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ABSTRACT

The spatially uniaxially anisotropic d = 3 Ising spin glass is solved exactly on a hi-

erarchical lattice. This solution also constitutes a very good approximation to the cubic

lattice. Five different ordered phases, namely ferromagnetic, columnar, layered, antiferro-

magnetic, and spin-glass phases, are found in the global phase diagram. The spin-glass

phase is more extensive when randomness is introduced within the planes than when it is

introduced in lines along one direction. Phase diagram cross-sections, with no Nishimori

symmetry, with Nishimori symmetry lines, or entirely imbedded into Nishimori symmetry,

are studied. The boundary between the ferromagnetic and spin-glass phases can be either

reentrant or forward, that is either receding from or penetrating into the spin-glass phase, as

temperature is lowered. However, this boundary is always reentrant when the multicritical

point terminating it is on the Nishimori symmetry line.
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ÖZETÇE

Tek eksenli anizotropik üc. boyutlu Ising spin camının hiyerars.ik örgüde kesin c.özümü

yapılmıs.tır. Bu c.özüm aynı zamanda kübik örgü ic.in de c.ok yakın c.özümler vermektedir.

Global faz diyagramında; ferromanyetik, düzlem modüle, eksen modüle, antiferromanyetik

ve spin camı olmak üzere bes. farklı düzenli faz bulunmus.tur. Düzleme eklenen rasgele-

lik, tek eksene eklenen rasgelelikle kars.ılas.tırıldıg̃ında spin camı fazının daha yog̃un oldug̃u

gözlenmis.tir. Nishimori simetrisiz, Nishimori simetri c.izgileri ic.eren ve bütünüyle Nishi-

mori simetrisine sahip faz diyagramı kesitleri incelenmis.tir. Ferromanyetik ve spin camı

arasındaki sınır, girintili yani sıcaklık düs.tükc.e ferromanyetik faza dog̃ru kayan veya c.ıkık

yani sıcaklık düs.tükc.e spin camı fazına dog̃ru ilerleyen özellig̃e sahiptir. Ancak bu sınır eg̃er

Nishimori simetri c.izgisiyle kesis.en bir c.oklu kritik nokta ile sonlanıyorsa her zaman girintili

davranıs. göstermektedir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

1.1 Types of Phase Transitions

Phase transitions are signalled by the singularities in the order parameter or in the

response functions. Focusing on the phase diagram of carbon dioxide (Figure 1.1), we see

three phases coexisting at point T, known as the triple point, or each of them coexisting with

one of the others along the lines. These lines are first-order phase transition boundaries.

In this particular case the order parameter is the density. The phase boundary dividing

the liquid and the solid phases extends to infinity. The reason for that is the occurrence of

a symmetry breaking. In the solid phase there is a frozen density wave having a non-zero

amplitude, while the liquid phase has translational symmetry. In other words the result

of the density operator, which counts the particles in a small volume, does not change by

translating its argument x by any deviation.

However in the solid phase there is an “atom-no atom” construction. Because of this

the two phases will coexist along the solid-liquid phase boundary and there will always be a

discontinuity in the order parameter. The phase boundary between gaseous and liquid states

is terminated by a critical point. At this point there is no coexistence of different states,

but still there is phase transition, which is called a second-order phase transition. Unlike

the first-order transition, in a second-order transition, large and long-lived fluctuations are

observed. Moreover, the correlation length becomes infinite, which causes singularities in

response functions.
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Figure 1.1: Phase diagram of carbon dioxide.

1.1.1 Critical Behavior

The singularities in the response functions obey power laws, and the exponents that define

the critical behavior of these singularities are called critical exponents. These exponents are

classified as given in Table 1.1.

1.1.2 Example: Specific Heat

Internal energy is the thermodynamic average of the Hamiltonian.

U =< H >=
Tr He−βH

Tr e−βH = −
Tr ∂

∂β e−βH

Tr e−βH , (1.1)

where the trace Tr denotes a sum over all the states of the system. Specific heat is given

by

C =
∂U

∂T
=

∂U

∂β

∂β

∂T
= −kBβ2 ∂U

∂β
. (1.2)

Substituting (1.1) into (1.2) results in

C = kBβ2


Tr ∂2e−βH

∂β2

Z −
(

Tr ∂e−βH
∂β

Z

)2

 . (1.3)

Note that Tr e−βH = Z, and J = βJ̃ , ∂
∂β = ∂J

∂β
∂

∂J = J̃ ∂
∂J . Using this, equation (1.3)

reduces to
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Physical property Behavior Notes

Specific Heat C = dU/dT ∼ |t|−α α > 0 : divergence

α < 0 : cusp

Correlation length ξ ∼ |t|−ν ν > 0

Critical correlation function Γ(r) ∼ 1
rd−2+η η ≥ 0

Compressibility κ = − 1
V

∂V
∂P ∼ |t|−γ γ > 0

Density (ρL − ρG) ∼ tβ β > 0

Susceptibility χ = ∂M/∂H ∼ |t|−γ

Magnetization M ∼ tβ

Table 1.1: Power law behaviors of order parameters and response functions at the critical
point.

C = kBβ2J̃2


Tr

(∑
<ij> sisj

) (∑
<kl> sksl

)
e−βH

Z −
(Tr

∑
<ij> sisj

Z
)(

Tr
∑

<kl> sksl

Z
)



= kBJ2


 ∑

<ij>,<kl>

< sisjsksl > −

 ∑

<ij>

< sisj >




( ∑

<kl>

< sksl >

)


= kBJ2
∑

<ij>,<kl>

< sisjsksl > − < sisj >< sksl >

= kBJ2
∑

<ij>,<kl>

Γ(~rij , ~rkl) (1.4)

=
Nq

2
kBJ2

∑

<ij>

Γ̃(~rij) . (1.5)

Equation (1.5) constitutes ”specific heat sum rule”. This summation can be converted

into an integral, with lattice spacing a and system length L. The behavior of the specific heat

can be investigated at criticality as well as near the critical point. We define r ≡ |~ri − ~rj |.

