |α|
4

and stop if the accumulated gain η rises to

1 or falls below 3|α|+ |α|
4

= 13|α|
4

. If the latter happens we loose |α|
4

+ 13|α|
4

= 14|α|
4

. If

we continue in this way, halving the amount we invest, and stopping on the described

stopping times, we will eventually be successful and make a net gain of at least 1. In

the worst case, our wealth can fall to 2|α|
∑∞

n=0 2n = 4|α|.

We have examined the discrete time trading strategy in [37] where it is constructed

for both the cases H ∈
(
0, 1

2

)
and H ∈

(
1
2
, 1
)
.

Finally, we will analyze the arbitrage strategy in [40]. We are given a one dimen-

sional securities market model (Ω,F ,P, [0, T ], (Ft), S) where S = (X, Y ) is the price

process of the two assets, X being the numéraire. In [40], only the case H ∈
(

1
2
, 1
)

is

considered for the model (3.8). For simplicity, it is assumed that r = 0 and Xt(0) = 1

and

Yt = Y0 + µt+BH
t . (3.17)

It is shown that for BH , 1
2
< H < 1, the corresponding market has an arbitrage

property. For this purpose, we consider the following portfolio θ = (θ0, θ1)

θ0
t = −

(
BH
t

)2 − 2BH
t . (3.18)

θ1
t = 2BH

t

By choosing Y0 = 1 and µ = 1, its value is

Vt(θ) = θ0
tXt + θ1

tYt

=
(
−(BH

t )2 − 2BH
t

)
+ 2BH

t

(
1 + t+BH

t

)
= −(BH

t )2 − 2BH
t + 2BH

t + 2tBH
t + 2(BH

t )2

= (BH
t )2

By Itô’s formula (Theorem 2.1.13), we obtain

dVt(θ) = 2BH
t dB

H
t = θ1

t dYt.
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The portfolio θ = (θ0, θ1) is self-financing due to Definition 2.2.6. Since V0(θ) = 0 and

Vt(θ) = (BH
t )2 > 0 for t > 0, it follows that arbitrage occurs in the securities market

for all t > 0. We see that there is continuous time trading in this strategy different

from [8] and [37]. Therefore, the tools of stochastic calculus are used.

3.3.2 Arbitrage with Fractional Black-Scholes Model

Arbitrage strategies with fractional Black-Scholes model have been described in [1, 8,

40]. In [8], the model (3.10) is considered for the general case H ∈ (0, 1/2) ∪ (1/2, 1)

while [40] considers only the case H ∈
(

1
2
, 1
)

and [1] the general case when the

volatility σ is a stochastic process. We review these strategies in this section.

In [8], the same assumptions in Bachelier model of the previous section are made

and the construction of the arbitrage strategies is similar to the construction already

done in there. The following results are the main results.

Theorem 3.3.3 Suppose ν ∈ C1[0, T ] and σ > 0,

Ȳt = exp
(
ν(t) + σBH

t

)
, t ∈ [0, T ].

Then in both cases i) H ∈ (1
2
, 1) and ii) H ∈ (0, 1

2
), for every constant c > 0 and all

n ∈ N, there exists θ1(n) ∈ S((Ft)Ȳ ) that satisfy the inequalities a) and b) in Theorem

3.3.1. In particular, the strategies θ(n) = (θ0(n), θ1(n)) ∈ ΘS
adm((Ft)Ȳ ), n ∈ N, where

θ0(n) is given by

θ0
t (n) =

∫ t

0

θ1(n)dȲ − θ1
t (n)Ȳt, t ∈ [0, T ], n ∈ N

form a c-FLVR as before. In the second case, c) in Theorem 3.3.1 is again satisfied.

The result of Theorem 3.3.2 holds for both cases.

Proof: It is enough to prove the theorem for T = 1 since BH is self-similar.
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(i)(Ȳt)t∈[0,1] satisfies the conditions of Lemma 3.3 in [8]. We also have

max
t∈[0,1]

n−1∑
j=0

(
Ȳ j+1

n
∧t − Ȳ j

n
∧t

)2

= max
t∈[0,1]

n−1∑
j=0

(
eν( j+1

n
∧t)+σBH( j+1

n
∧t) − eν( j

n
∧t)+σBH( j

n
∧t)
)2

≤ max
t∈[0,1]

n−1∑
j=0

c2

[(
ν(
j + 1

n
∧ t) + σBH(

j + 1

n
∧ t)

)
−
(
ν(
j

n
∧ t) + σBH(

j

n
∧ t)

)]2

−→ 0 as n→∞ a.s.

as in ( 3.11).

Hence the second condition in Lemma 3.3 in [8] is also satisfied. The proof follows as

in case (i) of Theorem 3.3.1.

(ii) Since (Ȳt)t∈[0,1] is positive and continuous, mint∈[0,1] Ȳt > 0. Let ỹ be the 1
2L

th

percentile of mint∈[0,1] Ȳt. Then for all y < ỹ we have

P
{

min
t∈[0,1]

Ȳt ≤ y

}
<

1

2L
.

We choose ε < min( 1√
2
, ỹ) then we have

P
{

min
t∈[0,1]

Ȳt ≤ ε

}
<

1

2L
.

and from what we have shown in the proof of (ii) of Theorem 3.3.1, there exists n ∈ N

such that

P

{
n−1∑
j=0

(
ln Ȳ j+1

n
− ln Ȳ j

n

)2

<
1

ε2
L

}
<

1

2L
.

By Intermediate Value Theorem, ex − ey ≥ mint∈[0,1] e
t(x− y).

