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ABSTRACT

This thesis presents two dynamic inventory allocation problems with stochastic demand.

The objective in both of these problems is to maximize the seller’s total expected revenue over

a finite horizon. In the first problem, the seller has a discrete-time, single-product inventory

control problem in which he maximizes the total expected revenue by selecting a dynamic rule

that controls the allocation of capacity to requests from different demand classes. This problem

is a well-studied revenue management problem in the literature; however, our work differs from

the earlier studies. Besides showing the basic structural properties of the problem, we investigate

how the varying system parameters affect the optimal policy, and highlight the effects of the

random problem parameters, such as the probability distributions of demand, on the optimal

policy. The second problem is the seller’s pricing problem of perishable products with random

quality. To the best of our knowledge, our work is the first attempt of solving the pricing problem

of perishable products with random quality. In this problem, the seller dynamically chooses the

price to maximize the total expected revenue by adjusting the current distribution of the product

quality according to the number of the remaining inventory at some point in time during the

selling season. We present the numerical results aiming to illustrate the behavior of the model

and to assess the impact of the varying problem parameters on the optimal revenue and the

optimal prices. We compare the static pricing strategy with the dynamic pricing strategy under

the same settings, and prove that updating the cumulative distribution function of the product

quality significantly increases the seller’s total expected profit.
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Prof. Fikri Karaesmen and Asst. Prof. Yalçın Akçay for their insightful discussions and never

ending support during this work. I have learned and achieved more than I ever dreamed of in

two-years by their precious guiding and help, and I feel myself very lucky and very proud of

being one of their students.
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ÖZETÇE

Bu çalışmada iki farklı dinamik envanter denetimi problemi rastsal talep modellemesiyle göz

önüne alınmıştır. Her iki problemin de amacı tedarikçinin kazancını en iyilemektir. İlk prob-

lem, sonlu zamanda mevsimsel ve tek tip ürünlü envanter denetimi problemidir. Çalışmada öne

sürülen modelde tedarikçi çok çeşitli müşteri gruplarından gelen talebi karşılayıp karşılamama

kararını verir. Bir defada tek bir müşteri tipinden toplu halde talep gelebilir ve tedarikçi, müşteri

tipine, kalan zamana ve envantere göre bu talebin tamamını ya da sadece bir kısmını karşılama

hakkına sahiptir. Bu problem bilinen bir kazanç yönetimi problemidir, fakat bu çalışmada

önceki çalışmalardan farklı olarak sistemdeki parametrelerin değişiminin en iyi kurala etkisi in-

celenmiştir. İkinci problem ise bir dinamik fiyatlandırma problemidir. Bu problemde, tedarikçi

mevsimsel ve tek tip ürün satar, fakat sattığı ürünler kalite bakımından farklılık gösterir. Prob-

lemdeki kilit nokta tedarikçinin mevsimin başından sonuna kadar ürünlerinin kalitesini tam

olarak gözlemleyememesi, ya da anlayamamasıdır. Ürünlerin kalitesinin tedarikçi tarafından tam

olarak bilinmemesi, tedarikçinin mevsim başında varsayılan kalite dağılımını, geçmiş satışları

ve zaman içerisinde müşterilerin ürünlere biçtikleri değeri gözlemleyerek yenilemesini gerektirir.

Kalite dağılımı yenilendikçe ürünlerin fiyatı da yenilenir, daha gerçeğe uygun bir hal alır. Böylece

mevsim boyunca elde edilecek kazanç en iyilenmeye çalışılır. Bu problem literatürde var olan

mevsimsel ürünlerin dinamik fiyatlandırılması problemlerinden farklıdır çünkü farklı kaliteki tek

tip ürünler göz önüne alınmıştır. Bu açıdan, bu çalışma bildiğimiz kadarıyla literatürde bir ilk

olma özelliğini taşır.

xi
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Chapter 1

INTRODUCTION

Many industries and organizations use inventory management and pricing strategies to max-

imize the total expected profit when the selling season is finite and the products are perishable.

Inventory management is concerned with the allocation of capacity to multiple customer classes,

and the pricing decisions are made to determine the sale price. The practice of applying pricing

strategies together with allocation of the capacity to different customer classes is known as rev-

enue management. Among the pricing strategies, dynamic pricing strategy, which adjusts the

sale price dynamically as a function of time and capacity, is commonly used to control inventory

level so as to maximize the total expected revenue. Dynamic pricing decisions are made to

determine the optimal price according to remaining inventory level, demand size, and remaining

time.

We consider two different problems throughout this thesis. In the first problem, the seller

applies a capacity allocation rule that controls which and how many of the randomly arriving

requests should be accepted. On the other hand, the second problem uses dynamic pricing policy

for the products with random quality and determines how to adjust the price to enhance the

expected total revenue during a finite selling season by updating the distribution of the product

quality of the remaining inventory for the rest of the selling season.

The two main contributions of this thesis are the following. We first study the structural

properties of a discrete-time single product inventory control problem first introduced in [19]

and called as the ”omnibus model”. This model is fairly general and is in fact a unifying for-

mulation which compromises between static and dynamic models. We then focus on a dynamic

optimization problem for pricing of perishable products with random quality. The problem of



Chapter 1: Introduction 2

the seller who must sell the available inventory within a desired period of time is a fairly common

situation, in practice, with seasonal products and well-known problem in the pricing literature.

However, in this work, we study the optimal pricing of perishable products with random quali-

ties. To the best of our knowledge, this is the first research work associating dynamic pricing of

perishable products with random quality.

The main purpose of the first part of this work is to develop a dynamic programming (DP)

model for the partial admission problem aiming to optimize the expected revenue of a seller

who is making acceptance-rejection decisions. Partial admission is the partial fulfillment of

demand for accepted requests. The key modelling assumption of the problem is that even

though customer requests can be for multiple units of the product (batch orders) coming from

multiple demand classes, time is divided into decision periods such that at most one request

is received in any given period. The demand intensity of a batch of any customer class at a

point in time is taken as a request probability, and these probabilities are allowed to vary with

time. The core problem consists of whether or not to accept requests for products coming from

different customer classes. The accept/reject decisions are made by comparing the expected

cost of rejecting the current request with the expected revenue of admitting the current request.

By rejecting the current request, the seller waits for future demands that may come from more

profitable demand classes. On the other hand, he takes the risk of having to reject a more

profitable future demand due to lack of capacity by accepting the current request. There are

established results on the structure of the optimal policy, but little is known on the effects of

varying parameters such as probability distributions of demands, revenues, etc. In this thesis,

the effects of varying system parameters are examined for this model, and besides proving some

basic and even more complex structural properties, we provide guidelines for predicting the

response of the optimal policy to changes in random system parameters, such as arrival rates of

batch orders of any customer class at any decision period. In practice, arrival probabilities of

demands may not be known with certainty, and may be estimated from the sales information.

Due to randomness in some system parameters, the outcome of a decision in any decision period

can be only predictable to some extent. Therefore, in this problem, it is the expected total
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revenue which we aim to maximize.

The second part of this work aims to determine the optimal pricing policy when the seller has

perishable products which cannot be stored for use thereafter and which have random quality.

In our problem, there is a homogeneity in customers’ willingness to pay for a product with

the same quality. We assume that the seller does not perceive the exact product quality of

available inventory, so sets a single price for a pool of products with different quality. The

reservation prices of customers reflect the value that customers assign to the product quality.

Thus, customers only buy the product if their valuations of the product quality are higher

than or equal to the product’s price. The seller does not perceive the exact quality of each

product on hand, thus begins with a projected and subjective cumulative distribution for the

product quality of his inventories. He infers about the product quality as he monitors the sales

information. The goal of the seller is to determine the pricing policy during the planning horizon

that maximizes the total expected profit. We first present a model where the price is updated at

a point in time during the selling season according to the updated distribution of the quality of

products which are left for the remaining part of the season, and call this model as ”information

update scenario”. We obtain the optimal pricing strategy and optimal total expected profit

as a function of the initial inventory level, and initial distribution of the product quality by

numerical examples. Later, we simplify the basic model to incorporate static pricing where

price does not change during the selling season. We call this model as ”No information update

scenario”. Static pricing strategy simplifies the implementation of the model since there is no

update of the product quality distribution. However, it is shown by numerical results that the

loss experienced by the seller when implementing static pricing policy instead of dynamic pricing

policy is not negligible. We study these models with information update and with no information

update under two different demand settings. First, we investigate the optimal pricing policies

for the models when the seller observes random demand during the selling season, then study

the problem with no demand restriction for both of the scenarios. Next, we focus on the special

case of the problem with a single product for both scenarios and show some analytical results

that are used as benchmark statistics in the numerical results. Finally, in order to incorporate
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the simplest version of the seller’s problem, we investigate the optimal pricing of perishable

products with constant quality (no randomness).

The thesis is structured as follows. Chapter 2 provides literature surveys related to our two

problems: the inventory control problem, and the dynamic pricing problem. Chapter 3 presents

the model of discrete-time single product inventory control problem with its optimal policy and

structural properties. Next, in Chapter 4 we study the dynamic pricing of perishable products

with random quality, and give numerical results. Finally, Chapter 5 summarizes the performed

study, and mention the future research perspectives.
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Chapter 2

LITERATURE REVIEW

There is a huge literature on inventory control as well as dynamic pricing and revenue manage-

ment. In this chapter, we provide details and references on advances in areas related to different

aspects of this thesis.

2.1 Inventory and Admission Control Decisions

The purpose of this section is to review the literature on revenue management focusing

the subject of integrated pricing and inventory management and admission control decisions.

Excellent survey and classification of research on coordination of pricing and inventory decisions,

can be found in Chan, Shen, Levi and Swann [8], and a complete review on coordinated pricing

and production/procurement decisions is presented by Yano, Gilbert [34] which provide the

summary of the research papers on this area by focusing on different aspects of the problem. In

addition, a number of excellent introductions to the subject of revenue management, especially,

to the airline revenue management problem exist in the literature, particularly in the paper

by Talluri and Van Ryzin [31]. An excellent review of the literature, along with examples of

applications of revenue management in areas other than the airline industry, can be found in

McGill and van Ryzin [23].

Revenue management studies the theory and the applications of making efficient use of a

given fixed resource that perishes after a given time. To do so, it uses some basic controls such

as booking or sales limits at various price levels. In the early literature on this subject, many

models are static. In static models, fare classes are assumed to book sequentially in order of

increasing fare level. These models do not explicitly consider the passenger arrival process over

time, requiring instead only the total demand for each class [19]. In that category, the papers
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by Belobaba [3], Brumelle et al. [7], Curry [10], Wollmer [33] and Brumelle and McGill [6] offer

an analysis; Robinson [25] removes the last assumption.

Robinson [25] develops the most general of the static models. He uses continuous variables to

model passenger demand and makes no assumptions concerning the order in which fare classes

arrive. Brumelle and McGill [6], Wollmer [33], and Curry [10] consider a static problem similar

to Robinson, with the added restriction that fare classes arrive in order of increasing fare level.

Curry [10] gives a mathematical programming formulation for a multiple-flight-leg problem in a

manner similar to that of Robinson and models demand as a continuous quantity. Brumelle and

McGill [6] prove the optimality of a booking limit policy for the case in which lower fare classes

book first. They formulate a model capable of handling both continuous and discrete demand.

Li and Oum [21] presented a brief note on the single leg multi-fare seat allocation problem.

The note consists of three models which were independently proposed by Curry [10], Wollmer

[33], and Brumelle and McGill [6] and compares their optimality conditions. It is shown that

these three models give analytically equivalent optimality conditions and Wollmer’s model is

just a discrete version of Curry’s model. The equivalence of optimality conditions stated in the

Curry’s and Brumelle’s models is given in this note, thus it is claimed that none of them may

have any computational advantage over the others.

Additionally, dynamic programming models, similar to the methodology of this thesis, have

been applied to the related problems in airline management such as overbooking and inventory

management. A comprehensive approach was presented later in Lee and Hersh [20], and then

in Subramanian, Stidham, and Lautenbacher [29] and Lautenbacher and Stidham [19] (all in

discrete time with multiple classes, the latter comments on extensions to Poisson arrivals and

splittable batches).

First, we consider the dynamic model by Lee and Hersh [20]. The aim of the paper was to

determine whether a booking request for seats in a certain booking class occurring at some point

in time during the booking period should be accepted or denied and to develop a discrete-time

dynamic programming model for finding an optimal booking policy, which can be reduced to

a set of critical values. The Lee and Hersh model does not require any assumption about the
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arrival pattern for the various booking classes and multiple seat bookings are also incorporated

into the model. Concavity and monotonicity of the total expected revenue is demonstrated. In

this thesis, we present similar approach for modelling the inventory problem when there are

multiple fare classes for a pool of identical products. Several of the papers we consider extend

this model. The indispensable extension of Lee and Hersh model is the ”omnibus” model of

Lautenbacher and Stidham [19] which combine the static and dynamic models in a unifying

formulation.

Lautenbacher and Stidham [19] studied the single leg yield management problem without

cancellations, overbooking, or discounting . At the moment the request arrives, the decision

to accept or reject involves three factors: 1) The number of seats previously allocated 2) The

time remaining in the reservations horizon 3) The fare class of the request. They develop a

discrete-time, finite horizon markov decision process model and solve by backward induction on

the number of periods remaining before departure. They show that the maximal undiscounted

expected revenue function is concave and non-increasing in x by following an earlier result from

Stidham [28]. Lautenbacher, and Stidham, [19] convert Robinson’s demand assumption into

discrete demand and highlight his main result which says that optimal value function is concave

in x. Lautenbacher, and Stidham, [19] solve for the optimal booking limits by means of a

backward recursion, so that the optimal booking limit for the last period during which a class

arrives is determined first. In addition, Subramanian, Stidham, and Lautenbacher [29] appeared

subsequent to Lee and Hersh [20] supplementing their model with cancellations, overbooking

and discounting.

