
Stretch: A Feature Weighting Method for The k Nearest

Neighbor Algorithms

by

Mehmet Ali Yatbaz

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical & Computer Engineering

Koç University

October, 2007

1

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Mehmet Ali Yatbaz

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assist. Prof. Deniz Yuret

Assist. Prof. Metin Türkay

Assist. Prof. Alper Tunga Erdoğan

Date:

2

Aileme

To my parents

3

ABSTRACT

The k nearest neighbor learning algorithm (kNN) is one of the well studied non-

parametric learning algorithms. kNN assumes that the underlying joint probability

density function of the training set is unknown and it estimates the underlying joint

probability density functions using the labeled data set (training set). Although this

is a realistic assumption in terms of the real world problems, it introduces some

limitations on the predictive accuracy, the storage complexity and computational

compexity of the kNN.

The goal of this thesis is to understand kNN and techniques that are used to

increase the predictive accuracy of kNN. This thesis mainly focuses on the effect of the

irrelevant features on the predictive accuracy of the kNN and introduces the Stretch

method, a new preprocessing method to increase the predictive accuracy of kNN by

doing linear transformation on the training data matrix. The method incrementally

constructs a linear transformation that maximizes the nearest neighbor classification

accuracy on the training set. At each iteration the method picks an instance from

the data set, and computes a transformation that moves the instance closer to the

instances with the same category and/or away from the instances in other categories.

The composition of these iterative linear transformations can lead to statistically

significant improvements in kNN learning algorithms.

4

ÖZETÇE

En yakın k komşu algoritması (EKK) uzun süreli çalışılmış parametresiz sınıflandır-

ma algoritmalarındandır. EKK sınıflandırılmış örnek verilerin dağılımının altında

yatan birleşik olasılık yoğunluk fonksiyonunun bilinmediğini kabul eder ve bu fonksiy-

onu sınıflandırılmış örnek verileri kullanarak ölçümler. Her ne kadar bu varsayım

pratikte karşılaşılan problemler açısından gerçekçi bir yaklaşım olsa da EKK’nin

sınıflandırma doğruluğu, veri depolama miktarı ve hesaplama zamanı üzerinde olum-

suz etkilere sebep olur.

Bu tezin amacı EKK algoritmasının anlaşılması ve EKK’nin sınıflandırma doğrulu-

ğunun arttırılması için kullanılan yöntemlerin incelenmesidir. Bu tez esas olarak ver-

ilerin sahip olduğu ilgisiz özelliklerin EKK algoritmasının sinıflandırma doğruluğuna

olan etkisi üzerine yoğunlaşmıs ve bu sorunu çözmek amaçlı Stretch adında yeni bir

yöntem önermiştir. Bu yöntem sınıflandırma öncesinde örnek veriler üzerinde dogrusal

dönüşumler uygulayarak EKK’nin sınıflandırma doğruluğunu arttırmayı amaçlar. Başka

bir değişle, Stretch örnek verileri kullanarak EKK algoritmasının sınıflandırma doğru-

luğunu en yuksek büyüklüğe çıkartacak doğrusal dönüşümleri adım adım hesaplar. Bu

yöntem her adımda örnek sınıflandırılmış veriler arasından bir veri seçer ve bu veriyi

kendi ile aynı sınıftaki verilerle yakınlaştıracak ve/veya kendisi ile farklı sınıflardaki

verilerle uzaklaştıracak olan doğrusal dönüşümü hesaplar. Farklı adımlarda oluşturul-

muş bu doğrusal dönuşümlerin bileşimi olan sonuç doğrusal dönüşümü EKK algo-

ritmasının sınıflandırma doğruluğu üzerinde istatiksel olarak kayda değer bir artış

gösterir.

5

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Assist. Prof.Deniz Yuret for his

valuable guidance, understanding and patience throughout my graduate study. Also,

I would like to thank Assist. Prof. Alper Tunga Erdoğan and Assist. Prof. Metin

Türkay for their valuable comments as members of my thesis committee.

I am grateful to my parents, Leyla and Naci Emin for their endless support,

patience and love during my entire life. I would like to thank my brothers Hakan

İşbilir, Mehmet Özgüçlü and Mustafa Karaman who have shared everything with.

I was fortunate to have such great friends close to me during my graduate edu-

cation. Ergun Biçici, Ahmet Engin Ural and Mehmet Akgul were great office mates.

It was a pleasure to share the same house with Muhittin Emre Özdemir, Mehmet Ali

Dündar and Kadir Onur Unutulmaz. And also I would like to thank my friends and

colleagues; Emra Atsan, Burak Görkemli (Müdür) ,Erkan Keremoğlu, Emre Güney,

Tuğba Özbilgin, Çağdaş Atici, Volkan Dedeoğlu and Bengi Mizrahi.

6

TABLE OF CONTENTS

List of Tables 10

List of Figures 13

Chapter 1: Introduction 15

1.1 Motivation . 16

1.2 Contributions . 16

1.3 Related Work . 17

1.4 Outline . 17

Chapter 2: Nearest Neighbor Algorithms and Feature Weighting 18

2.1 Nearest Neighbor Algorithms . 18

2.2 Theoretical Framework . 19

2.2.1 Error Bounds of NN . 19

2.2.2 Convergence of kNN . 20

2.2.3 Decision Function of kNN . 20

2.2.4 Distance Function of kNN . 22

2.2.5 Distance Weighting Function 22

2.3 Computational Complexity of kNN 23

2.4 Liminations of the kNN . 24

2.4.1 Storage Complexity . 24

2.4.2 Computational Complexity . 25

2.4.3 Sensitivity to selection of similarity function and value of k . . 26

2.4.4 Noisy Instances . 26

2.4.5 Irrelevant Attributes . 27

7

2.4.6 kNN Provides little information regarding the structure of cat-

egories . 29

2.5 Feature Weighting/Selection . 30

2.6 Weight Space . 30

2.6.1 Binary Weight Space . 31

2.6.2 Nominal Weight Space . 32

2.6.3 Continuous Weight Space . 32

2.7 The Feature Selection/Weighting Model 33

2.7.1 The Filter Model . 33

2.7.2 The Wrapper Model . 38

Chapter 3: The Stretch Method 42

3.1 Idea . 42

3.2 Motivating Example . 43

3.3 Definition of Stretch . 44

3.4 Main Loop . 44

3.5 Convergence . 47

3.6 Stage1 Definition . 48

3.6.1 Misclassified Instances . 48

3.6.2 Pseudo-code of Stage 1 . 50

3.6.3 Design issues of Stage1 . 50

3.7 Stage 2 Definition . 51

3.7.1 Stage 2 Pseudo-code . 53

3.8 The Stretch Matrix Composition . 54

3.9 Normalization . 55

3.9.1 Volume of Ai . 55

3.10 Stage 3 Definition . 57

3.10.1 Pseudo-code of Stage3 . 58

3.11 When does Stretch may not improve kNN accuracy? 58

8

3.11.1 Overfitting . 59

3.11.2 Solutions to Overfitting . 59

3.11.3 Validation set . 59

3.11.4 Regularization . 61

3.11.5 Validation set with Regularization 62

3.11.6 Algorithm Specific Methods 63

3.12 Computational Complexity . 63

3.13 Can Stretch construct any transformation? 63

Chapter 4: Experimental Results 65

4.1 Compared Method: Relief-F . 65

4.2 Selected Datasets . 67

4.2.1 Definition of The Data Sets 67

4.2.2 Missing values . 70

4.2.3 Binarization . 70

4.2.4 Dataset Normalization . 70

4.3 Methodology . 72

4.4 Overfitting(AT vs AV) . 76

4.5 Stretch Experiments . 76

4.6 Relief-F Experiments . 78

4.7 Relief-F vs Stretch . 80

4.8 BestNN Performance of Feature Weighting Methods 82

4.9 Effect of Noise on Stretch . 85

Chapter 5: Conclusion and Future Work 86

5.1 Conclusion . 86

5.2 Future Work . 87

Bibliography 88

9

LIST OF TABLES

3.1 Pseudo-code of Main Loop. The data set, the number of nearest neigh-

bor, the penalty coefficient, the α value used for the instances in the

same category and from the different categories are represented by X,

k, αsame and αdiff . AF and AV represent the final transformation

matrix of the data set and validation set. 46

3.2 Pseudo-code of Stage 1. The data set and the number of nearest neigh-

bor is represented by X and k, respectively. 50

3.3 Pseudo-code of the Stage 2. The randomly selected misclassified in-

stance, its nearest neighbor and the values of α is represented by x,

xNN , αsame and αdiff . The category of the x and xNN is represented

by cx and cxNN
. 53

3.4 Pseudo-code of Stage 3. Current stretch matrix, the final stretch ma-

trix, the penalty coefficient, the number of nearest neighbor , the data

set and the loss function of AF is represented by Ai, AF , c, k, X and

Estretch, respectively. The diagonal entries of V matrix are represented

by vi where i = 1..n. 58

4.1 Properties of the selected data sets. Binary, numeric and continuous

features are represented by b, n and c, respectively. Unknown proper-

ties are represented by ’?’. The horizontal line separates the data sets

that are used in [1] from others. 71

4.2 The LOOCV error of the 1NN on the training set before and after

applying Stretch with two different convergence configurations are pre-

sented. Statistically significant results are marked with bold. 74

10

4.3 The classification results of 1NN on the test sets after running Stretch

on the training data sets with two different configurations are pre-

sented. On the left column, Stretch uses the final transformation ma-

trix, AT that minimizes the LOOCV error of the training set and on

the right, it uses the one, AV that minimizes the LOOCV error of

the validation set. AT and AV results are compared and statistically

significant results marked with bold for each row of both columns. . . 75

4.4 The classification performance of the 1NN on the test sets before and

after applying Stretch with two different convergence configurations.

Statistically significant results are marked with bold. 77

4.5 The classification performance of the 1NN and BestNN before and

after applying Relief-F are presented. Statistically significant results

are marked with bold. 79

4.6 The classification performance of the 1NN on test sets after applying

Relief-F and Stretch. Stretch is run with two different convergence

configurations. The results of Relief-F and Stretch is compared, and

statistically significance is tested on the difference between the result of

Relief-F and Stretch. The statistically significant ones are marked with

bold. The second column shows which method significantly improves

the original 1NN accuracy. 81

4.7 The LOOCV error the BestNN on the training set before and after

applying Stretch with two different convergence configurations are pre-

sented. Statistically significant results are marked with bold. 82

11

4.8 The classification results of BestNN on the test sets after running

Stretch on the training sets with two different configurations. On the

left column, Stretch uses the final transformation matrix, AT that min-

imizes the LOOCV error of the training set and on the right, it uses,

AV that minimizes the LOOCV error of the validation set. Statisti-

cally significant differences are marked with bold for each row of both

columns. 83

4.9 The classification performance of the BestNN on test sets before and

after applying Stretch with two different convergence configurations.

Statistically significant results are marked with bold. 84

4.10 The classification performance of the 1NN on test sets before and after

applying Stretch with two different convergence configurations. Statis-

tically significant results are marked with bold. 85

12

LIST OF FIGURES

2.1 The figure is 2D data set with 200 instances and 2 categories showed

with plus and star. 20 of the instances are randomly generated and

assigned to a category. These instances are labeled as ‘Noise‘ on the

figure. 27

2.2 The figure on the left is 1D data set with 100 instances and 2 categories

showed with plus and star. The one on the right is after adding irrele-

vant dimension that is generated randomly. The original dimension is

enough to determine the categories of the instances. 28

2.3 The figure is the flow chart of a classification procedure of kNN . The

first path (labeled with 1) is an ordinary kNN classification procedure

without using preprocessing methods. The second path is a kNN al-

gorithm that uses storage reduction and feature selection/weighting

methods before the classification. The third path is a kNN algorithm

that only uses storage reduction whereas the fourth path only uses the

feature selection/weighting before the classification. 29

2.4 The figure is the flow chart of the filter model. The methods that use

the filter model do not get any feedback from the learning algorithm

however they may use a learning algorithm before the feature selection

or weighting task. 34

2.5 The figure is the flow chart of the wrapper model. The methods that

use the wrapper model get feedback from the learning algorithm after

each update of the feature weights or selected features set. 39

13

3.1 The figure on the left is the initial data set with 400 instances and 2

categories showed with plus and star. The one on the right is after

stretching the original data set. 43

3.2 An example of instance types. The figure on the left is the original

input space in two dimensions with two distinct categories indicated

by circles and pluses. The one in the center shows the misclassified in-

stances whereas the one on the right shows only the boundary instances

by LOOCV of 1NN. 49

3.3 The figure on the left is the initial stretch matrix, A, that is equal

to I therefore V olumeA is equal to 1. The one on the right is after

stretching A along d = z direction by α times. As a result the new

V olumeA is larger than 1. 56

3.4 The figure shows the error of 1NN on the training set and the validation

set of heart-h after iteratively applying the transformation matrix that

is constructed to optimize LOOCV error of the training set. 60

14

Chapter 1

INTRODUCTION

The importance of Machine Learning (MacLer) is increasing day by day as the

information on science, engineering disciplines and business domains becomes larger

and larger. Therefore the real world applications of MacLer have started to emerge

in industrial, educational and business areas.

The algorithms of the MacLer can be grouped into two categories, which are

• Supervised Learning

• Unsupervised Learning

In supervised learning, the data consists of the features that represent the prop-

erties of the instances and a desired output which is also called label. On the other

hand, in unsupervised learning the data only consists of the features.

The aim of the supervised learning is to classify the new unlabeled data by learning

from the labeled training data. There are plenty of learning algorithms that are using

different techniques to estimate the underlying pattern of the training data.

The k-nearest neighbor(kNN) classifier [2] is a well studied example of the MacLer

algorithms that construct local models using the labeled data. kNN postpones the

model building task until a new instance is introduced. When a new instance is

introduced, kNN finds the k nearest neighbors of this new instance and determines

the label of the new instance by using these k instances. Therefore, the family of

kNN algorithms are also referred as lazy learning algorithms. There are also other

learning algorithms that build the learning model during the training phase. These

algorithms have a longer training time compared to lazy learning algorithms and these

algorithms are refered as eager learning algorithms.

