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ABSTRACT 

 

In rational drug design known chemical interactions related to the target disease are 

exploited to discover novel drugs. By identifying the important reaction pathway and the 

key enzyme related to a specific disease is the first step in structure-based drug design, 

then; the active site of the enzyme is analyzed and molecules are designed to competitively 

bind to that active site. 

In this study, structure-based rational drug design approach is employed to discover 

novel inhibitors for two different target proteins. The first target protein is Cytochrome 

P450 C17, the key enzyme in androgen synthesis and, the second target protein is XPF, a 

key member of the DNA excision repair system. In designing an inhibitor targeting 

Cytochrome P450 C17, we aim to prevent the progression of the prostate cancer, and  

targeting the XPF-ERCC1 pair we aim to design chemotherapeutic agent “aids” that 

prevent DNA repair and resistance development in cancerous cells against the 

chemotherapeutic agents, where as a result we were able to identify several promising 

candidate drugs. 

Finally, a novel QSAR approach to predict the activity level of the inhibitors is 

introduced, since a priori analysis of the activity of inhibitors on the target protein by 

computational approaches can be useful in narrowing down drug candidates for further 

experimental tests to save from time and resources. The calculations utilizing the approach 

presented in this thesis resulted in better accuracies in classifying the activity of candidate 

drugs among other data mining tools presented in the literature.  
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ÖZET 

 

Yapıya dayalı ilaç dizaynında, hedeflenen hastalikla ilişkisi bilinen kimyasal 

reaksiyonlarin ozelliklerinden faydalanılır.  Hastalıgın gelişiminde rol oynayan kimyasal 

reaksiyonların ve bu reaksiyonlarda görev alan önemli enzimlerin saptanması yapıya dayalı 

ilaç dizaynının ilk adımıdır. Daha sonra, hedef olarak belirlenen enzimin aktif bolgesi 

belirlenir ve bu bolgeye yapışarak enzim çalışmasını engelleyecek moleküller geliştirilir.    

Bu çalışmada, yeni ilaçlar geliştirilmesi hedeflenerek, yapıya dayalı ilaç dizaynı 

teknikleri iki farklı hedef proteine uygulandı. Cytochrome P450 C17, androjen sentezinde 

rol alan en önemli enzimlerden biridir ve bu enzimi hedefleyen bir ilaçla prostat kanserinin 

gelişimi engellenebilmektedir. Ikinci hedef protein olan XPF, DNA onarım sistemindeki en 

önemli proteinlerden biridir ve bu çalışmada XPF-ERCC1 protein komplexini hedef alarak 

DNA onarımını engelleyip kanserli hücrelerin kemoterapik ilaçlara karşı direnç 

kazanmasını önleyecek moleküller elde etmeyi amaçladık. Her iki çalışmada da umut vaad 

eden moleküller elde ettik. 

Çalışmanın son kısmında sunulan yeni bir Sayısal Yapı-Aktivite Đlişkisi analizi 

metoduyla, dizayn edilen ilaçların labaratuar deneyleri yapılmaksızın aktivite seviyelerini 

öngörebilmeyi amaçladık. Bu çalışmada sunulan method literatürde bulunan diğer 

methodlardan daha iyi sonuçlar elde etmeyi başardı. 
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Chapter 1 

 

I�TRODUCTIO� 

 

 

Historically, drug discovery was a study of trial and error testing of substances on 

animals or cultured cells and analyzing the effects, while in rational drug design known 

chemical interactions and responses related to a specific disease are exploited. Chemical 

substances are designed either to upregulate or to inhibit certain key reactions according to 

the desired treatment outcome [1]. In structure-based rational drug design, first the 

important reaction pathway and the key protein are identified, then 3-dimensional structure 

and the active site of the target protein is modeled, and finally molecules are designed to 

competitively bind to that active site. Computational tools are used to model the active site, 

to study interactions of the drug molecules with the target protein and, to predict the 

effectiveness of the drug molecules prior to in vitro or in vivo experiments [2].      

Yet, another important consideration in designing drug molecules is the specificity of 

the drug molecule to the target protein, in other words the drug molecule should be 

selective and should not affect any other pathway in the organism.  

Figure 1.1 shows the common steps of the rational drug design. The most critical input 

element for structure based drug design is the 3-dimensional structure of the target protein. 

The 3-dimensional confirmations of the proteins are derived by techniques such as x-ray 

crystallography and NMR spectroscopy.  If the 3-dimentional structure of the target protein 

is not available, the structure of a closely related analog might be used directly or by 

homology modeling techniques a model of the target protein might be generated.  Next, the 

features of the protein active site are identified and modeled [3].  
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Figure 1.1: Steps of rational drug design 

 

 

Computational techniques such as docking, screening and molecular dynamics 

simulations are then utilized to design potential molecules that are structurally and 

chemically compatible with the target active site. Besides the experimental high through-
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put screening of libraries with robotics integrated systems, computational virtual screening 

methods are recently widely used by fast docking of vast number of molecules in databases 

into the binding site. Note that; high throughput screening has several disadvantages such 

as: high experimental costs, small number of readily available chemical substances for 

testing, and possible interactions of molecule with other binding sites on target protein [4]. 

Once a lead compound is discovered, first these initial leads should be confirmed 

experimentally, then structure based drug design methods are again used in potency 

optimization to increase affinity and selectivity by studying the molecular structure and the 

characteristics of the drug lead and the potential interaction schemes of the protein-drug 

complex to enhance the activity and the bioavailability of the lead compound.  

In this study, structure based rational drug design approach is employed to discover 

novel inhibitors for two different target proteins through a cancer research perspective. The 

first target protein is Cytochrome P450 C17, the key enzyme in androgen synthesis. The 

second target protein is XPF, a key member of the DNA excision repair system. For the 

former, we aim to decrease androgen levels in the cells by inhibiting the activity of 

Cytochrome P450 C17 and therefore prevent the progression of the prostate cancer. In the 

latter case, blocking the interaction between XPF-ERCC1 hetero dimer to abolish excision 

repair is not a direct chemotherapeutic agent design approach, but we aim to design XPF-

ERCC1 inhibitors as chemotherapeutic agent “aids” that prevent DNA repair and resistance 

development in cancerous cells against the chemotherapeutic agents. 

Chapter 2 provides necessary background and literature review on the computational 

methods in structure-based drug design. 

Chapter 3 is dedicated to XPF-ERCC1, first necessary biological background and the 

determination of the active site is presented, then the details of the employed computational 

methods with obtained results are discussed. 
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Chapter 4 is on designing Cytochrome P450 C17 inhibitor derivatives. The previous 

research on the subject is given, the strategies in designing inhibitor derivatives are 

explained, and the resulting inhibitors are presented.  

A priori analysis of the activity of inhibitors on the target protein by computational 

approaches can be useful in narrowing down drug candidates for further experimental tests. 

A novel QSAR approach to predict the activity level of the inhibitors is discussed in 

Chapter 5. 

Finally, this thesis is concluded with a summary of the performed study and future work 

in Chapter 6. 
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Chapter 2 

 

OVERVIEW 

 

 

2.1 Molecular Dynamics Simulation (MD) 

Molecular dynamics simulation is the simulation of the motion of atoms and molecules, 

which interact for a period of time under laws of physics [5]. Since molecular systems 

contain a large number of particles, it is not possible to understand molecular interactions 

experimentally. Therefore; MD is used to link laboratory experiments with biophysical 

theories [6]. Recently, MD is generally used as a powerful tool to understand the 

relationship between molecular structure, function and dynamics [7]. Biological sciences 

benefit from MD simulations to study the affects of solvents, temperature and pressure on 

biological systems, especially proteins [8]. Before the development of dynamic models by 

MD simulations, proteins were studied as rigid structures and this strategy was problematic 

since internal motions and conformational changes are vital for their function [7]. 

There are three main applications of MD simulations to study biological systems. The 

first application involves the determination and refinement of structures with the data 

obtained from experiments, the second one uses MD to understand the characteristics of the 

systems in equilibrium and, the third one studies the molecular dynamics itself [7].  
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2.1.1 �AMD 

In this study, among the several MD software packages NAMD (Nanoscale Molecular 

Dynamics) [9] is used with CHARMM [10] force field parameters. VMD [11] is used to 

prepare the input files for the MD simulations, and to visualize and analyze the simulation 

outputs.  

NAMD aims to simulate dynamic systems by mimicking a realistic cell environment. 

Newtonian equations of motion are solved for each atom in the system to determine atomic 

trajectories, the control of pressure and temperature are enforced by statistical mechanics 

and, partial mesh Ewald is used for the evaluation of the electrostatic forces.  

For a predetermined time-step length (∆t) and simulation duration, the final coordinates 

of the atoms in the system are calculated iteratively. At each iteration, the coordinates and 

the velocities of the atoms from the previous step are used with the cumulative potential 

energies of atoms in order to calculate the new coordinates. Newtonian equations of motion 

are applied for the corresponding calculations.   
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At time = t0 initial coordinates of the system are known from the structure file and the 

initial velocities are assigned by calculating the expected value of the kinetic energy of the 
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Gaussian distribution with mean 0 and standard deviation (kB T/ mi). 
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Then, at each iteration the system is advanced for a time-step (∆t), the forces and the 

velocities are recalculated by Newtonian equations of motion (eq. 2.1), where the total 
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potential energy U is given as a sum of bonded and non-bonded interaction potentials (eq. 

2.4).  

   ticelectrostaJonesLennardtorsionalbendinghingbondstretc UUUUUU ++++= −   (2.4) 

The bonded interactions include bond stretching, bending and torsional interactions 

and, the corresponding potentials are calculated as follows:  

2
0 )( bbKU

bonds
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 2
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bending KU            (2.6) 
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The non-bonded interaction potentials are the Lennard-Jones potentials (eq 2.8), which 

approximate Van der Waal’s forces, and electrostatic interactions potentials (eq 2.9).  
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2.2 Protein-Small molecule Docking 

Molecular docking is a method to predict the preferred orientation of a ligand with a 

receptor in a stable bound complex form. Binding affinity of the complex can be calculated 

by scoring functions to predict the strength of the association [12]. Recently, docking 

methods are widely used to predict the binding position and the affinity of small drug 

molecules to protein targets to have an understanding on their activity (agonism or 

antagonism). In other words, the aim of the molecular docking is to simulate the molecular 

recognition process computationally. Therefore, molecular docking is an important tool in 
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structure based drug design mainly for hit identification and lead optimization processes 

[13].  Hit identification is performed by the quick screening of large databases to find 

potential drugs in silico, by combining molecular docking with scoring functions to 

optimize binding free energies of the complex. In lead optimization, molecular docking is 

used to identify the orientation (docking pose) of the drug molecule in the binding pocket 

and interacting parts of the drug molecule with the receptor protein. Therefore, more potent 

and selective inhibitors can be designed.  

The molecular docking problem can be viewed as an optimization problem predicting 

the “best-fit” orientation of the protein-ligand complex [14], where the objective function is 

the minimization of the free energy of the system. If both receptor protein and small 

molecule ligand are flexible in the model, the “best-fit” orientation of the complex is 

formed by the conformational adjustment of two flexible pairs, and the final confirmation 

is called an “induced-fit” [15]. 

Molecular docking algorithms composed of two parts: a search algorithm and a scoring 

function. Several search algorithms (simulated annealing, fragment building and genetic 

algorithms) are developed to find the “best-fit” orientation among the all possible 

confirmations of protein-ligand complex (search space). Then, scoring functions are 

utilized to approximate the strength of the non-covalent interactions (binding affinity) 

between receptor and ligand [16], where binding affinity scores are used to determine the 

most promising molecules in drug design. There are three types of scoring functions, first 

of which is force-field scoring function, where binding affinity is approximated by the 

strength of non-bonded interactions by computing total van der Waals and electrostatic 

interactions between protein and ligand. The second is empirical scoring function [17] that 

calculates the number of hydrogen bonds, hydrophobic contacts, hydrophilic contacts and 
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number of immobile rotatable bonds, and the third one is the knowledge based scoring 

function [18], which is based on statistical observations of intermolecular contacts.  

2.2.1 Autodock 

Autodock, which is a flexible ligand docking tool, is used for virtual screening and 

detailed docking analysis. Autodock predicts the optimal confirmations of the receptor-

ligand complex and report binding affinity scores by assuming a structure model with a 

rigid receptor (protein) and a flexible ligand (drug molecule).  

Among several different search algorithms (Monte Carlo Simulated Annealing, Genetic 

Algorithm) Lamarckian-Genetic Algorithm is used due to its high degrees of freedom.  

Finally, a force-field type scoring function is used in order to calculate binding affinity 

scores of the protein-ligand complex. For the calculations AutoDock uses AutoGrid 

component to generate atomic affinity grid maps for each type of atom in the ligand, where 

every atom is assigned a non-bended interaction potential with the protein and electrostatic 

potentials.  The AutoDock scoring function is based on an empirically-derived linear free 

energy model (eq 2.10) including terms for van der Waals energy, hydrogen bond energy, 

Coulombic energy, change in desolvation free energy and the loss of torsional degrees of 

freedom upon binding. 

desolvtorsHbondelecvdWFreeEnergy 1711.03113.0656.01146.01485.0 ++++=    (2.10) 

As a result of the docking simulation, AutoDock computes intermolecular energy, 

internal energy and torsional energy as outputs, the first two forms the ‘docking energy’, 

while the first and the third combine together to give ‘binding energy’. 
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2.2.2 Autodock Docking Setup 

To run a docking algorithm AUTODOCK requires four types of input files: the PDBQS 

file for the protein, the PDBQ file for the ligand, the GPF file to create the active site grid 

parameter files and the DPF file containing the docking parameters. These files may be 

prepared by ADT (AUTODOCK tools) user interface as well as they may be prepared by 

command terminal scripting for large scale docking purposes.   

To prepare the PDBQS file for the macromolecule first the polar hydrogen atoms 

should be added to the PDB structure, but since the PDB structure file derived from the 

MD simulation already contains the polar hydrogens, only the non-polar hydrogens are 

merged. Then, the Kollman charges are added and the final structure is stored in the 

PDBQS file. 

Next, the PDBQ file is prepared for the ligand molecule. Polar hydrogens are added and 

non-polar hydrogens are merged as in the preparation of the PDBQS file for the protein. 

Then, Kollman charges are added if the ligand file is a peptide, otherwise Gasteiger charges 

are added. Finally, by calculating the angle between consecutive C atoms, planar and non-

planer C atoms are marked as well as the torsional freedom of the bonds. All of the above 

information is then stored in the PDBQ file for the flexible ligand docking.  