Brumelle, and Walczak [26] also considered a problem where when a customer requests a

discount fare, the airline must decide whether to sell the seat at the requested discount or to

hold the seat in hope that a customer will arrive later who will pay more. They model this

situation for a single-leg flight with multiple fare classes and customers who arrive according

to a semi-Markov process (possibly nonhomogeneous). They also provide counterexamples to

show that this structural property of the optimal policy need not hold for more general arrival

processes if the requests can be for more than one seat and must be accepted or rejected as a
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whole. They also include a counterexample to a claim by Lee and Hersh [20] that a critical time

property holds when accept/reject requests are for more than one seat.

On the technical sides, we use the paper from, Koole [17], [18] and Karaesmen, Örmeci and

Cil [2] not only provide a general framework to prove the structural properties of the value

functions and optimal policies but also proposes to define distinct event operators and examine

the structural properties of the operators rather than the whole value function. We have used

these papers to show that if the event operators preserve some structural properties then the

value function which is the combination of the operators will also satisfy the same properties.

In this thesis, we have removed cancellations, overbooking and discounting assumptions of

the discussion of Subramanian, Stidham, and Lautenbacher [29]. The model presented in this

work is essentially that of the ”omnibus” model in Stidham, and Lautenbacher [19], but in

addition to the work of Stidham, and Lautenbacher, we demonstrate the structural properties

of the model and perform sensitivity analysis.

2.2 Dynamic Pricing Decisions

The purpose of this section is to review the literature on revenue management focusing the

subject of dynamic pricing decisions. Many industries have the opportunity to increase their

revenues through the dynamic pricing of their perishable products. The seller can improve

its revenues by dynamically adjusting the price of the product rather than adopting a fixed

price throughout the selling season. In this section we review the most frequently referred works

studied dynamically pricing of perishable inventories. In fact, most of the papers in the literature

study the question of how a seller should dynamically adjust the price of a perishable product as

the time at which the product will perish approaches and the inventory of the product diminishes,

and various scenarios of dynamic pricing of perishable inventories have been mentioned in the

literature so far; however, to our knowledge, dynamically pricing the products with random

quality has not been studied yet.

First of all, we refer the reader to the literature review [14] for an extensive review of the works

discussing pricing problems. In their paper [14], Gallego and van Ryzin study the problem of
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dynamic pricing of a given number of inventories over a finite time horizon. Their demand model

is a homogeneous Poisson process, and demand is assumed to be price dependent. Together with

showing some structural properties, they aim maximizing the expected revenue through dynamic

pricing. In [15], Gallego and van Ryzin extend their single-product model to the multiple-product

case.

Even though implementing a policy in which the price is always changing is optimal, it

is not practical. In this regard, the paper of Gallego and van Ryzin [14] presents their ”at-

most-one-price-change heuristic” by investigating the performance of dynamic pricing policies

by comparing them with the deterministic versions. When the set of prices is a continuous

interval, they show that a fixed price policy is asymptotically optimal. When the set of prices

is finite, the price change at most once is shown to be asymptotically optimal. Following the

Gallego and Van Ryzin [14], Feng and Gallego [12] show the optimal timing of a single price

change from a given initial price to either a given lower or higher second price. They show that

it is optimal to decrease the price as soon as the time-to-go falls below a time threshold that

depends on the number of unsold items. In [13], Feng and Gallego extend their work and study

the problem of deciding the optimal timing of price changes within a given set of allowable, time

dependent price paths.

In some papers, the retailers are usually constrained to choosing between a limited and

certainly finite, set of allowable prices. For example, Chatwin [9] assumes that the set of allowable

prices is finite and in his paper a continuous-time dynamic programming model in which the

state is the number of inventory at any given time and the seller’s decision is to choose the price

at which to sell the product is employed. He shows that the maximum expected revenue function

is nondecreasing and concave in the inventory level and in the remaining time. Moreover, he

verifies that at a given time the optimal price is non-increasing in the remaining inventory and

non-decreasing in the remaining time till the end of the season.

After choosing the stocking level at the beginning of the selling season, Monahan [24] inves-

tigates pricing of a single product over multiple time periods. In his paper, structural properties

of the optimal pricing policy over a finite horizon, and the effects of the pricing policy on the op-



Chapter 2: Literature Review 10

timal procurement policy of a news-vendor problem are studied. He gives an efficient algorithm

to find optimal prices, and investigates the effects of the market parameters on the optimal

policy using numerical examples.

Bitran and Mondschein [5] extend the search for optimal policies and they call it as ”periodic

pricing review policies”. They focus on the sale of seasonal products for which the retailers make

discount during the season. They study a continuous time model in which the price is updated

continuously, and present this model as a benchmark for a periodic pricing review model. The

authors use empirical analysis to establish the structure of the optimal policy and revenue but

no theoretical results are presented. They show that the price is decreasing in inventory level

and increasing in time, and claim that the demand uncertainty leads to higher prices, larger

discounts and more unsold inventory. This work is extended in Bitran et al. [4] where they

focus on the retail chains with several stores which coordinate prices, and develop heuristic

solutions.

Zhao and Zheng [36] consider dynamic pricing of inventories that will perish at the end of the

selling season. In their problem, the demand model is assumed to be a nonhomogeneous Poisson

process, the rate of an arrival of the customer, and the distribution of reservation price for the

product is allowed to change over time. They conclude that the optimal price decreases over

time for a given inventory level, and it decreases as the remaining inventory level increases at a

given period. In our work, we will show that their results may not be true under the assumption

that each inventory is with a random quality.

Finally, for detailed descriptions of yield management and references to works discussing

solution techniques, the reader is suggested to see Weatherford and Bodily [32]. The term

yield management has typically been used to mention the airlines’ practices to improve revenues

through the seat control. When these practices began to be used by the other industries and

applied to related problems, Weatherford and Bodily [32] suggested the more general and more

descriptive term instead of the term yield management, and they called it as perishable-asset

revenue management (PARM). Zhang and Cooper [35] and Maglaras and Meissner [22] analyze

the dynamic pricing problem for multiple products in revenue management context. For excellent
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surveys of dynamic pricing in the context of revenue management, see McGill and van Ryzin

[23], and the book by Talluri and van Ryzin [30].

In this thesis, we present the dynamic pricing of perishable products in the presence of quality

component. Hence, our results differ from the earlier results in the related literature. To our

knowledge, this is the first work that considers the pricing problem of perishable products with

quality components.
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Chapter 3

STRUCTURAL PROPERTIES OF A DISCRETE-TIME SINGLE

PRODUCT INVENTORY CONTROL PROBLEM WITH REVENUE

MANAGEMENT APPLICATIONS

3.1 Introduction

In this chapter, we consider a finite horizon, single-product inventory control problem in

which the decision-maker accepts or rejects customer requests coming from multiple demand

classes. Customer requests can be for multiple units of the product (batch orders) and we allow

partial fulfillment of demand for accepted requests. The optimal decisions must incorporate

the following core tradeoff; by accepting the current request, the decision-maker foregoes the

opportunity of using the inventory for more profitable future requests. On the other hand, if the

current request is rejected, the decision-maker faces the risk of having to accept a request from

a less profitable demand class or even being left with unsold inventory at the end of the finite

horizon (due to lack of demand). The optimal decision depends on factors such as the available

inventory, relative profitability of demand classes, projected volume and mix of future demand

(distribution of future demand), and time to go till the end of the time horizon. If the seller is

assumed to be profit-maximizer, an optimal strategy is the strategy providing the highest net

revenues. Since all parameters of the problem are time dependent, the problem is allowed to

model in a dynamic aspect. Clearly, this is a typical revenue management problem, which has

garnered great interest both from practitioners as well as researchers (we refer the reader to [30]

for a comprehensive survey of revenue management literature).
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3.2 Problem Description and Formulation

Our problem is a discrete-time single product inventory control problem, and we study this

problem in the presence of partial admission policy. We have multiple demand classes and the

values of these classes are not the same to the seller. The valuations of the customer classes

are made according to the prices that they offer for the product, so there may be more valuable

classes such that satisfying the requests coming from these classes is more important than

satisfying the other classes’ requests.

In this problem, the decision maker is the seller, and when the inventory level is low, he

decides to reserve a particular amount of the inventory for more profitable demand classes that

he anticipates to observe in the future. The reservation of the capacity is made by rejecting the

demand from less valuable classes, and there are threshold values for each demand classes below

which it is optimal to reject requests coming from these classes and reserve the available capacity

for more profitable future demands. Hence, the main problem of the seller is to determine

whether a request from a certain demand class arriving at some point in time during the selling

season should be accepted or denied. Moreover, as we have mentioned in the previous section,

customer requests can be for multiple units of the product (batch orders), but the decision of

admitting or rejecting a customer class does not depend on the size of the request, since we allow

partial admission in this model. So, the seller also needs to determine the number of orders that

will be satisfied from an arriving batch. The decision of accepting or denying an arriving request

is not so simple, and is based on the factors such as the remaining time to go till the end of the

season, the available inventory on hand, relative profitability of demand classes, and projected

volume of the future demand.

In this problem, the selling period is split into a number of decision periods in which at

most one type of requests can arrive, and we use the following assumptions to model the seller’s

problem:

• Requests for different fare classes are independent, hence the demand for one class does

not affect the demand for another class.
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• A rejected request is lost sale.

• Request probabilities vary with time.

• Requests from only one class of customers are allowed during a decision period.

• An accept/deny decision has to be made each time a request arrives.

3.2.1 Problem Formulation

Suppose that time is divided into decision periods, as in [20], such that at most one request

is received in any given period (though the customer can demand more than one unit of the

product). Let K be the number of decision periods. Time is indexed by k in our model,

where k = K is the first period and k = 1 is the last period after which all inventories perish.

There are n demand classes, with class i offering to pay Ri, i = 1, 2, . . . , n, for a unit of the

product. Assume that R1 ≥ R2 ≥ R3 ≥ . . . ≥ Rn, without loss of generality. Let pibk be

the probability that a customer belonging to demand class i (referred to as a class-i customer)

requests b units of inventory in period k, and p0k be the probability that no customers arrive

in period k. We assume Bi is an upper bound on the batch demand size for class-i customers.

Note that p0k +
∑n

i=1

∑Bi
b=1 pibk = 1 for all k = 1, 2, . . . , K. The decision-maker’s problem

of maximizing expected revenues over the entire finite time horizon can be modelled using a

dynamic programming formulation. Let vk(x) be the expected maximum revenue-to-go in period

k when there are x units of inventory are available. We can express vk(x) as

vk(x) =
n∑

i=1

Bi∑

b=1

pibk

(
max

κi∈{0,1,...,min(b,x)}
κiRi + vk−1(x− κi)

)
+ p0kvk−1(x) (3.1)

with boundary conditions vk(0) = 0 for all k and v0(x) = 0 for all x. In the above formulation,

κi is the inventory assigned to the class-i customer, requesting b units of the product. Note

that κi is an integer between 0 and min(x, b). We can rewrite the value function in (3.1) as a

combination of the fictitious and rationing event operators defined in [2]. The batch rationing
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operator Tb RTi determines the number of inventory units assigned to class-i customers and the

fictitious operator TFIC represents the fictitious event. These two operators when applied on a

function f(x) yield

TFICf(x) = f(x)

and

Tb RTif(x) = max
κi≤min{x,b}

{κiRi + f(x− κi)}.

Hence, we have

vk(x) =
n∑

i=1

Bi∑

b=1

pibkTb RTivk−1(x) + p0kTFICvk−1(x) (3.2)

3.3 Structural Properties

3.3.1 Basic Properties

Proposition 1 Tb RTi and TFIC event operators have the following properties

1. If f(x) is non-decreasing in x, then the Tb RTi and TFIC preserve the monotonicity of f(x).

(a)

Tf(x) ≤ Tf(x + 1) (3.3)

Tf(x) is an increasing function of x.

(b)

Tf(k) ≤ Tf(k + 1) (3.4)

Tf(k) is an increasing function of k.
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Proof: (a) By the definition of TFIC , it preserves all the structural properties of a

function. Therefore, it is enough to show that the batch rationing operator Tb RTi

preserves the monotonicity of the value function with respect to x and k. Let κx and

κx+1 be the optimal number of class-i customers to be admitted from an arriving

batch, then we can write (3) as follows:

κxRi + f(x− κx) ≤ κx+1Ri + f(x + 1− κx+1) (3.5)

Since κx+1 is the optimal action for the state x+1 and f(x) is non-decreasing in x, we

have

κx+1Ri + f(x + 1− κx+1) ≥ κxRi + f(x + 1− κx) and

κxRi + f(x− κx) ≤ κxRi + f(x + 1− κx)

Hence we have κxRi + f(x− κx) ≤ κx+1Ri + f(x + 1− κx+1)

Proof of (b) is similar.

2. Class-1 customers should be always admitted.

vk(x)− vk(x− 1) ≤ R1 ∀ x,k (3.6)

Proof: In [2], it is proved that Tb RTi preserves lower-bound difference (LBD) property so

if we know that vk(x + 1) − vk(x) ≤ R1 where R1 is the reward associated with class-1,

then we have

Tb RTi
f(x)− Tb RTi

f(x + 1) ≥ −R1
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Now for the initial step, we need to check

v0(x + 1)− v0(x) ≤ R1 and we see that ⇒ 0 ≤ R1
√

Assume vk(x+1)− vk(x) ≤ R1 is true, then as vk+1(x) = Tb RTivk(x) and Tb RTi preserves

the LBD property, the proof is completed.

3. If f(x) is concave in x, then the Tb RTi and TFIC preserve the concavity of f(x).

Proof: It is easy to see that TFIC preserves all structural properties, so checking Tb RTi is

enough.

