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ABSTRACT

Many scientific applications require more accurate computations than double precision or

double-extended precision floating-point arithmetic. This thesis presents the design of dual-

mode quadruple precision floating-point division and square-root units that also supports

two parallel double precision operations. A radix-4 SRT division and square-root algorithms

are used to design the dual-mode quadruple precision floating-point division and square-

root units. The implementation details of the divider presented in this thesis show how a

conventional quadruple precision divider is modified and the datapath can be divided into

two parts to support both a quadruple precision and two parallel double precision operations.

To estimate area and worst case delay, a double, a quadruple, a dual-mode double, and a

dual-mode quadruple precision floating-point division units are implemented in VHDL and

synthesized. Similar to the dual-mode division unit, it is shown that how the datapath of

conventional quadruple precision square-root unit is modified and can be divided into two

parts to support both a quadruple precision and two parallel double precision operations.

The correctness of all the designs was tested and verified through extensive simulation.

The synthesis results show that the dual-mode quadruple precision divider requires 22%

more area than the quadruple precision divider and the worst case delay is 1% longer.

Also the dual-mode quadruple precision square-root unit requires 22% more area than the

conventional quadruple precision square-root unit and the worst case delay is 2% longer.

A quadruple precision division and square-root operations take fifty nine cycles and two

parallel double precision division and square-root operations take twenty nine cycles.
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Chapter 1

INTRODUCTION

1.1 The Need for Reliable Computing

The speed of digital computers is increasing as a result of advances in VLSI technology and

innovative computer design. Increasing computer speeds provide the ability to perform tril-

lions of arithmetic operations per second [1]. Although there have been significant advances

in VLSI technology, the precision and arithmetic used in floating-point operations has not

changed over the past two decades. Today, most modern processors support IEEE double

and/or double-extended precision floating-point arithmetic [28], which was defined in 1985

[29, 48].

Despite the improvement on the speed of the arithmetic computations, the precision

obtained has not improved over the past two decades. Today, most modern processors have

hardware support for double precision (64-bit) or double-extended precision (typically 80-

bit) floating-point arithmetic operations. However, double and double-extended precision

are not enough for many scientific applications including climate modeling [5], computa-

tional physics [6], and computational geometry [6].

A floating-point number contains no accuracy information and moreover, it is impossible

to represent most real numbers using finite precision floating-point format. Since floating-

point arithmetic provides limited accuracy, it can lead to large errors after a few consecutive

operations. As an example, the dot product of the following matrices
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A =




−1018

2246

1027

1025

22

105




and B =




1038

33

1029

−1022

1044

1042




yields the result

A •B = 0

using IEEE-754 double precision floating-point arithmetic. However, the correct result

is as follows:

A •B = 97, 086

Catastrophic cancelation and round-off error introduced by floating-point arithmetic

may cause such inaccurate results. In today’s world, a wide range of researchers -from

astronomy to genetics- contain mass computations with long computation times and as a

consequence reliable computing is extremely important in arithmetic operations.

The accuracy and reliability of numerical computations can be increased using extended

precision arithmetic. For example, quadruple precision arithmetic increases the accuracy

and reliability of numerical computations by providing floatingpoint numbers that have

more than twice the precision of double precision numbers. To be exact, the accuracy of

double precision numbers is roughly fifteen decimal digits. On the other hand, accuracy of

quadruple precision floating-point numbers is about thirty-three decimal digits. This comes

in handy in applications such as computational fluid dynamics and physical modeling, which

require accurate numerical computations. The use of quadruple precision arithmetic can

greatly improve the numerical stability and reproducibility of many of these applications.

1.2 Motivation

1.2.1 Dual-Mode

A processor can be preferred by many users to satisfy different needs. For example, as of

today, a computer games programmer would most probably be not too much interested in
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the precision of the FPU in a processor. On the other hand, a researcher who is trying

simulate the behavior of some certain atmospherical event happening hundreds of years

in the future, will importance to the FPU precision being high. Having these different

needs, one can conclude that even for home PC users, specific purpose processors would

be a necessity. Considering the current state of commercial market for processors, such a

thought is not too practical. However, a way to address a specific processor to people with

totally different precision needs would be to design one with a handle capacity of multiple

precision modes [50, 49].

Current processors can handle both single and double precision operations in hardware

but they are not considered as Dual-Mode. The reason is that such FPU’s hardware is

designed to operate only in exact double precision. When single precision operation is re-

quired, FPU pads twenty-nine zeros at the end of the single precision mantissa and convert

the exponent to its double precision equivalent. After computing the result in double pre-

cision, the result exponent will be converted back to single precision and twenty-nine bits

will be dropped from the least significant bits of the mantissa. A dual-mode double preci-

sion FPU supports both one double precision operation or two single precision operations

in parallel. When software requests a single precision operation, dual-mode FPU sets the

mode flag to single and works just like two conventional single precision FPUs. With a

small amount of compromise in area, the throughput can be doubled when working in lower

precision mode.

For a summation operation, just like any other basic operations, precision of the floating-

point numbers affects the overall delay directly. Consider a very simple addition algorithm

where carrying out happens in linear O(n) time where n is the number of bits. This algorithm

is implemented on a conventional double precision FPU and a conventional single precision

FPU. Also consider software requests two single precision numbers to be summed. In this

case, lower(single) precision FPU has an advantage since higher precision FPU starts to add

padded zeros when single precision FPU is finished with the request. Carrying-out of the

lower precision FPU’s operands finish half way through which results in nearly doubling the

overall speed of the operation.

It is understood from above that, when a low precision operation is requested, lower-

precision FPU design overruns the higher precision design. In the same scenario, now lets
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compare conventional single precision FPU and a dual-mode double precision FPU. Since

dual-mode double precision FPU can be considered as two conventional single precision

FPUs, dual-mode design can do twice the amount of single precision FPU design. In these

terms, dual-mode double precision FPU, when single precision operations is requested, can

roughly be at least two times faster than a conventional double precision FPU. This great

delay advantage of dual-mode design over the conventional only brings a twenty percent

area increase disadvantage which seems acceptable. In the case where a double precision

operation is requested, conventional double precision and dual-mode double precision de-

signs work nearly identical. Basically, ”why lose extra time when there is no need for high

precision” is the motivation behind the dual-mode design.

1.2.2 Quadruple Precision Operations

Double and double-extended precision are not enough for many scientific applications in-

cluding climate modeling [5], computational physics [6], and computational geometry [6].

Since floating-point arithmetic provides finite accuracy, it can lead to fatal errors after sev-

eral consecutive operations. Main components of these errors are catastrophic cancelation

and round-off errors. The higher accuracy (precision) of the operands are, the less errors

will be in magnitude. Due to the advantages of quadruple precision arithmetic in scientific

computing applications, specifications for quadruple precision numbers are being added to

the revised version of the IEEE 754 Standard for Floating-Point Arithmetic [7, 31, 33, 47].

Quadruple precision operations are usually supported by software, such as on Sun’s Sparc

processors. Software support, however, has performance problems for numerically intensive

applications. Therefore, hardware support for quadruple precision arithmetic is essential.

The most modern microprocessors provide multiple identical functional units to speed up

numerical computations [8]. For example, high performance processors Power4 and Sparc

have identical two floatingpoint units for addition and multiplication operations [9, 10].

Another trend in microprocessor architectures is to have wide 128-bit internal datapaths

[8, 11], which can support quadruple precision operands.
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1.3 Dual-Mode Quadruple Precision SRT Radix-4 Division Overview

Although floating-point division is not the most frequent operation among floating-point

arithmetic operations, the speed of it is important for the overall speed of the FPU especially

because it is the most time consuming floating-point operation [36, 40, 41, 43] and it is

difficult to pipeline. Significant research has been done to develop efficient floatingpoint

division algorithms [2, 3, 16, 17], but there is very limited contributions to literature for

dualmode hardware implementation of extended precision floating-point arithmetic (i.e.,

quadruple precision). Recently, dual-mode floating-point multipliers [12, 13] and adders

[14, 15] have been designed.

Chapter 3 shows how a datapath of quadruple precision floating-point divider imple-

mented with the SRT radix-4 algorithm can be split into two parts in order to support

both one quadruple precision and two parallel double precision division operations. The

technique and modifications used to design the dual-mode quadruple precision divider was

also applied to implement a dualmode double precision divider that supports both one dou-

ble precision and two parallel single precision operations. Both the dualmode double and

quadruple precision division units were tested for four different rounding modes specified

by IEEE 754 Standard.

1.4 Dual-Mode Quadruple Precision SRT Radix-4 Square-Root Overview

The implementation of square-root is very similar to division. Most of the units are identical

and a look-up table used for the division can also be used by the square-root unit. Having

all these common points, building a dual-mode square-root unit, unlike the division unit,

was not too much challenging.

Although floating-point square-root is not the most frequent operation among floating-

point arithmetic operations, the speed of it is important for the overall speed of the FPU

especially because it is the most time consuming floating-point operation along with division

and is hard to pipeline [36]. Especially in DSP applications which use single precision

floating-point arithmetic, speed of the square-root operation is essential as stated in [20, 21]

Chapter 4 shows how a datapath of quadruple precision floating-point square-root unit

implemented with the SRT radix-4 algorithm can be split into two parts in order to support
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one quadruple precision and two parallel double precision square-root operations. Both the

dualmode double and quadruple precision square-root units were tested for four different

rounding modes specified by IEEE 754 Standard.

1.5 Contribution

In this thesis, my contributions are as follows:

• SRT algorithm is examined in detail in order to use the smallest number of bits (6)

for the residual (which enters in the PLA or lookup table). Found that using the

smallest number of bits of the residual is not optimizing the whole design. Decided

to use seven bits of the residual and three bits of the divisor which resulted in the

smallest table (PLA).

• An OpenGL code is written to visualize the PD-Plot (table or PLA) in order to debug

quotient digit selection (QDS) function for correctness.

• SRT algorithm requires a table look-up system (PLA) in order to calculate quotient

bits. Several tables were created using espresso. The one having the best area to delay

ratio is embedded in to the division and square-root unit designs.

• After grasping the algorithms for division and square-root, I coded a division and a

square-root simulator in C to make future VHDL debugging easier.

• Quadruple precision division unit is modified and extended in order to design dual-

mode quadruple precision division unit. The correctness of the quadruple precision

division units are verified by the C simulator.

• Double precision division unit is modified and extended in order to design dual-mode

double precision division unit.

• Quadruple precision square-root unit is extended to dual-mode quadruple precision

square-root unit. The correctness of the dual-mode quadruple precision square-root

units are tested by the C simulator.
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• Double precision square-root unit is extended to design dual-mode double precision

square-root unit.

• All designs are implemented in VHDL, simulated in ModelSim and synthesized in

Leonardo to determine the clock cycle time and number of gates for each unit.

1.6 Outline

The outline for this thesis is as follows: Chapter 2 gives the required background for floating-

point arithmetic, common division algorithms and table look-up logic. Chapter 3 presents

the conventional SRT radix-4 double precision division first and then goes in detail to

quadruple precision dual-mode design implementation. Furthermore, the area and delay

estimates of the implementations are also compared in this chapter. Similarly, Chapter 4

presents the conventional SRT double precision radix-4 square-root unit first and then goes

into the implementation details of dual-mode quadruple precision design. Area and delay

estimates of the implementations are also stated and compared in this chapter. Chapter 5

gives our final conclusions. Appendix A and B includes simulation results of the C code

and VHDL simulations of division and square-root units respectively.
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Chapter 2

BACKGROUND

In this chapter, floating-point, rounding modes, SRT division and square-root algorithms

are described. IEEE-754 Standard for floating-point number is the most common represen-

tation today for real numbers on computers, including Intel-based PC’s, Macintoshes, and

the most Unix platforms.

2.1 Floating-Point Numbers

Among several representations, floating-point is the most commonly utilized representa-

tion to approximate real numbers on computers. Floating-point representation basically

represents real numbers in scientific notation.

In order to compare with fixed-point representation, floating-point employs a sort of

sliding window of precision, appropriate to the scale of the number, which allows it to

span numbers approximately in a range of 1.17 × 10−38 to 3.40 × 1038 for single precision

and 2.22 × 10−308 to 1.79 × 10308 for double precision standard representation, excluding

infinite values [6], [7], [8], [9]. On the other hand, fixed-point representation has a fixed

window of precision, which limits it from representing very large or very small numbers.

Also, loss of precision is unavoidable when two large numbers are divided using fixed-point

representation.

After a history of confusing and complex representations of numbers in computers [10],

both as in terms of hardware and software; nowadays, most of the general purpose computer

architectures are based on IEEE-754 Standard [9] and support single, double and double-

extended floating-point numbers [29, 30, 31, 36].