The GPF files contain the parameters of the grid maps that will be created to define the 

active site for the docking. AUTODOCK models the active site as a box and the grid maps 

are modeled accordingly. The GPF file contains the grid center coordinates of this box, the 

grid size as number of points, the spacing between two grid points and, the number of the 

grid maps that will be created. The number of the required grid maps depends on the types 

of atoms that are present in the ligand molecule. Since this study involves the large scale 

virtual screening of a compound set including millions of molecules, grid maps are 

prepared for each type of atom that may be present in drug-like molecules.  
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In this study, two separate GPF files are prepared: first file is to create the grid maps for 

the virtual screening, the second is to create the grid maps for high-grid detailed docking. 

The differences between these grid map parameters make up the major difference between 

the virtual screening and high-grid detailed docking. For virtual screening, to save from 

computational time, the corresponding GPF file is designed to create rather low resolution 

maps. The grid box including the entire active site is defined with 0.375 Å spacing in these 

low resolution maps where as for detailed docking purposes the spacing parameter is 

decreased to 0.150 Å.  

The DPF file contains the setup for the run parameters of the Lamarckian-Genetic 

Algorithm such as: population size, number of generations, number of runs, crossover rate, 

mutation rate and number of evaluations. Here, also two separate DPF files are prepared: 

one is for virtual screening and the other is for detailed docking. In the DPF file, the run 

parameters for virtual screening are defined as follows: population size is 50, number of 

generations is 2.7 x 104, crossover rate is 0.8, mutation rate is 0.02, number of runs is 10, 

and number of evaluations is 1 x 106 and the run parameters for detailed docking are 

defined as: population size is 250, number of generations is 5 x 104 , crossover rate is 0.8, 

mutation rate is 0.02, number of runs is 256, and number of evaluations is 1.5 x 107 .  

In this study, for molecular docking the structure files of the macromolecules are 

derived from results of the MD simulation and the ligand structure files are obtained from a 

commercial compound database, AMBINTER. Note that, for both XPF and P450 C17 

docking, a molecular weight filter is applied beforehand on the ligand set to save from the 

computational time that may be spent on the docking of molecules too large to fit the 

defined active site. For P450 C17, molecules heavier than 350 g/mol are not used in virtual 

screening being too large for the active site and for XPF this threshold is set to be 390 

g/mol.  
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2.3 Protein-Protein Docking 

Protein-protein docking is defined as the prediction of molecular structure of the 

protein complexes without laboratory experiments. Proteins that do not change their 

structure during the complex formation can be docked with high success rates, where as 

several methods are still under development for the protein complexes that change internal 

confirmation substantially [19]. Protein-protein docking mainly aims to predict whether 

proteins actually bind in vivo or not, the structure in the complex form and the strength of 

the interaction [20].  

There are two types of protein-protein docking methods widely used in literature: rigid-

body docking and flexible docking. In rigid body docking bond angles, bond lengths and 

torsion angles are held constant during docking, and this type of docking is weak in 

predicting structures where, substantial conformation changes occur during protein-protein 

binding [21, 22]. Therefore, for these structures flexible docking methods are developed 

allowing a set of intelligent conformational changes during the simulation. 

2.3.1 Rosetta 

Rosetta predicts protein-protein complex structures from the coordinates of the 

unbound protein monomers. The prediction algorithm first utilizes a rigid-body Monte 

Carlo search, and then by using Monte Carlo minimization, simultaneous optimization for 

backbone displacement and side-chain conformations is performed. During the main 

algorithm, several independent simulations are performed up to a total number of 105, and 

the resulting “decoys” are ranked by using an energy function including components such 

as van der Waals interactions, implicit solvation model, and a hydrogen bonding model 

[22, 23]. Then, clusters are formed by using the top ranking “decoys”, and the final best 

predictions are reported. 
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2.3.2 HEX 

Hex docking algorithm is based on a 3D protein model in which, each molecule is 

represented by parametric functions of surface shape, electrostatic charge and potential 

distributions. This representation allows each property to be described by a vector of 

coefficients, where surface shape representation uses a 3D surface skin model [23] of the 

protein topology and the electrostatic model is based on the classical electrostatic theory. 

Finally, the rigid body docking scores are reported as a function of the six degrees of 

freedom with avoiding overlapping pairs by additional expressions. Then, scaling factors 

are introduced to the derived scoring function and by minimizing the total weighted score 

best protein confirmations are reported. 
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Chapter 3 

 

 XPF-ERCC1 

 

 

3.1 Introduction  

3.1.1 �ucleotide excision repair 

Nucleotide excision repair is the primary repair system for bulky base lesions, resulting 

from covalent binding between adjacent nucleotides, in E-coli and the only repair system in 

humans [24-26]. The damage is removed in three consecutive steps: damage recognition, 

removal of the nucleotide oligomer after dual incision, the resynthesis of the removed DNA 

and ligation [27-29]. In both systems damage recognition is an ATP independent process, 

where an unstable DNA protein complex is formed, and for the damage removal an ATP-

dependent multisubunit excision nuclease is used [30]. As nucleotide excision repair 

removes the DNA damage, the length of the oligomer removed is 12-13 base pairs long in 

prokaryotes, and it is 24-32 base pairs long in humans [31, 32].  

3.1.2 Excision Repair in Humans 

In humans, the excision repair is carried out by an excision nuclease, which is 

composed of 6 subunits: XPA, RPA, XPC, TFIIH, XPG, XPF-ERCC1 [31]. XPA, RPA 

and XPC are DNA damage recognition proteins, TFIIH unwinds the double helix on the 

damaged site, XPG incises the DNA backbone 3’ to the damage, where as XPF-ERCC1 

incises 5’ [33].  

 

XPA, which is a 31-kDa protein, binds double stranded DNA with moderate preference 

for damaged regions [34]. RPA, which binds to single-stranded DNA, is shown to have an 

affinity for damaged DNA [35]. XPC is also a single-stranded DNA binding protein, which 
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shows preference for damaged and bent DNA [36]. The three damage recognition enzymes 

are suggested to act cooperatively and bind to the damaged DNA in a random order [30]. 

The two helicase subunits (ERCC2, ERCC3) of TFIIH protein unwind ~20 nucleotides 

long DNA helix about the lesion site by hydrolyzing ATP [37]. Then, XPG is summoned to 

the damage site by XPC, which benefits from the hydrolysis of ATP by TFIIH for this 

action. XPC leaves the complex afterwards [38]. Finally, XPF-ERCC1 binds to the 

complex for 5’ incision. It is shown that the nuclease activity of the pair is only detected 

when both proteins are present [39]. As a result, a 24-32 nucleotides-long oligomer is 

removed, including the damage site [32]. Next, the protein complex disassociates from the 

damage site except RPA, and polymerase (RFC/PCNA and Pol δ/ε) completes the gap and 

DNA ligase 1 completes the reactions [40]. The schematic representation of human 

excision repair system is given in Figure 3.1. 
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Figure 3.1: The schematic representation of human excision repair system 
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3.1.3 XPF-ERCC1 

Besides its key role in nucleotide excision repair, making a single-strand incision 

adjacent to the damaged DNA, XPF-ERCC1 pair is shown to have several other repair 

functions in the cell. ERCC1-XPF is suggested to have a role in the repair of DNA double-

strand breaks (DSB) by single-strand annealing (SSA) [41], and recently it is also argued to 

have a key role in ICL (interstrand crosslink) repair. 

In cancer research interstrand crosslink (ICL) repair is an important and exciting area 

since unrepaired ICLs are highly cytotoxic. Therefore, ICL-inducing agents such as 

mitomycin C (MMC), nitrogen mustards (HN2s) and cisplatin are designed as promising 

chemotherapeutic agents [42]. However, development of resistance against the ICL-

inducing agents by the cancerous cells is still a problem [43]. The importance of XPF-

ERCC1 in ICL (Interstrand crosslink) repair is argued after XPF-ERCC1 mutant cell lines 

show 90-fold sensitivity to mitomycin C (an ICL- inducing chemotherapeutic agent) [44, 

45]. 

Hence, we aim to design XPF-ERCC1 inhibitors as chemotherapeutic agent aids that 

prevent DNA repair and resistance development in cancerous cells. 

3.2 The target site on protein 

In this study, the strategy used for the inhibitor design for XPF-ERCC1 pair is 

preventing the dimerization of XPF-ERCC1 heterodimer. Experimental data suggests that 

the deletion of Phe-293 eliminates binding to XPF, where Phe-293 is naturally located in a 

pocket surrounded by XPF residues 837-905. The most important residues in this pocket 

reported to be Leu-841, Met-856, Val-859 and Ile-862 [46, 47]. Therefore, inhibitors are 

designed to competitively inhibit the dimerization of XPF-ERCC1 by binding to the 837-

905 pocket on XPF. Several computational methods are also applied to further study the 

protein-protein interface and hot spot residues for more efficient design.  
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Figure 3.2: The representation of the binding site on XPF (Leu-841 Met-856 Val-859 Ile-

862) interacting with the key interface residue Phe-293 on ERCC1 

 

PDBsum server is used to visualize interface contact residues (Figure 3.3). 

(http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl) Number of 

interface residues on XPF and ERCC1 are 20 and 21 respectively, where the surface area of 

interaction on XPF is1090 Å2and on ERCC1 is 1137 Å2, and on the interface there are a 

total number of 5 hydrogen bonds and 111 non bonded interactions.  
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Figure 3.3: Schematic representation of contact residues around Phe-293, where blue lines 

represent hydrogen bonding and dashed lines represent non-bonded interactions. 

 

The hotspot residues on the protein interface were also calculated by HotSprint server 

(http://prism.ccbb.ku.edu.tr/hotsprint/). HotSprint uses pScore+ASA for prediction, where 

pScore is the propensity scaled conservation score and ASA is accessible surface area. 

HotSprint reported Pro-837 Phe-840 Leu-841 Met-844 Met-856 Ile-862 Leu-865 and Phe-

889 as hot spot residues on XPF, and Arg-234 Leu-239 Ser-259 and Phe-293 on ERCC1, 

which agrees with the experimental data previously reported [46, 47]. Also residue free 

energies are calculated by FastContact2.0 server, which reports the minimum free energy 

contacts as an indicator of the most important residues responsible for binding (Table 3.1). 

(http://structure.pitt.edu/servers/fastcontact/)  
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Min receptor-ligand residue free 
energy contacts 

Energy 
(kcal/mol) 

ERCC1 
residue 

XPF 
residue 

-1.711 293 PHE 856 MET 

-1.660 289 LEU 862 ILE 

-1.502 238 CYS 840 PHE 

-1.297 291 GLU 837 PRO 

-1.194 260 LEU 890 ILE 

-1.117 231 PHE 889 PHE 

-1.089 293 PHE 860 LYS 

-1.026 261 GLU 890 ILE 

-1.020 260 LEU 889 PHE 

-0.932 293 PHE 841 LEU 

-0.859 293 PHE 862 ILE 

-0.822 264 ILE 863 ALA 

-0.824 237 GLU 843 LYS 

-0.823 293 PHE 861 ASN 

-0.810 238 CYS 844 MET 

-0.807 294 LEU 856 MET 

-0.800 235 VAL 889 PHE 

-0.294 258 GLY 894 PHE 

-0.757 289 LEU 863 ALA 

-0.734 293 PHE 859 VAL 

Table 3.1: Min receptor-ligand residue free energy contacts 

 

Finally, computational alanine scanning [48] was applied to the XPF-ERCC1 pair to 

determine important interactions in the protein-protein interface (http://www.robetta.org/). 

Experimental “alanine scanning mutagenesis” is widely used as a powerful tool to measure 

the effect of deleting the side chain of an amino acid in the protein-protein interface. Here, 

only computational alanine scanning is used, which calculates affects of alanine mutations 

on the binding free energy of the protein complex, based on free energy calculations [48]. 

The free energy calculations involve a linear combination of Lennard-Jones potential [49], 

an implicit solvation model [50], hydrogen bonding potentials from protein structures [51] 
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and some statistical terms to approximate rotamer probabilities and unfolded reference state 

energies [49, 52]. 

amino acid chain ∆∆G 

840 A 3.07 

862 A 1.61 

889 A 2.74 

894 A 2.61 

231 B 2.48 

234 B 1.26 

260 B 1.13 

264 B 1.64 

293 B 5.29 

294 B 1.05 

Table 3.2: The highest ∆∆G score residues 

 

In Table 3.2 only the residues with high binding free energy difference are reported, as 

they have the potential to be hotspot residues. The highest ∆∆G score belongs to the 

residue 293, where ∆∆G is the predicted change in binding free energy upon alanine 

mutation.  

Hence, according to the experimental and the computational data, the inhibitor target 

site is determined on XPF to be the pocket surrounded by residues Leu-841, Met-856, Val-

859, Lys-860, interacting the key interface residue Phe-293 in the original structure.  

3.3 MD Simulation of XPF-ERCC1 

3.3.1 Simulation Setup 

Coordinate of the initial structure is obtained from Protein Data Bank (PDB code 

2A1J)[47]. The reported structure is a truncated form of the full length XPF-ERCC1 where, 

XPF lacks the N-terminal helicase-like domain in the reported structure. Experimental 

studies show that this truncated form is still able to perform the structure-specific 

endonuclease activity with similar specificity to that of full-length XPF-ERCC1 [47]. The 
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truncated XPF structure that is reported in this pdb file contains the target active site and 

necessary interface residues to bind the ERCC1 pair. First, MD simulations were 

performed on the XPF-ERCC1 pair to analyze the stability of the pair in specific 

temperature and pressure values mimicking the cell environment in the presence of water 

as the solvate. Then ERCC1 is deleted from the structure and XPF is simulated alone to 

study the stability of XPF without its pair and to predict the natural conformation of XPF 

backbone and side chains in the cellular environment. Predicting the natural conformation 

of the side chains about the active is especially important since; this relaxed structure given 

by the MD simulation will be used later in the virtual screening and the docking 

computations. 

The input files to perform a simulation in NAMD are prepared by using several 

packages included in VMD. The psfgen package was used to create the protein structure 

file (PSF), which replaces the atom and residue names ones recognized by NAMD. VMD 

Solvate plug-in is used to solvated structure in a water-box with minimum 10 Å distance 

from any atom of protein to the boundary and, the system is neutralized by adding of Na, or 

Cl ions with VMD Autoionize plug-in. 

The total MD simulation study is composed of the main steps: the equilibration and the 

simulation. During the equilibration first, 10000 steps minimization is performed only on 

side chain atoms by fixing the coordinates of backbone residues, then the whole system is 

run in 10000 steps simulation without pressure control. Next, to set the system temperature 

to the standard temperature of the cell, the simulation temperature is increased by 10 K 

increments up to 310 K. After each temperature increase 10ps simulation is performed by 

applying the corresponding Langevin temperature set. 

