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ABSTRACT

This thesis is devoted to a presentation of the étale algebraic fundamental group.
In the first chapters, we give the prerequisites for the theory of schemes and the basic
properties of schemes and morphisms to study the galois theory for schemes which
classify the finite étale coverings of a connected scheme X in terms of the fundamental
group, i (X, ) of X, precisely in the same way as the finite coverings of a connected
topological space. To emphasize the analogy, we remind the construction of the
topological fundamental group from different aspects.

Also we state different characterizations of étaleness. In order to have a broader
sense of the theory, we give an axiomatic characterization of the categories we are
interested in: galois categories, which are equivalent to the categories of finite sets
which a profinite group acts continuously.

Finally, we construct the algebraic étale fundamental group and illustrate the

concept with some examples with a particular emphasis on the Riemann existence

theorem.
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Oz

Bu tez calismasimin esas konusu étale yapt dontisiimleriyle tanimlanan cebirsel
temel grupdur. Ik boliimlerde sema kavramma, semalarin temel ozelliklerine ve ar-
alarindaki yap1 donitigiimlerinin o6zelliklerine yer verilmistir. Bilindigi tizere, topolo-
jik temel grup; 7 (X,.), bagh  bir X uzaymm ortii uzaylar1 yardimiyla da tammla-
nabilmektedir, semalar icin galois teorisi de bu gercekten yola ¢ikarak cebirsel temel
grubu; m9(X ) sonlu étale ortii uzaylar sayesinde tammlar. Bu analojiyi kurmak
icin, topolojik temel grup kavramina farkli acilardan bakilmistir. Ayrica, étale
yapt doniigtimlerinin karakteristik 6zellikleri iglenmigtir. Cebirsel temel grup kavrami-
na genis bir perspektif’den bakabilmek igin galois kategori belitlerine ve 6rneklerine
yer verilmigtir. Bu kategoriler sonlu gruplarin ters limiti seklindeki bir grubun siirekli

etki ettigi sonlu kiimeler kategorisine denktir. Son olarak, cebirsel temel grup olusturu-

lup, Riemann varlik teoremi 1g1ginda konu orneklerle aydinlatilmigtir.
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Chapter 1

PRELIMINARIES

We begin with some definitions from commutative algebra and at the end of this

chapter we state the basic terms from category theory.

1.1 Tensor Products of Modules

Definition 1.1.1 Let R be a ring and let M and N be R-modules. Let F' be the free
R- module RM*N_ The elements of F are formal linear combinations of elements of

M x N with coefficients in R, such that
F = {Zrz(mlnz),n - R,mi - M,ni & N}

Let D be the submodule of C' generated by all elements of F' of the following

types;
(z+2'y) = (z,9) — («',y) and (z,y +y) — (z,y) — (z, 1)
(CL{L‘,y) — Q- (fL’,y) and (a:,ay) —a- ($>y)

Let T'= F/D and let z ® y denote the image of (x,y) in 7. By the definition of

the quotient, we obtain the relations
(z+3)Ry=(z0y) + (@ @y)
z@y+y)=(oy +(@®y)

(ar) @y =2 @ (ay) = a(r @)
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The resulting quotient module T" is denoted by M ®r N and is called the tensor
product of M and N over R.

Definition 1.1.2 Let A and B are modules over a ring R, and C' be an abelian group.
We call a function f : A x B — C a middle linear map if it satisfies the following

properties;

fla1 +a2,b) = f(a1,b) + f(a2,b)
f(a, b1 +b2) = f(a,bl) +f(a, bg)
flar,b) = f(a,r0)

for all a,a; € A, b,b; € B and r € R.

The map i : A x B — A®pgr B given by (a,b) — a ® b is called canonical middle

linear map.

Theorem 1.1.3 Let R be aring and A and B be R-modules and let C' be an abelian
group. If f: A x B — (' is a middle linear map, then there exists a unique group
homomorphism with homomorphisms g : A ®g B — C such that gi = f, where

ZAXB—>A®RB

Proof: Chpt. 4 Thm. 5.2 in [10] O

By this property A ® g B is uniquely determined up to isomorphism.

1.2 Localization

Let A be a ring and S be a multiplicative system, that is a subset of A containing 14
and closed under multiplication. We construct a new ring S~'A which is the initial
ring in which the elements of S become units. The localization of A at S, S7*A
contains the fractions a/s with a € A, s € S, where we define an equivalance relation
on STYA by a;y/s; « ay/sy if and only if s3(a;sy — azsy) = 0, for some s3 € S. The

addition and multiplication in S™'A are



Chapter 1: Preliminaries 3

ﬂ+@zmandﬂ.ﬂ
1

— aia2
2 5182 S1 52 5182

V)
Yl

Example 1.2.1 i) If A is an integral domain and if we take S = A\ 0, then we
construct the most well-known case of localization; the field of fractions of A.

ii) Let P be a prime ideal of A and let S = A\ P which is multiplicatively closed
and contain 1. The ring S7!A is called the localization of A at P and S™'A is
denoted by Ap.

wi)If f € A, we may take S = {f" |n =0,1...} and denote S~ A4 as A;.

1.3 Noetherian Rings

Proposition 1.3.1 Let A be a ring. The following are equivalent.
i) The set of ideals of A has ascending chain condition (ACC) that is any increasing

chain
LCLC..CI,C..

of ideals of A eventually stops in other words; there are no infinite increasing chains
of ideals.
ii) Any non-empty collection of ideals of A have a maximal element

iii) Any ideal of A is finitely generated.
Proof: Chpt. 12 Thm. 1 in [1] O

Definition 1.3.2 If a ring satisfies the conditions of the proposition, then A is called

Noetherian ring.

Lemma 1.3.3 (Nakayama) Let M be a finitely generated R- module and let I be
an ideal of R which lies in all maximal ideals of R. If IM = M, then M = 0.

Proof: First of all, if a € I and the intersection of all maximal ideals of R
contains I, then (1 — a) is invertible. Suppose not, then (1 — a) and a belong to a

proper maximal ideal J but (1 —a) +a = 1 € J which is a contradiction. Since M
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is a finitely generated R-module, let S = {wy, ..., w,} be a set of minimal generators
such that no proper subset of S can generate M. IM = {3 aw; | a; € I}. Let
|S| # 0 and IM = M. Then w; = > ; a;w;. By moving the term with a;, we have

(1 —ay)wy = X", a;w;. Because (1 — aq) is invertible,
wy = Yol — ar) aw

which means M can be generated by {ws, ..., w,} that contradicts the minimality of

S. So |S| = 0, therefore M = 0. O

1.4 Category Theory

Definition 1.4.1 A category C consists of

i) a class ObjC known as the objects of C

ii) for every pair A, B of objects of C, a set Homc(A, B) of morphisms from A
to B.

iii) for every A, B, C of objects, a function o : Homg(A, B) X Homg(B,C) —
Homc (A, C) called composition where (f,g) — g o f. Composition of morphisms
satisfy the following two axioms;

1) composition of morphisms is associative, such that h(gf) = (hg)f for f €
Homc(A, B), g € Homc(B,C) and h € Homc(C, D)

2) for each object A of ObjC, there is an element idy € Homc(A, A) that is called
identity morphism of A where fidy = f, for all f € Homc(A, B) and idag = g, for
all g € Homg(B, A).

Definition 1.4.2 Let C and D be categories. We say F is a covariant functor from
C to D if;
i) for every object A in C, F(A) is an object in D
ii) for every f € Homc(A, B), F(f) € Homc(FA, FB) such that
1) if go f is a composition of morphisms in C then F(f o g) = F(f) o F(g) in D
2) Flida) = idg(a)
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Similarly a contravariant functor is defined by reversing the objects F(A) and

F(B) in (ii) and reversing the order of composition in (1).

Definition 1.4.3 Let C and D be categories and F, G be functors from C to D.
A morphism of functors (natural transformation) is a map n : F — G consists of a

morphism 74 € Homp(F(A),G(A)) for every object A in C, such that for every pair
of objects A and B in C and for every f € Homc(A, B), we have G(f)na = ngF(f).

If 14 is an isomorphism for each A, then 7 is called natural equivalence (isomor-
phism). Categories C and D are said to be equivalent (respectively antiequivalent)
if there are two covariant (respectively contravariant) functors F : C — D and
G : D — C such that the functors FG and GF are naturally equivalent to the
identity functors Zp and Z¢ respectively.

A covariant (respectively contravariant) functor from a category C to Set where
Set is the category of sets is said to be representable if it is naturally isomorphic to

the Hom-functor Homc(A, ) (respectively Homg(-, A)) for some object A of C.
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Chapter 2

SCHEMES

Unless otherwise stated the term ring will be considered as unitial commutative

ring and all ring homomorphisms 6 : A — B are required to map 14 to 1p

2.1 Affine Schemes

2.1.1 Schemes as topological spaces

Definition 2.1.1 Let A be a ring. The spectrum of A is the set of all prime ideals
of A, denoted by SpecA;

SpecA ={P C A| P is a prime ideal of A}

If S is any subset of A, V(S) C SpecA consists of all the prime ideals in A that

contains S
V(S)={P € SpecA| P2 S}

Lemma 2.1.2 The followings are the properties of the operation V'
i) If S is a subset of A, then V(S5) = V((S)) such that (5) is the ideal generated
by the elements of S.
ii) Let {I,| a € L} be a set of ideals of A and Y, I, be the smallest ideal of A
containing all the ideals I,. Then
V(X L) = V()
i €L ion€L

iii) Let Iy, ..., I, be ideals of A. Then

n n

VN = Uv

i=1 i=1
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i) V(0) = SpecA and V(1) = @
v) If Iy C I, where I; and I are ideals of A then V (I3) C V ([4)

Proof: Chpt. 2 Lemma 2.1 in [2] O

We can define a topology on SpecA by specifying subsets of the form V' (I) where
I is an ideal of A as closed subsets , since the following conditions hold;

i) SpecA and the empty set () are closed.

ii) Arbitrary intersections of V(I,), a € L is closed.

iii) Finite unions of V(1,), o € {1,...,n} is closed.

We call this topology as Zariski topology that is the standard topology in algebraic
geometry. We use [-] to show the point [P] in Spec which correspond to the prime
ideal P.

Proposition 2.1.3 V/(P) is the closure of [P] € SpecA where P is a prime ideal of

A.
Proof: Let L ={V(l,) | P € V(I,)} be the set of closed sets containing P. By
example
N V) =V(3 1) 2 V(P)
I.CP I1.CP
Since Y pep I € P. Also P € V(P) so V(P) contains the intersection of closed
sets containing P. O

Remark: If there is non-trivial containment of prime ideals P; Q P; of A then
SpecA is not Hausdorff since [P] is not closed; the closure of [P]; V(P;) contains
the element [P]. That means the closed points are the only points corresponding to
maximal ideals. If A is a domain, SpecA is not Hausdorff unless A is a field since (0)

is prime and V'((0)) = SpecA.

Example 2.1.4 i) If X = SpecZ, then closed sets are (), X and the sets of the form
{Py, ..., P,} where P/s are prime numbers since V(P;) = [P,] for all P, € Z and finite

union of closed sets is closed.
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i) If Fis a field, then F[z] is a unique factorization domain. In UFDs, every
irreducible element is prime. Hence each non-zero prime ideal is of the form (f) where

f is irreducible and monic polynomial.
SpecF[X] = {(0)} U{[(f)]|f € F[X] , monic, irreducible polynomial}

Also note that [(f)] where f is irreducible and monic polynomial is closed since (f)
is maximal.

ii) Assume F' is an algebraically closed field then an irreducible monic polynomial
f € F[X]is of the form f(x) = x—t for some ¢t € F. So, we have a 1—1 correspondence
between closed points of Spec(F[X]) and F.

Theorem 2.1.5 Let [ be an ideal of A and define
VI={a€ A|a" €I forsomen € Z-o}

called the radical of I. /I is the intersection of all prime ideals P of A satisfying
I1CP.

Proof: See Chpt. 15 prop. 12 in [1] O

Definition 2.1.6 The ideal of a ring A which contains all nilpotent elements such
that a” = 0 for some n € Z is called nilradical of A, denoted by v/0. By the above

theorem, the nilradical of A is the intersection of all prime ideals in A.

Definition 2.1.7 For any subset S of SpecA, Z(5) is the intersection of the prime

ideals in S, i.e.

It follows from the definition, Z(V(J)) = Nipev(sy P = Nycp P = V/J where J is an
ideal of A.

Definition 2.1.8 A topological space T' is noetherian if there are no infinite strictly

decreasing chains of closed subspaces, i.e. whenever
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2R 2FRD..

is a strictly decreasing chain of closed subspaces, then there is m € Z-( such that

F,=F,, forall k >m
Proposition 2.1.9 If A is a noetherian ring, SpecA is a noetherian topological space.

Proof: Let A be a noetherian ring and V(1) 2 V(I2) 2 ... be a strictly decreasing
chain of closed subsets of SpecA then with the operation Z, we have Z(V(I;)) 2
Z(V (1)) 2 ... is a strictly increasing chain of ideals of A such that vI; € VI, C ..
Then since A is noetherian there exists k € Z-q such that for every n > k, VI, = V1.
SoV(I,) = V(VI,)) = V(VI}) = V(I}). Hence the decreasing chain of closed subsets
of SpecA is eventually constant. 0

However the converse of the proposition is not true.