1.1 Motivation

Since a new instance is classified based on the k nearest instances, the quality of the

kNN generalization depends on the distances between the instances. The existence of

irrelevant features decrease the generalization accuracy of kNN since they affect the

distances between the instances.

Feature weighting methods construct a diagonal feature weighting matrix, there-

fore they are unable to identify the corellation of the features.

The motivation of this thesis is to develop a preprocessing method, Stretch, that

constructs a linear transformation to increase the generalization accuracy of kNN.

This linear transformation is nothing but a full weighting matrix that decreases the

importance of the irrelevant features while increasing the importance of the relevant

features.

1.2 Contributions

During the course of the studies leading up to this thesis, the main research work has

been on the development of a preprocessing method that increases the classification

accuracy of kNN. Furthermore, other preprocessing methods that construct diagonal

weighting matrices together with kNN algorithms have been studied.

The contributions can be listed as:

• Construction of a full weight matrix, therefore theoretically our approach can

construct any scale matrix while other methods can only construct diagonal

matrix,

• Improving the leave-one-out cross validation(LOOCV) error of kNN on the

training set,

• Improving the accuracy of 1NN on the test sets,

• Improving the accuracy of kNN on the noise-free(less noisy) data sets.
16

1.3 Related Work

The focus of the thesis has been on feature weighting methods, where each instance

of the data set is multiplied by a diagonal matrix. Various approaches have been

introduced to calculate feature weights: Relief[3] and Relief-F[4] uses incrementaly

updates the weights similar to Stretch algorithm. The main difference between Stretch

and Relief-F is, Stretch can construct full matrix while Relief-F construcs a diagonal

weight matrix. Therefore, Stretch can build any arbitrary matrices including the

diagonal matrices. VSM[5] uses conjugate gradient methods, PCF and CCF[6] uses

a probabilistic model. VDM[7] uses different weight vectors for different parts of the

instance space.

1.4 Outline

The thesis is organized as follows: Chapter 2 surveys the literature and defines some

basic concepts of the feature weighting/selection methods. Chapter 3 forms the basis

of the thesis. It describes the details of the Stretch method and presents motivating

examples to clarify the idea of Stretch in detail. In Chapter 4, the results of the

experiments are presented and the performance of Stretch on nineteen data set is

discussed by comparing them with the results of the Relief-F [8] method. Finally,

Chapter 7 concludes the thesis pointing out the achievements obtained in the thesis

and discusses possible future work.

17

Chapter 2

NEAREST NEIGHBOR ALGORITHMS AND FEATURE

WEIGHTING

2.1 Nearest Neighbor Algorithms

k Nearest Neighbor (kNN) algorithm is one of the well known non-parametric meth-

ods. Many supervised learning algorithms that are parametric (like maximum likeli-

hood) assume that the underlying density functions of the data set are known, which

is not a realistic assumption in real world problems. In other words, most of the

time real world problems can not be well represented by known parametric forms.

On the other hand, non-parametric methods (like kNN, Parzen Window) relax the

learnining by assuming the underlying density functions are unknown and estimate

the underlying densities from the data set. However, this relaxation, may increase

the error of the learning task as explained in the section 2.2.1.

The main idea of the kNN is very similar to the Parzen window technique [9]. The

Parzen window technique defines a fixed size window and estimates the local density

function by using the instances that fall into this window. The main difference of

kNN with this method is, instead of keeping the size of the window fixed, the size

is determined by kth nearest neighbor. Therefore, the window size is nothing but a

function of sample (training) data set.

kNN uses the estimated local density function during the calculation of the pos-

terior probabilities that are used for classification.

2.2 Theoretical Framework

The theoretical framework of the kNN requires special attention, since the goal of the

Stretch algorithm is to minimize the classification error of the kNN that is represented

by ENN . ENN is equal to the number of misclssified instances in a set divided by the

number of instances in the set. The set of misclassified instances that is constructed

by kNN has a crucial role on the performance of Stretch. The kNN algorithm is

divided into components and each component explained in detail in the rest of the

chapter.

2.2.1 Error Bounds of NN

The Bayes method classifies the unlabeled data using the probability density function

multiplied by a priori probability of each label. Therefore, the minimum error can

only be achieved when the underlying koint density functions of labels are known.

Parametric methods, like Bayes analysis, assume priori knowledge of the underlying

joint distribution, so the error E∗ of these methods is optimal. However, as a member

of non-parametric statistics family, kNN does not have a priori knowledge of the

underlying joint distribution of the sample points. Therefore, the error of kNN, ENN ,

must be at least as great as E∗ which is a tight lower bound for any learning algorithm.

Calculation of the upper bound of ENN is not as trivial as the lower bound case

and was not clear until [10]. A tight upper bound can be defined as the sample set

goes to infinity. Although it is not possible to have infinite amount of sample data in

practice, it gives an intuition about the upper bound of the error as the sample data

size becomes larger.

As a result, [10] proved that the bounds of error ENN on a data set with |C|
categories as the data set size goes to infinity can be shown to be

E∗ ≤ ENN ≤ E∗

(

2− |C|E
∗

|C| − 1

)

(2.1)

19

2.2.2 Convergence of kNN

The work of Wagner [11] enhances the contribution of [10] by defining the convergence

of the nearest neighbor rule. It is shown that for an n dimensional data set the error

of the nearest neighbor rule converges to ENN that is defined in equation 2.1 with

probability of 1 for mild continuity and moment assumptions.

ENN → E with probability 1. (2.2)

2.2.3 Decision Function of kNN

Most of the non-parametric methods assume that the probability density function

under consideration is a locally constant function. An example that uses this as-

sumption is kernel estimation where each local instance has a contribution on the

local estimate, p̂(x). The posterior probabilities of the kNN can be defined by using

the kernel function. The kernel is bounded function that integrates to one. Since the

kernel is a weighted function, the contribution of each instance highly depends on the

kernel function, K(x).

A kernel estimator for n sample instances can be defined as

p̂(x) =
1

n

n
∑

i

K(x− xi) (2.3)

Kernel estimation can be defined locally for the category i in C,

p̂i(x) =
1

ni

ni
∑

j=1

K(x− xf(j)) (2.4)

where ni is number of sample instances from the category i, f(j) is a function of j

and pi is the estimated density for category i. Using the p̂(x), an estimated posterior

probability can be found using bayes rule

20

p̂(ci|x) =
πip̂i(x)

∑|C|
i πip̂i(x)

(2.5)

where πi is the prior probability of the ith category. If p̂i(x) is substituted with the

right hand side of equation 2.4 then equation 2.5 becomes

p̂(ci|x) =
πi

ni

∑k
i K(x− xi)

∑k
j

πi

ni
K(x− xj)

(2.6)

As it is showed in [12] equation 2.6 simplifies to

p̂(c|x) =

∑

n I(c, ci)K(x− ci)
∑k

i K(x− xi)
(2.7)

where ci stands for the category of the ith instance and I is an indicator function that

is defined as

I(a, b) =











0 if a 6= b,

1 if a = b.
(2.8)

The accuracy of the estimation is highly correlated with the number of sample

instances and the definition of the kernel function. The posterior probabilities of

kNN can be defined in terms of the density estimations that are calculated using the

kernel with k local sample instances and a constant kernel function. As a result, the

probability of x being from the category ci is

p̂(ci|x) =
ki

k
(2.9)

where ki is the number of instances that are members of the categor ci. Different

types of kernel functions for kNN are discussed in the subsection 2.2.5.

21

2.2.4 Distance Function of kNN

Distance function defines the relationship between two instances in terms of the fea-

ture set F . A generalized version of distance function can be defined as

d(x, y) =
r

√

√

√

√

√

|F |
∑

i=1

w(fi)(δ(xi, yi))r (2.10)

where δ(x, y) and w(f) is a proximity and feature weighting function defined on fiǫF ,

respectively. For a basic kNN algorithm,

r = 2,

δ(xi, yi) = xi − yi,

w(f) = 1.

2.2.5 Distance Weighting Function

Distance weighting function determines the effect of each nearest neighbor during the

estimation of posterior probabilities when k > 1. This function defined in equation

2.7 as K(x− xi), is called the kernel function of kNN.

• Majority voting

If K(x− xi) = c where c is a constant, then each nearest instance has the same

effect on the decision function. As a result, the posterior probability is given by

equation 2.9. It is clear that, in majority voting there are more ties compared to

the non-constant kernels and these ties are sometimes responsible for the high

value of error when they are broken randomly.

• Inverse Distance Weighting

If K(d(x, xi)) = 1
d(x,xi)

, then the evidence of the closer neighbor will be weighted

more heavily compared to further neighbor. However, this kernel function pro-

duces unexpected results when the nearest instance are sparse. Moreover when
22

the data set is not normalized the K(d(x, xi)) approaches to zero for the further

nearest instances.

• A Generalization of Dudani’s Weighting Function

This kernel is a generalized version of the kernel proposed in [13] and published

in [14]. It defines the voting weight of ith nearest neighbor, vi, as

vi =











(ds−dj)+α(ds−d1)

(1+α)(ds−d1)
if ds 6= d1

1 if ds = d1

(2.11)

where ds is the distance between the query instance and its sth nearest neighbor

(s = k,k+1,. . .) and α > 0. This generalized version of [13] takes kth nearest

neighbor into account on decision process unlike the original work proposed by

[13] which is a special case of this generalized version where α = 0 and ds = dk.

Since the kernel scales the distances between query point and its nearest neigh-

bors, each instance has a comparable effect on the decision procedure.

One can define non-linear distance weighting functions like Radial Based Kernels

[15] and Probabilistic Neural Networks [16] that fits a Gaussian distribution that

assigns higher weights to closer instances and lower to further ones.

2.3 Computational Complexity of kNN

As stated in section 2.4.2, the computational complexity is one of the biggest draw-

backs of kNN algorithms compared to the eager learning algorithms. The complexity

of the basic kNN on a data set with m instances is O(m2) since it is not using any

data structures. However, if the kNN algorithm uses a data structure such as vp-tree

[17] then finding k nearest neighbors of all the instances in the data set on average

case can be accomplished in O(m log m) time.

23

2.4 Liminations of the kNN

As a member of lazy learning algorithm family, kNN has some limitations in real life

problems [1]. These limitations are,

1. High storage complexity,

2. High computational complexity,

3. Sensitivity to selection of similarity function and value of k,

4. Sensitivity to noisy and irrelevant attributes,

5. Provides little information regarding the structure of categories.

Each of these problems is a research area by itself and therefore needs special

attention that is beyond of the scope of this thesis. This thesis focuses on the solutions

that reduce effect of the irrelevant features on the classification accuracy of kNN and

suggest a method that significantly increases the classification accuracy of kNN on

the data sets that have irrelevant and correlated features. All of the above limitations

are explained briefly in the rest of this chapter.

2.4.1 Storage Complexity

As it is mentioned in Chapter 1, standard kNN keeps the whole dataset in memory

and does not preprocess it prior to any classification of new instances. As a result,

the storage complexity of the algorithm increases as the dataset size increases. An

increase in the dataset size causes an increase in the memory requirement of the

learning algorithm.

The complexity of storage is directly related to the number of instances and at-

tributes so any reduction attempt on these decreases the memory requirement. In

order to reduce the memory requirement different reduction techniques are proposed

[18]. These reduction techniques select a smaller subset of the dataset and use this
24

subset during the classification of new instances. There are also some techniques that

create new instances by using weighted averages of similar instances. As a result the

initial size of the dataset becomes smaller.

Selecting some subset of the dataset may decrease the generalization accuracy

of the classification. A successful storage reduction algorithm does not decrease the

classification accuracy significantly while reducing the storage size significantly [18].

The storage requirement can also be reduced by selecting a smaller subset of the

feature set which is discussed in section 2.5.

Storage reduction techniques have two positive side effects [18]:

1. Run time of the algorithm decreases,

2. The number of noisy instances decreases.

2.4.2 Computational Complexity

kNN does not pre-process the dataset therefore compared to eager algorithms it has

less computational cost during training phase. However, during the classification

of a new instance kNN has a higher computational requirement. That is mainly

because it calculates the similarity between the new instance and each instance in

the dataset. Therefore, it can be concluded that as the number of instances increases

computational complexity also increases.

Although computational complexity is mainly due to the number of instances,

computational complexity can be reduced without reducing the number of instances

by using indexed tree search algorithms such as k-d tree [19], projection [20], ANN

[21], vp-tree [17] and r-tree [22]. However, as the number of attributes increases

instances become very close to each other. Therefore, the number of branches in the

indexed tree algorithm increases which increases the number of comparisons. As a

result the tree loses its efficiency [19].

25

2.4.3 Sensitivity to selection of similarity function and value of k

The similarity function calculates the distance between instances therefore it has a

crucial role in determining the nearest neighbor set of an instance. Similarity functions

are discussed in detail in section 2.2.

The variable k can get different values from 1 to dataset size, n. The value of k

has an important role on the performance of kNN. Selecting larger k values not only

yields smoother decision function but also provides more probabilistic information

about the nearest neighbors of the instances. Moreover, larger k values increase the

robustness of the algorithm to noise. On the other hand, as k goes to n, the locality of

the classification is damaged because farther instances are taken into account. There

is also instance weighting by distance which is discussed in section 2.2. In addition,

the computational complexity of the kNN increases as k becomes larger.

2.4.4 Noisy Instances

Noisy instances are the instances that are randomly assigned into some category so

their information content is misleading. In order to reduce the effect of the noisy

instances during the decision process, some extra work must be done. There are two

methods to cope with noisy instances:

1. Using (k>1)NN algorithms.

2. Selecting non-noisy training instances and using them during the decision pro-

cess.

The first method assumes that if xnoise is a noisy instance then the probability that its

nearest neighbor is from some other category will be high. As a result, any instance

x ∈ X that is nearest neighbor with xnoise is misclassified by 1NN. While k > 1, k

neighbors are taken into account during the classification therefore the effect of the

noisy instance are reduced.

26

Figure 2.1: The figure is 2D data set with 200 instances and 2 categories showed with
plus and star. 20 of the instances are randomly generated and assigned to a category.
These instances are labeled as ‘Noise‘ on the figure.