For x = ν( j+1
n

) + σBH
j+1
n

and y = ν( j
n
) + σBH

j
n

we get,∣∣∣Ȳ j+1
n
− Ȳ j

n

∣∣∣ ≥ min
t∈[0,1]

Ȳt

∣∣∣ln Ỹ j+1
n
− ln Ȳ j

n

∣∣∣ .
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Denoting

A :=

{
ω : min

t∈[0,1]
Ȳt(ω) ≤ ε

}
B :=

{
ω :

n−1∑
j=0

(
ln Ȳ j+1

n
(ω)− ln Ȳ j

n
(ω)
)2

<
1

ε2
L

}

C :=

{
ω :

n−1∑
j=0

(
Ȳ j+1

n
(ω)− Ȳ j

n
(ω)
)2

< L

}

we again have C ⊂ A ∪B in other words, P (C) ≤ P (A ∪B) ≤ P (A) + P (B)

so we obtain

P

{
n−1∑
j=0

(
Ȳ j+1

n
− Ȳ j

n

)2

< L

}

≤ P
{

min
t∈[0,1]

Ȳt < ε

}
+ P

{
n−1∑
j=0

(
ln Ȳ j+1

n
− ln Ȳ j

n

)2

<
1

ε2
L

}
<

1

L
.

Thus, Lemma 3.4 in [8] applies and θ1(n) can be constructed as in case (ii) of Theorem

3.3.1. Again, |θ1(n)| ≤ 1
n
. This completes the proof of the first part. The second part

follows by choosing β(n)’s such that |β(n)| ≤ 1
c
. Then, |θ1| ≤ 1

c
too, and the theorem

is proved. �

We now analyze the strategy given in [40] where an arbitrage strategy is con-

structed in model (3.10) for the caseH ∈
(

1
2
, 1
)

in the market model (Ω,F ,P,T, (Ft), S)

with T = [0, 1]. For simplicity, we let ν = 0, Y0 = δ = 1. In particular the model is

given by

Xt = ert, (3.19)

Yt = ert+B
H
t .

In view of Itô’s formula (Theorem 2.1.13), we have

dYt = Yt
(
rdt+ dBH

t

)
(3.20)

and we also have

dXt = rXtdt.
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Now, the portfolio θ = (θ0, θ1) with

θ0
t = 1− e2BHt , (3.21)

θ1
t = 2

(
e2BHt − 1

)
is considered. For this portfolio, we have

Vt(θ) = (1− e2BHt )ert + 2(eB
H
t − 1)ert+B

H
t

= ert − e2BHt +rt + 2e2BHt +rt − 2ert+B
H
t

= ert + e2BHt +rt − 2ert+B
H
t

= ert(1− 2eB
H
t + e2BHt )

= ert(eB
H
t − 1)2

and

dVt(θ) = rert(eB
H
t − 1)2dt+ 2ert+B

H
t (eB

H
t − 1)dBH

t

= θ0
t dXt + θ1

tYt

Hence, the portfolio is self-financing according to Equation (2.9). Since for this

portfolio we also have V0(θ) = 0 and Vt(θ) > 0 for t > 0, this market model leaves

space for arbitrage for each t > 0.

Finally, we will analyze the arbitrage strategy introduced in [1] where the following

market model is assumed

Xt = ert , 0 ≤ t ≤ T (3.22)

dYt = Yt(νdt+ σtZt), 0 ≤ t ≤ T.

Here, σ is a stochastic volatility process which is not a constant, and Z denotes a

process with zero quadratic variation. The cases Zt = BH
t or Zt = BH

At
where A

is a continuous non-decreasing process are considered in the two cases where σ is a

semimartingale or a C1 function of the modulating fBm. These cases for σ are large

enough to include many volatility models in the literature. The following is the main

result giving a strategy that leads to arbitrage.
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Theorem 3.3.4 Consider a market modeled by (3.22). Let Z be an a.s. continuous

adapted process with zero quadratic variation. Suppose (σt) is an adapted process such

that (
∫ t

0
σsdZs)t∈[0,T ] exists, has zero quadratic variation, and is continuous. Then, for

each c > 0, the following portfolio is an arbitrage strategy

θ0
t = cY0

(
1− exp

(
2(ν − r)t+ 2

∫ t

0

σsdZs

))
(3.23)

θ1
t = 2c

(
exp

(
(ν − r)t+

∫ t

0

σsdZs

)
− 1

)
.

Proof: We will sketch the proof and omit the calculations which can be found in [1].

First, it is shown that Vt(θ) > 0,∀t in the following

Vt(θ) = θ0
t exp(rt) + θ1

tYt (3.24)

= cY0

(
1− exp

(
2(ν − r)t+ 2

∫ t

0

σsdZs

))
exp(rt)

+2c

(
exp

(
(ν − r)t+

∫ t

0

σsdZs

)
− 1

)
Y0 exp

(
νt+

∫ t

0

σsdZs

)
= cY0 exp(rt)

(
exp

(
νt− rt+

∫ t

0

σsdZs

)
− 1

)2

> 0.

This was the first step to show that arbitrage exists. Next, it is shown that the

portfolio is self-financing. By (3.24) we see that Vt(θ) is a smooth enough function

of t and
∫ t

0
σsdZs, both of which have zero quadratic variation and are continuous.

Therefore using the modified Itô formula (Theorem 2.1.13), we have

dVt(θ) = crY0 exp(rt)

((
exp

(
(ν − r)t+

∫ t

0

σsdZs

)
− 1

)2

(3.25)

+2c(ν − r)Y0 exp(rt)

(
exp

(
(ν − r)t+

∫ t

0

σsdZs

)
− 1

)
× exp

(
(ν − r)t+

∫ t

0

σsdZs

))
dt

+2cY0 exp(rt)

(
exp

(
(ν − r)t+

∫ t

0

σsdZs

)
− 1

)
× exp

(
(ν − r)t+

∫ t

0

σsdZs

)
σtdZt.