The IEEE-754 single precision floating-point number requires a 32-bit word, which may

be represented as numbered from 31 to 0, left to right, as shown in Figure 2.1. The first bit

from left, which is annotated as the 31st bit, is the sign bit, S. The next 8 bits represent

the exponent bits. The remaining 23 bits are the fraction bits, in other words Mantissa.
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31 30 23 22 0

Sign bit

(8 bits)

Exponent

(23 bits)

Mantissa

S ME

Figure 2.1: IEEE 754 Single Precision Floating-Point Number

The sign bit, which serves to identify whether the represented real number is negative

or positive, is set to logical one (1) or zero (0), respectively. The biased exponent has

implicitly determined base set to two, which is not explicitly stored in the representation.

The exponent part is utilized in order to determine the value of the represented number

and the related information can be viewed in the following rules. The mantissa of the

represented real number is composed of the fraction part with an implicit leading (hidden)

one, for which the details can be found below. The following rules are defined in IEEE-

754 Standard [9] for single precision floating-point representation in order to determine the

value, V, represented by a 32-bit word.

• If E = 255 and M is nonzero, then V = NaN (Not a Number)

• If E = 255 and M is zero and S = 1, then V = −∞

• If E = 255 and M is zero and S = 0, then V = ∞

• If 0 < E < 255 then V = (−1)S×2E−127× (1.M), where; 1.M is intended to represent

the binary number created by prefixing the fraction part with an implicit leading one

(hidden one), and a binary point (.), as well the exponent bias being set to 127.

• If E = 0 and M is nonzero, V = (−1)S × 2−126 × (0.M), where these are defined as

denormalized numbers.

• If E = 0 and M is zero and S = 1, then V = -0

• If E = 0 and M is zero and S = 0, then V = 0
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63 62 52 51 0

(52 bits)

Mantissa

(11 bits)

Exponent
Sign bit

S ME

Figure 2.2: IEEE 754 Double Precision Floating-Point Number

Not a Number, denormalized numbers, infinity, and zero are the special cases of the

IEEE-754 Standard. Briefly, zero is either negative zero or positive zero, which are distinct

values but they both compare as equal. Infinity value represent either negative or positive

infinity and is very useful in operations where overflow case occurs. Operations with infinite

values are well defined in IEEE-754 Standard. Numbers with non-zero fraction part but

having all zeros in exponent part are called denormalized numbers and zero can be inter-

preted as a special form of denormalized number. Special handling methods are employed

in arithmetical operations for NaN (Not a Number) values, which are used to represent

values those do not represent a real number. Arithmetic operations on special numbers are

well defined by IEEE-754 Standard. For example, multiplication of zero and infinity yields

a NaN and any operation with a NaN results to NaN. Other operations on special numbers

can be found in [6].

As shown in Figure 2.2, the IEEE-754 double precision floating-point number requires a

64-bit word, where the first bit is the sign bit, S, the next 11 bits are the exponent bits. The

remaining 52 bits are the fraction bits, in other words Mantissa. Since the number of bits

in the fraction part determines the precision and since the number of bits in the exponent

part determines the range of representable numbers, IEEE-754 double precision floating-

point numbers have greater range and are more precise than single precision floating-point

numbers [9]. The rules defined in IEEE-754 Standard [9] for double precision floating-point

representation in order to determine the value, V, represented by a 64-bit word, are detailed

below:

• If E = 2047 and M is nonzero, then V = NaN (Not a Number)
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• If E = 2047 and M is zero and S = 1, then V = −∞

• If E = 2047 and M is zero and S = 0, then V = ∞

• If 0 < E < 2047 then V = (−1)S × 2E−1023 × (1.M), where; 1.M is intended to

represent the binary number created by prefixing the fraction part with an implicit

leading 1 (hidden one), and a binary point (.), as well the exponent bias being set to

1023.

• If E = 0 and M is nonzero, V = (−1)S × 2−1022 × (0.M), where these are defined as

denormalized numbers.

• If E = 0 and M is zero and S = 1, then V = -0

• If E = 0 and M is zero and S = 0, then V = 0

Extensions to well-known single and double precision floating-point, namely single-

extended and double-extended floating-point, are available in IEEE-754 Standard, as speci-

fied in [9]. The single-extended floating-point word is defined to have more than 43-bit. Cor-

responding lower limit is 79-bit for double-extended floating-point number. However, many

scientific computing applications, such as computational geometry, computational physics

and climate modeling need more precise arithmetical operations [11]. 128-bit quadruple

precision arithmetic significantly improves the numerical stability of those scientific appli-

cations as stated in [5]. A quadruple precision number stated by the IEEE-754 standarts is

shown in Figure 2.3. IBM S/390 G5 FPU (Floating-Point Unit) fully supports the quadruple

precision arithmetic in hardware [13]. But, even with full hardware support for quadruple

precision, the arithmetic operations are at least two slower than double precision in hardware

[14]. Much faster quadruple precision floating-point multiplier is presented in [27] which re-

quires more hardware than IBM S/390 G5 FPU, as a trade-off. IEEE-754 Standard is also

being revised to support quadruple precision floating-point [28].
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Sign bit
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E MS

Figure 2.3: IEEE 754 Quadruple Precision Floating-Point Number

2.2 Rounding Errors in Floating-Point Arithmetic

It is impossible to represent some real numbers by IEEE-754 floating-point due to two

reasons [17, 36]:

• Real number to be represented may have a finite decimal representation, but in binary,

it may have an infinite repeating representation.

• Real number to be represented can be out of range, i.e., the number exceeds the upper

and lower representable limits of the corresponding floating-point number.

The rounding error is introduced as a consequent of the first reason. One quick example

to this situation is to represent 0.1. Actually, 0.1 lies in between two representable floating-

point numbers, but none of those floating-point numbers can exactly represent the real

number 0.1, because of the infinite repeating sequence in its fraction part, as seen in below

example.

1.10011001100110011001100× 2−4 = 0.09999999403953552

Well-known measure of rounding error is Unit in the Last Place, and it is abbreviated

as ulp. For example, if the infinitely precise real number 0.61271 is represented as 0.6127

in floating-point representation, then the error is stated as 0.1 ulp. Another measure of

a rounding error is relative error. For the above case, the relative error is approximated

as 0.00001/0.61271 ≈ 0.00001632. In this work, ulp will be considered as the measure of

rounding error.

Utilizing the rounding to nearest (even) mode, the nearest floating-point number will

correspond to a rounding error of less than or equal to 0.5 ulp, as the proof to this statement
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Precision Type Max. Rounding Error (0.5 ulp)

Single Precision 0.596046447754e-07

Double Precision 0.1110223024625156541e-15

Quadruple Precision 0.48148248609680896326399445e-34

Table 2.1: Maximum Rounding Errors with Rounding to Nearest (Even) Mode

can be found in [17]. The least rounding error is obtained when the rounding mode is set to

rounding to nearest (even) and Table 2.1 shows the maximum possible rounding errors for

different precision types. The required accuracy is 1 ulp in the remaining rounding modes

[18]. The rounding modes are described in the next section.

2.3 Rounding Modes in IEEE-754 Floting-Point Arithmetic

Four rounding modes are defined in IEEE-754 Floating-Point Arithmetic Standard [9, 32,

34, 36].

• Round to Nearest (Even): The infinitely precise real number is represented with the

nearest representable floating-point number. If the two representable values are at

the same distance, then the even one (which has a zero in its least significant bit) is

selected.

• Round toward +∞: The infinitely precise real number is represented with the nearest

greater representable floating-point number.

• Round toward −∞: The infinitely precise real number is represented with the nearest

smaller representable floating-point number.

• Round toward 0 (zero) : The infinitely precise real number is represented with the

nearest and smaller in magnitude representable floating-point number.

The IEEE-754 Standard specifies round to nearest (even) as the default rounding mode.

However, the rest three rounding modes should be implemented in all IEEE754 compli-

ant FPU’s. In other words, all four rounding modes should be available to be utilized in
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user-selectable manner. In order to obtain the most accurate true results in floating-point

operations, such as multiplication, many different hardware design approaches are available

in the literature for the implementation of the rounding algorithms, which conforms to the

IEEE-754 rounding modes. These approaches are considering criterions such as the speed

of the rounding and the required hardware complexity. Among such works are [19], [20],

[21], [22], [23].

2.4 Digit-Recurrence Division Algorithms

In digit-recurrence division methods, quotient is represented in a radix-r form and one digit

of it is obtained per iteration. The radix determines the number of cycles necessary to

complete the correct division. Redundant quotient-digit-set and residual format are usually

favored in digit-recurrence algorithms since they have significant speed and area advantages.

Digit-recurrence algorithms consist of n iterations of a recurrence, in which each iteration

produces one digit of the quotient, the most-significant digit first [2]. The most popular

digit-recurrence division algorithm implemented on modern processors is SRT algorithm

[35, 37, 38, 41, 43, 45, 46, 49].

2.4.1 SRT Division

SRT division is named after Sweeney, Robertson[3] and Tocher[4], each of whom developed it

independently at around the same time. Basically SRT division is very similar to the paper-

pencil method for division as seen in Figure 2.4. It is composed of an iterative algorithm.

The cycle time of each iteration affects the overall delay time of a unit. At the first iteration,

the left most bit of the quotient and at the last iteration, the right most bit of the quotient

is generated. If paper-pencil method was directly copied to the division algorithm, it would

require for the quotient-bit to be multiplied with the divisor and then to be subtracted from

the dividend at every iteration. Multiplying the divisor with a non-power of two quotient-

bit could take long amount of time. Also another time consuming full-precision subtraction

operation is required at every iteration if direct paper-pencil algorithm was implemented

[36, 41].

The most advantageous property of SRT division is that, it can do these time consuming

multiplication and subtraction operations independent of the precision of the operands. Four
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x d

Q ( q1....qn)

Rem [ n]

d.Q [ 1]

x-d.Q [ j] W[ j] .r-j

Figure 2.4: Derivation of SRT Formula Using Paper-Pencil Division Method

properties that lead to this advantage are the iterative formula, redundant quotient-digit-

set, redundant remainder format and on-the-fly conversion and rounding algorithm. The

precision of the operands only affects the number of iterations of the algorithm, not the

duration of each iteration.

Another difference of SRT division from the direct paper-pencil method is that it could

be possible to have more than one valid quotient-bit in each iteration. With the help of

this flexibility, the precision of the lookup-table (PLA) can be dropped from full-precision

(252 × 252 for double-precision numbers) to 10 bits (23 × 27). And this leads to a great

benefit of area and delay. The derivation of the SRT algorithms formula is given below:

x - Dividend

d - Divisor

Q[j] - Quotient(at the jth iteration)

qj - jth quotient-bit

Rem[j] - Remainder(at the jth iteration)

n - Precision of the operands(also number of iterations)

r - Radix

The final result of a division must satisfy:
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x
d −Q[n] = rem[n] < r−n

So in every middle step, this inequality must hold:

x
d −Q[j] = rem[j] < r−j

Multiplying both sides by d yields:

x− d×Q[j] < d× r−j

Let’s choose the reminder, W [j] as:

W [j] = rj × (x− d×Q[j])

According to the above statement, two important properties:

W [j] < d

W [0] = x

In order to have a recursion independent of x, W [j + 1] and r ×W [j] are created.

W [j + 1] = rj+1 × (x− d×Q[j + 1])

− r ×W [j] = rj+1 × (x− d×Q[j])

W [j + 1] = r ×W [j]− d× rj+1 × (Q[j + 1]−Q[j])︸ ︷︷ ︸
qj+1

The subtraction of those yields the main reccurence of SRT algorithm. The simplified

last version is below:

W [j + 1] = r ×W [j]− d× qj+1 (2.1)

The SRT radix-r division algorithm performs n
log2(r) division steps, each corresponding

to one iteration of the final recurrence. Moreover, each iteration consists of four subcom-

putations as follows [2]:

1. One digit (could be several bits, to be exact: log2(r) bits) arithmetic left-shift of W [j]

to produce r ×W [j].

2. Determination of the quotient digit qj+1 by the quotient-digit selection function.
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3. Generation of the divisor multiple d× qj+1; and

4. Subtraction of d× qj+1 from r ×W [j]

Equation 2.1 is the main recursion of the SRT division. To summarize, r (which is a

power of two) and W [j] (previous remainder) are multiplied, which can be implemented

by only a shift operation. Next, divisor will be multiplied by the quotient-digit selected

from the table (qj+1) and the result is subtracted from the r ×W [j]. If the quotient-digit-

set is composed of numbers that are power of two, the multiplication of the divisor can be

implemented with fast shift operations. Because the remainder is in redundant (Carry-Save)

form, the subtraction can be managed in independent time of the precision of the operands.