The second method is to select none-noisy instances by storage reduction tech-

niques which are discussed in the section 2.4.1. These techniques do not only reduce

the storage required but also remove the noisy instances by selecting the instances

that are better in classification.

2.4.5 Irrelevant Attributes

Irrelevant attributes are the ones that have misleading or little information about the

categories. According to [23], features can be grouped into three disjoint categories.

The relevance of a feature FiǫF where F is the set of all features, and C is the set of

all categories, can be defined as

• Strongly relevant

P (C|F) 6= P (C|F − Fi) (2.12)

• Weakly relevant Let F ′ ⊂ F − Fi then Fi is weakly relevant if and only if

∃F ′, such that P (C|Fi, F
′) 6= P (C|F ′). (2.13)

• Irrelevant

∀F ′P (C|Fi, F
′) = P (C|F ′) (2.14)

27

Figure 2.2: The figure on the left is 1D data set with 100 instances and 2 categories
showed with plus and star. The one on the right is after adding irrelevant dimen-
sion that is generated randomly. The original dimension is enough to determine the
categories of the instances.

Irrelevant attributes need special attention during the decision process. Normal-

izing all the features to [0,1] at the beginning of the learning task equalizes the effect

interval of each feature on the decision function. However, as the number of irrelevant

attributes increases, they become dominant on the decision functions. This situation

is known as the curse of dimensionality [24]. Since kNN is using local estimates as a

decision function, irrelevant attributes reduce the performance of the kNN. One solu-

tion to this problem is to construct a weight function, w(f), such that it assigns low

weights to irrelevant and weakly relevant features and high weights to the strongly

relevant features. Another solution is to select the relevant features while discarding

the irrelevant ones. This method is a special case of the previous solution, since it

uses a weight function that assigns zero weight to irrelevant features.

Another solution to this problem is to stretch(transform) the data set in order to

decrease the effect of the irrelevant features. A method that is using this approach is

introduced in 3.1.

28

2.4.6 kNN Provides little information regarding the structure of categories

Eager algorithms like decision trees [25], neural networks[26] or support vector ma-

chines [27] pre-process the dataset and gather information about the dataset prior to

classification of the new instances. Therefore, by using the information gathered one

can classify a new instance and one also can talk about the structure of the dataset. As

it is mentioned in the computational complexity section 2.4.2, basic kNN algorithms

do not pre-process the input data so they do not gather information about structures

of categories at the beginning of learning task. However, there are some non-trivial

kNN algorithms like RISE [28] that generalize instances by constructing rules in order

to reduce the storage and thereby provide information about the structure.

Figure 2.3: The figure is the flow chart of a classification procedure of kNN . The first
path (labeled with 1) is an ordinary kNN classification procedure without using pre-
processing methods. The second path is a kNN algorithm that uses storage reduction
and feature selection/weighting methods before the classification. The third path is
a kNN algorithm that only uses storage reduction whereas the fourth path only uses
the feature selection/weighting before the classification.

29

2.5 Feature Weighting/Selection

The quality of a feature is determined by how well it increases the prediction accu-

racy of the estimated function. A good feature should have information about the

categories of the data set by itself or together with other features [29]. As stated

at section 2.4.5, the feature weighting/selecting algorithms has a crucial role on the

classification accuracy of the learning algorithm. There are various approaches to

the feature weighting problem. Feature weighting methods can be categorized in sev-

eral different manners with respect to their properties [30]. In this chapter, feature

weighting methods are organized according to

• The type of weight space

The type of weight space determines whether the method is a feature selection or

a feature weighting method and both of these methods are discussed in section

2.6.

• The Feature Selection/Weighting Model

Feature weighting methods can be divided into two categories based on usage of

a learning algorithm as a feedback mechanism during the calculation of feature

weights or selection of features [23]. These two categories are the filter model and

the wrapper model which are discussed in section 2.7.1 and 2.7.2, respectively.

2.6 Weight Space

Weight space determines the range of the feature weighting function which is defined

in equation 2.10. As the range set size gets larger, the possible values that a weight

can be assigned increase. In another words, if the range set size equals to one then

all the feature weights are equal thus; the irrelevant features can not be distinguished

from the relevant ones. There are three types of feature space and each of them are

described in detail.

30

2.6.1 Binary Weight Space

Feature weighting methods that use binary weight space are called feature selection

methods and they set the weight to zero if the feature is irrelevant or to one if

the feature is relevant. These methods select the relevant features and discard the

irrelevant ones. As a result, most of the time, they increase both the classification

accuracy and the computational performance of the learning algorithms. However,

since the feature selection methods select the relevant features, they are unable to

differentiate the relevant and weakly relevant features from each other [23]. According

to [31] a feature selection method has four design issues.

• The starting point in the feature set space

The starting point of the search determines the direction of the search. The

method may start with an empty feature set then it adds each relevant feature

one by one or it may start with the set of all features then it removes irrelevant

features one by one. The first approach is called forward selection and the

second one is called backward selection. There are also some hybrid methods

which start with a randomly selected subset of feature space and perform a

backward or forward search [32].

• The organization of the search

Since the selection of a minimal subset of the feature set is NP-Complete [23],

it is not possible to find the optimum subset of the feature space in a reason-

able time frame (i.e., 2f subsets where f is the dimension size of the feature

space). Other search strategies such as sequential or randomized search are

computationally more appropriate for the feature selection task [33]. Sequential

algorithms use stepwise selection or elimination of the features from the feature

set whereas the randomized algorithms use hill climbing or simulated annealing

to construct their feature sets.

• The evaluation of the feature subsets
31

These strategies are discussed in section 2.7.1 and 2.7.2.

• The halting criteria

This criteria determines the stopping point of the method.

Each of these design issues needs special attention since each has an effect on the

construction of the feature subset. The feature selection algorithms are beyond the

scope of this thesis; therefore, the rest of the subject is not discussed in detail. More

detailed work can be found in [29, 34, 31, 32]

2.6.2 Nominal Weight Space

The methods that use this weighting space assign weights from a pre-defined finite

set of discrete values. The advantage of this method over the continuous weight space

is the chance of over-fitting and the variance of weights is reduced. Since the values

of weights are assigned from a pre-defined finite set, the number of different valued

weights is less compared to the continuous case. On the other hand, since it uses

finite set of weight values, the representative power of the weights is reduced [35].

2.6.3 Continuous Weight Space

Feature weighting methods use a continuous weight space therefore they assign higher

weights to relevant features while assigning lower weights to weakly relevant and

irrelevant features. Therefore, they are more sensitive to weakly relevant features.

On the other hand, since they do not eliminate any features, they are unable to

reduce the storage complexity of the data set. However, they can be converted to a

feature selection method by setting a threshold value for weights. If the computed

weight is smaller than threshold value then the corresponding feature is discarded

otherwise it is accepted.

32

2.7 The Feature Selection/Weighting Model

The feature weighting/selection algorithms are categorized into two, based on the

usage of a learning algorithm during the feature selection or weighting. Each model

has its own advantages and disadvantages in terms of the computational cost and the

effect on the classification accuracy of the learning algorithm.

2.7.1 The Filter Model

The weighting methods that use filter model does not get any feedback from the

learning algorithm during the calculation of weights or selection of features. In the

filter model, the bias of the learning algorithm does not affect the selection/weighting

of the features or vice versa. As a result the performance gain or loss of any selec-

tion/weighting action is not known during the weigh calculation or feature selection

[23]. On the other hand, the advantage of not using a learning algorithm as a feed-

back mechanism is, the reduction of the computational cost compared to the wrapper

methods. Instead of using the feedback from a learning algorithm these methods

use other methods such as conditional probabilities, class projection, and information

theory as a model [30]. There are also some methods that use a learning algorithm

only once to get the necessary information about the instances and features. However,

these algorithms do not get feedback as they update the weights.

33

Update weightsTraining

Set

Weights of

the features

Learning

Algorithm

Optional

Figure 2.4: The figure is the flow chart of the filter model. The methods that use the
filter model do not get any feedback from the learning algorithm however they may
use a learning algorithm before the feature selection or weighting task.

Creecy et al. [6] used a conditional probability model to assign weights to fea-

tures according to their ability to classify instances. They developed two methods

both of which binarize the features before calculating the weights. The first method

they proposed, cross-category feature importance (CCF), assigns higher weights to

the features that are observed in fewer different categories. For example, if the occur-

rence of a feature is equally likely for each category then the ability of the feature to

distinguish the categories is low, therefore CCF assigns a low weight to that feature.

A feature gets the maximum weight (i.e., 1) if and only if it is observed only in one

of the categories. The weights are calculated by using

w(f) =
|C|
∑

i=1

P (ci|f)2 (2.15)

where f is the feature that is weighted and C is the set of all categories (i.e., C is

the set of ci’s where ci represents the ith category). However, this method assumes

that the weights of features are independent of the categories. As a result, although
34

CCF assigns higher weights to the features that are observed in fewer categories, it

provides no information about the relation of the feature with these few categories

that the feature is observed.

The second method removes the independence assumption and calculates the

weights for every feature in every category. Therefore, the weight of every feature

is different for the given category. This method is named per category feature impor-

tance (PCF), and it calculates the distance between a new instance q and the instance

from the training set x by using

distance(x, q) =
|F |
∑

i=1

δ(i, xi, qi) (2.16)

where δ(f, xf , qf) =
√

w(f, cx)(xf − qf) (2.17)

w(f, ci) = P (ci|f) (2.18)

where F is the set of all features, cx and cq represents the category of x and the

category of q. The above conditional probability calculates the weight of a feature, f ,

for a given category ci. Since the feature values are binary, there is no need to consider

the other values of f . The weakness of PCF is, if one of the categories is significantly

larger than the other categories then the feature weights are highly determined by the

majority class therefore PCF is highly sensitive to the distribution of the categories

[36].

They perform better than the non-weighted algorithms. However, [6] did not

compare these two methods with each other. Mohri and Tanaka [36] showed that

CCF outperforms PCF on six out of eight classification tasks.

Stanfill and Waltz [7] defined a more complex similarity function based on the

class projection model. Traditional similarity functions of nominal values calculates

the difference by binarizing them or calculating the number of mismatching features.

However, these similarity functions assume all of these nominal values have equal

importance and the difference between every pair of nominal values is same. Stanfill

and Waltz [7] described the value-difference metric (VDM) and used the distribution
35

of the nominal feature values while calculating the difference between two instances.

This difference metric is defined between two instances(i.e. x and q) of the training

set and formalized as,

distance(x, q) =
|F |
∑

i=1

w(i, xi)δ(i, xi, qi) (2.19)

where w(i, v) =

√

√

√

√

√

|C|
∑

i=1

p(ci|xi = v)2 (2.20)

δ(i, v, u) =
|C|
∑

j=1

(p(cj|xi = v)− p(cj|xi = u))2 (2.21)

where F is the set of all features, u and v are the possible values of the given discrete

feature. The feature weights are defined based on how well the feature value of some

particular instance predicts the instance category. Therefore, the weights are averaged

over the all categories based on the conditional probability defined in equation 2.20.

VDM calculates distances for every pair of values of a nominal feature. As a result,

two instances are close to each other for some particular feature if their values for that

feature is distributed similarly over the categories. If the distribution of the feature

value over the categories is uniform then VDM assigns a relatively low weigh to that

feature. Stanfill and Waltz [7] did not compare VDM with other methods, however

[37] and [38] outperforms the VDM in several classification tasks.

Daelemans and Van den Bosch [38] extends the idea of [39] and introduces a

new method that runs on nominal valued data sets. Like [39], [38] uses information

gain[25] to define the weights of each feature. They calculate the initial entropy of

the data set X, by using

Entropy(X) = −
|C|
∑

i=1

p(ci)log2p(ci) (2.22)

where p(ci) is the prior probability of each category. The entropy of X given the value

of that feature is defined as,

36

Entropy(X|f) = −
∑

viǫVf

|C|
∑

i=1

−p(ci|f = vi)log2p(ci|f = vi) (2.23)

where Vf is the set of possible values of feature f . The information gain is calculated

by subtracting the equation 2.23 from 2.22.

Gain(f, X) = Entropy(X)−Entropy(X|f) (2.24)

This method reduces the classification error of kNN algorithms of on a word hy-

phenation task [38] and a grapheme-to-phoneme conversion task [40]. One drawback

of this method is, it does not provide a solution for continuous features. However, [30]

discritizes the continuous features by dividing the continuous space into predefined

buckets and assigning same discrete value to the continuous values that fall into same

buckets.

Kira and Rendell [3] introduced a new algorithm, Relief, that calculates the weight

based on the k nearest neighbors of each instance and selects the features that have

high weights. Although this method uses a kNN algorithm to calculate weights it

does not use it as a feedback mechanism, thus we present it in this section. kNN is

run once to construct the k nearest neighbor set of each instance. Relief updates the

weights of the features by using

w(f) = w(f)− δ(xf , Hf)/m + δ(xf , Mf)/m (2.25)

where xf , Hf and Mf are the feature value of f for the instance x, the nearest neighbor

of x that is from the same category as x, and the nearest neighbor of x that is from

a different category, respectively. The difference function, δ(x, y), that calculates the

distance between x and y. The contribution of distances to weights are normalized by

the size of data set such that the weights are between [-1,1]. Relief assumes that the

value of a feature is closer for two instances from the same category and is different for
37

two instances from different categories therefore features that vary across categories

are assigned higher weights. Although Relief is a feature selection method it can be

converted to a feature weighting method by removing the selection of high weighted

feature part of the algorithm.

Kononenko [4] modified Relief to cope with noisy, incomplete and multi-category

data sets. [4] defined a new weight formula as,

w(f) = w(f)− δ(xf , Hf)/m +
|C|
∑

i=1

p(ci)δ(xf , Mf(ci))/m (2.26)

where Mf (ci) is the value of the feature that is nearest neighbor of x from the the cate-

gory ci and m is the number of the instances in the data set. This new modified Relief,

Relief-F, performs well on selecting/weighting irrelevant features however Relief and

its extension Relief-F can not recognize redundant or highly interacting features [1].

