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ABSTRACT

Stochastic di¤erential equations with jumps are important in physics, �nance and

engineering as they represent systems with sudden random e¤ects. Analytical so-

lutions of stochastic di¤erential equations not only allow us to study the underly-

ing stochastic processes, but also provide the means to test the numerical schemes.

Therefore, analytical methods for the integration of nonlinear stochastic di¤erential

equations are of paramount importance.

We consider linearizing transformations of the one-dimensional nonlinear stochas-

tic di¤erential equations driven by Wiener and compound Poisson processes, namely

�nite activity Lévy processes. We present linearizability criteria and derive the re-

quired transformations. We introduce a stochastic integrating factor method to solve

the linearized equations and provide closed-form solutions.

We apply our method to a number of stochastic di¤erential equations including

Cox-Ingersoll-Ross short-term interest rate model, log-mean reverting asset pricing

model and geometric Ornstein-Uhlenbeck equation all with additional jump terms.

We use their analytical solutions to evaluate the accuracy of the numerical approx-

imations obtained from Euler and Maghsoodi discretization schemes. The means of

the solutions are estimated through Monte Carlo method.
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ÖZETÇE

S¬çramal¬stokastik diferansiyel denklemler, ani rassal de¼gi̧simlerin görüldü¼gü sis-

temleri temsil etmeleri nedeniyle �zik, �nans ve mühendislik alanlar¬nda önemli bir

yer tutar. Bu denklemlerin analitik çözümleri ise sadece temeldeki stokastik süreçlerin

incelenmesini de¼gil, ayn¬zamanda say¬sal yöntemlerin s¬nanmas¬n¬da sa¼glamaktad¬r.

Bu yüzden do¼grusal olmayan stokastik diferansiyel denklemler için analitik çözüm

yöntemleri son derece önemlidir.

Bu çal¬̧smada, Wiener ve bileşik Poisson süreçleriyle yani sonlu etkinli¼ge sahip

Lévy süreçleriyle sürülmüş, tek boyutlu do¼grusal olmayan stokastik diferansiyel den-

klemleri ele almaktay¬z. Do¼grusallaşt¬rma ölçütleri ortaya ç¬kar¬l¬p, denklemleri do¼grusal-

laşt¬rmak için gerekli dönüşümler bulunmuştur. Adi diferansiyel denklemlerde bilinen

integrasyon çarpan yöntemi stokastik diferansiyel denklemlere uyarlanarak, do¼grusal

denklemlerin çözümleri elde edilmektedir.

Do¼grusallaşt¬rma yöntemimiz, s¬çrama terimi içeren Cox-Ingersoll-Ross modeli,

log-ortalamaya çekilen �yatlama modeli ve geometrik Ornstein-Uhlenbeck denklemi

gibi çeşitli stokastik diferansiyel denklemleri çözmek için uygulanm¬̧st¬r. Buldu¼gumuz

analitik çözümler, sözü geçen denklemlerin Euler ve Maghsoodi say¬sal yöntemleriyle

yaklaşt¬r¬mlar¬yla kaŗs¬laşt¬r¬lm¬̧st¬r. Çözümlerin beklenen de¼geri ise Monte Carlo yön-

temi ile kestirilmi̧stir.
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Chapter 1

INTRODUCTION

Interest in the study of stochastic phenomena has increased dramatically in recent

years. Intensi�ed research activity in this area has been stimulated by the need to

take random e¤ects into account in complicated physical systems which are usually

described by di¤erential equations. One way to incorporate randomness is to add a

stochastic term to the deterministic di¤erential equation at hand, which is then called

a stochastic di¤erential equation. The theory of stochastic di¤erential equations has

recently enjoyed signi�cant reputation as a result of its impact on physics, �nance

and engineering [7, 15, 26, 27, 8, 32]. Furthermore, stochastic di¤erential equations

with jump terms, driven by Lévy processes in general, appear to be more realistic in

cases where sudden events play prominent role [17, 19, 20, 25, 28, 8, 32].

Analytical solutions of stochastic di¤erential equations not only allow us to study

the underlying stochastic processes, but also provide the means to test the numeri-

cal schemes [14, 23]. Therefore, analytical methods for the integration of nonlinear

stochastic di¤erential equations are of paramount importance.

Lévy processes are basically stochastic processes with stationary and independent

increments. They are analogues of the random walks in continuous time. Moreover,

they form a subclass of semimartingales and Markov processes which include very

important special cases such as Brownian motion, Poisson process, subordinators and

stable processes. Although much of the basic theory was established earlier, a great

deal of new theoretical developments as well as novel applications in diverse areas

have emerged in recent years. [1, 2, 30].

We derive linearizing transformations of one dimensional stochastic di¤erential
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equations driven by Wiener and compound Poisson processes which form a �nite

activity Lévy process. We provide the conditions for linearization and resulting exact

solutions via stochastic integrating factors. We propose an analytical method of

integration which is based on a linearizing a nonlinear stochastic di¤erential equation

and solving the linear stochastic di¤erential equation via stochastic integrating factor

method which exactly originates from the theory of ordinary di¤erential equations.

Let (
;F ; P ) be a �ltered probability space and W = fWt; t � 0g be a standard

Wiener process [19] and N = fNt; t � 0g be a homogeneous Poisson process [32].

We consider a stochastic process X = fXt; t � 0g adapted to the �ltration fFtgt�0
satisfying the nonlinear stochastic di¤erential equation with jump terms of the form

dXt = f(Xt� ; t)dt+ g(Xt� ; t)dWt +
mX
j=1

rj(Xt� ; t)dN
j
t ; X0 = x0 (1.1)

where f; g and r areR valued continuously di¤erentiable functions, dWt is the in�nites-

imal increment of the Wiener process [19, 27] and independently dN1
t ; dN

2
t ; : : : ; dN

m
t

are the in�nitesimal increments of the independent Poisson processes with intensities

�1; �2; : : : ; �m respectively [17, 32]. We present necessary and su¢ cient conditions for

the linearization of the stochastic di¤erential equation given in (1.1) via an invertible

transformation. As applications, it is shown that Cox-Ingersoll-Ross short-term inter-

est rate model [7], log-mean reverting asset pricing model [9, 31, 34] and Geometric

Ornstein-Uhlenbeck [12, 11, 27, 33] model with additional jump terms and several

more examples [17, 24] are linearizable under speci�ed conditions on the functions

f , g and r: Exact solutions to these linearizable equations obtained. We then com-

pare our analytical solutions with the numerical approximations found by Euler and

Maghsoodi schemes to demonstrate the agreement. The means are found by Monte

Carlo approach to estimate the expected value of X.

This thesis is organized as follows. We �rst give the necessary de�nitions and

results from the probability theory in Chapter 2. We present the preliminary descrip-

tions from measure theory, probability spaces and random processes. In Chapter 3,

we brie�y review the theory of Lévy processes, its special cases and their simulations.
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The main results related to stochastic integration and Itô�s formula are given in Chap-

ter 4. In Chapter 5, we present results about the linearization of nonlinear stochastic

di¤erential equations and give the necessary and su¢ cient conditions. The analytical

solution of linear stochastic di¤erential equations via stochastic integrating factors

are also found in this chapter. A number of examples to demonstrate our method

of integration are given. In Chapter 6, the numerical results are given for several

examples of linearizable stochastic di¤erential equations. Finally, the conclusions are

stated in Chapter 7.
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Chapter 2

PRELIMINARIES

We present necessary de�nitions and results from the probability theory. Prelim-

inary descriptions from measure theory, probability spaces and random processes are

given in this chapter.

2.1 Measure Theory

We begin with some elementary de�nitions. First, we de�ne a �-algebra [21] .

De�nition 2.1.1 A non-empty collection E of subsets of E is a � � algebra if

� E contains the empty set: ; 2 E (and contains E) ;

� E is closed under countable unions of disjoint subsets: An 2 E ; n = 1; 2; : : : )S
nAn 2 E ;

� E is closed under complements: A 2 E ) Ac 2 E :

The ��algebra generated by the open sets in E (that is, the smallest ��algebra

that contains all open sets in E) is called the Borel ��algebra on E and is denoted

by B (E) : For example, the ��algebra generated by the collection of all intervals in

R is the Borel ��algebra on R.

The following de�nitions can be found in [6]:

De�nition 2.1.2 Let E be a �-algebra on a set E: The pair (E; E) is called ameasurable

space: The elements of E is called a measurable set.
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De�nition 2.1.3 Let (E; E) & (F;F) be two measurable spaces. A function f : E !

F is called measurable if for any A 2 F

f�1 (A) = fx 2 E; f (x) 2 Ag

is a measurable subset of E : f�1 (A) 2 E.

A function from E into R is said to be E �measurable if it is measurable relative

to E and B (R).

De�nition 2.1.4 A measure on a measurable space (E; E) is a function � : E ! R+
such that

� � (;) = 0;

� � (
S
nAn) =

P
n � (An) for any sequence of disjoint sets: An 2 E ; n = 1; 2; : : :

The triplet (E; E ,�) is called a measure space.

We then consider following examples from [6].

Example 2.1.1 Dirac Measures

Let (E; E) be a measurable space. The Dirac measure �x on (E; E) associated to

a �xed point x 2 E is

�x (A) =

8<: 1; x 2 A;

0; x =2 A:
;

for A 2 E .

Example 2.1.2 Counting Measures

Let (E; E) be a measurable space. The counting measure v on (E; E) for D � E

is

v (A) =
X
x2D

�x (A) ;

for A 2 E. Intuitively, v (A) is the number of elements in A\D for a countable subset

D, which is possibly in�nite.
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Example 2.1.3 Discrete Measures

Let (E; E) be a measurable space and let m be a measure with m(x) 2 N for x 2 E.

The discrete measure � on (E; E) is

� (A) =
X
x2D

m (x) �x (A) ;

for A 2 E. Intuitively, � can be conceived as the weight of the set A where m can be

considered as the mass of x.

Example 2.1.4 Lebesgue Measure

The Lebesgue measure � on
�
Rd;B

�
Rd
��
is denoted by

� (A) =

Z
A

dx;

which represents the (d-dimensional) volume of a set A 2 B
�
Rd
�
.

Let (E; E ; �) be a measure space and f be a measurable function in E . The

integral of f with respect to the measure � is denoted by

�f = � (f) =

Z
E

� (dx) f (x) =

Z
E

fd�:

De�nition 2.1.5 A function on E to R [ f�1;1g is called a simple function if it

has the form

f =

nX
1

ai1Ai ;

for some n 2 N, a1; : : : ; an 2 R and A1; : : : ; An are measurable sets belonging to E,

where 1Ai is the indicator function of Ai given by

1Ai (x) =

8<: 1; x 2 Ai;

0; x =2 Ai:

Therefore, there exists m 2 N and distinct real numbers b1; : : : ; bm and a measur-

able partition fB1; : : : ; Bmg of E such that

f =

mX
1

bi1Bi :

This representation is called the canonical form of the simple function f .
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De�nition 2.1.6 Let f be simple and positive. If it has the canonical form f =Pn
1 ai1Ai, then we de�ne the integral as follows ,

�f =

nX
1

ai� (Ai) :

A positive function on E is E-measurable if and only if it is the pointwise limit of

an increasing sequence of positive simple functions which is denoted simply f 2 E+.