The magnitude of the final remainder, usually, is not very important. But the polarity

of the remainder is important since it determines for the algorithm whether to run for an

extra iteration or not. To get the polarity of the redundant final remainder, it is not needed

to convert the number to its conventional form. There is a smart mechanism developed

for finding the polarity of a redundant number without converting it to its conventional

form. When the qj+1s generated at every iteration are put next to each other, final quotient

does not make a meaningful number. The reason is that qj+1’s are in redundant form

and need to be converted to conventional format. After qlast is found, it is a very time

consuming operation to convert Q[n] to its conventional form and round it. The reason for

the time consuming conversion is that positive and negative components of Q[n] needs to be

separated and summed together. Where else, on-the-fly conversion and rounding algorithm

basically does the conversion and rounding not after qlast is found, but instead it generates

the converted Q[n] during the division process continues and while qj+1’s are being found.

This way, by the time qlast is generated, converted form of Q[n] is ready as well. This means

a full-precision addition is being avoided at each iteration.

Radix-r, in a way, is simulating a base-r number using base-2 digits. There can be

more than one valid combination for simulating a radix-r number. Because there is no

uniqueness, these kind of numbers are called Redundant. A radix-r digit-set consists of

symmetric positive and negative numbers. The negative number symbols are showed with a

bar on the top. The greatest radix-r digit can be in between a = r− 1 and a = r
2 , inclusive

as shown in Table 2.2. For the radix-4 and a=2 case, two numbers having different digits
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a Quotient Digit Set Property

2 {2, 1, 0, 1, 2} Minimally Redundant

3 {3, 2, 1, 0, 1, 2, 3} Maximally Redundant

Table 2.2: Possible Radix-4 Quotient Digit Sets

can have the same value as shown below. If a was equal to 3, there would be many more

distinct numbers having the same values than a to be equal to 2.

11̄2̄ = 1× 16− 1× 4− 2× 1 = 10

022 = 0× 16 + 2× 4 + 2× 1 = 10

This property of the redundant numbers leads to a remarkable benefit in SRT division.

For generation of qj+1, the number of bits to extract from W [j] (remainder) drops from

full precision to just some small number of left most bits. As the radix increases this small

number gets bigger but never approaches the full precision. For the case of r = 4 and a = 2

only left most 7 bits of W [j] and left most 3 bits of the divisor are enough. These two

numbers are outcomes of quotient digit selection function derivations. At the end, these

derivations can be visually shown in graphics called P-D Plots. First, a certain P-D plot

is decided according to the radix and a choices, and then it is implemented in a PLA. So

in the digital design, a small PLA is doing the Quotient-digit-selection functions job (table

look-up service). As seen in Figure 2.5, different colored boxes correspond to different

quotient-digits. The pair of neighboring diagonal lines around the color separation area

defines the overlap regions. These overlap regions are directly the outcome of the use of

redundant quotient-digit-set. The quotient-digit-selection can be made with any two values

that are touching the overlap area. This flexibility leads the P-D plot to be quantized with

bigger terms, hence letting it to reserve less space. For instance, the y − axis of the P-D

plot would have been divided in to 252 if no overlap regions existed. Instead, the y − axis

is only divided in to 27 = 128 pieces.

Using conventional formats, a full-precision subtraction operation takes long time. But

if one of the operands of the subtraction is kept in redundant form (i.e. , carry-save format),
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Figure 2.5: SRT radix-4 a=2 P-D Plot
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then along with the other operand, all three can be summed with a 3-to-2 carry-save adder.

Doing this saves us from a full-precision addition at every cycle, but brings an extra cost.

The cost is doubling the hardware used for generating the subtraction operand which is

decided to be in redundant form. The operand having less amount of hardware associated

with it, will be the smarter choice for keeping in carry-save format. In SRT division, it is

the r × W [j] since this component’s generation only requires a full-precision multiplexor

and a full-precision shifter. The two components of r × W [j]: r × WC[j] and r × WS[j]

along with −d× qj+1 will enter in to the 3-to-2 CSA to output WC[j + 1] and WS[j + 1].

When −d needs to be multiplied with a positive qj+1, we need to take two’s complement of

the result. This requires for 1 − ulp(r−n) to be added to the inverted result which means

a full-precision addition, but it can be avoided by a nice trick. −d × qj+1 will be entered

in to the CSA along with r × WC[j] and r × WS[j] and one thing to note is the least

significant bits of these two are always zero. The 1 − ulp which needs to be added to the

inverted d× qj+1 can instead replace the zero at the least significant place of either one of

the remainder’s components. All these advantages make SRT division to be used in all our

today’s modern processors.

2.5 SRT Square-Root Algorithm

SRT square-root algorithm is composed of an iterative method. The cycle time of each

iteration affects the overall delay time of the unit. At the first iteration, the left most bit

of the result and at the last iteration, the right most bit of the result is generated [36, 46].

The formula derivation is as follows:

x - Number to be square-rooted

s - Square root of x

S[j] - Partial Result (at the jth iteration)

sj - jth Square root bit

ε[j] - Error (at the jth iteration)

n - Precision of the operands (also number of iterations)

r - Radix

s =
√

x, 1
4 ≤ x < 1, 1

2 ≤ s < 1
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Final result S[n] is composed of square root bits (s0s1 · · · sn). Mathematically this yields:

s = S[n] =
n∑

i=0

si × r−i s0 = 1

The final result of a square root operation must satisfy;

|x 1
2 − S[n]| = ε[n] < r−n

So in every middle step, this inequality must hold;

|x 1
2 − S[j]| = ε[j] < r−j

Taking the absolute value out;

−r−j < x
1
2 − S[j] < r−j

Leave x alone in the inequality;

S[j]− r−j < x
1
2 < r−j + S[j]

Square all sides to get rid of the power of x;

r−2j − 2× S[j]× r−j + S[j]2 < x < r−2j + 2× S[j]× r−j + S[j]2

Take S[j]2’s to the middle;

r−2j − 2× S[j]× r−j < x− S[j]2 < r−2j + 2× S[j]× r−j

Pick partial residual W [j] as follows:

W [j] = rj × (x− S[j]2)

According to the above statement, an important property to keep in mind:

W [0] = x− S[0]2

W [0] = x− 1

Plugging W [j] back to the inequality:

r−2j − 2× S[j]× r−j < W [j]
rj < r−2j + 2× S[j]× r−j

Multiply all sides with rj to get a bound on the partial residual;

r−j − 2× S[j] < W [j] < r−j + 2× S[j]
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In order to have a recursion independent of x, W [j + 1] and r ×W [j] are created.

W [j + 1] = rj+1 × (x− S[j + 1]2)

− r ×W [j] = rj+1 × (x− S[j]2)

W [j + 1] = r ×W [j] + rj+1 × (S[j]2 − S[j + 1]2)

In the above format, the recursion formula would be in no use since square operation to

be implemented is hard. Using difference of two squares, above simplifies to:

W [j + 1] = r ×W [j] + rj+1 × (S[j]− S[j + 1])× (S[j] + S[j + 1])

Remember also that the next partial result is just the current result concatenated with

next square-root bit.

S[j + 1] = S[j] + sj+1 × r−(j+1)

Using this equality, recursion formula simplifies in to a more implementable format:

W [j + 1] = r ×W [j] + rj+1 × (S[j]− S[j + 1])︸ ︷︷ ︸
−r−(j+1)×sj+1

× (S[j] + S[j + 1])︸ ︷︷ ︸
2×S[j]+sj+1×r−(j+1)

Multiplying the new substitutes;

W [j + 1] = r ×W [j]−(2× S[j]× sj+1 + s2
j+1 × r−(j+1))︸ ︷︷ ︸

F [j]

(2.2)

What we have called F [j] is now in a suitable form which is ready to be implemented by

just doing inversions and concatenations. The simplified last version of the main recursion

of square-root algorithm is below. As seen, it is very similar to the recursion of the division.

Implementations of these two operations are very similar as you will be seeing in next two

chapters.

W [j + 1] = r ×W [j] + F [j] (2.3)

So, to summarize this final recursion formula step by step:

1. An arithmetic left-shift of W [j] by log2(r) digits to produce r ×W [j].
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2. Determination of the result digit sj+1 using the square-root digit selection function

Select.

3. Formation of the adder input by shifts, negations and concatenations

F = −(2× S[j]× sj+1 + s2
j+1 × r−(j+1))

4. Addition of r × W [j] with F to produce W [j + 1]. As in division, to have a fast

iteration step, a redundant adder (CSA) is used for this addition. At the end, it will

be necessary to convert the signed-digit form to 2’s complement form by means of an

on-the-fly conversion as discussed for division.
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Chapter 3

DUAL-MODE SRT RADIX-4 DIVISION UNIT

3.1 Conventional SRT Radix-4 Division Unit

As stated in the previous chapter, SRT radix-4 division algorithm uses the following recur-

rence for each iteration:

Wj+1 = 4Wj − d× qj+1 (3.1)

where, Wj is the partial reminder, or residual, W0 is the dividend, d is the divisor, and qj

is the jth quotient bits [36].

The number of iterations for n-bit division takes roughly n
log2(4) stages. The quotient bits

are selected by a quotient-digit selection (QDS) function, qj+1 = QDS(4Wk[j], dm) where k

and m are the number of left most bits to be extracted from W [j] and d respectively. If the

final residual Wn is negative, an additional correction step is required. In such a case, the

divisor is added to the remainder and r−n (1-ulp) is subtracted from final quotient. When

the final quotient is updated, it is converted to the conventional representation. As a last

step, the result is rounded. If on-the-fly conversion and rounding is used, then there is no

need to spend extra time for correction step, conversion and rounding.

3.1.1 Quotient Digit Set

Using radix-4 leaves us with two choices for the digit set:

Maximally redundant: qj : { -3, -2, -1, 0, 1, 2, 3 }
Minimally redundant: qj : { -2, -1, 0, 1, 2 }

Minimally redundant digit set means an easier divisor multiple generation and more complex

QDS function whereas maximally redundant digit set brings an ease on the QDS and more

complex divisor multiple generation. Minimally redundant digit set is used in this radix-4

design to avoid multiplying by integer 3. Multiplying d with qj+1 in minimally redundant

digit set case, only requires some arithmetic shifts and negations [42].
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Figure 3.1: SRT Radix-4 Divisor Multiple Generation Unit
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As seen in the Figure 3.1, the divisor’s mantissa (posdiv1 mantissa) is multiplied by 2

(shifted left one bit) to get posdiv2 mantissa and then it is negated to get negdiv2 mantissa.

In order to get negdiv1 mantissa, posdiv1 mantissa is just negated. For creating the negative

of a two’s complement number, addition by one is necessary along with the negation. Adding

one to the negated number will take O(n) time and a nice trick to avoid this will be shown

in section 3.1.3.

3.1.2 Quotient Digit Selection Function

QDS function basically chooses the right quotient digit at every cycle. The inputs to this

function are the residual and the divisor. Using a redundant digit set brings the advantage

of feeding the QDS with fewer precision of 4W [j] and d. The overlap regions of the quotient

digits in the P-D plot in Figure 2.5 allow this nice efficient structure to occur. The efficiency

is so great that the precision of the residual to be used for QDS drops from 52 to 7 bits

and the divisor from 52 to 3 bits. Also now knowing that only the 7 most significant bits

of the residual are needed to be computed, it will be smart to use a carry-save adder for

the addition of 4W [j] + d × (−qj+1). Residual, by the use of the CSA, will be kept in

twice the amount of the registers and are named WC[j] and WS[j], corresponding to carry

and save components, respectively. The only full addition will be performed by a 7-bit

carry-lookahead adder before result is fed into the QDS [44].

W [j] = WC[j] + WS[j]

WC[j + 1] + WS[j + 1] = 4WC[j] + 4WS[j] + d× (−qj+1)

Keeping the residual in carry-save format will not make it possible to read in conventional

form without a full-precision addition. Luckily the partial remainder nor the final remainder

is needed to be in the conventional form for finalizing the division operation. Only the sign

of the final remainder is needed along with whether it is zero or not. Final remainder, WC[n]

and WS[n] will not be fed in to the recurrence cycle back again since the quotient-bits are

all ready for conversion. However, if the sign of the final remainder (WC[n] + WS[n]) is

negative, divisor needs to be added to make it positive. And also, final quotient needs to be

decremented by 1−ulp. Adding the divisor to the negative remainder is not necessary since
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having the true, positive remainder is useless in most cases. Decrementing the quotient is,

of course, essential and very easy to do since 1 − ulp less quotient is ready in the OTF

(On-the-Fly Conversion and Rounding) unit at any time. The real work is to understand if

remainder is negative or not. In order to find that, a full-precision addition of the carry and

save components of the final remainder is not necessary. A simple algorithm which requires

much less hardware than a full-precision adder is shown in Figure 3.2. This implementation

is for understanding whether W [n] is positive or not. Final remainder’s polarity will update

the following values:

rem =





W [n]× r−n if W [n] ≥ 0

(W [n] + d)× r−n if W [n] < 0

result =





Q[n] if W [n] ≥ 0

QM [n] = Q[n]− r−n if W [n] < 0.

