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ABSTRACT

Stochastic differential equations with jumps are important in physics, finance and
engineering as they represent systems with sudden random effects. Analytical so-
lutions of stochastic differential equations not only allow us to study the underly-
ing stochastic processes, but also provide the means to test the numerical schemes.
Therefore, analytical methods for the integration of nonlinear stochastic differential
equations are of paramount importance.

We consider linearizing transformations of the one-dimensional nonlinear stochas-
tic differential equations driven by Wiener and compound Poisson processes, namely
finite activity Lévy processes. We present linearizability criteria and derive the re-
quired transformations. We introduce a stochastic integrating factor method to solve
the linearized equations and provide closed-form solutions.

We apply our method to a number of stochastic differential equations including
Cox-Ingersoll-Ross short-term interest rate model, log-mean reverting asset pricing
model and geometric Ornstein-Uhlenbeck equation all with additional jump terms.
We use their analytical solutions to evaluate the accuracy of the numerical approx-
imations obtained from Euler and Maghsoodi discretization schemes. The means of

the solutions are estimated through Monte Carlo method.
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OZETCE

Sicramali stokastik diferansiyel denklemler, ani rassal degisimlerin goriildiigii sis-
temleri temsil etmeleri nedeniyle fizik, finans ve miihendislik alanlarinda énemli bir
yer tutar. Bu denklemlerin analitik ¢oziimleri ise sadece temeldeki stokastik siireclerin
incelenmesini degil, ayn1 zamanda sayisal yontemlerin sinanmasini da saglamaktadir.
Bu yiizden dogrusal olmayan stokastik diferansiyel denklemler icin analitik ¢oziim
yontemleri son derece 6nemlidir.

Bu calisgmada, Wiener ve bilesik Poisson siiregleriyle yani sonlu etkinlige sahip
Lévy siiregleriyle siiriilmiig, tek boyutlu dogrusal olmayan stokastik diferansiyel den-
klemleri ele almaktayiz. Dogrusallagtirma olgiitleri ortaya ¢ikarilip, denklemleri dogrusal-
lagtirmak icin gerekli doniisiimler bulunmustur. Adi diferansiyel denklemlerde bilinen
integrasyon carpan yontemi stokastik diferansiyel denklemlere uyarlanarak, dogrusal
denklemlerin coziimleri elde edilmektedir.

Dogrusallagtirma yontemimiz, sigrama terimi igeren Cox-Ingersoll-Ross modeli,
log-ortalamaya cekilen fiyatlama modeli ve geometrik Ornstein-Uhlenbeck denklemi
gibi cesitli stokastik diferansiyel denklemleri ¢ozmek icin uygulanmistir. Buldugumuz
analitik ¢oztimler, sozii gegen denklemlerin Euler ve Maghsoodi sayisal yontemleriyle
yaklagtirimlariyla karsilagtirilmigtir. Coztimlerin beklenen degeri ise Monte Carlo yon-

temi ile kestirilmigtir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Interest in the study of stochastic phenomena has increased dramatically in recent
years. Intensified research activity in this area has been stimulated by the need to
take random effects into account in complicated physical systems which are usually
described by differential equations. One way to incorporate randomness is to add a
stochastic term to the deterministic differential equation at hand, which is then called
a stochastic differential equation. The theory of stochastic differential equations has
recently enjoyed significant reputation as a result of its impact on physics, finance
and engineering [7, 15, 26, 27, 8, 32]. Furthermore, stochastic differential equations
with jump terms, driven by Lévy processes in general, appear to be more realistic in
cases where sudden events play prominent role [17, 19, 20, 25, 28, 8, 32].

Analytical solutions of stochastic differential equations not only allow us to study
the underlying stochastic processes, but also provide the means to test the numeri-
cal schemes [14, 23]. Therefore, analytical methods for the integration of nonlinear
stochastic differential equations are of paramount importance.

Lévy processes are basically stochastic processes with stationary and independent
increments. They are analogues of the random walks in continuous time. Moreover,
they form a subclass of semimartingales and Markov processes which include very
important special cases such as Brownian motion, Poisson process, subordinators and
stable processes. Although much of the basic theory was established earlier, a great
deal of new theoretical developments as well as novel applications in diverse areas
have emerged in recent years. [1, 2, 30].

We derive linearizing transformations of one dimensional stochastic differential
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equations driven by Wiener and compound Poisson processes which form a finite
activity Lévy process. We provide the conditions for linearization and resulting exact
solutions via stochastic integrating factors. We propose an analytical method of
integration which is based on a linearizing a nonlinear stochastic differential equation
and solving the linear stochastic differential equation via stochastic integrating factor
method which exactly originates from the theory of ordinary differential equations.
Let (Q,F, P) be a filtered probability space and W = {W;,t > 0} be a standard
Wiener process [19] and N = {N;,t > 0} be a homogeneous Poisson process [32].
We consider a stochastic process X = {X;,t > 0} adapted to the filtration {F;},,

satisfying the nonlinear stochastic differential equation with jump terms of the form

dX; = f(X;-, t)dt + g( X~ )W, + > rj(Xe- )dN],  Xo = 9 (1.1)

j=1
where f, g and r are R valued continuously differentiable functions, dWW; is the infinites-
imal increment of the Wiener process [19, 27] and independently dN}, dNZ, ... dN™
are the infinitesimal increments of the independent Poisson processes with intensities
A1, A2, - -, A, Tespectively [17, 32]. We present necessary and sufficient conditions for
the linearization of the stochastic differential equation given in (1.1) via an invertible
transformation. As applications, it is shown that Cox-Ingersoll-Ross short-term inter-
est rate model [7], log-mean reverting asset pricing model [9, 31, 34] and Geometric
Ornstein-Uhlenbeck [12, 11, 27, 33] model with additional jump terms and several
more examples [17, 24] are linearizable under specified conditions on the functions
f, g and r. Exact solutions to these linearizable equations obtained. We then com-
pare our analytical solutions with the numerical approximations found by Euler and
Maghsoodi schemes to demonstrate the agreement. The means are found by Monte
Carlo approach to estimate the expected value of X.

This thesis is organized as follows. We first give the necessary definitions and
results from the probability theory in Chapter 2. We present the preliminary descrip-
tions from measure theory, probability spaces and random processes. In Chapter 3,

we briefly review the theory of Lévy processes, its special cases and their simulations.
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The main results related to stochastic integration and It6’s formula are given in Chap-
ter 4. In Chapter 5, we present results about the linearization of nonlinear stochastic
differential equations and give the necessary and sufficient conditions. The analytical
solution of linear stochastic differential equations via stochastic integrating factors
are also found in this chapter. A number of examples to demonstrate our method
of integration are given. In Chapter 6, the numerical results are given for several
examples of linearizable stochastic differential equations. Finally, the conclusions are

stated in Chapter 7.
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Chapter 2

PRELIMINARIES

We present necessary definitions and results from the probability theory. Prelim-
inary descriptions from measure theory, probability spaces and random processes are

given in this chapter.

2.1 Measure Theory
We begin with some elementary definitions. First, we define a o-algebra [21] .

Definition 2.1.1 A non-empty collection £ of subsets of E is a 0 — algebra if
e & contains the empty set: ) € £ (and contains E) ,

o & is closed under countable unions of disjoint subsets: A, € E,n=1,2,... =

U, 4n € &,
o & is closed under complements: A€ £ = A€ €.

The o—algebra generated by the open sets in F (that is, the smallest o—algebra
that contains all open sets in E) is called the Borel c—algebra on E and is denoted
by B (E). For example, the c—algebra generated by the collection of all intervals in
R is the Borel o —algebra on R.

The following definitions can be found in [6].

Definition 2.1.2 Let £ be a o-algebra on a set E. The pair (E, E) is called a measurable

space. The elements of £ is called a measurable set.
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Definition 2.1.3 Let (E,E) & (F,F) be two measurable spaces. A function f : E —
F is called measurable if for any A € F

[ A)={z€E, f(z)eA}
is a measurable subset of £ : f~1(A) € €.

A function from F into R is said to be £ — measurable if it is measurable relative

to £ and B (R).

Definition 2.1.4 A measure on a measurable space (E,E) is a function p: € — R,

such that
o (D) =0,
o (U, An) =, 1 (Ay) for any sequence of disjoint sets: A, € €, n=1,2,...

The triplet (E, E,u) is called a measure space.

We then consider following examples from [6].
Example 2.1.1 Dirac Measures

Let (E, ) be a measurable space. The Dirac measure 6, on (E, ) associated to

a fixed point = € E is

1, x€ A,
0, z ¢ A.
for Ae €.

Example 2.1.2 Counting Measures
Let (E, &) be a measurable space. The counting measure v on (E,E) for D C E
18

v(A) =) 8, (4),

€D
for A € E. Intuitively, v (A) is the number of elements in AND for a countable subset

D, which is possibly infinite.
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Example 2.1.3 Discrete Measures
Let (E, E) be a measurable space and let m be a measure with m(z) € N forx € E.
The discrete measure p on (E,E) is
p(A) =Y m(x)d, (A),
z€D
for A € €. Intuitively, p can be conceived as the weight of the set A where m can be

considered as the mass of x.

Example 2.1.4 Lebesque Measure
The Lebesgue measure \ on (Rd, B (Rd)) 15 denoted by

A (A) :/Adx,

which represents the (d-dimensional) volume of a set A € B (Rd).