Therefore, let f 2 E+ and let (fn) denote a sequence that converges pointwise to f

where each fn is simple and positive. The integral �fn is de�ned for each n by the

preceding step and we de�ne

�f = lim fn:

On the other hand, let f 2 E . Then, f+ = f _ 0 and f� = � (f ^ 0) where _ denotes

the maximum and ^ denotes the minimum and their integrals � (f+) and � (f�) are

de�ned by the last step. Noting that f = f+ � f� we de�ne

�f = �
�
f+
�
� �

�
f�
�
;

provided that at least one term on the right hand side is �nite.

Speci�cally, let E be a Lebesgue measurable subset of Rd; let E = B (E) and � be

the Lebesgue measure on (E; E). The integral

�f = LebEf =

Z
E

Leb (dx) f (x) =:

Z
E

f (x) dx

is called the Lebesgue integral of f on E.

If the Riemann integral of f exists, then it is equal to its Lebesgue integral.

However, Lebesgue integral exists for a larger class of functions than the Riemann

integral does. Intuitively, the Lebesgue integral is computed by partitioning the range

of f whereas the well-known Riemann integral is computed by partitioning the domain

of the function f [13]:
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2.2 Probability Spaces and Stochastic Processes

A measure space (
;F ;P) is called a probability space if P is a measure on (
;F)

with total mass 1 [6, 8] that is, P (
) = 1: The set 
 is interpreted as the collection

of all possible outcomes and is called the sample space. Each element ! 2 
 is called

an outcome. The �-algebra F is called the history and each measurable set A 2 F ;

called an event, is a set of outcomes to which a probability can be assigned. The

measure P is called a probability measure.

The following de�nitions from probability theory can be found in [6].

De�nition 2.2.1 Let (
;F ;P) be a probability space and (E; E) be a measurable

space. A measurable function

X : 
! E

is called a random variable. In other words, the function X is a random variable if

X�1 (A) = f! 2 
 : X (!) 2 Ag

is an event for A 2 E:

De�nition 2.2.2 Let (E; E) be a measurable space and X be a random variable taking

values in it. The distribution of X is a probability measure �X on (E; E) denoted by

�X (A) = P
�
X�1 (A)

�
= P (X 2 A) ;

where P (X 2 A) is the probability that X is in A 2 E.

De�nition 2.2.3 Let (E; E) be a measurable space and Xt be a random variable

taking values in (E; E) for t 2 T: The family of random variables X = fXt : t 2 Tg

is called a stochastic process with state space (E; E) and parameter set T.

For each �xed ! 2 
 the function

X (!) : t! Xt (!)

is called the sample path of the process.
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De�nition 2.2.4 Let (
;F ;P) be a probability space. A filtration on T is an in-

creasing sequence of �-algebras (Ft)t2T ; that is,

Fs � Ft whenever s < t

and each Ft is a sub-�-algebra of F .

Let X be a random variable taking values in a measurable space (E; E). A �-

algebra � (X) = fX�1 (B) : B 2 Bg is called the �� algebra generated by a random

variable X.

The �ltration Ft = � fXs : s � tg for a stochastic process X = (Xt)t2T with a

state space (E; E) is called the filtration generated by X and the process X is said

to be adapted to the �ltration (Ft).

De�nition 2.2.5 Let X be a stochastic process de�ned on a probability space adapted

to a �ltration (Ft) satisfying

E (jXtj) <1:

The process X is a martingale if for 0 � s < t <1

E (XtjFs) = Xs:

De�nition 2.2.6 A stopping time is a random variable T : 
 ! [0;1) for which

the event (T � t) 2 Ft for each t � 0.

De�nition 2.2.7 A stochastic processM is a local martingale for which there exists

a sequence of stopping times � 1 � : : : � �n !1 almost surely such that each of the

processes fMt^�n ; t � 0g is a bounded martingale.

De�nition 2.2.8 A stochastic process C = fCt; t � 0g is of finite variation if the

paths fCt (!) ; t � 0g are of �nite variation for almost all ! 2 
:

De�nition 2.2.9 A stochastic process X is a semimartingale if for each t � 0

Xt = X0 +Mt + Ct

where M = fMt; t � 0g is a local martingale and C = fCt; t � 0g is an adapted

�nite variation process.
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An important and one of the most intensively studied semimartingale is Brown-

ian motion B = fBt; t � 0g. One dimensional Brownian motion starts from zero,

has stationary and independent increments, its marginal probability distribution is

Gaussian, that is, Bt � N(0; t) and �nally its sample paths are almost surely contin-

uous and nowhere di¤erentiable.

2.3 Random Measures

Let (E; E) be a measurable space. A function

M : 
� E ! R+

is called a random measure [6] if the map

(!; :)!M (!;A)

is a random variable for A 2 E and

(:; A)!M (!;A)

is a measure on (E; E) for ! 2 
: Furthermore,

Mf =Mf (!) =

Z
E

M (!; dx) f (x)

is a random variable for every f in the set of all positive measurable functions on

(E; E) and

� (A) = EM (A) =

Z



P (d!)M (!;A)

is a measure � on (E; E), called the mean measure of M , therefore

EMf = �f:

De�nition 2.3.1 Let (E; E) be a measurable space and v be a measure on it. A

random measure N on (E; E) is called a Poisson random measure [6] with mean

(intensity) v provided that
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� N(A) has the Poisson distribution (a Poisson random variable) with intensity

measure v(A) for A 2 E ,

P (N (A) = k) = e�v(A)
(v (A))k

k!
; k 2 N:

� A sequence of Poisson random variables N(A1); N(A2); : : : ; N(An) are inde-

pendent for disjoint measurable sets A1; A2; : : : ; An 2 E for n � 2:

A Poisson random measure N on a measurable space (E; E) can be described as

a counting measure associated with a random con�guration of points in E such that

N (!;A) =
X
n�1

�Xn(!) (A) ;

for A 2 E and X1; X2; : : : �nite, independent and identically distributed random

variables in (E; E) : Therefore, N (!;A) is the number of random points in A:
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Chapter 3

LÉVY PROCESSES AND THEIR SIMULATION

Lévy processes are right-continuous stochastic processes that start at 0 and have

stationary and independent increments named in honor of Paul Lévy. In this chapter,

we characterize their main properties by giving necessary de�nitions and examples.

We also present algorithms and descriptions to simulate the Lévy processes.

3.1 Characterization of Lévy Processes

A cadlag, right continuous with left-hand limits, stochastic process X = fXt; t � 0g

on a probability space (
;F ;P) with values in Rd such that X0 = 0 is called a Lévy

process if it possesses the following properties [2, 30]:

� Independent increments: for every increasing sequence of times t0; t1; : : : ; tn
the random vectors Xt0 ; Xt1 �Xt0 ;. . . , Xtn �Xtn�1 are independent.

� Stationary increments: distribution of (Xt+h �Xt) does not depend on t:

� Stochastic continuity: sample paths of X are stochastically continuous;

limh!0 P (jXt+h �Xtj � �) = 0 for 8� > 0; t � 0:

The following de�nition can be found in [8].

De�nition 3.1.1 A probability distribution �X on Rd is said to be infinitely divisible

if for any integer n � 2; there exists n i.i.d. random variables X1; X2; : : : ; Xn such

that X1 +X2 + : : :+Xn has distribution �X :

Let X = fXt; t � 0g be a Lévy process. Then, for every t; Xt has an in�nitely

divisible distribution. Conversely, if �X is an in�nitely divisible distribution then
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there exists a Lévy process X = fXt; t � 0g such that the distribution of Xt is given

by �X [8].

The characteristic function of a random variable Xt is (the Fourier transform of

its distribution �X) given by

�t (u) = E
�
eiu�Xt

�
=

Z
Rd
eiu�x�X (dx)

for u 2 Rd: The distribution of a Lévy process is characterized by its characteristic

function which can be written as in the following theorem.

A measure v [2, 30] on B
�
Rd
�
is called a Lévy measure if

v (f0g) = 0 and
Z
Rd

�
1 ^ jxj2

�
v (dx) <1:

Theorem 3.1.1 (Lévy-Khintchine Representation) If X = fXt; t � 0g is a

Lévy process, then the characteristic function of Xt; �t (u) = E
�
eiu�Xt

�
satis�es

�t (u) = et (u)

 (u) = ib:u� 1
2
u:Au+

Z
Rd

�
eiu�x � 1� iu:x1jxj�1

�
v (dx) ;

where b is a vector on Rd called the drift term, A is the covariance matrix of a

Brownian motion Bt on Rd called the Gaussian coe¢ cient and v is the Lévy measure.

The triplet (A; b; v) is called the Lévy triplet or the characteristic triplet of X: The

function  (u) is called the characteristic exponent of the Lévy process X:

Lévy process can be expressed as a sum of two independent parts: a continuous

part and a discontinuous jump part. The latter part cannot be expressed as the sum

of jumps, since the sum of all jumps up to some time may be divergent . However, one

can overcome this problem by a compensated sum of independent jumps: summation

of random quantities with simultaneously subtracted means. The celebrated Lévy-Itô

decomposition is given below. Its proof can be found in [30].

Theorem 3.1.2 (Lévy-Itô decomposition) IfX = fXt; t � 0g is a Lévy Process,

then there exists b 2 Rd; a Brownian motion Bt with covariance matrix A and an
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independent Poisson random measure N on R+ � Rd such that for each t � 0

Xt = bt+Bt +

Z
jxj<1

x (N (t; dx)� tv (dx)) +

Z
jxj�1

xN(t; dx): (3.1)

An important implication of the Lévy-Itô decomposition is that every Lévy process

is a sum of a Brownian motion with drift and a possibly in�nite sum of independent

compound Poisson processes [2]. Therefore, every Lévy process can be approximated

by the sum of Brownian motion with drift and a compound Poisson process.

A Lévy process X has in�nite activity if the total mass of the Lévy measure on

the real line is in�nite. Therefore, this expression characterizes a high rate of arrival

of jumps of di¤erent sizes without a di¤usion component [16]. Furthermore, the set

of jump times of every trajectory of the Lévy process that has in�nite activity is

countably in�nite in R+. The countability follows directly from the fact that the

paths are cadlag [8]. The following proposition states these sample path properties

[8].

Proposition 3.1.3 Let X = fXt; t � 0g be a Lévy process with characteristic triplet

(A; b; v) :

� If v(R) <1 then almost all paths of X have a �nite number of jumps on every

interval (The Lévy process X has �nite activity).

� If v(R) = 1 then almost all paths of X have an in�nite number of jumps on

every interval (The Lévy process X has in�nite activity).

A Lévy process with triplet (A; b; v) is said to be of �nite variation if its trajectories

are functions of �nite variation with probability 1. Therefore, we must have A = 0

for Xt to be of �nite variation since the trajectories of Brownian motion are almost

surely of in�nite variation. Consequently, we have the following proposition [8].

Proposition 3.1.4 Let X = fXt; t � 0g be a Lévy process with characteristic triplet

(A; b; v) :
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� If A = 0 and
R
jxj�1 jxj v (dx) <1 then almost all paths of X have �nite varia-

tion.

� If A 6= 0 and
R
jxj�1 jxj v (dx) = 1 then almost all paths of X have in�nite

variation.

We examine two special Lévy processes next.