Let κ̄∗ = (κ∗x, κ∗x+1, κ
∗
x+2) be an optimal action vector and κ∗x be optimal number of cus-

tomers admitted from an arriving batch in state x. Assume that f(x) is a concave function

in x.

We will show that ∀ κ̄∗

κ∗xRi + f(x− κ∗x)− κ∗x+1Ri − f(x + 1− κ∗x+1)

≤ ?

κ∗x+1Ri + f(x + 1− κ∗x+1)− κ∗x+2Ri − f(x + 2− κ∗x+2)

Since concavity of f(x) implies that the optimal number of customers to be admitted in
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Cases κ̄∗ = (κ∗x, κ∗x+1, κ∗x+2) Rewritten form of the inequality

Case I (a, a, a) f(x− a)− f(x + 1− a) ≤ f(x + 1− a)− f(x + 2− a)
Case II (a, a + 1, a + 1) f(x + 1− a)− f(x− a) ≤ Ri

Case III (a, a, a + 1) Ri ≤ f(x + 1− a)− f(x− a)
Case IV (a, a + 1, a + 2) −Ri ≤ −Ri

Table 3.1: Possible optimal actions

states x and x + 1 can differ at most by 1, all possible cases are as shown in Table 3.1.

Concavity of f guarantees the first case. Case II is true as we admit a customer in state

x+1. Case III holds since a customer is rejected in state x+1. Hence, Tb RTi preserves

concavity in x.

Proposition 2 The maximum expected revenue-to-go function, vk(x) is

1. a non-decreasing function of the inventory level, x,

2. a non-decreasing function of the time remaining till the end of the finite time horizon, k,

Proof: We have proved that Tb RTi preserves monotonicity of vk(x) with respect to x and

k. Now, by using this property of Tb RTi and applying the mathematical induction proof

method, we will show that maximal value function vk(x) is non-decreasing in x and k.

The initial step for the monotonicity in x holds because of the boundary conditions. (i.e.

v0(x) ≤ v0(x + 1) holds.)Now, assume that it is true for k. (i.e.vk(x) ≤ vk(x + 1)), then as

vk+1(x) =
n∑

i=1

∑

B=1

piBTb RTiv(x) + pn+1TFIC vk(x)

and both operators preserves monotonicity, we are done.

Note that the proof of monotonicity in k is similar.
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3. a concave function of the inventory level, x.

Proof: By using mathematical induction method, we first check the initial conditions.

Knowing the specification of the boundary condition on v0(x), we assume that vk(x) is

concave in x and show that vk+1(x) is also concave in x. In other words, we show that the

following inequality is true.

n∑

i=1

∑

B=1

piB∆Tb RTi
vk(x− 1) + pn+1∆TFIC vk(x− 1)

≤

n∑

i=1

∑

B=1

piB∆Tb RTiv(x) + pn+1∆TFIC vk(x)

But, we have already shown that Tb RTi and TFIC preserves concavity. Hence, vk(x) is

concave in x.

Concavity of the value function vk(x) means that marginal value of an inventory is non-

increasing with the current inventory level, x. Let `∗ik be defined as follows

`∗ik = max{x : vk(x)− vk(x− 1) > Ri}

More explicitly, `∗ik is the maximum number of inventory on hand such that if the current

inventory on hand, x, is less than or equal to `∗ik, it is optimal to reject the whole class-i batch.

Similarly, if the current inventory level, x, is greater than or equal to `∗ik + 1, it is optimal to

satisfy class-i demand until either the inventory level drops down to `∗ik or the whole batch is

satisfied. Here, `∗ik is the optimal threshold value for class-i demand such that the optimal policy

will reject the whole class-i batch if x < `∗ik, partially satisfy the demand if `∗ik < x < `∗ik + b,
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and satisfy the entire batch if x ≥ `∗ik + b. Therefore, threshold policy is the optimal policy in

our model. It is obvious that if the reward of a class-i customer is higher than the reward of a

class-j customer, then the optimal threshold value of class-i will be lower than that of class-j as

shown below figure 3.1

1,2,3


1,2


1


l
3


l
2


x


Figure 3.1: Threshold values

Hence, the following proposition follows as a natural consequence.

Proposition 3 Given a batch of b units of class-1 demand in period k, the optimal policy assigns

κ1 = min{x, b} units of inventory to this demand, i.e., the optimal policy accepts as much class-1

demand as possible.

3.3.2 More Complicated Properties

Proposition 4 vk(x) is a non-decreasing function of pibk.

Proof. Consider two systems, system 1 and system 2. All model parameters of these two

systems, as well as their demand distributions are identical except for some period t, where

1 ≤ t ≤ K. In the tth period, the arrival probability of a particular class-j customer with a

batch demand of size b̃ units is given by pjb̃t in system 1, whereas the likelihood of the same

event in system 2 is given by pjb̃t + ε. Let vk(x) be the optimal value function of system 1 in
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period k and vε
k(x) be the optimal value function of system 2. We prove vε

k(x) ≥ vk(x) by using

induction on k. For k = 0, 1, . . . , t− 1, the proposition is trivially true since the two systems are

identical. Now, let k = t. We can express the value functions in the two systems as

vt(x) =
n∑

i = 1
i 6= j

Bi∑

b=1

pibtTb RTivt−1(x) +
Bj∑

b = 1

b 6= b̃

pjbtTb RTjvt−1(x)

+ pjb̃tTb̃ RTj
vt−1(x) + p0tTFIC vt−1(x)

and

vε
t (x) =

n∑

i = 1
i 6= j

Bi∑

b=1

pibtTb RTi
vε
t−1(x) +

Bj∑

b = 1

b 6= b̃

pjbtTb RTj
vε
t−1(x)

+ (pjb̃t + ε)Tb̃ RTj
vε
t−1(x) + (p0t − ε)TFIC vε

t−1(x)

Since vt−1(x) = vε
t−1(x), one can show vt(x) ≤ vε

t (x) if

Tb̃ RTj
vε
t−1(x) ≥ TFICvε

t−1(x)

or equivalently

max
κj≤min{b̃,x}

{κjRj + vε
t−1(x− κj)} ≥ vε

t−1(x).

The above inequality is true due to the optimality of the number of units of inventory allocated to

class-j demand in system 2 in period t. Hence, vt(x) ≤ vε
t (x). Finally, for k > t, the proposition

holds if

max
κj≤min{b̃,x}

{κjRj + vε
k−1(x− κj)} ≥ vε

k−1(x),
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which is true due to the optimality of the number of units of inventory allocated to class-j

demand in system 2 in period k.

Proposition 5 vk(x) is a supermodular function of pjbk and x.

Proof. Consider two systems, system 1 and system 2. All model parameters of these two

systems, as well as their demand distributions are identical except for some period t, where

1 ≤ t ≤ K. In the tth period, the arrival probability of a particular class-j customer with a

batch demand of size b̃ units is given by pjb̃t in system 1, whereas the likelihood of the same event

in system 2 is given by pjb̃t + ε. Let vk(x) be the optimal value function of system 1 in period

k and vε
k(x) be the optimal value function of system 2. From the definition of supermodularity,

we need to show

vε
k(x)− vε

k(x− 1) ≥ vk(x)− vk(x− 1).

Let us define the marginal value function ∆f = f(x) − f(x − 1). Hence, the above expression

can be written as

∆vε
k(x) ≥ ∆vk(x).

For k = 0, 1, . . . , t − 1, supermodularity holds trivially since vk(x) = vε
k(x). Hence, we next

verify ∆vε
t (x) ≥ ∆vt(x), i.e., k = t, which can be written explicitly as follows

n∑

i = 1
i 6= j

Bi∑

b=1

pibt∆Tb RTiv
ε
t−1(x) +

Bj∑

b = 1

b 6= b̃

pjbt∆Tb RTjv
ε
t−1(x)

+(pjb̃t + ε)∆Tb̃ RTj
vε
t−1(x) + (p0t − ε)∆TFIC vε

t (x)

≥
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n∑

i = 1
i 6= j

Bi∑

b=1

pibt∆Tb RTivt−1(x) +
Bj∑

b = 1

b 6= b̃

pjbt∆Tb RTjvt−1(x)

+pjb̃t∆Tb̃ RTj
vt−1(x) + p0t∆TFIC vt(x)

Note that ∆Tb RTivt−1(x) = ∆Tb RTiv
ε
t−1(x) since vt−1(x) = vε

t−1(x). Therefore, the above

expression can be simplified to

∆Tb̃ RTj
vε
t−1(x)−∆TFIC vε

t (x) ≥ 0

which can also be written as

max
κj≤min{x,b̃}

{κjRj + vε
t−1(x− κj)} − vε

t−1(x) ≥ 0 (3.7)

Let κ∗j be the optimal number of units of class-j demand filled out of a batch of size b̃ in

period t. If κ∗j = 0, then obviously Equation (3.7) is true. If κ∗j > 0 then we know that

κ∗jRj + vε
t−1(x − κj) > vε

t−1(x) due to the optimality of κ∗j , which also implies Equation (3.7).

As a result, we have ∆vε
t (x) ≥ ∆vt(x).

Now, let k = t + 1. The statement in the proposition can be stated as

n∑

i = 1
i 6= j

Bi∑

b=1

pib(t+1)∆Tb RTiv
ε
t (x) +

Bj∑

b = 1

b 6= b̃

pjb(t+1)∆Tb RTjv
ε
t (x)

+pjb̃(t+1)∆Tb̃ RTj
vε
t (x) + p0(t+1)∆TFIC vε

t (x)

≥
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n∑

i = 1
i 6= j

Bi∑

b=1

pib(t+1)∆Tb RTivt(x) +
Bj∑

b = 1

b 6= b̃

pjb(t+1)∆Tb RTjvt(x)

+pjb̃(t+1)∆Tb̃ RTj
vt(x) + p0(t+1)∆TFIC vt(x)

Since supermodularity holds in period for period t, we know that ∆vε
t (x) ≥ ∆vt(x). Hence, the

above inequality would hold if

∆Tb RTiv
ε
t (x) ≥ ∆Tb RTivt(x) for all i = 1, . . . , n,

which can also be written as

Tb RTivt(x− 1) + Tb RTiv
ε
t (x) ≥ Tb RTiv

ε
t (x− 1) + Tb RTivt(x)

Based on the definition of the batch rationing operator, this expression is equivalent to

max
κi≤ min{x−1,b}

{κiRi + vt(x− 1− κi)}+ max
κi≤min{x,b}

{κiRi + vε
t (x− κi)}

≥

max
κi≤min{x−1,b}

{κiRi + vε
t (x− 1− κi)}+ max

κi≤min{x,b}
{κiRi + vk(x− κix)}

Let κix be the optimal number of units of inventory allocated to class-i demand in system 1,

and κε
ix be the optimal number of units of inventory allocated to class-i demand in system 2,

with x units of available inventory in period t + 1 in both systems. Consequently,

κi(x−1)Ri + vt(x− 1− κi(x−1)) + κε
ixRi + vε

t (x− κε
ix)

≥

κε
i(x−1)Ri + vε

t (x− 1− κε
i(x−1)) + κixRi + vt(x− κix)
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Next, we prove the validity of the above inequality by considering all possible values for κix and

κε
ix. First note that κix and κi(x−1) can differ at most by 1 unit due to the concavity of the value

function vt(x). Further, if κix = κi(x−1), then it should be true that either κix = κi(x−1) = 0 or

κix = κi(x−1) = b (same property holds for κε
ix). Also, due to the optimality of κix and κε

ix, and

our hypothesis in period t, we have

Ri ≥ vε
t (x)− vε

t (x− 1) ≥ vt(x)− vt(x− 1)

Ri ≥ vε
t (x− 1)− vε

t (x− 2) ≥ vt(x− 1)− vt(x− 2)
...

Ri ≥ vε
t (x− κε

ix + 1)− vε
t (x− κε

ix) ≥ vt(x− κε
ix + 1)− vt(x− κε

ix)

Hence, in the first system, the optimal number of units of inventory allocated to class-i demand

in period t+1 with x units of available inventory, κix, is at least κε
ix, i.e. κε

ix ≤ κix. Now for any

two integers w1 and w2, such that 0 ≤ w1 ≤ b− 1 and w1 ≤ w2 ≤ b− 1, consider the following

cases

Case (κix, κi(x−1), κ
ε
ix, κε

i(x−1)) Supermodularity Inequality

1 (0, 0, 0, 0) vt(x− 1) + vε
t (x) ≥ vt(x) + vε

t (x− 1)

2 (w1 + 1, w1, 0, 0) vε
t (x)− vε

t (x− 1) ≥ Ri

3 (b, b, 0, 0) vε
t (x)− vε

t (x− 1) ≥ vt(x− b)− vt(x− 1− b)

4 (w1 + 1, w1, w2 + 1, w2) Ri ≥ Ri

5 (b, b, w2 + 1, w2) Ri ≥ vt(x− b)− vt(x− 1− b)

6 (b, b, b, b) vε
t (x− b) + vt(x− 1− b) ≥ vk(x− b) + vε

k(x− 1− b)

Cases 1 and 6 are true due to the supermodularity of vk(x) in period k and x. Case 2 is

satisfied since no class-i demand is filled in the second system. In Case 3, the left hand side

of the inequality is greater than or equal to than Ri, whereas the left hand side is less than or

equal to Ri, hence is true. Case 4 trivially holds. In Case 5, the inequality is true since all type-i

demand is filled in the first system. As a result, vt+1(x) is supermodular with respect in x and
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pib(t+1). Clearly, the supermodularity property is also valid for any k > t + 1.

Proposition 6 vk(x) is neither concave nor convex in pibk.

Proof. We prove this proposition by a counterexample. Consider a problem with two demand

classes (n = 2) and assume that each demand is for a single unit of inventory (B1 = B2 = 1).