After the equilibration and minimization steps the main simulation is performed with 

constant temperature and pressure control. The calculations are done in parallel at 4 X 

Intel(R) Xeon(R) CPU 2.33GHz with 4096 KB ram by NAMD 2.6 and CHARMM27 force 
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field parameters. The time-step of the simulation is set to be 2 fs and, the bonded 

interactions, the van der Waals interactions (12 Å cut-off), and the long-range electrostatic 

interactions with partical-mesh Ewald (PME) is included in the calculations to define the 

forces acting on the system. The damping coefficient is set to be 5 ps-1 using Langevin 

dynamics to handle pressure control and, 1 atm constant pressure is set with 100 fs decay 

period and 50 fs damping time. With this simulation setup a 3 ns simulation is run. 

3.3.2 MD Results 

To analyze the MD simulations, VMD is utilized. Corresponding RMSD (root mean 

square deviation) versus time graphs are drawn according to the frames derived from the 

simulation at every 1000 time steps which has a step size of 2 ps.  

On Figure 3.4 and 3.5, RMSD is plotted through the simulation. For every frame, 

RMSD is calculated by aligning the structure of the protein at that frame to the initial 

structure and calculating the distance between the residues one by one.  
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Figure 3.4: RMSD vs Time graph of MD simulation of XPF-ERCC1 
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Figure 3.4 shows the RMSD graph of the XPF-ERCC1 complex. The RMSD 

calculations include every residue in the system. Graph includes both equilibration and 

main simulation steps. The equilibration takes place in the first 0.35 ns time period. The 

first flat region between 0 ns and 0.1 ns corresponds to the minimization period where the 

backbone of the protein is fixed, and only hydrogen atoms are allowed to move and 

position themselves in a minimum energy confirmation. The second flat region between 0.1 

ns and 0.3 ns corresponds to the period where, the fixed-backbone system is heated with 10 

K increments slowly up to natural temperature of the cell environment. Finally, between 

0.3 ns and 0.35 ns, the backbone is released slowly and the final coordinates were stored to 

be used in the main simulation. The XPF-ERCC1 pair shows expected solvation, heating 

and relaxation behavior in the equilibration steps where, no deformation is observed in the 

XPF-ERCC1 complex.   

In the main simulation, RMSD continues to increase in the first 2 ns and did not show 

significant deviations for the rest of the 3 ns period, and the average RMSD of the XPF-

ERCC1 in the last nanosecond is still observed to be below 2, which indicates the 

stabilization of the protein conformation for given temperature, pressure and solvate 

parameters.  
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Figure 3.5: RMSD vs Time graph of MD simulation of XPF 

 

Figure 3.5 shows the RMSD versus time graph of XPF without ERCC1. Even if during 

the simulation every residue of XPF is included in the conformation, the RMSD 

calculations are performed excluding the last 5 residues, since these residues are 

significantly mobile without the ERCC1, do not affect the total stability of the protein and 

have no interaction with the active site. Therefore including these residues might mislead 

the calculations increasing the total RMSD. Corresponding RMSD (root mean square 

deviation) versus time graphs are drawn according to the frames derived from the 

simulation at every 5000 time steps which has a step size of 2 ps.   

XPF shows a very stable pattern during the equilibration and main simulation steps, the 

RMSD stabilizes about 0.7 ns after the start of the simulation and does not exceed 1.5, 

which indicates very stable conformation for XPF without its pair and, this behavior is 

significant for inhibitor design purposes. If there were instability and deformations in the 
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structure of XPF without its pair, it would not be possible to identify an active site and 

build a reliable rigid biding pocket model for the docking studies to find inhibitor hits. 

Next, both systems are further analyzed based on the RMSD values for every residue 

individually to identify the residues with relatively higher and lower mobility. There are 

several higher RMSD regions, first of which are the regions where loops are located. Since 

loops do not have hydrogen bonding patterns, they are expected to be less stable in the 

whole structure. The second region with higher-RMSD residues is located in the XPF-

ERCC1 complex system: it is the α-helix at the N-terminus of ERCC1 (Table 3.3 and 

Figure 3.6). Even if the helical content of this region is very stable, the α-helix itself is 

mobile due to the lack of interaction with other XPF and ERCC1 domains in this truncated 

form. This higher RMSD region also explains the reason why the total RMSD of the XPF-

ERCC1 system is higher than the total RMSD of XPF alone. 
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Residue RMSD Residue RMSD Residue RMSD Residue RMSD 

837 0.97244 873 0.857074 228 3.856205 264 0.925348 

838 1.474624 874 0.87658 229 4.006086 265 1.232805 

839 1.737138 875 1.552143 230 3.24657 266 1.091482 

840 1.218462 876 1.247716 231 1.22363 267 0.945425 

841 0.793521 877 1.057269 232 1.044539 268 2.61 

842 1.743226 878 1.2983 233 1.053423 269 2.766519 

843 1.95926 879 1.579303 234 4.374065 270 1.185044 

844 1.10833 880 1.030455 235 0.901483 271 0.95055 

845 0.94556 881 1.275519 236 0.931843 272 1.30021 

846 0.893742 882 1.439879 237 1.672693 273 1.978313 

847 1.470824 883 0.729136 238 1.027719 274 2.269644 

848 1.990774 884 1.223785 239 0.759713 275 2.198047 

849 1.481766 885 1.763694 240 0.892163 276 2.343105 

850 2.603884 886 0.808898 241 1.335624 277 1.848631 

851 1.395181 887 1.068154 242 1.228141 278 2.017806 

852 1.159083 888 1.333195 243 2.512165 279 2.093927 

853 2.590813 889 0.891589 244 2.022148 280 3.100834 

854 1.119893 890 0.83187 245 1.331273 281 1.274277 

855 0.72842 891 1.096792 246 1.505071 282 0.857927 

856 1.462596 892 0.890156 247 1.964621 283 2.327046 

857 2.013875 893 1.109738 248 1.154864 284 2.222821 

858 1.527267 894 2.276545 249 1.194729 285 0.817675 

859 1.054584 895 4.65894 250 0.920954 286 1.081234 

860 3.485066 896 5.909884 251 1.189667 287 2.455806 

861 1.032537 897 6.30284 252 1.072738 288 0.9545 

862 0.856387 898 10.17056 253 0.989902 289 0.931309 

863 0.755044 218 3.621054 254 0.915747 290 3.61926 

864 1.689157 219 3.954778 255 0.957447 291 1.550737 

865 1.469914 220 3.288988 256 1.20575 292 1.336126 

866 1.154291 221 3.63042 257 1.069331 293 1.275643 

867 0.808042 222 3.597269 258 0.872195 294 1.612018 

868 1.012571 223 3.928873 259 1.465525 295 6.038751 

869 1.494511 224 3.966277 260 1.628131 296 6.320977 

870 1.125678 225 4.255321 261 1.312564   

871 1.116508 226 4.707144 262 1.757515   

872 2.495375 227 3.733469 263 0.994862   

Table 3.3: Residual RMSD values for XPF-ERCC1 pair 
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Figure 3.6: XPF-ERCC1. Mobile residues with RMSD larger than 3. 

As highlighted at Figure 3.7 and Table 3.4, the higher mobility regions on XPF are 

located on loop regions only. The C-terminus is a high RMSD region with a loop structure, 

and the RMSD for residues 893 and 894 higher in the XPF simulation when their residual 

RMSDs are compared to the XPF-ERCC1 dimer simulation, but still the α-helix starting 

with residue 892 is notably rigid. The N-terminus of XPF, which immediately starts with a 

α-helix, is also significantly stable. Not only is the helical content of the N-terminus, but 

also the conformation of that helix within the domain significantly stable. This result is 
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significant since the binding pocket includes the N-terminus helix. When the binding 

pocket including the significant residues 837, 841, 856, 859, 860, 861 and 862 is analyzed 

individually, even if the binding pocket is very rigid in its tertiary structure, the residues 

837 860 and 862 in fact are higher RMSD residues (Figure 3.8). Therefore, the final 

structure given by the MD simulation is vital for the molecular docking studies and since 

Autodock works with a rigid binding pocket – flexible ligand docking model, the docking 

should be performed with several random conformations derived from the last nanosecond 

of the MD simulation. 
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Residue RMSD Residue RMSD 

837 3.281105 868 1.551328 

838 1.786524 869 1.810141 

839 1.896316 870 1.362788 

840 1.660336 871 1.421635 

841 1.762379 872 2.615097 

842 1.868747 873 1.485832 

843 2.23727 874 0.941229 

844 1.365907 875 1.344696 

845 1.491749 876 1.516751 

846 1.865683 877 1.13054 

847 1.636178 878 1.246322 

848 1.86607 879 2.322775 

849 1.649136 880 1.186368 

850 2.308873 881 1.243518 

851 2.562495 882 1.31843 

852 1.501754 883 0.744464 

853 2.2014 884 2.007512 

854 1.902679 885 2.381284 

855 1.540793 886 0.97967 

856 1.466405 887 1.402827 

857 2.423665 888 1.629852 

858 1.612274 889 1.51638 

859 2.0251 890 1.773753 

860 3.552824 891 1.671642 

861 1.875936 892 1.992681 

862 3.00747 893 3.619576 

863 2.397817 894 5.751698 

864 2.196797 895 6.759938 

865 1.842531 896 5.803368 

866 1.320497 897 5.855957 

867 1.435907 898 6.779865 

Table 3.4: Residual RMSD values for XPF 
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Figure 3.7: XPF. Mobile residues with RMSD larger than 3. 
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Figure 3.8: Significant residues on the binding pocket with higher RMSD residues 

highlighted with red color. 

3.4 Virtual Screening and Detailed Docking of XPF 

 
For the virtual screening purposes the AMBINTER molecule structure library of more 

than 1,000,000 was analyzed. As mentioned before, first these molecules were filtered to 

remove large molecules that would have difficulty to pass the membrane and would not fit 

the active site due to the size constraints and therefore would have small chance of 

inhibition. For XPF, the threshold was chosen to be 390 g/mol where, molecules with 

molecular weight larger than 390 g/mol were removed from the virtual library.  
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At the end of virtual screening, 270 compounds, which have binding energy score better 

than -10 kcal/mol were chosen for further detailed docking study. Table 3.5 shows the 

structures and, docking and binding energy scores of the best 28 scoring molecules at the 

end of detailed docking. 

 

Molecule 
ID 

Binding 
Score 

Docking 
Score Molecular Structure 

13610_xpf -9.28 -12.14 

 
 

119929_xpf -9.47 -13 

 

111589_xpf -10.13 -12.49 

 

131367_xpf -10.46 -12.24 
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158697_xpf -9.53 -12.2 

 

153221_xpf -10.01 -12.17 

 

116331_xpf -9.87 -12.58 

 

150190_xpf -9.92 -12.49 

 

123082_xpf -9.98 -12.13 

 

116462_xpf -10.49 -12.58 
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15985_xpf -9.73 -12.37 

 

117482_xpf -10.57 -12.3 

 

134640_xpf -10.33 -12.27 

 

141227_xpf -10.01 -12.12 

 

126367_xpf -9.64 -12.01 
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10004_xpf -10.01 -12.11 

 

146262_xpf -10.13 -12.5 

 

163266_xpf -10.21 -12.4 

 

141869_xpf -10.12 -12.1 

 

150692_xpf -10.47 -12.36 

 

10669_xpf -10.74 -12.35 
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155154_xpf -9.57 -12.04 

 

146551_xpf -9.62 -12.35 

 

146577_xpf -9.16 -12.08 

 

132601_xpf -9.98 -12.76 

 

119110_xpf -9.67 -12.7 

 

117715_xpf -9.72 -12.41 
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131596_xpf -10.34 -12.37 

 

Table 3.5: Energies for Top Scoring Molecules in detailed Docking 

 

Compounds shown on Table 3.5 are strong candidates for inhibition of XPF. However, 

further studies should be conducted to analyze the docking position of the inhibitors in the 

active site and the solubility behavior of the molecules to predict whether the molecules 

may easily be taken up by the cell or not.  

In pharmacokinetics, logP, the distribution coefficient has a strong effect on the ADME 

(absorption, distribution, metabolism and excretion) properties of a drug molecule. Since 

the drug must pass through lipid bilayers during cellular transportation, for an efficient 

transport, the compound must be hydrophobic enough to partition in the bilayer membrane, 

but it should not be so hydrophobic due to the fact that when the compound is once in the 

bilayer it may accumulate there [53]. In pharmacodynamics, hydrophobicity is known as 

the main driving force of the protein-ligand binding[54, 55]. But, hydrophobic drugs are 

found to be more toxic since most of the time they are extensively metabolized, less 

selective in binding and retained longer in the body.  Therefore, logP, the hydrophobicity 

measure, should be neither too hydrophobic nor too hydrophilic.  

To evaluate drug likeness several methodologies were developed each of which refer to 

hydrophobicity (logP) as an important measure. Lipinski’s Rule of Five suggests a partition 

coefficient roughly less than 5, where as Ghose et al gave a range from -0.4 to +5.6. [56, 

57] Table 3.6 shows the predicted logP values for the selected 28 molecules with five 
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different prediction algorithms and average logP values. The molecules within the drug-

likeness range suggested by Ghose et al are highlighted.  

  logP prediction algorithm   

Compounds miLogP ALOGP MLOGP KOWWI� XLOGP3 Average logP 
10004 -0.29 3.07 3.52 2.55 3.61 2.96(+-1.31)} 
10669 3.72 4.1 2.72 2.19 3.85 2.99(+-0.94)} 
13610 4.06 6.16 4.13 5.44 5.58 5.15(+-0.69)} 
15985 3.79 4.55 4.65 4.27 3.81 4.04(+-0.67)} 

111589 5.24 5.33 3.97 6.4 5.08 5.40(+-0.77)} 
116331 0.12 2.43 2.35 2.96 2.63 2.34(+-0.95)} 
116462 1.89 5.07 4.77 5.05 4.94 4.66(+-1.15)} 
117482 3.48 3.74 2.84 3.95 3.59 3.73(+-0.53)} 
117715 0.58 3.58 3.31 1.12 3.67 2.57(+-1.21)} 
119110 1.74 5.47 3.24 6.04 5.6 4.72(+-1.47)} 
119929 -1.32 1.9 1.5 -2.99 0.55 0.90(+-1.90)} 
123082 0.14 2.4 1.79 2.61 2.23 2.12(+-0.86)} 
126367 2.68 5.55 3.91 5.43 5.45 4.63(+-0.98)} 
131367 4.34 5.04 3.6 5.49 4.96 4.34(+-0.71)} 
131596 6.55 6.98 4.85 8.32 6.58 6.73(+-0.89)} 

132601 7.15 7.3 4.65 8.62 7.67 6.89(+-1.03)} 

134640 3.02 3.86 3.16 4.27 3.91 3.99(+-0.65)} 
141227 7.89 8.5 3.25 8.68 5.97 6.11(+-2.07)} 

141869 3.71 6.09 5.02 5.16 5.99 5.40(+-1.14)} 
146262 -0.16 3.43 3.49 1.34 3.65 2.68(+-1.44)} 
146551 4.88 5.47 3.94 7.47 5.08 5.54(+-0.96)} 
146577 2.87 5.97 5.65 6.6 5.25 5.56(+-1.18)} 
150190 1.03 4.34 3.2 5.76 3.62 3.56(+-1.30)} 
150692 0.15 2.22 2.64 2.17 3 2.07(+-0.86)} 
153221 1.05 4.29 3.2 5.32 4.33 3.84(+-1.18)} 
155154 5.53 5.78 5.68 6.53 5.15 5.67(+-0.63)} 

158697 4.08 4.5 4.59 4.78 3.54 4.16(+-0.69)} 
163266 3.43 7.14 4.9 7.33 6.03 6.08(+-1.25)} 

Table 3.6. Predicted logP values of XPF inhibitors. 
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3.5 The common motifs on the inhibitors 
 

The inhibitors given by the virtual screening in fact show several common motifs. 