Relief-F is one of the best methods that increase the classification accuracy of kNN

[1].

2.7.2 The Wrapper Model

The methods that are designed based on the wrapper model get feedback from a

learning algorithm during the calculation of the feature weights or the selection of

features. The wrapper methods run the learning algorithm to learn the effect of each

change on the feature weights or in the selected features set. These methods may

perform a better heuristic search since they are informed by a learning algorithm

during the feature weighting/selection. These methods halt when any change on the

feature weights or selected feature set does not increase the classification performance

of the learning algorithm.

On the other hand the usage of a learning algorithm increases the computational

cost of these methods and also increases the risk of over-fitting on small training

data sets [41]. The importance of a feature is different across the different learning

algorithms. Therefore, the learning algorithm that is used in the wrapper method
38

decides the importance of the each feature [29] since the bias of the learning algorithm

affects the direction of the search.

Update Weights

Learning

Algorithm

Performance

Feedback

After updating

weights, ask for

feedback

Training

Set

Weights of

the features

Figure 2.5: The figure is the flow chart of the wrapper model. The methods that use
the wrapper model get feedback from the learning algorithm after each update of the
feature weights or selected features set.

Salzberg [42] introduced a new algorithm, EACH, that generalizes the data set by

defining hyper-rectangles. The algorithm also handles nested hyper-rectangles where

the inner hyper-rectangle is an exception of the outer one. EACH randomly selects n

elements of the data set to construct these rectangles and uses the rest of the data set

to calculate the weights. EACH gets feedback during the classification of the these

instances. For each of these instances, the distance between hyper-rectangles and the

new instance is calculated using the current weights and they are classified according

to the closest hyper-rectangle. If the classification of the instance that is calculated

based on this distance is incorrect then the weight of the matching features of the

instance and the hyper-rectangle is increased by a constant to make them farther

away. If the values of the features do not match than the weight of that feature is

decremented by the same constant. One drawback of EACH is, the constant that is

39

used to adjust feature weights is set by the user. Salzberg [42] outperformed basic

kNN algorithms by selecting good values for the feature adjustment constant.

Aha [43] introduced IB4 which is similar to EACH except that it does not update

the feature weights by a constant. While updating the feature weights IB4 uses the

category distributions of an instance and its nearest neighbor. Therefore, the update

of feature weights is category dependent and the features are updated by using

δ(xf , yf)(1−max(p(cx), p(cy))) (2.27)

where δ(xf , yf) calculates the distance between the feature f of x and y, cx and cy

stands for the category of x and y.

Lowe [5] designed a new method, variable-kernel similarity metric (VSM), which

optimizes the feature weights and the similarity metric such that the leave-one-out

cross validation (LOOCV) error of kNN on the data set is minimized. VSM uses

the conjugate gradient technique to optimize the error therefore the optimization

converges rapidly without any convergence parameter. VSM also uses an optimized

Gaussian kernel to weight the importance of each nearest neighbor of any instance.

One advantage of VSM is, it does not need any configuration parameters that is set

by user. Lowe [5] compared VSM with other methods and reported good results.

Skalak [44] defines a new method that assigns binary weights to the features. The

method he proposes is a genetic algorithm that uses random mutation hill climbing

to weight the features. The method starts with a binary weight string and mutates

each bit of this string to obtain smaller classification error. The algorithms halt when

it reaches the maximum number of iterations. This method outperformed 1NN on

four classification tasks.

Basic feature weighting corresponds to the specific subset of linear transforma-

tions that have diagonal matrices. In constrast, Stretch can generate arbitrary linear

transformations, thus includes features weighting as a special case. Moreover, since

Stretch uses the wrapper model, it gets feedback from kNN and optimizes feature

40

weights accordingly. The methods like VSM and IB4 uses the wrapper method while

Relief, Relief-F, VDM ,CCF and PCF are using the filter method. The later methods

are computationally faster than the wrapper methods.

41

Chapter 3

THE STRETCH METHOD

3.1 Idea

The kNN algorithm has some limitations especially when it deals with a data set that

has irrelevant features. One solution to the irrelevant feature problem is explained in

section 2.2.4 which introduces attribute weighting into the decision function.

Attribute weighting is a well-studied subject and there are a variety of methods

that can assign weights to attributes. Some of the well-known methods in the field

are discussed in 2.5

As it is also stated in section 2, most of the methods construct a weight vector,

w, to represent the relevance of attributes for the learning task and use this vector

during the classification of the instances. If each diagonal entry of a matrix is set with

corresponding w value, then the resulting matrix will be a equivalent feature weighting

matrix W . However, since all the entries of W except the diagonals are equal to zero,

this matrix has no information concerning the relation of the attributes with each

other. Therefore, instead of constructing a diagonal matrix, a more generalized full

weighting matrix can be constructed. As a result, Wgeneral has information about the

relations of attributes with each other.

The Stretch method iteratively constructs linear transformations, Ai, that mini-

mizes the error of the nearest neighbor classification accuracy in the data set, X. The

method generates arbitrary linear transformations, thus includes feature weighting

as a special case. The final linear transformation is constructed to satisfy two basic

goals:

1. To bring the instances in the same category closer,

2. To push the instances from different categories apart.

Stretch uses the wrapper model that is discussed in section 2.7.2 and it gets feed-

back from kNN about the iteratively constructed linear transformations, Ai where i

represents the iteration number. The final linear transformation, Af , is a combination

of Ai of selected iterations.

3.2 Motivating Example

The effect of the method can be seen on a 2D artificially generated 2 category data

set. On figure 3.1 the effect of the method on the boundary and the data set can be

clearly seen. The category boundary of the original data set becomes smaller as the

data set is stretched, meanwhile the instances from the same category come closer.

Figure 3.1: The figure on the left is the initial data set with 400 instances and 2
categories showed with plus and star. The one on the right is after stretching the
original data set.

If the above example is rotated 45 degree by a full matrix then the y-axis will

be an irrelevant feature. A feature weighting method constructs a diagonal weight

matrix. However, this matrix can not both rotate and select the relevant features.

On the other hand, Stretch constructs a full matrix which can handle these types of

problems.

43

3.3 Definition of Stretch

At iteration i, Stretch selects a random misclassified instance, x and its nearest neigh-

bor, xNN to construct Ai based on the distance vector, d, where d = x − xNN . The

Ai matrix stretches or shrinks the data set X along the d vector. If the number of

nearest meighbors k is bigger than 1 then xNN can belong to the same category with

x or different category from x. Ai, either pushes xNN further from x or brings it closer

to x according to the category of xNN . Ai is accepted if it reduces the loss function of

the method on the whole training set, Estretch, otherwise it will be discarded. Estretch

is defined as

Estretch = ENN + Cpenalty (3.1)

where Cpenalty stands for the complexity penalty of the stretch matrix. As a result,

instead of restricted to principle components [1], Stretch constructs linear transfor-

mations along any arbitrary direction. Accepted transformations are multiplied to

construct AF which is a full feature weighing matrix that aims to improve the per-

formance of kNN on the data set.

3.4 Main Loop

The main loop of Stretch is composed of three main steps:

• Stage 1: Determining the misclassified instance set, M , by kNN,

In Stage 1, Stretch constructs the misclassified instance set and calculates the

error of the kNN, ENN , on the given data set.

• Stage 2: Constructing a linear transformation, Ai,

In Stage 2, the algorithm picks a random instance from Mx, and constructs a

linear transformation Ai based on this instance.

44

• Stage 3: Calculating Estretch

In Stage 3, Ai is temporarily accepted and multiplied with the former accepted

Ai’s to construct a temporarily A′
F . X ′ is calculated by multiplying the data

set X by A′
F and Stage 1 is re-run for the transformed data set, X ′. At this

stage a move penalty is defined for A′
F for regularization in terms of the singular

values of A′
F . The Estretch is calculated using the move penalty of A′

F and the

ENN . If the Estretch has improved the previous loss then Ai is accepted and

accepted iteration counter is incremented, otherwise Ai is discarded and a new

misclassified instance selected from M set of X. The final linear transformation,

AF , is constructed by multiplying all the accepted linear transformations.

45

Table 3.1: Pseudo-code of Main Loop. The data set, the number of nearest neighbor,
the penalty coefficient, the α value used for the instances in the same category and
from the different categories are represented by X, k, αsame and αdiff . AF and AV

represent the final transformation matrix of the data set and validation set.

Algorithm 3.4.1: Main Loop(X, k, C, αsame, αdiff)

while i< acceptmax AND j< jumpmax

comment: Checks for halting criteria

do



























































































































































































































































i, j, c← 0

AF = Identity(dim(X))

Stage1
{

(M, ENN)← Construct M(k, X)

Stage2
{

Ai ← Construct A(x, xNN , αsame, αdiff)

Stage3



























































































































































































E ′
stretch ← Calculate Estretch(Ai, AF , C, k, X, Estretch)

if E ′
stretch ≤ Estretch

then



















































































AF = AiAF

X ′ = AFX

Estretch ← E ′
stretch

i← i + 1

if Ai reduces Estretch on validation set

then











AV ← AiAV

go to Stage1

else



























































if cut> cutmax OR Can not improve Estretch

then



























comment: The algorithm does a random jump

Do Stage2

Update Estretch, F and X

else go to Stage2

46

3.5 Convergence

The convergence of Stretch is controlled by three variables.

1. acceptmax

This variable controls how many linear tranformations are accepted by Stretch.

If the number of accepted transformations reaches this upper limit than the

method stops iterating and returns AF .

2. jumpmax

This variable is the upper limit of the maximum number of allowed random

jumps that the algorithm can do. If all the misclassified instances in the current

data set are not able to construct an accepted linear transformation then the

algorithm selects the misclassified instance that least distorts the data set and

accepts the linear transformation without considering the effect on the Estretch.

If this variable reaches its upper limit than the algorithm stops iterating and

returns the final linear transformation.

3. cutmax

This variable is the upper limit of the number of consecutive accepted linear

transformations that give the same Estretch. Although these consecutive linear

transformations do not improve the error, they have side effects on data set

that are discussed in next chapter. If this consecutive non-improving linear

transformation chain is broken by a linear transformation that changes the

Estretch then the value of cut will be set to zero. If the value of the cuts reaches

this upper limit then the method resets the number of cuts and jumps.

Higher values of these variables increase the chance of over fitting which is dis-

cussed in section 3.11.

47

3.6 Stage1 Definition

In Stage 1, the algorithm constructs the misclassified instance set, M , using leave-one-

out cross validation (LOOCV) in kNN. Any instance that is misclassified increases

the ENN and gets added to M . The size of M , depends on k and the decision function

that is used for classification. For example, an instance that is classified correctly by

(k ≤ c)NN, might be classified incorrectly by (k > c)NN or vice versa, where c ≥ 1.

While constructing M , the algorithm also constructs the k nearest neighbor set of each

instance and keeps the distances to each neighbor in this set. The k nearest neighbor

set of xi and distances from xi to each of its k nearest neighbor is represented by

kNNxi
and kDxi

, respectively.

This stage has a crucial role because all the linear transformations that is con-

structed on Stage 2 will be based on a misclassified instance that is selected from

M .

3.6.1 Misclassified Instances

The misclassified instances can be categorized into two groups:

1. Noisy Instances

As it is explained in section 2.4.4, these instances do not truly reflect the proper-

ties of the categories they belong. Therefore, if Stretch selects a noisy instance,

xnoise, and constructs a linear transformation accordingly, this might transform

the data set along an undesired direction. Moreover, after this transformation,

it is highly probable that xnoise is still misclassified by kNN and therefore, will

be a member of M on the next iteration of main-loop. As a result, Stretch

might choose xnoise more then once and keep repeating stretches in the wrong

direction.

2. Boundary Instances

48

Figure 3.2 presents the difference between noisy instances and the boundary

instances. These instances define the category boundary and therefore the ef-

fects of linear transformations based on these instances are more predictable

and desirable. The misclassification probability of these instances by kNN is

high compared to the non-boundary instances.

Figure 3.2: An example of instance types. The figure on the left is the original input
space in two dimensions with two distinct categories indicated by circles and pluses.
The one in the center shows the misclassified instances whereas the one on the right
shows only the boundary instances by LOOCV of 1NN.

In order to satisfy the goals of the algorithm, M should contain misclassified

instances that define category boundaries. This can be accomplished by selecting

smaller k values since as k becomes larger, the ratio of the number of noisy instances

to number of boundary instances becomes greater. As a results, as the number of

noisy instances in M increases Stretch constructs misleading linear transformations.

The impact of the distance weighting function, described in the section 2.2.5,

on the success of Stretch is more obvious. In some cases, Stretch constructs a linear

transformation that neither increases nor reduces the Estretch. In these circumstances,

linear transformations have a side effect. Since any accepted transformation linearly

transforms the data set, the distances between instances are changed. Obviously, this

side effect is only available when the distance weighting function is not a constant

function and has a distance parameter.

49

3.6.2 Pseudo-code of Stage 1

Table 3.2: Pseudo-code of Stage 1. The data set and the number of nearest neighbor
is represented by X and k, respectively.

Algorithm 3.6.1: Construct M(k, X)

for each x ∈ X

do







































































comment: Leave one out kNN(LOOkNN)

kNNxi
← Find k nearest neighbor(s) of x

kDxi
← Distance to each k nearest neighbor

if x is classified incorrectly by its k nearest neighbor(s)

then











M ←M + x

ENN ← ENN + 1

return (M, ENN)

3.6.3 Design issues of Stage1

Constant Distance Weighting Function (i.e.,Majority Voting) When kNN

uses majority voting, distance information between the query instance, q and the

its k nearest neighbors is not used. Therefore, after a linear transformation, the

nearest neighbor set of the q may not change although the distances between the

nearest neighbors are changed. As a result, ENN will be equal to the value before the

transformation.

Distance Weighting Function with Distance Parameter In these functions,

any change in distances between q and its nearest neighbors affects the decision func-

tion. Therefore, even if Stretch constructs a linear transformation that does not

50

change the nearest neighbor set of q, ENN might be reduced due to the distance

changes.