Chapter 3: Fractional Brownian Motion and Arbitrage 49

On the other hand, we have

θ0
t dXt + θ1

t dYt = θ0
t r exp(rt)dt+ θ1

tYt(νdtdZt) (3.26)

= (θ0
t r exp(rt) + θ1

tYtν)dt+ θ1
tYtσtdZt

=

{
cY0 exp(rt)

((
1− exp

(
2(ν − r)t+ 2

∫ t

0

σsdZs

))
+

(
exp

(
2(ν − r)t+ 2

∫ t

0

σsdZs

))
− 2 exp

(
(ν − r)t+

∫ t

0

σsdZs

))
+ 2cY0(ν − r) exp(rt)

(
exp

(
(ν − r)t+

∫ t

0

σsdZs

)
− 1

)
× exp

(
(ν − r)t+

∫ t

0

σsdZs

)}
dt

+2 cY0 exp(rt)

(
exp

(
(ν − r)t+

∫ t

0

σsdZs

))
exp

(
(ν − r)t+

∫ t

0

σsdZs

)
σtdZt.

Since the right-hand side of (3.26) is equal to the right-hand side of (3.25) this strategy

is self-financing according to Equation (2.9). It is positive at all times. Hence this is

an arbitrage strategy by Definition 2.10. �

It is shown in [1] that there is a wide class of processes that satisfy the assumptions

of Theorem 3.3.4. Two separate types of stochastic volatility models are considered;

those in which volatility is a semimartingale, and those in which it is a function of the

integrator BH . We will not give the arbitrage strategies constructed for these models

here. They can be found in [1]. The following corollary gives an arbitrage strategy in

a model involving Brownian motion (Bm) and fBm.

Corollary 3.3.5 Suppose the dynamics of the stock price are modeled by the following

stochastic differential equations:

dYt = Yt(νdt+ φ(Wt)dB
H
t )

dWt = µW (t,Wt)dt+ σW (t,Wt)dBt,

where BH is a fBm with H ∈ (1
2
, 1], and B is a Bm. Assume that

∫ T
0
µW (s,Ws)ds <∞

and
∫ T

0
(σW (s,Ws))

2ds < ∞, and that φ ∈ C2. Then for each c > 0, the following



Chapter 3: Fractional Brownian Motion and Arbitrage 50

portfolio is an arbitrage strategy:

θ0
t = cY0

(
1− exp

(
2(ν − r)t+ 2

∫ t

0

φ(Ws)dZs

))
θ1
t = 2c

(
exp

(
(ν − r)t+

∫ t

0

φ(Ws)dZs

)
− 1

)
.

3.3.3 Exclusion of Arbitrage in fBm Models

For the models in [8] and [37] described in Sections 3.3.1 and 3.3.2, the correspond-

ing authors suggest methods to exclude arbitrage. We will now briefly review these

methods.

The arbitrage strategy constructed in Theorem 3.3.2 and 3.3.3 is a discrete time

strategy but it needs trading in very small time intervals. A suggestion to prevent

arbitrage in these models is to introduce some small unit of time h > 0 that must lie

between two transactions. If trading is not allowed before h units of time has passed

after the last trading, then no arbitrage strategy can be constructed. The following

definition is given for imposing this restriction to the trading rules.

Definition 3.3.6 Let (Ft) be a filtration and h > 0. We define

Sh((Ft)) :=

{
g01{0} +

n−1∑
j=1

gj1(τj ,τj+1] ∈ S((Ft)) : ∀j, τj+1 ≥ τj + h

}
and

Θh
sf ((Ft)) :=

{
θ = (θ0, θ1) ∈ ΘS

sf : θ0, θ1 ∈ Sh((Ft))
}
.

The following theorem states a sufficient condition to exclude arbitrage opportunities

from the models defined in theorems 3.3.1 and 3.3.3.

Theorem 3.3.7 Let BH be a fBm with H ∈ (0, 1
2
) ∪ (1

2
, 1). Let T ∈ (0,∞), σ > 0

and ν : [0, T ]→ R be a measurable function such that supt∈[0,T ] |ν(t)| <∞. Consider

the case

Ȳt = ν(t) + σBH
t , t ∈ [0, T ]
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If

θ1 = g01{0}(t) +
n−1∑
j=1

gj1(τj ,τj+1](t) ∈
⋃
h>0

Sh((Ft)Ȳ )

and there exists j ∈ {1, . . . , n− 1} with P{gj 6= 0} > 0, then,

P
{∫ T

0

θ1dȲ ≤ −c
}
> 0 for all c ≥ 0.

Another method to exclude arbitrage from the model (3.8) is suggested in [37].