 
Figure 3.9. XPF inhibitors in the binding pocket 

 
1) The ring structures in the center of the binding pocket.  
 

 
Figure 3.10. XPF inhibitors in the binding pocket 



 
 
Chapter 3: XPF-ERCC1     50 

 

 
2) The confirmation of several O and N atoms on the molecules.  

 

 
Figure 3.11. XPF inhibitors in the binding pocket 

 

3.6 Peptide design as a competitive inhibitor to prevent XPF-ERCC1 binding 
 

To prevent protein-protein interactions, rational design of small molecule inhibitors is a 

great challenge due to the existence of large interfaces with many intermolecular contacts 

[58]. Studies on human growth hormone-receptor complex [59] and erythropoietin receptor 

complex [60] showed that proteins may interact with small surface binding epitopes. These 

findings brought the possibility to design inhibitors to block protein-protein binding by 

mimicking the small binding epitopes. Recently, several studies are conducted to generalize 

the applicability of designing peptide drugs in developing new therapeutic strategies for 

many diseases and understanding protein-protein interactions [61].    
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In this study, to inhibit XPF-ERCC1 complex formation a smilar strategy is followed to 

block Phe-293 (ERCC1) by mimicing the loop region on the protein-protein interface of 

XPF that originally interacting with Phe-293. 

 

3.6.1 Designing a peptide drug 

 

Phe-293 is suggested to be the key residue in XPF-ERCC1 binding as explained in the 

Introduction section of this thesis and the interacting residues on XPF are reported to be 

Leu-841, Met-856, Val-859, Lys-860, Ile-862 Asn-861 by both experimental and 

computational methods. Thus, mimicking the loop region of XPF containing the above 

residues (841 - 862) to design a small peptide drug to block ERCC1 Phe-293 is the main 

approach in this study. 

7 to 11 amino acid-long small peptides are designed considering the possibility that 

larger peptides possess several disadvantages: difficulty to deliver the target tissue, 

difficulty to pass through the cell membrane, possibility of aggregate formation and 

accumulation and, the loss of specificity. By using VMD sequence viewer tool several 

peptides (7, 8, 9, 11 residue long) are cut and saved directly from their original 

conformation on XPF.  The cut peptides then docked computationally with ERCC1 to 

predict specificity and their stability in cell environment are studied by MD simulations. 

For docking studies Rosetta is utilized and for the MD simulation NAMD is used to build a 

3-ns simulation with periodic boundary conditions.  

Finally, according to the deformation scale of the peptides during the MD simulation 

and the active site specify prediction after docking studies several mutations are made to 

prevent deformation and enhance specificity. Hydrophobic residues on the tails of the 

peptides are replaced with hydrophilic ones to improve stability and residues with 

appropriate side chain charges are replaced neutral residues to improve specificity.    
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3.6.2 Detailed analysis of the designed peptides 
 
3.6.2.1 Peptide-7 (856-862) 
 

Figure 3.12 shows the docking scores versus RMSD graph of the top 1000 scoring 

conformations. The data points on the graph indicate that the positions of the top 10 scoring 

decoys are not necessarily the minimum RMSD positions. Thus, the designed Peptide-7 

may perform poor selectivity and binding. Figure 3.13 also shows the visualization of the 

top 10 scoring conformations and only 2 of the 10 top scoring conformations are actually 

predicted to bind to the desired position (marked with red color in Figure 3.13).   

 

 
Figure 3.12 : Docking score vs. RMSD graph of Peptide-7 
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Figure 3.13: Positions of the Top 10 peptides with the reference position 
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Figure 3.14: RMSD vs Frames graph for Peptide-7 
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Residue Average RMSD 

856 3.364 

857 2.085 

858 2.200 

859 1.255 

860 2.431 

861 1.737 

862 2.839 

 
Table 3.7: Average RMSD of each residue through the simulation 

 
The RMSD graph of Peptide-7 versus simulation time is shown in Figure 3.14 The total 

RMSD of the peptide is below 2 Å through the simulation and, this is the indicator of 

significant stability of the peptide in cellular environment. Table 3.7 shows the average 

RMSD values of each residue in the peptide and this allows us to study the stability of the 

amino acids individually. For a 7-residues-long small peptide the reported average RMSD 

values are significantly low suggesting a very stable structure with small deviations on the 

tails.  

 
3.6.2.2 Peptide 8 (856-863) 
 

Figure 3.15 shows the docking scores versus RMSD graph of the top 1000 scoring 

conformations. The data points on the graph indicate that the positions of the top 10 scoring 

decoys are strictly the minimum RMSD positions. Thus, the designed Peptide-8 is expected 

to perform significant selectivity and binding. Figure 3.16 also shows the visualization of 

the top 10 scoring conformations and all of the 10 top scoring conformations are actually 

predicted to bind to the desired position (marked with red color in Figure 3.16).   
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Figure 3.15: Docking score vs. RMSD graph of Peptide-8 

 
3.16: Positions of the Top 10 peptides with the reference position 
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Figure 3.17: RMSD vs Frames graph for Peptide-8 
 

RESIDUE Average RMSD 

856 6.195 

857 4.088 

858 5.702 

859 3.253 

860 3.083 

861 2.399 

862 2.706 

863 4.105 

 
Table 3.8: Average RMSD of each residue through the simulation 

 
The RMSD graph of Peptide-8 versus simulation time is shown in Figure 3.17. The 

total RMSD of the peptide in the last nanosecond of the simulation is below 3 Å but, during 

the second nanosecond of the simulation the peptide shows a strange behavior where, 

several deformations occur in the tail sections, but later the peptide stabilizes in the last 

nanosecond of the simulation. The last nanosecond of the simulation with RMSD below 3 

Å is an indicator of stability of the peptide in cellular environment. Table 3.8 shows the 
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average RMSD values of each residue in the peptide and this allows us to study the 

stability of the amino acids individually. For the 8-residues-long small peptide the reported 

average RMSD values are below 4 Å for four residues and higher than 4 Å for the rest of 

the residues in the tail section. The results of the molecular dynamics simulation suggest a 

moderately stable structure with deviations on the tails. The main reason for the increase in 

the average RMSD is the high RMSD region during the second nanosecond of the 

simulation. We calculate the residual RMSD values after the simulation reached the 

equilibrium (after frame 170), and the average RMSD scores are presented in Table 3.9. It 

can be argued that when the simulation reached the equilibrium, Peptide-8 shows 

significant stability with all of the residues have average RMSD scores below 3 Å. 

 

RESIDUE Average RMSD 

856 2.777242 

857 2.331649 

858 2.965712 

859 1.103716 

860 1.443372 

861 0.973459 

862 0.874826 

863 1.301616 

 
Table 3.9: Average RMSD of each residue after the system reached the equilibrium 
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3.6.2.3 Peptide 9 (855-863) 
 

Figure 3.18 shows the docking scores versus RMSD graph of the top 1000 scoring 

conformations. The data points on the graph indicate that the positions of the top 10 scoring 

decoys are strictly the minimum RMSD positions. Therefore, the designed Peptide-9 is 

expected to perform significant selectivity and binding. Figure 3.19 shows the visualization 

of the top 10 scoring conformations (marked with gray color in Figure 3.19) and all of the 

10 top scoring conformations are actually predicted to bind to the desired position (marked 

with red color in Figure 3.19).   

 

 
Figure 3.18: Docking score vs. RMSD graph of Peptide-9 
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Figure 3.19: Positions of the Top 10 peptides with the reference position 
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Figure 3.20: RMSD vs Frames graph for Peptide-7 
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RESIDUE Average RMSD 

855 4.173 

856 4.557 

857 3.348 

858 5.501 

859 2.477 

860 4.055 

861 2.489 

862 3.755 

863 3.673 

 
Table 3.10: Average RMSD of each residue through the simulation 

 

The RMSD graph of Peptide-9 versus simulation time is shown in Figure 3.20. The 

total RMSD of the peptide is below 4 Å through the simulation and, this is the indicator of 

stability of the peptide in cellular environment. Table 3.10 shows the average RMSD 

values of each residue in the peptide and this allows us to study the stability of the amino 

acids individually. For a 9-residues-long peptide the reported average RMSD values for the 

tail residues are significantly low suggesting a very stable tail structure but, residue 858 in 

the center of the peptide show small deviations on with average RMSD above 5 Å.  

 
 

3.6.2.4 Peptide 11(854-865) 
 
Figure 3.21 shows the docking scores versus RMSD graph of the top 1000 scoring 

conformations. The data points on the graph indicate that the positions of the top 10 scoring 

decoys are not necessarily the minimum RMSD positions. Thus, the designed Peptide-11 is 

predicted perform poor selectivity and binding. Figure 3.22 shows the visualization of the 

top 10 scoring conformations and only 3 of the 10 top scoring conformations (marked with 

gray color in Figure 3.22) are actually predicted to bind to the desired position (marked 

with red color in Figure 3.22). 
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Figure 3.21: Docking score vs. RMSD graph of Peptide-11 

 

 
Figure 3.22: Positions of the Top 10 peptides with the reference position 
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Figure 3.23: RMSD vs Frames graph for Peptide-11 
 
 

 

 
Table 3.11: Average RMSD of each residue through the simulation 

 

The RMSD graph of Peptide-11 versus simulation time is shown in Figure 3.23. The 

total RMSD of the peptide is below 5 Å through the simulation and, this is the indicator of 

RESIDUE Average RMSD 

854 6.919 

855 7.034 

856 5.719 

857 5.796 

858 5.911 

859 5.139 

860 5.252 

861 5.230 

862 5.517 

863 5.243 

864 6.718 

865 7.014 
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moderate total stability of the peptide in cellular environment. Table 3.11 shows the 

average RMSD values of each residue in the peptide and this allows us to study the 

stability of the amino acids individually. For the 11-residues-long small peptide the 

reported average RMSD values are significantly high suggesting serious deformations of 

the structure. 

 
3.6.2.5 Peptide8modified(Ala-863 to Glu-863) 
 

Figure 3.24 shows the docking scores versus RMSD graph of the top 1000 scoring 

conformations. The data points on the graph indicate that the positions of the top 10 scoring 

decoys are not necessarily the minimum RMSD positions. Thus, the designed Peptide-

8modified may perform poor selectivity and binding. Figure 3.25 also shows the 

visualization of the top 10 scoring conformations and 6 of the 10 top scoring conformations 

are actually predicted to bind to the desired position (marked with red color in Figure 3.25).   

 

 
Figure 3.24: Docking score vs. RMSD graph of Peptide-8 modified 
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Figure 3.25: Positions of the Top 10 peptides with the reference position 
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Figure 3.26: RMSD vs Frames graph for Peptide-8modified 
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RESIDUE Average RMSD 

856 6.387 

857 3.173 

858 4.660 

859 2.971 

860 4.051 

861 3.440 

862 4.010 

863 5.859 

 
Table 3.12: Average RMSD of each residue through the simulation 

 
The RMSD graph of Peptide-8modified versus simulation time is shown in Figure 3.26. 

The total RMSD of the peptide is below 4.5 Å through the simulation suggesting moderate 

stability of the peptide in cellular environment. Table 3.12 shows the average RMSD 

values of each residue in the peptide and this allows us to study the stability of the amino 

acids individually. For an 8-residues-long small peptide the reported average RMSD values 

are low in the core section suggesting a stable core structure with deviations on the tails.  

The designed peptides were studied in detail considering two main characteristic, the 

first was the selectivity, which was analyzed by peptide docking studies and, the second 

was stability, which was analyzed by MD simulation studies.  In this study, only 5 of the 

several designed peptides are mentioned.  Peptide-7 showed significant stability with only 

small deviations in the tail sites but rather moderate selectivity, Peptide-8 showed 

significant stability and also very selective binding, Peptide-9 also showed very good 

stability and very selective binding, Peptide-11 showed moderate stability with rather 

moderate selectivity, and the mutated peptide Peptide-8modified showed high stability with 

good selectivity. Thus, these peptides were chosen to be further analyzed experimentally in 

future studies.  
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Chapter 4 

 

Cytochrome P450 C17 

 

4.1 Introduction 

Prostate cancer (PC) is the most common cancer type among men in many countries [62]. 

Although it is very improbable to develop PC before the age of 40, 1 out of 6 men will be 

diagnosed with invasive PC throughout their lifetime. 90% of the patients, who is 

diagnosed with PC, respond to androgen deprivation [63]. Therefore, suppressing androgen 

biosynthesis is an important alternative strategy for the treatment of PC. If androgen 

synthesis can be inhibited using CYP 17 inhibitors or combining the usage of these 

inhibitors with other treatments, it is possible to reduce the side effect of the other 

treatments (chemotherapy, surgical removal of testicles or prostate and hormonal therapy)  

[64]. 