3.2 Wiener Process and Compound Poisson Process

As a special case, a Brownian motion taking values in Rd happens to be a Lévy

process with a characteristic triplet (a; 0; 0) where the process is denoted by B =

fB (t) ; t � 0g. It has mean zero and covariance E (Bi (s)Bj (t)) = aij (s ^ t) where

Bi (s) is the ith component of the vector B (s) :Wiener process is further special case

of a Brownian motion with a � I; the identity matrix.

A sample path of one dimensional Brownian motion can be simulated on [0; T ]

with the following algorithm [8]:

Simulate n independent standard normal variables N1; : : : ; Nn;

Set �Xi = aNi

p
ti � ti�1 + b (ti � ti�1) where t0 = 0:

The discretized trajectory is given by X (ti) =
P

k=1�Xi:

Note that, this is not an exact simulation as it is a �nite discretization of a continuous

process.

A Poisson process N taking values in N is a Lévy process with a characteristic

triplet (0; 0; ��1) where � > 0 is the intensity of the Poisson process and �1 is the

Dirac measure concentrated at 1: The paths of N are piecewise constant on each

�nite interval, with jumps of size 1 at random times �n = inf ft � 0; N (t) = ng :

Let fYn; n 2 Ng be a sequence of independent and identically distributed random

variables with distribution �Y and N be a Poisson process with intensity � > 0:

Compound Poisson process is a Lévy process Xt =
PNt

i=1 Yi with the characteristic

exponent

 (u) =

Z
Rd

�
eiu�x � 1

�
��Y (dx) :
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A sample path of this process can be simulated exactly on [0; T ] with one of the

following algorithms [8]. The �rst one is

Initialize k := 0

Repeat while
Pk

i=1 Ti < T

Set k = k + 1

Simulate Tk � exp(�)

Simulate Yk from the distribution � = �
�

The trajectory is given by

X(t) = 
b+

N(t)X
i=1

Y i where N(t) = sup

(
k :

kX
i=1

Ti � t

)
:

Another algorithm is

Simulate N � Poisson (�T )

Simulate Ui � Uniform(0; T ); i = 1; : : : ; N

Simulate Yi with � = �
�

The trajectory is given by

X(t) = bt+
NX
i=1

1Ui<tYi:

3.3 In�nite Activity Lévy Processes

Simulation of a �nite activity Lévy process can be done by generating Brownian and

Poissonian-type components independently of each other. The main problem is to

simulate a Poissonian-type component of a Lévy process having an in�nite Lévy mea-

sure. In that case, by the Lévy-Itô decomposition (3:1), sample paths of fXt; t � 0g

have in�nitely many jumps in each �nite interval. Exact simulation of such process

is obviously impossible.

There are three main simulation methods for Lévy processes;

� Discretization [8]:
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Discretization (also known as random walk approximation) procedure is discretiz-

ing the process X(t) into X(jh) : j = 0; 1; : : : Therefore, if we can simulate X(h);

then there is an approximate simulation for the process X(t). A complication of these

discretization methods is that, location and the magnitude of the large jumps cannot

be determined exactly. Especially in a heavy tailed case, large jumps are crucial be-

cause they determine many functionals of a Lévy process. Another disadvantage may

be that a simulation of X(h) may be computationally heavy.

� Series representations for Lévy processes [29]:

Series representation [29] provides uniform along sample paths approximation of

Lévy processes and often easy to simulate. Usually largest jumps of a Lévy process

are included in the �rst few terms of the series. A disadvantage of this method is

that some series may converge very slowly. Therefore, huge number of terms may be

needed to reach a desired accuracy of the approximation.

� Poissonian & Gaussian approximations [29, 3]:

If small jumps on the right hand side of (3:1) are removed or substituted by

their mean value then the subsequent process is a compound Poisson process with a

drift. This is a Poisson approximation of a Lévy process. As the magnitude of the

removed jumps tends to zero it converges uniformly on each �nite interval, because

of the growth of the Lévy measure is not too fast. Large jumps are exactly simulated.

However, when small jumps have high intensity, removing them (as in the series

representation) brings a substantial error. Then, the small jump part of a Lévy

process can be approximated by a Brownian motion with small variance instead of

removing from the right hand side of (3:1). Therefore, small jumps are truncated and

substituted with a properly scaled Brownian motion. This Gaussian approximation

complements the series representation method because it is practical to use even the

series converges slowly.
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Chapter 4

STOCHASTIC CALCULUS

In this chapter, we �rst summarize the theory of stochastic integration. Then the

quadratic variation of a stochastic process is discussed. Finally, we state the celebrated

Itô�s formula for Lévy processes in particular for Wiener and Poisson processes.

4.1 Stochastic Integration

We introduce stochastic integration with respect to Wiener processes, Poisson random

measures and Lévy processes. Therefore, let (
;F ;P) be a probability space and

X1; : : : ; Xn be random variables.

4.1.1 Stochastic Integration with respect to a Wiener Process

Let X = fXt; t � 0g be a simple predictable process de�ned by

Xt =
nX
i=0

Xi1[Ti;Ti+1) (t)

where fT0 = 0 < T1 < : : : < Tn�1 < Tn = Tg is a time grid and let W = fWt; t � 0g

be a Wiener process. The stochastic integral of X with respect to the Wiener process

[19, 26] is de�ned as Z T

0

XtdWt =
nX
i=0

Xi

�
WTi+1 �WTi

�
:

For many applications, it is important to consider a wider class of integrands,

instead of just simple predictable processes. Suppose Y = fYt; t � 0g is a stochastic

process adapted to a �ltration generated by a Wiener process satisfying

E

�Z T

0

jYtj2 dt
�
<1
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on [0; T ] : Then, we can �nd a sequence Y n = fY n
t ; t � 0g of simple processes such

that

E

�Z T

0

(Yt � Y n
t )

2 dt

�
! 0

as n!1 [6, 26]. Hence, we can compute the stochastic integral asZ T

0

YtdWt = lim
n!1

Z T

0

Y n
t dWt

in probability [19, 26].

4.1.2 Stochastic Integration with respect to Poisson Random Measures

Let X : 
� [0; T ]� R! R be a simple and predictable function given by

X (t; y) =
nX
i=1

mX
j=1

Xij1[Ti;Ti+1) (t) 1Aj (y)

where Aj are disjoint subsets and N is a Poisson random measure with intensity

measure v on [0; T ] � R. The stochastic integral with respect to a Poisson random

measure [1, 8] is de�ned asZ T

0

Z
R
X (t; y)N (dt; dy) =

nX
i=1

mX
j=1

XijN ([Ti; Ti+1)� Aj) :

As above, to consider a wider class of integrands, we can de�ne a stochastic process

Y = fYt; t � 0g satisfying

E

�Z T

0

Z
R
jY (t; y)j2 v (dt; dy)

�
<1

as the limit of a sequence of simple processes Y n = fY n
t ; t � 0g [6, 26]. Therefore,

we can compute the stochastic integral of Y with respect to N byZ T

0

Z
R
Y (t; y)N (dt; dy) = lim

n!1

Z T

0

Z
R
Y n (t; y)N (dt; dy) :

which converges almost surely.
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4.1.3 Stochastic Integration with respect to a Lévy Process

Let � = f�t; t � 0g and 
 = f
t; t � 0g simple predictable processes and  : 
 �

[0; T ]� R! R, ' : 
� [0; T ]� R! R be simple predictable functions as described

above. The stochastic integral with respect to a Lévy process with a Lévy measure v

on [0; T ]� R is de�ned [8] as followsZ T

0


tdt+

Z T

0

�tdWt +

Z T

0

Z
jzj�1

 (t; z)N (dt; dz) +

Z T

0

Z
jzj<1

' (t; y) ~N (dt; dz)

=
nX
i=0


i (Ti+1 � Ti) +
nX
i=0

�i (WTi+1 �WTi)

+
nX
i=1

mX
j=1

 ij
�
NTi+1 (Aj)�NTi (Aj)

�
+

nX
i=1

mX
j=1

'ij [N ([Ti; Ti+1]� Aj)� v ([Ti; Ti+1]� Aj)] :

We can extend this de�nition to the general integrands as above sections by de�n-

ing the integrand processes on L2 (0; T ) as the limit of a sequence of simple processes

[1, 6]. Therefore, we can compute stochastic integral by combining the results de�ned

in 4:1:1 and 4:1:2.

4.2 Quadratic Variation

Consider a semimartingale X with X0 = 0: It is impossible to de�ne the integralZ t

0

XtdXt (4.1)

path by path as a Riemann-Stieltjes integral [26, 27] since Xt de�ned in De�nition

2.11 may not be of bounded variation. However, one can de�ne this integral as a

mean square limit ofX
ti2�

Xti

�
Xti+1 �Xti

�
=
1

2
X2
t �

1

2

X
ti2�

�
Xti+1 �Xti

�2
(4.2)

on a time grid � = ft0 = 0 < t1 < : : : < tn�1 < tn = tg as n �! 1: If (4:1) was a

classical integral, the result of (4:1) would be X2
t

2
: However, the relation (4:2) in the
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limit produces an extra term as X2
t

2
� Qt

2
. The extra term Qt is called quadratic

variation process of the stochastic process X and is de�ned by

[X;X]t := Qt = lim
n!1

nX
i=0

(Xti+1 �Xti)
2

in probability.

As an example, let W be a Wiener process. The quadratic variation of W can be

found as

[W;W ]t = t:

On the other hand, let M be a semimartingale of the form

Mt =

Z t

0


sds+

Z t

0

�sdWs:

The quadratic variation of M can now be found as

[M;M ]t =

Z t

0

�2sds:

We state the quadratic variation of a Poisson process as another example. Let N

be a Poisson process, its quadratic variation process is given as

[N;N ]t = Nt:

More generally, let N be a Poisson random measure with intensity measure v on

[0; T ]�R and � : 
� [0; T ]�R! R be a simple predictable function. The quadratic

variation of the integral process

Xt =

Z t

0

Z
R
� (t; y)N (dt; dy)

is found as

[X;X]t =

Z t

0

Z
R
j� (t; y)j2N (dt; dy) :

If X is a Lévy process with characteristic triplet (�; v; 
), its quadratic variation

is found as

[X;X]t = �2t+

Z t

0

Z
R
y2N (ds; dy) :
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More generally, let Y be a L�evy stochastic integral of the form,

dYt = 
tdt+ �tdWt +

Z
jzj<1

 (t; y) ~N(dt; dy) +

Z
jzj�1

�(t; y)N(dt; dy):

Then, the quadratic variation process of a Lévy stochastic integral is found as

[Y; Y ]t =

Z t

0

�2sds+

Z t

0

Z 2

jzj<1
 2(t; y)N(ds; dy) +

Z t

0

Z 2

jzj�1
�2(t; y)N(ds; dy):

Given two semimartingales X and Y , the quadratic covariation process [X; Y ] is

the semimartingale de�ned by

[X; Y ]t = XtYt �X0Y0 �
Z t

0

Xs�dYs �
Z t

0

Ys�dXs:

If X and Y are semimartingales, then we can de�ne the Itô�s product rule [1] as

follows,

XtYt = X0Y0 +

Z t

0

Xs�dYs +

Z t

0

Ys�dXs + [X; Y ]t :

We can interpret this result to the di¤erential form which will be more useful for

many applications

d (XtYt) = Xs�dYs + Ys�dXs + d [X; Y ]t : (4.3)

We can now investigate the quadratic covariation processes of Brownian, Pois-

son and Lévy stochastic integrals [8]. Quadratic covariation of correlated Brownian

integrals of the form

X i
t =

Z t

0

�isdW
i
s ; i = 1; 2

where W 1 and W 2 are correlated Wiener processes with correlation � is given by

�
B1; B2

�
t
=

Z t

0

��1s�
2
sds:

Quadratic covariation of integrals with respect to a Poisson random measure N on

[0; T ]� R of the form

X i
t =

Z t

0

Z
R
 i (s; y) ~N(ds; dy); i = 1; 2
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is found as �
X1; X2

�
t
=

Z t

0

Z
R
 1 (s; y) 2 (s; y)N(ds; dy):

Finally, quadratic covariation process of Lévy stochastic integrals given by

Y i
t =

Z t

0


isds+

Z t

0

�isdWs +

Z t

0

Z
jzj<1

 i (s; y) ~N(ds; dy)

+

Z t

0

Z
jzj�R

�i(s; y)N(ds; dy)

for i = 1; 2 is as follows�
Y 1; Y 2

�
=

Z t

0

�1s�
2
sds+

Z t

0

Z
jzj<1

 1 (s; y) 2 (s; y)N(ds; dy)

+

Z t

0

Z
jzj�1

�1(s; y)�2(s; y)N(ds; dy):

4.3 Itô�s Formula

Itô�s formula is the touchstone of stochastic calculus and is used to �nd the di¤erential

of a function of a given semimartingale. It is the stochastic calculus analogue of the

classical chain rule (f (g (x)))0 = f 0 (g (x)) g0 (x) in ordinary calculus and is obtained

by using the well-known Taylor series expansion and retaining the second order term

related to the stochastic component change.