In this model arbitrage arises because of the behavior of the kernel ϕ(t) = tH−
1
2 I{t>0}

on small time scales. To get rid of this problem without sacrificing the long-range

dependence of fBm, the following process is defined

B̃t =

∫ t

−∞
ϕ(t− s)dB(s)−

∫ 0

−∞
ϕ(−s)dB(s)

where ϕ ∈ C2(R), ϕ(0) = 1, ϕ′(0) = 0 and limt→∞ ϕ
′′(t)t

5
2
−H existing in (0,∞). Then,

we have that B̄t is a Gaussian process with the same long-range dependence as fBm

and yet

B̃t = ϕ(t− t)Bt − ϕ(t+∞)B−∞ +

∫ t

−∞
ϕ′(t− s)Bsds− < ϕ,B >

−ϕ(0)B0 + ϕ(∞)B∞ −
∫ 0

−∞
Bsds+ < ϕ,B >

= Bt +

∫ t

−∞
ϕ′(t− s)Bsds−

∫ 0

−∞
ϕ′(−s)Bsds

= Bt +

∫ 0

−∞
[ϕ′(t− s)− ϕ′(−s)]Bsds+

∫ t

0

[ϕ′(t− s)− ϕ′(s− s)]Bsds

= Bt +

∫ 0

−∞

(∫ t

0

ϕ′′(v − s)dv
)
Bsds+

∫ t

0

(∫ t

s

ϕ′′(v − s)dv
)
Bsds

= Bt +

∫ t

0

(∫ 0

−∞
ϕ′′(v − s)Bsds

)
dv +

∫ t

0

(∫ v

0

ϕ′′(v − s)Bsds

)
dv

= Bt +

∫ t

0

(∫ 0

−∞
ϕ′′(s− v)Bvdv

)
ds+

∫ t

0

(∫ s

0

ϕ′′(s− v)Bvdv

)
ds

= Bt +

∫ t

0

(∫ s

−∞
ϕ′′(s− v)Bvdv

)
ds
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showing that B̃ is a semimartingale, hence does not allow arbitrage opportunities.

For example, if

ϕ(t) = (ε+ t2)
(2H−1)

4

is taken as the kernel, then no arbitrage will occur.
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Chapter 4

AGENT BASED STOCK PRICE MODELS

Agent based modeling is widely used to find a model that best fits stock price

processes. In some studies, agents are divided into two groups, mostly named as

chartists and fundamentalists. In these studies, the two agent groups have different

demand functions for the stock [18, 23, 23]. The price is generally determined via the

total excess demand [15, 45, 20, 4, 6].

In this chapter, we construct two different agent based models. Agents can belong

to different groups such as fundamentalists and chartists and possibly others. In both

models, under the assumption of positive correlation between total net demand and

the price change, we assume that each buy order increases the price whereas each

sell order decreases it. Each order given to the market has an effect proportional

to its quantity. The difference of the two models is the kind of effect function. We

show that the price process is long-range dependent and prove that the limit of the

price process is fBm as the number of order arrivals increases and the quantity of

the orders decreases. Although the limiting process is fBm, our constructions are

semimartingales which do not allow arbitrage.

4.1 Vanishing Effects

Agent based models that involve heterogenous agents divide them into two separate

groups in general as chartists and fundamentalists according to their trading behavior.

We generalize this situation by assuming that there are I types of agents in the market

as in [2].

Let (Ω,F ,P) be a probability space. Let BR denote the Borel σ-algebra on R. For

i = 1, . . . , I, let N i be Poisson random measures on (R × R+ × R,BR ⊗ BR+ ⊗ BR)
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with mean measures

µi(ds, du, dq) = λiu−δ
i−1dsduF i(dq)

where λi > 0 is the arrival rate of orders of agent i, 1 < δi < 3 and F i is the distri-

bution of a random variable Qi with finite second moment. Each atom (Sij, U
i
j , Q

i
j)

represents an order from an agent that belongs to the ith type; the arrival time Sij of

the order, the duration of its effect U i
j and its quantity Qi

j, j = 1, 2, . . . .Each agent

has its own effect to the price process. Let gi(t − s, u, q) : R × R+ × R → R be the

effect function. The effect of an order starting at s and ending at s + u depends on

the quantity of the order and equals

gi(t− s, u, q)

at time t.

Let Z(t) denote the logarithm of the price of the stock at time t. We denote with

Zi(t) the total effect given to the price by the agents of type i. The logarithm of the

price of the stock at time t is the sum of those effects. We think Zi(t)−Zi(0) as the

sum of all effects due to all active agents of type i between times 0 and t. We set

Zi(0) = 0. Hence, the price at time t is

Y (t) = eZ(t) with Z(t) =
n∑
i=1

Zi(t)

where Zi(t) is given by

Zi(t) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

(gi(t− s, u, q)− gi(−s, u, q))N i(ds, du, dq) t ≥ 0.

Adding up the effects corresponds to the integration of the difference in the effect

amplitude at times 0 and t with respect to the Poisson random measure.

We turn our attention to finding the limit of the price process as a result of frequent

trading in smaller and smaller amounts. We choose one type of agent and analyze

the limiting process for this particular type. The others would have similar limits in
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case of heavy trading. The limit of the logarithm of the price process Z(t) will be

the sum of the limits of these processes. For simplicity, we denote the Prm of our

particular agent group by N , the effect function by g and the mean measure by µ

with the terms λ and δ. We assume that the effect function g has the form

g(t− s, u, q) = q u f

(
t− s
u

)
.

Here, f is a deterministic effect function which is scaled linearly by q as in the mi-

cropulses of [9]. What we have in mind is a function f with compact support. In

particular, its effect starts at a point in time and finishes after a period.

We introduce a scaling factor n ∈ Z+, that will eventually tend to∞ and consider

only the effects in which the quantity is rescaled to q/n and s, u remain unchanged.

Thus, the effect at time t of a rescaled effect with coordinates s, q and u equals

q

n
u f

(
t− s
u

)
.