Further, let k = 30, x = 14, R1 = 25 and R2 = 14. Recall that pibk denotes the likelihood of

receiving a class-i demand for b units of inventory in period k. When p1,1,30 = 0.08 and p2,1,30 =

0.8, we compute v30(14) = 221.3. When p1,1,30 = 0.1 and p2,1,30 = 0.8, then v30(14) = 227.7.

When p1,1,30 = 0.18 and p2,1,30 = 0.8, we have v30(14) = 254.8. These three observations suggest

that vk(x) is a non-decreasing convex function of p1bk. On the other hand, for p1,1,30 = 0.08

and p2,1,30 = 0.2, we find v30(14) = 143.8. When p1,1,30 = 0.1 and p2,1,30 = 0.2, we compute

v30(14) = 158.85. When p1,1,30 = 0.18 and p2,1,30 = 0.2, then v30(14) = 214.8. Contrary to

our previous statement, these three observations indicate that vk(x) is a non-decreasing concave

function of p1bk. Therefore, we can conclude that vk(x) is neither concave nor convex in p1bk.

We can also show that vk(x) is neither concave nor convex in p2bk in a similar manner.

Proposition 7 vk(x) is a supermodular function of x and k.

Proof. We would like to show that

vk(x)− vk(x− 1) ≥ vk−1(x)− vk−1(x− 1) (3.8)

Recall that the optimal value function vk(x) is defined as

vk(x) =
n∑

i=1

Bi∑

b=1

pibk

(
max

κi≤min(b,x)}
κiRi + vk−1(x− κi)

)
+ p0kvk−1(x)

Let ∆vm
k (x) be defined as the marginal value per unit of inventory when m units out of x units

of available inventory is allocated to demand in period k, i.e.,

∆vm
k (x) =

vk(x)− vk(x−m)
m

(3.9)
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Based on this definition, we can express ∆vk(x) as follows

∆vk(x) = vk(x)− vk(x− 1)

=
n∑

i=1

Bi∑

b=1

pibk

(
max

κi≤min(b,x)
κiRi + vk−1(x− κi)

)
+ p0kvk−1(x)

−
n∑

i=1

Bi∑

b=1

pibk

(
max

κi≤min(b,x−1)
κiRi + vk−1(x− κi − 1)

)
+ p0kvk−1(x− 1)

Substituting p0k = 1−
n∑

i=1

Bi∑
b=1

pibk into the above equation, we can simplify ∆vk(x) as

∆vk(x) = ∆vk−1(x) +
n∑

i=1

Bi∑

b=1

pibk

{
max

κi≤min(b,x)
κiRi − κi∆vκi

k−1(x) (3.10)

− max
κi≤min(b,x−1)

κiRi − κi∆vκi
k−1(x− 1)

}

Note that, in order to show the supermodularity of vk(x) as a function of k and x, we need to

prove ∆vk(x) ≥ ∆vk−1(x), which is equivalent to the definition in (3.8). Hence, it suffices to

show in Equation (3.10) that

n∑

i=1

Bi∑

b=1

pibk

{
max

κi≤min(b,x)
κiRi − κi∆vκi

k−1(x)− max
κi≤min(b,x−1)

κiRi − κi∆vκi
k−1(x− 1)

}
≥ 0 (3.11)

Due to concavity of vk(x) as a function of x, we know that

vk−1(x)− vk−1(x−κi) ≤ vk−1(x− 1)− vk−1(x−κi− 1) ⇒ ∆vκi
k−1(x) ≤ ∆vκi

k−1(x− 1). (3.12)

Let κ∗i be the optimal number of units of inventory assigned to class-i in period k with x units

of inventory available. Similarly, let κ̃i
∗ be the optimal number of units of inventory assigned to
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class-i in period k with x−1 units of inventory available. Then, we can rewrite (3.11) as follows

n∑

i=1

Bi∑

b=1

pibk

{
[κ∗i Ri − κ∗i ∆v

κ∗i
k−1(x)]− [κ̃∗i Ri − κ̃∗i ∆v

κ̃∗i
k−1(x− 1)]

}
≥ 0 (3.13)

Since we already know that vk(x) is concave in x, it should be true that either κ∗i = κ̃i
∗ or

κ∗i = κ̃i
∗ + 1 for all i = 1, . . . , n. If κ∗i = κ̃i

∗, then

[κ∗i Ri − κ∗i ∆v
κ∗i
k−1(x)]− [κ̃∗i Ri − κ̃∗i ∆v

κ̃∗i
k−1(x− 1)] = κ∗i (∆v

κ∗i
k−1(x− 1)−∆v

κ∗i
k−1(x))

which is nonnegative due to (3.12). On the other hand, if κ∗i = κ̃i
∗ + 1, we have

[κ∗i Ri − κ∗i ∆v
κ∗i
k−1(x)]− [κ̃∗i Ri − κ̃∗i ∆v

κ̃∗i
k−1(x− 1)] = Ri + (κ∗i − 1)∆v

κ∗i−1
k−1 (x− 1)− κ∗i ∆v

κ∗i
k−1(x).

We can simplify (κ∗i − 1)∆v
κ∗i−1
k−1 (x− 1)− κ∗i ∆v

κ∗i
k−1(x), using the definition in (3.9), as

(κ∗i − 1)∆v
κ∗i−1
k−1 (x− 1)− κ∗i ∆v

κ∗i
k−1(x) = (κ∗i − 1)

vk−1(x− 1)− vk−1(x− (κ∗i − 1)− 1)
κ∗i − 1

−κ∗i
vk−1(x)− vk−1(x− κ∗i )

κ∗i
= vk−1(x− 1)− vk−1(x).

Therefore, Ri + (κ∗i − 1)∆v
κ∗i−1
k−1 (x − 1) − κ∗i ∆v

κ∗i
k−1(x) = Ri + vk−1(x − 1) − vk−1(x). Clearly,

Ri + vk−1(x − 1) − vk−1(x) is nonnegative since at least one unit of inventory is assigned to

class-i demand, i.e., κ∗i > 0. As a result, the inequality in (3.13) is satisfied, which implies

supermodularity of vk(x) in terms of k and x.

Proposition 8 vk(x) is a convex function of Ri.
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Proof. We can write the linear programming formulation equivalent (see [? ]) of vk(x), given

in (3.1), as follows

min vk(x)

s.t.

vt(w) ≥
n∑

i=1

Bi∑

b=1

pibt (κitwbRi + vt−1(w − κitwb)) + p0tvt−1(w), for t = 1, . . . , k, w = 1, . . . , x

v0(w) = 0, for w = 0, . . . , x

vt(0) = 0, for t = 1, . . . , k

κitwb ≤ w, for t = 1, . . . , k, i = 1, . . . , n, w = 0, . . . , x b = 1, . . . , Bi

κitwb ≤ b, for t = 1, . . . , k, i = 1, . . . , n, w = 0, . . . , x b = 1, . . . , Bi

vt(w) ≥ 0, t = 1, . . . , k, w = 1, . . . , x

κitwb ≥ 0, for t = 1, . . . , k, i = 1, . . . , n, w = 0, . . . , x b = 1, . . . , Bi

In the above formulation, vt(w) and κitwb are the decision variables, where vt(w) is the value in

period t with w units of inventory, and κitwb is the number of inventory units allocated to class-i

demand in period t when demand batch size is b and available inventory is w. We can rewrite

the first constraint as follows

vt(w)− p0tvt−1(w)−
n∑

i=1

Bi∑

b=1

pibtvt−1(w − κitwb) ≥
n∑

i=1

Bi∑

b=1

pibtκitwbRi

Since the optimal value of such a linear programming model is a convex function of its right-

hand-side coefficients [? ], we conclude that vk(x) is convex in Ri, for all i = 1, . . . , n.

Proposition 9 vk(x) is supermodular with respect to Rj and x.

Proof. Consider two systems, system 1 and system 2. All model parameters of these two systems

are identical except the reward of a particular class-j customer. In system 1, the reward of a

particular class-j customer is given by Rj , whereas the reward of the same class of customer in
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system 2 is given by Rj + ε. Let vk(x) be the optimal value function of system 1 in period k

and vε
k(x) be the optimal value function of system 2. From the definition of supermodularity,

we need to show

vε
k(x)− vε

k(x− 1) ≥ vk(x)− vk(x− 1).

Let us define the marginal value function ∆f = f(x) − f(x − 1). Hence, the above expression

can be written as

∆vε
k(x) ≥ ∆vk(x).

For k = 0, supermodularity holds trivially since v0(x) = vε
0(x) = 0 ∀x. Assume that for k = t−1,

∆vε
t−1(x) ≥ ∆vt−1(x) is true. Hence, we next need to verify for k = t. i.e. ∆vε

t (x) ≥ ∆vt(x) is

true. Note that ∆vε
t (x) can be written explicitly as follows

∆vε
t (x) = vε

t (x)− vε
t (x− 1) (3.14)

=
n∑

i = 1
i 6= j

Bi∑

b=1

pibt max
κi∈{0,1,...,min(b,x)}

{κiRi + vε
t−1(x− κi)} (3.15)

+
Bj∑

b=1

pjbt max
κj∈{0,1,...,min(b,x)}

{κj(Rj + ε) + vε
t−1(x− κj)} (3.16)

+ p0tv
ε
t−1(x) (3.17)

−
n∑

i = 1
i 6= j

Bi∑

b=1

pibt max
κi∈{0,1,...,min(b,x−1)}

{κiRi + vε
t−1(x− 1− κi)} (3.18)

−
Bj∑

b=1

pjbt max
κj∈{0,1,...,min(b,x−1)}

{κj(Rj + ε) + vε
t−1(x− 1− κj)} (3.19)

− p0tv
ε
t−1(x− 1) (3.20)

(3.21)
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Assume that min{Bi : i ∈ {1, . . . , n}} > x then write

(11) + (14) =
n∑

i = 1
i 6= j

x−1∑

b=1

pibt

(
max

κi∈{0,1,...,b}
{κiRi + vε

t−1(x− κi)} − max
κi∈{0,1,...,b}

{κiRi + vε
t−1(x− 1− κi)}

)

+
n∑

i = 1
i 6= j

Bi∑

b=x

pibt

(
max

κi∈{0,1,...,x}
{κiRi + vε

t−1(x− κi)} − max
κi∈{0,1,...,x−1}

{κiRi + vε
t−1(x− 1− κi)}

)

Let κ∗i be the optimal number of units of inventory assigned to class-i in period t with x units

of inventory available. Similarly, let κ̃i
∗ be the optimal number of units of inventory assigned

to class-i in period t with x− 1 units of inventory available.First note that κ∗i and κ̃i
∗ can differ

at most by 1 unit due to the concavity of the value function vt(x). Further, if κ∗i = κ̃i
∗, then it

should be true that either κ∗i = κ̃i
∗ = 0 or κ∗i = κ̃i

∗ = b.

It is easily seen that if κ∗i = κ̃i
∗ and if they are equal to either 0 or b, (11) and (14) sum

up to 0. If κ̃i
∗ is substituted with κ∗i − 1,

(11) + (14) =
n∑

i = 1
i 6= j

x−1∑

b=1

pibtRi +
n∑

i = 1
i 6= j

Bi∑

b=x

pibtRi =
n∑

i = 1
i 6= j

Bi∑

b=1

pibtRi

Using the similar approach, (12) and (15) sum up to
Bj∑
b=1

pjbt(Rj + ε)

Hence, we can write

∆vε
k(x) =

n∑

i = 1
i 6= j

Bi∑

b=1

pibtRi +
Bj∑

b=1

pjbt(Rj + ε) + p0t∆vε
t−1(x) (3.22)
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And similarly we can write,

∆vk(x) =
n∑

i = 1
i 6= j

Bi∑

b=1

pibtRi +
Bj∑

b=1

pjbtRj + p0t∆vt−1(x) (3.23)

Now, using (18) and (19), the following inequality

n∑

i = 1
i 6= j

Bi∑

b=1

pibtRi +
Bj∑

b=1

pjbt(Rj + ε) + p0t∆vε
t−1(x) ≥

n∑

i = 1
i 6= j

Bi∑

b=1

pibtRi +
Bj∑

b=1

pjbtRj + p0t∆vt−1(x)

implies ∆vε
k(x) ≥ ∆vk(x), but it is easily seen that (20) is true by the hypothesis. Thus, if

min{Bi : i ∈ {1, . . . , n}} > x, supermodularity with respect to Rj and x holds.

Now, assume that max{Bi : i ∈ {1, . . . , n}} ≤ x. If κ∗i = κ̃i
∗ and if they are equal to either 0 or

b, summation of (11) and (14) gives 0 as in the previous case. If instead of κ̃i
∗, κ∗i − 1 is used,

(11) + (14) =
n∑

i = 1
i 6= j

Bi∑

b=1

pibt

(
max

κi∈{0,1,...,b}
{κiRi + vε

t−1(x− κi)} − max
κi∈{0,1,...,b}

{κiRi + vε
t−1(x− 1− κi)}

)

=
n∑

i = 1
i 6= j

Bi∑

b=1

pibtRi

Using similar approach, we get

(12) + (15) =
Bj∑

b=1

pjbt(Rj + ε)

Thus, again

∆vε
k(x) ≥ ∆vk(x)

holds following the similar manner in the case of min{Bi : i ∈ {1, . . . , n}} > x.