I. At criticality, since ξ →∞, the specific heat per particle becomes,

C

N
∼

∫ L

a
rd−1dr

1
ru

. (1.6)
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Let x ≡ r/L,
C

N
∼ Ld−u

∫ 1

a/L→0
xd−1−udx . (1.7)

Letting, u ≡ d− 2 + ηT , and we can write:

C

N
∼ L2−ηT

∫ 1

0
x1−ηT dx . (1.8)

Therefore in thermodynamic limit, L →∞, there is a singularity in the specific heat

per particle for ηT < 2.

II. Near the critical point the greatest contribution to the integral will come from the

interval r = [a, ξ]:

C

N
∼

∫ ξ

a
r1−ηT dre−r/ξ

∼
∫ ξ

a
r1−ηT dr

∼ ξ2−ηT . (1.9)

Finally, using equation (1.9) and the power laws from Table 1.1, the relation between

α, ν and ηT is obtained: α = (2− ηT )ν.

1.2 Universality

It has been observed that the values of the critical exponents are the same even if they

are measured for different systems. This phenomenon was discovered a long time before

physicists began their efforts to explain critical phenomena. As an example, the critical

exponents for the YFeO3 ferromagnet, CO2 and Xe fluids, the FeF2 antiferromagnet, beta-

brass alloy, the NH4Cl molecular crystal and the d = 3 Ising model in any lattice are

the same. These systems form a universality class. Another universality class consists of

XY-magnets, superfluid helium, and liquid crystals, which have the same numerical values

for the critical exponents. In other words they share the same critical properties, which

are different from the previously mentioned universality class. Therefore a theory which

describes critical phenomena should also explain the principle of universality.
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1.3 History

The evolution of physical theories of phase transitions can be summarized historically. Until

1960 critical phenomena was explained using different forms of mean-field-theory: Curie-

Weiss, molecular field, Hartree, Landau and Gibbs theories. Between 1960 and 1970, high-

order perturbation theory and molecular dynamics were developed, along with Monte Carlo

simulations and droplet theories. L. P. Kadanoff’ s scaling theory in 1966 marked a turning

point in that era. In 1971 K.G. Wilson introduced renormalization-group theory which was

a significant advance in statistical and particle physics. This approach was applied in a

variety of fields. The chronological order is as follows:

* 1980’ s neural networks, quenched disorder, spin glasses

* 1990’ s economics, markets, earthquakes

* 2000’ s small-world-networks, quantum systems
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Chapter 2

RENORMALIZATION-GROUP APPROACH

2.1 Scaling Theory of Kadanoff

The basic idea of Kadanoff’ s scaling theory is coarse graining. Spins are grouped in cells,

with each cell containing bd spins. The rescaled variable s′i′ carries the collective property

of all spins inside its block. The assumption is that the physics governing the original

system does not change after the rescaling transformation. By doing consecutive rescalings,

it can be seen that some quantities are amplified, known as relevant fields, while others are

supressed, known as irrelevant fields. The distinction between relevant and irrelevant fields

depends on macroscopic quantities.

2.1.1 Example: Ising ferromagnet

The Ising ferromagnet has the Hamiltonian

−βH = J
∑

〈ij〉
sisj + H

∑

i

si . (2.1)

The cell variable is defined as

s′i′ = b−d
i′∑

i

si . (2.2)

Since the physics is not modified after the transformation, in order to conserve the

structure of the problem the cell variable should be written in the form

s′i′ = sgn

(
i′∑

i

si

)
. (2.3)

The original system has N spins with lattice spacing a, while the rescaled system has

N ′ = N/bd sites with a rescaled spacing a′ = ba. The two systems can be made equivalent

by the appropriate choice of J ′ as well as H ′. Thus the partition function is not changed

but it is a function of the rescaled variables:
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Z(t,H) = Z(t′,H ′) , (2.4)

where t ≡ Jc − J

Jc
. The rescaled interactions are assumed to be analytic functions of the

original physical quantities. The relations between the original and rescaled interactions are

called recursion relations, and can be written as:

t′ = t′(t,H) , (2.5)

H ′ = H ′(t,H) . (2.6)

Because of analyticity these functions can be linearized around the critical point, and

with interchange of up and down directions (i.e. s → −s, H → −H, t → t and the same

mappings for the primed variables) the recursion relations near critical point become:

t′ = byT t and H ′ = byH H . (2.7)

Instead of byT and byH anything else can be chosen but this mapping satisfies two group

properties, closure and existence of the identity, making the rescaling transformation a

semi-group.

Dimensionless Free Energy

We start with Eq. (2.4), and take the logarithm of both sides,

lnZ = lnZ ′ , (2.8)

Nf(t, H) = N ′f(t′,H ′) , (2.9)

f(t, H) = b−df(byT t, byH H) . (2.10)

By choosing b = t−1/yT the free energy per particle reduces to

f(t,H) = td/yT f

(
1,

H

tyH/yT

)
(2.11)

= td/yT func
(

H

tyH/yT

)
. (2.12)
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The specific heat is proportional to the second derivative of the free energy, and from

Table 1.1 it scales with t−α. Therefore approaching the critical point from the thermal

direction, the value for α can be deduced,

α =
d

yT
− 2 . (2.13)

On the other hand, to approach the critical point from the symmetry-breaking direction

b has to have the form b = H−1/yH . Therefore, the scaling form becomes

f(t,H) = Hd/yH func
(

1,
t

HyT /yH

)
. (2.14)

The magnetization is defined as the magnetic field derivative of the free energy, M =
∂f

∂H
,

and it is bounded (|M | ≤ 1). As H → 0 the magnetization does not diverge if
d

yH
≥ 1. The

nearest-neighbor correlations are related to the t derivative of the free energy, 〈sisj〉 ∼ ∂f

∂t
.