Example 2.1.10 Let us consider A = K[xy,2s,...] \ (2%,23,...) where k is a field.
Now consider the ideal M = (1,9, ...) of A. If we set a homomorphism ¢ : A — k
such thata z; goes to 0 for all i then kerp = M. Because k is a field, M is a maximal
ideal. Also M C /0 since M2 = 0 in A, hence all prime ideals of A contain M. But
M is a maximal ideal, so the only prime ideal containing M is itself. SpecA has one

element so noetherian but A is not noetherian, consider the infinite chain;
(1) C (21, 22) C (21,72, 23) C ...

Definition 2.1.11 For any element f € A and X = SpecA, D(f) is the open

complement of V((f)), which is called principal open set in SpecA;
D(f) = SpecA\V((f)).

Proposition 2.1.12 Let f € A and let D(f) be the corresponding principal open
set in X = SpecA. Then,
i)D(f) = X if and only if f is a unit and D(f) = 0 if and only if f is nilpotent.
wW)D(f) " D(g) = D(f.9)
wt) SpecA\V(I) = Uger D((f)
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Proof: See Chpt. 15 Prop. 56 in [1] O
The principal open sets form a basis for the Zariski topology on SpecA, by this

proposition.

Definition 2.1.13 A topological space T' is quasi-compact if every open cover of T

has a finite subcover.
Proposition 2.1.14 SpecA is quasi-compact for any ring A.

Proof: Every open set is a union of principal open sets, so it is sufficient to show
if X = SpecA is covered by principal open subsets {D(f;)i € I} then SpecA is a
finite union of some D(f;). X = U;e; D(f:) is an open cover of X. Let J be the
ideal generated by {f; |i € I}, we have two cases; J = A or there exists a maximal
ideal M containing J. But in the latter case, M € SpecA would not be contained in
any principal open set D(f;), since f; € M for all ¢ € I. This contradicts with the
assumption that X = SpecA is covered by the D(f;). So 1 € J and 1 can be written
as a finite sum 1 = a1 f;, + ... + anfi,. Then X = U, D(f;) since if P € U, D(f;)

then P contains all f;,...f;, , hence it contains 1.

Definition 2.1.15 A closed subset is called irreducible if it cannot be written as a

union of two proper closed subsets.

Proposition 2.1.16 If T is a noetherian topological space, then each closed subset

of T is a finite union of irreducible closed subsets.

Proof: Let ¥ be the set of all closed subsets of 1" that cannot be written as the
union of finitely many irreducible closed sets. Assume that ¥ is non-empty, then X
has a minimal element V| since T is noetherian. Clearly, V' is reducible and let’s
say V. = Wy U W, where W, and Wy are proper closed subsets of V. Because V is
minimal, both W; and W5 are the union of finite numbers of closed subsets such that,
W, = U{g Wi;, i = 1,2. It is easy to see that V' can be written as a finite union of

irreducible closed sets contradicting to V' € 3. Hence X is empty. U
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Lemma 2.1.17 Define g4 5: A — S~ Aby ¢45(a) = a/1. Then ¢, q: Spec(S~A) —
SpecA is a homeomorphism onto the subspace § = {[P] | PN S = 0} of SpecA.

Proof : See Chpt. 1 Lemma 1.3 in [12] O

Corollary 2.1.18 SpecAy and the open set D(f) = SpecA \ V(f) are homeomor-

phic.

From the language of categories, the operation F : A — SpecA defines a con-
travariant functor from the category of commutative rings to the category of topolog-
ical spaces. Let ¢ : A — B a ring homomorphism then ¢! defines a map between
SpecB and SpecA, since if P C B is a prime ideal then ¢~!(P) is a prime ideal of A.

So, sending P C B to ¢ '(P) defines a map;

0 : SpecB — SpecA
Proposition 2.1.19 The induced map ¢ is continuous.

Proof: Let f € A, X = SpecA and Y = SpecB. ¢(Dx(f)) consists of ¢ € Y
such that f ¢ @(Dx(f)) and Dy (p(f)) consists of ¢ € Y such that ¢(f) ¢ q. We
know ¢(f) € ¢ if and only if f € »!(q), then o' (Dx(f)) = Dy(¢(f)). Because
{Dx(f) | f € A} form a basis for SpecA, for any open set U C SpecA, ¢ 1(U) is

open. Hence ¢ is continuous. U

Proposition 2.1.20 If ¢ : A — A/I is the natural homomorphism then @ : SpecA/I —

V(I) is a homeomorphism.

Proof: Let ¢ be a prime ideal of A/I. Then I C ¢~ '(q) and therefore ¢(q) C V(I).
This shows @(SpecA/I) C V(I). Let p be a prime ideal of A such that P € V(I),
and let ¢(p) = q. Now I C p, and therefore p='(q) = I + p = p. It follows from that
g must be a proper prime ideal of A/I. Let a, b € A with (I +a)(I +b) € q. Then
@(ab) € ¢, and therefore ab € P, which means a € P or b € P, thus [ +a € g or
I+ b € q. Hence g is a prime ideal of A/I. We conclude that ¢ maps SpecA/I onto
V(I).
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If ¢; and gy are prime ideals of A/I and if ¢(q1) = @(qz) then = (q1) = v (qo)
and therefore ¢ = o1 (q1) = p1(q2) = qo, s0 @ is injective. We proved that the
induced map is continuous. Now the remaining part is that ¢! is continuous. Let

V(J) is an arbitrary closed subset of SpecA/I for J is an ideal of A/I.

e(V(J)) = &({q € SpecA/I;J C q})
= o({g € SpecA/I;¢7'(J) C o™ (9)})
= {PeV(I);p" C P}
= V(e '(J)nV{I)

so ¢ is a closed map. We conclude that SpecA/I and V (I) are homeomorphic. [

2.1.2  Sheaf Theory

Definition 2.1.21 Suppose X is a topological space and X is the collection of open
sets in X. A presheaf of abelian groups on X is a pair (O, p) consisting of

i) a family O = (O(U))yex of abelian groups

i) a family p = (pyv)vvesvcr of group homomorphisms pyy @ O(U) — O(V)
where V' is open in U with the following properties;

a) O(0) = O, where () is the empty set

b) puu = idoy for every U € X

¢) pvw o puv = puw for every W CV C U

We generally write O instead of (O, p). The homomorphism pyy are called re-
striction homomorphisms and for f € O we just write fjy instead of pyv(f). The
elements f of O(U) are called the section of O over U. The elements of O(X) are
called the global section of O

If we look at the presheaf concept from the view of categories, we see that presheaf
is the contravariant functor from the category Top(X) whose objects are the open
subsets of X and where the only morphisms are the inclusion maps to the category

Ab of abelian groups.
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Definition 2.1.22 A presheaf O on a topogical space X is called a sheaf if for every
open set U C X and every family of open subsets U; C U, € I such that U = U;c; U;
the following conditions are satisfied;

i)If f,g € O(U) are elements such that fjy, = gju, for every i € I, then f =g

i1) If we have elements f; € O(U;), i € I such that

fi\UmUj = fj|UmU]~ for every 1,75 €1,
then there exists an f € O(U) such that fjy, = f; for every i € I.
Observe that the uniqueness of f is assured by (7).

Example 2.1.23 i)(Preheaf but not sheaf)Let X = R and U C X be an open
subset. Suppose O(U) be the ring of constant functions on U, then O(U) = R for all
U. Let pyyv be the obvious restriction maps where V. C U. Let U = U; U Uy where
U = (0,2) and Uy = (3,4) and let f; : Uy — R such that fi(z) =0 for all z € Uy and
fo : Uy — R such that fo(z) =1 for all z € Uy. O(U) is not a sheaf since sheaf axiom
(i) does not hold. For since Uy N U, = 0, we have fiy,nv, = foju,nu, but there is no
a constant function f € O(U) such that fiy, =0 and fjy, = 1.

i) (Sheaf) Suppose X an arbitrary topological space. For any open subset U C X,
let O(U) be the sheaf of vector space of all continuous functions f : U — C. Let
puyv : O(U) — O(V) be the usual restriction mapping for V' C U. Both sheaf axioms

are trivially satisfied, so O is a sheatf.

Definition 2.1.24 Let X be a topological space, P € X, and O is a presheaf on X.
Consider pairs (U, f) where U is an open neighborhood of P and f € O is a section
of O over U, we introduce an equivalence relation as follows; (U, f) and (V, g) are
equivalent if there exists an open neighborhood W with P € W C U NV such that
Jiw = gw. The set of all such pairs modulo this equivalence relation is called the

stalk of Op of O at P.
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The elements of Op are called germs of O.

Definition 2.1.25 If O; and O, are presheaves on X, a morphism ¢ : O — O,
consists of a morphism of abelian groups ¢(U) : O1(U) — O2(U) for every U, and for
V C U, the diagram

is commutative, which means (V) o pyy = pyy 0 d(U)

Definition 2.1.26 We define sheaf of rings O on SpecA as the following way; for
all U C SpecA, O(U) be the set of functions s : U — [[peyy Ap from U to the disjoint
union of localizations Ap for P € U with the following properties;

i)s(P) € Ap, for every P € U

it)for all P € U there is an open neighborhood D(f) of P in U and an element
in Ay defining s on D(f); s(Q) = #r € Ag for every Q) € D(f).

If s and ¢ are elements in O(U) such that s = & on D(f1) and ¢ = fim on D(fs)
1 2

m gm—+n +bfm+n

then st = % and s+t = /1 YD 12 on D(f1f2) and id 4 gives an identity

for O(U). We conclude that O(U) is a commutative ring with identity.

Proposition 2.1.27 Let X = SpecA and let Ox be its structure sheaf. If D(f)
is a principal open set in X for some f € A, then O(D(f)) is isomorphic to the

localization Ay.

Proof : Chpt. 2 Prop. 2.2.b in [2] O
We deduce that the global sections of O are the elements of A, such that O(SpecA) =
A, since if we take f = ida, then D(f) is the whole space.
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Proposition 2.1.28 Let X = SpecA and let Ox be its structure sheaf. The stalk of
O at the point P € X; Ox p is isomorphic to the localization Ap of A at P.

Proof : Let ¢ : Op — Ap be a homomorphism sending the representative of

s; (s,U) to s(P). ¢ is well-defined since if (s,U) ~ (s,V), then there exists W;
P €W CUNYV such that s(P) = s (P).

¢ is injective. Let ¢((s,U)) = ¢((s',V)), then s(P) = s (P) in Ap. By definition(),

s =% on D(f)and s = 9 on D(g) where f, g ¢ P. Since ¢ and 9 have the same image

= % in Ap, there exists h ¢ P such that h(ag — bf) = 0 in A Let g, f,h ¢ @ then

= 5 in Ag. So s and s agree on D(fgh) = D(f) N D(g) N D(h) so (s,U) ~ (s, V).

¢ is onto. Let ¢ be an element in Ap with a,f € A and f ¢ P. Let s be

|2 =Ie
Q

the function such that s(Q) = § in Ag. s gives us an element in O(D(f)) since

O(D(f)) = Ag. So (s,D(f)) is the desired element such that ¢((s, D(f))) = s(P) =
-
Note that the stalk Ox p is a local ring which is a ring with a unique maximal

ideal since Ap has a unique maximal ideal which is pA,

Definition 2.1.29 A ringed space is a pair (X, Oy), where X is a topological space
and Oy is a sheaf of rings on X. A morphism of ringed spaces (X,Ox) — (Y, Oy)
consists of a pair (@, ¢) where @ : X — Y is a continuous map and ¢ : Oy — ¢,Ox is
a homomorphism of sheaves of rings on Y where ¢, Ox(U) = Ox (¢~ (U)) for U C Y.
The last operation is the pushforward operation on sheaves that is if ¢ : X — Y is
a continuous map on topological spaces and F is a presheaf on X, we define the

pushforward ¢.F of F by ¢ to be the presheaf on Y given by
6. F(U) = F(o~1(U)) for any open U C Y

Example 2.1.30 Let T and S be topological spaces and let Or and Og be the
sheaves such that for U ¢ T, Or(U) = {f | f : U — C, f continuous }. Each

continuous map ¢ : T — S of topological spaces induces to a morphism of ringed

spaces (1,0) : (T, Or) — (S, ) such that 9(g) = g o 1.
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The morphism of sheaves ¢ : Oy — ¢,0Ox induces a homomorphism on stalks

¢p : Oy 5 — ¢.0x, such that

o Ovz= [1 (Ov(U)/~ — I (Ox(@7'(V)/~ = Ox,

¢(p)€U pep~H(U)
Definition 2.1.31 If A and B are local rings such that M,, Mpg are the unique

maximal ideals, then the homomorphism ¢ : A — B is a local homomorphism if

o ' (Mp) = My.

Definition 2.1.32 The ringed space (X, Ox) is a locally ringed space if for every p €
X, the stalk Oy, is a local ring. A morphism of locally ringed spaces is a morphism
(¢, ¢) of ringed spaces such that the induced map on stalks ¢, : Oy — ¢:0xp is a

local homomorphism.

Example 2.1.33 (SpecA, Ogpeca) is a locally ringed space since Ogpecap = A, which

is a local ring.