The table in Figure 3.3 shows the QDS function used for the conventional and dual-mode

designs. The same QDS can be used for both double and quadruple precision divisions since

both divisions use the same quotient digit set and in that case QDS is precision-independent.

3.1.3 Main Recurrence and Carry-Save Adder

Having the residual in redundant (carry-save) form saves great amount of time by avoiding

a 52-bit full addition at every cycle of the division. CSA takes in 4WC[j], 4WS[j] and

d × −qj+1 and outputs WC[j + 1] and WS[j + 1]. The payback of this advantage is only

doubling a multiplexer, arithmetic shifter (used to multiply W [j] by 4). When the quotient

bit is positive, the divisor multiple must be multiplied by a negative factor (-2 or -1).

Previously shifting and negating has been explained but adding the necessary ’1’ for the

correct complementing was left. The objective was to avoid a full 52-bit addition. Since

two of the CSA’s inputs are the partial residuals (4WC[j], 4WS[j]), it is obvious that the

least significant two bits of these inputs are always zero. Placing ’1’ to the least significant

bit of 4WC[j] when qj+1 is equal to 1 or 2 instead of adding ’1’ to the divisor multiple
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makes no difference in terms of the output of the CSA. This concatenation is sufficient to

save us from a full-precision addition at every cycle. In the cases of qj+1 being equal to 0,

1 or 2, there is no need for any concatenation since divisor multiple is already in correct

form. The reason for that is, none of the three cases require two’s complements, hence no

addition with ’1’ is necessary.

Figure 3.4 shows the heart of the recurrence of the radix-4 SRT division unit. This logic

is slightly modified when it is used for dual-mode division unit. At the beginning, MUX1

and MUX2 chooses either W[0] which is equal to the dividend or the partial remainder, W[j]

(j 6= 0). Selection signals for these two multiplexors are same and they trigger according

to the state counter, j, being equal to zero or not. Dividend is then passed through MUX1

(MUX2 lets a 58-bit number composed of all zeros through, making the W [0] = WS[0] +

WC[0] = dividend + zeros = dividend as it is supposed to be). In the next cycles of the

algorithm, these multiplexer will let the partial residuals WC[j] and WS[j] pass through.

Next, the residuals are multiplied by the radix (r=4). This is implemented by a two bit

arithmetic left shifter. Meanwhile the divisor is multiplied by the quotient-bit received from

the QDS function. Both the redundant residual and divisor multiple enters the CSA. Seven

most significant bits of the residual’s carry and save components (SumN4 and CarryN4)

are added with the 7 − bitCLA. Then, along with the three most significant bits of the

divisor’s mantissa, output of the 7− bitCLA feeds the PLA (QDS function). As the cycles

pass, the quotient is outputted from the PLA digit by digit (most significant digit first).

For the conversion, these bits are fed to the on-the-fly conversion unit. The reason flip-flops

(latches, also the black triangles in the figures) exist in this design is that the algorithm for

division is iterative and the same hardware is used in a cycle several times before the result

is generated. Without the flip-flops, outputs of the CSA (SumN5 and CarryN5) could not

be inputs to MUX1 and MUX2. Doing so would cause the circuit to enter in an infinite

loop.
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3.1.4 On-the-Fly Conversion and Rounding

What OTF conversion and rounding unit does is creating 2-bit signals, QMin, Qin and QPin

from the quotient-digit selected and inserting those 2-bits in the trailing positions of QM, Q

and QP registers accordingly. Heart of the on-the-fly conversion lies in these three registers

QM, Q and QP which keeps three consecutive binary numbers, QP being the greatest and

QM being the smallest one. At any time, QP is equal to (Q + 1ulp) and (QM + 2ulp). For

updating, Q uses QM or itself depending on the quotient bit selected by the help of MUX3

in Figure 3.5. Same applies for the QM and QP registers. The multiplexors above the QM,

Q and QP registers (MUX1, MUX3, MUX5) seen in Figure 3.5 are for this purpose. QP

register keeps a number one ulp bigger than Q register for rounding. Since every redundant

quotient bit produced generates two bits of the conventionally represented quotient, these

multiplexors output only the 52 least significant bits. The details of the logic behind the

updating rules can be found in [18]. The effect of this multiplexer-register loop is somewhat

like the number in the register shifting to left by two bits at every cycle until filling the

whole register with meaningful data. At the end of the last cycle, some bitwise operations

are done to decide if Q, QM or QP is the final quotient. Nonetheless the mantissa needs to

be normalized. If the 52nd bit of the register is a 1, the remaining 52 (51 downto 0) bits

are the normalized result. If not, the result is 51 least significant bits of the register and

a least significant bit is computed according to the 52nd bit, the conversion and rounding

unit also outputs an one bit exponent add one signal which must be added to the exponent.

Dual-mode on-the-fly conversion is a little bit more complex to implement considering no

hardware is wasted in none of the modes and extra delay brought is only from a couple of

multiplexors.

QP [k + 1] =





Q[k], (qk+1 + 1) if qk+1 ≥ −1

QM [k], ((r + 1)− |qk+1|) if qk+1 < −1

Q[k + 1] =





Q[k], qk+1 if qk+1 ≥ 0

QM [k], (r − |qk+1|) if qk+1 < 0

QM [k + 1] =





Q[k], (qk+1 − 1) if qk+1 > 0

QM [k], ((r − 1)− |qk+1|) if qk+1 ≤ 0
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These are the updating rules for the three consecutive versions of the quotient. Q[k] is the

exact converted version of the quotient-bits. QM [k] and QP [k] are 1-ulp less and more than

Q[k], respectively. Final result can be any of these three according to the rounding mode

and final remainder. When a new quotient bit arrives, Q[k + 1] is created by concatenating

either qk+1 at the end of Q[k] or r−|qk+1| at the end of QM [k]. If the selected quotient-digit

is negative, QM [k] is being used. QM [k +1] and QP [k +1]’s updating rules are in a similar

manner. All the scenarios are stated in Figure 3.6. A comma (,) means concatenation in

OTF related figures.

In Figure 3.7 a radix-4 on-the-fly conversion example is demonstrated. This example

goes for 10 cycles, creating at the end a converted (to conventional format) 20-bit binary

number. The states of all three registers can be seen at every cycle. Also a paper-pencil

method to check the correctness of the OTF algorithm is shown. Implementing the paper-

pencil method would require a costly full-precision (20-bit in this example) addition.

3.2 Dual-Mode SRT Radix-4 Quadruple Precision Division Unit

There are several design choices for the SRT division. Each of these brings an advantage on

one part of the design while being costly on the other parts [16, 17]. Choice of the radix,
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quotient digit set, residual format, and lots of other factors determine the overall speed

and gate count of a division unit. In this work, the design choices are as follows: radix is

four, quotient digit set is {2,1,0,1̄,2̄}, residual is kept in carry-save format, and on-the-fly

conversion and rounding is used [36].

Dual-mode quadruple precision divider supports both one quadruple precision and two

parallel double precision division operations. The block diagram of the unit is shown in

Figure 3.8. Basically, it consists of two conventional double precision division units, but the

datapath of divider on the right is extended with additional two bits in order to support

118-bit datapath for quadruple precision. There are also additional multiplexors to ensure

that both datapaths work together to support quadruple precision division. For example,

Mux9 and Mux10 are used between the shifters and Mux12 is used between the CSAs.

When the divider is used for quadruple precision division, the quad signal is set and it is

assumed that register pairs op1 left - op1 right and op2 left - op2 right hold input operands.

A quadruple precision number consists of a 1-bit sign, a 15-bit biased exponent, and a 112-

bit mantissa [7]. Quadruple division takes fifty nine cycles. When this unit performs two

double precision division in parallel, it is assumed that the first pair of input operands is

hold in registers op1 left and op2 left, and the second pair of input operands is hold in

registers op1 right and op2 right. A double precision number consists of a 1-bit sign, an

11-bit biased exponent, and a 52-bit mantissa [19]. Two parallel double precision division

takes twenty nine cycles. A finite state machine (FSM) is designed to accommodate for

dual-mode cycle counting. Since the design is fully sequential, same hardware can be used

for different precisions only with different number of stages required.

The partial remainder in carry-save format, the output of CSA, goes to the 7-bit CLA

in every iteration. The PLA takes as inputs the output of CLA and the divisor in order to

predict the next quotient bits. CLA 2 and PLA 2 are not used when the operation mode is

quadruple.

3.2.1 Main Recurrence

CSA Left and CSA Right in Figure 3.8 are used as a whole 118-bit CSA in the quadruple

mode. A 1-bit multiplexor (Mux12) is used to get the possible carry-out from the CSA Right
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Figure 3.9: Divisor Multiple Generation Unit for Dual-Mode Quadruple Precision Division

and replaces it with the least significant bit of the carry-out of the CSA Left. Similar method

is used for multiplying residual Wj by four (shift left by 2 bits). Before multiplication (2-

bit left shift), two most significant bits of the sum and carry of Wj right (SumN2 r and

CarryN2 r)are fed into Mux9 and Mux10. In quadruple precision mode, output of these

multiplexors will replace the two least significant bits of the sum and carry of Wj left.

Radix-4 SRT division requires seven bits of the residual and three bits of the divisor for the

QDS. Therefore, only one QDS function is enough and the PLA 1 and CLA 1 pair are used

for quadruple mode.
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3.2.2 Generating Divisor Multiples

The unit shown in Figure 3.9 basically generates the divisor multiplies which will be

added/subtracted from the previous residual to create the next residuals. Divisor mul-

tiple generation is not in the critical path. The divisor multiples (2d, d, -d, and -2d) can

be formed by shifting. In order to generate -d and -2d, one’s complement is obtained

first. Since the least significant bit of the 4Wj is always zero, 1 − ulp is just concatenated

to the least significant bit of the 4Wj . This eliminates the carry propagation to obtain

two’s complement. Similar to the procedures in Residual Creation, additional multiplexors,

Mux1 through Mux4, are used to generate divisor multiples for a quadruple and two double

numbers.

3.2.3 On-the-Fly Rounding and Conversion

Basic idea of the on-the-fly conversion and rounding is to generate the conventional rep-

resentation of the quotient from the radix-4 representation. In the dual-mode design, Q,

QM, and QP registers are all divided into left and right blocks as shown in Figure 3.10.

For instance, Q register is divided into 54-bit Qr (right) and 60-bit Ql (left) registers. Fur-

thermore, additional multiplexors, Mux11, Mux14 and Mux23, are used to support both

quadruple and two parallel double precision operations. Mux17 and Mux20 are used to nor-

malize the right and the left halves of the result, respectively. Normalization is necessary

when the magnitude of dividend’s mantissa is smaller than divisor’s mantissa. In such a

case, resulting quotient’s mantissa will be smaller than one and it needs to be shifted to the

left by 1-bit. Mux20’s selection depends on quad and the most significant bit of Qr and Ql

registers. Mux20 is doing the exact same thing with Mux17, but in the quadruple precision

mode, Mux20 needs to take selection bit of Mux17 into consideration. For instance, if 59th

bit of Ql is selected through Mux14 and Mux17, Mux20 should select the bits 58 through

0 to keep the whole 112-bit quadruple quotient in rigid form. Finally, according to the

selection logic, one of three register pairs which keeps the rounded quotient is fed into the

final result register.
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Design Number of Gates Delay (ns)

Conventional Double 178,257 3.61

Dual-Mode Double 212,854 3.92

Conventional Quadruple 428,783 4.21

Dual-Mode Quadruple 525,897 4.25

Table 3.1: Area and Delay Estimates.

3.3 Comparison of Synthesis Results

For comparison purposes, a conventional double precision, a conventional quadruple preci-

sion, and a dual-mode double precision division units are also implemented in VHDL and

synthesized. The dual-mode double precision divider is similar to the dual-mode quadru-

ple precision divider except that it supports one double precision and two parallel single

precision division operations. The area and worst case delay estimates for all four dividers

are shown in Table 3.1. The synthesis results are obtained with Mentor Graphics’ Leonar-

doSpectrum synthesis tool and the TSMC 0.25 micron CMOS standard cell library. The

TSMC 0.25 micron library has five metal layers and one polysilicon layer. The area is given

in terms of equivalent gates and results are normalized, such that an equivalent gate corre-

sponds to the area of a single minimum-size inverter. The dual-mode quadruple precision

division unit requires 22% more area and only 1% more delay than the conventional quadru-

ple division unit. Compared to the conventional double precision divider, the dual-mode

double precision divider requires roughly 20% more gates and the worst case delay increases

by 6%.
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Chapter 4

DUAL-MODE SRT RADIX-4 SQUARE-ROOT UNIT

As in division, different specific versions of the SRT algorithm are possible, depending on

the radix, the redundancy factor, the type of representation of the residual and the result-

digit selection function. Moreover, the implementation can be sequential, combinational, or

a combination of both. Even pipelining can be used if preferred. For simplicity, square-root

implementation uses the exact same design choices with the division shown in this thesis.