Let (E,&, ) be a measure space and f be a measurable function in €. The
integral of f with respect to the measure p is denoted by

nf =n(h)= [ wtdo) 1@ = [ sin

Definition 2.1.5 A function on E to RU {—o00, 00} is called a simple function if it
has the form

f= ZailAia
1

for somen € N, ay,...,a, € R and Ay,..., A, are measurable sets belonging to &,

where 1,4, is the indicator function of A; given by

1, z € A;,
1Ai ($) = ”‘
0, x ¢ Az
Therefore, there exists m € N and distinct real numbers b4, ..., b,, and a measur-

able partition {By,..., By, } of E such that

1

This representation is called the canonical form of the simple function f.
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Definition 2.1.6 Let f be simple and positive. If it has the canonical form f =
Yl aly,, then we define the integral as follows

pf =Y aip(A).

A positive function on E is £-measurable if and only if it is the pointwise limit of
an increasing sequence of positive simple functions which is denoted simply f € &,.
Therefore, let f € £, and let (f,) denote a sequence that converges pointwise to f
where each f,, is simple and positive. The integral pf, is defined for each n by the

preceding step and we define

On the other hand, let f € £. Then, f* = fVvO0and f~ = — (f A0) where V denotes
the maximum and A denotes the minimum and their integrals p (f) and p (f7) are

defined by the last step. Noting that f = f™ — f~ we define
pf=pu(f)—n(f),

provided that at least one term on the right hand side is finite.
Specifically, let E be a Lebesgue measurable subset of R, let £ = B(E) and u be
the Lebesgue measure on (£, ). The integral

uf = Lebpf = / Leb (dz) f (z) =: / f(z)dx
E E
is called the Lebesgue integral of f on E.
If the Riemann integral of f exists, then it is equal to its Lebesgue integral.
However, Lebesgue integral exists for a larger class of functions than the Riemann
integral does. Intuitively, the Lebesgue integral is computed by partitioning the range

of f whereas the well-known Riemann integral is computed by partitioning the domain

of the function f [13].
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2.2 Probability Spaces and Stochastic Processes

A measure space (§2, F,P) is called a probability space if P is a measure on (2, F)
with total mass 1 [6, 8] that is, P(Q2) = 1. The set 2 is interpreted as the collection
of all possible outcomes and is called the sample space. Each element w € 2 is called
an outcome. The o-algebra F is called the history and each measurable set A € F,
called an event, is a set of outcomes to which a probability can be assigned. The
measure P is called a probability measure.

The following definitions from probability theory can be found in [6].

Definition 2.2.1 Let (2, F,P) be a probability space and (E,E) be a measurable
space. A measurable function

X:Q—=F

is called a random variable. In other words, the function X is a random variable if
X HA)={weQ: X (w) €A}
is an event for A € E.

Definition 2.2.2 Let (E,E) be a measurable space and X be a random variable taking

values in it. The distribution of X is a probability measure puy on (E,E) denoted by
iy (A) = P (X7 (4)) = P(X € A),
where P (X € A) is the probability that X is in A € £.

Definition 2.2.3 Let (E,E) be a measurable space and X; be a random variable
taking values in (E,&) fort € T. The family of random variables X = {X; : t € T}

is called a stochastic process with state space (E,E) and parameter set T.
For each fixed w € €2 the function
X (w):t— X;(w)

is called the sample path of the process.



Chapter 2: Preliminaries 9

Definition 2.2.4 Let (2, F,P) be a probability space. A filtration on T is an in-

creasing sequence of o-algebras (F),.r , that is,
Fo C Fy whenever s < t
and each F; is a sub-o-algebra of F.

Let X be a random variable taking values in a measurable space (E,E&). A o-
algebra o (X) = {X~1(B) : B € B} is called the o — algebra generated by a random
variable X.

The filtration 7, = o {X, : s <t} for a stochastic process X = (X;),.; with a
state space (F,E) is called the filtration generated by X and the process X is said
to be adapted to the filtration (F;).

Definition 2.2.5 Let X be a stochastic process defined on a probability space adapted
to a filtration (F;) satisfying
B (X)) < 0.

The process X 1s a martingale if for 0 < s <t < oo
E (X3 Fs) = X,.

Definition 2.2.6 A stopping time is a random variable T : Q — [0,00) for which
the event (T <t) € F; for each t > 0.

Definition 2.2.7 A stochastic process M is a local martingale for which there exists
a sequence of stopping times 71 < ... < 17, — 00 almost surely such that each of the

processes { Myn.,, t > 0} is a bounded martingale.

Definition 2.2.8 A stochastic process C = {Cy, t > 0} is of finite variation if the

paths {C} (w), t > 0} are of finite variation for almost all w € €.
Definition 2.2.9 A stochastic process X is a semimartingale if for each t > 0
Xy = Xo+ M, +C

where M = {M;, t > 0} is a local martingale and C = {Cy, t > 0} is an adapted

finite variation process.
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An important and one of the most intensively studied semimartingale is Brown-
ian motion B = {By, t > 0}. One dimensional Brownian motion starts from zero,
has stationary and independent increments, its marginal probability distribution is
Gaussian, that is, B; ~ N(0,t) and finally its sample paths are almost surely contin-

uous and nowhere differentiable.

2.3 Random Measures
Let (E, ) be a measurable space. A function
M:Qx€&—-R,
is called a random measure [6] if the map
(w,.) =M (w, A)
is a random variable for A € £ and
(,A)—>M (w, A)
is a measure on (F, ) for w € . Furthermore,
Mf = Mfw) = [ Mod) f (@)

is a random variable for every f in the set of all positive measurable functions on
(E,€) and
p(4) =BM () = | B(d) M (1, 4)

Q

is a measure p on (£, &), called the mean measure of M, therefore

EMf=pf.

Definition 2.3.1 Let (E,E) be a measurable space and v be a measure on it. A
random measure N on (E,&) is called a Poisson random measure [6] with mean

(intensity) v provided that
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e N(A) has the Poisson distribution (a Poisson random variable) with intensity

measure v(A) for Ae €&,

—v(A v(A g
P(N(A)=k)=e ! (k!)> , keN.

e A sequence of Poisson random variables N(A;), N(As),..., N(A,) are inde-

pendent for disjoint measurable sets Ay, Ag, ..., A, € € forn > 2.

A Poisson random measure N on a measurable space (F,E) can be described as
a counting measure associated with a random configuration of points in E such that
N (w,A) = 0x,) (A),
n>1
for A € £ and X, Xs,... finite, independent and identically distributed random

variables in (E, ). Therefore, N (w, A) is the number of random points in A.
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Chapter 3

LEVY PROCESSES AND THEIR SIMULATION

Lévy processes are right-continuous stochastic processes that start at 0 and have
stationary and independent increments named in honor of Paul Lévy. In this chapter,
we characterize their main properties by giving necessary definitions and examples.

We also present algorithms and descriptions to simulate the Lévy processes.

3.1 Characterization of Lévy Processes

A cadlag, right continuous with left-hand limits, stochastic process X = {X;, ¢t > 0}
on a probability space (2, F,P) with values in R? such that X, = 0 is called a Lévy

process if it possesses the following properties [2, 30]:

e Independent increments: for every increasing sequence of times to, 1, ..., %,

the random vectors X,,, X;, — Xy,,..., Xi, — X;, , are independent.
e Stationary increments: distribution of (X, — X;) does not depend on .

e Stochastic continuity: sample paths of X are stochastically continuous;

limy, o P (| Xy1n — Xi| > €) =0 for Ve >0, ¢t > 0.
The following definition can be found in [§].

Definition 3.1.1 A probability distribution py on R? is said to be in finitely divisible
if for any integer n > 2, there exists n i.i.d. random variables X1, X, ..., X,, such

that X1 + Xo + ...+ X, has distribution .

Let X = {X;, t >0} be a Lévy process. Then, for every ¢, X; has an infinitely

divisible distribution. Conversely, if py is an infinitely divisible distribution then
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there exists a Lévy process X = {X;, ¢ > 0} such that the distribution of X, is given
by px [8].

The characteristic function of a random variable X is (the Fourier transform of
its distribution ) given by

() = E () = [ ey (an
R

for u € R?. The distribution of a Lévy process is characterized by its characteristic
function which can be written as in the following theorem.

A measure v [2, 30] on B (R?) is called a Lévy measure if

v ({0}) =0 and /Rd (1A |l‘|2) v (dr) < o0.

Theorem 3.1.1 (Lévy-Khintchine Representation) If X = {X;, t >0} is a

Lévy process, then the characteristic function of Xy, ¢, (u) = FE (ei“'Xt) satisfies
¢y (u) = et

Y (u) = ibu — %u.Au + / (e"* =1 —iualy<) v (dx),

R4

where b is a vector on R? called the drift term, A is the covariance matriz of a
Brouwnian motion B, on R called the Gaussian coefficient and v is the Lévy measure.
The triplet (A, b,v) is called the Lévy triplet or the characteristic triplet of X. The

function ¢ (u) is called the characteristic exponent of the Lévy process X.

Lévy process can be expressed as a sum of two independent parts: a continuous
part and a discontinuous jump part. The latter part cannot be expressed as the sum
of jumps, since the sum of all jumps up to some time may be divergent . However, one
can overcome this problem by a compensated sum of independent jumps: summation
of random quantities with simultaneously subtracted means. The celebrated Lévy-Ito

decomposition is given below. Its proof can be found in [30].

Theorem 3.1.2 (Lévy-Ité decomposition) If X = {X,, t > 0} is a Lévy Process,

then there exists b € RY, a Brownian motion B, with covariance matriz A and an
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independent Poisson random measure N on R, x R? such that for each t > 0

Xt:bt+Bt+/

lz|<1

2 (N (¢, dz) — tv (dz)) + / N(tdr).  (3.1)

|z[>1

An important implication of the Lévy-It6 decomposition is that every Lévy process
is a sum of a Brownian motion with drift and a possibly infinite sum of independent
compound Poisson processes [2]. Therefore, every Lévy process can be approximated
by the sum of Brownian motion with drift and a compound Poisson process.