Theorem 2.1.34 If ¢ : A — B is a homomorphism of rings, then ¢ induces a

natural morphism of locally ringed spaces
({57 @) : (Sp6037 OS’pecB) - (SpGCA7 OSpecA)

Conversely, every morphism of locally ringed spaces from SpecB to SpecA arises from

a ring homomorphism from A to B.

Proof : Chpt. 15 Thm. 59 in [1] O
For morphism of locally ringed spaces, the extra condition that the induced map
on stalks is a local homomorphism is necessary to force (¢, ) to come from a ring

homomorphism.

Example 2.1.35 Let A = Z; and B = Q. Let (¢, ) be the morphism of ringed
spaces between (SpecQ, Ospecn) and (SpecZs, Ogpecz, ) such that @ : SpecQ — SpecZsy
by ¢((0)) = (2) and define ¢ : O(SpecA) — O(SpecB) to be the inclusion map
Zs — Q and for other U C SpecA, ¢(U) is the zero map. Suppose that this morphism
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comes from a ring homomorphism ¢, defined by ¢ on global sections, which is the
inclusion map that maps (0) € SpecQ to (0) € SpecZ, but ¢! does not agree with @
since ¢((0)) = (2). Observe that on stalks for (0) € SpecQ and ¢((0)) = (2) € SpecZs
the induced homomorphism @) : Ogpecza,2) — Ospecn,(0) is the injection Z; — Q

which is not a local homomorphism.

Definition 2.1.36 An affine scheme is a locally ringed space (X, Ox) which is iso-

morphic to the spectrum of some ring.

Remark : The category of affine schemes Aff and the opposite category of
commutative rings Rings® are equivalent categories with the functors F and G such
that G associates to every affine scheme to its ring of global sections and F maps

every commutative ring to its spectrum.

2.2 Schemes

Definition 2.2.1 A scheme is a ringed space (X, Ox) which is locally isomorphic
to an affine scheme that is for every point p € X there exists a neighborhood U
of p in X and a homeomorphism 1 of U is an affine scheme Y = SpecR such that
1. (Ox,,) = Oy where ,(Ox,,) is the sheaf given by 1.(Ox, )(W) = Ox (¢~ (W))
for all open sets W C Y

Definition 2.2.2 A morphism of schemes f : (X,Ox) — (Y, Oy) is a morphism of
ringed spaces which is locally of the form (¢, ¢) for some homomorphism of commuta-
tive rings ¢ : A — B, that is, for every x € X there are neighborhoods U of x and V' of
f(x) such that f restricts to a map fiy : (U, Oy) — (V, Oy), a homomorphism of com-
mutative rings ¢ : A — B and isomorphism of ringed space f : (U, Oxy) — SpecB,
h: (V,Oxv) — SpecA such that the diagram

U, 0x0) 1w (V. 0xv)

~ o~

(%, 9)

SpecB SpecA
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1S commutative.

Example 2.2.3 ( Non affine scheme) Let X be a topological space with points; py,
¢1 and g9 and let topologize X by setting X; = {p1,¢1} and X5 = {p1,¢2} as open
sets, then obviously (), X and {p;} are also open. Now define a sheaf of O of rings on

X by setting
O(X) = O(X,) = O(Xa) = k[X],) and O({p}) = k(z)

where k(z) is the field of rational functions and k[X], is the localization of k[X] in
x. The restriction maps are id : O(X) — O(X;) and O(X;) — O({p}), the inclusion
map. This ringed space is a scheme in which every point has an open neighborhood
U such that (U, Oy y) is an affine scheme. But this is not an affine scheme since the
corresponding points of the topological space gives us two maximal ideals, however

O(X) = k[X]() is a local ring with unique maximal ideal.

2.2.1 First Properties of Schemes

Definition 2.2.4 A scheme X is irreducible if its topological space is irreducible

and it is connected if its topological space is connected.

Definition 2.2.5 A scheme X is reduced if for every open set U C X the ring

Ox(U) has no nilpotent elements.

Proposition 2.2.6 A scheme X is reduced if and only if the local ring Ox, for all

p € X have no nilpotent elements.

Proof : Assume that there is p € X and g € Oy, such that g # 0 and ¢g" = 0
for some n € N. Then there is an open set p € U and f € Ox(U) which corresponds
g. But then f™ = 0 is a nilpotent element. Also assume that for some U C X, there
is a nilpotent element f in Ox(U), such that f* = 0. Then there is p € U for which

the image g € Ox,, of f is nonzero and g" = 0. O

Proposition 2.2.7 An affine scheme X = SpecR is reduced and irreducible if and

only if R is a domain.
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Proof : Assume R is a domain and X = V(I;) U V(I3) then since (0) is a
prime ideal, without loss of generality let (0) € V(I;). Then all prime ideals of X
is contained in V'(1;), so X = V/(I;) which means X is irreducible. Clearly SpecR
is reduced since for the distinguished open sets D(f), Ox(D(f)) = Ry which has no
nilpotent elements because R is a domain.

Now , suppose Ox(SpecR) = R is reduced and SpecR is irreducible. Let f -
g =0 € R then D(f-g) = D(f) N D(g) = D(0) = 0. By taking complements,
V(f) UV(g) = SpecR, but since SpecR is irreducible, say V(f) = SpecR which
means f lies in all prime ideals of R. By the definition of the nilradical, f € /0. But
R is reduced so f = 0, then R is a domain. 0

Lemma 2.2.8 Let X = SpecR be an affine scheme, and let f € R. Then the
distinguished open subset D(f) is the affine scheme SpecR;

Proof : First of all, D(f) = SpecRy = {p € X | f ¢ p}, so the only remaining
part is whether the structure sheaves on D(f) and SpecRy are the same. Let h € R,
consider D(f - h) = (SpecRy);, then

Op(s)(D(f - h)) = Ry.n and Ospecr, ((SpecRg)n) = (Rp)n = Ry

In other words, on every distinguished open subset, the rings of regular functions are
same for D(f) and SpecR;. Since the distinguished open sets are principal basis, the

sections over every open set must be same. 0

Example 2.2.9 Finite disjoint union of affine schemes is affine. Let 6 : X =
SpecAT] SpecB — Y = Spec(A x B) be a morphism where Py goes to (P4, 1) and Pp
goes to (1, Pg). 0 is continuous, since 7' (Spec(A X B)(ap)) = SpecA) 11 SpecB)
which is open. 6 is open, 6(SpecA,) = SpecA, x B = Spec(A x B)(g1). So 0 is
a homeomorphism between topological spaces. To show the isomorphism between
sheaves; for some U = Spec(A x B)(a,b)
0: Oy (Spec(AXB)(ap) = Aax By — Ox (07 (Spec(AXB)@ap))) = Ox(SpecA, 11 SpecBy)
= Ox(SpecA,) x Ox(SpecBy) = Ay X By
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2.2.2  Closed and Open Subchemes

Definition 2.2.10 Let X be a scheme, then any open set U C X is a scheme. Let
P e U C X and let Y = SpecR be an affine scheme containing P in X. There exists
a distinguished open set in Y N U containing P. By the lemma 2.2.8, (U, Ox|y) is
covered by affine schemes, as required. We call (U, Oxy) as an open subscheme of
X. An open immersion is a morphism f : X — Y which induces an isomorphism of

X with an open subscheme of Y.

Consider an affine scheme X = SpecR, for any ideal I of R, we proved that
SpecR/I is canonically homeomorphic to V(I). We may make the closed subset
V(I) into an affine scheme by identifying it with Y = SpecR/I. We define a closed
subscheme Y of X to be a scheme of this form. In other words, a closed subscheme Y
of an affine scheme X arises from an ideal. Now, we generalize the notion of a closed
subscheme of an affine scheme to arbitrary schemes. Firstly, we need the concept of

sheaf of modules.

Definition 2.2.11 An Ox- module is a sheaf F such that for any open set U C X,
F(U) is an Ox(U)- module, with the restriction maps pyy; for V.C U F(V) is an
Ox (U)- module via the restriction map of sheaves ryy : Ox(U) — Ox (V). Then,
puv(af) =ruy(a)puy(f) for a € Ox and f € F(U).

Definition 2.2.12 The ideal sheaf of Y = SpecR/I in X = SpecR, Fy|x is the
sheaf of ideals (submodules) of Oy such that for a distinguished open set V' = D(f)
of X, Fyx(D(f)) =1 Ry.

Example 2.2.13 Let R = k[X](;), the localization of the polynomial ring at the
maximal ideal (z). The scheme X = SpecR has only two points, {[(0)], [(X)]}. We
may define a sheaf of ideals F by

FU)=0x(U) and F(X)=0
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Assume sheaf of ideals F come from an ideal of R, then we have F(U) = F(D(z)) =
I-R,=1-k(x)and I = F(X) but there is a contradiction since F(X) is 0 while

This example shows that not all sheaf of ideals come from an ideal. The sheaves of

ideals that arise from an ideal are called quasicoherent sheaves of ideals.

Definition 2.2.14 A closed subscheme of a scheme X is a closed topological space
Y together with a sheaf of rings Oy that is a quotient sheaf of structure sheat Ox by

a quasicoherent sheaves of ideals F : Ox /F

If U is an affine open subscheme of X such that U = SpecA and F(U) = I, then
YnuUu=V(I).

Definition 2.2.15 A morphism (z,17) : (Y, Oy) — (X, Ox) is called a closed immer-
sion if the followings are satisfied,
i) 1:Y — X gives a homeomorphism of Y with a closed subset of X

ii) i Ox — 1,0y is surjective with kernel an ideal sheaf

2.2.3 Glueing Schemes

One can construct a scheme X by glueing the collection of schemes U,, a € I with
open subschemes U, C U, such that U,, = U, and with a system of isomorphisms
of schemes of schemes @3 : Usg — Ugsq such that;

1) Paa =id for a € 1

i) Qap © Ypa =ida, B €1

iii) pas(Uag M Uay) = Upa N Upy and @ay = @y © ©ap on Uag N Uay

Let Y = Ugqer Us and X =Y/ ~ where v ~ y if © € Uyg, y € Ugy and op(z) =y
The conditions 7,7 and i satisfy the properties of the equivalence relation. For
reflexivity, we can use condition ¢ and for symmetry condition 7i. As to transitivity,
suppose z, z € Uyg N Uyy and y, z € U, N Ug,, such that ag(x) =y and ¢s,(y) = 2,
then @, (x) = 2.
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Let 7 : Y — X be the quotient map and the quotient topology on X can be
described as U C X is open if 771(U) is open in Y. 7 establishes a homeomorphism
o t Uy — Vo for V, C X, and X = Uper Va. Also 1, (Ung) = ma(Us) N 7a(Us)
and mg 0 @3 = T, on U,s. The structure sheaf Ox is constructed by glueing the
the structure sheaves Oy,. For W C V,, we set Ox(W) = Oy, (7, }(W)). For a
different W C V3, we have Ovﬁ(ﬂ'ﬁ_l(W)) which is isomorphic to Oy, (7' (WW)) since
W cCVsnV,.

As a result, we say that X is obtained glueing the schemes U, along the isomor-

phisms .z

2.2.4  Fiber Product of Schemes

Theorem 2.2.16 For any two schemes X and Y over a scheme S, then the fiber
product X xgY exists. The fiber product X x gV is a scheme together with morphisms
p1: X XgY — X and p; : X XgY — Y making the diagram;

XxqY 2 .y

P1

X

commute. Also it has the universal property.

Proof : By using the tensor product of algebras, we can define the fiber product
of affine schemes such that for S-algebras A and B, SpecA X gpecs SpecB corresponds
to Spec(A ®g B). This is because the diagram

A®s B A

B S

has the opposite uniqueness property (universal property) to the one desired for the

fiber products. In other words; for any scheme Z, to give a morphism of Z to
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Spec(A ®g B) is the same as to give a homomorphism of A ®g B into the ring O(Z).
This is the same as giving homomorphisms A — O(Z) and B — O(Z) inducing the
same homomorphism on S. When we apply the contravariant functor Spec, we see
that to give a morphism of Z into Spec(A ®g B) is the same as giving morphisms of
Z into SpecA and SpecB that give rise to the same morphism from Z — S. Thus
Spec(A ®g B) is the desired product.

Then first of all, we show a fact that p;'(U) is a product U x5 Y for some open
set U of X. For a given scheme Z with g: Z — U and f: Z — Y. We obtain a map
g =goi:Z — X. By the universal property, there is a morphism ¢ : Z — X xgY

Y

U < X - S

g(Z) C Uimplies ¥(Z) C p; H(U), 0% : Z — pi* which is unique so p; * = UxgY.

Let’s cover X by X; and assume X; xgY exists for each 7. Let X;; = X;NX; and
Uij = pfl(Xij) = X;; X5 Y. Because the products are unique, we have isomorphisms
©ij : Ujj — Uj; for each i, j. Using the idea of gluing explained before, we can obtain
a scheme via the isomorphisms ;;, since @i o p;; = @i on X; N X; N X, and they
are compatible with the projections. The claim is that the new scheme X xg Y
is the desired product. The projection morphisms py, ps arise from the projections
pri s Xi XxgY — X;and py; 1 X; XgY — Y where p;; = pij on X;; Xg Y.