Hence, vk(x) is supermodular with respect to Rj and x.
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3.4 Numerical Example

Consider that the seller observes requests from two different demand classes, (i.e. n = 2),

and assume that once a customer arrives, he requests three units of inventory regardless of the

class that he belongs to, (i.e. B1 = B2 = 3). In addition, assume that the seller has 5 periods to

go till the end of the selling season, (i.e. k = 5) and 5 units of initial inventory, (i.e. x = 5). If a

customer from the first class arrives, he offers R1 = 7 per item. On the other hand, a customer

from the second class offers R2 = 2 for the same item. Recall that pibk denotes the likelihood

of receiving a class-i demand for b units of inventory in period k, assume that pi,b,k is given as

follows:

pibk =


0.25 0.50 0.10

0.05 0.05 0.05




The total expected revenue to go till the end of the selling season, vk(x) ∀ k and x, is computed

in Matlab Version 7.0 by solving the proposed DPP problem. Then the marginal revenues, seen

in Table 3.2, are calculated.

∆vk(1) ∆vk(2) ∆vk(3) ∆vk(4) ∆vk(5)

k=0 0 0 0 0 0
k=1 6.25 4.40 0.80 0 0
k=2 6.88 6.42 5.22 3.26 0.98
k=3 6.98 6.88 6.53 5.69 4.37
k=4 6.99 6.97 6.89 6.62 6.03
k=5 7.00 6.99 6.97 6.90 6.70

Table 3.2: Concavity in x and supermodularity with respect to x and k

Table 3.2 validates Proposition 2.3 and Proposition 7. It is seen that the marginal revenue

of an additional inventory is non-increasing in x by concavity in x shown in Proposition 2.3.

Moreover, the marginal revenue of an additional inventory in the system is non-decreasing in k

by supermodularity with respect to x and k shown in Proposition 7.
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R2 vk(x) slope

2 19.71 1.57
3 21.29 1.70
4 22.99 1.71
5 24.70 1.71
6 26.41 1.73
7 28.14

Table 3.3: vk(x) is convex in R2

For a fixed level of inventory, and number of periods to go till the end of the selling season,

we compute the expected revenue ∀R2 ∈ {2, 3, 4, 5, 6, 7 = R1}. We see that the slopes between

the points are non-decreasing in R2. Hence, Table 3.3 suggests that the value function, vk(x),

is a convex function of R2 as suggested in Proposition 8.

Possible Extensions

As possible extensions of this problem, we can also handle cases with salvage cost and holding

cost. Since we use induction method to prove the desired properties, properties must hold in the

last period. So if salvage cost and holding cost are chosen linear or at least concave functions

of inventory level, then all properties that we have proven are still valid. In the case of adding

a holding cost, there is one thing that should be noted. If holding cost is too big, then an

additional time may not increase the value of the available inventory. Since adding a holding

cost function would be like adding a different event operator to the model that should also

preserve the desired property, Proposition 7 should be studied carefully.

3.5 Conclusion

In this chapter, we studied a discrete-time single product inventory control problem with

several demand classes. This was a fairly general model, first introduced in [19]. We developed

a dynamic programming model for this partial admission problem aiming to optimize the ex-
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pected revenue of the seller who is making acceptance-rejection decisions. Since our objective

was to understand the behavior of the optimal policies when system parameters change, we

used event-based dynamic programming as an approach to prove the structure of the models

and optimal policies. To use this approach, we first defined certain event operators to repre-

sent the events occurring in our model. Then we used these individual operators to show the

desired properties by first showing that the operators preserve monotonicity, concavity, and su-

permodularity properties. Some basic structural properties of the optimal policy of our model

were established in [19]. We employed the same model, but we contributed to the model by

examining the effects of varying system parameters on the optimal policy. We established that

for any class-i, the optimal threshold value that determines the maximum number of inventory

on hand below which it is optimal to reject the whole class-i batch is non-decreasing in time.

We showed that the optimal thresholds are non-decreasing in the arrival rates of demands. We

investigated that the thresholds are non-decreasing in revenues of demand classes, and the total

expected revenue is convex in revenue of a demand class and also in a batch size. Shortly, our

work was a guideline for predicting the response of the optimal policy to the changes in random

parameters and varying parameters of the problem.
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Chapter 4

PRICING OF PERISHABLE PRODUCTS WITH RANDOM QUALITY

4.1 Introduction

Pricing decisions are critical to improve the expected revenues of firms, and should reflect the

level of inventory, time remaining till the end of the selling season, and the information about

customers’ valuations of the products. Learning about customers’ preferences and projecting

their reservation prices for a product with an uncertain quality is not so difficult by analyzing

the sales data, collected by advances in information technologies, of similar products or the same

products with similar quality. In other words, a seller can monitor the past sales and demand,

and can update prices approximately to enhance the expected revenue even if he cannot perceive

the exact quality of the available products.

For instance, a seller might have a pool of single-type inventories that differ in their product

qualities. In this case, if the seller cannot perceive the exact quality of each product or cannot

discriminate between the products (due to the difficulty of quality inspection or the lack of

expert knowledge about the product quality), he might use a subjective and maybe an unreal-

istic probability distribution for the quality of products. Then, he updates this distribution as

learning occurs about the customers’ valuations to products by monitoring the past sales data

and demands. As a result, a rational seller in this situation, must understand the choices that

customers make when facing a product with a random quality q, and must determine a fair

single-price for the products with different qualities considering the number of available inven-

tory on hand and the distribution of the product quality. Motivated by this pricing problem

of the seller, this chapter studies the dynamic and static pricing strategies of a seller who sells

given initial inventories of perishable products with random quality over a finite selling season.
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The models associated with the static and dynamic pricing strategies are referred as the ”No in-

formation update scenario” and the ”Information update scenario”, respectively. We formulate

a dynamic optimization problem for the information update scenario in which the seller updates

the distribution of the product quality once at a point in time during the selling season, and

accordingly adjusts the sales price of the unsold products for the remaining part of the season.

We solve a static pricing problem in the no information update scenario in which the seller is

not allowed to update the distribution of the product quality, and so the sales price.

For the information update scenario, consider a seller who sells a set of single-type products

with random quality, and in the beginning of the selling season, has no or a little perception

about the quality of available products. Although each of the products is with a random quality,

they are priced at the same. The problem is formulated in a finite time horizon considering a

single selling season. The potential demand during the selling season is assumed to be a Poisson

random variable with mean λ. The seller updates the price only once during the selling season.

The time at which the seller makes the pricing decision can be seen as the beginning of a new

period. In other words, the seller splits the season into two periods where the first period is

called the ”regular period”, and the second period that begins with updating the sales price and

lasts till the end of the season is called the ”clearance period”. Thus, the seller updates the price

only once at the start of the clearance period and once selected, this price is not changed until

the end of the selling season.

One of the key assumptions of the model is that, from the customers’ point of view, inventory

is considered as being ordered on the basis of its quality from the highest to the lowest. Therefore,

the unsold items are identified as low-quality products compared to the ones which are sold in

the regular period. We assume that customers are homogeneous which means that the customers

have the same willingness to pay to the products with the same quality, and that customers who

purchase early prefer high-quality products. Therefore, higher quality of products are sold out

at the beginning of the regular period, and then unsold products with lower quality remain

for the clearance period. Another critical part of the problem is that after monitoring sales in

the regular period, and learning about the customers’ sensitivity to product quality, the seller
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updates its quality distribution in order to price the remaining inventories which can be identified

as low-quality products. The seller’s goal is to follow a dynamic pricing policy that brings the

maximum expected total revenue over the selling season. This task is challenging since the seller

needs to update the cumulative distribution function of the product quality. In addition, he also

needs to consider the way this subjective distribution function affects his ability to set a realistic

price to the remaining products for the remaining part of the season.

The content of this scenario is relevant to clearance pricing. Clearance pricing is an important

issue for sellers who sell perishable products only during the selling season [27]. Sellers prefer

not to change prices frequently during a specified selling season since fewer price changes are

easier to implement and help them to avoid the cost of relabelling products [16]. Therefore, a

dynamic pricing policy in which the clearance price is set once during the selling season and left

unchanged for the remainder of the clearance period is reasonable.

In the no information update scenario, all the modelling assumptions except updating the

distribution of the product quality during the selling season, are valid. However, this is the

assumption that makes the model a dynamic pricing problem. So, when we replaced this as-

sumption with the assumption of no updating the distribution of the product quality, the seller’s

problem turns to be a static pricing problem. As in all static pricing problems, we formulate

a model for this scenario in which the seller sets the sales price in the beginning of the selling

season, and once he sets the price, he is not allowed to change it during the season. The optimal

price set in the no information update scenario, and the optimal revenue that corresponds to this

price are used to assess the benefits of the information updating to the seller in the numerical

results.

The organization of this chapter is as follows: in section 4.2, as a general case the information

update scenario is presented under random demand and unlimited demand settings, respectively.

Then, the subsequent sections are given as special cases of the information update scenario. The

no information update scenario is studied in section 4.3. As in the information update scenario

in section 4.2, the model presented here is also studied under random demand and unlimited

demand settings. In addition, in section 4.3, we formulate the total expected revenue in two
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different ways: 1) applying the binomial model, 2) applying the order statistics. Next, in section

4.4, we investigate some analytical results assuming that the seller has a single product. In

section 4.5, we determine the optimal pricing policy for the case in which the product quality is

constant. In section 4.6, we illustrate our problem with numerical examples, compare the perfor-

mance of the information update scenario with no information update scenario and investigate

the effects of problem parameters on the optimal policy. Finally, 4.7 sums up the chapter.

4.2 General Case: Information Update Scenario

This section provides a detailed description of the general setting, assumptions on the model

and the motivation behind the modelling assumptions of the information update scenarios under

a random demand model and an unlimited demand model, respectively. After giving the problem

description, we formulate the seller’s problem as a two-period dynamic optimization model. The

formulations of Order Statistics are applied to construct the purchase probabilities in the pricing

model in this thesis. A short review of Order Statistics can be found in the Appendix A.

Consider the seller in the beginning of the season with a subjective cumulative distribution

function for the product quality to represent the seller’s lack of information about the customers’

valuations to products. After starting with a subjective cumulative distribution for quality of

initial inventories on hand, the seller continuously observes the sales, and learns about customers’

valuations to the quality of products. Then, he adjusts the current distribution of product quality

according to the number of the remaining inventory, so updates the optimal price at some point

in time to enhance the total expected revenue for the rest of the selling season. We assume that

all customers have an identical reservation price (customers are homogeneous).

In the model presented here, our main concern is not how much inventory we should start

with at the beginning of the selling season, but instead, our focus is on determining optimal

prices for the regular and the clearance period. However, later in section 4.6, we investigate the

optimal starting inventory level through numerical examples.
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4.2.1 Random Demand

In this subsection, our problem is formulated in a finite time horizon considering a single

selling season where the potential demand is assumed to be a Poisson process with rate λ. As

mentioned before, we study the case in which the seller updates the price once at a point in time

during the entire season. In other words, we begin with a regular period and after the point in

time at which the decision maker updates the price, we continue with a clearance period. Since

the customers have the same willingness to pay and the customers who purchase early prefer

high-quality products, if the inventory is considered as being ordered on the basis of its quality

from the highest to the lowest, the unsold items left to the clearance period are low-quality

products compared to the ones which are sold in the regular period. Reasonably, products of

higher quality are sold out at the higher initial price in the regular period, so the seller sets a

discount price in the clearance period.

In the model studied in this section, the quality of inventory is assumed to be distributed

uniformly over the interval [q, q̄]. Since we order the inventory according to the product quality

from the highest to lowest, the quality ratings can also be ordered as qx > qx−1 > . . . > q1.

Moreover, remember the modelling assumptions that products are assumed to be with random

quality and the seller cannot identify the exact quality of each item on hand. In other words, the

customers’ valuation of a product is not perceived by the seller. Because of the initially unknown

quality of the products, the seller begins the problem with a subjective cumulative distribution

function associated with quality. Learning about a customer’s purchase behavior occurs as the

seller monitors the customer’s response to its pricing decision made in the beginning of the

selling season. By observing sales in the regular period, the seller gets a signal about the quality

of its inventory and updates his quality distribution function at the beginning of the clearance

period according to the number of the remaining inventory. Refining the characterization of the

quality distribution leads the seller to manipulate his price. As stated before the seller’s goal

is to follow a dynamic pricing policy that brings the maximum expected total revenue over the

selling season.

Notations and Assumptions
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In the problem studied in this section, it is assumed that we begin with a regular period and

after the time point at which the decision maker makes the pricing decision, we continue with

a clearance period. For convenience, we use the subscript ”r” for the regular period and the

subscript ”c” for the clearance period, hereafter.

Then, let pr and pc denote the net revenue associated with selling a unit of product in

the regular and the clearance period, respectively. Let ρ be the relative length of the regular

period (length of the regular period \ length of the season), and be determined exogenously.

Since demand during the season arrives according to a Poisson process with rate λ, Dr is a

Poisson random variable with mean λr = ρλ and Dc is a Poisson random variable with mean

λc = (1 − ρ)λ. As a result of randomness in demand, excess demand may be observed and an

unsatisfied demand is lost.

Because of the initially unknown quality of the products, the seller begins the problem with

a subjective cumulative distribution function associated with the quality of items. Learning

about a customer’s purchase behavior occurs as the seller monitors the customer’s response to

its pricing decisions. By observing sales in the regular period, the seller gets a signal about the

quality of its inventory and updates its quality distribution function according to the unsold

inventory that we have at the beginning of the clearance period. Refining the characterization

of the quality distribution may lead the seller to manipulate its price, since we know by the

modelling assumption that early customers buy the higher quality products in the store and the

unsold items are the ones with lower quality.