3.7 Stage 2 Definition

In this stage, Stretch constructs a linear transformation matrix, Ai, at each iteration.

The method first picks a random instance x from M then calculates the distance

vector d between x and its nearest neighbor, xNN . The Ai matrix is defined as

A = QV QT (3.2)

where Q and V are an orthonormal and a diagonal matrices, respectively. The Q

matrix is orthonormal version of S where S keeps direction information of the stretch

(transformation). Q is constructed by applying the QR decompostion on S. Each

column of the Q matrix keeps the orthonormal bases of the stretch matrix S whereas

each diagonal entry of V stands for the stretching coefficients along the corresponding

base. In order to stretch along the desired direction, Stretch initializes V and S to

identity matrix then replaces the first column of the S matrix with d and first diagonal

entry of V with αsame or αdiff . The selection of α is determined by the category of

the x and xNN . If the categories of these two instances are same then αsame < 1 is

used to bring these two instances together otherwise αdiff > 1 is used to push these

instances apart. When k equals to 1 then the algorithm always uses αdiff since all

the x from M have nearest neighbors from a different categories. On the other hand

when k > 1, xNN may belong to the same category with x.

For example, if Ai is constructed by setting the first diagonal entry of V to α and

S to identity, then Ai will stretch the data set along the [1, 0, 0, .., 0, 0] by α amount.

The method checks the singularity of S. If any singularity occurrs after replacing

the first column with d then the column that is responsible for singularity is replaced

by an appropriate unit vector to remove the singularity. Introducing d into S removes

the orthogonal property of the S matrix, therefore the algorithm uses QR decompo-
51

sition to construct a new orthonormal matrix, R. QR decomposition by means of

Gram-Schmidt process also solves the singularity problem of S by introducing new

orthogonal bases along the singular dimensions. In the final step of stage two, Ai is

calculated by using Q and V matrices.

52

3.7.1 Stage 2 Pseudo-code

Table 3.3: Pseudo-code of the Stage 2. The randomly selected misclassified instance,
its nearest neighbor and the values of α is represented by x, xNN , αsame and αdiff .
The category of the x and xNN is represented by cx and cxNN

.

Algorithm 3.7.1: Construct A(x, xNN , αsame, αdiff)

d = x− xNN

n = dim(x)

V = Identity(n)

S = Identity(n)

comment: Set V and S to n by n identity matrix.

Replace 1st column of S with d.

if cx = cxNN

then V (1, 1)← αsame

else V (1, 1)← αdiff

comment: Set the 1st diagonal entry of V and 1st column of S

(Q, R) = QR(S)

comment: Construct the orthonormal matrix Q using QR decomposition.

V olumeA =
∏n

i=1 vi

V ← V/ n
√

V olumeA

A← QV QT

return (A)

53

3.8 The Stretch Matrix Composition

Every row of the data set X is an instance vector form Rn. Therefore, multiplying

Ai with X is equivalent to multiplying each instance vector with Ai. Multiplying an

instance vector with a matrix rotates and/or scales this vector.

The Ai matrix is a linear transformation that shrinks or stretches along d therefore

any x that has a component parallel to d vector is affected. The Q matrix that is

described previously is constructed such that the first column of Q is a normal vector

that keeps the stretch direction and the rest of the mutually orthonormal columns

are responsible for the remaining n−1 dimensions, where n is the number of features

of the data set.

As a result, multiplying QT with x is equivalent to rotating x on to a unit circle

that is defined by QT .

QT x = x′ (3.3)

where x′ is a vector that is described by the rows of QT . By using this fact x′ can be

scaled along the desired direction (i.e., along d) by setting the corresponding diagonal

entry of the V matrix. For example, if we want to scale x along d, it is enough to set

the first diagonal entry of the V matrix to α while setting the rest of diagonals to 1.

V QT x = x′′ (3.4)

where x′′ is a vector that is scaled version of x and defined by the bases of QT .

Therefore in order to get a stretched version of x, x′′ is rotated back to the original

domain of x by multiplying Q.

QV QT x = xstretched,

Aix = xstretched,

∀xǫX , AiX = Xstretched
54

where Q is a set of orthonormal basis vectors (i.e., singular vectors) of Ai, QT is the

transpose of Q (since Q is an orthonormal matrix QT = S−1) and the diagonal entries

of V are the singular values of Ai matrix.

This is a special case of SVD of AI that is also called Eigenvalue Decomposi-

tion(ED). This is because, Ai = QV Q−1 and the diagonal entries of V are non-

negative, as a result Ai is a positive semidefinite Hermitian matrix.

3.9 Normalization

At the beginning of the main loop AF is equal to I therefore the length of all singular

vectors of AF are equal to 1. At each iteration, Ai either stretchs or shrinks AF

which changes the singular vectors of AF . If we think of a prism that is defined

by the mutually orthanormal singular vectors of AF with a unit volume before the

transform, then multiplying it with Ai changes its volume by the amount of αsame or

αdiff . As a result, as the number of iterations increases the entries of AF will become

smaller or larger which may cause an arithmetic overflow during the execution.

3.9.1 Volume of Ai

The Ai matrix is defined as

A = QV QT (3.5)

where Q and V are an orthonormal and a diagonal matrices, respectively. The matrix

Q can be defined in terms of its column vectors, Q = [q1, q2, .., qn]. Because of the

orthonormal property of Q

q1⊥q2⊥ · · ·⊥qn,

|qi| = 1, for i=1,2,· · ·,n.

55

Figure 3.3: The figure on the left is the initial stretch matrix, A, that is equal to I
therefore V olumeA is equal to 1. The one on the right is after stretching A along
d = z direction by α times. As a result the new V olumeA is larger than 1.

The V olumeAi
is defined in terms of the singular vectors of the Ai matrix. Since

the singular vectors are orthonormal to each other we think of these vectors as the

vertices of a prism. The length of each qi equals to 1, therefore singular vectors

only have direction information. The length of the each column vector is kept in the

corresponding diagonal entry of V . If each diagonal entry of V is defined as vi where

i = 1, 2 · · · , n then V olumeAi
is equal to

V olumeAi
=

n
∏

i=1

vi (3.6)

In order to keep the V olumeAi
equals to 1, each vi of A is divided by n

√

V olumeAi
.

As a result, each entry of Ai is divided by a constant term determined by α that is

used to construct that particular Ai. The normalization affects only the values of

each entry of Ai, it does not change the relative ratios between the values since each

entry is divided by the same constant term.

Otherwise the V olumeAF
will be different from unity.

56

This problem is solved by normalizing the entries of Ai in order to keep the volume

of AF equals to unity.

3.10 Stage 3 Definition

In this stage, Stretch calculates Estretch by adding the complexity penalty of A′
F to

ENN where A′
F is the temporarily final matrix equals to AF Ai. This stage prevents

Stretch from overfitting the training data. Moreover, this stage defines a move penalty

for the each misclassfied instance in order to select a missclassfied instance such

that the linear transformation constructed by using it does not deform the data set

significantly. As a result, Stage 3 is responsible for the regularization of the Stretch

method.

57

3.10.1 Pseudo-code of Stage3

Table 3.4: Pseudo-code of Stage 3. Current stretch matrix, the final stretch matrix,
the penalty coefficient, the number of nearest neighbor , the data set and the loss
function of AF is represented by Ai, AF , c, k, X and Estretch, respectively. The
diagonal entries of V matrix are represented by vi where i = 1..n.

Algorithm 3.10.1: Calculate Estretch(Ai, AF , c, k, X, Estretch)

[S, V, D]← SV D(AiAF)

δ =
∑n

i=1(log vi)
2

X ′ ← A′
FX

(M, ENN)← Construct M(k, X ′)

comment: Run stage1 on X ′

E ′
stretch ← ENN + cδ

return (E ′
stretch)

3.11 When does Stretch may not improve kNN accuracy?

Stretch minimizes ENN by constructing linear transformations ,however not all the

transformations lead to a reduction in ENN . This is mainly due to:

• Structure of the data set

A linear transformations that minimizes the kNN error can be constructed for

any data set that is separable by linear hyper-planes or at least the categories

of the data set can be separated by linear transformations while reducing ENN

significantly. However, for some data sets it is not possible to construct a linear

transformation that decreases the ENN significantly.

58

• The input space subset that is used to construct linear transformation

Stretch constructs the linear transformations using some subset (i.e., training

set) of the input space. Therefore the training set partially reflects the struc-

tural properties of the input space. However unclassified instancesi (i.e., test

set) can belong to any part of the input space. As a result, although a linear

transformation reduces ENN of the training set significantly, similar effect might

not be observed on ENN of the test set.

3.11.1 Overfitting

For some particular data sets the significant improvement on the training set is not

observed on test set. This is because the algorithm memorizes the training set instead

of learning it. The problem of memorizing instead of generalizing on training set is

called over-fitting.

3.11.2 Solutions to Overfitting

There are common methods and some algorithm specific methods to cope with over-

fitting.

• Validation Set

• Regularization

• Validation Set with Regularization

• Algorithm Specific Methods

3.11.3 Validation set

In this method, some portion of the training set is used as a fake test set (i.e., vali-

dation set) and the performance of the algorithm is evaluated both over the ENN of

the training and the validation data sets.
59

Figure 3.4: The figure shows the error of 1NN on the training set and the validation
set of heart-h after iteratively applying the transformation matrix that is constructed
to optimize LOOCV error of the training set.

Figure 3.4 displays the convergence of the 1NN error on the training and the test

set of heart-h data set [45]. The errors of both data sets decrease as the number of

iterations increase. However at some point the error of the validation set increases

even though the error of the training data keeps decreasing which means, at some

point Stretch overfits the training set. Although the validation data set solves the

over-fitting problem for most of the data sets, it does not give any information about

which stretch direction is better to minimize the ENN . Since validation set is used

as a test set, any instance that is member of validation set can not be in training set

therefore the information content of the data set decreases.

Regularization solves these problems of the validation set, meanwhile it does not

reduce the size of training data.

60

3.11.4 Regularization

The Regularization method introduces a complexity penalty into Stretch. As a result,

as the model becomes more complex (i.e., the ratio of the largest singular value to

the smallest singular value of AF increases) Stretch is punished. The move penalty,

δ, is calculated for every linear transformation. Therefore instead of using only ENN ,

it uses

Estretch = ENN + cδ (3.7)

where c is a penalty coefficient that balances the effect of ENN and δ. The value of

c is determined empirically and varies with data set. The move penalty δ has two

important roles:

1. Penalize the move

In Stage 2 of Stretch, a random instance selected then Ai is constructed ac-

cordingly for this particular iteration. Ai stretches or shrinks the data set, as

a result although the volume of the data set does not change, the principle

components of the data set are affected by this linear transformation. For ex-

ample, a 2D data set initially has v1 = 1 and v2 = 1 as singular values and

V olume2D = v1v2 = 1. Assume that this 2D set is stretched along v1 by 1.05.

As a result, v1 = 1.054 and v2 = 1. After normalizing the 2D data on stage2

v1 = 1.029 while v2 = 0.98 and V olume2D = 1.

Every transformation stretches or shrinks the current data set along some di-

rection while keeping the volume equal to 1 thus at each iteration the difference

between the initial data set and the current modified data set becomes larger.

The amount of stretch is determined by α, therefore every selected instance

during the construction of linear transformation has same impact on the the

singular values of AF . By using this fact the difference between the initial data

set and the current modified data set can be defined in terms of singular values.
61

As a result each selected move has a penalty, δ, according to the distortion it

causes on data set.

Definition of move penalty, δ: The data set volume does not depend on

the random instance selection in Stage 2, therefore the move penalty is defined

by the singular values of the data set. Initially each singular value is equal to

1 and any linear transformation updates the singular values. For example , if

the algorithm always stretches along the direction that v1 corresponds than v1

becomes larger compared to the rest of the singular values as the number of

iterations increases. The move penalty, δ, is defined as

δ =
n
∑

i=1

(log vi)
2. (3.8)

In order to Stretch to accept Ai, Ai has to decrease the ENN while it does not

distort the data set significantly compared to the other possible linear transfor-

mations.

2. Penalize the complexity

As the number of iterations increases δ becomes larger or smaller. This is due to

the differences between the singular values becoming larger. At some point, the

δ term dominates over the ENN term and prevents the algorithm from accepting

the linear transformations. The ENN of the data set can be reduced by Stretch,

Estretch does not let Stretch to do any further reduction on the error of ENN of

the data set with careful selection of the coefficients this may prevent overfitting.

3.11.5 Validation set with Regularization

This method can be called as guided validation set which uses the advantages of both

of the methods described in previous sections. In this method, regularization together

62

with validation set decreases the chance of overfitting meanwhile regularization in-

crease the quality of the linear transformations.

3.11.6 Algorithm Specific Methods

If iteratemax is increased then the algorithm overfits the training set. However the

value of iteratemax has to be determined by the experimenter and this method also

does not penalize the linear transformations.

3.12 Computational Complexity

Each iteration of the algorithm requires the computation of the k nearest neighbors

of all points, QR decomposition of Ai, and singular value decomposition to calculate

the move penalty of that iteration. For an mxn data set, the kNN task can be

accomplished in O(m log m) average time using a data structure such as vp-trees[17].

QR decomposition of Ai can be calculated O(n2) time and the calculation of the move

penalty by using SVD can be completed in O(n3) time.Empirically the algorithm

converges after trying each point in the boundary a small number of times, i.e. the

number of iterations is O(m). The overall time complexity of the algorithm is thus

O(m(m log m + n3 + n2)) which can be rewritten as O(m2 log m + mn3).

3.13 Can Stretch construct any transformation?

Most feature weighting methods in the literature correspond to diagonal stretch ma-

trices in our setting. One interesting question is whether the Stretch algorithm can

potentially construct any arbitrary transformation matrix. The answer turns out to

be yes:

Theorem: Any square matrix A can be constructed by the product of a number

of Ai.