A Lévy process X has infinite activity if the total mass of the Lévy measure on
the real line is infinite. Therefore, this expression characterizes a high rate of arrival
of jumps of different sizes without a diffusion component [16]. Furthermore, the set
of jump times of every trajectory of the Lévy process that has infinite activity is
countably infinite in R,. The countability follows directly from the fact that the
paths are cadlag [8]. The following proposition states these sample path properties
8].

Proposition 3.1.3 Let X = {X;, t > 0} be a Lévy process with characteristic triplet
(A, b,v).

o Ifv(R) < oo then almost all paths of X have a finite number of jumps on every

interval (The Lévy process X has finite activity).

e Ifv(R) = oo then almost all paths of X have an infinite number of jumps on

every interval (The Lévy process X has infinite activity).

A Lévy process with triplet (A, b, v) is said to be of finite variation if its trajectories
are functions of finite variation with probability 1. Therefore, we must have A = 0
for X; to be of finite variation since the trajectories of Brownian motion are almost

surely of infinite variation. Consequently, we have the following proposition [8].

Proposition 3.1.4 Let X = {X;, t > 0} be a Lévy process with characteristic triplet
(A, b,v).
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o I[fA=0 and f|x |z| v (dz) < oo then almost all paths of X have finite varia-

I<1

tion.

o If A # 0 and fmgl |z| v (dx) = oo then almost all paths of X have infinite

variation.

We examine two special Lévy processes next.

3.2 Wiener Process and Compound Poisson Process

As a special case, a Brownian motion taking values in R? happens to be a Lévy
process with a characteristic triplet (a,0,0) where the process is denoted by B =
{B(t),t > 0}. It has mean zero and covariance E (B"(s) B’ (t)) = a" (s A t) where
B (s) is the ith component of the vector B (s). Wiener process is further special case
of a Brownian motion with a = I, the identity matrix.

A sample path of one dimensional Brownian motion can be simulated on [0, 7]
with the following algorithm [8]:

Simulate n independent standard normal variables Ny, ..., N,,

Set AX; = aN;j\/t; — ;1 + b(t; — t;_1) where ty = 0.

The discretized trajectory is given by X (t;) = >, AX,.

Note that, this is not an exact simulation as it is a finite discretization of a continuous
process.

A Poisson process N taking values in N is a Lévy process with a characteristic
triplet (0,0, Ad;) where A > 0 is the intensity of the Poisson process and d; is the
Dirac measure concentrated at 1. The paths of N are piecewise constant on each
finite interval, with jumps of size 1 at random times 7, = inf {¢ > 0, N (t) = n}.

Let {Y,,n € N} be a sequence of independent and identically distributed random
variables with distribution py- and N be a Poisson process with intensity A > 0.
Compound Poisson process is a Lévy process X; = Zjﬁl Y; with the characteristic

exponent

v = [ (e =1) Ay (d).
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A sample path of this process can be simulated exactly on [0,7] with one of the
following algorithms [8]. The first one is
Initialize k =0
Repeat while Y%, T, < T
Set k=Fk+1
Simulate Ty, ~ exp(\)
Simulate Yy from the distribution p = %

The tragectory is given by

N(t) k
X(t) :7b+ZY,~ where N(t) :sup{k: : ZTZ St}.

=1 i=1

Another algorithm is
Simulate N ~ Poisson (AT)
Simulate U; ~ Uniform(0,T),i=1,...,N
Simulate Y; with = %
The tragectory is given by

N
X(t)=bt+> 1y

i=1
3.3 Infinite Activity Lévy Processes

Simulation of a finite activity Lévy process can be done by generating Brownian and
Poissonian-type components independently of each other. The main problem is to
simulate a Poissonian-type component of a Lévy process having an infinite Lévy mea-
sure. In that case, by the Lévy-Itd6 decomposition (3.1), sample paths of {X;, ¢ > 0}
have infinitely many jumps in each finite interval. Exact simulation of such process
is obviously impossible.

There are three main simulation methods for Lévy processes;

e Discretization [8]:
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Discretization (also known as random walk approximation) procedure is discretiz-
ing the process X(t) into X (jh) : j = 0,1,... Therefore, if we can simulate X (h),
then there is an approximate simulation for the process X (¢). A complication of these
discretization methods is that, location and the magnitude of the large jumps cannot
be determined exactly. Especially in a heavy tailed case, large jumps are crucial be-
cause they determine many functionals of a Lévy process. Another disadvantage may

be that a simulation of X (k) may be computationally heavy.
e Series representations for Lévy processes [29]:

Series representation [29] provides uniform along sample paths approximation of
Lévy processes and often easy to simulate. Usually largest jumps of a Lévy process
are included in the first few terms of the series. A disadvantage of this method is
that some series may converge very slowly. Therefore, huge number of terms may be

needed to reach a desired accuracy of the approximation.
e Poissonian & Gaussian approximations [29, 3]:

If small jumps on the right hand side of (3.1) are removed or substituted by
their mean value then the subsequent process is a compound Poisson process with a
drift. This is a Poisson approximation of a Lévy process. As the magnitude of the
removed jumps tends to zero it converges uniformly on each finite interval, because
of the growth of the Lévy measure is not too fast. Large jumps are exactly simulated.
However, when small jumps have high intensity, removing them (as in the series
representation) brings a substantial error. Then, the small jump part of a Lévy
process can be approximated by a Brownian motion with small variance instead of
removing from the right hand side of (3.1). Therefore, small jumps are truncated and
substituted with a properly scaled Brownian motion. This Gaussian approximation
complements the series representation method because it is practical to use even the

series converges slowly.
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Chapter 4

STOCHASTIC CALCULUS

In this chapter, we first summarize the theory of stochastic integration. Then the
quadratic variation of a stochastic process is discussed. Finally, we state the celebrated

It0’s formula for Lévy processes in particular for Wiener and Poisson processes.

4.1 Stochastic Integration

We introduce stochastic integration with respect to Wiener processes, Poisson random
measures and Lévy processes. Therefore, let (2, F,P) be a probability space and

X1,...,X, berandom variables.

4.1.1 Stochastic Integration with respect to a Wiener Process

Let X = {X,, t > 0} be a simple predictable process defined by

Xt = ZXil[ﬂ,Ti+1) (t>
1=0

where {Th =0< Ty < ... <T,_1 <T, =T} is a time grid and let W = {W,, t > 0}
be a Wiener process. The stochastic integral of X with respect to the Wiener process

[19, 26] is defined as

T n
/ X dWy = X; (W, — Wr,) .
0 i=0

For many applications, it is important to consider a wider class of integrands,
instead of just simple predictable processes. Suppose Y = {Y;, ¢ > 0} is a stochastic

process adapted to a filtration generated by a Wiener process satisfying

T
E(/ |Yt\2dt) < 00
0
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on [0,7]. Then, we can find a sequence Y™ = {Y;*, t > 0} of simple processes such

E(/j(n—l@”fdt) -0

as n — oo [6, 26]. Hence, we can compute the stochastic integral as

that

T
/ Y, dW, = lim [ Yaw,

n—oo

in probability [19, 26].

4.1.2  Stochastic Integration with respect to Poisson Random Measures

Let X : Q x [0,7] x R — R be a simple and predictable function given by

Z Z i1,y (0) 1a; ()

i=1 j=1
where A; are disjoint subsets and N is a Poisson random measure with intensity
measure v on [0,7] x R. The stochastic integral with respect to a Poisson random

measure [1, 8] is defined as

n m

/OT/RX (t,y) N (dt, dy) = Z

=1 j=

XiyN([13, Tin) x A;).
1

As above, to consider a wider class of integrands, we can define a stochastic process

Y ={Y;, t > 0} satisfying

([ fromtin) <

as the limit of a sequence of simple processes Y = {Y;*, t > 0} [6, 26]. Therefore,

we can compute the stochastic integral of Y with respect to N by

T
/ /Y(t,y)N(dt,dy hm/ /Y” t,y) N (dt,dy) .
0 R n—oo

which converges almost surely.
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4.1.3 Stochastic Integration with respect to a Lévy Process

Let ¢ = {¢;, t >0} and v = {v,, t > 0} simple predictable processes and 1) : Q x
0, 7] xR - R, ¢:Qx[0,7] x R — R be simple predictable functions as described
above. The stochastic integral with respect to a Lévy process with a Lévy measure v

on [0, 7] x R is defined [8] as follows

/OTfytdt+/oT¢tth+/OT/Z|>1¢(t,Z)N(dt,dz)+/OT/IZ<1¢(t,y)N(dt,dZ)

= > (T =T+ Y & (Wra — Wr,)
1=0

=0

+3 N "y [Nz, (A)) — Nr, (4))]

i=1 j=1
+Z Z%’j [N ([T5, Tisa] x Aj) = o (T3, Tisa] x Ap)].
i=1 j=1
We can extend this definition to the general integrands as above sections by defin-
ing the integrand processes on 1.2 (0, T') as the limit of a sequence of simple processes

[1, 6]. Therefore, we can compute stochastic integral by combining the results defined

in4.1.1 and 4.1.2.