We should note that not all customer arrivals end up with a purchase. If the quality of a

product is sufficient with respect to its sales price, then an arriving demand can be called as

a ”sale”. Here, ”sufficient quality” purports a quality which makes the utility of an arriving

customer non-negative, and it will be using frequently also in the subsequent sections. To model

consumer choice in this problem, we use similar approach presented in [1], but in our model

customers are homogenous. A consumer’s sensitivity to quality is assumed to be parameterized

by a scalar θ, and θ is a constant. Then, when a customer buys a product with quality q, at
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price p, his utility is represented by the following function:

U(p, q) = θq − p

Considering the product quality, our goal is to set a price that makes consumers’ utility functions

non-negative. In other words, setting a price for which a customer arrival is converted into a

purchase is our primary purpose. Hence, the below inequality must be satisfied for a sale to

take place:

U(p, q) = θq − p ≥ 0 (4.1)

q ≥ p

θ
(4.2)

To summarize, the modelling assumptions of this problem are motivated by the above dis-

cussion and are as follows:

1. The problem is formulated in a finite time horizon.

2. Inventories perish once the sales season is over.

3. Demand is modelled as a Poisson process, i.e., the demand distributions are assumed to

be known.

4. In a given period, products may vary in quality, but not in price.

5. Customers place the same valuations on the same quality of product, and prefer purchasing

the highest quality-product first.

6. Seller updates distribution of the product quality at the end of the regular period; hence,

makes the pricing decision only once during the selling season.

7. Seller dynamically adjusts the sales price according the number of the remaining invento-

ries.
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Problem Formulation and Description

We will now formulate a general version of the problem analyzed in subsequent sections. Let

P (S = sr | πr
x) denote the probability of selling sr units of the product in the regular period given

that the seller starts the regular period with x units of inventory and the quality distribution

function πr
x(.) associated to it. Similarly, let P (S = sc | πc

x,sr
) denote the probability of selling

sc units of the product in the clearance period given that the seller continues with an updated

cumulative distribution function of quality, πc
x,sr

, when he has sold sr of x units of the inventory

in the regular period. Given that the process starts with a (subjective) cumulative distribution

function πr
x and x units of inventory, the expected maximum revenue-to-go is denoted by v(πx)

and is explicitly written as follows:

v(πx) =
x∑

sr=0

P (S = sr|πr
x)

[
srpr(x) +

x−sr∑

sC=0

P (S = sc|πc
x,sr

) sc pc(x, sr)

]
(4.3)

Here, the value function v(πx) says that the seller starts the selling season with x inventory.

The products are of random quality and the seller uses a subjective cumulative distribution

function, πx, associated with the quality of the inventory on hand. Moreover, the above value

function calculates the total expected profit. Firstly, the seller considers the probability of selling

sr ∈ {0, 1, . . . , x} units of good if he assumes to have πx as the cdf of product quality of the

inventory on hand and accordingly charge pr(x) as the initial price. In this case, he expects to

earn srpr(x) units of dollar. However, the seller is aware of that in this regular period, with price

pr(x) and cdf πx he may not sell all the inventory in stock. If this is the case, he needs to update

the cdf of product quality according to the number of unsold inventory. In fact, considering the

unsold inventory as low-quality products, the seller needs to use an updated distribution of the

product quality, πc
x,sr

, which is defined in the interval with a reduced upper bound. In order

to sell the unsold items and to maximize the total expected revenue, he reduces the price from

pr(x) to pc(x, sr). By doing so, in the clearance period, he expects to earn sc pc(x, sr) units of

dollar under the probability of selling sc ∈ {0, 1, . . . , x− sr} items.
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Note that while we are describing the construction of the total expected profit above, we

use the probability of selling a number of products given that the cdf of the quality is predicted

by the seller according to the quantity of sales and inventory on hand. It is a fact that a sale

of a product occurs if and only if there is at least one customer demanding that product, and

that a potential demand is converted into a purchase if and only if there is at least one product

in the store with a sufficient quality that generates a non-negative utility when purchasing it.

Hence, the potential sales probabilities are modelled by considering both the number of demand

arrivals to the store and the number of items with sufficient quality, and it is seen that the

number of sales is equal to the minimum of these two quantities. Formally, let Qr and Qc be

the number of items with sufficient quality in the regular and the clearance period, respectively.

Note that the number of products with sufficient quality in the regular period, Qr, is determined

out of x items, but the number of products with sufficient quality in the clearance period, Qc, is

determined out of x− sr items by successively checking the products, which are ordered on the

basis of the quality from the highest to the lowest. Then, the quantity of sales in the regular

period, sr is said to be equal to min(Dr, Qr) where Dr is the number of potential demand

arriving in this period. Similarly, the quantity of sales in the clearance period, sc is said to be

equal to min(Dc, Qc) where Dc is the number of potential demand arriving in this period.

Therefore, the probability of selling sr units in the regular period given that πr
x is assumed

to be the cdf of the product quality, P (S = sr|πr
x), is composed of two independent parts,

∀ sr ∈ {0, 1, . . . , x}.

P (S = sr|πr
x) =





∑x
zr=sr

P (Dr = sr)P (Qr = zr) if min(Dr, Qr) = Dr

P (Dr > sr)P (Qr = sr) otherwise

Hence, the probability of selling sr units of product in the regular period can be expressed as

follows ∀ sr ∈ {0, 1, . . . , x}:

P (S = sr|πr
x) =

x∑
zr=sr

P (Dr = sr)P (Qr = zr) + P (Dr > sr)P (Qr = sr)
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Similarly, the probability of selling sc units of good in the clearance period given that πc
x,sr

is

assumed to be the cdf of the product quality when sr units of x items were sold in the regular

period, P (S = sc|πc
x,sr

), is composed of two independent parts, ∀ sc ∈ {0, 1, . . . , x − sr}, and

depending on the sales in the regular period P (S = sc|πc
x,sr

), can be expressed in two different

ways.

1. If sr = min(Qr, Dr) = Dr

P (S = sc|πc
x,sr

) =





∑x−sr

zc=sc
P (Dc = sc)P (Qc = zc | Qr ≥ sr, Dr = sr) if min(Dc, Qc) = Dc

P (Dc > sc)P (Qc = sc | Qr ≥ sr, Dr = sr) otherwise

2. If sr = min(Qr, Dr) = Qr

P (S = sc|πc
x,sr

) =





∑x−sr

zc=sc
P (Dc = sc)P (Qc = zc | Qr = sr, Dr > sr) if min(Dc, Qc) = Dc

P (Dc > sc)P (Qc = sc | Qr = sr, Dr > sr) otherwise

Hence, the probability of selling sc units of product in the clearance period when the cdf of

product quality is πc
x,sr

can be expressed for each of the above two cases as follows:

∀ sc ∈ {0, 1, . . . , x− sr},

1. If sr = min(Qr, Dr) = Dr

P (S = sc|πc
x,sr

) =
x−sr∑
zc=sc

P (Dc = sc)P (Qc = zc | Qr ≥ sr, Dr = sr)

+ P (Dc > sc)P (Qc = sc | Qr ≥ sr, Dr = sr)

2. If sr = min(Qr, Dr) = Dr

P (S = sc|πc
x,sr

) =
x−sr∑
zc=sc

P (Dc = sc)P (Qc = zc | Qr = sr, Dr > sr)

+ P (Dc > sc)P (Qc = sc | Qr = sr, Dr > sr)
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Period Name Case Purchase Probability
Regular
sr min(Dr, Qr) = Dr

Px
zr=sr

P (Dr = sr)P (Qr = zr)

Clearance

sc min(Dc, Qc) = Dc
Px−sr

sc=0

Px−sr
zc=sc

P (Dc = sc)P (Qc = zc | Qr ≥ sr, Dr = sr)

sc min(Dc, Qc) = Qc
Px−sr

sc=0 P (Dc > sc)P (Qc = sc | Qr ≥ sr, Dr = sr)

Regular
sr min(Dr, Qr) = Qr P (Dr > sr)P (Qr = sr)
Clearance

sc min(Dc, Qc) = Dc
Px−sr

sc=0

Px−sr
zc=sc

P (Dc = sc)P (Qc = zc | Qr = sr, Dr > sr)

sc min(Dc, Qc) = Qc
Px−sr

sc=0 P (Dc > sc)P (Qc = sc | Qr = sr, Dr > sr)

Table 4.1: Summary of the purchase probabilities’ construction

Table 4.1 sums up the construction of the purchase probabilities explained above. The table can

be easily used to find the formulations of the purchase probabilities for all cases. For example,

the upper part of the table is designed to find the probability of selling sr items in the regular

period when Dr = min(Dr, Qr), and if this is the case, the third line of the upper part of

the table gives the probability of selling sc items in the clearance period when the number of

products with sufficient quality is less than the number of arriving demand in this period, i.e.

when Qc = min(Dc, Qc).

At this point one can easily follow that the total expected revenue that has been expressed in
the following form so far,

v(πx) =
xX

sr=0

P (S = sr|πr
x)

2
4srpr(x) +

x−srX

sc=0

P (S = sc|πc
x,sr

) sc pc(x, sr)

3
5 (4.4)

=
xX

sr=0

P (S = sr|πr
x)srpr(x) +

xX

sr=0

2
4P (S = sr|πr

x)

x−srX

sc=0

P (S = sc|πc
x,sr

) sc pc(x, sr)

3
5 (4.5)

can be written considering the two different forms of sales in the regular and the clearance period
individually as follows:
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=
xX

sr=0

 
xX

zr=sr

P (Dr = sr)P (Qr = zr)

!
srpr(x) (4.6)

+
xX

sr=0

2
4
 

xX
zr=sr

P (Dr = sr)P (Qr = zr)

!
x−srX

sc=0

x−srX
zc=sc

P (Dc = sc)P (Qc = zc | Qr = zr, Dr = sr)scpc(x, sr)

3
5 (4.7)

+
xX

sr=0

2
4
 

xX
zr=sr

P (Dr = sr)P (Qr = zr)

!
x−srX

sc=0

P (Dc > sc)P (Qc = sc | Qr = zr, Dr = sr)scpc(x, sr)

3
5 (4.8)

+
xX

sr=0

P (Dr > sr)P (Qr = sr)srpr(x) (4.9)

+
xX

sr=0

P (Dr > sr)P (Qr = sr)

2
4

x−srX

sc=0

x−srX
zc=sc

P (Dc = sc)P (Qc = zc | Qr = sr, Dr > sr)scpc(x, sr)

3
5 (4.10)

+
xX

sr=0

P (Dr > sr)P (Qr = sr)

2
4

x−srX

sc=0

P (Dc > sc)P (Qc = sc | Qr = sr, Dr > sr)scpc(x, sr)

3
5 (4.11)

In the above formulation of the value function, we have just used the forementioned purchase

probabilities for the regular and the clearance period which are constructed one by one comparing

the volume of the arriving demand with the quantity of the remaining products with sufficient

quality. In order to make the above formulation of the value function more comprehensible, note

that the first three terms are for the case in which the number of sales in the regular period

is equal to the number of arriving demand. In other words, the sum of the first three terms

gives us the total expected profit of the seller if the seller has min(Dr, Qr) = Dr. On the other

hand, the last three terms contributes to the total expected profit if the seller has a number of

demands in the regular period that is bigger than the number of products with sufficient quality

as to the price pr, i.e., if min(Dr, Qr) = Qr. Note that in both cases, we sum the terms in (4.6)

and (4.9) over sr where sr ∈ {0, 1, . . . , x} to calculate the total expected profit of the seller in the

regular period. As mentioned in the construction of the purchase probabilities for the clearance

period above, a similar comparison of the demand volume and the quantity of products with

sufficient quality depending on pc is used to calculate the total expected profit of the seller in

the clearance period. According to the minimum of the number of demand and the number

qualified products, the terms (4.7), (4.8), (4.10), (4.11) contributes the seller’s expected profit in

that period. The terms (4.7) and (4.10) are written for the case where min(Dc, Qc) = Dc, and
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(4.8), (4.11) are for the case min(Dc, Qc) = Qc. Since the seller updates the product quality

distribution considering the number of sales in the regular period and determine a clearance

price according to the new characterization of that distribution, for each sr ∈ {0, 1, . . . , x}, the

seller’s optimal clearance price is going to be different. This is why we use pc(x, sr) notation for

the clearance price in the formulation of the value function and why we sum all the terms in

(4.7), (4.8), (4.10), (4.11) over sr to find the expected profit of the seller in the clearance period.

At this point, in order to be able to calculate the value of the total expected profit of the

seller, we need to find the following probabilities:

• P (Dr = sr), P (Dc = sc)

The probability that the number of arriving demand is equal to the number of sales in the regular

and the clearance period, respectively.

• P (Dr > sr), P (Dc > sc)

The probability that the number arriving demand is bigger than the number of sales in the corre-

sponding period.

• P (Qr = zr), ∀zr ∈ {sr, sr + 1, . . . , x}
The probability that the number of the products with sufficient quality as to the price set in the

regular period is equal to zr where zr ∈ {sr, sr + 1, . . . , x}

• P (Qc = zc | Qr ≥ sr, Dr = sr), ∀zc ∈ {sc, sc + 1, . . . , x}
The probability that the number of products with sufficient quality is equal to zc in the clearance

period given that while there were at least sr units of good with sufficient quality in the regular

period, only sr units of demand had arrived. (i.e. The probability that the number of products with

sufficient quality is equal to zc in the clearance period given that there were unsold products with

sufficient quality in the regular period carried to the clearance period.)

• P (Qc = zc | Qr = sr, Dr > sr), ∀zc ∈ {sc, sc + 1, . . . , x}
The probability that the number of products with sufficient quality is equal to zc in the clearance

period given that while there were only sr units of good with sufficient quality in the regular period,

the number of arriving demand was bigger than sr. (i.e. The probability that the number of

products with sufficient quality is equal to zc in the clearance period given that all of the products

with sufficient quality in the regular period were sold in that period.)
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The first two of the above probabilities are easy to obtain since the demands, Dr and Dc, are

Poisson random variables with means λr = ρλ and λc = (1− ρ)λ, respectively.

To calculate the remaining probabilities above, we will make use of the order statistics.

Consider the probability that the number of the products with sufficient quality as a function

of the price set in the regular period is equal to zr, then we need to follow the below steps to

calculate the value of this probability.