From Eq. (2.12) it can be seen that
d

yT
≥ 1. Overall, the critical exponents are bounded

by zero from below, because they describe relevant fields, and from the above analysis their

upper limit is d,

yH , yT ∈ [0, d] . (2.15)

As can be seen, a simple examination of the free energy yields a large amount of infor-

mation about critical behavior and critical exponents, giving a very good demonstration of

the theory.

Correlation Length at H = 0

Correlation length scales with exponent ν near the critical point, ξ = ξ0t
−ν . By substituting

in the rescaled temperature one finds

ξ′ = ξ0t
′−ν

= ξ0(byT t)−ν

= b−yT νξ . (2.16)
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Because of length rescaling, ξ′ = b−1ξ. Comparison of this relation with Eq. (2.16)

results in ν =
1
yT

. This result can be used in Eq. (2.13) to get a hyperscaling relation,

2− α = dν . (2.17)

Magnetization

Magnetization is the H derivative of the free energy per particle

M(t,H) =
1
N

∂

∂H
lnZ(t,H) . (2.18)

By substituting the rescaled variables into Eq. (2.18) one obtains

M(t,H) =
b−d

N ′ b
yH

∂

∂H ′ lnZ ′(t′,H ′)

= byH−d 1
N ′

∂

∂H ′ lnZ ′

= byH−dM(t′,H ′) . (2.19)

To approach from the thermal direction, the appropriate choice of b is, b = t−1/yT . Then

Eq. (2.19) becomes,

M = t(d−yH)/yT M

(
1,

H

tyH/yT

)

= t(d−yH)/yT func
(

H

tyH/yT

)
. (2.20)

To find the critical behavior of magnetization with respect to temperature, one needs to

move along thermal direction, H = 0, giving the critical exponent β,

M(t) ∼ t(d−yH)/yT ,

β =
d− yH

yT
. (2.21)

To approach the critical point along the magnetic field direction the appropriate choice

of b is: b = H−1/yH . Plugging that into Eq. (2.19) one obtains the scaling form of the

magnetization with respect to magnetic field,
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M(t,H) = H(d−yH)/yH func
(

t

HyT /yH

)
. (2.22)

At t = 0, the relation for the critical exponent δ is obtained,

δ =
d

yH
− 1 . (2.23)

Correlation Function

For a local field, which affects only one spin, the recursion relation becomes,

H ′
i′ =

byH

bd
Hi . (2.24)

The two-point correlation function is a measure of the correlation of spin pairs separated

by a distance r,

Γ(r, t, H) = 〈s0sr〉 − 〈s0〉〈sr〉 (2.25)

=
∂2

∂H0∂Hr
lnZ

= b2yH−dΓ(b−1r, byT t, byH H) .

By choosing b = r, it reduces to

Γ(r, t, H) =
func(ryT t, ryH H)

r2(d−yH)
. (2.26)

At the critical point, the general behavior of the correlation function is obtained, and

the critical exponent η can be deduced as a function of the scaling exponents,

Γ(r, t = 0,H = 0) =
A

r2(d−yH)

⇒ d− 2 + η = 2d− 2yH ,

η = d + 2− 2yH . (2.27)
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2.1.2 Results

From the analysis it can be seen that the scaling exponents determine all the critical expo-

nents. Furthermore, the scaling exponents relate critical exponents to each other. Given the

simplicity of the technique the amount of information that has been acquired is impressive.

However, other physical quantities away from the critical temperature cannot be calculated

using the recursion relations from Kadanoff’s theory. Also, the theory assumes the ana-

lyticity of the recursion relations, but no explicit forms of the relations could be derived.

The two negative aspects are related, but the renormalization-group theory described in the

next section has solutions to both of them.

2.2 Renormalization-Group Theory

In contrast to Kadanoff’s theory the recursion relations can be calculated in renormalization-

group theory. Instead of focusing on the critical point, the renormalization-group analysis

starts from calculating the partition function, with the same requirement of its invariance

under rescaling,

Z =
∑

{s}
e−βH

=
∑

{s′}


∑

{σ}
e−β′H′({s′},{σ})




=
∑

{s′}
e−β′H′({s′})

= Z ′

With this operation, the recursion relations that connect the rescaled system to the

original system can be obtained as analytic functions. The renormalized Hamiltonian H′

may have a more general form than the original Hamiltonian. Considering the Ising ferro-

magnet Eq. (2.1) as example, an extra term will be produced by the renormalization-group

transformation, which is called the additive constant. It plays an important role in the

calculation of the free energy. The renormalization-group flows describe a bigger picture
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Figure 2.1: Renormalization-group flows of the Ising ferromagnet in two dimensions.

than the Kadanoff picture, and also give detailed information about thermodynamic fields

in the whole phase space.

The linearization of the recursion relations about a non-trivial critical point produces

information about critical exponents. In the flow space the flows are controlled by fixed

points, classified as trivial and non-trivial fixed points depending on the behavior of the

correlation length. At a trivial fixed point the correlation length is zero, while it diverges

to infinity at a non-trivial point. In Figure 2.1 points other than the critical point are

trivial fixed points. F controls the first-order transition, U and D are up and down sinks

and N controls the flow on the temperature axis for values of T greater than the critical

temperature.

In addition to that, thermodynamic functions can be calculated using the renormalization-

group flows, by constructing a recursion matrix T with elements:

Tβα =
qβ

qα

∂K ′
β

∂K ′
α

, (2.28)

where Kα , α = 1, ... ,m, denotes the m interaction parameters in the Hamiltonian. The

density that corresponds to Kα can be calculated using renormalization-group flows,
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Figure 2.2: Renormalization-group flows of different physical manifolds (a), (b) and (c) [1].