For a scheme Z with morphisms g : Z — X and f: Z — Y. Let Z; = g7 1(X;),
which gives us 0; : Z; — X; XxgY — X xXgY where 9i|z,ﬂzj = 9j|z,-ﬂz]-- So we can
glue 0; to obtain a morphism 6 : Z — X Xg Y which is compatible with f,¢g and
projections.

Hence, we know for Y and S affine, X xgY exists. Let S be an affine scheme and
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for any scheme Y = J;c; Y; such that Y;’s are affine, X xgY; exists. By the same
gluing tool, we obtain X x¢Y for an affine scheme S.

The only remaining part is to show the existence for an arbitrary scheme S. Let
S; be an affine cover of S and let 771 : X — S and 75 : Y — S be the given morphism
with 711(S;) = X; and 73 1(S;) = Yi. We know X; x5, Y; exists. X; xg,Y; = X; xgY;

because X; X g Y; satisfies the universal property of X; xg, Y;.

Z

2.3 Attributes of Morphisms

Definition 2.3.1 Let f: Y — X be a morphism of noetherian schemes. f is called
affine if for each affine open subscheme of U C X, f~1(U) is an affine open subscheme

of Y.

Definition 2.3.2 An affine morphism is called finite if theere exists a covering of Y’
by afine open subsets V; = SpecB;, such that f~1(V;) = SpecA; for each i, where A;

is a B;-algebra which is finitely generated B;-module.

Definition 2.3.3 A morphism f : Y — X is of finite type if X and Y admit
finite affine covers X = J;U; = U,; SpecA;, Y = U; V; = U, SpecB; with for each i
f(V;) C U;, B; is a commutative A;-algebra and B; is isomorphic to quotient of a

polynomial ring over A in finitely many variables:

Bi = A[Xh 7Xm]/[
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2.3.1 Separatedness

Except for the trivial cases, the topological space associated with a scheme is almost
never Hausdorf. The property of being separated for schemes is analogous to that of

being Hausdorf for topologies.

Definition 2.3.4 The morphism A = (id,id) : X — (X xy X) is called the diagonal
morphism. We say that the morphism f : X — Y is separated if the diagonal
morphism is a closed immersion. We know every scheme has a unique morphism to

SpecZ, we say that X is a separated scheme if X — SpecZ is separated.
Proposition 2.3.5 Every affine scheme is separated.

Proof : Let X = SpecA. Since X Xgpeez X = Spec(A ®z A), the morphism
A X — (X Xgpeez X) is associated with a homomorphism 0 : A ®; A — A

\2&2’\
= A®, A A
u
v
A Z

where # o u = id and 6 o u = i¢d for homomorphisms u,v : A — A ®z A such that
u(a) = a® 1, v(a) = 1 ®a. 6 is surjective since §(a ® b) = ab. Let I be the ideal
generated by elements of the form a ® 1 — 1 ® a. SpecA = Spec(A @z A)/I, so A is

a closed immersion arising from the ideal I. U

Proposition 2.3.6 Let f : X — Y be a morphism of schemes. Then for any open
subsets U and V of X, we have UNV = A(X) N (U xy V)

Proof : Chpt. 1 Prop. 1.40 in [12] O
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Proposition 2.3.7 Let X be a separated scheme, U and V' affine open subschemes.
Then U NV is also affine.

Proof : We know that U X gpez V' is an affine scheme which is equal Spec(A®z B)
where U = SpecA and V = SpecB. By the previous proposition U NV = A(X) N
(U X specz V') which is a closed subscheme of an affine scheme U X gpeez V') since X is

separated. Hence U NV = Spec(A ® B)/I for some ideal I. O

Example 2.3.8 (Non-separated scheme) Let X = Speck[xq,x2] and Y = Speck[y:, yz]
and let Viy = Speck[zy, 22) \V (z1) NV (z9) = A7\ {0} and as the same Vi = A7\ {0}.
We obtain a new scheme by gluing Vj5 and Va; by f(x;) = y;. We have an affine open
cover U; and Us such that U; = X and Uy =Y. Uy NU; = V5 must be affine by the
previous proposition. Let f € O(A%\{0}) be a rational function such that f ¢ k[z,y].

9(z,y)
h(z,y)

nomials, we find a polynomial p(z,y) in the denominator which is relatively prime

Then f € Niap)£(0.0) k7, Y] (@-ay-y) Which means f = after factoring the poly-

to the polynomials in the numerator since k[z, y|z—ay—p) is @ UFD. If we choose a

point satisfying p(z) and the polynomials in the denominator, f(z,y) is infinite at
that point. So, f € k[z,y] and O(A2) = O(A; \ {0}) = k[z,y]. But A2\ {0} is not
affine since A7 \ {0} # Spec(42 \ {0}) = Speck|z, y].

2.8.2 Flatness

Definition 2.3.9 A sequence of A- modules and A- homomorphisms
-'-Mi—l — Mz — Mi+l — ...

is said to be exact at M; if Im(v;) = Ker(¢;y1). The sequence is exact if it is exact

at each M;.

Theorem 2.3.10 Assume M is an R-module if;
0—-L—-K—-N-=—=0

is exact then the associated sequence of abelian groups
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Lp M - KQrM — NQrM — 0

is exact where f ® id denotes the tensor of two homomorphisms.

Proof : Chpt. 2 Prop. 2.18 in [4] O

Remark : The sequence
0—-Lr M — KM — N®Rr M — 0

is not in general exact since ¥ ® id does not have to be injective. For example; let
Y : Z — Z where 1(z) = 3z for all x € Z. When we tensor with M = Z/3Z, the map
Y ®id: Z® Z/37 — Z ® Z/37Z is not injective since for any z; ® 2z € Z /37 we have
Y Rid(21 ® 23) =321 Q20 =21 ®320=2100=0

Definition 2.3.11 An R- module M is called flat if tensoring with M transforms
all exact sequences into exact sequences. In other words, M is flat if ¢ : L — K is

injective then ¥ ® id : L ®p M — K ®pg M is injective for any R- modules L and K.

Example 2.3.12 Free modules are flat. Let R be a ring and F' = @,c; R be a free
R- module. Let f : Ny — Ny be an injective map of R-modules N; and N,. After
tensoring f®id : N1® (B,cr R) — Na® (B,cr R), we have f®id : P;e;r N1 — Picr No

is just the natural map induced by the inclusion of f in each component, so injective.

Definition 2.3.13 A ring homomorphism ¢ : R — S is flat if S is flat as an R-
module. Let X and Y are schemes, a flat morphism f : X — Y is a morphism such

that the induced map on every stalk is a flat homomorphism of rings, for every p € X,

[ Oy.r») — Oxp is flat.
Here are some facts related to the flatness.

Proposition 2.3.14 Let R be a principal ideal domain and M be an R- module.

Then for M to be flat it is necessary and sufficient that M be torsiom-free

Proof : Chpt. 1 2.4 prop. 3.ii in [11]
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Proposition 2.3.15 If A is a noetherian ring and M is finitely generated A- module,

M is flat over A if and only if M, is free over A, for every prime ideal p.
Proof : Chpt. 2 Thm. 2.9 in [3]

Example 2.3.16 Let ¢ : X = Speck[z,y|/(xy) — Y = Speck[t] be the map of affine

schemes pictured below.

Speck[z,y]/(xy)

¢ Speck|t]

The dual of the map is k[t] — k[z,y] where t — x + y. To see the flatness of the
map, we check the flatness of (k[z,y]/(2y))(.,y) as a k[t];-module. By the proposition,
checking the torsion freeness of (k[z,y]/(2y)) @,y as a k[tl-module via the map b is

sufficient. Let Zgiz)) € (klz,y]/(2y)) (@) such that b(0,0) # 0 and % € (k[t]); where

d(t) # 0. Then via the map ¢,

c(z+y) a(=z,y)

d(z+y) b(z,y)

of ¢(z +y) and a(x,y), we obtain a(z,y) € (xy). Hence the module is torsion-free.

= 0 which means c(z+y)a(z,y) € (z,y). After checking the coefficients

2.3.3 Etale Morphisms

Definition 2.3.17 Let A be a ring, B be an A- algebra and let M be a B- module.
An A- derivation of B into M is an additive map d : B — M satisfying the leibniz

rule;
d(ab) = ad(b) + bd(a)
and d(a) =0 for all a € A.

Now we construct the module of Kahler differentials of B over A; €1p/4 together

with a n A- derivation d : B — Qg4 with the following universal property; if d is
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an A- derivation of B over A into a B-module M, then there is a unique B-module
homomorphism k : 2,4 — M such that d = kd.

Let A be a ring and B be an A- algebra, let f : B&QQ,u B — B and ¢1,90 : B —
B®, B defined by f(b@b) =0bb,g1(a) =a®1 and gs(a) = 1®@a. Let I = kerf. By
g1, 1/I? can be viewed as B- module. Let 6 : B®4 B — (B ®4 B)/I? is the natural
homomorphism and let g = go — g1, then the B- module I/I? is the module of Kahler
differentials of R over K with d = 6 o g such that da =1 ® a — a ® 1(modI?). d is a

derivation since for elements a,b of B, in I/I? we have,

0 = (a®1-1®a)(b®1-1®0)
= ab®1—-aRb—-bRa+1Rab

= ab®1-10b)+ba®1l—-1®a)—(ab®1—1® ab)

in other words, d(ab) = ad(b) + bd(a)

Now, we have to prove d : B — I/I? satisfies the universal property. First, we
show the existence of k. The map d induces a B- module homomorphism id ®4 d :
B ®, B — M such that a ® b — ad (b). When we restrict this map to I, we obtain
k: I — M such that k(I?) = 0 since

Ela®1-10a)b®1—-100) = k(ab®1—-a®b—-b®a+1® ab)
= —bd (a) — ad (b) + d (ab)
=0

because d is a derivation. So k induces a homomorphism & : I/I? — M such that
kod=d.

Qpja = I/1? is generated by {d(b) | b€ B} as a B- module, since Y- a; @ b; =
Yabi®1l+a;(1@b—b;®1) =3 fla; ®b;) + a;g(b;). Any element of Qp 4 = I/1?
has the form Y- a;d(b;) for a;, b(i) € B since 0g(b;) = d(b;).
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Finally, k is unique since d : B — [/I? = Qg4 maps onto the B- module
generators of /1.

Example 2.3.18 1)Let B = A[x;...x,] be a polynomial ring over A. The module
of Kéhler differentials Q2,4 is generated by {dz;} as free B- module. Let 3 h;dx; = 0
for h; € B, and let % : B — B denote the partial derivation, so there exists a map

f; : Qp/a — B because of universal property such that f;(dz;) = g;""_. fi(X hidz;) =0,

we find h; = 0. By applying other f;’s, we obtain dz;’s are linearly independent over
B.

2) Let F be a field and K a separable algebraic extension field of F'. We know
that Qg is generated by {db | b € F'}. Let b € F, then there exist a polynomial
p(z) € Klx] such that p(b) = 0. We have d(p(b)) = p (b)d(b) = 0, but since the
extension is separable p(z) does not have multiple roots, which means p'(b) # 0, so

db = 0. Then we get Qp/x = 0.

Definition 2.3.19 An unramified morphism is a local homomorphism f : R — S of
local rings satisfying the following conditions;

1)f(Mg)S = Ms

2)S/Ms is a finite and separable over R/Mpg.

A morphism ¢ : Y — X of schemes is an unramified morphism if it is of finite
type and if the maps ¢ : Oy 5,y — Oy,y are unramified for all y € Y.

Remark : The other definition of an unramified morphism ¢ : ¥ — X which is
of finite type is that the diagonal morphism A : Y — Y X x Y is an open immersion.

Proof : Chpt. 3 Prop. 3.5 in [3] O

Proposition 2.3.20 Let f : Y — X be a finite type. Then f is unramified if and

only if the sheaf of differentials €y x is zero.

Proof : First of all, the sheaf of differentials €y, x is compatible with the module
of differentials defined before. If U = SpecA is an affine open subset of X and V =
SpecB is an affine open subset of Y such that f(V) C U then V xyV = Spec(B® 4 B)
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and since A(Y") is locally closed; A(Y) N (V' xy V) is a closed subscheme defined by
the KerA = I where A : B®4 B — B. Let F be the sheaf of ideals of A(Y) in
V xy V. We define the sheaf of relative differentials of Y over X to be the sheaf
Qy/x = A (F/F?). So the associated module is I/1? = Qp,/4 for F/F? which means
Quip = (2pa)~ where ~ is the functor from the category of B- modules to the
category of Oy- modules. If we cover Y and X with affine schemes, we can obtain
Qy,x by gluing the corresponding sheaves (25/4)".

Assume f is unramified. Then we can reduce to the affine subsets such that X =
SpecA and Y = SpecB. B is finitely genarated A-algebra such that Ay, — By is
unramified which means f(M4) = Mg. Let Mg C M2 C ... but the chain must stop,
so M2 = Mptt since Mp is the unique maximal ideal, Mp = 0 by Nakayama Lemma.
Then it follows that B is finite separable field extension of A by the definition of the
unramified morphism which was proved in example 2.3.18 Then Qy,x = (Qp/4)~ = 0.