Testosterone (TESTO) and dihydrotestosterone (DHT) are the most important androgens 

that are related to PC [65]. Androgen biosynthesis requires the participation of three 

tissues; adrenal glands, testis and prostate. Pathway starts with cholesterol, and several 

enzymes catalyzing the reactions leading to TESTO and DHT. CYP17 catalyzes 

conversion of progesterone to androstenedione (4-DIONE); 17-β HSD-3 is responsible for 

TESTO formation; and, finally, 5-α reductase converts TESTO to more potent androgen 

DHT. Ample evidence indicated that CYP17 catalyze the rate limiting step in androgen 

biosynthesis. Precursors of androgenic hormones, 4-DIONE and dehydro-epi-androsterone 

(DHEA), can be formed only by CYP17. Use of CYP17 as a drug target can improve 

blockage of androgen biosynthesis and inhibitors can be used as effective PC treatments 

[64]. 
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The crystal structure of CYP17 has not been solved yet. Since CYP17 is a membrane 

bound protein, it has been difficult to crystallize. On the other hand, there are studies on 

computer-generated models for CYP 17. Laughton et al. [66] build a model for CYP17, 

and Lin et al. [67] modeled the active site of the protein. Both of these models were based 

on the crystal structure of P450cam, a class I P450. Lin et al. defines a bi-lobed substrate 

binding pocket [67]. The more recent model by Auchus et al. [68](PDB ID: 2C17) is based 

on a class II P450 crystal structure, P450BMP.  

CYP17 is a well-recognized target for prostate cancer treatment, since selective inhibition 

of the enzyme exerts control over androgen synthesis.  Therefore, many experimental and 

computational studies were reported on inhibitors of CYP17. First inhibitor designs used 

PREG and PROG as feeds since no other inhibitors were reported. Due to use of substrates, 

first generation of designed compounds was steroid based molecules with various side 

chains attached to 17th carbon. Even though some of these compounds showed inhibitory 

effects, they were not promising candidate drugs. The drawbacks of steroidal compounds 

were poor acid-stability, poor bioavailability, short half-life, first-pass effects and poor 

selectivity [64]. Ketoconazole is an antifungal agent known to reduce androgen levels in 

human, and has inhibitory effect on CYP17. However, it has been removed from use 

because of liver toxicity and its effects on other cytochrome enzymes [69]. The steroidal 

compound Abiraterone passed phase II clinical trials and reported to have no dose limiting 

toxicity [70]. Ideyama et al. worked on a non-steroidal inhibitor (YM116), which is able to 

inhibit both 17α- hydroxylase and 17-20 lyase reactions catalyzed by CYP17 with IC50 

values lower than ketoconazole. This non-steroidal compound was 50 fold more effective 

in inhibiting 17-20 lyase reaction than 17α- hydroxylase reaction [71]. Nnane et al. 

presented novel steroid-based inhibitors of CYP17. The IC50 values for five steroid-based 

compounds were determined for CYP17 and 5α- reductase.  Molecules L-6 and L-26 

showed more potent inhibition than ketoconazole.  Despite their problems in 
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bioavailability, these compounds were found to be promising as potential agents for 

reducing levels of testosterone and dehydro- testosterone in patients with androgen 

dependent diseases [72]. Effects of a number of thiazolidinediones were reported by Arlt et 

al. Thiazolidinedione and biguanide drugs, which are used to increase insulin sensitivity in 

type 2 diabetes, lower serum androgen concentrations in women with polycystic ovary 

syndrome. In order to determine if this is a secondary effect or direct control over androgen 

biosynthesis, these compounds were subjected to activity assays.  Thiazolidinediones were 

found to exert inhibition on both reactions catalyzed by CYP17, but not biguanides [73].  In 

another study, the effect of cinnamic-acid based derivatives of thiazolidinediones on 

CYP17 was analyzed.  Although these studies do not focus on the treatment of prostate 

cancer, some of the reported compounds have shown inhibition on both reactions catalyzed 

by CYP17[74]. C-17-Heteroaryl steroidal compounds were rationally synthesized and 

tested for inhibitory and antitumor effects by Handratta et al. Some of these benzoazoles 

and pyrazines were found to be potent inhibitors of CYP17 as well as being antagonists of 

androgen receptors [75]. The work of Clement et al. uses steroid-based inhibitors and 

generates a pharmacophore model of human CYP17 inhibitors [69]. This model is used to 

retrieve hits from Maybridge, ACD and BioByteMasterFile chemical databases. Hartmann 

et al. also published a review on inhibition of CYP17 by steroidal and non-steroidal 

molecules as a method for androgen-dependent prostate cancer treatment [64]. Recently 

reported novel non-steroidal substrate mimetics reported to showed good inhibition values 

with good selectiviy against CYP3A4 but also showed moderate to high inhibition activity 

against other  hepatic CYP enzymes [76, 77]. A very detailed review on CYP 17 inhibitors 

were also recently published by Moreira et al. [78]. 

Two compounds (VN/124-1 [75] and abiraterone [79]) were reported to be promising 

CYP 17 inhibitors that are tried in preclinical and clinical trials respectively. However; 

these two compounds are steroidal compounds, thus a successful design of non-steroidal, 
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specific, non-toxic CYP 17 inhibitor is still an intriguing area of research. The available 

non-steroidal compounds were mainly designed based on mimicking known steroids that 

are interacting with the CYP 17 active site (i.e. progesterone, abiraterone), pharmacophore 

modeling (based on QSAR analysis of known inhibitors) and creating derivatives of known 

inhibitors of cytochrome enzymes such as: antifungal imidazole containing agents related 

to ketoconazole, pyridine derivatives, xanthone derivatives carbazole derivatives. The non-

steroidal compounds reported in the literature did not yet show promising results in clinical 

trials.  

In this thesis, structure-based drug design approach based on the model protein structure 

by Auchus et al. [68] was successfully applied to identify novel CYP 17 inhibitors in silico. 

Further experimental tests proved inhibitory activity of two novel lead compounds against 

CYP 17 in an HEK 293 T cell line. The leads were also tested on HeLa cell line for toxicity 

and the non-steroidal “lead compound” does not display toxic effects. 

4.2 MD Simulation for CYP17 

In this study, the output files of the MD simulation previously performed by Muhittin 

Emre Özdemir are used for further studies concerning CYP17 [78].  The equilibration 

system is sampled every 2 ps and frames are used for both root mean square deviation 

(RMSD) and deformation analysis. On Figure 4.1, RMSD is plotted through the simulation 

beginning from the end of the equilibration phase, where initial model structure is used as 

reference to compare generated structures. After all the restraints are released, RMSD 

initially increased for 2 ns and reached equilibrium for the rest of the 10 ns simulation 

(Figure 4.1). This behavior of RMSD is an indication of stabilized protein in simulation. 

When RMSD is analyzed on residue level, it can be observed that there are regions of high 

and low deviations. High RMSD spots are concentrated in regions where there is no strict 

structure; in other words, where loops are located. On the other hand, none of the alpha-

helices or beta-sheets coincides with high RMSD spots. Most importantly, the I-helix 
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passing through the core of the protein and involved in active site is in a low RMSD region. 

Since this helix bears the catalytically active amino acid, it is crucial to have it in a stable 

form. MD simulation performed on CYP17 has proved the stability of active site. 
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Figure 4.1: RMSD results of the MD simulation of CYP17 (pdb id: 2c17). 

4.3 P450 C17 inhibitors 

18 molecules were previously designed and analyzed in the MS Thesis of Muhittin Emre 

Özdemir [78]. N15 (non-steroidal) and S3 (steroid-based), are further characterized with 

inhibition test at various concentrations (Figure 4..2, 4.3). IC50 values for these two 

different compounds were determined using transformed HEK 293T cell line by AARA. 

For both of these compounds, concentrations covering inhibition pattern are found and 

shown in Table 3. IC50 value for N15 is 35.65 µM and for S3, IC50 is 46.30 µM.  
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Figure 4.2: % Inhibition VS Inhibitor concentration graph for N15. Trend line is fitted and 

the corresponding equation is utilized to calculate the IC50 of N15. 
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Figure 4.3: % Inhibition VS Inhibitor Concentration graph for S3. Trend line is fitted and 

the corresponding equation is utilized to calculate the IC50 of S3. 
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Docking Configurations for Candidate Molecules 

N15 

 

S3 

 
Table 4.1: Docking Configurations for Candidate Molecules 

To calculate IC50 values, first by nonlinear regression a trend line is fitted, then the 

corresponding equation of the trend line is calculated, and the IC50 value is obtained. R2 

represents the goodness of the fit measure. Since the R2 values for our calculations are 

above 0.97, the trend line represents our experimental data significantly well. Docking 

conformations of N15 and S3 are presented on Table 4.1. Then, cell viability assays were 

performed for N15 and S3 to study toxicity. Toxicity of a drug candidate is as important as 

its inhibition potential; therefore, cell viability assays are performed for N15 and S3. 

Results are shown in Figure 4.4 and Figure 4.5. 

According to results of viability assay, TC50 values are calculated. TC50 represents the 

concentration of a test compound at which 50% of the cells are killed. For lead compounds, 

toxicity values lower than 25 µM are not favored [80]. The steroid based compound has a 

calculated TC50 value about 38 µM for a 24 hours assay and 68 µM for the 12 hours assay. 

Therefore, S3 is still a promising candidate for further optimization studies. On the other 

hand, N15 has fairly good viability scores above its IC50 value. The TC50 for N15 is 

calculated to be 271 µM for the 12 hours assay and 397 µM for the 24 hours assay, which is 

very promising. Therefore, it may used for further optimizations to improve inhibition 
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efficiency and reduce toxicity. Note that all calculations are based on the fitted trade lines 

of the survival curves. 
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Figure 4.4: Cell Viability Assay Results for N15. 
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Figure 4.5: Cell Viability Assay Results for S3. 
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4.4 �15 derivatives 
 

In designing the derivatives we aim to improve the binding strength of the inhibitor, 

while keeping the toxicity measure at minimum. Therefore; the docking position of N15 

and the probable atomic interactions between N15 and the side chains of the active site 

residues are carefully studied. Three main interaction sites are determined in the binding 

pocket, which are illustrated in Table 4.2 with a representative N15 inhibitor derivative. 

First, as shown in Table 4.2.a the interacting side chains are neutral (Alanine and Valine), 

thus it should be beneficial to replace the oxygen atoms located on the double-ring with 

carbon atoms. Second, as shown in Table 4.2.b the positively charged iron atom at the 

center of the Heme may form strong non-bonded interactions or covalent bonds with a well 

positioned oxygen or nitrogen of the inhibitor, therefore; several derivatives are designed 

with accessible oxygen and nitrogen atoms in their central region. Third, the long 

hydrocarbon tail of the inhibitor is predicted to interact with the I-helix in the active site 

(Table 4.2.c) and surrounded by neutral side chains (Alanine), thus there should not be any 

replacements on the tail site of the inhibitor. 
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a) b) 

  
c) 

 
 

Table 4.2: Virtual representation of interaction sites between side chain residues and the 
inhibitor N15 derivative. 
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4.5 Analysis of �15 inhibitor derivatives 
 

The derivatives that are designed by the strategies discussed in section 4.4 are listed on 

Table 4.3 with calculated docking and biding scores. 13 of the given derivatives are 

calculated to improve the docking score and 12 of them are calculated to improve the 

binding scores.  

 

 LEAD COMPOUND BINDING DOCKING  

N15 N
H

O

O

O

 

-7.70 -9.60 

 

 LEAD COMPOUND DERIVATIVES BINDING DOCKING  

D1 O

O

N
H

 

-7.61 -9.43 

 

D2 N
H

O

 

-7.85 -9.5 

 

D3 

O

O

O
O

 

-6.71 -8.54 
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D4 

O

O
O

 

-7.39 -8.98 

 

D5 

O

O

 

-7.17 -8.75 

 

D6 N
H

O

OH
 

-7.6 -9.29 

 

D7 N
H

O

NH2
 

-7.46 -9.28 

 

D8 N
H

O

O

NH2
 

-7.33 -9.31 

 

D9 N
H

O

O

OH
 

-7.3 -9.23 
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D10 N
H

O

OH
 

-6.48 -8.61 

 

D11 N
H

O

NH2
 

-6.39 -8.5 

 

D12 N
H

O

 

-7.77 -9.89 

 

D13 N
H

O

NH2
 

-8.47 -10.56 

 

D14 N
H

O

OH
 

-8.05 -10.13 

 

D15 

O

O

OH
 

-7.91 -9.81 
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D16 

O

O

NH2
 

-8.26 -10.14 

 

D17 

 

-8.15 -10.1 

 

D18 

O

N
H

O

NH2
 

-8.39 -10.66 

 

D19 

O

N
H

O

OH
 

-8.1 -10.38 

 

D20 

O

O

NH2
 

-7.45 -9.4 

 

D21 N
H

O
O

 

-7.63 -9.85 

 

O

O

O

NH2



 
 
Chapter 4: Cytochrome P540 C17     80 

 

D22 

 

-8.11 -10.15 

 

D23 

 

-7.63 -9.85 

 

D24 

 

-7.34 -9.62 

 

D25 

 

-7.47 -9.61 

 

D26 
N
H

O

O

 

-7.8 -9.48 

 

D27 

 

-7.68 -9.29 
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D28 

 

-7.87 -9.05 

 

 
Table 4.3: N15 derivatives with docking and binding scores 

 

 

Figure 4.6: Docking position of best scoring derivative D18 in the binding pocket 

 

The hydrophobicity measures (average logP) were also calculated to analyze and 

predict toxicity potentials of the inhibitors. Table 4.4 shows the predicted logP values for 
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the selected 28 molecules with five different prediction algorithms and average logP 

values. The molecules within the drug-likeness range suggested by Ghose et. al. [57] are 

highlighted.   

 logP logP-err 

Lead 3.99 0.67 

D1 4.78 0.65 

D2 5.23 0.65 

D3 4.62 0.66 

D4 5.56 0.73 

D5 5.94 0.7 

D6 5.02 0.66 

D7 4.33 0.58 

D8 3.82 0.53 

D9 4.73 0.61 

D10 4.9 0.64 

D11 4.25 0.58 

D12 5.5 0.63 

D13 4.57 0.48 

D14 5.86 0.65 

D15 5.99 0.68 

D16 5.44 0.76 

D17 5.15 0.73 

D18 4.27 0.58 

D19 5.32 0.64 

D20 5.35 0.9 

D21 5.12 0.53 

D22 4.61 0.51 

D23 5.12 0.53 

D24 3.83 0.57 

D25 4.9 0.51 

D26 5.39 0.5 

D27 5.39 0.5 

D28 5.79 0.47 

Table 4.4: Hydrophobicity measure (logP) of N15 derivatives 
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Chapter 5 

 

Classification of Drug Molecules 

 

 

5.1 Overview of QSAR 

 

At the initial stages of drug discovery and design, there are often millions of candidate 

drug molecules under consideration.  Therefore, the early prediction of activity for drug 

candidates using computational methods is very important to save time and resources.  Due 

to importance of early prediction of activity of drug candidates on the target protein, a large 

number of computational methods were developed. QSAR (Quantitative Structure- 

Activity Relationship) analysis is one of the most widely used methods to relate structure to 

function.  QSAR analysis can be described as the quantitative effort of understanding the 

correlation between the chemical structure of a molecule and its biological and chemical 

activities such as biotransformation ability, reaction ability, solubility or target activity[81].  