P (Qr = zr) = P

(
qx−zr+1 ≥ pr(x)

θ
, qx−zr

<
pr(x)

θ

)
∀zr ∈ {sr, sr + 1, . . . , x}

=


1−

P
(
qx−zr+1 ≤ pr(x)

θ , qx−zr
< pr(x)

θ

)

P
(
qx−zr

< pr(x)
θ

)

 P

(
qx−zr

<
pr(x)

θ

)

= P

(
qx−zr <

pr(x)
θ

)
− P

(
qx−zr+1 ≤ pr(x)

θ
, qx−zr <

pr(x)
θ

)

=
x∑

k=x−zr


 x

k


 πk

x

(
pr(x)

θ

)[
1− πx

(
pr(x)

θ

)]x−k

−
x∑

k=x−zr+1


x

k


πk

x

(
pr(x)

θ

)[
1− πx

(
pr(x)

θ

)]x−k

=


 x

zr


 πx−zr

x

(
pr(x)

θ

) [
1− πx

(
pr(x)

θ

)]zr

Now, as far as the probability of being with zc units of good with sufficient quality in the clear-
ance period given that sr ≤ Qr = zr units of good were sold in the regular period and Qr − sr

items were carried to the clearance period is concerned, we could formulate and then calculate
it case by case.

In its general form this probability can be written as,

P (Qc = zc | Qr = zr, S = sr) =
P
�
qx−sr−zc+1 ≥ pc(x,sr)

θ
, qx−sr−zc <

pc(x,sr)
θ

, qx−zr+1 ≥ pr(x)
θ

, qx−zr <
pr(x)

θ

�

P
�
qx−zr+1 ≥ pr(x)

θ
, qx−zr <

pr(x)
θ

� (4.12)

where S = min(Qr, Dr); in other words, it is the number of sales in the regular period.
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First of all, note that we need to know the value of the above probability for all sr such

that sr ∈ {0, 1, . . . , x} , for all Qr = zr where zr ∈ {sr, sr + 1, . . . , x}, and for all zc where

zc ∈ {0, 1, . . . , x− sr}, since we would like to know the probability of being with any number of

products with sufficient quality in the clearance period for all possible sales quantities observed

in the regular period and for any number of inventory which had to be carried to the clearance

period although they might have been sold in the regular period unless there was a scarce de-

mand. Therefore, we need to reformulate it for all cases which creates special conditions. We

present the formulations of these special cases with their implications in the following:

For all sr ∈ {0, 1, . . . , x} , for all Qr = zr ∈ {sr, sr+1, . . . , x}, and for all zc ∈ {0, 1, . . . , x−sr},
Case1: If zc < zr − sr

P (Qc = zc | Qr = zr, S = sr) = 0

Consider that the seller sold sr items in the regular period just because of scarcity of demand.

It is to say that although the number of products with sufficient quality was more than sr, there

was only sr units of demand arriving to the store in the regular period. Then to the next pe-

riod, it is left x− sr units of unsold items such that the first zr − sr of them were already with

sufficient qualities in the previous period. So, in any case, those first zr − sr products provide

a non-negative utility when the seller reduces the price from pr(x) to pc(x, sr) in the clearance

period in order to be able to sell the remaining items. Thus, it is impossible to have less than

zr − sr units of good satisfying the utility constraint in the clearance period, and it is reasonable

that the above probability is equal to zero if zc < zr − sr. Hence, from now on we only consider

the cases where zc ≥ zr − sr.

Case 2: If sr = 0, zr = 0, and zc = 0

P (Qc = zc | Qr = zr, S = sr) =
P

(
qx < pc(x,sr)

θ

)

P
(
qx < pr(x)

θ

) =
[πr

x(qx)]x

[πc
x,sr

(qx)]x
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Consider that the seller could not sell anything in the regular period since there was no item with

sufficient quality, then the probability that there isn’t any good with sufficient quality despite the

reduced price set in the clearance period is as given above, since no item satisfies the utility

constraint of the customers during the selling season.

Case 3: If sr = 0, zr = 0, and zc 6= 0 and also zc 6= x

P (Qc = zc | Qr = zr, S = sr) =
P

(
qx−zc+1 ≥ pc(x,sr)

θ , qx−zc < pc(x,sr)
θ , qx < pr(x)

θ

)

P
(
qx < pr(x)

θ

)

=
P

(
qx−zc

< pc(x,sr)
θ , qx < pr(x)

θ

)
− P

(
qx−zc+1 < pc(x,sr)

θ , qx < pr(x)
θ

)

P
(
qx < pr(x)

θ

)

Consider that the seller could not sell anything in the regular period since there was no item with

sufficient quality, then the probability of being with any number of product which is not equal to

zero or to x is given above, since in the above formulation there are zc ∈ {1, 2, . . . , x− 1} units

of good satisfying the customers’ utility at price pc(x, sr) in the clearance period, but none of the

starting inventories satisfy the utility constraint of the customers in the regular period at price

pr(x).

Case 4: If sr = 0, zr = 0, and zc = x

P (Qc = zc | Qr = zr, S = sr) =
P

(
q1 ≥ pc(x,sr)

θ , qx < pr(x)
θ

)

P
(
qx < pr(x)

θ

)

=
P

(
qx < pr(x)

θ

)
− P

(
q1 < pc(x,sr)

θ , qx < pr(x)
θ

)

P
(
qx < pr(x)

θ

)

Consider that the seller could not sell anything in the regular period since there was no item

with sufficient quality, then the probability that all of the products satisfy a non-negative utility
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to the customers at the reduced price pc(x, sr) in the clearance period is as given above, since

in the above formulation even the lowest-quality product satisfies the utility constraint at price

pc(x, sr), while none of the starting inventories are qualified enough to be sold at price pr(x).

Case 5: If sr 6= 0, zr 6= 0, and zc = zr − sr

P (Qc = zc | Qr = zr, S = sr) =
P

(
qx−zr+1 ≥ pr(x)

θ , qx−sr−zc < pc(x,sr)
θ

)

P
(
qx−zr+1 ≥ pr(x)

θ , qx−zr
< pr(x)

θ

)

=
P

(
qx−sr−zc

< pc(x,sr)
θ

)
− P

(
qx−zr+1 < pr(x)

θ , qx−sr−zc
< pc(x,sr)

θ

)

P
(
qx−zr

< pr(x)
θ

)
− P

(
qx−zr+1 < pr(x)

θ

)

Consider that the seller had zr items with sufficient quality in the regular period, and he sold

sr ≤ zr units of them. Moreover, consider that the seller sets a price pc(x, sr) in the clearance

period provided that only the unsold items carried from the regular period, but nothing else are

with sufficient quality at that price. Then, the above formula gives the probability of the situation

in which the seller has just zc = zr − sr units of good with sufficient quality in the clearance

period.

Case 6: If sr 6= 0, zr 6= 0, and zc > zr − sr, but zc 6= x− sr

P (Qc = zc | Qr = zr, S = sr) =
P

(
qx−sr−zc+1 ≥ pc(x,sr)

θ , qx−sr−zc < pc(x,sr)
θ , qx−zr+1 ≥ pr(x)

θ , qx−zr < pr(x)
θ

)

P
(
qx−zr+1 ≥ pr(x)

θ , qx−zr < pr(x)
θ

)
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=
P

(
qx−sr−zc < pc(x,sr)

θ , qx−zr < pr(x)
θ

)
− P

(
qx−sr−zc+1 < pc(x,sr)

θ , qx−zr < pr(x)
θ

)

P
(
qx−zr

< pr(x)
θ

)
− P

(
qx−zr+1 < pr(x)

θ

)

+
P

(
qx−sr−zc < pc(x,sr)

θ , qx−zr+1 < pr(x)
θ

)
− P

(
qx−sr−zc+1 < pc(x,sr)

θ , qx−zr+1 < pr(x)
θ

)

P
(
qx−zr

< pr(x)
θ

)
− P

(
qx−zr+1 < pr(x)

θ

)

Consider that the seller had zr units of good with sufficient in the regular period, and he sold

sr ≤ zr units of them. Moreover, consider that reducing the price from pr(x) to pc(x, sr) in the

clearance period is not enough to make all the remaining products satisfy the customers’ utility.

Then the probability of this situation is as given above where the seller has less than x− sr units

of good with sufficient quality in the clearance period.

Case 7: If sr 6= 0, zr 6= 0, and zc > zr − sr, zc = x− sr

P (Qc = zc | Qr = zr, S = sr) =
P

(
q1 ≥ pc(x,sr)

θ , qx−zr+1 ≥ pr(x)
θ , qx−zr < pr(x)

θ

)

P
(
qx−zr+1 ≥ pr(x)

θ , qx−zr < pr(x)
θ

)

=
P

(
qx−zr < pr(x)

θ

)
− P

(
qx−zr+1 < pr(x)

θ

)

P
(
qx−zr < pr(x)

θ

)
− P

(
qx−zr+1 < pr(x)

θ

)

−
P

(
q1 < pc(x,sr)

θ , qx−zr < pr(x)
θ

)
− P

(
q1 < pc(x,sr)

θ , qx−zr+1 < pr(x)
θ

)

P
(
qx−zr < pr(x)

θ

)
− P

(
qx−zr+1 < pr(x)

θ

)

Consider that the seller had zr units of good with sufficient quality in the regular period, and he

sold sr ≤ zr units of them. Moreover, consider that reducing the price from pr(x) to pc(x, sr) in

the clearance period makes all the remaining products satisfy the customers’ utility. Then the

probability of this situation is as given above where the seller has exactly x − sr units of good

with sufficient quality in the clearance period.
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As can be seen we have seven special cases where we restructure the general form of the

formula that gives us the probability of being with zc units of good with sufficient quality in the

clearance period when the price pc(x, sr) is set by the seller provided that sr units of zr items

with sufficient quality in the regular period were purchased by the customers at price pr(x).

Here, note that we did not give a formula that explicitly depends on the volume of the potential

demand, Dr arriving in the regular period for this probability. However, it should be noted that

the number of sales in the regular period appears as S = sr in the formulas and we know that

S = sr is the minimum of Qr and Dr. Hence, as long as you know the number of sales in the

regular period and the current case: sr = min(Qr, Dr) = Dr, or sr = min(Qr, Dr) = Qr, the

above formulas can be taken and applied for all cases regardless of the volume of the potential

demand. In the next subsection, we will study the scenario with unlimited demand, so we will

remove the demand restriction from the model.

4.2.2 No Demand Restriction Scenario

In this subsection, we investigate the problem with information update scenario in its simpler

form with no demand restriction. Consider that we have an unlimited potential demand among

which some them are converted into a purchase and the seller updates the distribution of the

product quality once during the selling season. If the seller is left with unsold items at the

end of the regular period or even at the end of the clearance period, this is not because of the

deficiency of demand for these products in the corresponding period, but because the quality of

them does not satisfy the utility constraint of the arriving demands at the predetermined price.

As mentioned before, a customer’s decides to purchase a product with quality qi at price p if

qi ≥ p
θ , otherwise he does not purchase it. Thus, in this subsection, the only criteria for selling

a product with quality qi is the following:
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The seller sells the product with quality qi if

qi ≥ pr(x)
θ in the regular period

qi ≥ pc(x,sr)
θ in the clearance period

Therefore, the probability of selling sr units of good in the regular period given that πr
x is

assumed to be the cdf of the product quality,P (S = sr|πr
x), ∀ sr ∈ {0, 1, . . . , x}, is the following

P (S = sr|πr
x) = P (Qr = sr)

Similarly, the probability of selling sc units of good in the clearance period given that πc
x,sr

is

assumed to be the cdf of the product quality, P (S = sc|πc
x,sr

), ∀ sc ∈ {0, 1, . . . , x − sr}, is the

following

P (S = sc|πc
x,sr

) = P (Qc = sc | Qr = sr)

Hence, the total expected revenue to go till the end of the selling season can be written as

follows:

v(πx) =
x∑

sr=0

P (S = sr|πr
x)

[
srpr(x) +

x−sr∑
sc=0

P (S = sc|πc
x,sr

) sc pc(x, sr)

]

=
x∑

sr=0

P (Qr = sr)srpr(x) +
x∑

sr=0

[
P (Qr = sr)

x−sr∑
sc=0

P (Qc = sc | Qr = sr) sc pc(x, sr)

]

where P (Qr = sr) is as given in the previous subsection. Note that putting sc instead of zc in

the general form of P (Qc = zc | Qr = zr, S = sr) given in 4.12 generates

P (Qc = sc | Qr = sr) =
P

(
qx−sr−sc+1 ≥ pc(x,sr)

θ , qx−sr−sc < pc(x,sr)
θ , qx−sr+1 ≥ pr(x)

θ , qx−sr < pr(x)
θ

)

P
(
qx−sr+1 ≥ pr(x)

θ , qx−sr < pr(x)
θ

)

and the closed form of this conditional probability has been shown before in the subsection 4.2.1.

Since, all purchase probabilities can be calculated, the seller can maximize his total expected
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profit easily under no demand restriction scenario by solving the above dynamic optimization

problem.

Remark 10 This problem might be studied under simpler demand assumptions. For instance,

instead of stochastic demand model, we might have used observable demand. Since the number

of demand observed in each period was known, construction of the sales probabilities would be

simpler.

Remark 11 The random choice scenario where customers choose randomly among qualified

items can be studied for the information update scenario. However, construction of the purchase

probabilities will be very difficult. The reason of this difficulty will be explained later in section

4.3.

In the subsequent sections, in order to gain additional insight about the problem that we

have presented so far, we will provide 3 special cases of the model under some simplifying

assumptions.