For the converse, we know the diagonal A :' Y — Y xx Y is loclly closed, so as
explained before A(Y)NV Xy V' is a closed subscheme which is defined /. Assume the
sheaf €y, x is zero, so the associated module I/I?is zero. Thenforallp e Y, I, = ]5,

by Nakayama lemma, I, = 0. So for some open subset W of ¥ X x Y containing Y,

I = 0. This means (Y, Oy) = (W, Oy) O

Definition 2.3.21 A morphism ¢ : Y — X of schemes is etale if it is flat and
unramified. Equivalently the finite type of morphism ¢ : Y — X is etale if it is flat
and Qy/X = 0.

Example 2.3.22 Let K be a field and p(z) be an irreducible, monic and separable
polynomial then the morphism SpecK[z]/(p(z)) — SpecK is etale. It is clearly flat
since K is a field. And since K[z|/(p(x)) is a finite separable field extension of K, it

is unramified.
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Chapter 3

GALOIS CATEGORIES

In this chapter, we give an explanation about the axiomatic characterization of
categories that are equivalent to the category of finite sets on which 7 acts continu-
ously where 7 is a profinite group that is unique up to isomorphism. Also, we will
discuss the relationship between the algebraic fundamental group and topological

fundamental group.

3.0.4 Profinite Groups

Definition 3.0.23 A partially ordered set I is called directed if for any elements
i,j € I, there exists k satisfying k > 7,j. A projective system is a family of objects
(A;)ier together with a family of morphisms (f;; : A; — A;);>; such that f; = ida,
and fi, = fjr o fij for all 7 < j < k. Given any such projective system, one has a

projective limit;

1 Az = {(ai)iel € HiEI AZ . f”(al) = CL]' fOT’ all Z,j e I with i S j}

—

Definition 3.0.24 A topological group G is a group that is also a topological space
such that the group operations ; the multiplication G x G — G (z,y) — xy and the

1

inversion G — G;x — x~ ' are continuous.

If Als are finite groups induced with discrete topology then [] A; is the product
topology, while [imA; becomes a topological group with the subspace topology. By
Tychonoft’s theorem [] A; is compact and limA; is closed since every point of the
complement of limA; is interior. Let (a;) ¢ limA;, assume fi;(a;,) # (aj,) then
(a;)ier has an open neighborhood U = {(b;)icr € [T 4i | by, = @i, and b;, = a;,} where

limA; NU = 0, so limA; is closed, also compact.
— —
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A topological group is called profinite, if it is isomorphic to the inverse limit of a

system of finite groups.

Example 3.0.25 1) The collection of rings (Z/nZ) gives rise to a projective sys-
tem by the relation of divisibility, n/m < m > n where the transition maps are the

canonical homomorphisms Z/mZ — Z/nZ. Then;

7= UmZ/nZ = {(an)p-, € ﬁ(Z/nZ), for all n/m,a, = a,(modn)}
n=1

2) Let p be a prime number, (Z/p"Z),~o with the obvious transition maps Z/p"Z —

Z/p™Z for n > m is a projective system.

Ly = UmZ[p"Z = {(an)n’, € H (Z/p"Z), for all n,ans1 = an(modp™)}

n=1

3) Let L be a galois extension of K. The set of subfields F of L where FE is
finite galois extension of K form a directed set I since it is partially ordered by
inclusion and the composite field of E;FEs is also a finite galois extension of K for
E,y, Es € I. So the galois groups (Gal(FE/K))ger with the restriction homomorphisms;
Gal(E,/K) — Gal(E,/K) by sending o to oyp, for each £y C E, gives us a projective
system. The inverse limit l[imGal(E/K) is isomorphic to Gal(L/K). Define the
homomorphism ¢ : Gal(L/K) — limGal(E/K) by sending o to (0|)ger-

(018)per is in limGal(E/K) since for E € 1, O\, =0z ¢isl=1;let o)p = idp,
for all E € I, then o0 = idy, since L = Uger . L is a galois extension of K so, there
is a set of polynomials F' = {f% : f& is the minimal polynomial of « € L} such that
L is the splitting field of F over K. The splitting field of F', which is a finite subset
of F', over K belongs to I. So the union of the fields in [ is the splitting field of F
over K; that is L.

Let (0yg)ger be in the projective limit, set n : L — L with n(a) = (015, (®))p,er
Let « € E,, then « € E F,,

O\EyEm|Em = O|E, a0d 0\E,E,.|E, = O|E,
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s0 ¢(n) = (U|E)Eel-

Definition 3.0.26 Let G be a profinite group. A G-set M is a set equipped with an
action of G on M. Suppose M is induced by discrete topology and G x M has the

product topology. We say the action is continuous if G x M — M is continuous.

Corollary 3.0.27 Let 7 be a profinite group acting on a set E. The action is

continuous if and only if for each e € E, Stab,(e) = {0 € m: 0e = o} is open in 7.

Proof Let e € E, the inverse image of e under the map G x M — M is the set

{(o,f)enxE:of =¢} = (U)f X o(Stab,(e))
o.f

which is open , so action is continuous. For the converse, since each projection
map is open, Stab,(e) is open. In particular, if £ is finite, the kernel of the action
m ={occm:0e=e, forall e € E} is open since

T = () Stabx(e)

ecE

O
A morphism from a 7 —set to Atoan—set A'; f : A — A’ satisfies f(0a) = o f(a)
for all 0 € mw and a € A. So we can consider the category of finite m — sets which is

denoted by m-sets.

3.0.5 Separable Algebras

Definition 3.0.28 Let R be a ring and M a module over R, which is finitely gen-
erated with basis vy, vs,...,v,. Let ¢ : M — M be an R-linear map. The trace of the
matrix associated to the map ¢ with respect to the basis is the sum of the elements

on the main diagonal
Tr(p) = Xy @i where p(vi) = i, aijv;

With the map; ¢, : M — M where x — mx, we define T'ry; g : M — R such that
Trvr(m) = Tryyp(¥m). ¢+ M — Homp(M, R) is defined by (¢(z))(y) = Tr(zy)

for z, y € M. M is free separable R- algebra if ¢ is an isomorphism.
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Example 3.0.29 Let A be a ring, A" is a free separable A-algebra for any n € Z-.
Let e; = (1,0,...,0) ...e,, = (0,0,...,1) be a basis for A". ¢ : A" — Homa(A", A)
is injective. Let (ay,...a,) € A™ and ¢(xy,..x,)(a1...a,) = Tr((a1zy,...,an2,)) =
Tr(YV(arer,anen)) = 0 for all @ = (z1,...,2,) € A", then V(a2 anzn)(€:) = aiz;.
Tr(V(ay,...anen)) = 2ieq @ix; = 0 for all @ € A", so a; = 0 for all 7 € {1,...,n}. Let
VU € Homu(A", A), we claim that ¥ = Tr(¥g(e,),...0en)) Let (ai1,...,a,) € A" then
V((ar, ..., an)) = Tr(Vwie)ar,...00en)an)) = 2oty V(€i0;) = V¥(a1, ..., an) s0 ¢ is onto.

Definition 3.0.30 A morphism f : X — Y is a finite etale morphism if there exists
a covering of Y by affine open subsets U; = SpecA; such that f~1(U;) of X is affine;
f~HU;) = SpecB; where B; is a free separable A;- algebra.

Example 3.0.31 Let X be any scheme. The disjoint union X [T X [[...]]X of n
copies for any n € Z,~¢ with the obvious morphism to X is a finite etale covering of
X. Let U; = SpecB; is an affine scheme, f~(U;) = SpecB; [1 SpecB; 11 ... 11 SpecB; &
SpecB}, by example 3.0.29 B! is a free separable algebra over B;.

Lemma 3.0.32 Let A be a finite dimensional algebra over a field K. Then A =

! A;, where t € Z-o where A; are local with nilpotent maximal ideals.

Proof : If A is a domain, then for all a € A/{0}, ¢, : A — A where z — ax is
injective. By dimension, it is onto which means there exists x such that ax =1 so it
is a field. We can deduce that every prime ideal is maximal. Since A is noetherian
and has dimension 0, A is artinian satisfying the descending chain condition. Let
a; € P; and and a; ¢ P,,1, then a = ay...a,, € N, P; and a ¢ NP, so the chain
N, P, D N4 P,... must stop, this means we have finitely many maximal ideals. Then
Nt_, M; is the intersection of all prime ideals of A, so it is equal to the nilradical which
is a nilpotent ideal in a noetherian ring;

t t
(M < (Y M;) =0
i=1 i=1
Since M are relatively comaximal, by the chinese remainder theorem A 2 [['_, A/M}.

Let A; = A/M* which has a unique nilpotent maximal ideal M;/M". O
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Theorem 3.0.33 Let K be the algebraic closure of the field K and A be a finite
separable algebra over K. Then the followings are equivalent.

i) A is separable over K

i) A® K is separable over K

ii) A ®x K is isomorphic to a finite product of copies of K

iv) A is isomorphic to a finite product of separable extensions of K

Proof

(1) < (i4). Assume wi...w, is a K- basis for A. Then AQr K 2 K" ®x K 2 K"
which shows w; ® 1...w,, ® 1 is a basis for A @ K over K. Recall that TTA/K(oz) =
Trask(Ya) such that ¢, () = ax. Trag(a) = X ay where aw; = 377, ajjw; and
(@@ 1)(w; @ 1) = 37 a(w; @ 1), so Trax(a) = Tryq, 7/(@ @ 1). Then the

natural inclusions for the horizontal arrows,

l

A Aog K
TT’A/K TrA®Kf/K
K K

is commutative. A is separable over K so the map ¢ : A — Homg(A, K) is
invertible as a K-linear map. Observe that the determinant of the associated matrix
for the linear map is unit if and only if the linear map is invertible. We claim that
the associated matrix for ¢ : A — Homg (A, K) is (Tr(wwj)1<ij<n). Let wi..w} be

the dual basis for Homa(A, K) where w}(w;) = 6;;. ¢(w;) =¥ (z) : @ — Tr(w;z).
o(w;) = Y(x) = Tr(ww)w] + ... + Tr(waw,)w
since they are same in the basis;

d(w;) = Tr(ww;) = Tr(ww)wi(w;) + ... + Tr(wwy,)w, (w;)

= Tr(ww;)
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By the commutative diagram; T'r4/x (wyw;) = Ty, 72/x (Wi ® 1)(w; @ 1)) so the
det(Tr yg 7 i (Wi ® 1)(w; ® 1))1<;,5<n) is also not zero, which means ¢ : A ®x K —
Homg(A®k K, K) is also an isomorphism.

(it) = (i11) A @k K is a separable, finitely generated K-algebra, so by lemma
3.0.32 A ®x K = [Ii_; A; with nilpotent maximal ideals M;. If ¢ : I[\_; 4; —
Hom#(IT!_, A;, K) is an isomorphism, then ¢; : A; — Homz(A;, K) is an isomor-
phism; A; is separable K-algebra for each i € {1,...,t}. So for each ¢ : A; — K, there
exists an element a € A; such that p(z) = Tr(ax) for all x € A;. If x € M; where
™ = 0 for some m € Z~, .. (y) = azry is a nilpotent map, ™ = 0. It is a fact that
the trace of nilpotent maps is zero. All the eigenvalues of 1., is in K, there is a basis
for A ®x K with respect to which the matrix for 1),, is in the jordan canonical form,

whose diagonals are the jordan blocks;

J 0 ... 0 A1
0 Jy, ... 0 A
where
1
o o0 ... J, i

Then the minimal polynomial for v, is divided by z", that implies the eigenvalues
have to be zero. Then Tr(¢,,) = 0. This fact shows that M; = Kery, for all
¢ € Homz(A;, K). For an injective map for instance, so M; = {0}, each A, is a field
over K. K is algebraically closed so 4, = K.

(ii7) = (iv) By the lemma 3.0.32, we can write A = []!_, A; where A; has a unique
nilpotent maximal ideal. Let a € A, then K[a| = Klz|/f, for f, # 0 and when we
tensor i : K[a] <— A, we obtain;

i®id: Kla) 9 K 2 Kla] - A9 K 2 K"
Since K has no non-zero nilpotent element. Then f, is separable.
Let a € A be a nilpotent element a” = 0 for some n € Z-( then (f,) contains

x™, but since f, is separable z € (f,) which means a = 0. Then all A;’s are field,

otherwise set a = (0,0, .., a;,,0) where a; € A; is nilpotent.
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These extensions are separable since if a = (a;...a) € A, then f, is equal to the
least common multiple of f,, for i € {1,...,k}. We know f, is separable, so f,, is
separable for all .

(tv) = (i4i) The primitive element theorem asserts that if K/F is finite and
separable then K/F is simple. Then A = [T'_, A;, where A; = K[o,] & K[x]/ fa, that
fa; is separable and irreducible. A @y K = ([T'.; 4;) ®x K = [}, 4; @k K where
A @x K = K[2]/ fo, @k K = K]/ fa,. fa; splits into distinct linear factors (z — ;)

in K[z]. By chinese remainder theorem;
T ~Y m I ~ 7de.gfai
K[z]/ fo, = j=1 Klz]/z — oy 2 K

Hence A@x K = K for some n € Zo.

(7i1) = (ii) By example 3.0.29, this is obvious. O

Proposition 3.0.34 Let Y be a noetherian scheme then finite étale morphism f :

X — Y ie equivalent to finite and étale morphism.