The following formulas are taken and blended from [1, 28].

Theorem 4.3.1 Let a Brownian Motion X be de�ned by

dXt = 
tdt+ �tdWt

f : R2! R is a C2 function and Y is given by

Yt = f (Xt; t)

then we have

dYt = @tf (Xt; t) dt+ @xf (Xt; t) [
tdt+ �tdWt] +
1

2
�2t@xxf (Xt; t) dt:



Chapter 4: Stochastic Calculus 24

4.3.1 Itô�s Formula for a Poisson Integral

Theorem 4.3.2 If X is an integral with respect to a Poisson random measure

dXt =

Z
jzj�1

�(t; z)N(dt; dz)

f : R2! R is a C2 function and Y is given by

Yt = f (Xt; t) ;

then

dYt =

Z
jzj�1

[f (Xt� + �(t; z); t)� f (Xt� ; t)]N(dt; dz):

4.3.2 Itô�s Formula for a Lévy Process

Theorem 4.3.3 Let a Lévy process X be de�ned by

dXt = 
tdt+ �tdWt +

Z
jzj<1

 (t; z) ~N(dt; dz) +

Z
jzj�1

�(t; z)N(dt; dz)

f : R2! R is a C2 function and Y is given by

Yt = f (Xt; t)

then

dYt = @tf (Xt; t) dt+ @xf (Xt; t) [
tdt+ �tdWt] +
1

2
�2t@xxf (Xt; t) dt (4.4)

+

Z
jzj<1

[f (Xt� +  (t; z); t)� f (Xt� ; t)�  (t; z)@xf (Xt� ; t)] v (dz) dt

+

Z
jzj<1

[f (Xt� +  (t; z); t)� f (Xt� ; t)] ~N(dt; dz)

+

Z
jzj�1

[f (Xt� + �(t; z); t)� f (Xt� ; t)]N(dt; dz):

In general, we can write Itô�s formula in the following formal expression.

Theorem 4.3.4 Let X be a semimartingale, f : R2! R is a C2 function and Y is

given by

Yt = f (Xt; t)
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then

Yt =

Z t

0

@sf (Xs; s) ds+

Z t

0

@xf (Xs; s) dXs +
1

2

Z t

0

@xxf (Xs; s) d [X;X]s

+
X
0�s�t

[f (Xs; s)� f (Xs� ; s)��Xs@xf (Xs� ; s)] :
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Chapter 5

CONDITIONS FOR LINEARIZATION AND A METHOD

OF SOLUTION

Let W = fWt; t � 0g be a Wiener process and N j =
�
N j
t ; t � 0

	
be Poisson

processes with arrival rates �1; �2; : : : ; �m on a probability space (
;F ; P ) : Let V j
i =�

V j
i ; i = 1; 2; : : :

	
be independent and identically distributed random variables to form

the compound Poisson process

Cj
t =

Nj
tX

i=1

V j
i (5.1)

j = 1; 2; : : : ;m:

We consider a real-valued stochastic process X; starting at time t = 0 adapted

to the �ltration fFtgt�0 satisfying the nonlinear stochastic di¤erential equation with

jump terms of the form

dXt = f(Xt� ; t)dt+ g(Xt� ; t)dWt +
mX
j=1

rj(Xt� ; t)dC
j
t ; X0 = x0 (5.2)

where dWt is the in�nitesimal increment of the Wiener process and independently dC
j
t

is the in�nitesimal increment of the compound Poisson processes for j = 1; 2; : : : ;m

[17, 27]. Since a �nite activity Lévy process can be decomposed into a Wiener and a

compound Poisson process as a special case of Lévy-Itô decomposition (3:1) ; one can

obviously say that (5:2) driven by Lévy components that makes (5:2) more general

than (3:1) :

5.1 Linearization

We seek a transformation h : R� R+ ! R of Xt to
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Yt = h(Xt; t) (5.3)

which will transform the nonlinear stochastic di¤erential equation given in (5.2) into

a linear equation of the form

dYt = (a1(t)Yt� + a2(t)) dt+ (b1(t)Yt� + b2(t)) dWt (5.4)

+
mX
j=1

�
cj1

�
t; V j

Nj
t

�
Yt� + cj2

�
t; V j

Nj
t

��
dN j

t :

since

dCj
t = V j

Nj
t

dN j
t

in (5:2). Note that, the magnitude of the jump at time t can be found as Xt+ �Xt�

from the cadlag property, that is, Xt� = lims"tXs.

Itô�s formula (4:4) for h(Xt; t) leads to

dYt =

�
@th(Xt� ; t) + f(Xt� ; t)@xh(Xt� ; t) +

1

2
g2(Xt� ; t)@xxh(Xt� ; t)

�
dt (5.5)

+g(Xt� ; t)@xh(Xt� ; t)dWt +

mX
j=1

h
h(Xt� + rj (Xt� ; t)V

j

Nj
t

; t)� h(Xt� ; t)
i
dN j

t :

Using equations (5.2) and (5.4) we obtain

@th(Xt� ; t)+f(Xt; t)@xh(Xt� ; t)+
1

2
g2(Xt; t)@xxh(Xt� ; t) = a1(t)h(Xt; t)+a2(t) (5.6)

g(Xt; t)@xh(Xt� ; t) = b1(t)h(Xt; t) + b2(t) (5.7)

and

mX
j=1

h
h(Xt + rj(Xt; V

j

Nj
t

; t); t)� h(Xt; t)
i
dN j

t =
mX
j=1

�
cj1

�
t; V j

Nj
t

�
Yt + cj2

�
t; V j

Nj
t

��
dN j

t

(5.8)
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Ordinary di¤erential equation (5.7) has two distinct solutions for i) b1(t) = 0 and

ii) b1(t) 6= 0: We now consider each case separately.

Case 1 b1(t) = 0 and b2(t) 6= 0

In this case, (5.7) is satis�ed if

g(x; t)@xh(x; t) = b2(t);

for all x 2 R and t 2 R+. Then the transformation h can be found as

h(x; t) =

Z x b2(t)

g(~x; t)
d~x (5.9)

where we have chosen the arbitrary function of integration to be zero and assumed

g(~x; t) 6= 0. Substituting (5.9) into (5:6) yieldsZ x

@t

�
b2 (t)

g(~x; t)

�
d~x+ f(x; t)

b2 (t)

g(x; t)
� 1
2
b2 (t) @xg(x; t) = a1(t)

Z x b2(t)

g(~x; t)
d~x+ a2(t):

(5.10)

Arranging the terms in (5:10) leads toZ x

@t

�
b2 (t)

g(~x; t)

�
d~x+ b2 (t)

�
f(x; t)

g(x; t)
� 1
2
@xg(x; t)

�
= a1(t)

Z x b2(t)

g(~x; t)
d~x+ a2(t);

andZ x

@t

�
b2 (t)

g(~x; t)

�
d~x� a1 (t)

Z x b2(t)

g(~x; t)
d~x+ b2 (t)

�
f(x; t)

g(x; t)
� 1
2
@xg(x; t)

�
= a2(t):

(5.11)

Di¤erentiating (5:11) with respect to x gives

b02 (t)

g(x; t)
+ b2 (t)

�
L(x; t)� a1(t)

g(x; t)

�
= 0 (5.12)

where

L(x; t) = @t

�
1

g (x; t)

�
+ @x

�
f (x; t)

g (x; t)
� 1
2
@xg (x; t)

�
:

Multiplying both sides of (5:12) by g(x; t) we �nd

b02 (t) + b2 (t) (g(x; t)L� a1(t)) = 0;
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That is, we get

g(x; t)L(x; t) = a1 (t)�
b02 (t)

b2 (t)
(5.13)

which does not depend on x. Therefore, di¤erentiating (5:13) with respect to x leads

to,

@x [g(x; t)L(x; t)] = 0: (5.14)

Then, we can arbitrarily choose b2 (t) and set

a1 (t) = g(x; t)L(x; t) +
b02 (t)

b2 (t)
:

and �nd a2 (t) from (5:11) for f 2 C2 and g 2 C3:

Now we consider (5.8), which is satis�ed if

h(Xt + ri (Xt; t)V
j

Nj
t

; t) =
�
ci1

�
t; V j

Nj
t

�
+ 1
�
h(Xt; t) + ci2

�
t; V j

Nj
t

�
i = 1; 2; : : : ;m; for all x 2 R; z 2 R; t 2 R+: Equivalently, we must haveZ x+ri(x;t)z b2(t)

g(~x; t)
d~x =

�
ci1 (t; z) + 1

� Z x b2(t)

g(~x; t)
d~x+ ci2(t; z) (5.15)

and di¤erentiating it with respect to x, we obtain

b2 (t)

g(x+ ri (x; t) z; t)
(@xri(x; t)z + 1) =

b2 (t)

g(x; t)
(ci1(t; z) + 1):

We rewrite the above equation as

Ai(x; t) := (@xri(x; t)z + 1)
g(x; t)

g(x+ ri (x; t) z; t)
= ci1(t; z) + 1; (5.16)

Now, c1 can be found from (5:16) and c2 can be found from (5:15) : Di¤erentiating

(5.16) with respect to x yields

@xAi(x; t) = 0 (5.17)

i = 1; 2; : : : ;m; for rj 2 C2:

Therefore, (5.14) and (5.17) are the linearization conditions.