QSAR assumes that structurally similar molecules should have similar activities, which 

draws attention to the importance of detecting the most significant chemical and structural 

descriptors of the drug candidates.  The drug activity behavior can be predicted using a 

wide range of descriptors. 

Some of the most widely used 3D QSAR methods can be listed as follows: comparative 

molecular field analysis (CoMFA), comparative molecular similarity indices analysis 

(CoMSIA), the eigenvalue analysis (EVA).  In CoMFA, molecular descriptors are 

calculated and selected by calculating the electrostatic and steric potential energies between 

a positively charged carbon atom located at each vertex of a rectangular grid and a series of 
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molecules embedded within the grid [82].  The sensitivity to small changes in the 

alignment of compounds is reduced and hydrogen-bonding and hydrophobic fields are 

introduced to in CoMSIA[83].  In these methods the aligning of the structures is essential, 

therefore EVA was used due to the fact that methods that are sensitive to 3D structure but 

do not require superposition were introduced[84].  The generation of descriptors in EVA is 

based on molecular vibrations, where a normal mode calculation is required to simulate the 

IR spectrum of a molecule [85]. 

In this study, E-Dragon [86-88], which is a remote version of the DRAGON descriptor 

calculation program, was used to calculate the molecular descriptors for drugs.  It applies 

the calculation of molecular descriptors developed by Todeschini et.al. [89] and provides 

more than 1,600 molecular descriptors, which are divided into 20 blocks, including atom 

types, functional group and fragment counts, topological and geometrical descriptors, 

autocorrelation and information indices, 3D molecular descriptors, molecular properties 

[86-88].  DRAGON incorporates two steps; the first step eliminates low-variable 

descriptors,  the second step optimizes the descriptor subset using a Q2- guided descriptor 

selection by means of a genetic algorithm using several data analysis methods: 

Unsupervised Forward Selection (UFS) [90], Associative Neural Network (ASNN) [91, 

92], Polynomial Neural Network (PNN) [93, 94] and Partial Least Squares (PLS) [86-88]. 

In most studies, Partial least squares (PLS)[95] is used to develop QSAR models by 

reducing the number of attributes in the descriptor set to a small number of attributes 

correlated with the defined property being modeled. 

In our approach, to classify activities of drug compounds we used the mixed-integer 

programming (MILP) based hyper-boxes method that take the molecular descriptors in 

QSAR models as input.  The comparison of our classification accuracies with the 

classification methods available in the WEKA data mining package [16] is also made.  

WEKA contains 63 different classification methods, but here only 16 of those, which had 
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the best classification accuracies for the data sets considered in this thesis are discussed.  

Brief overview of these classifiers is further presented in Methods section. 

In this study, the problem of QSAR analysis and the classification of drug candidates are 

addressed based on their published IC50 values by introducing an algorithm that combines 

PLS regression with mixed integer linear programming based hyper-boxes classification 

method. The strenght of the algorithm not only comes from combining regression with 

classification but also the ability to improve the classification accuracies by its iterative 

approach.The algorithm that links QSAR descriptor model generation with inhibitory 

activity classification was applied to inhibitors of Acetylcholinesterase (ACHE), 

Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR) and Cyclooxygenase-2 

(COX-2) and finally for Cytochrome P450 C17 (CYP17). 

5.2 Classification Methodology 

In this thesis, we present an integrated approach combining statistical analysis and MILP 

based hyper-boxes classification method for early prediction of drug behavior targeting 

Ache, BZR, Cox-2, DHFR_TG, DHFR_RL, DHFR_PC, and finally Cytochrome P450 

C17. 

The approach used in this thesis is composed of five main steps. In the first step, 

molecular structures of the drug candidates is built and optimized the by Marvin 

Sketch[96].  Then, the molecular descriptors of these drug candidates are obtained using 

the web server E-Dragon [86-88].  The second step consists of building the regression 

model using PLS, which will result in selecting the most significant descriptors.  Then drug 

candidates are classified based on the most significant descriptors that are obtained by the 

previous step, using MILP based hyper-boxes method.  This primary classification may 

result in relatively lower classification accuracy due to the existence of a few insignificant 

descriptors in the model; therefore, a significance testing analysis is conducted in order to 
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determine the insignificant descriptors that might interfere with our classification accuracy 

in fourth step.  If there are insignificant descriptors in the model we replace the 

insignificant descriptors with more significant ones; then return to the third step where we 

classify the drug activities again with the new model that is obtained in step five.  After the 

significance tests if all of the descriptors are significant we build our model with the most 

significant ones, and report the classification results. 

We use an iterative algorithm such that, some of the steps can be repeated when the 

significance tests give unsatisfactory results for the selected descriptors of a particular 

model.  Less significant descriptors are replaced with a more significant ones affecting the 

final classification of the drugs at each iteration, thus improves the success of the study.  

The outline of our method is given in Figure 5.1. 
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Figure 5.1: Outline of classification approach 

5.2.1 Data sets 

We applied our algorithm to widely known QSAR data sets available in literature.  

Dihydrofolate Reductase (DHFR), Acetylcholinesterase (AchE), Benzodiazepine Receptor 

(BZR) and Cyclooxygenase-2 (COX2) inhibitor sets are used for classification.  We also 

introduce a new dataset of Cytochrome P450 C17 inhibitors, which we have derived from 

the literature and calculated their 3D structures. 
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2.a (AchE inhibitor) 

 
2.b (Bzr inhibitor) 

 
2.c (Cox2 inhibitor) 

 
 

2.d(DHFR inhibitor) 

Figure 5.2: Representative compounds from each QSAR data 

 
Seven data sets were used for the validation of our methodology by applying the 

algorithm on these large and known data sets and comparing our classification accuracy on 

these data sets with the other widely used classifiers available in the WEKA data mining 

package.  Representative compounds from each data set are shown in Figure 5.2.  The 

experimental IC50 values for the dihydrofolate reductase (DHFR) inhibitor set were 

calculated and reported [97-100] for the DHFR enzyme from three different species: P. 

carinii (PC), T. gondii (TG) and rat liver (RL), where the activity of the DHFR inhibitors to 

the enzymes from different species differ.  Therefore, activities of the inhibitors towards 

the enzymes from these three species for DHFR inhibitors are studied separately in this 
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study.  A set of 397 dihydrofolate reductase inhibitors (DHFR) were used for P. carinii 

DHFR with IC50 values from 0.31 nM to 3700 µM, a set of 378 inhibitors were used for T. 

gondii DHFR with values from 0.88 nM to 392 µM and 397 inhibitors were used for rat 

liver DHFR with values from 0.156 nM to 7470 µM.  A set of 111 acetylcholinesterase 

(AchE) inhibitors were used with experimentally calculated IC50 values, reported by within 

the range of 0.3 nM to 100 µM[100-103].  The data set of the benzodiazepine receptor 

(BZR) inhibitors consisted of 163 inhibitors, whose IC50 values were calculated 

experimentally from 1.2 nM to 5 µM[100, 104].  The 322 molecules of cyclooxygenase-2 

(COX2) inhibitor set were derived such that IC50 values from 1 nM to 100 µM [100, 105, 

106].  The QSAR sets used in this study were also used in a comparison study of QSAR 

methods by Sutherland et al[100].  We also compared the R2 values of our 3D descriptor 

models, which were calculated by the Minitab PLS runs in the first phase of our algorithm, 

with the reported R2 values by Sutherland et al [27] for several PLS models on the same 

data sets. 

5.2.2 Structure building and obtaining the descriptor model 

As outlined above, in our study the first step is finding molecular descriptors for the drug 

candidates.  Therefore, Marvin Sketch [96] was used to calculate the molecular structures 

of each drug candidate should be constructed by building their structure and optimize their 

energy by minimization to determine their confirmation in 3-D space.  Next, the optimized 

3-D structures are loaded to E- Dragon and molecular descriptors are calculated by using 

the web server. 

E-Dragon suggests many descriptor blocks, each of which contains parameters that 

describe the characterization of molecules, and the ones that are used in this study can be 

listed as follows: constitutional descriptors (48), topological descriptors (119), connectivity 

indices (33), information indices (47), edge adjacency indices (107), topological charge 

indices (21), geometrical descriptors (74), 3D-MoRSE descriptors (160), functional group 
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counts (154), atom-centered fragments (120), molecular properties (29)[89].  Therefore, the 

total number of descriptors considered is 912 while building our QSAR descriptor model.  

PLS[95] is selected for regression analysis because the number of instances is much 

smaller than the number of attributes (descriptors) by using MINITAB[107].  As we 

mentioned before, PLS is widely used to develop QSAR models by reducing the number of 

attributes in the descriptor set to a small number of attributes correlated with the defined 

property being modeled, which is experimental IC50 values in our study.  

5.2.3 Model building with PLS for the selection of the most informative descriptors 

The main purpose of the regression analysis is to determine the model that predicts the 

activity (IC50) of the drug candidates in terms of the descriptors.  PLS can be referred as an 

MLR method closely related to principal component regression.  Basically, by conducting a 

PLS study we can predict a set of dependent variables Y based on a set of independent 

variables X  by MINITAB [107],which gave us the PLS runs automatically based on the 

upper limit we determined on the number of most significant descriptors.  Each PLS run 

provides a linear model of the dependent variable (IC50 values) with respect to the 

independent variables (most significant descriptors).  At this point, the relevant model is 

built and the most significant descriptors are determined.  Next step would be the initial 

classification of the drugs based on the descriptors.  The choice of the significant 

descriptors by the first PLS runs may not be the most effective ones in classification.  

Therefore, we perform significance tests on the selected descriptors by the regression 

analysis to increase the classification accuracies. 

5.2.4 Classification of drug candidates with MILP based hyper-boxes method 

The third step is devoted to the classification of drugs; we apply the MILP based hyper-

boxes method [108, 109] by using the selected descriptors from the previous step. 
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In data classification problem, the objective is assigning the data points, which are 

described with certain number of attributes, into predefined classes.  The strength of hyper-

boxes classification method is from its ability to use more than one hyper-box when 

defining a class as shown in Figure 5.3, and this ability prevents overlapping in the classes, 

which would not be prevented if the classes were defined with a single hyper-box 

only[108]. 

x1  
Figure 5.3: Schematic representation of multi-class data classification using hyper-boxes 
 

The data classification problem is solved in two steps: training step and testing step. In 

the training step, the boundaries of the classes are formed by the construction of hyper-

boxes, where as the effectiveness of the constructed classes are tested in the testing 

step[108]. 

The MILP problem for the classification is constructed such that the objective function is 

the minimization of the misclassifications in the data set with the minimum number of 

hyper-boxes in the training step.  The minimization of the number of hyper-boxes, i.e. the 

elimination of unnecessary use of hyper-boxes, is enforced by penalizing the existence of a 

box with a small scalar in the objective function. In the training part the upper and lower 
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bound of each hyper-box also calculated by the data points enclosed in that hyper-

box[108]. 

In the testing step, the data points are assigned to classes by calculating the distance 

between the data point to the each box, and determining the box that is closest to the data 

point.  Finally, the original and assigned classes of test data points are compared and the 

effectiveness of the classification is obtained by means of correctly classified 

instances[108]. 

Solving the proposed MILP problem to optimality is computationally challenging for 

large datasets due to the large number of binary variables.  Hence, a three-stage 

decomposition method for obtaining optimal solutions of large data classification problems 

is developed [109].  Instances that are difficult to classify are identified in the first stage 

that we refer to as preprocessing.  Moreover, seeds are determined for each class to 

improve the computational efficiency.  With greater emphasis given to these observations, 

a solution to the problem is obtained in the second stage with the modified model.  Last, 

final assignments and intersection eliminations are carried out in the third step[109]. 

In this thesis, we apply this method described above in classifying the activities of drug 

molecules for the data sets considered.  We perform 10-fold cross validation while 

choosing the training and test sets, where we partition the datasets randomly into 10 

subsamples with equal number of members. From these 10 subsamples 9 of them are 

combined and used as the training set, and the remaining 1 subsample is used as the test set. 

Then the classification is performed 10 times with each of the 10 subsamples used exactly 

once as the test set. Finally, the accuracy of the classification is reported as the average of 

these 10 classifications. 

We classify each of the drug candidates in the test set as having a low or high IC50 value.  

In this iterative study, this classification step is performed several times: first with the 
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initial set of descriptors then using the enhanced set of descriptors derived from 

significance analysis. 

5.2.5 Significance analysis 

In the fourth step, significance tests are performed.  After the PLS runs it is possible to 

conclude a descriptor as significant while it is not in reality and this problem is resolved by 

conducting significance tests after primary classification.  The main idea behind the 

significance test is as follows: If Z is the whole set of drug candidates, assume after the 

classification it is divided into two classes, A and B.  For a successful classification, the 

variances of descriptor values should be smaller within classes A and B than it is for the 

whole population, Z. 

The equation given below in Eq. 2.1 exhibits the F distribution. 

 

2 2

2 2
2 2

ij

ij

i

ik

k i

S /
S / S f

S /
νη

σ
= =

σ
 (5.1) 

where, 2
ijS is the sample variance of values for descriptor i for drug set j, ν=n-1 and η=m-1 

are degrees of freedom, and n is the number of values of descriptor i for the drug set j, and 

m is the number of values of descriptor i for the drug set k. 

Then the hypothesis testing is performed by the null hypothesis 2 2
ij ikS S= , which suggests 

that the variance of the whole set of drug candidates is equal to the variance of the drugs 

within the same class.  Since the variance of the whole set of drugs should be larger than 

the variance within the class, we define our alternative hypothesis as: 2 2
a ij ikH S S= f , where 

j is a member of a whole data set and k is a member of the class.  Note that the p-value of 

fvη in the current should be smaller than the p-value of fvη in the previous model to accept 

the alternative hypothesis. 
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5.2.6 Building the new classification model 

This last step is performed when we conclude that there are overestimated descriptors in 

the model during step four. Therefore, a total number of 3 models are constructed through 

regression analysis by selecting 7,10 and 15 descriptors respectively as representative 

variables of each model, and the significance analysis is applied to all of the descriptors in 

these 3 models.  If we conclude existence of an insignificant variable in one of these 

models, we replace them with the ones that are significant in the other models.  This 

adjustment is proved to improve our classification accuracy. When we are replacing the 

less significant ones, the remaining 880 descriptors that are eliminated during the PLS 

analysis are ignored, since these 7, 10, and 15 attributes were chosen by the PLS regression 

analysis and have a proven strength in describing the IC50 values. The main purpose of the 

PLS regression study in fact is eliminating the statistically meaningless features, and 

provide us with the most meaningful sample space to further work with.   