4.2 Quadratic Variation

Consider a semimartingale X with Xy = 0. It is impossible to define the integral

t
/ Xid Xy (4.1)
0

path by path as a Riemann-Stieltjes integral [26, 27| since X; defined in Definition
2.11 may not be of bounded variation. However, one can define this integral as a

mean square limit of

1 1
> X (X, — X)) = §Xf -5 > (X — X,)’ (4.2)

tieT t;eT

on a time grid 7 = {tp=0<t; < ... <t,_1 <t,=t} asn — oo. If (4.1) was a

classical integral, the result of (4.1) would be XTE However, the relation (4.2) in the
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2
limit produces an extra term as X _ @ The extra term Q: is called quadratic

2 2

variation process of the stochastic process X and is defined by
(X, X], =Q = nhj{)lo Z (Xpi1 — Xti)2
=0
in probability.
As an example, let W be a Wiener process. The quadratic variation of W can be

found as

W, W], =t

On the other hand, let M be a semimartingale of the form

t t
Mt:/ 'ysds+/ osdWs.
0 0

The quadratic variation of M can now be found as

t
[M, M], = / olds.
0

We state the quadratic variation of a Poisson process as another example. Let N

be a Poisson process, its quadratic variation process is given as
[Na N]t = Nt'

More generally, let N be a Poisson random measure with intensity measure v on
[0,T] xR and ¢ : 2 x [0,7] x R — R be a simple predictable function. The quadratic

variation of the integral process

Xt_/0t4¢<t,y>N<dt7dy>

iS found as
[ ) ]t /0 /R|¢(t’y)| ( t, y)

If X is a Lévy process with characteristic triplet (o, v,7), its quadratic variation

is found as

t
[X,X]t:02t+/ /y2N(ds,dy).
0o JR
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More generally, let Y be a Lévy stochastic integral of the form,

dYy = v, dt 4+ o, dW,; + U(t,y)N(dt,dy) + o(t,y)N(dt, dy).

|z]<1 |z|>1

Then, the quadratic variation process of a Lévy stochastic integral is found as

t t 2 t 2
[Y,Yhz/ 0§d8+/ ¢2(t,y)N(ds,dy)+/ ¢*(t,y)N(ds, dy).
0 0 Jzl<1 0 Jz[>1

Given two semimartingales X and Y, the quadratic covariation process [X,Y] is

the semimartingale defined by
t t
(X,)Y], = X\Y, — XY — / X,-dY, — / Y,-dX,.
0 0

If X and Y are semimartingales, then we can define the Itd’s product rule [1] as
follows,

t t
Xth:XOYOJr/ XS_dYSJr/ Y,-dX, + [X,Y],.
0 0

We can interpret this result to the differential form which will be more useful for

many applications
d(XyYy) = Xg-dY, + Y-dX, +d[X,Y],. (4.3)

We can now investigate the quadratic covariation processes of Brownian, Pois-
son and Lévy stochastic integrals [8]. Quadratic covariation of correlated Brownian
integrals of the form

t
X;‘:/ oldW!, i=1,2
0

where W' and W? are correlated Wiener processes with correlation p is given by
t
R / potods.
0

Quadratic covariation of integrals with respect to a Poisson random measure N on

[0,7] x R of the form

t
Xz‘=/ /w’ (5,9) N(ds, dy), i = 1,2
0 R
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is found as
t
XX, = [ 0 ) ) Nldssdy),
0o Jr
Finally, quadratic covariation process of Lévy stochastic integrals given by
v s [otaws [ ] ) Nasay
0 0 0 Jzl<1
t
+/ ¢'(s,y)N(ds, dy)
0 J|z|>R
for i = 1,2 is as follows
t t
vy = [alotase [ [l (sg) Nids.dy)
0 0 Jiz|<1
t
s [ ] G nNs.dy).
0 JIz>1
4.3 It6’s Formula

It6’s formula is the touchstone of stochastic calculus and is used to find the differential
of a function of a given semimartingale. It is the stochastic calculus analogue of the
classical chain rule (f (¢ (z))) = f'(g(x)) g (x) in ordinary calculus and is obtained
by using the well-known Taylor series expansion and retaining the second order term
related to the stochastic component change.

The following formulas are taken and blended from [1, 28].
Theorem 4.3.1 Let a Brownian Motion X be defined by
dX; = v, dt + o, dW,
f:R2—= R is a C? function and Y is given by
Y = f (X, 1)
then we have

1
dY; = O, f (Xy,t) dt + O, f (Xy,t) [y,dt + o, dW,] + §a§amf (X, t)dt.
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4.3.1 Ité’s Formula for a Poisson Integral

Theorem 4.3.2 If X is an integral with respect to a Poisson random measure

dX, = o(t,z)N(dt,dz)

|2[>1

f:R2= R is a C? function and Y is given by
}/; = f (Xt7t) 3

then
dy; = /|>1 Lf (Xi- + (. 2),1) — [ (X, 1)) N(dt, dz).

4.3.2 Ité’s Formula for a Lévy Process

Theorem 4.3.3 Let a Lévy process X be defined by

dX; = v, dt + o, dW, + Y(t, z)N(dt,dz) + o(t, z)N(dt,dz)

|z]<1 |z|>1

f:R2= R is a C? function and Y is given by
Y, = f (Xt7 t)

then

1
50'
+/| ) [f (Xt* +,¢}(t7 Z)vt) - f(thvt) - ¢(t7z)axf (th,t)]v(dz) dt

[ PO 0 2)0) £ (X )] N, d2)
|z]<1
o (K 0002, 0) = £ (X 0] N ),
|z|>1
In general, we can write It6’s formula in the following formal expression.

Theorem 4.3.4 Let X be a semimartingale, f : R?>— R is a C? function and Y is
given by
Yi=1Ff (Xt7 t)



Chapter 4: Stochastic Calculus

25

then

t t 1 [t
Y, = /Oasf(Xs,s)ds+/0 axf<Xs,s)dXs+§/0 Oua f (X5, 5) d[X, X]

+ 3 [ (Xes) = f(Xom,8) = AXOf (X, 9)].

0<s<t
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Chapter 5

CONDITIONS FOR LINEARIZATION AND A METHOD
OF SOLUTION

Let W = {W;,t >0} be a Wiener process and N/ = {th,t > O} be Poisson
processes with arrival rates A1, Ag, ..., A, on a probability space (2, F, P) . Let Vij =
{V;j i=1,2,.. } be independent and identically distributed random variables to form

the compound Poisson process

N}
i = Z 1% (5.1)
i=1
jg=12...,m.
We consider a real-valued stochastic process X, starting at time ¢t = 0 adapted

to the filtration {73}, satisfying the nonlinear stochastic differential equation with

jump terms of the form

m

dX, = f(Xe- t)dt + g(Xi- . )AW, + Y ri( X )dC],  Xo =m0 (5.2)

j=1

where dWW, is the infinitesimal increment of the Wiener process and independently dC/
is the infinitesimal increment of the compound Poisson processes for j = 1,2,...,m
[17, 27]. Since a finite activity Lévy process can be decomposed into a Wiener and a
compound Poisson process as a special case of Lévy-1t6 decomposition (3.1) , one can
obviously say that (5.2) driven by Lévy components that makes (5.2) more general

than (3.1).

5.1 Linearization

We seek a transformation h: R x R, — R of X; to
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Y = h(X;,t) (5.3)

which will transform the nonlinear stochastic differential equation given in (5.2) into

a linear equation of the form

— (@ ()i + as(t)) dt + (bi(6)Ye + ba(t)) dW, (5.4)
+§:( ( ) +c§<t,VJ£g>>ng.

since

dci = Vf&g dNj
n (5.2). Note that, the magnitude of the jump at time ¢ can be found as X+ — X;-

from the cadlag property, that is, X;- = limgy; X.
t0’s formula (4.4) for h(X,,t) leads to

dY; = |[0h(Xi-,t) + f(X4—, )0 h( Xy, t) + %gQ(Xt,t)ﬁmh(Xt,t)} dt (5.5)

+g(Xt,t)8mh(Xt,t)th+i [h(xt, g (X ) VI 1) — h(th,t)] dNj.

N7?
j=1

Using equations (5.2) and (5.4) we obtain

D (X 1)+ F(Xe, t)@mh(Xt—,t)—k%f(Xt, D)0ah( X, 1) = ar(Dh(Xy, 1) +as(t) (5.6)
9(Xe, )0 (X, 1) = bi(D)h( X, ) + ba(1) (5.7)

and

i [ (X0 +75(X0 Vi 1),8) - h(Xt,t)] AN} = i (07 (t, vj@) Y+ d (t, vj@)) N}

(5.8)
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Ordinary differential equation (5.7) has two distinct solutions for i) by(t) = 0 and

i1) b1(t) # 0. We now consider each case separately.

Case 1 by(t) =0 and by(t) #0
In this case, (5.7) is satisfied if

g(:C, t)&z:h(x’ t) = b2<t)a

for all x € R and t € R,. Then the transformation h can be found as

h(a:,t):/m balt) (5.9)

9(%,1)

where we have chosen the arbitrary function of integration to be zero and assumed

g(Z,t) # 0. Substituting (5.9) into (5.6) yields

T ) by(t) 1 et = |20 s,
/ Oy (g(j},t))dx_l—f(x’t)g(ﬂi,t) 252 (t)axg( >t) 1(t)/ g(i’,t)d + (25(t1>0)

Arranging the terms in (5.10) leads to

/x o, ( b (1 ) 4z + by (1) (f(‘”’t) - %C%Q(x,t)) — a(t) / %2 5 4 ag(t),

9(Z,1) g(w,1) 9(2,1)
and
(b () fld) 1, N
[ o (en) oo [ @m0 (55 -00e0) 2((?'11)
Differentiating (5.11) with respect to x gives
by (t) a(t) \ _
(o 1) + by (t) <L(a:,t) — g(x,t)) =0 (5.12)

where

Liw,t) = &, (g(;’w) + 0, (géig - %&;g (as,t)) .

Multiplying both sides of (5.12) by ¢(z,t) we find

by (1) + b2 () (9(z, 1)L — an (1)) = O,
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That is, we get

g(x, t)L(x,t) = ay (t) — le EZ; (5.13)

which does not depend on x. Therefore, differentiating (5.13) with respect to = leads
to,

Oy lg(x,t)L(x,t)] = 0. (5.14)
Then, we can arbitrarily choose bs (f) and set

a1 (8) = gla, ) L(z, £) + 22 EE;

and find as (t) from (5.11) for f € C? and g € C3.