Case 2 b1(t) 6= 0 and b2(t) = 0
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The solution of (5.7) in this case is h(x; t) = K(t)e
R x b1(t)

g(~x;t)
d~x: We simply choose

K(t) = 1 and seek for b1. Thus, we get

h(x; t) = e
R x b1(t)

g(~x;t)
d~x: (5.18)

Substitution of (5:18) into (5:6) yields

@th(x; t) + f(x; t)@xh(x; t) +
1

2
g2(x; t)@xxh(x; t) = a1(t)h(x; t) + a2(t);

which is equivalent to�Z x

@t

�
b1(t)

g(~x; t)

�
d~x+ b1 (t)

�
f(x; t)

g(x; t)
� 1
2
@xg(x; t)

�
+
b21 (t)

2
� a1 (t)

�
e
R x b1(t)

g(~x;t)
d~x = a2(t):

(5.19)

Di¤erentiating both sides of (5:19) with respect to x leads to

b01 (t) + b1 (t) g(x; t)L(x; t) + b1 (t)
R x
@t

�
b1(t)
g(~x;t)

�
d~x

+b21 (t)
�
f(x;t)
g(x;t)

� 1
2
@xg(x; t)

�
+

b31(t)

2
� b1 (t) a1 (t) = 0

(5.20)

and
b01 (t) + b1 (t)

h
g(x; t)L(x; t) +

R x
@t

�
b1(t)
g(~x;t)

�
d~x� a1 (t)

i
+b21 (t)

h
f(x;t)
g(x;t)

� 1
2
@xg(x; t)

i
+

b31(t)

2
= 0

by simpli�cation. We aim to �nd b1 (t) �rst. Di¤erentiating with respect to x and

simplifying b1 (t) as it is nonzero, we get�
@x [g(x; t)L(x; t)] +

b01(t)

g(x; t)

�
+ b1 (t)

�
@x

�
f(x; t)

g(x; t)
� 1
2
@xg(x; t)

�
+ @t

�
1

g(x; t)

��
= 0:

Therefore, we have

b01(t) + b1 (t) g(x; t)L(x; t) = �g(x; t)@x [g(x; t)L(x; t)] : (5.21)

Di¤erentiating (5:21) with respect to x; we get b1 (t)

b1 (t) = �
@x (g(x; t)@x [g(x; t)L(x; t)])

@x [g(x; t)L(x; t)]
: (5.22)

Di¤erentiating (5:22) with respect to x yields

@xM (x; t) = 0; (5.23)
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where we have introduced

M (x; t) :=
@x (g(x; t)@x [g(x; t)L(x; t)])

@x [g(x; t)L(x; t)]
:

for f 2 C2 and g 2 C3, as a term in the linearization criterion (5:23) :

The transformation given in Equation (5.18) is

h(x; t) = eb1(t)
R x 1

g(~x;t)
d~x:

Di¤erentiating (5.18) with respect to x yields

@xh(x; t) =
b1(t)

g(x; t)
eb1(t)

R x 1
g(~x;t)

d~x: (5.24)

Substitution of (5.24) into (5.8) leads to

e
R x+ri(x;t)z b1(t)

g(~x;t)
d~x =

�
ci1(t; z) + 1

�
e
R x b1(t)

g(~x;t)
d~x + ci2(t; z): (5.25)

Di¤erentiating with respect to x, in order to eliminate ci2(t; z), we �nd

b1(t)

g(x+ ri(x; t)z; t)
(@xri(x; t)z + 1) e

R x+ri(x;t)z b1(t)
g(~x;t)

d~x =
b1(t)

g(x; t)
e
R x b1(t)

g(~x;t)
d~x �ci1(t; z) + 1� ;

(5.26)

and cancelling b1(t) we get

Ai(x; t)e

0@R x+ri(x;t)z b1(t)
g(~x;t)

d~x�

Z x
b1(t)
g(~x;t)

d~x

1A
=
�
ci1 (t; z) + 1

�
(5.27)

i = 1; 2; : : : ;m; in terms of Ai of (5:16) : Di¤erentiating Equation (5.27) with respect

to x yields

@xAi(x; t) + Ai(x; t)b1 (t)

�
Ai(x; t)� 1
g(x; t)

�
= 0: (5.28)

Therefore, equations (5.23) and (5.28) are the linearization conditions in this

case for rj 2 C2. Now, one can obtain a1(t) from (5:20) ; a2(t) from (5:19) ; b1(t)

from(5:22) ; c1(t) from (5:27) and c2(t) from (5:25) :

We now state our �ndings as a theorem.
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Theorem 5.1.1 A nonlinear stochastic di¤erential equation (5.2) is linearizable via

the transformation

h(x; t) =

Z x d~x

g(~x; t)

if (5.14) and (5.17) are satis�ed or via

h(x; t) = e

Z x
b1(t)
g(~x;t)

d~x

if (5.23) and (5.28) are satis�ed where b1(t) is given in (5:22).

Note that, the two sets of conditions in Theorem 5.1.1 are mutually exclusive. If

(5.14) is satis�ed, then (5.23) is not possible as it originates from (5:21) where b1 is

nonzero and (5.14) cannot hold. Clearly, this argument holds both ways.

5.2 Stochastic Integrating Factors

A �rst order linear ordinary di¤erential equation can be solved using the integrating

factor method [22]. We extend this well-known integrating factor method for solving

linear ODEs to the linear SDEs driven by compound Poisson processes and develop

stochastic integrating factors. We de�ne a stochastic integrating factor as follows.

De�nition 5.2.1 The function �t = �t(Wt; C
1
t ; C

2
t ; : : : ; C

m
t ) =: �t (Wt; Ct) with prop-

erty

d(�tYt) = D1(t)dt+D2(t)dWt +
mX
j=1

Dj
3(t)V

j

Nj
t

dN j
t

is called a stochastic integrating factor for the one-dimensional linear jump-di¤usion

SDE .

We apply the stochastic product rule for semimartingales [1] as

d(�tYt) = �t�dYt� + Yt�d�t + d [�; Y ]t (5.29)

for

dYt = (a1(t)Yt� + a2(t)) dt+ (b1(t)Yt� + b2(t)) dWt (5.30)

+
mX
j=1

�
cj1

�
t; V j

Nj
t

�
Yt� + cj2

�
t; V j

Nj
t

��
dN j

t :
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Then, Itô�s formula for � reads,

d�t =

�
@t�t� +

1

2
@xx�t�

�
dt+ @x�t�dWt +

mX
j=1

(�t � �t�) dN
j
t :

Therefore, from (4:3) we can write the terms which will form the di¤erential product

d(�tYt) as

�t�dYt = �t� (a1(t)Yt� + a2(t)) dt+ �t� (b1(t)Yt� + b2(t)) dWt (5.31)

+�t�

mX
j=1

�
cj1(t; V

j

Nj
t

)Yt� + cj2(t; V
j

Nj
t

)
�
dN j

t ;

and

Yt�d�t = Yt�

�
@t�t� +

1

2
@xx�t�

�
dt+ Yt�@x�t�dWt + Yt�

mX
j=1

(�t � �t�) dN
j
t (5.32)

and the quadratic variation

d [�; Y ]t = @x�t� [b1 (t)Yt� + b2 (t)] dt (5.33)

+
mX
j=1

[�t � �t� ]
h
cj1

�
t; V j

Nj
t

�
Yt� + cj2

�
t; V j

Nj
t

�i
dN j

t :

Using the results in Equations (5:31) ; (5:32) and (5:33) ; Equation (5:29) transforms

into,

d(�tYt) =

264 �t� [a1(t)Yt� + a2(t)] dt+ �t� [b1(t)Yt� + b2(t)] dWt

+�t�
mP
j=1

h
cj1(t; V

j

Nj
t

)Yt� + cj2(t; V
j

Nj
t

)
i
dN j

t

375
| {z }

�t�dYt

(5.34)

+

"
Yt�

�
@t�t� +

1

2
@xx�t�

�
dt+ Yt�@x�t�dWt + Yt�

mX
j=1

(�t � �t�) dN
j
t

#
| {z }

Yt�d�t

+

264 @x�t� [b1 (t)Yt� + b2 (t)] dt

+
mP
j=1

[�t � �t� ]
h
cj1

�
t; V j

Nj
t

�
Yt� + cj2

�
t; V j

Nj
t

�i
dN j

t

375
| {z }

d[�;Y ]t

:

The right hand side of Equation (5:34) should not involve the variable Yt� to

comply with the de�nition of the integrating factor. Hence, arranging the terms in
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Equation (5:34) yields,

d(�tYt) = Yt�

�
@t�t� +

1

2
@xx�t� + b1(t)@x�t� + a1(t)�t�

�
dt (5.35)

+Yt� (@x�t� + b1(t)�t�) dWt

+Yt�

 
mX
j=1

�
cj1

�
t; V j

Nj
t

�
+ 1
�
(�t � �t�) dN

j
t + �t�

mX
j=1

cj1

�
t; V j

Nj
t

�
dN j

t

!

+ [�t�a2(t) + @x�t�b2 (t)] dt+ �t�b2 (t) dWt +
mX
j=1

�tc
j
2

�
t; V j

Nj
t

�
dN j

t :

which leads to

@t�t� +
1

2
@xx�t� + b1(t)@x�t� + a1(t)�t� = 0 (5.36)

@x�t� + b1(t)�t� = 0 (5.37)

and

mX
j=1

�
cj1

�
t; V j

Nj
t

�
+ 1
�
(�t � �t�) dN

j
t + �t�

mX
j=1

cj1

�
t; V j

Nj
t

�
dN j

t = 0: (5.38)

Let us seek a solution to the system of PDEs (5:36) and (5:37) together with

(5:38) : First, consider Equation (5:38) ; which simpli�es to

mX
j=1

�
cj1

�
t; V j

Nj
t

�
+ 1
�
�tdN

j
t =

mX
j=1

�t�dN
j
t : (5.39)

To �nd a solution to (5:39) ; let us set

�t � �t(Wt; Ct) =M1 (t;Wt)
mY
j=1

M j
2

�
t; Cj

t

�
(5.40)

for a continuous function M1 and let M
j
2

�
t; Cj

t

�
be given by

M j
2

�
t; Cj

t

�
=

Nj
tY

i=1

1

cj1
�
t; V j

i

�
+ 1

(5.41)

in view of

Cj
t =

Nj
tX

i=1

V j
i
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j = 1; : : : ;m; for the compound Poisson processes Cj
t given in (5:1). By de�nition,

note that

M j
2

�
t; Cj

t�

�
=

Nj

t�Y
i=1

1

cj1
�
t; V j

i

�
+ 1

(5.42)

that is, M j
2

�
t; Cj

t�

�
involves all jumps of the Poisson process N j

t except for the one

at time t, if any. We will show that (5:41) satis�es (5:39) in almost sure sense next.