The results obtained by our method are compared with all of the 63 classification 

methods available in WEKA, and 16 best WEKA classifiers reported with the results 

obtained by our algorithm in Table 5.3, with the corresponding classification accuracy. The 

attributes used in WEKA classifiers are the same descriptors that are found after the 

significance tests, and 10-fold cross validation was applied to each classifier including our 

classification method. 

WEKA is a powerful data mining tool to use for comparison purposes, since it includes 

all widely known machine-learning algorithms among its 63 classifiers. The success of 

these existing machine learning algorithms in binary classification of active and inactive 

compounds based on their descriptor values were also previously reported [110]. Following 

is a brief overview of the best performing data classification methods available in WEKA.  

A Bayesian network[111] B =< �, A, Φ > is a directed acyclic graph  <N,A> with a 

conditional probability distribution attached to each node, collectively represented by Φ.  
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Each node n ∈ � represents a dataset attribute, and each arc a ∈ A between nodes 

represents a probabilistic dependency.  The Naive Bayes classifier assumes that all of the 

variables are independent of each other, where the classification node is represented as the 

parent node of all other nodes[112].  Naive Bayes Simple uses the normal distribution for 

the modelling of the attributes and handle numeric attributes using supervise discretization, 

where as Naive Bayes Updateable is an incremental version, which processes one instance 

at a time, and uses a kernel estimator instead of discretization. 

The Logistic classifier[112] builds a two-class logistic regression model.  It is a statistical 

regression model, where logistic regression assumes that the log likelihood ratio of class 

distributions is linear in the observations.  The Simple Logistic classifier builds linear 

logistic regression models based on a single attribute[112].  The model is a generalized 

model of the ordinary least squares regression model.  Multilayer perceptron[112] is a 

neural network that uses back propagation.  The perceptron, which is a processing element, 

computes a single output, a nonlinear activation function of linear combination of multiple 

inputs, whose parameters are learned through the training phase.  SMO (sequential minimal 

optimization)[113], also called the WEKA SVM(support vector machine), is a method to 

train a support vector classifier using polynomial kernels by breaking a large quadratic 

programming optimization problem into smaller QP optimization problems. 

IB1[112] is listed as a lazy classifier, in a sense that it stores the training instances and it 

does not really do any work until the classification time.  IB1 is an instance based learner.  

It finds the training instance closest in Euclidian distance to the given test instance.  IBk is 

a k-nearest-neighbor classifier that uses the same idea. 

Logit Boost[114] uses additive logistic regression.  The algorithm can be accelerated by 

assigning a specific threshold for weights.  Multi Class Classifier[115] uses four distinct 

two-class classification methods for multiclass problems.  The Threshold Selector[112], 
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which is a meta learner optimizes the F-measure by selecting a probability threshold on the 

classifiers output. 

Random forest and LMT are decision tree methods. Random Forest generates random 

trees by collecting ensembles of random trees, where as LMT builds logistic model trees, 

and uses cross validation to determine the number of iterations while fitting the logistic 

regression functions at each node.  OneR (one rule)[112] builds a one-level decision tree 

and learns a rule from each attribute and selects the rule having the smallest error rate as 

the one rule. 

5.3 Classification Results 

To determine the threshold values, which divide the low and high classes, for all datasets 

the IC50 values were statistically analyzed.  In this study, we consider 6 datasets, of which 

IC50 values and structures were reported [97-106, 116].  In addition to these datasets we 

introduced a new dataset for P450 C17 inhibitors that we collected from the literature.  

P450 C17 is a well-recognized target for prostate cancer treatment, since selective 

inhibition of the enzyme exerts control over androgen synthesis [117]. 

5.3.1 PLS Results 

After building the descriptor models by e-Dragon [88], three models were constructed 

during the PLS analysis as: 7, 10 and 15 descriptor models.  The reason that we build 3 

models with different number of variables is due to the fact that we might come up with 

insignificant descriptors within one of these models, so that we can replace them by a more 

significant one from the other models. 
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  CoMFA* 
CoMSIA 

basic* 
CoMSIA 

extra* EVA* HQSAR* 2D* 2.5D* eDragon-7 eDragon-10 eDragon-15 

AchE 0.88 0.86 0.86 0.96 0.72 0.40 0.38 0.84 0.90 0.95 

BZR 0.61 0.62 0.62 0.51 0.64 0.51 0.52 0.51 0.67 0.79 

COX-2 0.70 0.69 0.69 0.68 0.70 0.62 0.68 0.53 0.61 0.73 

DHFR_RL 0.79 0.76 0.75 0.81 0.81 0.61 0.65 0.42 0.53 0.64 

DHFR_PC N/A N/A N/A N/A N/A N/A N/A 0.44 0.54 0.65 

DHFR_TG N/A N/A N/A N/A N/A N/A N/A 0.40 0.51 0.66 
Cytochrome  
P450 C17 N/A N/A N/A N/A N/A N/A N/A 0.84 0.91 0.95 

* PLS results reported by Sutherland et al. 

Table 5.1: Comparison of R2 values for PLS models. 

 
In Table 5.1, the QSAR models with the most significant descriptors, as they were 

concluded as a result of the initial PLS study for the 7, 10 and 15 attribute models are listed 

above with their R2 values.  Table 5.1 shows the optimal R2 values of our PLS models 

given by Minitab[107] with predefined number of descriptors from the descriptors 

calculated by e-Dragon software, and the R2 values of the PLS models calculated by 

Sutherland et al.[100] with the same data sets but different methods and models. 

The R2 values shows that, the models we developed with 10 and15 descriptors for Ache 

BZR and COX-2 are stronger than or at least as strong as the other models reported by 

Sutherland et al [100] in representing the IC50 values in terms of selected descriptors, but 

our model for DHFR_RL is not as good as the other reported models.  The high R2 values 

of Cytochrome P450 C17 models also suggest good prediction of the IC50 values and a 

promising initial model for classification. 

It is worth to note that, our study is not simply a regression study, but we develop these 

regression models in order to use the selected descriptors from this step as attributes for 

accurate classification. 
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5.3.2 Iterations 

At the end of the initial runs of the hyper-boxes classification method, classification 

results are obtained.  The next step is the significance analysis and the improvement of the 

classification accuracies by iterations.  By the significance analysis, the weakest and the 

strongest descriptors were calculated and, the weakest descriptor in the current model was 

replaced by the most significant one from other models at each iteration.  The classification 

runs are repeated after each replacement, by MILP based hyper-boxes method.  When the 

classification accuracy is not improved at the end of an iteration, the algorithm stops and 

our final results are reported (Table 5.2). 

Classification Accuracies 

 Iter #0 Iter #1 Iter #2 Iter #3 

7 Attributes 91.89 100.00     

10 Attributes 86.48 89.19 91.89   ACHE 

15 Attributes 86.05 89.18     

7 Attributes 90.90 96.36     

10 Attributes 92.73 94.55     BZR 

15 Attributes 90.09 92.73     

7 Attributes 94.39 95.33 97.20 98.13 

10 Attributes 91.58 97.20     COX2 

15 Attributes 88.78 89.72 90.65   

7 Attributes 94.73 96.99     

10 Attributes 93.98 97.74     DHFR-1 

15 Attributes 94.73       

7 Attributes 95.23 96.83 97.62   

10 Attributes 94.44 95.24 98.41   DHFR-2 

15 Attributes 92.06 93.65     

7 Attributes 96.24 97.74     

10 Attributes 93.23 93.98 96.24   DHFR-3 

15 Attributes 96.24 97.74     

7 Attributes 86.36 90.00 97.20  100.00 

10 Attributes 100.00       P450 C17 

15 Attributes 100.00       

Table 5.2: Classification Accuracies of each iteration 
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While choosing the weakest descriptor to leave the model, the descriptor with the 

maximum p-value (failed to reject H0 with the greatest error, see methods section for our 

hypothesis) for one of the high or low classes was selected.  The weakest descriptor was 

replaced by the strongest one.  The strongest descriptor defined as the attribute whose 

maximum p-value for high and low classes is the minimum among the other descriptors.  

An instance of the significance analysis is presented in Table 5.4. 

5.3.3 Final Classification 

As shown in Table 5.3, we compared the classification accuracies of our model with the 

results that calculated using all of the classification methods in WEKA.  We report only the 

results of the16 best performing WEKA classifiers.  Our method performed better than all 

of the other classifiers for every model of each dataset.  Our integrated approach of 

regression and classification for Ache and P450 C17 inhibitors datasets displayed an 

activity prediction accuracy of 100%.  The activity of BZR inhibitors was calculated with 

the accuracy of 96.36%.  We were able to predict the activities of COX-2 inhibitors with 

98.13% in a 7-descriptor model.  In addition, the prediction accuracy of activity of 

DHFR_RL, DHFR_PC, and DHFR_TG inhibitors were 97.74%, 98.41% and 97.74% 

respectively.  The best performing WEKA classifiers are also highlighted in Table 5.3. 
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% accuracy % accuracy 

ACHE  
7-att 10-att 15-att 

BZR  
7-att 10-att 15-att 

MILP based hyper-
boxes  method 100 91.89 89.19 

MILP based hyper-
boxes  method 96.36 94.55 92.73 

Bayes Network 79.28 77.48 78.38 Bayes Network 77.91 77.3 73.62 
Naive Bayes 80.18 80.18 81.08 Naive Bayes 80.37 77.91 66.26 
Naive Bayes Simple 81.08 80.18 81.98 Naive Bayes Simple 79.14 77.3 68.71 
NaiveBayesUpdatable 80.18 80.18 81.08 NaiveBayesUpdatable 80.37 77.91 66.26 
Lojistic 79.28 84.68 80.18 Lojistic 83.44 80.98 80.98 
Multilayer Perceptron 82.88 81.08 81.08 Multilayer Perceptron 79.75 80.98 79.14 
SimpleLogistic 83.78 82.88 79.28 SimpleLogistic 80.98 82.82 79.14 
SMO (WEKA SVM) 79.28 80.18 80.18 SMO (WEKA SVM) 79.14 77.91 77.91 
IB1 70.27 80.18 77.48 IB1 72.39 74.85 75.46 
IBk 70.27 80.18 77.48 IBk 72.39 74.85 75.46 
Logit Boost 82.88 81.08 82.88 Logit Boost 78.53 77.3 77.91 
Multi Class Classifier 79.28 84.68 80.18 Multi Class Classifier 83.44 80.98 80.98 

Threshold Selector 47.75 68.47 60.36 Threshold Selector 78.53 76.69 75.46 
LMT 83.78 82.88 79.28 LMT 80.98 82.82 79.14 
RandomForest 80.18 80.18 81.98 RandomForest 77.3 79.75 80.98 

OneR 81.08 72.97 72.97 OneR 74.85 74.23 79.14 

% accuracy % accuracy 
DHFR_TG 

7-att 10-att 15-att 
COX2  

7-att 10-att 15-att 

MILP based hyper-
boxes  method 97.74 96.24 97.74 

MILP based hyper-
boxes  method 98.13 97.2 90.65 

Bayes Network 77.33 78.09 73.05 Bayes Network 67.2 67.2 66.88 
Naive Bayes 76.57 79.35 72.54 Naive Bayes 71.66 70.06 64.65 
Naive Bayes Simple 75.57 78.84 67 Naive Bayes Simple 72.29 70.06 64.65 
NaiveBayesUpdatable 76.57 79.35 72.54 NaiveBayesUpdatable 71.66 70.06 64.65 
Lojistic 75.82 78.84 75.57 Lojistic 72.29 70.38 70.06 
Multilayer Perceptron 76.32 77.08 75.06 Multilayer Perceptron 72.61 72.29 75.16 

SimpleLogistic 74.56 77.83 75.31 SimpleLogistic 72.29 71.97 68.47 
SMO (WEKA SVM) 72.54 79.09 72.54 SMO (WEKA SVM) 71.02 69.43 69.43 
IB1 75.31 79.09 75.82 IB1 69.11 71.02 70.06 
IBk 75.31 79.09 75.82 IBk 69.11 71.02 70.06 
Logit Boost 77.33 78.34 78.34 Logit Boost 71.66 70.06 70.7 
Multi Class Classifier 75.82 78.84 75.57 Multi Class Classifier 72.29 70.38 70.06 
Threshold Selector 69.77 74.81 73.55 Threshold Selector 68.47 65.29 64.65 
LMT 76.07 76.57 77.83 LMT 71.34 71.02 68.15 
RandomForest 77.58 79.09 80.35 RandomForest 71.97 74.2 70.06 
OneR 69.77 69.77 70.53 OneR 70.7 70.38 70.06 
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% accuracy % accuracy 

DHFR_RL  
7-att 10-att 15-att 

DHFR_PC  
7-att 10-att 15-att 

MILP based hyper-
boxes  method 96.99 97.74 94.73 

MILP based hyper-
boxes  method 97.62 98.41 93.65 

Bayes Network 63.72 71.78 70.5 Bayes Network 80.42 80.42 78.04 
Naive Bayes 63.97 68.76 71.7 Naive Bayes 82.54 81.48 80.95 
Naive Bayes Simple 63.97 67.75 71 Naive Bayes Simple 82.8 79.89 81.22 
NaiveBayesUpdatable 63.98 68.77 71.78 NaiveBayesUpdatable 82.54 81.48 80.95 
Lojistic 69.52 73.8 78.58 Lojistic 81.75 83.33 81.75 
Multilayer Perceptron 62.72 76.57 77.58 Multilayer Perceptron 82.8 82.8 84.13 
SimpleLogistic 66.75 73.55 78.33 SimpleLogistic 80.42 84.13 81.22 
SMO (WEKA SVM) 64.99 73.05 79.59 SMO (WEKA SVM) 82.28 83.33 79.1 
IB1 62.97 75.06 81.11 IB1 82.28 80.16 81.75 
IBk 62.97 75.06 81.11 IBk 82.28 80.16 81.75 
Logit Boost 64.99 75.06 77.33 Logit Boost 83.33 81.48 81.48 
Multi Class Classifier 69.52 73.8 78.59 Multi Class Classifier 81.75 83.33 81.75 
Threshold Selector 64.99 69.52 78.59 Threshold Selector 83.33 79.1 81.22 
LMT 65.24 77.33 77.83 LMT 83.6 83.07 85.19 

RandomForest 68.51 77.08 77.83 RandomForest 82.8 80.95 83.07 
OneR 61.46 66 62.72 OneR 79.89 79.89 80.16 

Table 5.3: Comparison of classification accuracies of best WEKA classifiers with the 
MILP based hyper-boxes classification 

5.4 Detailed analysis: Cytochrome P450 C17 inhibitors 

We applied our approach to classify activities of drug molecules in a new data set (P450 

C17) that is constructed from data in literature [117, 118].  This approach may be utilized 

for the new molecules that inhibit activity of P450 C 17 before channeling them into 

experiment. 