Mα =
1

Nα

∂

∂Kα
lnZ

=
b−d

qαN ′
qβ

qβ

∑

β

∂K ′
β

∂Kα

∂ lnZ
∂K ′

β

= b−d
∑

β

M ′
β

qβ

qα

∂K ′
β

∂Kα

= b−d
∑

β

M ′
βTβα , (2.29)

The renormalization-group picture gives an explanation of the concept of universality

Section 1.2. The flows show, why different Hamiltonians have the same exponents. In the

Figure 2.2, a fixed point controls different Hamiltonians of the same universality class. The

critical points of each physical manifold all flow to a single fixed point.
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2.3 Spin Glasses

A spin glass consists of randomly oriented spins with their orientation frozen in time [2]. In

other words, the magnetization is zero if it is averaged over space, however, the time average

of a single spin is non-zero. To distinguish the spin-glass and paramagnetic phases, since in

both phases the magnetization is zero, it is convenient to define a spin-glass parameter q.

Before defining m and q, one needs to introduce the configurational average.

For an Ising spin glass the microscopic interactions are described by the Hamiltonian:

H = −
∑

〈ij〉
Jijsisj , si = ±1 (2.30)

The interactions Jij are randomly distributed throughout the system, with the proba-

bility distributions typically assumed to be Gaussian or ±J ,

Gaussian: P (Jij) =
1√

2πJ2
exp

(
−(Jij − J0)2

2J2

)
, (2.31)

± J : P (Jij) = pδ(Jij + J) + (1− p)δ(Jij − J) . (2.32)

These distributions describe the quenched (fixed) distribution of bonds in a system. The

configurational average is calculated over all possible distributions of bonds in the system.

It is denoted by brackets [...], and has the explicit form

[A] =
∫ ∏

〈ij〉
dJijP (Jij)A , (2.33)

where A represents a physical quantity. The local magnetization, which is the thermody-

namic average of a spin at site i, has the form

mi =
Tr sie

−βH

Tr e−βH . (2.34)

The magnetization m is the configurational average of the local magnetization, m = [mi].

As stated above, to distinguish spin-glass and paramagnetic behaviors it is important to

introduce a spin glass order parameter q = [〈si〉2]. In a paramagnet m and q are zero.

In the spin-glass phase though m is zero, q is greater than zero. There are many bond

configurations corresponding to the same bond distribution. In a spin glass if mi is averaged
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over one configuration, it may have a positive value, while another average over a different

configuration may result in a negative value. Eventually the average over all configurations

results in m = 0. However, the square of the average is always positive, therefore if it is

averaged over different configurations it will be positive.

2.3.1 Nishimori Symmetry

The Hamiltonian given in Eq. (2.30) can be gauge transformed by the following maps:

si → siσi , Jij → Jijσiσj , (2.35)

where σi ∈ {−1, 1} and is independent of si. The internal energy is the thermodynamic

average of H and its configurational average is,

[E] =
[
Tr He−βH

Tr e−βH

]

=
∫ ∏

〈ij〉
dJijP (Jij)

Tr
(
−∑

〈ij〉 Jijsisj

)
eβ

∑
〈ij〉 Jijsisj

Tr eβ
∑
〈ij〉 Jijsisj

. (2.36)

Since the Hamiltonian H is invariant under the gauge transformation, we can apply the

transformations shown in Eq. (2.35) in Eq. (2.36)

[E] =
∫ ∏

〈ij〉
dJijP (Jijσiσj)

Tr
(
−∑

〈ij〉 Jijsisjσ
2
i σ

2
j

)
eβ

∑
〈ij〉 Jijsisjσ2

i σ2
j

Tr eβ
∑
〈ij〉 Jijsisjσ2

i σ2
j

=
∫ ∏

〈ij〉
dJijP (Jijσiσj)

Tr
(
−∑

〈ij〉 Jijsisj

)
eβ

∑
〈ij〉 Jijsisj

Tr eβ
∑
〈ij〉 Jijsisj

. (2.37)

Note that we have used σ2
i = 1 and

∣∣∣∏〈ij〉 σiσj

∣∣∣ = 1, which is the Jacobian of the

transformed variables. We assume P (Jijσiσj) has the form

P̃ (|Jijσiσj |)eaJijσiσj . (2.38)

In addition to that, since the RHS of the equation does not depend on the gauge variables

σ specifically, we can sum the RHS of the equation over all possible configurations of σ and
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divide that by the total number of configurations, which is 2N . Thus, the configurational

average of the internal energy becomes:

[E] =
1

2N

∫ 
∏

〈ij〉
dJijP̃ (|Jij |)


 tr ea

∑
〈ij〉 Jijσiσj

Tr
(
−∑

〈ij〉 Jijsisj

)
eβ

∑
〈ij〉 Jijsisj

Tr eβ
∑
〈ij〉 Jijsisj

,

(2.39)

with tr being the trace over the set {σ}. If a = β then the denominator and the trace over

σ are equal to the partition function of the same configuration and they cancel each other.

The condition a = β defines the Nishimori line. The expression becomes

[E] =
1

2N

∫ 
∏

〈ij〉
dJijP̃ (|Jij |)


Tr


−

∑

〈ij〉
Jijsisj


 eβ

∑
〈ij〉 Jijsisj

=
1

2N

∫ 
∏

〈ij〉
dJijP̃ (|Jij |)


Tr

(
− ∂

∂β

)
eβ

∑
〈ij〉 Jijsisj

= − 1
2N

∂

∂β
Tr


∏

〈ij〉

∫
dJijP̃ (|Jij |)eβJijsisj




= − 1
2N

∂

∂β
Tr

(∫
dJP̃ (J)eβJ

)NB

= − ∂

∂β

(∫
dJP̃ (J)eβJ

)NB

. (2.40)

2.3.2 Nishimori Line for the ± J Model

We define the variable τij ≡ Jij/J , so the ±J distribution in Eq. (2.32) can be rewritten as

P (Jij) =
eκp

2 coshκp
(δ(τij + 1) + δ(τij − 1)) , (2.41)

where e2κp ≡ 1− p

p
. Equation (2.41) has the same form in Eq. (2.38) with a =

κp

J
. Finally,

the Nishimori line for ±J model is obtained through, aJ = βJ = κp or, e2βJ =
1− p

p
.