Since the Poisson processes N j; j = 1; : : : ;m are independent, at any any instant, at

most one jump occurs from only one of N1; : : : ; Nm with probability 1: That is, for

each t 2 R; dN j
t = 0 for j = 1; : : : ;m; or for j 6= j0 and some j0 2 f1; : : : ;mg almost

surely in (5:39) : For each t 2 R at which there is a jump, (5:39) reduces to�
cj
0

1

�
t; V j0

Nj0

t

�
+ 1

�
�tdN

j0

t = �t�dN
j0

t : (5.43)

Now, for �xed t 2 R; let us specify �t� in relation to �t de�ned by (5:40). We have

�t� �M1 (t;Wt)
mY
j=1

M j
2

�
t; Cj

t�

�
(5.44)

as M1 (t
�;Wt�) = M1 (t;Wt) by continuity of M1 and Wt: On the other hand, since

there is a jump from only N j0

t at time t, we have

�t �M1 (t;Wt)M
j0

2

�
t; Cj0

t

� mY
j=1;j 6=j0

M j
2

�
t; Cj

t�

�
: (5.45)

From (5:44) and (5:45) ; we observe that

�t� = �t

M j0

2

�
t; Cj0

t�

�
M j0

2

�
t; Cj0

t

� = �t
1

cj
0

1

�
t; V j0

Nj0

t

�
+ 1

(5.46)

also in view of (5:41) and (5:42). Now, (5:46) satis�es (5:43) : Hence, (5:40) satis�es

(5:39) almost surely and the integrating factor �t takes the form of

�t � �t(Wt; C
j
t ) =M1(t;Wt)

mY
j=1

Nj
tY

i=1

1

cj1
�
t; V j

i

�
+ 1

: (5.47)
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Now, we will �nd M1 using (5.37) and (5:38). Substitution of (5:47) into (5:37)

leads to

@xM1(t;Wt)
mY
j=1

Nj

t�Y
i=1

1

cj1
�
t; V j

i

�
+ 1

+ b1(t)M1(t;Wt)

mY
j=1

Nj

t�Y
i=1

1

cj1
�
t; V j

i

�
+ 1

= 0;

which is

@xM1(t;Wt) + b1(t)M1(t;Wt) = 0: (5.48)

Now, by Itô�s formula, we have

dM1(t;Wt) = @tM1(t;Wt)dt+ @xM1(t;Wt)dWt +
1

2
@xxM1(t;Wt)dt:

In view of (5:48), this simpli�es to

dM1(t;Wt) = @tM1(t;Wt)dt� b1 (t)M1(t;Wt)dWt +
1

2
b21 (t)M1(t;Wt)dt: (5.49)

To solve (5:49), we try M1(t;Wt) which satis�es

@tM1(t;Wt) =M1(t;Wt)q
0 (t)� 1

2
b21 (t)M1(t;Wt) (5.50)

for a Stieltjes function q and we have taken q0 for the sake of brevity in the sequel.

Hence, (5:49) reduces to

dM1(t;Wt) = �b1 (t)M1(t;Wt)dWt +M1(t;Wt)q
0 (t) dt (5.51)

and solution to (5:51) is

M1(t;Wt) = e�
R t
0 b1(s)dWs� 1

2

R t
0 b

2
1(s)ds+q(t) (5.52)

where the integral
R t
0
b1(s)dWs is a Riemann-Stieltjes integral since b1 (t) is a deter-

ministic function [26]. Note that the solution (5:52) indeed satis�es (5:50). Thus, the

stochastic integrating factor takes the form

�t = e�
R t
0 b1(s)dWs� 1

2

R t
0 b

2
1(s)ds+q(t)

mY
j=1

Nj
tY

i=1

1

cj1
�
t; V j

i

�
+ 1

: (5.53)
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We now use �t of (5:53) in (5:36) to obtain

�1
2
b21 (t) + q0 (t)�

mX
j=1

Nj

t�X
i=1

cj01
�
t; V j

i

�
cj1
�
t; V j

i

�
+ 1

+
1

2
b21 (t)� b21 (t) + a1 (t) = 0:

Then, we get

q (t) =

Z t

0

0B@ mX
j=1

Nj

s�X
i=1

cj01
�
s; V j

i

�
cj1
�
s; V j

i

�
+ 1

+ b21 (s)� a1 (s)

1CA ds:

Therefore the integrating factor from (5:47) becomes

�t = exp

264�Z t

0

b1 (s) dWs +

Z t

0

0B@ mX
j=1

Nj

s�X
i=1

cj01
�
s; V j

i

�
cj1
�
s; V j

i

�
+ 1

+
1

2
b21 (s)� a1 (s)

�
ds

� mY
j=1

Nj
tY

i=1

1

cj1
�
t; V j

i

�
+ 1

: (5.54)

Equation (5:35) now reads

d(�tYt) = (�t�a2(t) + @x�t�b2 (t)) dt+ �t�b2 (t) dWt +
mX
j=1

�tc
j
2

�
t; V j

Nj
t

�
dN j

t : (5.55)

Integration of (5:55) yields

Yt = ��1t

�Z t

0

(�s�a2(s) + @x�s�b2 (s))ds+

Z t

0

�s�b2 (s) dWs

+

mX
j=1

Z t

0

�sc
j
2

�
s; V j

Nj
s

�
dN j

s

!
: (5.56)

Substituting (5:54) the Equation (5:56) leads us to the solution of the linear stochastic

di¤erential equation (5:30) ;

Yt =

26666664

R t
0
eH(s)

�Qm
j=1

QNj

s�
i=1

1

cj1(s;V
j
i )+1

�
(a2 (s)� b1 (s) b2 (s)) ds

+
R t
0
eH(s)

�Qm
j=1

QNj

s�
i=1

1

cj1(s;V
j
i )+1

�
b2 (s) dWs

+
mP
j=1

R t
0
eH(s)

�Qm
j=1

QNj
s

i=1
1

cj1(s;V
j
i )+1

�
cj2

�
s; V j

Nj
s

�
dN j

s

37777775
�e�H(t)

mY
j=1

Nj
tY

i=1

�
cj1
�
t; V j

i

�
+ 1
�

(5.57)
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where

H(t) = �
Z t

0

b1 (s) dWs +

Z t

0

0B@ mX
j=1

Nj

s�X
i=1

cj01
�
s; V j

i

�
cj1
�
s; V j

i

�
+ 1

+
1

2
b21 (s)� a1 (s)

1CA ds:

5.3 Analytical Solutions of Speci�c Examples

We now consider some linearizable SDEs driven by compound Poisson processes.

Calculations are given explicitly for the �rst equation, other examples are partially

discussed and the solutions are given in Table 5.1.

Example 1 is from [24] originally and it reads

dXt =
1

3
X

1
3

t�dt+X
2
3

t�dWt +
mX
j=1

�jXt�dC
j
t ; X0 = x0 (5.58)

when the jump terms driven by Cj
t are added. Here, we have

f (x) =
1

3
x
1
3 ; g (x) = x

2
3 ; rj (x) = �jx:

These functions satisfy the linearization criteria (5.14) and (5.17). Indeed,

@x [g(x; t)L] = @x

�
x
2
3

�
@t

�
x�

2
3

�
+ @x

�
1

3
x�

1
3 � 1

2
@xx

2
3

���
= 0

and

@xAi = @x

264��iV i
N i
t
+ 1
� x

2
3�

x+ �ixV i
N i
t

� 2
3

375 = 0; i = 1; : : : ;m:
Hence, the transformation

h(x; t) =

Z x

x0

d~x

g(~x; t)
= 3x

1
3 � 3x

1
3
0 (5.59)

linearizes Equation (5.58) as

dYt = dWt+

mX
j=1

���
1 + �jV

j

Nj
t

� 1
3 � 1

�
Yt� + 3x

1
3
0

��
1 + �jV

j

Nj
t

� 1
3 � 1

��
dN j

t (5.60)

by Itô�s formula (5:5). We have a1 (t) = 0; a2 (t) = 0; b1 (t) = 0; b2 (t) = 1; c1 (t; z) =

(1 + �jz)
1
3 � 1 and c2 (t; z) = 3x

1
3
0

�
(1 + �jz)

1
3 � 1

�
:



Chapter 5: Conditions for Linearization and a Method of Solution 39

By (5:57), integrating (5:60) yields

Yt = ��1t

 Z t

0

�s�dWs + 3x
1
3
0

mX
j=1

Z t

0

�s

��
1 + �jV

j

Nj
t

� 1
3 � 1

�
dN j

s

!
;

where

�t =
mY
j=1

Nj
tY

i=1

�
1 + �jV

j
i

�� 1
3 :

Hence, the solution of (5:58) is given by

Xt =

 
x
1
3
0 + ��1t

 
1

3

Z t

0

�s�dWs + x
1
3
0

mX
j=1

Z t

0

�s�dN
j
s

!!3

in view of the transformation (5:59) :

Example 2 is taken from [17], again with extra jump terms given by

dXt =

�
� (t)X

3
4

t� +
3

8
�2X

1
2

t�

�
dt+ �X

3
4

t�dWt +
mX
j=1


jXt�dC
j
t ; X0 = x0 (5.61)

where

f (x; t) = � (t)x
3
4 +

3

8
�2x

1
2 ; g (x) = �x

3
4 ; rj (x) = 
jx:

and � (t) ; �; 
j; j = 1; : : : ;m; are positive real valued. As indicated in Table 5:1;

together with all examples of this section (5:61) satis�es criteria (5.14) and (5.17).

The transformation

Yt =
4

�

�
X

1
4
t � x

1
4
0

�
(5.62)

linearizes Equation (5.61) into

dYt =
� (t)

�
dt+ dWt +

mX
j=1

��
1 + 
jV

j

Nj
t

� 1
4 � 1

�
Yt�dN

j
t

which corresponds to (5:4) with a1 (t) = 0; a2 (t) =
�(t)
�
; b1 (t) = 0; b2 (t) = 1;

c1 (t; z) =
�
1 + 
jz

� 1
4 � 1 and c2 (t; z) = 4

�
x
1
4
0

��
1 + 
jz

� 1
4 � 1

�
. The solution is

Yt = ��1t

 Z t

0

�s�
� (s)

�
ds+

Z t

0

�s�dWs +
4

�
x
1
4
0

mX
j=1

Z t

0

�s

��
1 + 
jV

j

Nj
t

� 1
4 � 1

�!
dN j

t
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where the integrating factor is

�t =
mY
j=1

Nj
tY

i=1

�
1 + cjV

j
i

�� 1
4 :

Transformation (5:62) leads to the solution given in Table 5.1, that is,

Xt =

 
x
1
4
0 +

b

4
��1t

 Z t

0

�s�
a (s)

b
ds+

Z t

0

�s�dWs +
4

b
x
1
4
0

mX
j=1

Z t

0

�s�dN
j
t

!!4
:

Example 3 is taken from [7] but with an additional jump term and it reads

dXt = � (� �Xt�) dt+ �X
1
2

t�dWt +
mX
j=1


jXt�dC
j
t ; X0 = x0: (5.63)

where �; �; � and 
j; j = 1; : : : ;m are positive real valued parameters.

In (6:2:3), we have

f (x) = � (� � x) ; g (x) = �x
1
2 ; rj (x) = 
jx

These functions satisfy the linearization criteria (5.14) and (5.17) when

� = 2
p
��:

Indeed,

@x [g(x; t)L] = @x

�
�x

1
2

�
@x

��
��

�
� 1
4
�

�
x�

1
2 � �

�
x
1
2

���
= 0

is satis�ed if � = 2
p
��: Therefore, using the transformation

h(x; t) =

Z x

x0

d~x

�~x
1
2

we get

Yt =
1p
��

�
X

1
2
t � x

1
2
0

�
: (5.64)

We see that Equation (5.63) transforms into

dYt = ��
2
Yt�dt+ dWt +

mX
j=1

���
1 + 
jV

j

Nj
t

� 1
2 � 1

�
Yt�

+
1p
��

x
1
2
0

��
1 + 
jV

j

Nj
t

� 1
2 � 1

��
dN j

t
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where we have a1 (t) = ��
2
; a2 (t) = 0; b1 (t) = 0; b2 (t) = 1; c1 (t; z) =

�
1 + 
jz

� 1
2 � 1

and c2 (t; z) = 1p
��
x
1
2
0

��
1 + 
jz

� 1
2 � 1

�
: Integration yields

Yt = ��1t

 Z t

0

�s�dWs +
1p
��

x
1
2
0

mX
j=1

Z t

0

�s�dN
j
s

!
1p
��

�
X

1
2
t � x

1
2
0

�
where

�t = e�
�
2
t

mY
j=1

Nj
tY

i=1

�
1 + 
jV

j
i

�� 1
2 :

Transformation (5:64) leads to the solution given in Table 5.1 which is

Xt =

 
x
1
2
0 + ��1t

 p
��

Z t

0

�s�dWs + x
1
2
0

mX
j=1

Z t

0

�s�dN
j
s

!!2
:

Example 4 is a log-mean-reverting model [9, 31, 34] with a jump term. We have

dXt = �Xt� (� (t)� lnXt�) dt+ �Xt�dWt +
mX
j=1

�jXt�dC
j
t ; X0 = x0: (5.65)

where �; � (t) ; �; �j; j = 1; : : : ;m; are positive real valued.