For each n ∈ Z+, we consider a Prm Nn on (R × R+ × R,BR ⊗ BR+ ⊗ BR) with

mean measure

µn(ds, du, dq) = n2λu−δ−1dsduF (dq). (4.1)

The scaled price process is given by

Zn(t) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]
Nn(ds, du, dq). (4.2)

We first prove the existence of the process {Zn(t), t ≥ 0}. If∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

q

n
u

∣∣∣∣f (t− su
)
− f

(
−s
u

)∣∣∣∣µn(ds, du, dq) <∞,

then Zn is well defined since then E|Zn(t)| < ∞. However, if E|Zn(t)| is not finite,

but ∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

q2

n2
u2

[
f

(
t− s
u

)
− f

(
−s
u

)]2

µn(ds, du, dq) <∞

then Zn(t) is still well-defined as shown in the next proposition.

Proposition 4.1.1 Suppose that
∫∞
−∞

∫∞
a

∫∞
−∞

q
n
u
[
f
(
t−s
u

)
− f

(−s
u

)]
µn(ds, du, dq) =

0 for all a > 0 and
∫∞
−∞

∫∞
0

∫∞
−∞

q2

n2 u
2
[
f
(
t−s
u

)
− f

(−s
u

)]2
µn(ds, du, dq) <∞ for every
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n. Then, the process {Zn(t), t ≥ 0} is well-defined for 1 < δ < 3 and its characteristic

function at ξ ∈ R is given by

exp

{∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

(
eiξ

q
n
u[f( t−su )−f(−su )] − 1

−iξ q
n

[
f

(
t− s
u

)
− f

(
−s
u

)])
µn(ds, du, dq)

}
(4.3)

Proof: Let Ak = (2−k, 2−k+1], k = 1, 2, . . . , A0 = (1,∞) be a partition of R+ ≡

(0,∞). Clearly,∫ ∞
−∞

∫
Ak

∫ ∞
−∞

q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]
µn(ds, du, dq) = 0,

for k = 1, 2, . . ., due to the form of the effect function and compactness of Ak, and

also for k = 0 due to the hypothesis of the Proposition. Hence, random variables∫ ∞
−∞

∫
Ak

∫ ∞
−∞

q

n
u

[
f(
t− s
u

)− f(
−s
u

)

]
Nn(ds, du, dq) k = 0, 1, . . . , (4.4)

are well-defined and have zero expectations. Due to the hypothesis, the sum of their

variances is finite, which is found from formula (2.2) as

Var
∞∑
k=0

∫ ∞
−∞

∫
Ak

∫ ∞
−∞

q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]
Nn(ds, du, dq) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

q2

n2
u2

[
f

(
t− s
u

)
− f

(
−s
u

)]2

µn(ds, du, dq).

Therefore, the series

∞∑
k=0

∫ ∞
−∞

∫
Ak

∫ ∞
−∞

q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]
Nn(ds, du, dq) (4.5)

is a.s. convergent by [12], Theorem 7.5. We denote the limit by

Zn(t) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]
Nn(ds, du, dq)

which is Zn(t) of (4.2). Its characteristic function at ξ ∈ R equals

E exp

{
iξ

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]
Nn(ds, du, dq)

}
. (4.6)
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To compute the above characteristic function, we proceed by finding the characteristic

functions of the random variables (4.4) which are equal to

exp

{∫ ∞
−∞

∫
Ak

∫ ∞
−∞

[
eiξ

q
n
u[f( t−su )−f(−su )] − 1

]
µn(ds, du, dq)

}
by formula 2.3. The logarithm of this is also equal to∫ ∞
−∞

∫
Ak

∫ ∞
−∞

[
eiξ

q
n
u[f( t−su )−f(−su )] − 1− iξ q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]]
µn(ds, du, dq)

(4.7)

since (4.4) has zero mean. Due to the inequality |eix − 1 − ix| < 1
2
x2 for x ∈ R

and
∫∞
−∞

∫∞
0

∫∞
−∞

1
2

∣∣−ξ q
n
u
[
f
(
t−s
u

)
− f

(−s
u

)]∣∣2 µn(ds, du, dq) <∞ by assumption, the

dominated convergence theorem applies. Hence, the series

∞∑
k=0

{∫ ∞
−∞

∫
Ak

∫ ∞
−∞

[
eiξ

q
n
u[f( t−su )−f(−su )] − 1

− iξ
q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]]
µn(ds, du, dq)

}
converges, which is clearly (4.3). The a.s convergence of the series (4.5) to Zn is shown

above. This implies convergence in distribution. Hence, (4.3) is the characteristic

function of Zn. Therefore, (4.6) is well defined and is given by (4.3). �

We now state and prove convergence to fBm.

Theorem 4.1.2 Suppose that∫ ∞
−∞

∫ ∞
a

∫ ∞
−∞

q

[
f

(
t− s
u

)
− f

(
−s
u

)]
nλu−δds duF (dq) = 0 (4.8)

and ∫ ∞
0

∫ ∞
−∞

[
f

(
1− s
u

)
− f

(
−s
u

)]2

u1−δdsdu <∞ (4.9)

and EQ2 < ∞. Then, the finite dimensional distributions of {Zn(t), t ≥ 0}, for

1 < δ < 3 converge to those of a fBm, with variance

λEQ2

∫ ∞
0

∫ ∞
−∞

[
f

(
1− s
u

)
− f

(
−s
u

)]2

u1−δdsdu

as n→∞.
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Proof: To prove the convergence in the sense of finite dimensional distributions of

{Zn(t), t ≥ 0} , we consider the characteristic function of (Zn(t1), . . . , Zn(tm)), that

is, E exp(i
∑m

k=1 ξkZn(tk), tk ≥ 0), ξk ∈ R, m ∈ N which equals

E exp

{
i
m∑
k=1

ξk

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]
Nn(ds, du, dq)