Proof: Any matrix can be written as a product of three normal matrices due to

the SVD decomposition. A normal matrix has orthogonal eigenvectors and can be

63

written as a sum
∑

λiuiu
∗
i where λi are eigenvalues and ui are eigenvectors. This sum

can be expressed as a product of stretch matrices:

∑

λiuiu
∗
i = (λ1u1u

∗
1 + u2u

∗
2 + · · ·+ unu

∗
n)(u1u

∗
1 + λ2u2u

∗
2 + u3u

∗
3 + · · ·)

. . . (u1u
∗
1 + u2u

∗
2 + · · ·+ λnunu

∗
n)

Thus any matrix can be decomposed into a product of stretch matrices. In order

to construct rotation matrices one have to construct the stretch matrix using the

complex direction vectors.

64

Chapter 4

EXPERIMENTAL RESULTS

Many of the feature weighting methods were surveyed in [1] and all of these meth-

ods were compared according to their kNN classification performances on fourteen

different data sets. In order to compare the results of Stretch with other feature

weighting methods, the experiments are conducted on nineteen data sets that include

twelve of the data sets that were used in [1]. Isolet and NETtalk data sets are in

[1], however they are excluded because of the computational restrictions. The ex-

periments of Stretch are conducted with the same methodology that is used in [1].

In order to reduce the bias of the experiments a control feature weighting method

is implemented. In [1], it can be observed that, Relief-F [4] and kNNV SM [30] are

the best feature weighting methods based on the number of significant positive or

negative effects on the classification accuracy of kNN. Therefore, Relief-F is used as

a control method while comparing the results of the experiments. Moreover, it is

applied to the new data sets that are not included in [1]. Relief-F is implemented as

a feature weighting method by ignoring the threshold part of the original method or

setting the threshold value to a value lower than the minimum weight.

4.1 Compared Method: Relief-F

In section 2.7.1, Relief-F and its predecessor, Relief, are discussed in detail. The main

reason of selecting Relief-F as a control method is the way Relief-F calculates the

feature weights. In chapter 3.6.3, the calculation of the weight matrix is discussed

in detail. The construction of the weight matrix is based on the distance vector,

d, between the misclassified instance and its nearest neighbor from a different cate-

gory. Relief and Relief-F use a similar weight calculation approach with Stretch. In

equation 2.25, the weights are calculated based on the distance between the query

instance and its nearest neighbors with the same and a different category. Therefore

the equation 2.25 can be rewritten as

W = W − δ(x, H)/m + δ(x, M)/m (4.1)

The above equation is a generalization of the equation 2.25 and instead of calcu-

lating the feature weights one by one as it is in equation 2.25, it calculates the feature

weight vector, W . In equation 4.1, δ(x, y) calculates the distance vector between x

and y. The right hand side of the equation can be rewritten as

W = W − d′ (4.2)

where the entries of the d vector is the sum of two δ function for the corresponding

features in the equation 4.1. The last equation shows that Relief also updates the

weights based on a distance vector that is similar to the idea of Stretch. Relief-F

calculates d′ using all of the categories in the data set and it weights each particular

distance vector by multiplying them with the prior probabilities of the categories. As

a result, Relief and Relief-F are similar to Stretch in terms of the way they calculate

the feature weights. In [8] the weight update procedure of Relief-F is formulated as

w(f) = w(f)− δ(xf , Hf)/m +
|C|
∑

i=1

p(ci)

1− p(cx)
δ(xf , Mf(ci))/m (4.3)

where p(cx) is the prior probability of the category of x. On the other hand there are

some differences between these two algorithms and these are

• Stretch is using the wrapper method while Relief-F is using the filter method,

• Stretch computes the distance vector by only using the misclassified instances

while Relief-F uses all the instances of the data set,
66

• Stretch constructs a full weight matrix while Relief-F constructs a diagonal

weight matrix,

• Relief-F uses the distribution of the categories while calculating the distance

vector.

These differences can be eliminated by modifying the methods and these modifi-

cations are discussed in detail in chapter 5.

4.2 Selected Datasets

Twenty data sets have selected to run the experiments. Twelve of these data sets are

also used in [1]and marked with “*”, four of these data sets are artificially created,

and eight of them are from the UCI Repository [45]. In order to be compatible with

[1], artificial data sets are generated based on the definitions that are presented in [1].

4.2.1 Definition of The Data Sets

The four artificial data sets are

• Banded Data set*

This data set has two features and ten categories. Each of these categories are

defined by a line that is parallel to x-axis therefore the x value of an instance is

irrelevant.

• Sinusoidal Data set*

This data set has two features and two categories. Each of these categories is

defined by the border of the sine function.

• Gauss Data set*

This data set has five features and fourteen categories. The data set is a combi-

nation of the banded data set and a four category 2D gauss distribution. Each
67

category of the gauss data set is defined by a 2D gauss distribution with a vari-

ance of 0.025. The fifth feature is a binary feature that decides whether the

instance is classified according to the bands or the 2D gauss distributions. As

a result, this data set has interacting features.

• Parity Data set*

This data set has eleven features and two categories. The sum of the first four

features decides the category of the instance (i.e., class one if the sum is even,

class two otherwise). The remaining seven features are randomly generated

irrelevant features.

The rest of the the data sets are

• LED Display Data set*

This data set is a script generated data set and it is also used in [1] and it has

seven features, ten categories and ten percent of noise. As in the gauss data set,

some of the relevant features of LED Display are interacting.

• LED17B Display and LED17C Display Data set*

LED17B Display and LED17C Display data sets are generated by adding sev-

enteen random binary and continuous features to the LED Display data set,

respectively. Therefore it has twenty four features, ten categories and ten per-

cent noise.

• Waveform21 Data set*

This data set is created using the data generator used in [1] and it has twenty

one features, three categories and ten percent noise.

• Waveform40 Data set*

68

This data set is generated by adding nineteen irrelevant features to the Wave-

form21 data set therefore it has forty features and three categories and ten

percent noise.

• Cleveland, Hungarian and Vote Data sets*

[1] cited [46] for the observations and explanations about these data sets. Some

of the features of these data sets have no significant effect on the classification

accuracy of kNN, therefore they can be removed. Hungarian and Cleveland data

sets have thirteen features and two categories while vote data set has sixteen

features and two categories. These data sets have missing features in some of

the instances.

• Hayes Data set

This data set has four features and three categories. Two features are randomly

generated and they are not used during the classification task.

• Glass Data set

This data set has nine features and seven categories.

• Cars Data set

This data set has six features and four categories and it is mainly used to test

structure discovery and constructive induction methods [47].

• Tic-Tac-Toe Data set

This data set has nine features and two categories and it is used to test con-

structive induction methods.

• Monk’s problem 1, Monk’s problem 2 and Monk’s problem 3 Data sets

69

These data sets have six features and two categories. These data sets were used

in the first international comparison of learning algorithms [48]. Each data set

has irrelevant or interracting features. Monk’s problem 3 has five percent noise.

• Nursery Data set

This data set has eight features and five categories and it is mainly used to test

structure discovery and constructive induction methods [47].

4.2.2 Missing values

The missing values of the continuous (nominal) features are replaced with the meansi

(modes) that are calculated using the data set.

4.2.3 Binarization

Nominal features are converted to binary features. The conversion procedure defines

a new binary feature for every value of the given nominal feature and sets this binary

feature to 1 if the instance has the corresponding nominal value or 0 otherwise.

4.2.4 Dataset Normalization

Each value of a feature is normalized using

xf =
xf − fmin

fmax − fmin

(4.4)

where xf is the value of the feature f and fmin and fmax are the minimum and

maximum value of the feature f in the training set, respectively.

70

Table 4.1: Properties of the selected data sets. Binary, numeric and continuous fea-
tures are represented by b, n and c, respectively. Unknown properties are represented
by ’?’. The horizontal line separates the data sets that are used in [1] from others.

Set Size Number and Number of

Types of Irrelevant

Dataset Training Test Features Features Categories Noise

Banded 350 150 2c 1 10 no

Sinusoidal 350 150 2c 1 2 no

Gauss-band 350 150 4c,1b 2 14 no

Parity 350 150 11b 7 2 no

LED-7 Display 200 1000 7b 0 10 yes

LED-7+17B 200 1000 24b 17 10 yes

LED-7+17C 200 1000 7b,17c 17 10 yes

Cleveland 212 91 5c,3b,5n 0 2 ?

Hungarian 206 88 5c,3b,5h 1 2 ?

Voting 305 130 16b 0 2 ?

Waveform-21 700 300 21c 0 3 yes

Waveform-40 700 300 40c 19 3 yes

Cars 279 1449 6n 0 4 no

TicTacToe 670 258 9n 0 2 no

Glass 149 64 9c ? 7 ?

Hayes 132 28 4n 2 3 ?

Nursery 648 194 8n 0 5 no

Monk’s Problem 1 389 167 2b,4n 2 2 no

Monk’s Problem 2 421 180 2b,4n 2 2 no

Monk’s Problem 3 388 166 2b,4n 2 2 yes

71

4.3 Methodology

Every data set is divided into two subsets one of which is the training and the other

is the test set based on the sizes in Table 4.1. Methods calculate the feature weights

using the training set and then apply these weights to the training set and the test

set. Stretch constructs a validation set using thirty-five percent of the training set

(the validation set size of the LED data set family and the car data set is twenty-

five percent of the training set) in order to reduce the effect of overfitting which is

described in section 3.11.3. The sizes of the training and test sets for each data set

are shown in table 4.1.

Stretch keeps the final linear transformation that minimizes the leave-one-out cross

validation (LOOCV) error of the training set and the validation set, and these linear

transformations are represented by AT and AV , respectively. The results are presented

for both AT and AV in order to show which one is a better transformation based on

1NN and BestNN performances on the test set after applying this transformations.

Experiments on each data set are repeated twenty-five times in order to reduce

the statistical variance. Six different odd k values (i.e., 1, 3, 5, 7, 9 and 11) are chosen

to determine the optimum k value for kNN. One benefit of odd k values is, the chance

of ties during the decision process is reduced. The classification results of 1NN and

the k value with best classification accuracy, BestNN, is presented for each data set.

When k > 1, Relief-F also averages the k nearest neighbors from each category.

However, during the experiments of BestNN the weights are calculated using one near-

est neighbor from each category. BestNN experiments present the effect of weights,

calculated using one nearest neighbor, on the classification accuracy of BestNN.

The regularization constant, defined in 3.11.4, is tuned emprically for each data

set. In order to determine the effect of the convergence time on the performance of

Stretch, the iteratemax is set to 400 and 800, while the jumpmax is set to 100 and

200. For all of the experiments the cutmax is set to 20. For the rest of the chapter

the experiments are labeled based on the number of iterations and the jumps(ex:

72

100j/400i). Since these variables determine the running time of the algorithm, they

are referred to as the convergence configurations for the rest of this chapter.

All the missing values of the data sets are replaced by using the method described

in section 4.2.2 then they are normalized and binarized by using the formula in section

4.2.4 and the method that is described in section 4.2.3, respectively.

αsame and αdiff that are defined in section 3.7 are set to 1,05 and 0.95, respectively.

To evaluate the experiment results a paired t-test is performed and a 0.05 level of

significance is used. Significant results are written in bold.

The results are scientificly rounded for better visualization, however the paired

t-test was applied to the original results.

Stretch on the training set: Table 4.2 presents the LOOCV error of 1NN on the

training set after the application of Stretch. Stretch is run for two different convergence

configurations which are represented in columns that are labeled as 100j/400i and

200j/800i, respectively. Since the latter one has longer convergence time, it iterates

more and therefore it is expected to construct a better linear transformation in terms

of LOOCV error of 1NN on the training set. The results in Table 4.2 satisfies this claim

since the LOOCV error of 1NN for the 200j/800i case is better than the 100j/400i

case. For some data sets, increasing the convergence time reduces the error to zero

as in the parity, waveform40 and tic-tac-toe data sets.

It can be concluded that as the convergence time increase the LOOCV error of

1NN on a training data set approaches zero. However, for some data sets, such as

Hayes, increasing the convergence time can lead to an increase in the LOOCV error

of the 1NN on training set.

The real problem is, as the convergence time increases the constructed linear

transformation that minimizes the LOOCV error of training set will be specific to the

training set thus, triggers the overfitting.

One good solution to this problem is to use the AV instead of using AT . AT can

overfit the training data set therefore it increases the 1NN error on the test set.

73

Table 4.2: The LOOCV error of the 1NN on the training set before and after apply-
ing Stretch with two different convergence configurations are presented. Statistically
significant results are marked with bold.

Convergence Configuration

Dataset Before 100j/400i 200j/800i

Banded 0.82±0.01 0.97±0.03 0.98±0.01

Sinusoidal 0.86±0.01 0.95±0.02 0.96±0.03

Gauss-band 0.63±0.02 0.84±0.03 0.84±0.02

Parity 0.66±0.02 1±0.00 1±0.00

LED-7 Display 0.51±0.05 0.53±0.05 0.54±0.05

LED-7+17B 0.38±0.03 0.73±0.04 0.76±0.04

LED-7+17C 0.60±0.04 0.81±0.03 0.81±0.02

Waveform-21 0.78±0.02 0.93±0.01 0.94±0.03

Waveform-40 0.67±0.03 0.96±0.02 1±0.00

Cleveland 0.76±0.03 0.84±0.02 0.84±0.02

Hungarian 0.77±0.02 0.83±0.01 0.85±0.02

Voting 0.92±0.01 0.96±0.01 0.97±0.01

Cars 0.76±0.02 0.96±0.02 0.97±0.02

TicTacToe 0.56±0.01 1±0.00 1±0.00

Glass 0.68±0.03 0.77±0.02 0.78±0.03

Hayes 0.63±0.04 0.74±0.05 0.72±0.05

Nursery 0.78±0.02 0.96±0.01 0.97±0.01

Monk’s Problem1 0.26±0.02 0.27±0.02 0.29±0.03

Monk’s Problem2 0.41±0.03 0.76±0.02 0.76±0.02

Monk’s Problem3 0.26±0.02 0.27±0.02 0.28±0.02

74

Table 4.3: The classification results of 1NN on the test sets after running Stretch on
the training data sets with two different configurations are presented. On the left
column, Stretch uses the final transformation matrix, AT that minimizes the LOOCV
error of the training set and on the right, it uses the one, AV that minimizes the
LOOCV error of the validation set. AT and AV results are compared and statistically
significant results marked with bold for each row of both columns.