Now we consider (5.8), which is satisfied if

WX+ (X, 6) V2 t) = <c§ (t, Vjv'g) + 1) WXy, t) + ¢ (t Vi;g)

3
N;

i=1,2,...,m, forall x € R, z € R, t € R,. Equivalently, we must have

z+ri(x,t)z by (t) o x bg(t) 3 ;
/ 21 dz = (¢ (t,2) + 1) / e dz + cy(t, 2) (5.15)

and differentiating it with respect to x, we obtain

b2 (1) (z,t)2 =
g(x + 71 (z,t) 2, 1) (Oari(,t)2 +1) g(x,t)

We rewrite the above equation as

g(z, 1)
g(x +r;(z,t) 2,t)

Ai(x,t) := (Opri(z,t)2 + 1) =ci(t,2) +1, (5.16)

Now, ¢; can be found from (5.16) and ¢, can be found from (5.15) . Differentiating
(5.16) with respect to x yields
0, A;(z,t) =0 (5.17)

i=1,2,...,m, for r; € C2.

Therefore, (5.14) and (5.17) are the linearization conditions.

Case 2 by(t) # 0 and by(t) =0
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bl_(t) ~

The solution of (5.7) in this case is h(x,t) = K(t)efz 7@0™  We simply choose
K(t) =1 and seek for b;. Thus, we get

z by(t) ;-
I” Sayds, (5.18)

h(z,t) =
Substitution of (5.18) into (5.6) yields
Oh(a, 1) + (2. 0,h(, 1) + (2,12, 1) = ar ()h(a, 1) + an(t)

which is equivalent to

U ) ( bi(t) ) di + by (1) (M - lﬁmg(aj,t)) + @ . (t)] oI TERE — (1),

9(,1) glx,t) 2
(5.19)
Differentiating both sides of (5.19) with respect to = leads to
W, (1) + by (1) gla, t) Lz, ) [* 0, (;;w(g)) 520
b () <9§§’t 30:9(2,1) )ai (t) =0
and

b (1) + by () g, )L 1) + 70 ("1(1 ) di —ar (1)
03 (t) | LD 19 g(x, t)} + 0 — g

Q

9(z,t)
by simplification. We aim to find b (¢) first. Differentiating with respect to x and

l—l

simplifying b; () as it is nonzero, we get

[ax (o, L, 1)] + -2t } b (1) [az (f (z,6) _ laxg(x,t)) + 0, @%)} 0.

g9(z,t) g(z,t) 2

Therefore, we have
by(t) + by (8) gz, t) Lz, t) = —g(x,1)0: [g(x, 1) L(x,1)] . (5.21)

Differentiating (5.21) with respect to x, we get b; (%)

0: (9(x,1)0: [g(x, t) L(x, 1)])
Or g, t) Lz, 1)]

by (t) = — (5.22)
Differentiating (5.22) with respect to x yields

O, M (z,t) = 0, (5.23)
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where we have introduced

0: (9(z, )0, [g(z. t)L(z, 1)])

M (z,t) = 9 Lg(z, t) L(z, )]

for f € C? and g € C?, as a term in the linearization criterion (5.23).

The transformation given in Equation (5.18) is
h(x,t) = S ﬁdi.

Differentiating (5.18) with respect to x yields

(1) = ) a7 sk (5.24)

g(z,1)
Substitution of (5.24) into (5.8) leads to

xri(x,)zmj . ilbi(t)‘;i. i
@f it g(liyt)d = (cll(t7 z) + 1) ef g(livf)d -+ 02(t7 Z). (525)

Differentiating with respect to x, in order to eliminate c(t, z), we find
Jrrrieos O gz bi(t)

bi(?) (x,t)z e
g(x +ri(z,t)z,t) (Oari(,1)2 + 1) o g(x,t)

and cancelling b, (t) we get

X
z+r;(z,t)z b1(t) 5~ bi(t) 5~
FEx R / G

Az, t)e(f ) = (d (t,z) +1) (5.27)

i=1,2,...,m, in terms of A; of (5.16). Differentiating Equation (5.27) with respect
to x yields

D, As(, 1) + Ag(, )by (¢) (%) ~0. (5.28)

Therefore, equations (5.23) and (5.28) are the linearization conditions in this
case for r; € C%. Now, one can obtain a;(t) from (5.20), as(t) from (5.19),b;(¢)
from(5.22) , ¢1(t) from (5.27) and c5(t) from (5.25).

We now state our findings as a theorem.
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Theorem 5.1.1 A nonlinear stochastic differential equation (5.2) is linearizable via

Wz, 1) = / dz

9(Z,t)

the transformation

if (5.14) and (5.17) are satisfied or via

\/.T
b1~(t) d7
h(z,t)=e e

if (5.23) and (5.28) are satisfied where by(t) is given in (5.22).

Note that, the two sets of conditions in Theorem 5.1.1 are mutually exclusive. If
(5.14) is satisfied, then (5.23) is not possible as it originates from (5.21) where b, is
nonzero and (5.14) cannot hold. Clearly, this argument holds both ways.

5.2 Stochastic Integrating Factors

A first order linear ordinary differential equation can be solved using the integrating
factor method [22]. We extend this well-known integrating factor method for solving
linear ODEs to the linear SDEs driven by compound Poisson processes and develop

stochastic integrating factors. We define a stochastic integrating factor as follows.
Definition 5.2.1 The function u, = p, (W, CH,C2 ... C™) =: p, (Wy, Cy) with prop-

erty
d(1,Y:) = Dy(t)dt + Da(t)dW, + Y Di(t)V7,dN}

j=1

18 called a stochastic integrating factor for the one-dimensional linear jump-diffusion

SDE .
We apply the stochastic product rule for semimartingales [1] as
A1 Ye) = - Y- + Y-yt + d [, Y, (5.29)
for
dYy = (a1(t)Ye- 4 aa(t)) dt + (b1 (£)Ye- + ba(2)) dW; (5.30)

S 3w () v
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Then, It6’s formula for i reads,

1 S '
dpy = (at:“t + §8xmﬂt) dt + Oupty-dWy + Z (1t = =) dNj.

j=1

Therefore, from (4.3) we can write the terms which will form the differential product
d(p, Y1) as

pe-dYy = - (a2 ()Y +aa(t)) db + py- (01 (1) Ye- +ba()) dWy (5.31)

+ - Z (Cj (t, V )Yt Cé(tvvjz,tj)) ng,

j=1
and
Y,-du, = Y- (&tut + %Gmut> dt + Y- Oppiy—dWy + Y- i (1, — - ) N7 (5.32)
j=1
and the quadratic variation
A Y] = Dot by () Yie + b 1) (5.33)

+Z [(LVJJW)Y H(t,VJfﬂ)}dth.

Using the results in Equations (5.31), (5.32) and (5.33) , Equation (5.29) transforms

into,
fy- a1 (0)Yi- + az(t)] dt + py- [b1(D)Yi- + ba(1)] W,
Ay, = m . A . 5.34
(e b3 AV + e v g (534
j= t
.U'tjEYt
1 m ;
Vi (Ot + GOnpty ) b+ Vi Oopr dWe Y Y 1y = ) N
j=1
Y- d#z
Oupty— b1 () Yi- +ba (1)) dt
+| m . ‘
_ J J
+ 22 g e (6v3,) Ve + (1. V3,)] an:
d[lhy]t

The right hand side of Equation (5.34) should not involve the variable Y;- to

comply with the definition of the integrating factor. Hence, arranging the terms in
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Equation (5.34) yields,

1
Y = i (atut S Ouatty- + b1 ()0t + 01 <t>ut) dt (5.35)
+Yie (Oupte- + b1 (O)py-) AW,

+Y- (i (cj (t, V;W) + 1) (4, — p1,~) N7 + p1, icj (t, Vfw) dN,f’)
j=1

J=1

[t az(t) + Bopy- by (0)] dt + bz (1) AWs + > ) (t, va'g) dNj.

j=1
which leads to
1
at,ur + éamc,uﬁ + b (t>ax,ut* +aq (t)ut* =0 (536)

aac:ut— + bl (t)/lt— = O (537>

and
i <CJ1 <t’ V&J) + 1) (1 — pe-) dth + - icj <t, szﬂ> dth = 0. (5.38)
j=1

Let us seek a solution to the system of PDEs (5.36) and (5.37) together with
(5.38) . First, consider Equation (5.38), which simplifies to

Em: (C{ (t7 Vf&g) - 1) AN} = iut—de : (5.39)
: -

Jj=1

To find a solution to (5.39), let us set
e = (W, C) = My (t, W) [ M3 (¢, CF) (5.40)
j=1

for a continuous function M; and let Mg (t, Cg ) be given by

N} 1

M =1 ——— 5.41
in view of

N}
Jjo_ J
=3V

i=1
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j =1,...,m, for the compound Poisson processes C’;Z given in (5.1). By definition,
note that
N
A . i 1
M] t, C], - i~ 542

that is, Mg (t, C’tj_) involves all jumps of the Poisson process th except for the one
at time ¢, if any. We will show that (5.41) satisfies (5.39) in almost sure sense next.
Since the Poisson processes N7, j = 1,...,m are independent, at any any instant, at
most one jump occurs from only one of N',..., N™ with probability 1. That is, for
each t € R, dN/ =0 for j =1,...,m, or for j # j° and some j° € {1,...,m} almost
surely in (5.39) . For each ¢t € R at which there is a jump, (5.39) reduces to