Here, we have

f (x; t) = �x (� (t)� lnx) ; g (x) = �x; rj (x) = �jx:

The transformation given by

Yt =
1

�
ln
Xt

x0
; (5.66)

linearizes the Equation (5.65) into

dYt =

�
��Yt� +

�
�

2
+
�� (t)

�

��
dt+ dWt +

mX
j=1

1

�
ln
�
1 + �jV

j

Nj
t

�
dN j

t

with a1 (t) = ��; a2 (t) = �
2
+ ��(t)

�
; b1 (t) = 0; b2 (t) = 1; c1 (t; z) =

1
�
ln
�
1 + �jz

�
and

c2 (t; z) = 0: Integration gives

Yt = ��1t

 Z t

0

�s�

�
�

2
+
�� (s)

�

�
dt+

Z t

0

�s�dWs +

mX
j=1

Z t

0

�s�
1

�
ln
�
1 + �jV

j

Nj
s

�
dN j

s

!

where

�t = e�t:
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Finally, the use of (5:66) leads to the solution given in Table 5.1 which is

Xt = x0 exp

�
���1t

�Z t

0

�s�

�
�

2
+
�� (s)

�

�
dt+

Z t

0

�s�dWs

+

mX
j=1

Z t

0

�s�
1

�
ln
�
1 + �jV

j

Nj
s

�
dN j

s

!#
:

Example 5 is from [11, 12, 27, 33], a geometric Ornstein-Uhlenbeck equation with

an additional jump term. We have

dXt = � (t)Xt� (� (t)�Xt�) dt+ �Xt�dWt +
mX
j=1

�jXt�dC
j
t ; X0 = x0: (5.67)

where � (t) ; � (t) ; �; �j; j = 1; : : : ;m; are positive real valued.

Here, the functions in (5:2) correspond to

f (x) = � (t)x (� (t)� x) ; g (x) = �x; rj (x) = �jx:

The transformation given by

Yt =

�
Xt

x0

��1
(5.68)

linearizes Equation (5.67) into

dYt =
��
�2 � � (t) � (t)

�
Yt� + � (t)x0

�
dt+ (��)Yt�dWt +

mX
j=1

0@ ��jV j

Nj
t

1 + �jV
j

Nj
t

1AYt�dN
j
t :

with a1 (t) = �2 � � (t) � (t) ; a2 (t) = � (t)x0; b1 (t) = ��; b2 (t) = 0; c1 (t; z) = ��jz
1+�jz

and c2 (t; z) = 0: Integration gives

Yt = ��1t

�
�0 + x0

Z t

0

�s�� (s) ds

�
where

�t = exp

�
��Wt �

1

2
�2t+

Z t

0

� (s) � (s) ds

� mY
j=1

Nj
tY

i=1

�
1 + �jV

j
i

�
:

As before, (5:68) leads to the solution given in Table 5.1 which is

Xt = x0�t

�
�0 + x0

Z t

0

�s�� (s) ds

��1
:
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Table 5.1: Linearizable Equations and Solutions

Equation dXt =
�
� (t)X

3
4

t� +
3
8
�2X

1
2

t�

�
dt+ �X

3
4

t�dWt +
mP
j=1


jXt�dC
j
t

Criteria

(5.14,5.17)

Solution

Xt =
�
x
1
4
0 +

�
4
��1t

�R t
0
�s�

�(s)
�
ds+

R t
0
�s�dWs

��4
�t =

Qm
j=1

QNj
t

i=1

�
1 + 
jV

j
i

�� 1
4

Equation dXt = � (� �Xt�) dt+ �X
1
2

t�dWt +
mP
j=1


jXt�dC
j
t

Criteria

(5.14,5.17)
Solution

Xt =
�
x
1
2
0 +

p
����1t

R t
0
�s�dWs

�2
�t = e�

�
2
t
Qm

j=1

QNj
t

i=1

�
1 + 
jV

j
i

�� 1
2

Equation dXt = �Xt� (� (t)� lnXt�) dt+ �Xt�dWt +
mP
j=1

�jXt�dC
j
t

Criteria

(5.14,5.17)

Solution

Xt = x0 exp

0B@���1t
0B@
R t
0
�s�

�
�
2
+ ��(s)

�

�
dt+

R t
0
�s�dWs

+
mP
j=1

R t
0
�s�

1
�
ln
�
1 + �jV

j

Nj
s

�
dN j

s

1CA
1CA

�t = e�t

Equation dXt = � (t)Xt� (� (t)�Xt�) dt+ �Xt�dWt +
mP
j=1

�j (t)Xt�dC
j
t

Criteria

(5.23,5.28)

Solution

Xt = x0�t

�
�0 + x0

R t
0
�s�� (s) ds

��1
�t = exp

�
��Wt � 1

2
�2t+

R t
0
� (s) � (s) ds

�Qm
j=1

QNj
t

i=1

�
1 + �jV

j
i

�
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Chapter 6

NUMERICAL EXPERIMENTS

As exact solutions are rarely known, numerical methods for stochastic di¤erential

equations are of supreme importance [4, 5, 24]. We have not speci�ed a numeri-

cal approach to stochastic di¤erential equations so far. In this chapter, we will dis-

cuss two important pathwise approximation methods: Euler-Maruyama and Milstein-

Maghsoodi. We shall then consider our examples introduced in Chapter 5 to simulate

their sample paths using these methods and compare with the numerical evaluation

of their analytical solutions.

6.1 Numerical Schemes for Stochastic Di¤erential Equations

The general form of a nonlinear stochastic di¤erential equation driven by Wiener and

compound Poisson processes reads

dXt = f(Xt� ; t)dt+ g(Xt� ; t)dWt +
mX
j=1

rj(Xt� ; t)dC
j
t ; X0 = x0 (6.1)

as introduced in Chapter 5. We can simply rewrite (6:1) in the integral form as

Xt = X0 +

Z t

0

f(Xs� ; s)ds+

Z t

0

g(Xs� ; s)dWs +
mX
j=1

Z t

0

rj(Xs� ; s)V
j

Nj
s
dN j

s

where the �rst integral is a Riemann-Stieltjes integral, the second and the third inte-

grals are stochastic integrals with respect to a Wiener process and a Poisson random

measure, respectively [1, 17].

Here we will use equidistant stepsize �t = tn+1� tn for the partition t0 = 0 < t1 <

: : : < tk = T and the increments �Wn and �Nn of Wiener and the Poisson processes

to discretize (6:1) and obtain an approximated solution Yk at tk = T: Moreover, the
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approximation Y with stepsize � converges strongly to X with order 
 at time T if

there exists a positive constant C such that

" (�) =
q
E
�
jXT � Y (T )j2

�
� C�


for each � > 0 [5].

6.1.1 Euler-Maruyama Scheme

The simplest discretization procedure for stochastic di¤erential equations, generalized

Euler-Maruyama scheme with jumps [10, 24] is given by

Yn+1 = Yn + f (Yn; tn)�t+ g (Yn; tn)�Wn+1 + r (Yn; tn)VNs�Nn+1: (6.2)

The sequence fYn; n = 0; 1; : : : ; Ng of values of the Euler-Maruyama approximation

at times ftn; n = 0; 1; : : : ; Ng can be computed by generating the random increments

�W and �N: This scheme has a strong order of convergence 
 = 0:5 [5, 24].

6.1.2 Milstein-Maghsoodi Scheme

Maghsoodi [24] generalizes Milstein�s second order di¤usion scheme for stochastic

di¤erential equations with jumps to improve the order of accuracy and derive a higher

order scheme in the mean square sense by obtaining

Yn+1 = Yn +

�
f (Yn; tn)�

1

2
g (Yn; tn) @xg (Yn; tn)

�
�t (6.3)

+g (Yn; tn)�Wn+1 +
1

2
g (Yn; tn) @xg (Yn; tn)�W

2
n+1

+
1

2
(3r (Yn; tn)VNn � r (Yn + r (Yn; tn)VNn ; tn)VNn)�Nn+1

+(g (Yn + r (Yn; tn)VNn ; tn)� g (Yn; tn))�Wn+1�Nn+1

+
1

2
(r (Yn; tn)VNn � r (Yn + r (Yn; tn)VNn ; tn)VNn)�N

2
n+1

+(g (Yn; tn) @xr (Yn; tn)VNn � g (Yn + r (Yn; tn)VNn ; tn) + g (Yn; tn))�Zn+1

where

�Zn+1 :=

Z tn+1

tn

(Ws �Wtn) dNs:
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It has been proved that this scheme has strong order of convergence 
 = 1 [5, 24].

We apply (6:2) and (6:3) with rj; j = 1; : : : ;m; next.

6.2 Analytical versus Numerical Solutions

We will now illustrate and examine our examples in detail. As we have found the

explicit solutions we can compare the Euler-Maruyama and Milstein-Maghsoodi ap-

proximations with our exact solutions and compute the errors. Approximations have

been simulated for N = 10000 trajectories of the stochastic di¤erential equations

given in Section 6:3. Computations have been done in MATLAB. The CPU times

range from 60 to 90 minutes for the completion of 10000 trials.

6.2.1 Introductory Example 1

We �rst consider our �rst example which is from [24] given by

dXt =
1

3
X

1
3

t�dt+X
2
3

t�dWt +
mX
j=1

�jXt�dC
j
t (6.4)

for t 2 [0; T ] with the initial value X0 = x0: From Table 5.1 we know that (6:4) has

an analytical solution

Xt =

0@x 1
3
0 +

1

3

mY
j=1

Nj
tY

i=1

�
1 + �jV

j
i

� 1
3

0@ R t
0

Qm
j=1

QNj

s�
i=1

�
1 + �jV

j
i

�� 1
3 dWs

+
R t
0

Qm
j=1

QNj

s�
i=1

�
1 + �jV

j
i

�� 1
3 dNs

1A1A3

for t 2 [0; T ] :

We have simulated N = 10000 trajectories for all numerical approximations with

x0 = 0:6; T = 1; v = 1; jump intensity rate � = 3 and stepsizes �t = 2�3; 2�6;

2�9; 2�12: Notice that, the analytical solution almost coincides with the Euler and

Maghsoodi approximations as given in Fig. 6:2:

It can be seen that the mean trajectories in Figure 6:3 are in each other�s 95%

con�dence interval, which is computed for every time point for 10000 simulations

by calculating means and their standard errors. These con�dence intervals show the

reliability of our estimates.
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Figure 6.1: Mean square errors for Euler and Maghsoodi approximations for the �rst
example.