}

= exp

{∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

[
ei
∑m
k=1 ξk

q
n
u[f( t−su )−f(−su )] − 1

−i
m∑
k=1

ξk
q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]]
n2λu−δ−1ds duF (dq)

}
(4.10)

by the same derivation given in the proof of Proposition 4.1.1 since the assumptions

(4.8) and (4.9) with EQ2 < ∞ imply those of the proposition. As n → ∞, we will

show that the above characteristic function converges to

exp

{
−
∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

1

2

m∑
k=1

m∑
j=1

ξjξkq
2

[
f

(
tj − s
u

)
− f

(
−s
u

)][
f

(
tk − s
u

)
− f

(
−s
u

)]
λu1−δdsduF (dq)

}
(4.11)

which is the characteristic function of
∑m

k=1 ξkZ(tk), where Z = (Z(t1), . . . , Z(tm)) is

a Gaussian vector with zero mean and covariance matrix

λEQ2

∫ ∞
0

∫ ∞
−∞

[
f

(
tj − s
u

)
− f

(
−s
u

)][
f

(
tk − s
u

)
− f

(
−s
u

)]
u1−δdsdu. (4.12)

Due to the inequality |eix − 1 − ix| < 1
2
x2 for x ∈ R, the integrand in (4.11) is an

upper bound to∣∣∣∣∣ei∑m
k=1 ξk

q
n
u[f( t−su )−f(−su )] − 1− i

m∑
k=1

ξk
q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)]∣∣∣∣∣
which is the absolute value of the integrand in (4.10). Therefore, the dominated

convergence theorem allows us to take the limit inside the integral in (4.10). That is,

we must find

lim
n→∞

(
ei
∑m
k=1 ξk

q
n
u[f( t−su )−f(−su )] − 1− i

m∑
k=1

ξk
q

n
u

[
f

(
t− s
u

)
− f

(
−s
u

)])
n2.

(4.13)
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We claim that the limit is

−1

2

m∑
k=1

m∑
j=1

ξjξkq
2

[
f

(
tj − s
u

)
− f

(
−s
u

)][
f

(
tk − s
u

)
− f

(
−s
u

)]
(4.14)

For fixed n, the absolute value of the difference between the expression in (4.13) and

(4.14) equals

n2|R2(n)|

whereR2(ε) is the remainder term after 3 terms of the Taylor expansion of the function

h(ε) = e
i
∑m
k=1 εq u

[
f( tk−su )−f

(
−s
u

)]
on the disk D = {ε ∈ C : |ε| < 2} around 0 expanded

for ε [19]. For all ε ∈ D we have the following bound for R2(ε)

|R2(ε)| < rM

r − r0

(r0

r

)3

where r0 = |ε− 0| = |ε|, r ∈ (|ε|, 2) and M = max|ε|=r

∣∣∣ei∑m
k=1 ξkεq u

[
f
(
tj−s
u

)
−f
(
−s
u

)]∣∣∣ =

1. Hence, with ε = 1
n

|R2(n)| < r

r − 1/n

(
1/n

r

)3

.

Taking the limit as n → ∞, we obtain |R2(n)|n2 → 0. This shows that (4.10)

converges to (4.11) as n→∞.

When (4.12) is evaluated, the variance is found to be

Var(Zn(t)) = λEQ2

∫ ∞
0

∫ ∞
−∞

[
f

(
t− s
u

)
− f

(
−s
u

)]2

u1−δdsdu.

and the covariance of Zn(t) is

Cov(Zn(t1), Zn(t2)) =
1

2
(|t1|2H + |t2|2H − |t1 − t2|2H)Var(Zn(1))

with H = (3− δ)/2 as defined in Definition 3.1.3. �

The following proposition is essentially Proposition 3.1 of [9] which gives a suffi-

cient condition for the effect function f to satisfy Equation (4.9). Its proof can be

found in [9].

Proposition 4.1.3 Suppose f : [0, 1] → R is Hölder continuous in [0, 1] with an

exponent α > 0, that is,

|f(x)− f(y)| ≤M |x− y|α



Chapter 4: Agent Based Stock Price Models 60

for some M > 0 and any x, y ∈ [0, 1] and f(0) = f(1) = 0. Then the statement in

(4.9) which is ∫ ∞
0

∫ ∞
−∞

[
f

(
1− s
u

)
− f

(
−s
u

)]2

u1−δdsdu <∞

is true for 3− 2α < δ < 3.

Remark. When f has compact support and is continuous as in Proposition 4.1.3,

we can show that (4.8) also holds. Since then∫ ∞
a

∫ ∞
−∞

[
f

(
t− s
u

)
− f

(
t− s
u

)]
u−δds du = 0.

We now give a simple example of such an effect function [9]. The effect function

given by g(t, s, u) = (u
2
− |t − s − u

2
|) on t ∈ [s, s + u] can be written in the form

u f( t−s
u

) = u
(

1
2
−
∣∣ t−s
u
− 1

2

∣∣) . The function f is Hölder continuous with order 1 on

[0, 1] and satisfy f(0) = f(1) = 0 and hence the assumptions of Proposition 4.1.3 hold.

It has the shape of an isosceles triangle. In this case, the effect starts at time s as the

buy or sell order is first given. It increases linearly as the amount traded increases,

reaches its maximum value at time s + u
2

as the total order amount is reached and

starts decreasing from that point on until it vanishes at time s + u and brings back

the price level back to the original, locally.

4.2 Non-vanishing Effects

In this part, we study the other type of pulses. We have I type of agents as in the

previous section and analyze only one type. This time, we assume that an order given

to the market results in a change in the price which does not vanish in time. A buy

order increases the price to some value over a time interval and then the pulse dies.