100j/400i 200j/800i

Dataset AT AV AT AV

Banded 0.90±0.07 0.95±0.02 0.90±0.07 0.96±0.02

Sinusoidal 0.90±0.04 0.93±0.02 0.91±0.04 0.93±0.03

Gauss-band 0.73±0.06 0.75±0.04 0.73±0.06 0.75±0.04

Parity 0.85±0.15 0.98±0.02 0.86±0.15 0.98±0.01

LED-7 Display 0.51±0.05 0.51±0.05 0.51±0.06 0.52±0.05

LED-7+17B 0.43±0.03 0.43±0.02 0.42±0.02 0.42±0.03

LED-7+17C 0.59±0.03 0.58±0.03 0.59±0.03 0.57±0.03

Waveform-21 0.77±0.03 0.76±0.03 0.77±0.03 0.77±0.03

Waveform-40 0.71±0.04 0.73±0.04 0.72±0.04 0.74±0.04

Cleveland 0.77±0.04 0.77±0.05 0.78±0.05 0.76±0.03

Hungarian 0.78±0.04 0.79±0.03 0.77±0.03 0.79±0.04

Voting 0.93±0.02 0.94±0.02 0.93±0.02 0.93±0.02

Cars 0.83±0.05 0.87±0.02 0.84±0.06 0.87±0.02

TicTacToe 0.87±0.02 0.99±0.01 0.84±0.20 0.99±0.01

Glass 0.68±0.05 0.66±0.06 0.70±0.05 0.66±0.05

Hayes 0.70±0.06 0.66±0.05 0.70±0.06 0.63±0.07

Nursery 0.86±0.06 0.89±0.03 0.86±0.07 0.89±0.02

Monk’s Problem1 0.27±0.03 0.32±0.03 0.27±0.02 0.31±0.03

Monk’s Problem2 0.60±0.06 0.73±0.03 0.62±0.17 0.74±0.02

Monk’s Problem3 0.27±0.03 0.33±0.02 0.27±0.02 0.32±0.03

75

4.4 Overfitting(AT vs AV)

As it is described previously, Stretch constructs the linear transformations that mini-

mize the LOOCV error of kNN on the training set. However, minimizing the LOOCV

error of kNN on the training set might not minimize the error of the kNN on the test

set. On the other hand, instead of using AT , one can apply AV to the test set to

minimize the effect of the overfitting while minimizing the error of kNN on the test

set.

AT vs AV : Table 4.3 presents the error of 1NN on the test sets that is stretched

either with AT or AV . The results under the label AT and AV are 1NN classification

accuracies that are calculated by applying AT and AV to the test set, respectively. The

accuracy improvements of 1NN in the training set can not be consistently observed

in Table 4.3. This indicates that the problem is not with Stretch being able to find a

good linear transformation but that the resulting transformation overfits the training

data. The results that are calculated using AV also supports the overfitting, since the

results of AV outperforms the results of AT (except in the Hayes data set).

For the rest of this chapter, Stretch is compared with Relief-F based on the AV ,

since the performance of AV is obviously better than AT .

4.5 Stretch Experiments

Table 4.4 represents the accuracy of 1NN on the test set, after applying AV to the

test set. The results are grouped under three labels which are Before, 100j/400i and

200j/800i. The results of the unweighted 1NN is presented under the label “Before“

whereas the results for the corresponding configurations are represented in the other

columns.

The accuracy of 1NN significantly improved on sixteen Stretch applied data sets.

Stretch significantly reduces the original accuracy of 1NN only on the LED-7+17C

data set among these sixteen data sets.

76

Table 4.4: The classification performance of the 1NN on the test sets before and
after applying Stretch with two different convergence configurations. Statistically
significant results are marked with bold.

Convergence Configuration

Dataset Before 100j/400i 200j/800i

Banded 0.82±0.03 0.95±0.03 0.96±0.02

Sinusoidal 0.87±0.02 0.93±0.02 0.93±0.03

Gauss-band 0.67±0.04 0.75±0.04 0.75±0.04

Parity 0.66±0.03 0.98±0.02 0.98±0.01

LED-7 Display 0.51±0.05 0.51±0.05 0.52±0.05

LED-7+17B 0.41±0.01 0.43±0.02 0.42±0.03

LED-7+17C 0.60±0.01 0.58±0.03 0.53±0.03

Waveform-21 0.76±0.02 0.77±0.03 0.77±0.03

Waveform-40 0.70±0.03 0.73±0.04 0.74±0.04

Cleveland 0.77±0.04 0.77±0.05 0.76±0.03

Hungarian 0.77±0.03 0.79±0.03 0.79±0.04

Voting 0.92±0.01 0.94±0.02 0.93±0.02

Cars 0.77±0.01 0.87±0.03 0.87±0.02

TicTacToe 0.56±0.01 0.99±0.01 0.99±0.01

Glass 0.68±0.03 0.66±0.06 0.66±0.05

Hayes 0.65±0.05 0.66±0.05 0.63±0.07

Nursery 0.77±0.03 0.89±0.03 0.89±0.02

Monk’s Problem 1 0.27±0.03 0.32±0.03 0.32±0.03

Monk’s Problem 2 0.40±0.03 0.73±0.03 0.74±0.02

Monk’s Problem 3 0.27±0.04 0.33±0.02 0.32±0.03

The effect of increasing the convergence time is not significant for most of the

data sets, nevertheless for some data sets, increasing the convergence time reduces

77

the 1NN accuracy on the test set even if AV is used.

4.6 Relief-F Experiments

These experiments are conducted by running the Relief-F method on the training set,

then the weights calculated are applied to the test set to improve the classification

accuracy of 1NN and BestNN. The experimental results of the method presented in

Table 4.5. Relief-F reports statistically significant results for 1NN in twelve data sets

and for BestNN in seven data sets.

78

Table 4.5: The classification performance of the 1NN and BestNN before and after
applying Relief-F are presented. Statistically significant results are marked with bold.

1NN BestNN

Dataset Before After Best-k Before After

Banded 0.82±0.02 0.97±0.01 1

Sinusoidal 0.87±0.01 0.92±0.02 1

Gauss-band 0.67±0.04 0.81±0.03 1

Parity 0.66±0.03 1±0.00 1

LED-7 Display 0.51±0.05 0.50±0.05 11 0.72±0.01 0.70±0.01

LED-7+17B 0.41±0.01 0.63±0.02 11 0.50±0.01 0.72±0.01

LED-7+17C 0.60±0.01 0.63±0.01 11 0.70±0.01 0.71±0.02

Waveform-21 0.76±0.02 0.77±0.03 11 0.81±0.03 0.82±0.03

Waveform-40 0.70±0.03 0.77±0.03 11 0.75±0.03 0.81±0.04

Cleveland 0.77±0.04 0.78±0.03 11 0.82±0.03 0.78±0.05

Hungarian 0.77±0.03 0.78±0.03 11 0.83±0.03 0.81±0.03

Voting 0.92±0.01 0.95±0.02 11 0.93±0.02 0.96±0.01

Cars 0.77±0.01 0.84±0.02 1

TicTacToe 0.56±0.01 0.76±0.03 11 0.97±0.03 0.80±0.02

Hayes 0.65±0.05 0.77±0.06 1

Nursery 0.77±0.03 0.90±0.03 11 0.77±0.03 0.87±0.02

Monk’s Problem 1 0.27±0.03 0.27±0.03 11 0.44±0.02 0.40±0.03

Monk’s Problem 2 0.40±0.03 0.44±0.04 11 0.51±0.03 0.53±0.04

Monk’s Problem 3 0.27±0.04 0.27±0.04 11 0.46±0.02 0.39±0.03

79

4.7 Relief-F vs Stretch

Table 4.7 summarizes the results of Table 4.4 and Table 4.5. This table also provides

a statistical comparison of the two methods. Statistically significant results with

higher accuracy is marked with bold. In section 4.1, the similarity between Relief-F

and Stretch was discussed. These two methods can not significantly outperformed

each other for eight out nineteen data sets. On the eleven data sets, one of these

methods significantly outperformed the other one. Relief-F outperforms Stretch on

six out of eleven data sets.

On the parity, gauss-band, waveform40, and LED-7+17B data sets, Relief-F out-

performs Stretch however both algorithms significantly reduce the original error of

1NN on the test sets.

One unexpected result is, Relief-F improves the 1NN accuracy of the LED-7+17C

and hayes data set significantly while Stretch reduces the accuracy of 1NN signifi-

cantly.

Stretch significantly outperforms Relief-f on tic-tac-toe, cars and monk’s problem

data sets. The tic-tac-toe data set is a relatively interesting case, since Stretch can

decreases the 1NN error on the test set of tic-tac-toe almost to zero while Relief-F

decrease the accuracy of 1NN from .80 to .76. All of these data sets are used to test

structure discovery and constructive induction methods.

80

Table 4.6: The classification performance of the 1NN on test sets after applying Relief-
F and Stretch. Stretch is run with two different convergence configurations. The
results of Relief-F and Stretch is compared, and statistically significance is tested on
the difference between the result of Relief-F and Stretch. The statistically significant
ones are marked with bold. The second column shows which method significantly
improves the original 1NN accuracy.

Convergence Configuration

Dataset Before Significant Relief-F 100j/400i 200j/800i

Banded 0.82±0.02 All 0.97±0.01 0.95±0.03 0.96±0.02

Sinusoidal 0.87±0.01 All 0.92±0.02 0.93±0.02 0.93±0.03

Gauss-band 0.67±0.04 All 0.81±0.03 0.75±0.04 0.75±0.04

Parity 0.66±0.03 All 1±0.00 0.98±0.02 0.98±0.01

LED-7 Display 0.51±0.05 none 0.50±0.05 0.51±0.05 0.52±0.05

LED-7+17B 0.41±0.01 RF ,S100j/400i 0.63±0.02 0.43±0.02 0.42±0.03

LED-7+17C 0.60±0.01 All 0.63±0.01 0.58±0.03 0.53±0.03

Waveform-21 0.76±0.02 None 0.77±0.03 0.77±0.03 0.77±0.03

Waveform-40 0.70±0.03 All 0.77±0.03 0.73±0.04 0.74±0.04

Cleveland 0.77±0.04 None 0.78±0.03 0.77±0.05 0.76±0.03

Hungarian 0.77±0.03 S100/400, S200/800 0.78±0.03 0.79±0.03 0.79±0.04

Voting 0.92±0.01 All 0.95±0.02 0.94±0.02 0.93±0.02

Cars 0.77±0.01 All 0.84±0.02 0.87±0.03 0.87±0.02

TicTacToe 0.80±0.03 All 0.76±0.03 0.99±0.01 0.99±0.01

Hayes 0.65±0.05 RF ,S200/800 0.77±0.07 0.66±0.05 0.63±0.07

Nursery 0.77±0.03 All 0.90±0.03 0.89±0.03 0.89±0.02

Monk’s Problem1 0.27±0.03 S100/400, S200/800 0.27±0.03 0.32±0.03 0.32±0.03

Monk’s Problem2 0.40±0.03 All 0.44±0.04 0.73±0.03 0.74±0.02

Monk’s Problem3 0.27±0.04 S100/400, S200/800 0.27±0.04 0.33±0.02 0.32±0.03

81

4.8 BestNN Performance of Feature Weighting Methods

Stretch on the training set: Table 4.7 presents the LOOCV accuracy of BestNN

on the Stretch applied training set. The LOOCV error of BestNN on training data

set also decreases as the convergence time increases. The error is reduced significantly

for all of the data sets.

Table 4.7: The LOOCV error the BestNN on the training set before and after apply-
ing Stretch with two different convergence configurations are presented. Statistically
significant results are marked with bold.

Convergence Configuration

Dataset Before 100j/400i 200j/800i

LED-7 Display 0.72±0.04 0.75±0.03 0.76±0.03

LED-7+17B 0.50±0.03 0.65±0.03 0.69±0.03

LED-7+17C 0.68±0.03 0.77±0.03 0.76±0.04

Waveform-21 0.82±0.02 0.87±0.01 0.90±0.01

Waveform-40 0.76±0.02 0.85±0.01 0.85±0.02

Cleveland 0.81±0.02 0.85±0.01 0.85±0.01

Hungarian 0.82±0.02 0.85±0.01 0.84±0.01

Voting 0.93±0.01 0.95±0.01 0.95±0.01

TicTacToe 0.97±0.05 0.99±0.00 0.99±0.00

AT vs AV : Table 4.8 presents the error of BestNN on the data sets that is stretched

either with AT or AV . The results of both linear transformations are not significantly

different for all of the data sets, except tic-tac-toe data set. As a result, the results of

BestNN do not distinguish one of the transformation matrix from the other. Although

there is no difference between the matrices, AV is used in the rest of the experiments.

82

Table 4.8: The classification results of BestNN on the test sets after running Stretch
on the training sets with two different configurations. On the left column, Stretch
uses the final transformation matrix, AT that minimizes the LOOCV error of the
training set and on the right, it uses, AV that minimizes the LOOCV error of the
validation set. Statistically significant differences are marked with bold for each row
of both columns.

100j/400i 200j/800i

Dataset AT AV AT AV

LED-7 Display 0.73±0.01 0.73±0.01 0.73±0.01 0.73±0.01

LED-7+17B 0.53±0.03 0.52±0.02 0.53±0.03 0.51±0.03

LED-7+17C 0.70±0.02 0.68±0.02 0.70±0.01 0.67±0.02

Waveform-21 0.82±0.03 0.80±0.04 0.81±0.03 0.81±0.03

Waveform-40 0.78±0.03 0.77±0.03 0.77±0.03 0.76±0.04

Cleveland 0.83±0.03 0.83±0.03 0.82±0.03 0.84±0.03

Hungarian 0.83±0.03 0.82±0.03 0.82±0.03 0.82±0.03

Voting 0.94±0.02 0.94±0.02 0.94±0.02 0.94±0.03

TicTacToe 0.98±0.00 0.93±0.01 0.98±0.00 0.93±0.01

Stretch Experiments: Table 4.9 presents the accuracy of BestNN on the test set

after applying AV to the training and the test set. Stretch can not improve the error

of BestNN on any of the data sets, except the Cleveland data set. It significantly

increases the error of tic-tac-toe, waveform21 and LED7-7+17C.