Figure 6.2: Simulation of the exact solution and the numerical approximations, �t =
2�12: Jumps are at t = 0:0862; 0:2068; and 0:8992 with sizes 0:0924; 00:0078 and
0:4231 respectively.
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Figure 6.3: Mean trajectories estimated from 10000 independent replications for the
�rst example.

Comparing the approximation results in Fig. 6:1, it can be noticed that by de-

creasing the stepsize, the estimate of the mean square error decreases too. Moreover,

it can be seen that the Maghsoodi approximation produces more accurate results as

expected.

6.2.2 Introductory Example 2

We now consider our next example taken from [17]

dXt =

�
� (t)X

3
4

t� +
3

8
�2X

1
2

t�

�
dt+ �X

3
4

t�dWt +
mX
j=1


jXt�dC
j
t ; X0 = x0: (6.5)

with additional jump terms for t 2 [0; T ] with the initial value X0 = x0: From Table

5.1 we know that (6:5) has an explicit solution

Xt =

0@x 1
4
0 +

�

4

mY
j=1

Nj
tY

i=1

�
1 + 
jV

j
i

� 1
4

0@ R t
0

Qm
j=1

QNj

s�
i=1

�
1 + 
jV

j
i

�� 1
4 �(s)

�
ds

+
R t
0

Qm
j=1

QNj

s�
i=1

�
1 + 
jV

j
i

�� 1
4 dWs

1A1A4
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Figure 6.4: Mean square errors for Euler and Maghsoodi approximations the second
example.

for t 2 [0; T ] : As we found the explicit solution, we can compare the Euler-Maruyama

and Milstein-Maghsoodi approximations with our exact solution and compute the

errors.

We have simulated N = 10000 trajectories with x0 = 0:5; T = 1; � (t) = 2;

� = 0:5; 
 = 1; jump intensity rate � = 3 and stepsizes �t = 2�3; 2�6; 2�9; 2�12: The

analytical solution almost coincides with the Euler and Maghsoodi approximations in

Fig. 6:5.
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Figure 6.5: Simulation of the exact solution and the numerical approximations, �t =
2�12: Jumps are at t = 0:2651; 0:3918; and 0:9548 with sizes 0:8645; 0:5881; and
0:6704 respectively.

It can be seen that the estimated analytical mean trajectory in Figure 6:6 nearly

coincides with the mean trajectory estimated from the numerical approximation. Fur-

thermore, comparing the approximation results in Figure 6:4, the estimate of the mean

square error decreases by decreasing the stepsize and Maghsoodi produces more ac-

curate results as expected.

6.2.3 Cox-Ingersoll-Ross Model

We now consider our second example from [7] with additional jump terms given by

dXt = � (� �Xt�) dt+ �X
1
2

t�dWt +

mX
j=1


jXt�dC
j
t (6.6)

for t 2 [0; T ] with the initial value X0 = x0: This equation is known as the Cox-

Ingersoll-Ross interest rate model, before the jump terms are added. Here, Xt repre-
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Figure 6.6: Mean trajectories estimated from 10000 independent replications for the
second example.

sents the mean-reverting short-term interest rate. In this model, � is the long-term

average value of interest rate with jumps, � is the intensity (strength) of mean re-

version, � is the interest rate volatility where Xt is the instantaneous interest rate at

period t, maturing at period T .

Mean reversion is a tendency for a stochastic process to remain near, or tend to

return over time to a long-run average value. If the interest rate (or the spot price

of a commodity) is below the mean, the mean reversion component will be positive,

resulting in an upward in�uence on the spot price. Alternatively, if the spot price

is above this level, the mean reversion component will be negative, thus causing a

downward in�uence on the interest rate. Over time, this results in a price path that

drifts towards the mean, at a period (or speed) determined by the mean reversion rate

� > 0. Moreover, short-term interest rates are the interest rates on loan contracts-or

debt instruments such as Treasury bills, bank certi�cates of deposit or commercial

paper-having maturities of less than one year, which are modeled by X.
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Figure 6.7: Mean square errors for Euler and Maghsoodi approximations for the CIR
model.

From Table 5.1 we know that (6:6) has an explicit solution

Xt =

0B@x 1
2
0 +

p
��e
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�� 1
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2

for t 2 [0; T ] : As we have the explicit solution, we can compare the Euler-Maruyama

and Milstein-Maghsoodi approximations with our exact solution and compute the

errors.

We have simulated N = 10000 trajectories with x0 = 0:5; T = 100; � = 0:4;

� = 0:6; 
 = 1; jump intensity rate � = 0:03 and stepsizes �t = 2�3; 2�6; 2�9;

2�12: Note that, the Euler and Maghsoodi approximations are close to the analytical

solution as shown in Fig. 6:8. The process is expected to stabilize around its mean

value � = 0:6 in the long run.
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Figure 6.8: Simulation of the exact solution and the numerical approximations, �t =
2�12: Jumps are at t = 31:32; 37:47; and 44:77 with sizes 0:2662; 0:3513; and 0:2779
respectively.

It can be seen that the estimated analytical mean trajectory in Fig. 6:9 nearly

coincides with the mean trajectory estimated from the numerical approximation.

As shown in Figure 6:7, as the stepsize decreases, the estimate of the mean square

error decreases. Moreover, it can be seen that the Maghsoodi approximation produces

more accurate results as expected.

6.2.4 Log-Mean-Reverting Model

We now consider our second example from [9, 31, 34] with jump terms

dXt = �Xt� (� (t)� lnXt�) dt+ �Xt�dWt +
mX
j=1

�jXt�dC
j
t ; X0 = x0: (6.7)

for t 2 [0; T ] with the initial value X0 = x0: This log mean-reverting equation with

jumps is commonly used in modeling assets subject to supply and demand such as
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Figure 6.9: Mean trajectories estimated from 10000 independent replications for the
CIR model.

commodities. Due to advantage of easiness of simulation, modeling and parameters

estimation, this model is widely preferred. Therefore, Xt now corresponds to the spot

price of the commodity. In this model, � is the long-run mean of the logarithm of the

price with jumps, � is the mean reversion speed (intensity) of the price and � is the

price volatility.

From Table 5.1, we know that (6:7) has an explicit solution

Xt = x0 exp

 
�e��t

 Z t

0

e�s
�
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2
+
�� (s)
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�
dt+

Z t
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e�sdWs +
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j
i

�
dN j

s
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for t 2 [0; T ] : As we have found the explicit solution, we can compare the Euler-

Maruyama and Milstein-Maghsoodi approximations with our closed-form solution

and compute the errors.

We have simulated N = 10000 trajectories with x0 = 0:5; T = 100; � = 0:4;

� (t) = 0:6; � = 0:5; � = 1; jump intensity rate � = 0:03 and stepsizes �t = 2�3;

2�6; 2�9; 2�12: Note that, the analytical solution almost coincides with the Euler and
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Figure 6.10: Mean square errors for Euler and Maghsoodi approximations for the log
mean-reverting model.

Figure 6.11: Simulation of the exact solution and the numerical approximations,
�t = 2�12: Jumps are at t = 5:21; 69:66; and 96:79 with sizes 0:0915; 0:6802; and
0:9426 respectively.
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Figure 6.12: Mean trajectories estimated from 10000 independent replications for the
log mean-reverting model.

Maghsoodi approximations in Fig. 6:11. The estimated analytical mean trajectory

given in Figure 6:12 is close to the mean trajectory estimated from the numerical

approximations.

Fig. 6:10 demonstrates again the higher accuracy achieved with Maghsoodi.

6.2.5 Geometric O-U Model

We now consider our next example taken from [12, 11, 27, 33] given by

dXt = � (t)Xt� (� (t)�Xt�) dt+ �Xt�dWt +

mX
j=1

�j (t)Xt�dC
j
t (6.8)

for t 2 [0; T ] with the initial valueX0 = x0: Equation (6:8) is also known as Geometric

Ornstein-Uhlenbeck or Dixit & Pindyck Model, now including additional jump terms.

This model is based on a mean-reverting commodity price or interest rate Xt: In this

equation, the mean reversion component is governed by the di¤erence between the

current price and the mean � as well as by the mean reversion rate � where � is the
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Figure 6.13: Mean square errors for Euler and Maghsoodi approximations for the
geometric O-U model.

volatility of the spot price. Note that, spot price Xt is always positive.

From Table 5.1, we know that (6:8) has an explicit solution

Xt = x0
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for t 2 [0; T ] : As we have the explicit solution, we again compare the numerical

solutions of (6:8) with our analytical solution and compute the errors.

We have simulated N = 10000 trajectories with x0 = 3; T = 100; � (t) = 0:3;

� (t) = 1:9; � = 0:2; � = 1; jump intensity rate � = 0:03 and stepsizes �t = 2�3; 2�6;

2�9; 2�12:
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Figure 6.14: Simulation of the exact solution and the numerical approximations,
�t = 2�12: Jumps are at t = 10:05; 47:54; 79:5400; 79:91; and 95:68 with sizes 0:1549;
0:6437; 0:0965; 0:2673; and 0:3547 respectively.

It can be seen that the estimated analytical mean trajectory in Fig. 6:15 nearly

coincides with the mean trajectory estimated from the numerical approximation. In

this case, the means are close, the standard errors are very small, which implies that

most trajectories must agree as good as the ones shown in Fig. 6:14.

As we see in Fig. 6:13, Maghsoodi approximation achieves more accurate results

in the mean square sense.
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Figure 6.15: Mean trajectories estimated from 10000 independent replications for the
geometric O-U model.
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Chapter 7

CONCLUSION

In this thesis, we have contributed to integration of nonlinear stochastic di¤er-

ential equations driven by compound Poisson processes, namely �nite activity Lévy

processes by a novel method of integration based on linearization.

We have shown that a nonlinear stochastic di¤erential equation of the form (5:2)

which is driven by a �nite activity Lévy process consisting of a Wiener process and

a compound Poisson process is linearizable to (5:4) via the transformations given

in Theorem 5:1 under certain conditions. We have then introduced the stochastic

integrating factors (5:54) to solve the linear stochastic di¤erential equation (5:57) :

We have studied several examples which appeared in previous work. We have

applied our method to Cox-Ingersoll-Ross interest rate model [7], a log-mean revert-

ing model [9, 31, 34], Geometric Ornstein-Uhlenbeck [12, 11, 27, 33] models and two

equations borrowed from [24] and [17]. The �rst three are important models in appli-

cations. Although the original equations are di¤usion models, we have accomplished

to generalize them to jump-di¤usion cases by adding jump terms. We have found the

analytical solutions explicitly when the linearizability conditions are satis�ed.

Moreover, we have compared our closed-form analytical solutions with the numer-

ical discretizations of Euler and Maghsoodi approximations. We have illustrated their

sample paths and showed their agreement. Mean square errors of numerical approx-

imations have also been computed and demonstrated for several stepsizes. Monte

Carlo approach has been used to estimate the expected value of X by computing the

means of analytical solutions and numerical discretizations.

This integration method can also be investigated for general Lévy driven nonlin-

ear stochastic di¤erential equations including in�nite activity. However, since there
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will be additional terms in Itô�s formula in the in�nite activity case, we will have

integro-di¤erential conditions for linearization. Solution to the linearized equations

by integrating factors is also a challenging problem since we have a new Itô�s formula

as the stochastic chain rule. Moreover, any numerical methods with general Lévy

driven stochastic di¤erential equations also remains as our future work.
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