Proof : First of all, by the definition of the finite étale morphism, it is also
finite and locally free, so flat. So we reduce the problem to the assertion that B is
separable over A if and only if SpecB — SpecA is unramified where B is an algebra
over a ring A and B is finitely generated and free as an A-module

Step 1) ¢ : SpecB — SpecA is unramified if and only if for all ¢ € SpecB, ¢(p) = ¢
and B,/qB, = B ®4 k(p) is a finite separable field extension of A,/pA, = k(p). This
is equivalent to say Spec(B ®4 k(p)) — Speck(p) is unramified for every P € SpecA.

Step 2) B is separable over A if and only if B ®4 k(p) is separable over k(p) for
every p € SpecA. By the definition, B is separable over A if and only if the map
¢ : B — Homu(B, A) is an isomorphism. Let {v1, ..., v,} be A- basis for B, recall that
¢ is an isomorphism if and only if det(Trp/a(v;v;))i<ij<n = @ is invertible in A. Note
that {vi®1,...,v,®1} is a k(p)- basis for B®ak(p) and B4 k(p) — Homyp) (B ®a
k(p), k(p)) is an isomorphism if and only if det(Trpg ,k(p) k() (Vi @ 1) (v; @ 1) )1<i j<n =
det(Tr e 4k(p) /i) ((ViV; @ 1))1<ij<n = b is invertible in k(p). There exists an f,, such
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that 6, : A — A, and 6 : A, — k(p) and f, = 0260,. Then k(p) is an A- module via

fp- Consider the diagram of natural maps

id
Enda(B) — Endyy,, (B ®4 k(p))

Trp)a T B3 sk(p)/k(p)
A 2 - k(p)
Let ¢ € Enda(B) and let My, = (aij)1<i j<n be the matrix of ¢ with respect to
{v1, o, v}y then Trp a(v) = X0 ag. idi) (V) (v @ 1) = ¢(v) @ 1 = (X5, ajiv;) @
1 =30 (ajv) ® 1 = 300 @ fpla) = iy fplasi)(v; @ 1) and Mg, ) =
(folaij))i<ij<, then Trpg yup) /) (idip) (V) = 3y folaw) = f,(350 @) = fo(Trp/a(¥)).
So the diagram is commutative. By this fact, f,(a) = fp(det(Trp/a(viv;))i<ij<n) =

det(f,((Trpja(vivi))i<ij<n)) = det(TTBg k() k) (Viv; @ 1)i<ij<n = b. Assume a is
invertible in A then a ¢ p for every p € SpecA. This is equivalent to f,(a) = b is
invertible in k(p).

Step 3)By combining Step 1 and Step 2, we change the assertion to the case that
A is a field. So the remaining part is to show that SpecB — SpecA is unramified if
and only if B is separable over A where A is a field. By lemma 3.0.32 B = [['_, B;
for some t € Z~( where Bls are local rings with nilpotent maximal ideals. We prove
in the lemma 3.1.5 that the localizations of B at all prime ideals of B are equal to
Bls. By the definition of unramified morphism and by the theorem 3.0.33, B; is finite
separable field extension of A which is equivalent to B = []!_, B; is separable over A.

[l

3.1 Galois Categories and Examples

Definition 3.1.1 Let C be a category and F, a covariant functor from C to the
category of sets of finite sets. A category C satisfying the following conditions is

called a galois category with fundamental functor; F
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(.1) C has a terminal object. A terminal object of a category C is an object Z
which is unique up to ismorphism such that there exists exactly one morphism X — 7
for every object X in C. Also, the fiber product of any two objects over a third one
exists in C. The fiber product is defined as the same for schemes.

G.2) C has an initial object and finite sums exists in C. The finite sum of the
object ;" ; X; with morphisms 6; : X; — @' ; X, for each ¢ = 1...n such that for any
object Y with morphisms 0,: X; — Y, there is a unique morphism p: @, ; X; = Y
where 6; = pl;. The quotient by a finite group automorphisms exists. The quotient
X/G of X by G C Aut(X) is an object in C with a morphism ¢ : X — X/G that
satisfies ¢ = o for all 0 € G, such that for any morphism ¢ : X — Y in C satisfying
¢ = ¢o for all 0 € G, there is a unique morphism p : X/G — Y such that ¢ = pep.

(G.3) Any morphism ¢ : X — Y in C factors as ¢'¢” where ¢’ is a monomorphism
and ¢” is an epimorphism. ¢” : X — Y is an epimorphism if for any object Z and
any morphisms ¢, n : Y — Z with ¢¢” = ny¢”, we have v = 7. ¢’ : X — Y isn
monomorphism if for any object Z and any morphisms ¢, n : Z — X with ©'¢p = ¢'n,
we have ©» = 1. Any monomorphism ¢ : X — Y in C is an isomorphism of X with
direct summand of Y.

F.1) F transforms terminal objects in terminal objects and F(X xgY) = F (X)X £s)
F(Y)

F.2) F®L, X;) =11, F(X;). F(f) is an epimorphism if f is an epimorphism.
Also, F commutes with passage to the quotient by a finite group of automorphisms.

F.8) A morphism ¢ : X — Y is an isomorphism if F(p) : F(X) — F(Y) is an

isomorphism .

Example 3.1.2 The category of sets is a galois category with the identity functor.
The terminal object is single element set. For f: X — S and g : Y — § the fiber
product is X xgY = {(z,y) € X xs Y f(x) = g(y)}. The empty set is the initial
object and the disjoint union of sets is the finite sums of sets. The quotient is the
set of orbits of X under G. Every morphism f : X — Y in sets can be written as

f:X —, imf —,, Y where ¢y is a monomorphism and ¢; is an epimorphism.
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Since the fundamental functor is identity, it clearly satisfies conditions (F.1), (F.2)

and (F.3)

Definition 3.1.3 Let C be a galois category with the functor F. An automorphism
o of functor F; o € Aut(F) is a collection of bijections oy : F(X) — F(X) for all
Obj(C) such that the diagram

is commutative for each morphism f: X — Y in C

Theorem 3.1.4 (Main Theorem) Let C a Galois category with the fundamental
functor F and let C be an essentially small category which means C is equivalent to
a category whose objects form a set Then C is equivalent to the category of finite

sets on which Aut(F) acts continuously; Aut(F)-sets
Proof : Chpt. 3 3.11-3.19 in [5] O

Lemma 3.1.5 Let X = SpecK where K is a field. The finite, etale coverings Y — X
of X are precisely given by Y = [['_, SpecK; where each Kj is a finite, separable field

extension of K.

Proof : Assume f:Y — X = SpecK is a finite, etale morphism. Since the mor-
phism is finite, f~}(SpecK) = SpecB where B is a K- algebra and finitely generated
K- module. By lemma 3.0.32 B = [[}_, K; where each K; has a unique, nilpotent
maximal ideals M;. The prime ideals of B are isomorphic to that of [[!_; K; and they

are of the form ;

P, ={(by,...;bi, ..., 0) | b € M; and b; € K for j € 1,...,t}



Chapter 3: Galois Categories 42

Let Sz = ( ;;:1 KJ/Pl = {(bl,...,bt) | bz ¢ Mz} and (bl : HE:I Kz — Kz such that
s = (81...8,) € S;. ¢i(s) = s; ¢ M; which means s; is unit in K;. Then there exists a

unique ring homomorphism & : S; *(TTi_; K;) — K; such that ¢; = ho f.

clearly, h is surjective. To show h is injective; let H € S; ' (IT%_, K;) such that

h(H) = b; = 0 then (by, ..., b,) = 0 since there exists a non-zero s = (0, ...1,0..0)
where 1 is in the ith coordinate such that (by,...,b,)s = 0 So each K; is isomorphic
to the localization of B. By the definition of the unramified morphism K — K;, K;
is a finite separable extension of K. By the fact in the proof of the theorem 3.1.8
Specl_[ﬁ:l K, = |_|;f:1 SpecK;. Conversely, S]Dec]_[;?:1 K, — SpecK where K;’s are

finite separable extensions of K is an etale morphism. It is flat since K is field and

every localization of []i_, K; is isomorphic to K;, the map is unramified. U

Example 3.1.6 Consider the category F'Etg,..x, the category of finite, etale cov-
erings of SpecK which has objects of the form SpecA where A is free separable
K-algebra and the morphism are the morphisms between the schemes h : SpecA; —
SpecA, which is compatible with the morphisms 6; : SpecA; — SpecK and 6 :
SpecAs — SpecK, such that; 0; = 0:h. Let x a geometric point of SpecK which is
a morphism z : Specf) — SpecK for some algebraically closed field €2. Define the

functor
F, : FEtgpe.x — {Finite sets}

by SpecA — Homg(Specs), SpecA) Then FFEtg,e.x is a galois category with the

fundamental functor F}. Since it satisfies the following conditions;
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G.1)Let A, B and C are free separable K-algebras with the morphisms C' — A
and C' — B then A®c¢ B exists in F Etgpecx, since it is equal to [i_; A;; ®c; By, where
AZ-J., B;; and Cj are finite separable extensions of K. When we tensor with - ®c, @;
H;'l:l(Aij Yo Blj) ®c; 6]' = ;‘l=1 Aij Qe <Blj Qe 6]') = ?=1 Aij ®c; é? = Hﬁym
for some n,m € Z~o and observe C; = K, so A®c B is a free separable K- algebra
by proposition [|. The terminal object is SpecK — SpecK.

G.2) ) — SpecK is the initial object and finite sums [}, SpecA; — SpecK exists
in the category since [[;_; SpecA; = Spec]];_, A; where each A; is a separable algebra
so A; = H;-Ll K, where K;,’s are finite separable extensions of K.

The quotient by a finite group automorphism exists. Let G be a finite group of
K — algebra automorphisms of A, extend G to A ® g K which means for all o € G,
o: A — A, there exists 7 : A @x K — A ®k K since - ®x K is a flat functor.
If wy,...,w, is a basis for A over K, then w; ® 1,...,w, ® 1 is a basis for A ®x K
over K. Let G be the group of automorphisms fixing some basis elements, assume

w;...w, then G is the group of automorphisms fixing w; ® 1...w, ® 1. It is obviously

-7

(A9K)® = AS@K. We know A is separable K- algebra so (A®K) = (K")¢ =K
so AY ® K is a separable K- algebra. So the quotient (SpecA)/G which is SpecA®
exists in the category.

G.3) Let § : A — B be a K- algebra homomorphism, then it factors § : A —,
imy —, B where ¢ is an epimorphism and v is a monomorphism. If we tensor
. ®x K, then we have A @x K — imy @x K — B®x K where AQx K = K and
B®xg K = K" for some n, m € Z,-o and ¢ ® id is an epimorphism and ¢ ® id
is a monomorphism then imy @y K = K' for some t € Zno. Hence imyp is a free
separable K-algebra. Also since § ® id behaves as a linear map between K= and K,
Ker(f ® id) is also a free separable K- algebra, so B/imyp is a free separable K-
algebra. Thus we have verified B = B/imp [[imyp

F.1) Since the terminal object SpecK — SpecK, F,(SpecK) = Hom(SpecK,
SpecK) = Algr (K, K) that contains only the inclusion map, which has single element

set, So F, transforms terminal object to the terminal object of set category. Any map
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from K, @ Ky — K gives us maps K; — K and K, — K, and by the universal

property, these maps lead to the map K; ®x Ky — K, so there is a correspondence

between sets Algx (K @k Ko, K) and Algg (K1, K) X Algk(Ks, K) which means F,

commutes with the fiber product.
F.2) F, commutes with the finite sums. Let [['_, SpecA; where A;’s are free
separable K-algebras then [['_, SpecA; = Spec[['_, A; and also A; = [ K;; where

J=1

K;;’s finite, separable field extensions of K.

F(11i_; SpecA;) = Homgpeex (SpecK SpecTli_y A;) =2 Algr(ITi_; Ai, K) &
Algi (T2 Koy, K) = 22 Algk (K, K) = 11, Algr (T, K, K) =

i=1,j=1 i=1,j=1

t_ Hom(SpecK, SpecA;) 2 11i_, Fu(SpecA;).

Also Algg (A% K) = (Algx(A, K))™(@. Let g : A — K then go = g, for all
o € G then g € Algg(A, K)"+(@ since F,(c)g = go = g, for all ¢ € G For the
other side, let g € (Algg (A, K)7+(@), then F,(o)g = g for all ¢ € G which means
Faolo)g = go =g, for all 0 € G then g € Algr(AY K)
F.3) Let f : SpecA — SpecB where A and B are free separable K-algebras, let
Fo(f) : Algi (A, K) — Algk (B, K) which is an isomorphism. Then [] Algx(A;, K) —
[1 Algx(B;, K) is an isomorphism where A; and B; are fields. Then there is a corre-
spondence with these fields, so f : Spec[] A; — Spec[] B; is an isomorphism.

Theorem 3.1.7 Let X be a connected scheme. Then there exists a profinite group
7, uniquely determined up to isomorphism, such that the category F'Etx of finite
etale coverings of X is equivalent to the category of m-sets of finite set on which m

acts continuously.