The PLA (containing the result-digit selection function) used by the two operations are same

as well. However, as will be seen in next section, additional logic gates are necessary for

square root algorithm to share the same PLA used for division. Since square-root operation

involves just one operand, the equivalent unit to Divisor Multiple Generation does not exist.

Instead, F Generation Unit exists and it is the third input to the CSA in the main unit.

OTF (On-the-Fly Conversion and Rounding) algorithm is embedded into the F generation

mechanism since they have too much in common. Other than these natural differences of

these two operations, the implementations are very similar. The similarities of the block

diagrams (Figure 3.8 and Figure 3.4) proves this visually [36].

4.1 Conventional SRT Radix-4 Square Root Unit

4.1.1 Main Recurrence and Carry-Save Adder

W [j + 1] = r ×W [j] + F [j] −→ Square-Root

W [j + 1] = r ×W [j]− d× qj+1 −→ Division

Main recurrence of the square-root algorithm is very similar to the division as seen in the

above formulas. The only difference is the F component being used instead of the divisor

multiple component. First, the operand’s mantissa is put next to four ’1’s. The reason for

this is that simple but first remember the formulas driven in Section 2.5:

W [0] = x− 1
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and,

W [j] = WC[j] + WS[j]

therefore,

WS[0] = x− 1

WC[0] = 0

Subtracting ’1’ from a floating-point number which is smaller than one leaves the fractional

part same but negates the part before the fractional point. This is the reason why four

leading ’1’s are prefixed to op1(51 − 0) in Figure 4.1. At the next stage, SumN2 and

CarryN2 are multiplied by 4 (radix) which is a left shift by 2-bit to create SumN3 and

CarryN3. These two signals pass through 56-bit flip-flops (latches). These flip-flops hold

an important job. Because both the division and square-root algorithms are iterative, all the

unit blocks inside the implementation will have their updated outputs as their inputs many

times. If not passed through a latch, an infinite loop might occur and timing difficulties

arise. When such a mistake is done and tried to be simulated, an error occurs. The outputs

of these flip-flops SumN4 and CarryN4 are basically the previous cycles’ SumN3 and

CarryN3. So latches bring an extra cycle to the implementation and the FSM is designed

to accommodate this extra delay. Most significant 7-bit of SumN4 and CarryN4 are added

with CLA and the result is fed into result-digit selection PLA. Full precision SumN4 and

CarryN4 are input of the CSA. PLA’s result sj+1 is fed into F generation unit and F is

fed into the CSA as well. At this stage, the new residuals are found and these steps are

carried out 29 times for calculating square-root of double precision operand. At every cycle,

one digit of the result is being computed. F generation unit takes care of converting these

redundant radix-4 result-digits to conventional form. Each radix-4 result-digit is converted

to two binary-bits. Details of how F is generated is shown in F Generation Unit’s section.

4.1.2 Result-Digit Selection Function

The same PLA shown in Figure 3.3 and Figure 2.5 is used for square-root too. Notice

however that in division, PLA’s 3-bit input was the most significant 3-bit of the divisor
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Figure 4.2: Square-Root S hat Generation Logic

which is a constant value throughout the algorithm. In square-root implementation, there

is a new block called S hat generation logic. The input to the result-digit selection function

is a three-bit value which is determined according to S[j] and j. Figure 4.2 shows inside

of the S hat generation logic. Signals A0 through A4 are the most significant bits of the

current result. These signals are necessary for the division’s PLA to work perfectly for

square-root as well. S hat signal is generated using these signals and then fed into the

PLA. The details on deriving this logic is explained in [2]. Basically the only difference

in result-digit selection logic which effects the use of the same PLA is at the first three

iterations of the square-root algorithm. Using S hat logic makes it possible to use the same

PLA used for division in order to get correct values from the PLA in the first three cycles

of the square-root algorithm.

4.1.3 F-Generation Unit

A[j] = S[j]

B[j] = S[j]− r−j
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F = −(2× S[j]× sj+1 + s2
j+1 × r−(j+1))

For sj+1 > 0:

F = −(2×A[j] + sj+1 × r−(j+1))× sj+1

For sj+1 < 0:

F = (2B[j] + (2× r − |sj+1|)× r−(j+1))× |sj+1|

Note that these last two expressions are obtained by concatenation and multiplication

by a radix-r digit. Since minimally-redundant radix-4 result-digit set is being used, the

multiplications are just arithmetic shifts. As seen in Table 4.1, the values of F[j] are ex-

tracted from these two equalities. Plugging, r equals four and different result-digits to the

formulas above will yield the values stated in the table. Bit-String column in Table 4.1 is the

implementation view of F[j]. What the F generation unit in Figure 4.3 does is updating A[j]

and B[j] at every cycle accordingly using MUXXX01 through MUXXX03 and MUX01

through MUX03. If result-digit is ’1’ negating A[j] and concatenating ’111’ at the end. If

result-digit is ’2’, shifting negated A[j] left once and then concatenating ’1100’. If result

digit is negative, for instance ’-1’, B[j] only needs to be concatenated by ’111’ without being

negated. Finally, if the result-digit selected is ’-2’, B[j] needs to be shifted left by 1-bit and

then concatenated by ’1100’. Concatenations are done with the help of AND54, XOR54,

REG58 and REG59 units. The F Generation unit in Figure 4.3 holds about twice the area

of on-the-fly conversion and rounding unit of division because in square-root, F generation

unit is responsible of both generating F and also doing on-the-fly conversion.

4.1.4 On-the-Fly Conversion and Rounding

As stated before, on-the-fly conversion and rounding is embedded into the F generation

unit. For generating F, the values of S[j] which is same as A[j] is necessary and it is a

good idea to combine these two units into one. B[j], A[j] and C[j] are three consecutive

numbers going from smallest to biggest. Figure 4.3 shows the details of on-the-fly (OTF)

conversion and F-generation. As an example, A[j]’s creation can be explained. According to

the polarity of sj+1, MUX01 lets either A[j] or B[j] to the output signal to be named Abar.
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F[j]

sj+1 Value Value Bit-String

(in terms of S[j]) (in terms of A[j] and B[j])

−2 4S[j]− 4× 4−(j+1) 4B[j] + 12× 4−(j+1) b · · · · · · b1100

−1 2S[j]− 4−(j+1) 2B[j] + 7× 4−(j+1) b · · · · · · bb111

0 0 0 0 · · · · · · 00000

1 −2S[j]− 4−(j+1) −2A[j]− 4−(j+1) a · · · · · · aa111

2 −4S[j]− 4× 4−(j+1) −4A[j]− 4× 4−(j+1) a · · · · · · a1100

Table 4.1: F Generation Scenarios

MUXXX01 is a special multiplexor outputting a fifty-four bit number and inputting two

bit numbers. The selection signal in this case is five bits. Basically this multiplexor which

is different than the conventional ones puts Ain in the jth position of the output, Abarin.

The remaining bits are all ’00’s which was the first input of MUXXX01. Abarin and Abar

are ORed so that Ain is concatenated at the end of A[j] or B[j] in order to output A[j+1].

The reason why there is a flip-flop is because A[j+1] is fed into MUX01 back again and

a ”zero delay oscillation” is being avoided by using the system clock. The updating rules

defined below are implemented with these multiplexors, OR gates and flip-flops. A[j] and

B[j] are used for generating F[j] as explained in Section 4.1.3.

C[k + 1] =





A[k], (sk+1 + 1) if sk+1 ≥ −1

B[k], ((r + 1)− |sk+1|) otherwise

A[k + 1] =





A[k], sk+1 if sk+1 ≥ 0

B[k], (r − |sk+1|) otherwise

B[k + 1] =





A[k], (sk+1 − 1) if sk+1 ≥ 1

B[k], ((r − 1)− |sk+1|) otherwise

Conversion in square-root is same with division, but the implementation is different in

square-root because A[j] and B[j] are further used to generate another value, F[j]. Rounding

is done by just looking at the last result-digit, final remainder and deciding which one of
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the three registers, A[j], B[j] and C[j] is the final square-root result. Implementation of this

is shown in Figure 4.4

4.2 Dual-Mode Quadruple Precision SRT Radix-4 Square-Root Unit

Dual-mode quadruple precision square-root unit supports both one quadruple precision and

two parallel double precision square-root operations. The block diagram of the unit is

shown in Figure 4.5. Basically, it consists of two conventional double precision square-root

units as shown in Figure 3.8, but the datapath of the unit on the right is extended with

additional four bits and the unit on the left with additional two bits in order to support

118-bit datapath for quadruple precision. There are also additional multiplexors to ensure

that both the left and right datapaths work together as a whole unit to support quadruple

precision division. For example, Mux9 and Mux10 are used between the shifters and Mux12

is used between the CSAs.

When the square-root unit is used for quadruple precision operation, the quad signal is
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set and it is assumed that register pair op left - op right hold input operands. A quadruple

precision number consists of a 1-bit sign, a 15-bit biased exponent, and a 112-bit mantissa

[7]. Quadruple square-root takes fifty nine cycles. When this unit performs two double

precision square-root operations in parallel, it is assumed that the first input operand is

hold in registers op left, and the second input operand is hold in registers op right. A

double precision number consists of a 1-bit sign, an 11-bit biased exponent, and a 52-bit

mantissa [19]. Two parallel double precision square-root operations takes twenty nine cycles.

A finite state machine (FSM) is designed to accommodate for dual-mode cycle counting.

Since the design is fully sequential, number of states does not affect the hardware used per

cycle.

The partial remainder in carry-save format (the output of CSA), goes to the 7-bit CLA

in every iteration. The PLA takes as inputs the output of CLA and the S hat in order to

predict the next quotient bits. CLA 2 and PLA 2 are not used when the operation mode is

quadruple.

4.2.1 Main Recurrence

Workings of both the quadruple and two parallel double-precision square-root modes will be

explained in this section. Block diagram of the main recurrence unit which does the result-

digit selection and partial remainder creation is shown in Figure 4.5. Finite-State-Machine

is designed to handle both the modes according to the quad signal. If quad signal is set

(which means square-root operation is done in quadruple precision mode), the algorithm

will run for fifty-nine cycles. Otherwise, it will run for twenty-nine cycles to compute square-

roots of two double precision numbers. How these numbers are found are as follows. For

the double precision mode, the mantissa is 52-bit length and the squared dl signal takes six

leading ones as prefix in Figure 4.5. This makes 58
lg2(4) = 29 cycles as total. Right half is

two-bits wider, 60-bits, and it does not make a difference in the number of cycles it has to

run to get the correct result. The reason is that, both the CLAs inputs are SumN4 l(55-49),

CarryN4 l(55-49) and SumN4 r(55-49), CarryN4 r(55-49). The bit positions of these pairs

are the same and the most significant two-bit on the datapath of right side are not taken

into account in the double precision mode. MUX09 and MUX10 are just used to pass ’00’s

through because in double precision mode, after a left-shift of two-bit, the right-most two-
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bit must be zero. These multiplexors are used to support quadruple-precision operation.

The square-root result for the operand in op left is computed using CLA left and PLA1.

The right square-root operation’s result bits are calculated with the right CLA and PLA2.

The double precision mode can be seen as two double square-root datapaths put next to

each other. The real challenge comes in when converting this datapath to work for also

quadruple precision square-root operation as well.

Thinking of the two parallel datapaths as one rigid datapath, shift-left-by-2 units will

damage the rigidness. Shift-left-by-2 units will pad two zeros at the least-significant-bit

places of SumN3 l and CarryN3 l. However, in the quadruple mode, at that bit position

there has to be the most-significant two-bit of the SumN3 l and CarryN3 l. MUX09 and

MUX10 do this job in the quadruple precision mode. As explained before, the triangular

shaped, black painted units are flip-flops and they play an important role on the functionality

of the algorithm. Since the SRT square-root algorithm is iterative, the whole design is in

a big loop. The output of CSA Left, SumN5 l is also the input of MUX05. The output of

MUX05 goes to several gates, at the end, arriving to the CSA Left. If the latches were not

in the way, it would not be possible to arrange timing on the circuit. At every cycle, PLA1

generates sj+1 for the quadruple precision square-root operation. Second CLA on the right

and PLA2 are not used in this mode. In order to use the CSA Left and CSA Right as a

rigid CSA, the carry-out of the right CSA needs to be fed into the left CSA as a carry-in.

MUX12 does this job for the quadruple precision mode. F-Generation unit supplies both

the CSA’s with appropriate F’s. The details of this is in the next section.