The Nishimori line is a subspace, which is closed under the renormalization-group transfor-

mation. Therefore the probability distributions, evolving with consecutive renormalization-

group transformations have to satisfy the Nishimori symmetry at each step. In a phase

diagram, for which the Nishimori condition is satisfied on a line, the point that intersects



Chapter 2: Renormalization-Group Approach 17

the Nishimori line is a special point and if there exists a multicritical point in that phase

diagram one expects the two special points to be the same.
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Chapter 3

REENTRANT AND FORWARD PHASE DIAGRAMS OF THE

ANISOTROPIC d = 3 ISING SPIN-GLASS

3.1 Introduction

The Ising spin glass [2] yields a phase diagram with a distinctively complex ordered phase,

in d = 3. A wide accumulation of methods and results has occurred for this system. Most

remarkably, in spite of its high spatial dimension and complex ordering behavior, exact

information is being obtained for this system.[3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13] Thus, in the

phase diagram in terms of temperature and concentration of antiferromagnetic bonds, the

occurrence of the Nishimori symmetry line [3, 4] and the exact location of the multicritical

point [11, 13] have been deduced. Furthermore, in systems with the Nishimori symmetry,

it has been shown that the ferromagnetic phase cannot extend to antiferromagnetic bond

densities beyond that of the multicritical point.[3, 4] The two remaining options being a

straight line or a reentrance situation, subsequent works [14, 15] on hierarchical lattices

have shown that for these systems, the spin-glass phase diagram is reentrant, namely that

below the multicritical point, the ferromagnetic phase recedes from the spin-glass phase

as temperature is lowered. Exact results recently have also been extended to Potts spin

glasses.[16]

A spatially uniaxially anisotropic d = 3 system is studied in this work, to our knowledge

the first study of quenched randomness and frustration in a spatially anisotropic higher-

dimensional system. In fact, both anisotropy and quenched randomness have acquired

increased relevance from high-temperature superconductivity results.[17, 18] Our calculation

is exact for a hierarchical lattice and approximate for a tetragonal lattice. We find a rich

phase diagram (e.g., Fig.3.1) with five different ordered phases, namely with ferromagnetic,

antiferromagnetic, layered, columnar, and spin-glass order. The spin-glass phase is more

extensive when randomness is introduced within the planes than when it is introduced in
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Figure 3.1: Top line: Constant-temperature cross-sections of the global phase diagram for
Kz/Kxy = 0.5, as a function of pxy and pz, which are the concentrations of antiferromagnetic
xy and z bonds, respectively. At low temperatures (high Kxy), the central spin-glass (SG)
phase separates the corner ferromagnetic (F), columnar (C), antiferromagnetic (A), and
layered (L) phases. The diagrams are twofold symmetric along each axis, but not fourfold
symmetric, due to the difference between longitudinal (pxy = 0) and transverse (pz = 0)
spin glasses. As temperature increases, the paramagnetic (P) phase appears at the central
point, first reaches the transverse spin-glass system and eliminates the spin-glass phase,
then reaches the longitudinal spin-glass system and eliminates the spin-glass phase. In
the latter system, the spin-glass and paramagnetic phases simultaneously occur for a very
narrow range of temperatures, as also seen in the inset in the lower left panel of Fig. 3.3
Middle line: Constant-temperature cross-sections for Kz = Kxy. Bottom line: Constant-
temperature cross-sections for Kz/Kxy = 2. All phase transitions in this figure are second
order.
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lines along one direction.

The global phase diagram includes cross-sections with no Nishimori symmetry, cross-

sections with Nishimori symmetry lines, and a cross-section entirely imbedded within Nishi-

mori symmetry. Thus, the multicritical point between the spin-glass, ferromagnetic, and

paramagnetic phases, previously found to occur on the Nishimori symmetry line, is also

found here at points with no Nishimori symmetry, but renormalizes to a fixed distribu-

tion of interaction probabilities that obeys Nishimori symmetry. Nevertheless, we find that

the boundary between the ferromagnetic and spin-glass phases can be either reentrant or

forward, that is either receding from or penetrating into the spin-glass phase, as temper-

ature is lowered. When the multicitical point is not on the Nishimori symmetry line, the

ferromagnetic-spin glass boundary can be reentrant or forward. When the multicritical point

is on the Nishimori symmetry line, this boundary is always reentrant [14, 15], consistently

with the rigorous result [3, 4].

K
z

K
xy

Figure 3.2: Construction of the uniaxially anisotropic d=3 hierarchical model. Two graphs
are mutually and repeatedly self-imbedded. Note that for Kxy = 0,Kz = 0, and Kxy = Kz,
the system reduces respectively to the d = 1, isotropic d = 2 and d = 3 systems.

3.2 Uniaxially Anisotropic Spin Glass

The uniaxially anisotropic Ising spin-glass system has the Hamiltonian

−βH =
∑

u

∑

〈ij〉u
Ku

ijsisj , (3.1)
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where si = ±1 at each site i, 〈ij〉u denotes a sum over nearest-neighbor pairs of sites along

the z direction (u = z) or in the xy plane (u = xy), and the bond strengths Ku
ij are equal to

Ku > 0 with probability 1−pu and −Ku with probability pu, respectively corresponding to

ferromagnetic and antiferromagnetic interaction. When imbedded into a cubic lattice, the

Hamiltonian (3.1) yields a uniaxially anisotropic d = 3 system.