(c{ <t,V]f[tjo) + 1) 1, dN? = pi, dN?. (5.43)

Now, for fixed t € R, let us specify pu,- in relation to u, defined by (5.40). We have
pe- = My (6, W) [] M3 (t,CL) (5.44)
j=1

as M, (t—,W,-) = M (t, W;) by continuity of M; and W;. On the other hand, since

there is a jump from only N/ " at time t, we have

p= Wy Mg (ef) T M3 (1Cl). (5.45)

J=1,j#5°

From (5.44) and (5.45) , we observe that
My (t, Cff) ]
Hi— = My 0 o\ Hi » »
Mg (Lel) (t, Vfw0> +1

also in view of (5.41) and (5.42). Now, (5.46) satisfies (5.43). Hence, (5.40) satisfies

(5.46)

(5.39) almost surely and the integrating factor p, takes the form of

m N}
. 1
e = (Wi, CF) = My (t, W) [ FIGZET) (5.47)

j=1:=1 1
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Now, we will find M; using (5.37) and (5.38). Substitution of (5.47) into (5.37)

leads to
m N . m N .
O My (t, W) e+ by (t) My (t, W) —— =0,
180 ey I
which is
O, My (t, Wy) + by (£) My (t, W) = 0. (5.48)

Now, by Itd’s formula, we have
dMy(t, W) = 0, M, (t, Wy)dt + 0, My (t, Wy)dW; + %Oli (t, Wy)dt.
In view of (5.48), this simplifies to
ANy (t, W) = 0, My (t, Wy)dt — by (t) My (t, Wy)dW; + %b% (t) My(t,W)dt.  (5.49)
To solve (5.49), we try M;(t, W;) which satisfies

My (£, V) = My(t, W) (£) — %bf (£) My (+, W) (5.50)

for a Stieltjes function ¢ and we have taken ¢’ for the sake of brevity in the sequel.

Hence, (5.49) reduces to
dAMy(t, Wy) = —by (t) My (t, Wy)dW; + My (t, Wy)q' (¢t) dt (5.51)

and solution to (5.51) is
Mi(t,W,) = e Jg ba(s)dWs—1 [ b2(s)ds+q(t) (5.52)

where the integral fg bi(s)dWs is a Riemann-Stieltjes integral since b; (¢) is a deter-
ministic function [26]. Note that the solution (5.52) indeed satisfies (5.50). Thus, the

stochastic integrating factor takes the form

J
mNt

1
— o= Jo bi(s)dWi—3 [ b3 (s)ds+a(t) - 5.53
=€ - - . .
He EE%(WX)H %)
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We now use p, of (5.53) in (5.36) to obtain

m V- Cj/ j
—%bf () +q (t) — ZZ% + %bf (t) = b3 (t) +ay (t) = 0.

j=1 =1
Then, we get
t m Nz* Cﬂ( J
s, Vi )
0= [ L7 B (5) = (s) | ds
0\ j=1 i=1 Ci (S VJ)

Therefore the integrating factor from (5.47) becomes

NI_ .
t s—
= exp | — b des—i-/ E E
e P /0 1(8) 0 SVJ 1

7j=1 =1
1 m M
Jj=11i= 1

Equation (5.35) now reads

A005) = (u-lt) + Dupy-ba (1)) dt + b 8) Wi+ 3 ch (67, ) a?. (5.59)

7j=1

Integration of (5.55) yields

t t
V=t ([ nosts) + 0 ba s+ [ pta (o),
0 0
+Z/ e S>vaa ng>. (5.56)

Substituting (5.54) the Equation (5.56) leads us to the solution of the linear stochastic
differential equation (5.30),

fyero (T IS W) (a2 (5) — b (s 5)) ds
v, = + fy et (H] 1H11 CiSVJ )52
+j§:1fJ€H(S)( i T AN )cé(s,%) dN{

J
m N

HOTTTI (4 (8. V) +1) (5.57)

Jj=11i=1
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where

H(t):—/tbl(s)dWSJr/t i Slci sw

=N

bi (s) —aq (s) | ds.

N —

5.3 Analytical Solutions of Specific Examples

We now consider some linearizable SDEs driven by compound Poisson processes.
Calculations are given explicitly for the first equation, other examples are partially
discussed and the solutions are given in Table 5.1.

Example 1 is from [24] originally and it reads

1
dX, = §X3 dt + X3 AW, + Z v; X, dC),  Xo=m (5.58)

7j=1

when the jump terms driven by Ctj are added. Here, we have

3, g(z) = a3

f(x) =

, 1 (x) = v

Wl

These functions satisfy the linearization criteria (5.14) and (5.17). Indeed,

9, [g(z, L] = 0, [ (at( o, (%x—é - %ax)ﬂ ~0

and
2
. T3
Oz Ai = 0, (uiV]’Vﬁl) S| =0,i=1,....,m.
(:U + v; xVK,)
Hence, the transformation
v dzx 1 1
h(z,t :/ — = 3x3 — 32} 5.59
( ) o g(x7 t) 0 ( )

linearizes Equation (5.58) as

1

9= Wty {((1 +v;Vi,) -
j=1

by It6’s formula (5.5). We have a; (1) =0, a2 (t) =0, b1 (t) =0, b2 (¢) = 1, e1 (L, 2) =
(1+v,z )3 —1land ¢ (t,2) = 3x§ ((1 + yjz)% _ 1) _

1

1> Yie + 304 ((1 +v;Vi,) - 1)} AN (5.60)
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By (5.57), integrating (5.60) yields

Yt:#t_l</ - AWy +3$OZ/ us( 1+VJVJ> —1)dNSj>,

=

m N}

HH +I/]VJ 7%.

Jj=11:=1

where

Hence, the solution of (5.58) is given by

3
1 1 [t 1o (! <
X, = <xg+ut1 (5/ udeerach/ ustg>)

in view of the transformation (5.59) .
Example 2 is taken from [17], again with extra jump terms given by

Jj=1

3 1 3 m .
dX, ( (t) i + 552)(;) dt + XL dW; + ZvaﬁdCi, Xo=x¢ (5.61)

where

3
(1)t + §52$%7 g9(x) =
m, are positive real valued. As indicated in Table 5.1

f(z,t) =«

and a<t)7 67 r)/jv ] - 17"'7
together with all examples of this section (5.61) satisfies criteria (5.14) and (5.17)

The transformation
(5.62)

linearizes Equation (5.61) into

4y, = %deWﬁi ((1+7jw )
j=1

1

o 1) Y,-dN}

0, az (t) = 22, bi(t) = 0, bo(t) = 1,
((1 +7,2)* — 1). The solution is

which corresponds to (5.4) with a; (%)
4.7

¢ (tz) = (14,2 ) —land ¢z (1, 2) = 3

¢ 1 .
Y= i (/ o ()ds+/us AW, + xOZ/us< 14,V )" - ))de
0

g
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where the integrating factor is

NJ
mn 1

HH 1+CJVJ Z.

Jj=11i=1

Transformation (5.62) leads to the solution given in Table 5.1, that is,

4
1 b t t 4 1" t ‘
Xo= |25 +ju /usa(s)der/ udeer—rra‘Z/ pig-dNY
4 0 b 0 b =10

Example 3 is taken from [7] but with an additional jump term and it reads

dX; = a (8 — Xp-)dt + oX2dW, + Y 7, X-dC],  Xo= . (5.63)
j=1
where a, (3, 0 and v;, j = 1,...,m are positive real valued parameters.

In (6.2.3), we have

fx)=a(f—1), g(a:)zax%, i () = v,

These functions satisfy the linearization criteria (5.14) and (5.17) when

0:2\/@.

9, [g(x, ) L] = 0, [am% (az KO‘U—@ - ia) 73— gxm ~0

is satisfied if ¢ = 2v/a. Therefore, using the transformation
xr d"’

)= [ 2

s} Ui‘§

Y, = — (XE . g;g) . (5.64)

Indeed,

-

we get

We see that Equation (5.63) transforms into

4y, — —%}th+th+§:[<(l+%V‘7>; 1)y;
j=1

JW%TQ 1(( +y,VE, >§—1>}ng
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1
—5,as(t) = 0,00 (t) =0,by (1) =1, c1 (t,2) = (1 +;2)* = 1
2 1> Integration yields

af
1 t 1 1
e xoz/us = (i i)
where _
m N 1
My =€ ztl_[r[(14‘%‘/@])75
j=1i=1

Transformation (5.64) leads to the solution given in Table 5.1 which is

2
1 t 1 [t .
X, = (3:3 +out! (w/aﬂ/ udeSng/ ustg»

Example 4 is a log-mean-reverting model [9, 31, 34] with a jump term. We have
dX; =X (0 (t) — In Xp-) dt + pXp-dW, + > (;X-dCY,  Xo=m.  (5.65)
j=1
where 7, 0 (t), p, ¢;, j = 1,...,m, are positive real valued.

Here, we have
f(x,t) =nz(0() —Inz), g(x) = pr, rj(v) = (.

The transformation given by

1. X
Y, = —In L, (5.66)
P To

linearizes the Equation (5.65) into

o (t -
dY, = <—nYt-+ (g—i—'uT()))dt—i—th—l-Z;ln (1+¢ N])ng
7j=1

with ay (t) = =1, as (t) = §+ 242 by (1) = 0, b2 (t) = 1, &1 (£, 2) = 2 In (1 4 ¢;2) and

2 (t, z) = 0. Integration gives

Y = it (/Otus (2 «9(5)>dt+/ [y AW, +Z/ [ + ¢ N]> dNSj)

where

py = e,
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Finally, the use of (5.66) leads to the solution given in Table 5.1 which is

t 9 t
Xt = Xo€xp pﬂ;1 /:us E—i_,u—(s> dt+/ /Ls*dWs
0 2 P 0
m t 1 ' '
+ /us—ln 14+ (V2 ) dN? || .
5 [neimee)

Example 5 is from [11, 12, 27, 33], a geometric Ornstein-Uhlenbeck equation with
an additional jump term. We have
dX; = §(t) Xo- (n(t) = Xy ) dt + 0X-dW, + Y N X-dCY,  Xo=mo. (5.67)
j=1
where £ (), n(t), d, \;, j =1,...,m, are positive real valued.