4.2.2 F-Generation and On-the-Fly Conversion and Rounding

Generating the number F[j] is very easy once A[j] and B[j] are ready. Creation of A[j]

and B[j] are done by the on-the-fly conversion unit. How this unit converts to dual-mode

was shown in the previous chapter in Figure 3.10. Generating F[j] using these two values

requires negation, shift and finally concatenation. The same F-generation principles in

Table 4.1 applies for the dual-mode design as well. Implementation of these operations

requires three registers which are updating themselves at every iteration. In dual-mode,

these units get squared and a total of nine registers are required. How the original design is
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Design Number of Gates Delay (ns)

Conventional Quadruple 497,625 4.61

Dual-Mode Quadruple 603,293 4.92

Table 4.2: Area and Delay Estimates.

turned into dual-mode for these registers are shown in Figure 4.6. Basically, if the mode is

quad, The left and the right registers work as a whole, And when the mode is not quad, left

and the middle registers go to the left and right double square-root operations individually.

Since F-Generation module is more complex than the divisor multiple generation unit in

division implementation, the area and delay results are a little bit worse than divisions. But

the ratios of dual-mode to conventional are very similar to the ratios obtained for division.

Since square-root is a more rare operation than division, this small drop in performance

should not be a big problem.

4.3 Comparison of Synthesis Results

For comparison purposes, a conventional quadruple precision and a dual-mode quadruple

precision square-root units are implemented in VHDL and synthesized. The area and worst

case delay estimates for two square-root unit implementations are shown in Table 4.2. The

synthesis results are obtained with Mentor Graphics’ LeonardoSpectrum synthesis tool and

the TSMC 0.25 micron CMOS standard cell library. The TSMC 0.25 micron library has

five metal layers and one polysilicon layer. The area is given in terms of equivalent gates

and results are normalized, such that an equivalent gate corresponds to the area of a single

minimum-size inverter. Compared to the conventional quadruple square root unit, the dual-

mode quadruple precision square root unit requires 22% more area and and have only 2%

more delay.



Chapter 4: Dual-Mode SRT Radix-4 Square-Root Unit 54

11

quad

quad

quad

Bshift2_r2

Bshift2out_r

Bshift2_r

11000 0000

REG 59 REG 59

00 00110

Bshift2out_l

Bshift2_l

REG 59

00 0000 110

REG 58

0000100

Ashiftout_l

Ashift_l

REG 58

0000100

REG 58

000010011

Ashiftout_r

Ashift_r

Goes to AND60

Goes to AND58

Goes to XOR58

Goes to XOR60

Goes to XOR60

Goes to XOR58 

Bshift1out_r2

Bshift1_r2

Ashiftout_r2

Ashift_r2

Bshift1out_r

Bshift1_r

1110 00 0000

REG 58 REG 58

00001110

Bshift1out_l

Bshift1_lREG 58

00 00001110

Bshift2out_r2

56

56

56 56

56

56

56

57

57 57

57

57

57

5656

Figure 4.6: Dual-Mode Square-Root F-Generation Unit Register Extension Principle



Chapter 5: Conclusion 55

Chapter 5

CONCLUSION

In this thesis, it is shown how a conventional double precision radix-4 SRT divider can

be modified to design a dual-mode quadruple precision floating-point division unit. Also

how a conventional double precision radix-4 SRT square-root unit can be modified to design

a dual-mode quadruple precision floating-point square-root unit is explained i great detail

in this thesis. These units support both one quadruple and two parallel double precision

operations. The dual-mode quadruple precision floating-point division unit can perform

either one quadruple precision division in fifty nine cycles or two parallel double precision

division in twenty nine cycles. Same exact number of cycles apply to the square-root unit

as well. The dual-mode quadruple precision division unit requires 22% more area and

only 1% more delay than the conventional quadruple division unit. The same technique

used to design the dual-mode quadruple precision divider is also applied to design a dual-

mode double precision divider that supports both one double precision and two parallel

single precision operations. Two single precision division operations take fifteen cycles and

one double precision division take twenty nine cycles. The dual-mode quadruple precision

square-root unit requires 22% more area and 2% more delay than the conventional quadruple

square-root unit. The correctness of all designs are tested for four different rounding modes

specified by IEEE standard for floating-point arithmetic. The greatest advantage of dual-

mode units is to increase ILP for applications that requires lower precision operations.
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Chapter 6

APPENDIX A

With the C division simulator coded, when the two numbers 0.456700 and 0.234500 are

divided to each other, we get this step by step SRT radix-4 division algorithm’s results. At

the end of the simulation, computed result is compared with the CPU’s own result. The

name of the signals are exactly same as used in Figure 3.4.

DIVIDEND = 01110100111010100100101010001100000101010100110010011 = 0.456700

DIVISOR = 00111100000010000011000100100110111010010111100011010 = 0.234500

X = 00000101110100111010100100101010001100000101010100110010011

D = 00010011110000001000001100010010011011101001011110001101000

r0 00000101110100111010100100101010001100000101010100110010011

Qhat0 0001011 and Shat 001 set q1 = 1

A1 101

B1 100

caddb0 11101100001111110111110011101101100100010110100001110010111

============================================

1

SumN3 00010111010011101010010010101000110000010101010011001001100

CarryN3 00000000000000000000000000000000000000000000000000000000001

caddb 11101100001111110111110011101101100100010110100001110010111

+

————————————————————————————————

SumN5 11111011011100011101100001000101010100000011110010111011010

CarryN5 00001000000111000100100101010001000000101000000010000001010

r1 00000011100011100010000110010110010100101011110100111100100
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Qhat1 0000110 and Shat 001 set q2 = 1

A2 10101

B2 10100

caddb1 11101100001111110111110011101101100100010110100001110010111

============================================

2

SumN3 11101101110001110110000100010101010000001111001011101101000

CarryN3 00100000011100010010010101000100000010100000001000000101001

caddb 11101100001111110111110011101101100100010110100001110010111

+

————————————————————————————————

SumN5 00100001100010010011100010111100110110111001100010011010110

CarryN5 11011000111011101100101010001010000000001100010011001010010

r2 11111010011110000000001101000110110111000101110101100101000

Qhat2 1110100 and Shat 001 set q3 = -1

A3 1010011

B3 1010010

caddb2 00010011110000001000001100010010011011101001011110001101000

============================================

3

SumN3 10000110001001001110001011110011011011100110001001101011000

CarryN3 01100011101110110010101000101000000000110001001100101001000

caddb 00010011110000001000001100010010011011101001011110001101000

+

————————————————————————————————

SumN5 11110110010111110100101111001001000000111110011011001111000

CarryN5 00000111010000010100010001100100110111000010011001010010000

r3 11111101101000001001000000101101111000000000110100100001000

Qhat3 1111010 and Shat 001 set q4 = 0

A4 101001100

B4 101001011
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caddb3 000000000

============================================

4

SumN3 11011001011111010010111100100100000011111001101100111100000

CarryN3 00011101000001010001000110010011011100001001100101001000000

caddb 000000000

+

————————————————————————————————

SumN5 11000100011110000011111010110111011111110000001001110100000

CarryN5 00110010000010100000001000000000000000010011001000010000000

r4 11110110100000100100000010110111100000000011010010000100000

Qhat4 1101100 and Shat 001 set q5 = -2

A5 10100101110

B5 10100101101

caddb4 00100111100000010000011000100100110111010010111100011010000

============================================

5

SumN3 00010001111000001111101011011101111111000000100111010000000

CarryN3 11001000001010000000100000000000000001001100100001000000000

caddb 00100111100000010000011000100100110111010010111100011010000

+

————————————————————————————————

SumN5 11111110010010011111010011111001001001011110111010001010000

CarryN5 00000011010000000001010000001001101110000001001010100000000

r5 00000001100010100000100100000010110111100000000100101010000

Qhat5 0000010 and Shat 001 set q6 = 0

A6 1010010111000

B6 1010010110111

caddb5 0000000000000

============================================

6
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SumN3 11111001001001111101001111100100100101111011101000101000000

CarryN3 00001101000000000101000000100110111000000100101010000000000

caddb 0000000000000

+

————————————————————————————————

SumN5 11110100001001111000001111000010011101111111000010101000000

CarryN5 00010010000000001010000001001001000000000001010000000000000

r6 00000110001010000010010000001011011110000000010010101000000

Qhat6 0001100 and Shat 001 set q7 = 1

A7 101001011100001

B7 101001011100000

caddb6 11101100001111110111110011101101100100010110100001110010111

============================================

7

SumN3 11010000100111100000111100001001110111111100001010100000000

CarryN3 01001000000000101000000100100100000000000101000000000000001

caddb 11101100001111110111110011101101100100010110100001110010111

+

————————————————————————————————

SumN5 01110100101000111111001011000000010011101111101011010010110

CarryN5 10010000001111000001101001011011001000101000000001000000010

r7 00000100111000000000110100011011011100010111101100010011000

Qhat7 0001001 and Shat 001 set q8 = 1

A8 10100101110000101

B8 10100101110000100

caddb7 11101100001111110111110011101101100100010110100001110010111

============================================

8

SumN3 11010010100011111100101100000001001110111110101101001011000

CarryN3 01000000111100000110100101101100100010100000000100000001001

caddb 11101100001111110111110011101101100100010110100001110010111
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+

————————————————————————————————

SumN5 01111110010000001101111010000000001000001000001000111000110

CarryN5 10000001011111101101001011011011001101101101001010000110010

r8 11111111101111111011000101011011010101110101010010111111000

Qhat8 1111110 and Shat 001 set q9 = 0

A9 1010010111000010100

B9 1010010111000010011

caddb8 0000000000000000000

============================================

9

SumN3 11111001000000110111101000000000100000100000100011100011000

CarryN3 00000101111110110100101101101100110110110100101000011001000

caddb 0000000000000000000

+

————————————————————————————————

SumN5 11111100111110000011000101101100010110010100001011111010000

CarryN5 00000010000001101001010000000001000001000001000000000010000

r9 11111110111111101100010101101101010111010101001011111100000

Qhat9 1111101 and Shat 001 set q10 = 0

A10 101001011100001010000

B10 101001011100001001111

caddb9 000000000000000000000

============================================

10

SumN3 11110011111000001100010110110001011001010000101111101000000

CarryN3 00001000000110100101000000000100000100000100000000001000000

caddb 000000000000000000000

+

————————————————————————————————

SumN5 11111011111110101001010110110101011101010100101111100000000
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CarryN5 00000000000000001000000000000000000000000000000000010000000

r10 11111011111110110001010110110101011101010100101111110000000

Qhat10 1110111 and Shat 001 set q11 = -1

A11 10100101110000100111111

B11 10100101110000100111110

caddb10 00010011110000001000001100010010011011101001011110001101000

============================================

11

SumN3 11101111111010100101011011010101110101010010111110000000000

CarryN3 00000000000000100000000000000000000000000000000001000000000

caddb 00010011110000001000001100010010011011101001011110001101000

+

————————————————————————————————

SumN5 11111100001010001101010111000111101110111011100001001101000

CarryN5 00000111100001000000010000100000100010000000111100000000000

r11 00000011101011001101100111101000010000111100011101001101000

Qhat11 0000111 and Shat 001 set q12 = 1

A12 1010010111000010011111101

B12 1010010111000010011111100

caddb11 11101100001111110111110011101101100100010110100001110010111

============================================

12

SumN3 11110000101000110101011100011110111011101110000100110100000

CarryN3 00011110000100000001000010000010001000000011110000000000001

caddb 11101100001111110111110011101101100100010110100001110010111

+

————————————————————————————————

SumN5 00000010100011000011101101110001010111111011010101000110110

CarryN5 11111000011001101010100100011101010000001101000001100000010

r12 11111010111100101110010010001110101000001000010110100111000

Qhat12 1110101 and Shat 001 set q13 = -1
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A13 101001011100001001111110011

B13 101001011100001001111110010

caddb12 00010011110000001000001100010010011011101001011110001101000

============================================

13

SumN3 00001010001100001110110111000101011111101101010100011011000

CarryN3 11100001100110101010010001110101000000110100000110000001000

caddb 00010011110000001000001100010010011011101001011110001101000

+

————————————————————————————————

SumN5 11111000011010101100101010100010000100110000001100010111000

CarryN5 00000111001000010100101010101010110111011010101100010010000

r13 11111111100011000001010101001100111100001010111000101001000

Qhat13 1111110 and Shat 001 set q14 = 0

A14 10100101110000100111111001100

B14 10100101110000100111111001011

caddb13 00000000000000000000000000000

============================================

14

SumN3 11100001101010110010101010001000010011000000110001011100000

CarryN3 00011100100001010010101010101011011101101010110001001000000

caddb 00000000000000000000000000000

+

————————————————————————————————

SumN5 11111101001011100000000000100011001110101010000000010100000

CarryN5 00000001000000100101010100010000100010000001100010010000000

r14 11111110001100000101010100110011110000101011100010100100000

Qhat14 1111100 and Shat 001 set q15 = 0

A15 1010010111000010011111100110000

B15 1010010111000010011111100101111

caddb14 0000000000000000000000000000000
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============================================