Hierarchical lattices are d-dimensional lattices yielding exact renormalization-group so-

lutions to complex statistical mechanics problems. These lattices are constructed by the

repeated self-imbedding of a graph into a bond [19, 20, 21]. The shortest path between

the external vertices of the graph gives the length rescaling factor b and the number of

bonds in the graph gives the volume rescaling factor bd, from which the dimension d is

determined. Hierarchical lattices have been used to study a wide variety of problems, in-

cluding chaotic rescaling [22, 23], spin-glass [14], random-field [24], Schrödinger equation

[25], lattice-vibration [26], dynamic scaling [27], random-resistor network [28], aperiodic

magnet [29], complex phase diagram [30], directed-path [31], heteropolymer [32], and, most

recently, scale-free and small-world network [33, 34, 35, 36, 37, 38, 39, 40] systems, etc. More

recently, hierarchical lattices have been created [41] for the study of spatially anisotropic

systems. The mutual repeated self-imbedding of two appropriately chosen graphs, with dif-

ferentiated interactions, yields a uniaxially anisotropic system, whereas a higher number of

graphs is needed to achieve higher spatial anisotropy.[41] These hierarchical systems must

reduce to isotropy and/or lower spatial dimensions when corresponding interactions are set

equal to each other or to zero, as illustrated in Fig.3.1. An anisotropic hierarchical lattice

has already been used to obtain the phase diagram of the uniaxially anisotropic d = 3 tJ

model of electronic conduction.[17] When imbedded into the hierarchical lattice of Fig.3.1,

the Hamiltonian (3.1) yields a uniaxially anisotropic d = 3 spin-glass system that is exactly

soluble.

3.3 Exact Renormalization-Group Solution: Flows of the Quenched Distribu-

tions of the Anisotropic Spin-Glass Interactions

The renormalization-group solution proceeds in the direction opposite to the construction

of a hierarchical model. Each graph is replaced by a renormalized bond via summation over

the spins on the internal sites of the graph. This is achieved by a combination of two types
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of steps: the replacement, by a single bond K̃ij , of two bonds that are either in parallel,

referred to as bond-moving:

K̃ij = KI
ij + KII

ij , (3.2)

or in series, referred to as decimation:

K̃ik =
1
2

ln
[
cosh(Kij + Kjk)
cosh(Kij −Kjk)

]
. (3.3)

The quenched probability distribution P̃(K̃) of the replacing bond is calculated by the

convolution

P̃(K̃) =
∫

dKIdKIIPI(KI)PII(KII)δ(K̃ −R(KI , KII)) , (3.4)

where R(KI ,KII) is the right-hand side of Eq.(3.2) or (3.3), KI and KII are the interac-

tions entering the right-hand side of either of these equations, with quenched probability

distributions PI(KI) and PII(KII).[24, 14]

Accordingly, the renormalization of Pxy is obtained as follows, following the upper Fig.3.1

in the direction opposite to the arrow: (i) from the bond-moving of Pxy with itself, obtaining

P̃1; (ii) from the bond-moving of Pz with itself, obtaining P̃2; (iii) from the decimation of

P̃1 and P̃1, obtaining P̃3; (iv) from the decimation of P̃2 and P̃1, obtaining P̃4; (v) from the

decimation of Pxy and Pxy, obtaining P̃5; (vi) from the decimation of P̃3 and P̃1, obtaining

P̃6; (vii) from the decimation of P̃4 and P̃2, obtaining P̃7; (viii) from the decimation of P̃5

and Pxy, obtaining P̃8; (ix) from the bond-moving of P̃6 and P̃7, obtaining P̃9; (x) from

the bond-moving of P̃7 and P̃7, obtaining P̃10; (xi) from the bond-moving of P̃9 and P̃10,

obtaining P̃11 (xii) finally, from the bond-moving of P̃11 and P̃8, obtaining the renormalized

quenched distribution P ′xy. Thus, in each renormalization-group step, the renormalized

distribution P ′xy is obtained from the convolutions of 27 unrenormalized distributions Pxy

and Pz. The renormalized distribution P ′z is similarly obtained from the convolutions of 27

unrenormalized distributions Pxy and Pz, but with a different sequencing dictated by the

lower Fig.3.1.

The renormalization-group transformations of the quenched probability distributions

Pxy and Pz, given in the preceding paragraph, are implemented numerically, resulting in



Chapter 3: Reentrant and Forward Phase Diagrams of the Anisotropic d = 3 Ising Spin-Glass 23

Phase < Kxy
+ > < Kxy

− > < Kz
+ > < Kz− >

Ferro +∞ 0 +∞ 0

Antiferro 0 −∞ 0 −∞
Columnar 0 −∞ +∞ 0

Layered +∞ 0 0 −∞
Spin Glass +∞ −∞ +∞ −∞

Para 0 0 0 0

Table 3.1: Sinks of the renormalization-group flows in the different phases. These sinks are
characterized here in terms of the average positive and negative interactions of their limiting
quenched probability distribution.

a distribution of interaction-strength values and a probability associated with each value,

namely a histogram. Thus, the initial ±Ku double-delta distribution functions, described

after Eq.(3.1), are of course not conserved under the scale coarsening of the renormalization-

group transformation. The number of histograms increases after each convolution. When

a maximum number of histograms, set by us, is reached, a binning procedure is applied

[24, 14]: Before each convolution, the range of interaction values is divided into bins, sep-

arately for positive and negative interactions. The interactions falling into the same bin

are combined according to their relative probabilities. The convolution then restores the

set maximum number of histograms. In this work, we have used the maximum number of

90,000 for histograms for each distribution Pxy and Pz.

3.4 Phase Diagrams and Fixed Distributions

We have obtained the global phase diagram of the uniaxially anisotropic d = 3 spin-glass

system in terms of the original interactions and probabilities (Kxy, Kz, pxy, pz). In each ther-

modynamic phase, quenched probability distributions flow, under repeated renormalization-

group transformations, to a limiting behavior (sink) characteristic of that thermodynamic

phase. Phase boundary points flow to their own characteristic (unstable) fixed distributions,

shown below. Analysis at these unstable fixed distributions yields the order of the phase

transitions.[24, 14]
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Figure 3.3: Temperature-concentration phase diagrams for isotropically mixed (upper left),
transverse (upper right), longitudinal (lower left), and pxy = 0.5pz spin-glass systems. In all
cases, Kz/Kxy = 0.5. The upper left and right phase diagrams are seen to be, respectively,
reentrant and forward, namely with a ferromagnetic phase that, respectively, recedes from
or proceeds towards the spin-glass phase as temperature is lowered, as clearly seen in the
insets. There are no points obeying Nishimori symmetry in the phase diagrams of this
figure. Note the remarkably narrow spin-glass phase, reaching zero-temperature, in the
longitudinal spin-glass system, as also seen in the inset. All phase transitions in this figure
are second order.