Here, the functions in (5.2) correspond to

fx)=E@) e (n(t) —2), g(z) =0z, rj(z) = \z.

The transformation given by ,
-
Y, = (—t) (5.68)

linearizes Equation (5.67) into

n _)‘ijj
o 2 7 _ B —Nt
dY, = [(62 = £ ()0 () Vi + & (t) wo) dt + (—0) Y, th+; Ewr

J
t

Y,-dNj .

with a (1) = 0% — £ (6)7 (), s (1) = € (£) 20, by (1) = =, b (1) = 0, €1 (1,2) = 1235

1+X2

and ¢ (t, z) = 0. Integration gives

t
Y, =p! (No +xo/ ps=& (5) dS)
0
where

NV
1 ! TT -
= (=ow, = g+ [ enas) TITT0+A72).
0 j=1i=1

As before, (5.68) leads to the solution given in Table 5.1 which is

-1

t
Xy = wopy (uo + o / fs-€ (5) dS)
0
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Table 5.1: Linearizable Equations and Solutions

1
Equation dX, = (a (1) X1+ 552)(;‘_) dt + BXLdW, + 2 v, X,-dC}
Solution
Criteria f . p 4
o= (of )
(5.14,5.17) ' it oK o
My = Hj:l Hz:tl (1 + Vjvij> )
Equation dX, = a(B— X;-)dt + o X2 dW, + Y v,X,-dC}
j=1
Criteria
Solution
(5.14,5.17) ' o 2
Xy = (:cg +VaBu us—dWs>
_a m Nt] i\ —=
Hy = € 2t Hj:l Hizl (1 + ’Vjvz‘]) ’
Equation dX, =X, (0(t) —In X, ) dt + pX;-dW, + 3 (;X;-dCY
j=1
Solution
t 0(s
Criteria X . Jo - <£ + 2L ) dt + fo fhg-dW
+ = Toexp | piy m
(5.14,5.17) + 21 Iy uy%ln ( + ¢ N]) dN]
j:
My = e
Equation dX, =€) Xy (n(t) — Xy ) dt + 6 X-dW, + 3 N\ () X,-dCY
j=1
Solution
Criteria . —1
Xt = Topy (Mo + To fo fhs-§ )d3>
(5.23,5.28)

[y = €Xp (—5Wt 52t+f0 )ds) [T~ 1Hz 1(1—1—)\ VJ)
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Chapter 6

NUMERICAL EXPERIMENTS

As exact solutions are rarely known, numerical methods for stochastic differential
equations are of supreme importance [4, 5, 24]. We have not specified a numeri-
cal approach to stochastic differential equations so far. In this chapter, we will dis-
cuss two important pathwise approximation methods: Euler-Maruyama and Milstein-
Maghsoodi. We shall then consider our examples introduced in Chapter 5 to simulate
their sample paths using these methods and compare with the numerical evaluation

of their analytical solutions.

6.1 Numerical Schemes for Stochastic Differential Equations

The general form of a nonlinear stochastic differential equation driven by Wiener and

compound Poisson processes reads

dX; = f(X,-, t)dt + g(X- ) AW, + > rj(Xp-, 8)dC],  Xo =g (6.1)

j=1

as introduced in Chapter 5. We can simply rewrite (6.1) in the integral form as
t t m t . .
X, = X, +/ f(X,-, s)ds + / 9( X, 5)dW, + Z/ ri(Xo-, 5)V,dNY

0 0 =170 ®

where the first integral is a Riemann-Stieltjes integral, the second and the third inte-
grals are stochastic integrals with respect to a Wiener process and a Poisson random
measure, respectively [1, 17].

Here we will use equidistant stepsize At = t,,,1 —t,, for the partition tp =0 < t; <
... <ty =T and the increments AW,, and AN,, of Wiener and the Poisson processes

to discretize (6.1) and obtain an approximated solution Y} at ¢, = T. Moreover, the
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approximation Y with stepsize 0 converges strongly to X with order + at time T if

there exists a positive constant C' such that

c(0) = \JE (X - Y (D) < C&
for each 6 > 0 [5].

6.1.1 FEuler-Maruyama Scheme

The simplest discretization procedure for stochastic differential equations, generalized

Euler-Maruyama scheme with jumps [10, 24] is given by

Yn+1 - Yn + f (Yn7 tn) At + g (Yn7 tn) AWn—i—l +r (Yna tn) VNSANTL-Fl' (62)
The sequence {Y,,,n =0,1,..., N} of values of the Euler-Maruyama approximation
at times {t,,n =0,1,..., N} can be computed by generating the random increments

AW and AN. This scheme has a strong order of convergence v = 0.5 [5, 24].

6.1.2  Milstein-Maghsoodi Scheme

Maghsoodi [24] generalizes Milstein’s second order diffusion scheme for stochastic
differential equations with jumps to improve the order of accuracy and derive a higher

order scheme in the mean square sense by obtaining

Yoi1 = Yo+ (f (Yo, t,) — %g (Y, tn) Ozg (Yn,tn)) At (6.3)

1
+g (Ym tn) AI/Vn-i-l + 59 (an tn) aocg (an tn) AWE—H

1
+§ (37’ (Yn, tn) VNn - T (Yn +r (Yn, tn) VNn, tn) VNn) ANn+1
+ (g (Yn +r (Ym tn) VNm tn) — g (Yn7 tn)) AWnJrlANnJrl
1
+5 (r (Yo, tn) Vi, — 7 (Yo + 7 (Yo, tn) Vi, ta) Vv, ) ANZL
+ (g (Ynu tn) aa:r (Yna tn) VNn -9 (Yn +r (Yna tn) VNn7tn) + g (Yna tn)) AZn—f—l

where

tn+1
Ay = / (W, — W, ) dN.,.
tn
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It has been proved that this scheme has strong order of convergence v =1 [5, 24].

We apply (6.2) and (6.3) with r;, j =1,...,m, next.

6.2 Analytical versus Numerical Solutions

We will now illustrate and examine our examples in detail. As we have found the
explicit solutions we can compare the Euler-Maruyama and Milstein-Maghsoodi ap-
proximations with our exact solutions and compute the errors. Approximations have
been simulated for N = 10000 trajectories of the stochastic differential equations
given in Section 6.3. Computations have been done in MATLAB. The CPU times

range from 60 to 90 minutes for the completion of 10000 trials.

6.2.1 Introductory Example 1

We first consider our first example which is from [24] given by

Lt o x3 ; ;
dX, = X dt + X} dW, + > viX-dC; (6.4)
j=1
for t € [0, T] with the initial value Xy = zo. From Table 5.1 we know that (6.4) has
an analytical solution

3

Nj . NJ; o1
1 " ¢ .1 m ;_® 1 'V] s dWs
Xe= (af + 3 TITT (0 +01?)° b IGo I o+ ¥s)
j=1i=1 S B ) Py (L+vV7) °dN,
for t € 0,7T].

We have simulated N = 10000 trajectories for all numerical approximations with
29 = 0.6, T = 1, v = 1, jump intensity rate A = 3 and stepsizes At = 273, 276
279 2712 Notice that, the analytical solution almost coincides with the Euler and
Maghsoodi approximations as given in Fig. 6.2.

It can be seen that the mean trajectories in Figure 6.3 are in each other’s 95%
confidence interval, which is computed for every time point for 10000 simulations
by calculating means and their standard errors. These confidence intervals show the

reliability of our estimates.
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Figure 6.1: Mean square errors for Euler and Maghsoodi approximations for the first

example.
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Figure 6.2: Simulation of the exact solution and the numerical approximations, At =
2712 Jumps are at t = 0.0862, 0.2068, and 0.8992 with sizes 0.0924, 00.0078 and

0.4231 respectively.
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Figure 6.3: Mean trajectories estimated from 10000 independent replications for the
first example.

Comparing the approximation results in Fig. 6.1, it can be noticed that by de-
creasing the stepsize, the estimate of the mean square error decreases too. Moreover,
it can be seen that the Maghsoodi approximation produces more accurate results as

expected.

6.2.2 Introductory Fxample 2

We now consider our next example taken from [17]

3
dX; = (Oé (1) Xt%— + §ﬁ2 ) dt + BX dWy + Z%Xt dcy, Xo=1z0. (6.5)

7j=1
with additional jump terms for ¢ € [0, 7] with the initial value Xy = x. From Table

5.1 we know that (6.5) has an explicit solution

OMH
-

m N . NZ_ . "
o= (b + IO+ S TG TES (V) o5ds
=1i=1

1+’7]V] 4 o Njf j _%
+ Jo Il Ty (L47,;V7) *aw,
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Figure 6.4: Mean square errors for Euler and Maghsoodi approximations the second
example.

for t € [0,T]. As we found the explicit solution, we can compare the Euler-Maruyama
and Milstein-Maghsoodi approximations with our exact solution and compute the
errors.

We have simulated N = 10000 trajectories with zg = 0.5, T = 1, a(t) = 2,
S = 0.5, v = 1, jump intensity rate A = 3 and stepsizes At =273, 276 279 2712 The
analytical solution almost coincides with the Euler and Maghsoodi approximations in

Fig. 6.5.
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Figure 6.5: Simulation of the exact solution and the numerical approximations, At =
2712 Jumps are at t = 0.2651, 0.3918, and 0.9548 with sizes 0.8645, 0.5881, and
0.6704 respectively.