15

SumN3 11110100101110000000000010001100111010101000000001010000000

CarryN3 00000100000010010101010001000010001000000110001001000000000

caddb 0000000000000000000000000000000

+

————————————————————————————————

SumN5 11110000101100010101010011001110110010101110001000010000000

CarryN5 00001000000100000000000000000000010000000000000010000000000

r15 11111000110000010101010011001111000010101110001010010000000

Qhat15 1110001 and Shat 001 set q16 = -1

A16 101001011100001001111110010111111

B16 101001011100001001111110010111110

caddb15 00010011110000001000001100010010011011101001011110001101000

============================================

16

SumN3 11000010110001010101001100111011001010111000100001000000000

CarryN3 00100000010000000000000000000001000000000000001000000000000

caddb 00010011110000001000001100010010011011101001011110001101000

+

————————————————————————————————

SumN5 11110001010001011101000000101000010001010001110111001101000

CarryN5 00000101100000000000011000100110010101010000010000000000000

r16 11110110110001011101011001001110100110100010000111001101000

Qhat16 1101101 and Shat 001 set q17 = -2

A17 10100101110000100111111001011111010

B17 10100101110000100111111001011111001

caddb16 00100111100000010000011000100100110111010010111100011010000

============================================

17

SumN3 11000101000101110100000010100001000101000111011100110100000
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CarryN3 00010110000000000001100010011001010101000001000000000000000

caddb 00100111100000010000011000100100110111010010111100011010000

+

————————————————————————————————

SumN5 11110100100101100101111000011100100111010100100000101110000

CarryN5 00001110000000100000000101000010101010000110111000100000000

r17 00000010100110000101111101011111010001011011011001001110000

Qhat17 0000101 and Shat 001 set q18 = 1

A18 1010010111000010011111100101111101001

B18 1010010111000010011111100101111101000

caddb17 11101100001111110111110011101101100100010110100001110010111

============================================

18

SumN3 11010010010110010111100001110010011101010010000010111000000

CarryN3 00111000000010000000010100001010101000011011100010000000001

caddb 11101100001111110111110011101101100100010110100001110010111

+

————————————————————————————————

SumN5 00000110011011100000000110010101010001011111000001001010110

CarryN5 11110000001100101111100011010101011000100101000101100000010

r18 11110110101000001111101001101010101010000100000110101011000

Qhat18 1101100 and Shat 001 set q19 = -2

A19 101001011100001001111110010111110100010

B19 101001011100001001111110010111110100001

caddb18 00100111100000010000011000100100110111010010111100011010000

============================================

19

SumN3 00011001101110000000011001010101000101111100000100101011000

CarryN3 11000000110010111110001101010101100010010100010110000001000

caddb 00100111100000010000011000100100110111010010111100011010000

+
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————————————————————————————————

SumN5 11111110111100101110001100100100010000111010101110110000000

CarryN5 00000011000100100000110010101011001110101000101000010110000

r19 00000010000001001110111111001111011111100011010111000110000

Qhat19 0000011 and Shat 001 set q20 = 0

A20 10100101110000100111111001011111010001000

B20 10100101110000100111111001011111010000111

caddb19 00000000000000000000000000000000000000000

============================================

20

SumN3 11111011110010111000110010010001000011101010111011000000000

CarryN3 00001100010010000011001010101100111010100010100001011000000

caddb 00000000000000000000000000000000000000000

+

————————————————————————————————

SumN5 11110111100000111011111000111101111001001000011010011000000

CarryN5 00010000100100000000000100000000000101000101000010000000000

r20 00001000000100111011111100111101111110001101011100011000000

Qhat20 0010000 and Shat 001 set q21 = 2

A21 1010010111000010011111100101111101000100010

B21 1010010111000010011111100101111101000100001

caddb20 11011000011111101111100111011011001000101101000011100101111

============================================

21

SumN3 11011110000011101111100011110111100100100001101001100000000

CarryN3 01000010010000000000010000000000010100010100001000000000001

caddb 11011000011111101111100111011011001000101101000011100101111

+

————————————————————————————————

SumN5 01000100001100000000010100101100111000011000100010000101110

CarryN5 10110100100111011111000110100110001001001010010011000000010
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r21 11111000110011011111011011010011000001100010110101000110000

Qhat21 1110001 and Shat 001 set q22 = -1

A22 101001011100001001111110010111110100010000111

B22 101001011100001001111110010111110100010000110

caddb21 00010011110000001000001100010010011011101001011110001101000

============================================

22

SumN3 00010000110000000001010010110011100001100010001000010111000

CarryN3 11010010011101111100011010011000100100101001001100000001000

caddb 00010011110000001000001100010010011011101001011110001101000

+

————————————————————————————————

SumN5 11010001011101110101000100111001011110100010011010011011000

CarryN5 00100101100000010000110100100101000011010010011000001010000

r22 11110110111110000101111001011110100001110100110010100101000

Qhat22 1101101 and Shat 001 set q23 = -2

A23 10100101110000100111111001011111010001000011010

B23 10100101110000100111111001011111010001000011001

caddb22 00100111100000010000011000100100110111010010111100011010000

============================================

23

SumN3 01000101110111010100010011100101111010001001101001101100000

CarryN3 10010110000001000011010010010100001101001001100000101000000

caddb 00100111100000010000011000100100110111010010111100011010000

+

————————————————————————————————

SumN5 11110100010110000111011001010101000000010010110101011110000

CarryN5 00001111000010100000100101001001111110010011010001010000000

r23 00000011011000100111111110011110111110100110000110101110000

Qhat23 0000110 and Shat 001 set q24 = 1

A24 1010010111000010011111100101111101000100001101001
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B24 1010010111000010011111100101111101000100001101000

caddb23 11101100001111110111110011101101100100010110100001110010111

============================================

24

SumN3 11010001011000011101100101010100000001001011010101111000000

CarryN3 00111100001010000010010100100111111001001101000101000000001

caddb 11101100001111110111110011101101100100010110100001110010111

+

————————————————————————————————

SumN5 00000001011101101000000010011110011100010000110001001010110

CarryN5 11111000010100101111101011001011000010011110001011100000010

r24 11111001110010010111101101101001011110101110111100101011000

Qhat24 1110010 and Shat 001 set q25 = -1

A25 101001011100001001111110010111110100010000110100011

B25 101001011100001001111110010111110100010000110100010

caddb24 00010011110000001000001100010010011011101001011110001101000

============================================

25

SumN3 00000101110110100000001001111001110001000011000100101011000

CarryN3 11100001010010111110101100101100001001111000101110000001000

caddb 00010011110000001000001100010010011011101001011110001101000

+

————————————————————————————————

SumN5 11110111010100010110101001000111100011010010110100100111000

CarryN5 00000011100101010000011001110000110011010010011100010010000

r25 11111010111001100111000010111000010110100101010000111001000

Qhat25 1110101 and Shat 001 set q26 = -1

A26 10100101110000100111111001011111010001000011010001011

B26 10100101110000100111111001011111010001000011010001010

caddb25 00010011110000001000001100010010011011101001011110001101000

============================================
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26

SumN3 11011101010001011010100100011110001101001011010010011100000

CarryN3 00001110010101000001100111000011001101001001110001001000000

caddb 00010011110000001000001100010010011011101001011110001101000

+

————————————————————————————————

SumN5 11000000110100010011001111001111011011101011111101011001000

CarryN5 00111110100010010001001000100100011010010010100100011000000

r26 11111111010110100100010111110011110101111110100001110001000

Qhat26 1111110 and Shat 001 set q27 = 0

A27 1010010111000010011111100101111101000100001101000101100

B27 1010010111000010011111100101111101000100001101000101011

caddb26 0000000000000000000000000000000000000000000000000000000

============================================

27

SumN3 00000011010001001100111100111101101110101111110101100100000

CarryN3 11111010001001000100100010010001101001001010010001100000000

caddb 0000000000000000000000000000000000000000000000000000000

+

————————————————————————————————

SumN5 11111001011000001000011110101100000111100101100100000100000

CarryN5 00000100000010001001000000100011010000010100100011000000000

r27 11111101011010010001011111001111010111111010000111000100000

Qhat27 1111010 and Shat 001 set q28 = 0

A28 101001011100001001111110010111110100010000110100010110000

B28 101001011100001001111110010111110100010000110100010101111

caddb27 000000000000000000000000000000000000000000000000000000000

============================================

28

SumN3 11100101100000100001111010110000011110010110010000010000000

CarryN3 00010000001000100100000010001101000001010010001100000000000
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caddb 000000000000000000000000000000000000000000000000000000000

+

————————————————————————————————

SumN5 11110101101000000101111000111101011111000100011100010000000

CarryN5 00000000000001000000000100000000000000100100000000000000000

r28 11110101101001000101111100111101011111101000011100010000000

Qhat28 1101011 and Shat 001 set q29 = -2

A29 10100101110000100111111001011111010001000011010001010111110

B29 10100101110000100111111001011111010001000011010001010111101

caddb28 00100111100000010000011000100100110111010010111100011010000

============================================

29

SumN3 11010110100000010111100011110101111100010001110001000000000

CarryN3 00000000000100000000010000000000000010010000000000000000000

caddb 00100111100000010000011000100100110111010010111100011010000

+

————————————————————————————————

SumN5 11110001000100000111101011010001001001010011001101011010000

CarryN5 00001101000000100000100001001001101100100001100000000000000

NUMBER 1 IS .01110100111010100100101010001100000101010100110010011 = 0.456700

NUMBER 2 IS .0011110000001000001100010010011011101001011110001101000 = 0.234500

RESULT IS .001011100001001111110010111110100010000110100010101111100 = 0.179992

REAL RESULT IS .00101110000100111111001011111010001000011010001010110000000 =

1.179992

ERROR IS 0.000000
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Chapter 7

APPENDIX B

With the C square-root simulator coded, when the number 0.65 is square-rooted, we get

this step by step SRT radix-4 square-root algorithm’s results. At the end of the simulation,

computed result is compared with the CPU’s own result. The name of the signals are ex-

actly same as used in Figure 4.1.

y = 10100110011001100110011001100110011001100110011001101 = 0.65

X = 111110100110011001100110011001100110011001100110011001101

r0 111110100110011001100110011001100110011001100110011001101

Qhat0 1110100 and Shat 100 set q1 = -1

A1 011

B1 010

F0 000111

============================================

1

SumN3 111010011001100110011001100110011001100110011001100110100

CarryN3 000000000000000000000000000000000000000000000000000000000

F 000111

+

————————————————————————————————

SumN5 111101011001100110011001100110011001100110011001100110100

CarryN5 000100000000000000000000000000000000000000000000000000000

r1 000001011001100110011001100110011001100110011001100110100

Qhat1 0001011 and Shat 100 set q2 = 1

A2 01101
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B2 01100

F1 11100111

============================================

2

SumN3 110101100110011001100110011001100110011001100110011010000

CarryN3 010000000000000000000000000000000000000000000000000000000

F 11100111

+

————————————————————————————————

SumN5 011100010110011001100110011001100110011001100110011010000

CarryN5 100011000000000000000000000000000000000000000000000000000

r2 111111010110011001100110011001100110011001100110011010000

Qhat2 1111010 and Shat 101 set q3 = 0

A3 0110100

B3 0110011

F2 0000000

============================================

3

SumN3 110001011001100110011001100110011001100110011001101000000

CarryN3 001100000000000000000000000000000000000000000000000000000

F 0000000

+

————————————————————————————————

SumN5 111101011001100110011001100110011001100110011001101000000

CarryN5 000000000000000000000000000000000000000000000000000000000

r3 111101011001100110011001100110011001100110011001101000000

Qhat3 1101011 and Shat 101 set q4 = -2

A4 011001110

B4 011001101

F3 001100111100

============================================
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4

SumN3 110101100110011001100110011001100110011001100110100000000

CarryN3 000000000000000000000000000000000000000000000000000000000

F 001100111100

+

————————————————————————————————

SumN5 111001011010011001100110011001100110011001100110100000000

CarryN5 001001001000000000000000000000000000000000000000000000000

r4 000010100010011001100110011001100110011001100110100000000

Qhat4 0010100 and Shat 100 set q5 = 2

A5 01100111010

B5 01100111001

F4 11001100011100

============================================

5

SumN3 100101101001100110011001100110011001100110011010000000000

CarryN3 100100100000000000000000000000000000000000000000000000000

F 11001100011100

+

————————————————————————————————

SumN5 110010001110100110011001100110011001100110011010000000000

CarryN5 001011000010000000000000000000000000000000000000000000000

r5 111101010000100110011001100110011001100110011010000000000

Qhat5 1101001 and Shat 100 set q6 = -2

A6 0110011100110

B6 0110011100101

F5 0011001110011100

============================================

6

SumN3 001000111010011001100110011001100110011001101000000000000

CarryN3 101100001000000000000000000000000000000000000000000000000
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F 0011001110011100