It leaves the price in a level upper than the level it found at arrival. This model is a

modification of the continuous flow rate model studied in [25].

With each market order, an arrival time S, a duration U and an effect rate R of a

pulse is associated as in the previous model. The orders arrive according to a Poisson

process on R with intensity λ > 0. The lifetime of an effect is represented by the



Chapter 4: Agent Based Stock Price Models 61

random variable U > 0 with distribution function FU(u) = P (U ≤ u) and expected

value ν = EU < ∞. We have P (U < u) ∼ LU (u)u−δ

δ
as u → ∞, where 1 < δ < 2.

The arrival of an order changes the price with a constant effect rate. This rate valid

during a pulse is given by a random variable R which has a symmetric distribution

around 0 with FR(r) = P (R ≤ r), ER = 0 and ER2 < ∞. The maximum effect

caused by an order is UR = Q where Q denotes the quantity traded as before. The

effect linearly increases from 0 to this value and it dies at that instant. This causes a

right angled triangle shaped pulse with its hypotenuse is on the left side. To simplify

the representation we will set LU = 1. The modifications needed to be done in case

of general slowly varying functions LU are trivial [25].

Let Z(t) denote the aggregated effect of orders in the time interval [0, t] which

gives the logarithm of the stock price at time t. Let N(ds, du, dr) denote a Prm on

R× R+ × R with mean measure

µ(ds, du, dr) = λdsFU(du)FR(dr).

A pulse is active during the time interval [s, s + u] and its effect increases at rate r

throughout its lifetime.

Let

Z(t) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

((t− s)+ ∧ u− (−s)+ ∧ u)rN(ds, du, dr). (4.15)

The kernel

Kt(s, u) = ((t− s)+ ∧ u− (−s)+ ∧ u) (4.16)

can be written as u
[
f
(
t−s
u

)
− f

(−s
u

)]
in the notation of the previous subsection

where f
(
t−s
u

)
=
(
t−s
u

)+∧1. In this case, f satisfies the Hölder continuity condition of

Proposition 4.1.3 with α = 1 in [0, 1) but it is not compactly supported, its support

is [0,∞). This causes the mean to increase and not to stay at zero. Here, f(0) = 0
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also holds but the condition f(1) = 0 is not satisfied. The kernel Kt(s, u) equals

0 ≤ Kt(s, u) =



0 if s+ u ≤ 0 or s ≥ t

s+ u if s ≤ 0 ≤ s+ u ≤ t

t if s ≤ 0, t ≤ s+ u

u if 0 ≤ s, s+ u ≤ t

t− s if 0 ≤ s ≤ t ≤ s+ u

as given in [25]. Hence, Kt(s, u) ≤ t is a function of the starting time s and the

duration u of an effect that measures the length of the time interval contained in [0, t]

during which the pulse is active. We can express Z(t) as

Z(t) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

Kt(s, u)rN(ds, du, dr) (4.17)

The relation

(t− s)+ ∧ u− (−s)+ ∧ u =

∫ t−s

−s
1{0<y<u}dy

yields

Kt(s, u) =

∫ t

0

1{s<y<s+u}dy. (4.18)

By applying relation (4.18) to (4.17), the accumulated effects of orders can be repre-

sented as

Z(t) =

∫ t

0

Z̄(y)dy, (4.19)

where

Z̄(y) =

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

1{s<y<s+u}qN(ds, du, dr). (4.20)

The integrand (Z̄(y)), −∞ < y < ∞, is a well-defined random instantaneous price

change rate process and Z(t) is the cumulative price process. In the following, we

state a well known result about the stationarity of these processes.

Lemma 4.2.1 The instantaneous price change rate process {Z̄(y),−∞ < y <∞} is

stationary and the cumulative price process {Z(t), t ≥ 0} has stationary increments.

Proof: We make a change of variable with s′ = s+ τ , and ds′ = ds+ τ as follows

Z̄(y + τ) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

1{s′<y+τ<s′+u}qN(ds′ + τ, du, dr)
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Note that

N̄(ds, du, dr) = N(ds+ τ, du, dr)

is also a Prm with the same distribution as N since it is just a translation of N in

time by τ units and N is time homogeneous. Therefore,

Z̄(y + τ) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

1{s′<y+τ<s′+u}qN̄(ds′ + τ, du, dr)

has the same distribution as Z̄ itself and hence has the same distribution as Z̄.

Therefore, price change rate process is stationary, in other words, the price process

{Z(t), t ≥ 0} has stationary increments. �

We are interested in the limit process that arises when the speed of time increases

in proportion to the intensity of order arrivals. This limit process corresponds to more

frequent trading. To balance the increasing trading intensity λn, time is speeded up

by a factor n and the size is normalized by a factor λ
1/2
n n(3−δ)/2. The scaled price

process has the form

Zn(t) =
Z(nt)

λ
1/2
n n(3−δ)/2

=
1

λ
1/2
n n(3−δ)/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

Knt(s, u)N(ds, du, dr) (4.21)

By using the scaling property

Knt(ns, nr) = nKt(s, r) (4.22)

we can write the scaled process in the form

Z(nt)

λ
1/2
n n(3−δ)/2

= (nδ−1/λn)1/2

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

Kt(s, u)qN(nds, adu, dr) (4.23)

When the trading intensity λn increases to infinity, time is speeded up by a factor

n, which tends to infinity, and the size is divided by λ
1/2
n n(3−δ)/2 which also tends to

infinity, it is possible to obtain different limiting processes of (4.21) as proven in [25].