Proof : Chpt. 5 5.22-5.23 in [5] O
The profinite group 7 occurring in the above theorem is called the fundamental
group of X. Now, we will prove the special case of the theorem above. For a certain
profinite group 7 and for a field K, the category of free separable K-algebras; xS Alg is
antiequivalent to the category of w-sets. Recall that we know, xS Alg is antiequivalent

to F Etgpeck for a field K.
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Theorem 3.1.8 Let K be a field and 7 = Gal(K*®/K). Then the categories xSAlg
of free separable K-algebras and m-sets of finite sets with a continuous action are

antiequivalent.

Proof : The idea is two find two contravariant functors F : i SAlg — m — sets
and G : m—sets — SAlg such that G is naturally equivalent to the identity functor
on 7-sets and GF is naturally equivalent to the identity functor on xSAlg. That is,
to find a collection of isomorphisms 04 : A — GF(A), making the diagram

f

A B

04 05

GF(A) — GF(B)
commutative for any morphism f : A — B in xSAlg and similarly for the natural
transformations between S and FG(.S).
Step 1 : Set; F(B) = Algk(B, K;) for each free separable K-algebra B. Here
Algk (B, Ky) is the set of field homomorphisms B — K that are identity on K.
Define the m-action on Algk (B, K) as;

c-g=cogé€ Algg(B,K;) for g: B— K, and o € 7.

Since B is a separable K-algebra, B = [['_, K; where K;’s are finite separable field
extensions of K. So K; = KT for some open subgroup ; of 7.

We can identify Algx (IT_; KT, K,) with the disjoint union of the sets; Algx (K™, K,).
Let o; € Algx(IT'_; K™, K,), then ¢; : [T'_, K™ — K,. Since Kery; is prime and
every prime ideal of [T_; K™ is of the form (1, ..,0,..,1), we have @, : [T'_, KT/ Kerp; =
K™ — K. This identification is onto since for any element in ¢ in [[}_; Alggx (KT, K,);
¢ : K" — K, there exists ¢ : H§:1 KTt — K such that v = ¢p; where p; :
[T!_, KT — KT. Then we have;
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KT correspond to m; = Autemi (K,), so there is a bijective map;
m/mi — Algr (KT, K)

which assigns each o € 7/m; to ojm. This map is injective if ojm = id, then
oxmi € Autpmi(Ks) = m;. To show surjectivity; each 7 : K7* — 7[K[’] C K which
T = idg can be extended to 7 : K — K and T‘,KS € 7 since K, is normal over K.

Then T\ ki

!/

= 7. This identification is compatible with the 7- action.
We know 7; is open, so 7; has a finite index. This means 7 /7; is a finite set. The

last thing we will show for this step is the continuity of the action;
7 x /7 — 1 n/m
[I7/m; is endowed with the discrete topology. Let o € m/m;, the inverse image of
o under the action is equal to {(7,7/m;) | 7 € m} = m x 7/m; which is open.
Step 2 : Now we define G. For a finite 7- set S, G(S) = Mor,(S, K;). The set of

morphisms of 7-sets from S to K endowed with the operations (+, -) such that;

f+9(s)=[f(s)+g(s) and f+g(os) = f(os)+g(os)
= of(s) +og(s)
= o(f +9)(s)
fa(s) = f(s)g(s) and fglos) = f(os)g(os)
= of(s)og(s)
= a(fg)(s)
kf(s)=k- f(s) and kf(os)=k- f(os) = k-of(s)
= o k(f(s))
= o ((kf)(s))
Vse S 1(S)=1 and 1(os) =1=0(1ls)
So, G(S) is induced with K- algebra structure. We will verify Mor, (S, K,) is a finite

dimensional separable K-algebra. Firstly decompose S into its orbits under the action

of m; S =111, Si.
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Let o € Mor,(IT7-, S, K) gives us p|5, € Morz(S;, Ks) and v € [[j—; Morz(S;, Ky)

gives us [[*; S; — K, we can write;
G(S) = Mor, (11, S, Ks) =TI, Mor.(S;, K)

As a finite 7-set, S; corresponds a subgroup, m; the kernel of the action on S;, that
is open by the corollary 3.0.27. Hence we may identify S; with /.
We claim that each element a € K7' defines a well-defined map of m-sets, g, :

7/m — K such that g,(m;) = a Hence it satisfy;
9a(0Ti) = 0ga(mi) = 0(a)
and it is well-defined since for all o € 7;
9a(0(m)) = ga(mi) = a = 0(a) = og(m;)
Hence we can write;
Mor,(n/m;, Ks) =2 KTi
which implies
G(E) =T, K&

By theorem 3.0.33 G(E) is a finite dimensional separable K-algebra.
Step 3 : The functors F and G are contravariant. For A, B € SAlgand f: A —

B, a K- algebra morphism;
F(f) - Alg(B, Ks) — Algx (A, K)

where F(f)(g) =go f for g: B — K.
Let S, T be finite m-sets and f : S — T be a morphism of 7-sets, then

G(f): Mor, (T, Ks) — Mor,(S, Ky)

where G(f)(h) =ho f for h: T — K.
Step 4 : Now we find natural transformations between I, a1y — GF and I_ge1s —

FG. Let B € SAlg, define
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03 : B — gf(B> = MOTW(Ang(BvKS)7KS)

which is defined by 0p(b) : Algix (B, Ks) — K; 05(b)(h) = h(b), for b € B and
h € Algi (B, K). 05(b) is a K-algebra homomorphism;

Op(b+c)(h) =h(b+c)=h(b) + h(c) =0g(b)(h) + 05(c)(h)
05(k)(g) = g(k) = k since g € Algic(B, K.).

Let f: A — B be a K-algebra morphism then the diagram

A B

04 05

GF(A) — GF(B)

is commutative, it is because we have for a € A and g € Algk (B, Ky);
(05 0 f)(a)(g) = 05(f(a))(g) = g(f(a))
(GF(£))(0a(a))(g) = 04(a))(go f)=go f(a)
Now,we set a natural transformation between I,_,.;s and FG. Let S be a finite m-set;
define
ns 1S — FG(S) = Algx (Morz(5, Ks), Ky)

where ns(s) : Morz (S, Ks) — Kg; ns(s)(g) = g(s)-

ns(s) is a m-set morphism since;

ns(s)(og) = og(s) = ans(s)(9)
For any m-set morphism, f : S — T, the diagram

f

S T

s 05

FG(S) — FG(T)

is commutative, since we have
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(7 0 f)(5)(9) = nr(f(s))(g) = 9(f(s))

(FG(1)ns(s))(g) = ns(f(s))(g) = g(f(s))

Step 5 : Both 5 and ng are isomorphisms. For B = Hﬁzl KT, we know from Step
1 and Step 2;

¢ ¢
Morw(Ang(H KT Ky),K,) = MOTW<H(AZQK(K;”, Ky)), Ky)

i=1 i=1

t
=~ [ Mor(Algx (K™, K,), Ky)

=1

We use the identifications in the previous steps;
t Mor (Alg (K™, Ky), K,) 2 TI'_, Mory(m/m;, Ks) 2 [[i_, K™

so fp is an isomorphism.
1Tt t
For S = [I;—; S = Il 7T/7Ti7

t

Alg (Mor(]] m/m;, Ks), Ks) Algk ([[(Morx(r/m;, Ky)), K)

i=1 i=1

Algr (KT, Ky)

t

i=1

¢
I~/
i=1

SO ng is an isomorphism. 0

1

12

14

1

Note that the theorem we proved above is the special case of the main theorem
for Galois Categories.
Now we look at the classic topological fundamental group concept and state the

relation with galois categories and algebraic fundamental group.
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3.2 Topological Fundamental Group

Definition 3.2.1 Let X be a topological space. A path; a in X from py to p; is a
continuous map; « : [0, 1] — X such that «(0) = pg and (1) = p;.

Two paths, a1 and as on X with the same initial and end points such that «4(0) =
az(0) = po and a4(1) = az(1) = p; are homotopic if there exists a continuous map

h:[0,1] x [0,1] — X such that
h(0,s) = po and h(1,s) = p; for all s € [0,1]
h(t,0) = a1(t) and h(t,1) = as(t) for all t € [0, 1]

Homotopy relation is an equivalence relation. Let oy, as and a3 are paths on X.

i) ag ~ oy

The homotopy can be defined as h(t,s) = «a(t)

ii) oy ~ ag implies ay ~

Let hy is the given homotopy which hy(£,0) = a4 (t) and hy(t,1) = as(t). Let ho
be defined by hs(t,s) = hi(1 —t,s) which is continuous since t — 1 — ¢ is continuous.
Hence s ~ aq with the homotopy hs.

iii) a; ~ ag and ag ~ az implies oy ~ ag

Let hy and hy be the given homotopies such that hy(t,0) = ay(t), hi(t,1) = as(t)
and hy(t,0) = ay(t) and ha(t, 1) = as(t). Now define;

hi(t,2s), 0<s< i

hs(t) = ?

ho(t,2s — 1), 3 1

SO; h3(t70) = hl(t,O) = O[l(t) and hg(t ].) = hg

7 (1) = a
since h; and hy are continuous and for s = %; hi(t, 1) = ho(t,0) = as(t)
Definition 3.2.2 Let a; be a path from py to p; and as be a path from p; to ps.
We define the product of two paths; oy * ay by

(03] (2t>,
Oé2(2t - ].),

(@]
IA
~
IA

ag x as(t) =

—_ N

N =
INA
~
IN
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The inverse of a; is the path a;*(t) = ay(1 —t)

Theorem 3.2.3 Let pg,p; and py € X, Let a3 and as be paths from py to p;, and

let 31 and (5 be paths from p; to po.
Z)If Q1 ~ Q9 and 51 ~ 62, then Oélﬂl ~ 04252.
2)If oy ~ g, then a7t ~ ay?

3) apai’ ~ eq(t) which is the constant path at a; eq(t) = a for all t € [0, 1].

Proof

1) Let hy; and hy be homotopies from from «; to ay and 3; to [, respectively.

Then hs a homotopy from «;/3; to asfs is given by

h1(2t, S), 0 St
h2(2t - 175)7

IA
— N[

hs(t) =

IN
IN

1
3=t

2) Let hy be the homotpy from a; to ap. Then define hy a homotpy from a; ' to

-1,
Qg

hg(t, S) = hl(l — t, S)

3) We define the homotopy h; from e, to a;a; ' such that

aq(2t), 0<t<3,
hi(t,s) = a(s),  $<t<1-3,
ai(2 — 2t) 1-5<it<1
where hy(t,0) = e, and
h(t.1) = a1(2t), 0<t< %;
(2 — 2t), 1<t<1

O

Definition 3.2.4 Let X be a topological space, the set of equivalence classes of closed
paths passing through p forms a group under the operations of product and inverse

defined above. This group is called the fundamental group and denoted by m (X, p).
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Remark

1) If X is a path-connected topological space, for p,q € X,
71'1(X7p) = 7T1(X7 Q)

2) A space X is simply-connected if X is path-connected and (X, p) is trivial.
3) The fundamental group is topological invariant that is if ¢ : X — Y is a
homeomorphism and if p; € Y and ¢(py) = p; then

771(X7P0) = 7r1(Y,p1)

The fundamental group of X classifies the covering spaces of X. In fact, one can

define the fundamental group without using paths or homotopy.

Definition 3.2.5 A mapping of topological spaces f : X — X is said to be an
unramified covering if each point p € X has an open neighborhood U such that

f~YU) is a disjoint union of open sets, each of which is homeomorphically onto U by

f.

Theorem 3.2.6 (Path-lifting theorem) Let f : X — X be a covering map. Let o be
a path with a(0) = py. Let py € X with f(po) = po. Then there exists a unique path
& in X such that &(0) = py and fod = o

Proof Chpt. 3 Cor. 2 in [6] O
It is a good time to ask the question when two paths in a covering space is

equivalent. The answer is the Monodromy theorem.

Theorem 3.2.7 Let f: X = X bea covering and let o and (3 are homotopic paths
in X. Let a and B be the lifts of a and [ starting at the same point above a(0).

Then @& is homotopic to 3 and in particular a(1) = 3(1).

Proof Chpt. 5 Thm. 5.5 in [§] O
Let f: X — Y be a continuous map between path-connected spaces. Then for

po € X, there is an induced homomorphism between fundamental groups. f,m (X, po) —

71(Y, f(py)) such that;
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fulla]) = [f o q]

where [« is the set of all paths homotopic to a.. Since we can define a homotopy fo F

from foa to fo( where F'is a homotopy from « to 3, this definition is well-defined.

Theorem 3.2.8 Let f : X — X be a covering map. Let p € X and p € X

which f(p) = p. Then there exists a one-to-one correspondence between f~!(p) and

(X, p), fomi (X, D).

Proof : Define g : m(X,p) — f~(p) where [a] goes to @(1) which the end point
of the unique lifting of . By the monodromy theorem , this map is well-defined.
Now we show that ¢ is constant on cosets fom (X, p). Let [aq] and [o] lie in the same

coset, which mean for some [§] € fom (X, p), [a1] = [B] * o).

g([an]) = g([B  aa]) = Bx as(1) = (1) = g([as))

Let H = f,m (X, p) then g(H[a]) = g([a]) gives us the one-to-one, onto map. g is
surjective since ¢ is surjective. Let p € f~!(p) and since X is path-connected we can
construct a path starting from a point in f~1(p) and ending with p.