For the 7, 10 and 15 attribute models the selected most significant descriptors as a result 

of the initial PLS study are listed with R2
 values (Table 5.1) of 0.946, 0.907 and 0.838 

respectively. 

When the hyper-boxes model was implemented, 10 and the 15-attribute models reached 

100% accuracy, by 10-fold cross validation.  The 7-attribute model, however, still needed 

to be improved since the classification results reached an average accuracy of 96.35%.  

This led us to conclude that there may be some overestimated descriptors actually having 
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low significance in terms of classifying the drug activity.  Therefore, significance tests 

were performed after the preliminary classification runs. 

 Iteration 1 Iteration 2 Iteration 3 
maxmax1 maxmax2 maxmax3 

C-027 EEig01d Mor22m 

Descriptor 
Leaving the 7 
desc. Model 0.96416 0.9491 0.67855 

    
minmax1 minmax2 minmax3 

EEig04x nHAcc Mor14e 

Descriptor 
Entering the 7 
desc. Model 0.5455 0.5783 0.5946 

Table 5.4: The descriptors leave the 7 descriptor model and the descriptors replacing them 
 

Table 5.4 shows the p-value calculation results for the descriptors for each iteration.  At 

iteration 1, C-027 was detected since it had the largest p-value among the other descriptors.  

Then from the significance analysis of 10 descriptor model, EEig04x was chosen to replace 

it, since its maximum p-value is the minimum among the other descriptors.  After each 

replacement, the hyper-boxes classification model was built and performed with the new 

attributes and, average classification accuracy was determined.  The runs were stopped 

after iteration 3 since we reached 100% accuracy.  The classification results are reported in 

Table 5.5. 
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% accuracy 
P450 C17 Classification Method 7-attribute 10-attribute 15-attribute 

MILP based hyper-boxes  method 100.00 100.00 100.00 
Bayes Network 81.25 81.25 81.25 

Naive Bayes 62.50 71.88 53.13 
Naive Bayes Simple 62.50 68.75 50.00 
Naive Bayes Updatable 62.50 71.88 53.13 
Lojistic 71.88 56.25 62.50 
Multilayer Perceptron 62.50 71.88 59.38 
SimpleLogistic 75.00 75.00 81.25 

SMO 81.25 81.25 81.25 

IB1 59.38 59.38 81.25 

IBk 59.38 59.38 62.50 
Logit Boost 71.88 62.50 62.50 
Multi Class Classifier 71.88 56.25 62.50 
Threshold Selector 43.75 40.63 62.50 
LMT 75.00 75.00 81.25 

RandomForest 75.00 68.75 65.63 
OneR 75.00 71.88 75.00 

Table 5.5: Comparison of classification accuracies of best WEKA classifiers with MILP 
based hyper-boxes  classification on P450 C17 inhibitors. 

 
The results of the final run of hyper-boxes classification for the 7-descriptor model 

showed that the effect of changing the less significant descriptors with the more significant 

ones improved the accuracy of the classification from 96.36% to 100%.  Since we have 

reached 100 % accuracy in 7–descriptors models, the significant ones may be included in 

this model among 912-descriptors that are initially calculated by e-DRAGON.  Brief 

explanations of the descriptors can be found in Table 5.6 [89]. 

 

Mor10m 3D-MoRSE - signal 10 / weighted by atomic masses 

DISPp d COMMA2 value / weighted by atomic polarizabilities 

Mor14e 3D-MoRSE - signal 14 / weighted by atomic Sanderson electronegativities 

Mor08m 3D-MoRSE - signal 08 / weighted by atomic masses 

nHAcc number of acceptor atoms for H-bonds (N. O. F) 

EEig04x Eigenvalue 04from edge adj. matrix weighted by edge degrees 

DISPv    d COMMA2 value / weighted by atomic van der Waals volumes 

Table 5.6: The brief explanations of the most significant descriptors 
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5.5 Discussion 

Early analysis and estimation of the drug activities by computational methods are widely 

studied in order to narrow down drug candidates for further experimental tests.  The 

accuracy comparison of our algorithm with other QSAR algorithms suggests that drug 

activities can be classified with a significantly higher accuracy with the method introduced 

in this study. 

After model building by E-dragon QSAR software, the PLS runs were performed to 

determine the best model in representing the depended variables (IC50 values) in terms of 

the independent variables (the attributes).  The corresponding R2 values were calculated to 

determine the reliability of the PLS models, where a model with a higher R2 value can be 

regarded as a more reliable model to proceed to the classification step.  The R2 values for 

the 15, 10 and 7 descriptor models of P450 C17 were obtained by PLS runs and, with a 

considerable strength in representing the IC50 values we accepted the initial models.  While 

the high R2 values of the Ache inhibitor models also were promising on its own to build the 

classification model, the initial models of BZR and COX2 inhibitor sets were chosen after 

the comparison of PLS results with the results reported in the literature as presented in 

Table 5.3.  For DHFR inhibitors data sets such comparison was not also possible, therefore 

the models with the best R2 values in PLS studies were chosen among all other possible 

models calculated. R2 value directly depends on the values of attributes (the descriptors) 

and the number of attributes in the corresponding model. 

We first applied our iterative algorithm to the large and widely used QSAR data sets in 

order to validate our methodology.  The strength of our algorithm was presented by 

comparing our classification accuracies with the classification accuracies of 63 WEKA 

classifiers, on 7 inhibitor sets.  The attribute sets prepared as the input for WEKA 
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classifiers were the same as the ones, by which we built the last iteration of our MILP 

based hyper-boxes classification model.  In other words, those were the most significant 

attributes that we used to develop the final classification models and reached our best 

accuracies.  Our approach outperformed all of the classifiers available in WEKA for each 

model of the all of the 7 data sets, even reaching 100% accuracy in predicting the activity 

classification of the inhibitor sets, Ache inhibitors and Cytochrome P450 C17.  A total 

number of 21 QSAR models were built in this study for 7 inhibitor sets, and in 18 of them 

the accuracy of our methodology exceeded the accuracy of the second best classifier with 

more than 10%.  Through all of the 21 models, the smallest difference in the accuracies is 

6.31% and the largest difference is 27.47%. 

The higher prediction accuracy of the model not only comes from the choice of initial 

models by PLS analysis but also the characteristics of MILP based hyper-boxes method.  

The MILP based hyper-boxes approach allows using more than one hyper-box in order to 

define a single class [108].  Moreover, this approach deals with problematic and non-

problematic instances separately and prevents overlapping of final hyper-boxes [109].  

Therefore, these strengths significantly improve the accuracy and efficiency of the MILP 

based hyper-boxes approach compared to other data classification methods. 
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Chapter 6 

 

CO�CLUSIO�S 

 

 

In this study, structure based rational drug design approach was employed to discover 

novel inhibitors for two different target proteins for cancer research. The first target protein 

was Cytochrome P450 C17, the key enzyme in androgen synthesis and the second target 

protein was XPF, a key member of the DNA excision repair system. In designing an 

inhibitor targeting Cytochrome P450 C17, we aim to decrease androgen levels in the cells 

and therefore prevent the progression of the prostate cancer. However, targeting the XPF-

ERCC1 pair was not a direct chemotherapeutic agent design approach, but the aim was to 

design XPF-ERCC1 inhibitors as chemotherapeutic agent “aids” that prevent DNA repair 

and resistance development in cancerous cells against the chemotherapeutic agents. Finally 

a novel QSAR approach to predict the activity level of the inhibitors was presented, since a 

priori analysis of the activity of inhibitors on the target protein by computational 

approaches can be useful in narrowing down drug candidates for further experimental tests.  

As a method of treatment for prostate cancer, reducing levels of androgens was adopted. 

In order to achieve this, CYP17 is selected as the target enzyme due to its key role in 

androgen biosynthesis. First inhibitor designs were based on PREG and PROG, since no 

other inhibitors were reported. Due to use of substrates, first generation of designed 

compounds was steroid based molecules with various side chains attached to 17th carbon. 

Even though some of these compounds showed inhibitory effects, they were not promising 

candidate drugs. The drawbacks of steroidal compounds were poor acid-stability, poor 

bioavailability, short half-life, first-pass effects and poor selectivity[64]. Next, 
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ketoconazole was shown to reduce androgen levels in human, and has inhibitory effect on 

CYP17. However, it has been removed from use because of liver toxicity and its effects on 

other cytochrome enzymes[69]. Recently, two steroidal compounds (VN/124-1 and 

abiraterone) were reported to be promising CYP 17 inhibitors and showing success in 

preclinical and clinical trials respectively[78]. However; these two compounds are steroidal 

compounds, thus a successful design of non-steroidal, specific, non-toxic CYP 17 inhibitor 

is still an intriguing area of research.  

The non-steroidal compounds that are reported in the literature are mainly based on 

mimicking known steroids that are interacting with the CYP 17 active site (i.e. 

progesterone), pharmacophore modeling (based on QSAR analysis of known inhibitors) 

and creating derivatives of known inhibitors of cytochrome enzymes such as: antifungal 

imidazole containing agents related to ketoconazole, pyridine derivatives, xanthone 

derivatives carbazole derivatives. The non-steroidal compounds reported in the literature 

did not yet show promising results in clinical trials.  

In this study, we show that structure-based drug design approach based on the model 

protein structure by Auchus et al.[68] (PDB id: 2C17) can be successfully applied to 

identify novel CYP 17 inhibitors. Molecular dynamics simulation was used to improve the 

protein structure by Auchus et al. to further use in docking studies. The identified steroidal 

and non-steroidal compounds that inhibit the biological activity of CYP 17 in silico, further 

tested for toxicity, and the assay indicated that the non-steroidal “lead compound” does not 

display toxic effects on HeLa Cell line in 24 hours at a concentration equals to its IC50 

value. Therefore; the identified lead molecule (N15) may be used as a promising lead for 

further optimizations to improve inhibition efficiency and discover a novel non-steroidal 

CYP17 inhibitor.  

In designing the derivatives we aim to improve the binding strength of the inhibitor, 

while keeping the toxicity measure at minimum. The docking position of N15 and the 
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probable atomic interactions between N15 and the side chains of the active site residues 

were carefully studied and 28 derivatives were designed. The derivatives were further 

analyzed by docking simulations to study inhibition strength and logP calculations to study 

bioavailability.  

Next, structure based rational drug design approach was applied to design inhibitors to 

prevent XPF-ERCC1 pair formation. Since XPF-ERCC1 has a key role in nucleotide 

excision repair, XPF-ERCC1 inhibitors were designed as chemotherapeutic agent aids that 

prevent DNA repair and resistance development in cancerous cells. 

The target binding pocket on XPF was determined by several experimental and 

computational studies. Experimental data suggests that the deletion of Phe-293 eliminates 

binding to XPF, where Phe-293 is naturally located in a pocket surrounded by XPF 

residues 837-905. HotSprint reported Pro-837 Phe-840 Leu-841 Met-844 Met-856 Ile-862 

Leu-865 and Phe-889 as hot spot residues on XPF, and Arg-234 Leu-239 Ser-259 and Phe-

293 on ERCC1, which agrees with the experimental data previously reported. 

Computational alanine scanning was also applied to the XPF-ERCC1 pair to determine 

important interactions in the protein-protein interface. The inhibitor target site is 

determined on XPF to be the pocket surrounded by residues Leu-841, Met-856, Val-859, 

Lys-860, interacting the key interface residue Phe-293.  

Virtual screening with MD simulations were applied to determine drug candidates from 

a 6 million compound library and the best 28 molecules were determined based on docking 

scores (i.e. binding affinity to the active site) and logP scores (i.e. bioavailability score) to 

further test experimentally.  

Finally, a computational classification approach was created to enhance the drug design 

process by eliminating the number of drug candidates to be tried experimentally. The 

accuracy comparison of our algorithm with other QSAR algorithms suggests that drug 
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activities can be classified with a significantly higher accuracy with the method introduced 

in this study. 

After model building by E-dragon QSAR software, the PLS runs were performed to 

determine the best model in representing the depended variables (IC50 values) in terms of 

the independent variables (the attributes).  The corresponding R2 values were calculated to 

determine the reliability of the PLS models, where a model with a higher R2 value can be 

regarded as a more reliable model to proceed to the classification step.  The R2 values for 

the 15, 10 and 7 descriptor models of P450 C17 were obtained by PLS runs and, with a 

considerable strength in representing the IC50 values we accepted the initial models.  While 

the high R2 values of the Ache inhibitor models also were promising on its own to build the 

classification model, the initial models of BZR and COX2 inhibitor sets were chosen after 

the comparison of PLS results with the results reported in the literature as presented in 

Table 5.3.  For DHFR inhibitors data sets such comparison was not also possible, therefore 

the models with the best R2 values in PLS studies were chosen among all other possible 

models calculated. R2 value directly depends on the values of attributes (the descriptors) 

and the number of attributes in the corresponding model. 

We first applied our iterative algorithm to the large and widely used QSAR data sets in 

order to validate our methodology.  The strength of our algorithm was presented by 

comparing our classification accuracies with the classification accuracies of 63 WEKA 

classifiers, on 7 inhibitor sets.  The attribute sets prepared as the input for WEKA 

classifiers were the same as the ones, by which we built the last iteration of our MILP 

based hyper-boxes classification model.  In other words, those were the most significant 

attributes that we used to develop the final classification models and reached our best 

accuracies.  Our approach outperformed all of the classifiers available in WEKA for each 

model of the all of the 7 data sets, even reaching 100% accuracy in predicting the activity 

classification of the inhibitor sets, Ache inhibitors and Cytochrome P450 C17.  A total 
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number of 21 QSAR models were built in this study for 7 inhibitor sets, and in 18 of them 

the accuracy of our methodology exceeded the accuracy of the second best classifier with 

more than 10%.  Through all of the 21 models, the smallest difference in the accuracies is 

6.31% and the largest difference is 27.47%. 

The higher prediction accuracy of the model not only comes from the choice of initial 

models by PLS analysis but also the characteristics of MILP based hyper-boxes method.  

The MILP based hyper-boxes approach allows using more than one hyper-box in order to 

define a single class.  Moreover, this approach deals with problematic and non-problematic 

instances separately and prevents overlapping of final hyper-boxes.  Therefore, these 

strengths significantly improve the accuracy and efficiency of the MILP based hyper-boxes 

approach compared to other data classification methods. 
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