We find six different phases for this system, with corresponding sinks characterized in

Table 3.1 in terms of the average positive and negative interactions of the limiting distribu-

tion. These phases are the ferromagnetic, antiferromagnetic, layered, columnar, spin-glass

ordered phases and the disordered paramagnetic phase. In the layered phase, the spins are

mutually aligned in each xy plane; these planes of mutually aligned spins form an antifer-

romagnetic pattern along the z direction. In the columnar phase, the spins are mutually

aligned along the z direction; these lines of mutually aligned spins form an antiferromag-

netic pattern along the xy directions. Both of these phases are thus distinct from the

antiferromagnetic phase, which is antiferromagnetic in all three directions. There is a single
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Figure 3.4: Zero-temperature phase diagrams of the longitudinal (left column) and trans-
verse (right column) spin-glass systems. With the appropriate reversal in variables, the
transverse and longitudinal spin-glass phase diagrams are seen to be qualitatively similar,
but quantitatively different. The spin-glass phase is more extensive in the transverse case.
All phase transitions in this figure are second order, shown with blue lines.

spin-glass phase, extending to anisotropic systems.

3.4.1 Phase Diagrams with no Nishimori Symmetry

Cross-sections of the global phase diagram are given in Figs.3.1, 3.3, and 3.4. All phase tran-

sitions in these figures are second order. Fig.3.1 shows constant-temperature cross-sections

of the global phase diagram as a function of pxy and pz. At low temperatures (high Kxy),

the central spin-glass (SG) phase separates the corner ferromagnetic (F), columnar (C),

antiferromagnetic (A), and layered (L) phases. The diagrams are twofold symmetric along

each axis, but not fourfold symmetric, due to the difference between transverse (pz = 0)

and longitudinal (pxy = 0) spin glasses. As temperature increases, the paramagnetic (P)

phase appears at the central point, first reaches the transverse spin-glass system and elim-

inates the spin-glass phase, then reaches the longitudinal spin-glass system and eliminates
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the spin-glass phase. Fig.3.3 shows temperature-concentration phase diagrams for isotrop-

ically mixed, transverse, longitudinal, and pxy = 0.5pz spin-glass systems. The upper left

and right phase diagrams are seen to be, respectively, reentrant and forward, namely with

a ferromagnetic phase that, respectively, recedes from or proceeds towards the spin-glass

phase as temperature is lowered, as clearly seen in the insets. The Nishimori symmetry

(see below) is obeyed only at four isolated ordinary points in each cross-section in Fig.3.1

and is not obeyed at any point in the phase diagrams in Figs. 3.3, 3.4, so that the forward

behavior is not excluded by the rigorous results [3, 4].

A remarkably narrow spin-glass phase, reaching zero-temperature, occurs in the longi-

tudinal spin-glass system. Zero-temperature phase diagrams are shown in Fig.3.4 for the

longitudinal (left column) and transverse (right column) spin-glass systems. With the ap-

propriate reversal in variables, the longitudinal and transverse spin-glass phase diagrams

are seen to be qualitatively similar, but quantitatively different. The spin-glass phase is

more extensive in the transverse case. This can be understood from the more extensive

intermixing of the ferromagnetic and antiferromagnetic bonds.

3.4.2 Temperature-Concentration Phase Diagrams with Nishimori Symmetry Curved Lines

The Nishimori symmetry condition [3, 4] for isotropic systems,

1− p

p
= e±2K , (3.5)

generalizes, for uniaxially anisotropic spin-glass systems, to

1− pxy

pxy
= e±2Kxy and

1− pz

pz
= e±2Kz . (3.6)

For Nishimori symmetry to obtain, both equations have to be satisfied, but the signs in the

exponents can be chosen independently. The Nishimori condition, in its general form

Pu(−Ku)
Pu(Ku)

= e±2Ku (3.7)

for each histogram pair of each distribution, is invariant (closed) under our renormalization-

group transformation.

If one of the two conditions in Eq.(3.6) is fixed, phase diagram cross-sections are ob-

tained, in which Nishimori symmetry holds along a line. Thus, throughout the three phase
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Figure 3.5: Phase diagrams with Nishimori symmetry lines (green dashed) for different
anisotropy parameters: The ratio Kz/Kxy is 2, 1 and 0.5 from top to bottom. In the left
column, pxy satisfies the Nishimori condition. In the right column, Kz satisfies the Nishimori
condition. All phase transitions in this figure are second order (blue lines).

diagrams on the left in Fig.3.5, the condition on (Kxy, pxy) is fixed. The condition on

(Kz, pz), and therefore Nishimori symmetry, is satisfied along the green dashed lines on the

left in Fig.3.5. In these temperature versus concentration phase diagrams, it is seen that

the multicritical points between the ferromagnetic, spin-glass, and paramagnetic phases lie

on the Nishimori symmetry line. Furthermore, it has been proven [3, 4] that a forward

phase diagram cannot occur below such a multicritical point that is on the symmetry line.

On the left in Fig.3.5, this is indeed the case, with reentrant phase diagrams, as also seen

in isotropic spin glasses [14, 15]. Recall that in Sec.IVA, multicritical points, between the

same phases as here, that do not lie on Nishimori symmetry occur with both reentrant and

forward phase diagrams. However, the latter non-symmetric multicritical points flow, under
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Figure 3.6: The Nishimori condition for Kz is held throughout the leftmost figure and for
Kxy throughout the center figure. The complimentary Nishimori condition, for Kxy and
Kz respectively, is held along the green dashed straight lines, which intersect the ordered
(F, L, A, or C)-spinglass-paramagnetic multicritical points. In the rightmost figure both
conditions are satisfied throughout the figure. In this figure, the phase boundaries around
the paramagnetic phase are actually lines of the multicritical points where the paramagnetic,
ordered (F, L, A, or C), and spin-glass (not seen in this cross-section) phases meet. In
the side figures, first-order boundaries (red dotted) occur between the ferromagnetic and
layered phases, and between the antiferromagnetic and columnar phases, terminating at
d = 2 critical points. All other phase transitions (blue lines) in this figure are second order.

renormalization-group transformations, to the (doubly unstable) fixed distribution of the

symmetric multicritical points, therefore being in the same universality class and having

the same critical exponents.