The fact that changes these limiting processes is the relative speed at which λn and n

increase. It is the asymptotic behavior of the ratio λn/n
δ−1 which determines the limit
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process. For a choice of sequences λn and n, the random variable ](λn, n) denotes the

number of effects still active at time n. It measures the amount of very long pulses

that are alive and how much they contribute to the total price. The expected value

of the random variable ](λn, n) is

E ](λn, n) ∼ λn
nδ−1

. (4.24)

The limit is considered in the cases where this value tends to a finite, positive constant,

to infinity, or to zero as λn and n go to infinity. We will study the case of fast

connection rate in which λn/n
δ−1 → ∞. The cases when the limit is zero or a finite

nonzero number in the processes similar to ours are studied in [25]. In our case, a

large number of very long pulses contribute in the asymptotic limit of aggregating the

price. We will obtain that the limit is fBm which is stated below.

We will find that the scaling done in this section is the same with the scaling done

in Section 4.1. This will let us conclude the result by the same tools used in that

section.

Theorem 4.2.2 Let 1 < δ < 2, and assume

λn →∞ and
λn
nδ−1

→∞. (4.25)

as n→∞. Then, the process

Z(nt)

λ
1/2
n n(3−δ)/2

=
1

λ
1/2
n n(3−δ)/2

∫ nt

0

Z̄(y)dy

=
1

λ
1/2
n n(3−δ)/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

Knt(s, u)N(ds, du, dr)

tends to a fBm

E(R2)1/2σBH(t)

with index

H = (3− δ)/2 ∈ (1/2, 1),

where

σ2 =

∫ ∞
0

∫ ∞
−∞

K1(s, u)2dsu−(δ+1)du =
1

(2− δ)(3− δ)
. (4.26)

as n→∞.
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Proof: It is shown in [25] that EZn(t) = λ ν tER. So, EZn(t) = 0 since ER = 0. It

is also known that λER2
∫∞

0

∫∞
−∞K

2
t (s, u)dsu−δ−1du <∞ [25]. Recall that the kernel

can be written as u
[
f
(
t−s
u

)
− f

(−s
u

)]
in the notation of the previous subsection where

f
(
t−s
u

)
=
(
t−s
u

)+ ∧ 1. Since EZn(t) = 0, it can be shown as in Proposition 4.1.1 that

the characteristic function of Zn(t) is (4.6).

On the other hand, without loss of generality, letting λn = λnε+δ−1 with ε > 0,

we have the mean measure

E N(nds, ndu, dr) = λn (nds)FU(n du)FR(dr)

∼ λnε+δ−1 nn−δds u−δ−1duFR(dr)

= λnεds u−δ−1duFR(dr).

Calling the measure λnεds u−δ−1duFR(dr) as µn, we have obtained a scaled measure

similar to the one in 4.2.

Therefore, we can apply Theorem 4.1.2 to obtain the limit as a fBm given by

ER2σBH(t) where H = (3− δ)/2 and σ is given by (4.26). �

As it is explained in the previous subsection, both of the models we have con-

structed are semimartingales. According to Theorem 2.3.3, there is NFLVR if there

is an equivalent martingale measure for Z. A martingale measure can be found as in

[27] for our processes which show that they do not allow FLVR opportunities.
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Chapter 5

CONCLUSION

In this thesis, we have studied the usage of fBm in finance. We have first analyzed

two models that obtain fBm in the limit. One of them is [1] which uses semi-Markov

processes to model the stock prices with the assumption that agents’ demands de-

termine the price. The other one is [27], which uses Poisson shot-noise processes,

with the assumption that the important events concerning politics or business life

determine price. In [1], an integral with respect to fBm is obtained, where fBm is a

special case of the limit. In [27], the limit is fBm.

We have studied the arbitrage strategies constructed for fBm models. We have

reviewed the strategies for fractional Bachelier model [8, 37, 40], then for fractional

Black-Scholes model [8, 40], and finally for a more general model with a process of

zero quadratic variation containing fBm in the special case [1]. We have analyzed the

ways suggested to turn the market free of arbitrage [8, 37].acknowlegments

Since fBm is not a semimartingale [37], it is shown that it allows arbitrage [13].

Despite this fact, fBm is preferred for modeling the long range dependence structure

of price processes. It can be used with some modifications [37]. Another way for

getting advantage of the long range dependence of fBm is to construct models that

do not allow arbitrage which may approximate fBm in the limit.

We have constructed two stock price models, in which we used ideas from [9] and

[25]. In the first model pulses with vanishing effects are used whereas in the second

one the effects do not vanish. The limiting processes are studied in both models. In

the first model, the limit is found as the frequency of trading is increased and the

quantity of the orders is decreased following [9]. The limit is found to be fBm. In the

second case, the limit is found as time is speeded up, intensity of the order arrivals
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is increased while the size of the process itself is divided by some scaling factor [25].

The limit is again fBm. The equivalence of these two ways of scalings has been shown

for the first time in this thesis. Indeed, the scaling by increasing the intensity and

decreasing the quantity is more intuitive and easier than the other one.

In [25], the limit is considered in the cases where λn/n
δ−1 tends to a finite, positive

constant, to infinity, or to zero as λn and n tend to infinity. We have studied the case

of fast connection rate in which λn/n
δ−1 → ∞ only. In the other cases called the

slow and the intermediate connection rates, the limit is a Lévy process and another

stochastic processes. Moreover, our stock price models can be investigated for such

limits. The Lévy process limit is interesting on its own as it is also used as a model

for stock prices. Any equivalence of the scalings in the other cases to simpler scalings

remains as future work.
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