Let §(Ho]) = g(H|[ovw]), which means é4(1) = ay(1), so that [a1d5!] € (X, p).

[a1] and [a] are in the same coset of H since for h = f,([a1d5]);
hlas] = [f o (616 ")][ay '] = aray [ao] = [on].

O

Theorem 3.2.9 Let X be path-connected and locally simply connected topological
space.

1)Let H be a subgroup of m;(X,p), then there exists a covering map f : X — X
such that f,m(X,p) = H, where p € X with f(p) = p.

2) Let f: X; — X and g : X, — X be covering maps with f(p1) = g(p,) where
pi € Xiyi = 1,2. If fum(X1,p1) C gomi(Xs, o) then there exists a unique covering
map h : X; — X, such that h(p;) = po and gh = f.
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Proof :Chpt. 3 Thm. 4, Thm. 7 in [6] O
The fundamental group 7 (X, p), always contains two trivial subgroups, id and
itself. The covering space corresponding to (X, p) is the space itself with the identity
mapping. We called the universal covering space X corresponding to the identity
subgroup. It obviously has the universal property and m; (X ,P) = id which makes X

simply-connected.

Definition 3.2.10 Let f : X — X be a covering map. A covering (deck) transfor-
mation of the covering space X is a homeomorphism ¢ : X — X such that foy = f.

It is clear that the set of all covering transformations form a group under composition,

it is denoted by Deck‘(X> f)

Theorem 3.2.11 Let X be a locally simply connected space. Let f : X — X be
a covering map where the associated subgroup f,m; ()Nf ,p) is a normal subgroup of

™ (va)a then

Deck;(f(, f) = 7T1(X,f(25))/f*7T1(Xaﬁ)

In particular, if X is the universal covering space (X, p) = Deck(X' 1)

Proof :Chpt. 3 Thm. 9 in [6] O

Actually, if the associated group is not normal, then the relation is;

Deck(f(,f) = N(f*ﬂl(Xaﬁ))/f*Wl(Xyﬁ)

where N denotes the normalizer. We are interested in covers corresponding sub-

groups are normal, which we call them as regular covers.

Example 3.2.12 R! is the covering space of the circle S' = {(y1,y2) € R? : yi+y3 =
1} with the map ¢ : R! — S such that ¢(r) = e*™". Note that 7 (R, 0) is trivial so,
it is the universal covering of S'. Consider p € Deck(R', ¢) such that ¢p = ¢ that is,
such that e>™(") = 2™ Then for all r € R, p(r) —r is an integer. Hence for a fixed

k; p(r) = r+ k, it is the translation by the integer k. Then, there is an isomorphism;
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Deck(RY, ¢) 2 m(S', 1) = Z

One of the main computational tools in calculating fundamental group is the
Seifert- Van Kampen theorem. Before stating the theorem, we need some group

theoretic preliminaries.

Definition 3.2.13 Let G and H be groups whose elements are arbitrary and their
inverses. The elements of the free product of G and H, G * H are equivalence classes

of symbols
grxhy*xgoxhgx..%xg,*h,
where g; € G and h; € H, and the equivalance relation is defined as
gu*hy..xhix1gxhiq..gn*xhy~gr*xhy*..xh;xhiq1..g, % hy
and similarly for g; * 1y * g;+1. The product is defined by

(g1 % ook hy) % (Gt % ook Ry) = g1 %k oo By % Gy % sk By

Given any groups GG, H and K with homomorphisms iy : K — G, iy : K — H, the
free amalgamated product of G and H over K; G xx H is defined to be the quotient
group of the free product G x H by the subgroup containing all elements of the form
i1 (k) * ig(k)~1

G *xx H has the universal property, such that let ) be an arbitrary group with
morphisms ¢; : G — Q and ¢» : H — @ satisfying ¢1i; = ¢2i5. Then we have a unique

morphism f : G xx H — @ such that the diagram
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is commutative.
The free product is the same as the free amalgamated product over the trivial

subgroup where 7; and iy are the obvious homomorphisms.

Theorem 3.2.14 (Seifert- Van Kampen Theorem) Let X = UUV with U, V and UN
V' all open, non-empty and path-connected. Let x, € UNV. Then the canonical maps

of the fundamental groups of U, V and U NV into that of X induce an isomorphism.
0: T (X, xo) - 7T1(U7 Io) *r (UNV,zo) 7T1(‘/, xo)
Proof : Chpt. 4 Thm. 2.1 in [7] O

Example 3.2.15 i) Let X be a space which has shape like figure 8. Choose a and
b from distinct circles of X. Let U = X \ {a} and V = X \ {b}. U and V are both
homeomorphic to a circle, which means their fundamental group is isomorphic to
infinite cyclic groups. UNV = X\ {a, b} is a simply-connected space, so m (UNV, z,) =
id. By the theorem, (X, x,) is a free product of two infinite cyclic groups that is a
free group on two generators.

ii)Let X be a sphere minus three points. Then this space is homeomorphic to the
entire plane minus two points since there is a homeomorphism f : S™\ {p} — R”
called stereographic projection. We can find a subset Y of X such that Y is the union
of two circles with a point in common like figure 8. Since Y is a deformation retract
of X in other words; Y is homeomorphic to X, m (X, z,) = m (Y, x,). We know from
above, m(Y,z,) is free group on two generators. The generators can be the closed

paths a and 3 based at x, going once around a and b.

Now, we begin reviewing the fundamental group concept from the categorical point
of view. Let X be a path-connected and locally simply connected topological space.
Let Cov(X) be the category of unramified covering spaces of X with morphisms of
covering spaces. Let f : X; — X and g: X, — X be covering maps, then a morphism
of covering maps « : X, — X, is a continuous map such that ga = f.

Counsider the functor



Chapter 3: Galois Categories 57

Fp:Cov(X)— Sets |, (f:X — X)— f(x)

The fiber has two actions;
1)The left action of Deck(y ) I X is connected topological space, the stabilizers

of the action is trivial.

Definition 3.2.16 Assume the covering f : X — X is finite and connected. X is a
galois cover if and only if the order of the group Deck:()? , f) equals the degree of f
which is the cardinal of the fiber.

2)The right action of (X, z)
The uniqueness property of path-lifting theorem gives us a well-defined action,

which is called monodromy action. Let o € m (X, z) and y € f~!(x)
a-y=a(l)

where & is the unique lift of «, such that @(0) =y

Let S be an orbit of the action of m (X, z) and s € S, consider Xg = X /Stab,
where X is the universal covering. We can construct a covering by taking the direct
sum of aver all orbits. If X is connected, then the action is transitive.

The group Deck(j(v , f) commutes with the monodromy action. Let f* € Deck(j(v 1)
and o € m(X,2), y € fY (). f(a-y) = f(a(l)) where a(0) = y. f (@) is the
lifting of a starting at f (&(0)) = f (y), so

flla-y)=a-fy)
The monodromy action gives us;
Frp: Cov(X) — m (X, z) — sets

This action is compatible with the morphisms between two unramified coverings.

Let h: X; — Xo and a € 71(X, x) then the diagram
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Fu(Xa) —v Fo(Xn)

commutes. Since let f : X; — X, g : Xo — X and 71,79 € f~H(z) such that

h:Z; — Zo.
Fo(h)(a- 1) = h(a- Ty) = h(@(1)) where &(0) = 74
a- (Fu(h)(Z1)) = a-h(Z)) = a- Ty = a(l) where a(0) = 7

since h is a covering map for X,; h(a(1) = a(1).
So the action of « is a natural transformation for the functor F, to itself. Aut(F,)
is the set of all natural transformation from F, to itself. So we have the homomor-

phism;
v m (X, x) = Aut(F,)

1 is one-to-one. Let X be the universal cover of X with g: X — X then by the
theorem 3.2.8, g~ !(x) has a one-to-one correspondence with 7 (X, z).

¥ is onto. Let o € Aut(F,) and a € m(X,z) where @ is the lift of o in X such
that @(0) = z and a(1) = o7 then ¥ (a) = 0. So we have;

m (X, z) = Aut(F,)

Remark: Let X be a connected topological space then the category of finite,
unramified coverings of X, Covyinie(X) is a galois category (for the proof see Chpt.
3 3.9 in [5]). Let F, : Covpinire(X) — {finite sets} be the fundamental functor such
that f : Y — X goes to f~(z). We know (X, z) = Aut(F,) and by restriction

we have m (X, z) — Aut(F,). Aut(F,) is a profinite group since it consists of the

automorphisms of the finite groups. Profinite completion G of an arbitrary group G
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has such a universal property that let ¢ : G — G is the natural homomorphism, for
any profinite group H and any homomorphism ¢ : G — H, there exists a unique

continuous group homomorphism ¢ : G — H such that op = 1. So we have;

(X, z) — Aut(F,)

A

$

mi(X, )
Considering the regular covers which correspond to the normal subgroups of

m (X, x) of finite index is sufficient to compute Aut(F,). Therefore, we have

limmy (X, ) /N = Aut(F,)

Lim
3.3 Algebraic Fundamental Group

We construct the algebraic (étale) fundamental group by imitating the characteriza-
tion of the topological fundamental group as the group of deck (covering) transforma-
tions of a universal covering space. Also one can define it as the automorphism group
of a fiber functor. So we consider a suitable analogue to the unramified covering and
fiber functor. A finite etale morphism is the natural analogue of a finite unramified
covering. Unfortunately, in algebraic case the fiber functor is not representable by

the universal cover since there is usually no such object.

Example 3.3.1 i JLet F, be a finite field and F, be the algebraic closure. The fields
Fyp.={qec F,: a?" = a} for k € Z-g are the only finite extensions of F, in F, Note
that each Fjx is a finite separable field extension of Fj, so SpecFx — Specky is a
finite etale map. Among these coverings, there is no biggest one.

ii)A connected scheme X is said to be simply-connected if every etale covering
of X is trivial that is a direct sum of copies of several copies of X. So SpecC is a

simply-connected scheme and it is the universal cover SpecR



Chapter 3: Galois Categories 60

However the fiber functor F, : FEt, — Sets where (f : Y — X) goes to f~!(x), is
pro-representable which means that there is a projective system X = (X;)ier of finite

etale coverings of X indexed by a directed set I such that;
(Fo(Y)) = limerHomx (X;,Y) = Hom(X,Y)
So we can define the algebraic fundamental group;
(X, ) = Aut(F,) = Aut(Hom(X,-)) = Aut(X)errosite
which is endowed with profinite group topology.

Example 3.3.2 i)Consider F Etg,..ic the category of finite etale coverings of SpecK
where K is a field. Let us define the fiber functor

F.(SpecR) = Homg (SpecK*P SpecR)

which is compatible with the definitions above: SpecK*® — SpecK serves as the
universal cover. Recall that Gal(K*?/K) is the inverse limit of Gal(K'/K) where

K?¥s are finite separable extensions of K.
7 (SpeckK, x) = Aut(Homy (SpeckK™?,.)) = Aut(SpeckKseP)orr
9 (SpecK, x) = Gal(K**/K)

ii)Let A}, = SpecK|[t] be the affine line over an algebraically closed field K of

characteristic zero. The finite etale coverings of A} \ {0} are the maps;

SpecK|[t] \ {0} — SpecK]|t] \ {0}

n 1 . . .
where ¢ goes to t" because dd% = na"~! is nonsingular at all 2 # 0 since the character-

istic is zero, so (by cor. 2.2 in [9]) ¢ is etale. Let pu,(K) be the cyclic group of order n
which is generated by the nth roots of unity in K, if t — " : A}.{0} — A}L{0} then,

Aut(SpecK]|t] \ {0} — SpecK[t]\ {0} : t — t") = p,(K)
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with ¢ € p,(K) acting by = — (z.
We have an inverse system by the relation of divisibility; n/m < m > n where

the maps are;
Aut(A)\ {0} — Ak \ {0} 1 £ — £7) = Aut(A \ {0} — Al \ {0} ¢ — %)
Note that p,(K) is non-canonically isomorphic to Z/nZ and by the example..
m19(Ak \ {0}, 2) = lim, Z/nZ = Z.

Definition 3.3.3 Let X be a scheme finite type over C. Let X' be the topological
space whose points are closed points of X and with base obtained as follows; consider
an open set U C X, a finite number of regular functions fi,...f, on U and a number

€ > 0. Define V(U, f1,...fn; €) as the set of points;
VU, fi,...fn; € ={xeU| |fi(x)]<e for i=1,..,n}.

By taking the V(U, f1,...fn; ¢€) as a basis for the open sets, we make X'? into a

topological space.

Theorem 3.3.4 (Corollary of a Riemann Existence Theorem) Let X be a scheme
of finite type over C. Then 7{¥(X,z) is isomorphic to mi?(X'? zY; the profinite

completion of the usual fundamental group of X%P.
Proof :App. E Thm. E.1 in [?] O

Example 3.3.5 Let P{ be the projective line over C. Define X = P¢ \ {0, 1,00},

then the topological fundamental group is the free group on two generators. Namely;
TP (X, x) = (20,71, Too | To - 71 Teo = 1)

where the z;’s correspond to the loops around 0, 1, and co from the base point x.
Then by the theorem Wflg (X, z) is the profinite completion of the free group on two

generators.
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