It can be seen that the estimated analytical mean trajectory in Figure 6.6 nearly
coincides with the mean trajectory estimated from the numerical approximation. Fur-
thermore, comparing the approximation results in Figure 6.4, the estimate of the mean
square error decreases by decreasing the stepsize and Maghsoodi produces more ac-

curate results as expected.

6.2.3 Cox-Ingersoll-Ross Model

We now consider our second example from [7] with additional jump terms given by
1 = ,
dX; = o (B — Xp-)dt + o X2dW, + > 7, X,-dC] (6.6)
j=1
for ¢t € [0,7] with the initial value X, = z¢. This equation is known as the Cox-

Ingersoll-Ross interest rate model, before the jump terms are added. Here, X, repre-
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Figure 6.6: Mean trajectories estimated from 10000 independent replications for the
second example.

sents the mean-reverting short-term interest rate. In this model, 3 is the long-term
average value of interest rate with jumps, « is the intensity (strength) of mean re-
version, o is the interest rate volatility where X, is the instantaneous interest rate at
period ¢, maturing at period 7'

Mean reversion is a tendency for a stochastic process to remain near, or tend to
return over time to a long-run average value. If the interest rate (or the spot price
of a commodity) is below the mean, the mean reversion component will be positive,
resulting in an upward influence on the spot price. Alternatively, if the spot price
is above this level, the mean reversion component will be negative, thus causing a
downward influence on the interest rate. Over time, this results in a price path that
drifts towards the mean, at a period (or speed) determined by the mean reversion rate
a > 0. Moreover, short-term interest rates are the interest rates on loan contracts-or
debt instruments such as Treasury bills, bank certificates of deposit or commercial

paper-having maturities of less than one year, which are modeled by X.
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Figure 6.7: Mean square errors for Euler and Maghsoodi approximations for the CIR
model.

From Table 5.1 we know that (6.6) has an explicit solution

2

m Nj m N
X, = xé ++/apest Hﬂ (1+ %sz)% /te_gt H H (1 +7jVij)_% dW,
j=11i=1 0 j=1 i=1
for t € [0,7]. As we have the explicit solution, we can compare the Euler-Maruyama
and Milstein-Maghsoodi approximations with our exact solution and compute the
errors.
We have simulated N = 10000 trajectories with zo = 0.5, T' = 100, a = 0.4,
S = 0.6, v = 1, jump intensity rate A = 0.03 and stepsizes At = 273, 276 279,
2712 Note that, the Euler and Maghsoodi approximations are close to the analytical
solution as shown in Fig. 6.8. The process is expected to stabilize around its mean

value § = 0.6 in the long run.
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Figure 6.8: Simulation of the exact solution and the numerical approximations, At =
2712 Jumps are at t = 31.32, 37.47, and 44.77 with sizes 0.2662, 0.3513, and 0.2779
respectively.

It can be seen that the estimated analytical mean trajectory in Fig. 6.9 nearly
coincides with the mean trajectory estimated from the numerical approximation.

As shown in Figure 6.7, as the stepsize decreases, the estimate of the mean square
error decreases. Moreover, it can be seen that the Maghsoodi approximation produces

more accurate results as expected.

6.2.4 Log-Mean-Reverting Model

We now consider our second example from [9, 31, 34] with jump terms
dX; =X (0 (t) — In X, ) dt + pXp-dW, + Y (;X,-dC],  Xo=m.  (6.7)
j=1
for t € [0, 7] with the initial value Xy = xy. This log mean-reverting equation with

jumps is commonly used in modeling assets subject to supply and demand such as
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Figure 6.9: Mean trajectories estimated from 10000 independent replications for the
CIR model.

commodities. Due to advantage of easiness of simulation, modeling and parameters
estimation, this model is widely preferred. Therefore, X; now corresponds to the spot
price of the commodity. In this model, 6 is the long-run mean of the logarithm of the
price with jumps, 7 is the mean reversion speed (intensity) of the price and p is the
price volatility.

From Table 5.1, we know that (6.7) has an explicit solution

t 9 t mo . 1 , '
X, = zoexp (pe"t (/ e (g + “—(3)) dt +/ AW, + Y / ¢ =1n (1+ ¢, V7) ng>>
0 P 0 . 0 P
Jj=1

for t € [0,7]. As we have found the explicit solution, we can compare the Euler-
Maruyama and Milstein-Maghsoodi approximations with our closed-form solution
and compute the errors.

We have simulated N = 10000 trajectories with o = 0.5, T" = 100, n = 0.4,
6(t) = 0.6, p = 0.5, ¢ = 1, jump intensity rate A = 0.03 and stepsizes At = 273,

276279 2712 Note that, the analytical solution almost coincides with the Euler and
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Figure 6.11: Simulation of the exact solution and the numerical approximations,
At = 272 Jumps are at t = 5.21, 69.66, and 96.79 with sizes 0.0915, 0.6802, and

0.9426 respectively.



Chapter 6: Numerical Experiments 56

Mean Trajectories
P P P
[N a o
T
Il

-

08
Mean (Arelytical)
Mean (Maghsoodi)
06 — — — B%CI (Andytical)
9B Cl (Maghsood)
4 1 1 1 1
0 0 2 20 60 8 100

Figure 6.12: Mean trajectories estimated from 10000 independent replications for the
log mean-reverting model.

Maghsoodi approximations in Fig. 6.11. The estimated analytical mean trajectory
given in Figure 6.12 is close to the mean trajectory estimated from the numerical
approximations.

Fig. 6.10 demonstrates again the higher accuracy achieved with Maghsoodi.

6.2.5 Geometric O-U Model

We now consider our next example taken from [12, 11, 27, 33] given by

dX, = € (t) Xy (n(t) — X ) dt + 6 X, dW, + Xm: A\ (t) Xy-dCY (6.8)

j=1
for t € [0, T] with the initial value Xy = zo. Equation (6.8) is also known as Geometric
Ornstein-Uhlenbeck or Dixit & Pindyck Model, now including additional jump terms.
This model is based on a mean-reverting commodity price or interest rate X;. In this
equation, the mean reversion component is governed by the difference between the

current price and the mean 7 as well as by the mean reversion rate £ where ¢ is the
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Figure 6.13: Mean square errors for Euler and Maghsoodi approximations for the
geometric O-U model.

volatility of the spot price. Note that, spot price X; is always positive.
From Table 5.1, we know that (6.8) has an explicit solution

. -1
66Wt+%62t_fg &(s)n(s)ds H;TZZI H;N:tjl (1 + )\J‘/l])—l

Xt:IO

s—t
(1:43,V7) —O(Ws—=Wie) =58 (s—t)+ / &(Qm(¢)d¢
7 e 0

NI
+xq fot iz Iist £(s)ds

[T, T2 (1007
for t € [0,T]. As we have the explicit solution, we again compare the numerical
solutions of (6.8) with our analytical solution and compute the errors.
We have simulated N = 10000 trajectories with zo = 3, T = 100, £ () = 0.3,
n(t) =1.9,6=0.2, A =1, jump intensity rate A = 0.03 and stepsizes At =273 276
279 2712,
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Figure 6.14: Simulation of the exact solution and the numerical approximations,
At = 2712, Jumps are at t = 10.05, 47.54, 79.5400, 79.91, and 95.68 with sizes 0.1549,

0.6437, 0.0965, 0.2673, and 0.3547 respectively.

It can be seen that the estimated analytical mean trajectory in Fig. 6.15 nearly

coincides with the mean trajectory estimated from the numerical approximation. In

this case, the means are close, the standard errors are very small, which implies that

most trajectories must agree as good as the ones shown in Fig. 6.14.

As we see in Fig. 6.13, Maghsoodi approximation achieves more accurate results

in the mean square sense.
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Chapter 7

CONCLUSION

In this thesis, we have contributed to integration of nonlinear stochastic differ-
ential equations driven by compound Poisson processes, namely finite activity Lévy
processes by a novel method of integration based on linearization.

We have shown that a nonlinear stochastic differential equation of the form (5.2)
which is driven by a finite activity Lévy process consisting of a Wiener process and
a compound Poisson process is linearizable to (5.4) via the transformations given
in Theorem 5.1 under certain conditions. We have then introduced the stochastic
integrating factors (5.54) to solve the linear stochastic differential equation (5.57) .

We have studied several examples which appeared in previous work. We have
applied our method to Cox-Ingersoll-Ross interest rate model [7], a log-mean revert-
ing model [9, 31, 34], Geometric Ornstein-Uhlenbeck [12, 11, 27, 33] models and two
equations borrowed from [24] and [17]. The first three are important models in appli-
cations. Although the original equations are diffusion models, we have accomplished
to generalize them to jump-diffusion cases by adding jump terms. We have found the
analytical solutions explicitly when the linearizability conditions are satisfied.

Moreover, we have compared our closed-form analytical solutions with the numer-
ical discretizations of Euler and Maghsoodi approximations. We have illustrated their
sample paths and showed their agreement. Mean square errors of numerical approx-
imations have also been computed and demonstrated for several stepsizes. Monte
Carlo approach has been used to estimate the expected value of X by computing the
means of analytical solutions and numerical discretizations.

This integration method can also be investigated for general Lévy driven nonlin-

ear stochastic differential equations including infinite activity. However, since there
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will be additional terms in It6’s formula in the infinite activity case, we will have
integro-differential conditions for linearization. Solution to the linearized equations
by integrating factors is also a challenging problem since we have a new It6’s formula
as the stochastic chain rule. Moreover, any numerical methods with general Lévy

driven stochastic differential equations also remains as our future work.
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