Stretch uses the missclassified instances to construct linear transformations. There-

fore, linear transformations that are constructed using the boundary instances im-

proves the accuracy of the kNN. On the other hand, if the linear transformations

are constructed using noisy instances then the effect of these transformations on the

accuracy of kNN is unpredictable.

The misclassified instance set of 1NN consists of the boundary instances and noisy

instances. As the k becomes larger the boundary instances are removed from the

83

misclassified instance set meanwhile noisy ones stays in the set. Therefore, as k

becomes larger the probability of a linear transformation is constructed using a noisy

instance increases. As a result, it can be concluded that if Stretch is unable to improve

the accuracy of kNN(k > 1) for a particular data set, it is mainly due to the noise in

the data set. The BestNN experiments also supports this claim, since five out of nine

data sets that are presented in Table 4.9 have ten percent of noise.

Table 4.9: The classification performance of the BestNN on test sets before and
after applying Stretch with two different convergence configurations. Statistically
significant results are marked with bold.

Convergence Configuration

Dataset Before 100j/400i 200j/800i

LED-7 Display 0.73±0.01 0.73±0.01 0.73±0.01

LED-7+17B 0.50±0.01 0.52±0.02 0.51±0.03

LED-7+17C 0.70±0.01 0.68±0.02 0.67±0.02

Waveform-21 0.81±0.03 0.81±0.04 0.78±0.04

Waveform-40 0.75±0.03 0.76±0.03 0.76±0.04

Cleveland 0.82±0.03 0.82±0.03 0.84±0.03

Hungarian 0.82±0.02 0.82±0.03 0.82±0.03

Voting 0.93±0.02 0.94±0.02 0.94±0.03

TicTacToe 0.97±0.03 0.93±0.02 0.93±0.01

Relief-F vs Stretch: Relief-F is robust to noise [4] therefore it is able to improve

the accuracy of BestNN on the five out of nine data sets and outperforms Stretch.

Table 4.5 represents the results of BestNN after applying Relief-F.

84

4.9 Effect of Noise on Stretch

In order to observe the effect of noise on the accuracy of the Stretch, we add ten percent

noise to the four artificially created data sets. These data sets are identical with the

ones that are used in the previous experiments, except the noise. These four data sets

are banded, sinus, gauss and parity. Moreover a noise free LED7+17b is generated.

Noise free versions of the other LED data sets have a very high classification accuracy

without feature weighting therefore they are not included in this experiment.

On the four new noisy artificial data sets, Stretch significantly increases the per-

formance of 1NN, however it can not improve it as much as it improves the none noisy

case with the same configurations. Moreover, the improvements in the 1NN accuracy

of the noise free versions of these data sets are significantly better than the results

presented in Table 4.10. Stretch also performs significantly better on noise-free-LED-

7+17b data set compared to LED-7+17b.

Table 4.10: The classification performance of the 1NN on test sets before and after ap-
plying Stretch with two different convergence configurations. Statistically significant
results are marked with bold.

Convergence Configuration

Dataset Before 100j/400i 200j/800i

noisy-banded 0.67±0.01 0.71±0.01 0.71±0.01

noisy-parity 0.59±0.01 0.80±0.01 0.80±0.01

noisy-gauss 0.52±0.01 0.54±0.01 0.56±0.01

noisy-sinus 0.77±0.00 0.76±0.00 0.76±0.00

noise-free-LED-7+17b 0.65±0.03 0.78±0.02 0.78±0.02

85

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In the first part of this thesis an overview of kNN and its limitations are presented.

The solutions to these limitations are explained. Since the main focus of this thesis

is the feature weighting, we discussed the effects of irrelevant features on kNN in

more detail. The work of the past 20 years is surveyed. All of the methods that are

surveyed have their own advantages and disadvantages thus none of them is successful

on all data sets.

The feature weighting methods construct a diagonal weight matrix which does not

have information about the inter-relations of the features. Although this diagonal

matrix improves the classification accuracy of kNN on some data sets, it may not be

able to improve the performance of the kNN when the features are inter-related.

Considering this, in the second part of the thesis, we introduced a new feature

weighting method which can construct an arbitrary feature weighting matrix. This

method iteratively constructs linear transformations to reduce the classification error

of kNN. As a result, it constructs a full weighting matrix which has the information

about the inter-relations of the features. Since this method can construct any weight

matrix, any diagonal weight matrix is in the solution subset of this method.

This method compared with Relief-F[8] which is one of the best methods in [1].

Our method Stretch, outperforms Relief-F on 5 out of 19 data sets while Relief-F

outperforms Stretch on 6 out of 19 data sets. Stretch has a dominance on the data

sets that are used to test structure discovery and constructive induction methods.

Stretch outperforms Relief-F on 5 out of 6 of these data sets.

One of the deficiencies of Stretch is that noise of the data set reduces the perfor-

mance of the algorithm. Therefore on noisy data sets especially when k > 1NN is

used as a classifier Stretch can not construct a linear transformation that significantly

improves the accuracy of the k > 1NN.

Another weakness of Stretch compared to Relief-F is, Stretch can not construct a

linear transformation based on the k nearest neighbors of a given instance. Although

M is constructed by kNN the stretch matrix is constructed only using the one nearest

neighbor. As a result, it can not significantly increase the accuracy of k > 1NN when

k is set the optimum value for the data set.

5.2 Future Work

One important improvement on Stretch is, the ability to construct linear transforma-

tions based on the k nearest neighborss. Such linear transformations would be less

effected by noisy instances. Moreover they would increase the chance of improvement

in the accuracy of k > 1NN.

The next important topic that needs further observation is the types of data

set structures that are more suitable to apply Stretch. Therefore, the effect of k

value, types of the features, number of categories and the effect of the noise could be

examined more clearly.

Another potential improvement is, the wrapper model could be replaced with the

filter model to decrease the computational complexity of Stretch. In order to increase

the robustness of Stretch to noise instead of using M , Stretch can use all the instances

in the data set.

Finally, the effect of Stretch on other learning algorithms could be examined.

87

BIBLIOGRAPHY

[1] D. Wettschereck, D. W. Aha, and T. Mohri, “A review and comparative eval-

uation of feature weighting methods for lazy learning algorithms.,” Artificial

Intelligence Review, , no. 11, pp. 273–314, 1997.

[2] B. V. Dasarathy, Ed., Nearest neighbor (NN) norms: NN pattern classification

techniques, IEEE Computer Society Press, Los Alamitos,CA, 1991.

[3] K. Kira and L.A. Rendell, “A practical approach to feature selection.,” in Pro-

ceedings of the Ninth International Conference on Machine Learning., Aberdeen,

Scotland, 1992, pp. 249–256, Morgan Kaufmann.

[4] I. Kononenko, “Estimating attributes: Analysis and extensions of relief.,” in Pro-

ceedings of the 1994 European Conference on Machine Learning., Catania,Italy,

1994, pp. 171–182, Springer Verlag.

[5] D. Lowe, “Similarity metric learning for a variable-kernel classifier.,” Neural

Computation, , no. 7, pp. 72–85, 1995.

[6] R.H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz, “Trading mips and

memory for knowledge engineering.,” Communications of the ACM, , no. 35, pp.

48–64, 1992.

[7] C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Communications

of the Association for Computing Machinery, , no. 29, pp. 1213–1228, 1986.

[8] M. Robnik-Šikonja and I. Kononenko, “Theoretical and Empirical Analysis of

ReliefF and RReliefF,” Machine Learning, vol. 53, no. 1, pp. 23–69, 2003.

[9] E. Parzen, “Nonparametric Statistical Data Modeling,” Journal of the American

Statistical Association, vol. 74, no. 365, pp. 105–121, 1979.

[10] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information

Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

[11] T. Wagner, “Convergence of the nearest neighbor rule,” Information Theory,

IEEE Transactions on, vol. 17, no. 5, pp. 566–571, 1971.

[12] B.D. Ripley, Pattern Recognition and Neural Networks, Cambridge University

Press, 1996.

[13] S.A. Dudani, “The distance-weighted k-nearest neighbor rule,” IEEE Transac-

tions on Systems, Man and Cybernetics, vol. 6, no. 4, pp. 325–327, 1976.

[14] JES Macleod, A. Luk, and DM Titterington, “A re-examination of the distance-

weighted k-nearest neighbor classification role.,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 17, no. 4, pp. 689–696, 1987.

[15] P.D. Wasserman, Advanced Methods in Neural Computing, John Wiley & Sons,

Inc. New York, NY, USA, 1993.

[16] DF Spetch, “Probabilistic neural network,” J Neural Networks, vol. 3, pp. 109–

18, 1990.

[17] Peter N. Yianilos, “Data structures and algorithms for nearest neighbor search

in general metric spaces,” in Proceedings of the Fifth Annual ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), 1993.

[18] D.R. Wilson and T.R. Martinez, “Reduction Techniques for Instance-Based

Learning Algorithms,” Machine Learning, vol. 38, no. 3, pp. 257–286, 2000.

89

[19] R.F. Sproull, “Refinements to nearest-neighbor searching ink-dimensional trees,”

Algorithmica, vol. 6, no. 1, pp. 579–589, 1991.

[20] C.H. Papadimitriou and J.L. Bentley, A Worst-Case Analysis of Nearest Neigh-

bor Searching by Projection, Springer-Verlag London, UK, 1980.

[21] K.I. Lin and C. Yang, “The ANN-tree: an index for efficient approximate nearest

neighborsearch,” Database Systems for Advanced Applications, 2001. Proceed-

ings. Seventh International Conference on, pp. 174–181, 2001.

[22] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: an

efficient and robust access method for points and rectangles,” Proceedings of

the 1990 ACM SIGMOD international conference on Management of data, pp.

322–331, 1990.

[23] G.H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset selec-

tion problem,” Proceedings of the Eleventh International Conference on Machine

Learning, vol. 129, 1994.

[24] R.E. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University

Press, 1961.

[25] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp.

81–106, 1986.

[26] D.E. Rumelhart and J.L. McClelland, Parallel distributed processing: explo-

rations in the microstructure of cognition, vol. 2: psychological and biological

models, MIT Press Cambridge, MA, USA, 1986.

[27] V.N. Vapnik, “Estimation of Dependences Based on Empirical Data,” New York,

1982.

90

[28] P. Domingos, “Rule Induction and Instance-Based Learning: A Unified Ap-

proach,” Proc. of IJCAI, vol. 95, pp. 1226–1232, 1995.

[29] S. Das, “Filters, wrappers and a boosting-based hybrid for feature selection,”

Proc. ICML, 2001.

[30] D. Wettschereck, “A description of the mutual information approach and

the variable similarity metric.,” Tech. Rep., German National Research Cen-

ter for Computer Science,Artificial Intelligence Research Division, Sankt Au-

gustin,Germany, 1995a.

[31] P. Langley and S. Sage, Induction of Selective Bayesian Classifiers, Morgan

Kaufmann, 1994.

[32] D.W. Aha and R.L. Bankert, “Feature selection for case-based classification of

cloud types: An empirical comparison,” Proceedings of the 1994 AAAI Workshop

on Case-Based Reasoning, pp. 106–112, 1994.

[33] J. Doak, An Evaluation of Feature Selection Methods and Their Application to

Computer Security, University of California, 1992.

[34] B. Raman and T.R. Ioerger, “Enhancing learning using feature and example

selection,” Journal of Machine Learning Research (submitted for publication),

2003.

[35] R. Kohavi, P. Langley, and Y. Yun, “The utility of feature weighting in nearest-

neighbor algorithms,” Proceedings of the Ninth European Conference on Machine

Learning. Prague: Springer-Verlag, 1997.

[36] T. Mohri and H. Tanaka, “An optimal weighting criterion of case indexing for

both numeric and symbolic attributes,” Case-Based Reasoning: Papers from the

1994 Workshop. AAAI Press, Menlo Park, CA, 1994.

91

[37] D.W. Aha and R.L. Goldstone, “Concept learning and flexible weighting.,” in

Proceedings of the Fourteenth Annul Conference of the Cognitive Science Society,

Bloomington, IN, 1992, pp. 534–539, Lawrence Erlbaum.

[38] W. Daelemans and A. van den Bosch, “Generalization performance of back-

propagation learning on a syllabification task,” Proceedings of the 3rd Twente

Workshop on Language Technology, 1992.

[39] T.M. Cover and J.A. Thomas, “Elements of Information Theory,” New York,

1991.

[40] W. Daelemans, Learnability and Markedness in Data-driven Acquisition of Stress,

Tilburg University, Institute for Language Technology and Artificial Intelligence,

1993.

[41] M.A. Hall, Correlation-based Feature Selection for Machine Learning, Ph.D.

thesis, The University of Waikato, 1999.

[42] S. Salzberg, “A nearest hyperrectangle learning method,” Machine Learning,

vol. 6, no. 3, pp. 251–276, 1991.

[43] D.W. Aha, “Tolerating noisy, irrelevant and novel attributes in instance-based

learning algorithms,” International Journal of Man-Machine Studies, vol. 36,

no. 2, pp. 267–287, 1992.

[44] D.B. Skalak, “Prototype and feature selection by sampling and random mutation

hill climbing algorithms,” Proceedings of the Eleventh International Conference

on Machine Learning, pp. 293–301, 1994.

[45] D. J. Newman, S. Hettich, C. L. Blake, and C. J.

Merz, “UCI repository of machine learning databases,” 1998,

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

92

[46] D. Wettschereck, A study of distance-based machine learning algorithms, Ph.D.

thesis, Oregon State University, 1994.

[47] M. Bohanec and V. Rajkovic, “Knowledge acquisition and explanation for mul-

tiattribute decision making,” 8th Intl Workshop on Expert Systems and their

Applications, pp. 59–78, 1988.

[48] S. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong,

S. Dzeroski, SE Fahlman, D. Fisher, et al., “The MONK’s Problems: A Perfor-

mance Comparison of Different Learning Algorithms,” 1991.

93