In the three phase diagrams on the right of Fig.3.5, the condition on (Kz, pz) is fixed.

In these concentration-concentration phase diagrams, the multicritical points between the

ordered (ferromagnetic, antiferromagnetic, layered, or columnar), spin-glass, and paramag-

netic phases again lie on the Nishimori symmetry lines.

3.4.3 Concentration-Concentration Phase Diagrams with Nishimori Symmetry Straight

Lines

In the phase diagrams in Fig. 3.5, the ratio Kz/Kxy is held constant. On the left and center

of Fig. 3.6, again the condition in Eq.(3.6) on one interaction is fixed and the other interac-

tion strength is held constant. Thus, the Nishimori symmetry lines becomes straight lines.

The multicritical points between the ordered (ferromagnetic, antiferromagnetic, layered, or
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columnar), spin-glass, and paramagnetic phases again lie on the Nishimori symmetry lines.

In the left phase diagram, due to the enforced Nishimori symmetry condition, Kz = 0 along

the line pz = 0.5 and the system reduces to d = 2. Along this line, first-order transitions

between ferromagnetic and layered phases and between antiferromagnetic and columnar

phases terminate at d = 2 critical points. For pz 6= 0.5, d = 3 second-order boundaries

between each ordered phase and the paramagnetic phase terminate on the d = 2 critical

points. In the center phase diagram, due to the enforced Nishimori symmetry condition,

Kxy = 0 along the line pxy = 0.5 and the system reduces to d = 1. Accordingly, the system

is disordered (paramagnetic) along the entire length of this line.

3.4.4 The Phase Diagram Entirely Imbedded in Nishimori Symmetry

In the rightmost Fig. 3.6, both conditions of Eq.(3.6) are satisfied throughout the figure.

With two symmetry constraints, this is a unique surface in the global phase diagram of

our model. The system reduces to d = 2 and d = 1, as explained above, for pz = 0.5 and

pxy = 0.5 respectively. The phase boundaries around the paramagnetic phases are actually

lines of the multicritical points where the paramagnetic, ordered (ferromagnetic, layered,

antiferromagnetic, or columnar), and spin-glass (not seen in this cross-section) phases meet.

No spin-glass phase occurs within the Nishimori-symmetric subspace. The phase tran-

sitions seen in the rightmost Fig. 3.6, namely ordered-spinglass-paramagnetic multicritical

and ferromagnetic-layered, antiferromagnetic-layered first-order transitions, are the only

phase transitions of the system that occur under Nishimori symmetry.

3.4.5 Fixed Distributions

The fixed distributions underpinning the phase diagrams of this system are given in Fig. 3.7.

The fixed distributions for the ferromagnetic-spinglass boundary, paramagnetic-spinglass

boundary, and the ferromagnetic-spinglass-paramagnetic multicritical points are spatially

isotropic, but attract both spatially isotropic and anisotropic phase transitions. The fixed

distribution for the ferromagnetic-spinglass-paramagnetic multicritical points obeys Nishi-

mori symmetry, but attracts multicritical points that obey and do not obey Nishimori

symmetry. In the latter cases, as seen above, both reentrant and forward phase diagrams

occur.
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The fixed distributions for the antiferromagnetic-spinglass, columnar-spinglass, layered-

spinglass phase boundaries and for the antiferromagnetic-spinglass-paramagnetic, columnar-

spinglass-paramagnetic, layered-spinglass-paramagnetic multicritical points are as shown in

Fig.6 (a) and (c) respectively, but with the appropriate Kxy → −Kxy and/or Kz → −Kz

reflections.

3.5 Conclusion

The exact solution of the spatially uniaxially anisotropic spin glass on a d = 3 hierarchical

lattice yields new phase diagrams. In view of the semiquantitative agreement between

spatially isotropic spin-glass results on cubic and hierarchical lattices [14], it would certainly

be worthwhile to investigate on cubic lattices the new phenomena found in the present study.

Furthermore, the exact study of spin glasses on fully anisotropic d = 3 hierarchical lattices

[41] may yield even more new phase transition phenomena.
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Figure 3.7: Fixed distributions, with circles and crosses showing one renormalization-
group transformation and thereby by their exact superposition attesting to the fixed na-
ture of the distributions. The distributions have been binned for exhibition purposes. (a)
For the ferromagnetic-spinglass phase boundary, a runaway to infinite coupling; (b) for
the paramagnetic-spinglass phase boundary. Both of these fixed distributions are spa-
tially isotropic, attracting isotropic and anisotropic boundaries, and do not obey Nishi-
mori symmetry. (c) For the ferromagnetic-spinglass-paramagnetic multicritical point.
This fixed distribution is spatially isotropic and obeys Nishimori symmetry. This fixed
distribution attracts the isotropic multicritical point, which obeys Nishimori symmetry,
and anisotropic multicritical points, which obey and do not obey Nishimori symmetry.
The fixed distributions for the antiferromagnetic-spinglass, columnar-spinglass, layered-
spinglass phase boundaries and for the antiferromagnetic-spinglass-paramagnetic, columnar-
spinglass-paramagnetic, layered-spinglass-paramagnetic multicritical points are as shown
here in (a) and (c) respectively, but with the appropriate Kxy → −Kxy and/or Kz → −Kz

reflections. (d) Fixed distribution for the spin-glass phase. This phase sink is an isotropic
runaway, attracting both spatially isotropic and anisotropic spin-glass phase points, and
does not obey Nishimori symmetry.
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