+

————————————————————————————————

SumN5 101000001011101001100110011001100110011001101000000000000

CarryN5 011001110000100000000000000000000000000000000000000000000

r6 000001111100001001100110011001100110011001101000000000000

Qhat6 0001111 and Shat 100 set q7 = 1

A7 011001110011001

B7 011001110011000

F6 111001100011001111

============================================

7

SumN3 100000101110100110011001100110011001100110100000000000000

CarryN3 100111000010000000000000000000000000000000000000000000000

F 111001100011001111

+

————————————————————————————————

SumN5 111110001111101001011001100110011001100110100000000000000

CarryN5 000011000100001100000000000000000000000000000000000000000

r7 000001010011110101011001100110011001100110100000000000000

Qhat7 0001010 and Shat 100 set q8 = 1

A8 01100111001100101

B8 01100111001100100

F7 11100110001100110111

============================================

8

SumN3 111000111110100101100110011001100110011010000000000000000

CarryN3 001100010000110000000000000000000000000000000000000000000

F 11100110001100110111

+

————————————————————————————————
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SumN5 001101001101011000010110011001100110011010000000000000000

CarryN5 110001100101001011000000000000000000000000000000000000000

r8 111110110010100011010110011001100110011010000000000000000

Qhat8 1110110 and Shat 100 set q9 = -1

A9 0110011100110010011

B9 0110011100110010010

F8 0001100111001100100111

============================================

9

SumN3 110100110101100001011001100110011001101000000000000000000

CarryN3 000110010100101100000000000000000000000000000000000000000

F 0001100111001100100111

+

————————————————————————————————

SumN5 110100111101111111000101100110011001101000000000000000000

CarryN5 001100101001000000110000000000000000000000000000000000000

r9 000001100110111111110101100110011001101000000000000000000

Qhat9 0001100 and Shat 100 set q10 = 1

A10 011001110011001001101

B10 011001110011001001100

F9 111001100011001101100111

============================================

10

SumN3 010011110111111100010110011001100110100000000000000000000

CarryN3 110010100100000011000000000000000000000000000000000000000

F 111001100011001101100111

+

————————————————————————————————

SumN5 011000110000110010110001011001100110100000000000000000000

CarryN5 100111001110011010001100000000000000000000000000000000000

r10 111111111111001100111101011001100110100000000000000000000
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Qhat10 1111111 and Shat 100 set q11 = 0

A11 01100111001100100110100

B11 01100111001100100110011

F10 00000000000000000000000

============================================

11

SumN3 100011000011001011000101100110011010000000000000000000000

CarryN3 011100111001101000110000000000000000000000000000000000000

F 00000000000000000000000

+

————————————————————————————————

SumN5 111111111010100011110101100110011010000000000000000000000

CarryN5 000000000010010000000000000000000000000000000000000000000

r11 111111111100110011110101100110011010000000000000000000000

Qhat11 1111111 and Shat 100 set q12 = 0

A12 0110011100110010011010000

B12 0110011100110010011001111

F11 0000000000000000000000000

============================================

12

SumN3 111111101010001111010110011001101000000000000000000000000

CarryN3 000000001001000000000000000000000000000000000000000000000

F 0000000000000000000000000

+

————————————————————————————————

SumN5 111111100011001111010110011001101000000000000000000000000

CarryN5 000000010000000000000000000000000000000000000000000000000

r12 111111110011001111010110011001101000000000000000000000000

Qhat12 1111110 and Shat 100 set q13 = 0

A13 011001110011001001101000000

B13 011001110011001001100111111
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F12 000000000000000000000000000

============================================

13

SumN3 111110001100111101011001100110100000000000000000000000000

CarryN3 000001000000000000000000000000000000000000000000000000000

F 000000000000000000000000000

+

————————————————————————————————

SumN5 111111001100111101011001100110100000000000000000000000000

CarryN5 000000000000000000000000000000000000000000000000000000000

r13 111111001100111101011001100110100000000000000000000000000

Qhat13 1111001 and Shat 100 set q14 = 0

A14 01100111001100100110100000000

B14 01100111001100100110011111111

F13 00000000000000000000000000000

============================================

14

SumN3 111100110011110101100110011010000000000000000000000000000

CarryN3 000000000000000000000000000000000000000000000000000000000

F 00000000000000000000000000000

+

————————————————————————————————

SumN5 111100110011110101100110011010000000000000000000000000000

CarryN5 000000000000000000000000000000000000000000000000000000000

r14 111100110011110101100110011010000000000000000000000000000

Qhat14 1100110 and Shat 100 set q15 = -2

A15 0110011100110010011001111111110

B15 0110011100110010011001111111101

F14 0011001110011001001100111111111100

============================================

15
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SumN3 110011001111010110011001101000000000000000000000000000000

CarryN3 000000000000000000000000000000000000000000000000000000000

F 0011001110011001001100111111111100

+

————————————————————————————————

SumN5 111111110110110010101010010111110000000000000000000000000

CarryN5 000000010010001000100011010000000000000000000000000000000

r15 000000001000111011001101100111110000000000000000000000000

Qhat15 0000000 and Shat 100 set q16 = 0

A16 011001110011001001100111111111000

B16 011001110011001001100111111110111

F15 000000000000000000000000000000000

============================================

16

SumN3 111111011011001010101001011111000000000000000000000000000

CarryN3 000001001000100010001101000000000000000000000000000000000

F 000000000000000000000000000000000

+

————————————————————————————————

SumN5 111110010011101000100100011111000000000000000000000000000

CarryN5 000010010000000100010010000000000000000000000000000000000

r16 000000100011101100110110011111000000000000000000000000000

Qhat16 0000100 and Shat 100 set q17 = 0

A17 01100111001100100110011111111100000

B17 01100111001100100110011111111011111

F16 00000000000000000000000000000000000

============================================

17

SumN3 111001001110100010010001111100000000000000000000000000000

CarryN3 001001000000010001001000000000000000000000000000000000000

F 00000000000000000000000000000000000
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+

————————————————————————————————

SumN5 110000001110110011011001111100000000000000000000000000000

CarryN5 010010000000000000000000000000000000000000000000000000000

r17 000010001110110011011001111100000000000000000000000000000

Qhat17 0010001 and Shat 100 set q18 = 1

A18 0110011100110010011001111111110000001

B18 0110011100110010011001111111110000000

F17 1110011000110011011001100000000011111111

============================================

18

SumN3 000000111011001101100111110000000000000000000000000000000

CarryN3 001000000000000000000000000000000000000000000000000000000

F 1110011000110011011001100000000011111111

+

————————————————————————————————

SumN5 110001011000000000000001110000001111111100000000000000000

CarryN5 010001000110011011001100000000000000000000000000000000000

r18 000010011110011011001101110000001111111100000000000000000

Qhat18 0010011 and Shat 100 set q19 = 2

A19 011001110011001001100111111111000000110

B19 011001110011001001100111111111000000101

F18 110011000110011011001100000000011111101100

============================================

19

SumN3 000101100000000000000111000000111111110000000000000000000

CarryN3 000100011001101100110000000000000000000000000000000000000

F 110011000110011011001100000000011111101100

+

————————————————————————————————

SumN5 110010111111110111111011000000100000011100000000000000000
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CarryN5 001010000000010000001000000000111111000000000000000000000

r19 111101000000001000000011000001011111011100000000000000000

Qhat19 1100111 and Shat 100 set q20 = -2

A20 01100111001100100110011111111100000010110

B20 01100111001100100110011111111100000010101

F19 00110011100110010011001111111110000001011100

============================================

20

SumN3 001011111111011111101100000010000001110000000000000000000

CarryN3 101000000001000000100000000011111100000000000000000000000

F 00110011100110010011001111111110000001011100

+

————————————————————————————————

SumN5 101111000111111011111111111110011101100111000000000000000

CarryN5 010001110010001001000000000111000000100000000000000000000

r20 000000111010000101000000000101011110000111000000000000000

Qhat20 0000110 and Shat 100 set q21 = 1

A21 0110011100110010011001111111110000001011001

B21 0110011100110010011001111111110000001011000

F20 1110011000110011011001100000000011111101001111

============================================

21

SumN3 111100011111101111111111111001110110011100000000000000000

CarryN3 000111001000100100000000011100000010000000000000000000000

F 1110011000110011011001100000000011111101001111

+

————————————————————————————————

SumN5 000010110100000110011001100101111011101000111100000000000

CarryN5 111010010111011011001100110000001100101000000000000000000

r21 111101001011100001100110010110001000010000111100000000000

Qhat21 1101001 and Shat 100 set q22 = -2
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A22 011001110011001001100111111111000000101100010

B22 011001110011001001100111111111000000101100001

F21 001100111001100100110011111111100000010110001100

============================================

22

SumN3 001011010000011001100110010111101110100011110000000000000

CarryN3 101001011101101100110011000000110010100000000000000000000

F 001100111001100100110011111111100000010110001100

+

————————————————————————————————

SumN5 101110110100010001100110101000111100010101111100000000000

CarryN5 010010110011011001100110101111000101000100000000000000000

r22 000001100111101011001101011000000001011001111100000000000

Qhat22 0001100 and Shat 100 set q23 = 1

A23 01100111001100100110011111111100000010110001001

B23 01100111001100100110011111111100000010110001000

F22 11100110001100110110011000000000111111010011101111

============================================

23

SumN3 111011010001000110011010100011110001010111110000000000000

CarryN3 001011001101100110011010111100010100010000000000000000000

F 11100110001100110110011000000000111111010011101111

+

————————————————————————————————

SumN5 001001111111101101100110011111101010110011001011110000000

CarryN5 110110000010001100110101000000101010101001100000000000000

r23 000000000001111010011011100000010101011100101011110000000

Qhat23 1111111 and Shat 100 set q24 = 0

A24 0110011100110010011001111111110000001011000100100

B24 0110011100110010011001111111110000001011000100011

F23 0000000000000000000000000000000000000000000000000
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============================================

24

SumN3 100111111110110110011001111110101011001100101111000000000

CarryN3 011000001000110011010100000010101010100110000000000000000

F 0000000000000000000000000000000000000000000000000

+

————————————————————————————————

SumN5 111111110110000101001101111100000001101010101111000000000

CarryN5 000000010001100100100000000101010100001000000000000000000

r24 000000000111101001101110000001010101110010101111000000000

Qhat24 0000000 and Shat 100 set q25 = 0

A25 011001110011001001100111111111000000101100010010000

B25 011001110011001001100111111111000000101100010001111

F24 000000000000000000000000000000000000000000000000000

============================================

25

SumN3 111111011000010100110111110000000110101010111100000000000

CarryN3 000001000110010010000000010101010000100000000000000000000

F 000000000000000000000000000000000000000000000000000

+

————————————————————————————————

SumN5 111110011110000110110111100101010110001010111100000000000

CarryN5 000010000000100000000000100000000001000000000000000000000

r25 000000011110100110111000000101010111001010111100000000000

Qhat25 0000011 and Shat 100 set q26 = 0

A26 01100111001100100110011111111100000010110001001000000

B26 01100111001100100110011111111100000010110001000111111

F25 00000000000000000000000000000000000000000000000000000

============================================

26

SumN3 111001111000011011011110010101011000101011110000000000000
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CarryN3 001000000010000000000010000000000100000000000000000000000

F 00000000000000000000000000000000000000000000000000000

+

————————————————————————————————

SumN5 110001111010011011011100010101011100101011110000000000000

CarryN5 010000000000000000000100000000000000000000000000000000000

r26 000001111010011011100000010101011100101011110000000000000

Qhat26 0001111 and Shat 100 set q27 = 1

A27 0110011100110010011001111111110000001011000100100000001

B27 0110011100110010011001111111110000001011000100100000000

F26 1110011000110011011001100000000011111101001110110111111111

============================================

27

SumN3 000111101001101101110001010101110010101111000000000000000

CarryN3 000000000000000000010000000000000000000000000000000000000

F 1110011000110011011001100000000011111101001110110111111111

+

————————————————————————————————

SumN5 111110001010100000000111010101111101011011111011011111111

CarryN5 000011000010011011100000000000000101001000000000000000000

r27 000001001100111011100111010110000010100011111011011111111

Qhat27 0001001 and Shat 100 set q28 = 1

A28 011001110011001001100111111111000000101100010010000000101

B28 011001110011001001100111111111000000101100010010000000100

F27 111001100011001101100110000000001111110100111011011111110111

============================================

28

SumN3 111000101010000000011101010111110101101111101101111111100

CarryN3 001100001001101110000000000000010100100000000000000000000

F 111001100011001101100110000000001111110100111011011111110111

+
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————————————————————————————————

SumN5 001101000000100011111011010111101110111011010110100000010

CarryN5 110001010110011000001000000000101011001001010010111111000

NUMBER IS .10100110011001100110011001100110011001100110011001101 = 0.650000

RESULT IS .11001110011001001100111111111000000101100010010000000101 = 0.806226

REAL RESULT IS .110011100110010011001111111110000001011000100100000000000 = 0.806226

ERROR IS 0.000000
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