4.3 Special Case 1: No Information Update Scenario

In this subsection, our problem is formulated in a finite time horizon, in a single selling season

where the seller does not update the distribution of the product quality throughout the entire

season. Since the seller does not update the distribution of the product quality as consumers’

valuations on products become to reveal, there is no clearance period in this scenario. The seller

begins the selling season with a subjective distribution function for the product quality and then

never comes with an idea of updating the distribution or price by monitoring the consumers’

purchase behaviors. Hence, there is a single selling period in which the seller sets a single price.

All the problem assumptions, except the assumption of updating the distribution of the

product quality, so the sales price at a point in time during the selling season, are valid in

this scenario. This section is studied in order to determine the optimal price and optimal

expected revenue of the seller in no information scenario, thus to generate the marginal benefit
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of information updating to the seller. This comparison is made numerically in section 4.6. This

section also studies the no information update scenario under two different demand models as

in the information update scenario. The no information update scenario is presented with the

demand models by order of unlimited demand model and random demand model.

4.3.1 No Demand Restriction

In this subsection, we employ the problem with no information update in its simplest form:

with no demand restriction. Assume that the seller does not update the distribution of the

product quality during the selling season and we have unlimited potential demand. As far as

the choice between buying and not buying is concerned, a customer’s decision could be explained

as follows. A customer purchases a product with quality q(i) at price p among the set of products

with random quality if q(i) ≥ p
θ , otherwise he does not purchase it. This is true for all customers

since remember that they all have the same ranking over the same product. Then, it is clear

that the product with quality q(i) remains unsold if q(i) ≤ p
θ .

The expected revenue to go derived from this scenario can be read as follows:

v(πx) =
x∑

s=0

P (S = s|πx) s p(x) (4.13)

The only unknown in the above expression of the value function is the purchase probabilities

of the customers given that the quality of x units inventory on hand is distributed with a cdf

πx. Before applying ”Order Statistics”, which is suggested in the previous section, to calculate

the purchase probabilities, for this scenario, we consider an alternative way to find those proba-

bilities. The approach we use to find the purchase probabilities is explained in the following and

is named as ”Binomial Model”, since the purchase probabilities correspond to classical binomial

probabilities in this scenario after making particular assumptions.
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4.3.2 Applying Binomial Model

Consider that customers do not see the highest quality product in the set of products at

once when they arrive the store. They select products randomly from the set and question the

utility function for those products. Since we are looking for the number of products that provide

non-negative utility to a customer when being sold at price p (i.e. the number of success in a

sequence of x independent quality levels), the purchase probabilities in the model, P (S = s|πx),

can be thought as a classical ”binomial probability” in this scenario.

Now, if q(i) denotes the quality of randomly selected ith item, the probability for which a

potential demand is converted into a purchase corresponds to P (q(i) > p
θ ). Since the trials are

independent and identical, and also P (q(i) > p
θ ) is constant from trial to trial, the purchase

probability is in fact a classical success probability in a binomial experiment.

Being motivated by the above discussion, the total expected revenue can be written as follows:

v(πx) = p P (q(1) >
p

θ
) + p P (q(2) >

p

θ
) + . . . + p P (q(x0) >

p

θ
) (4.14)

Moreover, the seller’s optimal price can be determined in closed form regardless of the initial

level of inventory. The following proposition verifies that there is a closed form of the optimal

price for this scenario which is independent of x.

Proposition 12 The optimal price for no information update scenario with no demand restric-

tion is independent of the starting level of inventory.

Proof: As the product quality is identically and independently distributed with πx, the above

expression 4.14 turns out to be

v(πx) = x p (1− πx(
p

θ
)) (4.15)

Since the goal of the seller is to maximize the total expected revenue, he needs an optimal price

p∗ for his inventory with random quality waiting to be sold till the end of the season. We can

find a closed form for an optimal price p∗ by just taking the derivative of equation 4.15 with
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respect to p and then setting it equal to zero.

∂(x p− x p πx(p
θ ))

∂p
= 0

x− x πx(
p

θ
)− x

p

θ
π
′
x(

p

θ
) = 0

Here, we assume that πx is continuous and differentiable. Also note that the second derivative

is negative, so it satisfies the concavity condition. Hence, we can write a closed form for the

optimal price p∗ as follows:

p∗ =
(1− πx(p

θ )) θ

π′x(p
θ )

(4.16)

Proposition 12 refers to the following corollary about the optimal price set for the entire selling

season where the seller does not update the distribution of the product quality and observes an

unlimited demand.

Corollary 13 The optimal price depends only on the distribution of product quality πx if the

seller does not update the distribution of the product quality and observes unlimited demand

during the selling season.

4.3.3 Applying Order Statistics

Definitely, we get the same solution for the optimal price if the purchase probabilities are

calculated by applying order statistics. To see this, consider that the products are sorted ac-

cording to their quality levels as qx > qx−1 > . . . > q1 before an arrival of a customer to the

store. Therefore, when a customer arrives to the store, he will see the best quality product with

quality index qx and since the higher quality is always preferable if a single price is charged to

all of the products, the customer will purchase it definitely. Selling the products successively in

quality index order will continue until the quality of a product does not provide a non-negative

utility to a customer at price p.
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Since, under an infinite-demand assumption, selling i products corresponds to having exactly

i items that make customers’ utility function non-negative at price p, the probability of selling

i items can be written as follows:

P (S = i|πx) = P (qx−i+1 ≥ p

θ
, qx−i <

p

θ
) (4.17)

where

P (qx−i+1 ≥ p

θ
, qx−i <

p

θ
) =

(
1− P (qx−i+1 ≤ p

θ , qx−i < p
θ )

P (qx−i < p
θ )

)
P (qx−i <

p

θ
)

= P (qx−i <
p

θ
)− P (qx−i+1 ≤ p

θ
, qx−i <

p

θ
)

=
x∑

k=x−i


x

k


πk

x

(p

θ

) [
1− πx

(p

θ

)]x−k

−
x∑

k=x−i+1


x

k


πk

x

(p

θ

) [
1− πx

(p

θ

)]x−k

=


x

i


πx−i

x

(p

θ

) [
1− πx

(p

θ

)]i

Note that the last term in the above formulation is the binomial probability. In other words, it

is the probability for having exactly (x− i) ratings from the rating set {qx, qx−1, . . . , q1} which

are less than or equal to p
θ . Hence, when the total expected revenue to go is expressed by using

the above formulation for the purchase probabilities, we have the following:

v(πx) =
x∑

i=0


x

i


πx−i

x

(p

θ

) [
1− πx

(p

θ

)]i
i p (4.18)

This is the expected value and it is equal to x(1−πx(p
θ ))p. As expected this is the same as what

we have stated for the value function in equation 4.15. Hence, the optimal price that maximizes
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the total expected profit found by using the order statistics approach will be the same as the

optimal price given in equation 4.16.

4.3.4 Random Demand

As in section 4.3.1, the seller does not update the distribution of the product quality dur-

ing the selling season. However, here we replaced the unrestricted-demand assumption by the

assumption of random demand and restructure the model in the context of random demand

scenario.

The main difference from the previous scenario occurs in the origination of a ”sale”. In the

previous scenario with unrestricted demand, since there is always an unlimited demand to the

products, the necessary and sufficient condition for a sale is just making available the product

which is qualified enough to make a customer’s utility non-negative at the predetermined price

p. Hence, the number of sales in that scenario is said to be equal to the number of items with

a sufficient product quality as to its price. Since it is guaranteed that all the products with

sufficient quality are going to be sold, an arriving demand can be considered as being indifferent

to the product quality as long as it satisfies a non-negative utility. Hence, the product quality

order does not play a role in determining the purchase probabilities and this is why we could

treat the previous scenario as a classical binomial experiment.

However, in this section, a ” sale” is observed if there is at least one customer arrival to the

store. In other words, beside the product quality, volume of the potential demand is now added

to the problem as a determining factor of a ” sale”. If we continue with the classical binomial

model, the probability of selling i ≤ x units of good is going to be underestimated because of

the discussion below. But, first of all, note that in this scenario we observe a random demand

D where D ≤ x; otherwise, we had observed an unlimited demand as in the previous section.

Furthermore, the reader should detect that D ≤ x units of potential demand is converted into a

purchase of i ≤ x units of good either if there are at least i units of inventory in the store with

a product quality that satisfies a non-negative utility to a customer at the predetermined price

p and D = i, or if there are precisely i units of inventory with sufficient quality as to its price in
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the store and D > i.

Recall that in the previous section the probability for which a potential demand is converted

into a purchase corresponds to P (q(i) > p
θ ) where q(i) denotes the quality of randomly selected

item i. Here, similarly, if we had continued with the classical binomial model, because of the

demand restriction warmly added to the problem, the purchase probability of the item i with

quality q(i) could be expressed by the product of the probability of that item satisfies a non-

negative utility at price p, P (q(i) > p
θ ), and the probability of a demand arrival precisely for that

product. The reader can find the details on ”Binomial Model” for this scenario in the Appendix

B.

Since the expression of the value function for this scenario derived by using binomial prob-

abilities (see Appendix B) is not so tractable, it is preferable to express the value function by

applying the order statistics to find the purchase probabilities. Remember that the inventory is

ordered according to the product quality from the highest to the lowest as qx > qx−1 > . . . >

qi > qi−1 > . . . > q1. Now for a random demand D, the probability of selling i ≤ x items dur-

ing the selling season where the seller does not update the distribution of the product quality

corresponds to the sum of the two following probabilities:

1.

P (D = i)


P (q1 ≥ p

θ
) +

x−i+1∑

j=2

P (qj ≥ p

θ
, qj−1 <

p

θ
)




While observing i ≤ x units of demand, the Probability of making available at least the best

i products that satisfy customers’ utility.

2.

P (D > i)
(
P (qx−i+1 ≥ p

θ
, qx−i <

p

θ
)
)
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While observing more than i units of demand, the probability of making available precisely

the best i products that satisfy customers’ utility.

In order to make things more comprehensible, consider the probability of making available

precisely the best i products that satisfy customers’ utility, P (qx−i+1 ≥ p
θ , qx−i < p

θ ). Since the

products are ordered according to their quality from the highest to the lowest, we can ensure that

the ith product quality provides a non-negative utility by qx−i+1 ≥ p
θ , and that the (i + 1)th

product does not satisfy a customer’s utility by qx−i < p
θ . Hence, the probability of making

available precisely the best i products that satisfy customers’ utility can be represented by the

joint probability, P (qx−i+1 ≥ p
θ , qx−i < p

θ ).

Now, for a random demand scenario with no information update, we can formulate the

purchasing probability during the selling season ∀i ∈ {0, 1, . . . , x} as follows:

P (S = i | πx) = P (D = i)


P (q1 ≥ p

θ
) +

x−i+1∑

j=2

P (qj ≥ p

θ
, qj−1 <

p

θ
)




+ P (D > i)
(
P (qx−i+1 ≥ p

θ
, qx−i <

p

θ
)
)
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To calculate the value of the above joint probabilities, we need follow the steps below.

P
(
qx−i+1 ≥ p

θ
, qx−i <

p

θ

)
= P

(
qx−i+1 ≥ p

θ
| qx−i <

p

θ

)
P

(
qx−i <

p

θ

)

=
(

1− P (qx−i+1 ≤ p
θ , qx−i < p

θ )
P (qx−i < p

θ )

)
P (qx−i <

p

θ
)

= P (qx−i <
p

θ
)− P (qx−i+1 ≤ p

θ
, qx−i <

p

θ
)

=
x∑

k=x−i


x

k


 πk

x

(p

θ

) [
1− πx

(p

θ

)]x−k

−
x∑

k=x−i+1


 x

k


πk

x

(p

θ

) [
1− πx

(p

θ

)]x−k

=


 x

i


πx−i

x

(p

θ

) [
1− πx

(p

θ

)]i

Now, the seller knows how to calculate the purchase probabilities, so the total expected profit

if he does not update the distribution of the product quality during the selling season.

Remark 14 Note that the binomial model is not applicable to construct the purchase probabil-

ities if the seller updates the distribution of the product quality. In such a case, the seller is

considered as if he had two periods to go till the end of the selling season. So, it is important

which products of what quality are left to be sold in the second period. Therefore, we have to

turn back to our main assumption that the products are ordered according to their quality from

the highest to the lowest and customers arriving to the store prefer first the product with the

highest quality. Hence, the order statistics approach has to be applied to construct the purchase

probabilities in the information update scenario.
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4.4 Special Case 2: Single Item Scenario

In order to illustrate the problems of pricing perishable products with random quality de-

scribed in the information update and the no information update scenarios, this section studies

the simplest case where the seller has a single product to sell. Without loss of generality, we

assume that this product is with a quality q such that q is uniformly distributed between 0 and

1, and investigate the following analytical results.

Proposition 15 For the no information update scenario with unlimited demand, the optimal

price that gives the maximum value of the total expected profit is θ/2.

Proof: Assume that the seller does not update the distribution of the product quality during

the selling season and we have an unlimited potential demand among which some of them are

converted into a purchase. Recall that the probability of selling a product is equal to the probability

of making a customer’s utility non-negative, i.e. P (θq− p ≥ 0) = Pr(q ≥ p
θ ). So, the probability

of selling the product is 1− p
θ . Since, the seller wants to set a price maximizes his profit, he needs

to find an optimal price, p∗ that maximizes the total expected profit which is equal to (1 − p
θ )p.

Concavity of the total expected profit in p verifies that the optimal price that gives the maximum

value of the total expected profit is θ/2.

Proposition 16 For the information update scenario with unlimited demand, the optimal reg-

ular price is 2θ
3 , and the optimal clearance price is pr

2 .

Proof: Assume that the seller updates the distribution of the product quality once during

the selling season and we have an unlimited potential demand among of which some of them are

converted into a purchase. Note that in this case, as the seller gets the signal from the customers

about their valuations on the products, he knows more about the quality of the products on hand

and so decreases the sales price at one point point in time during the selling season. Therefore,

in this case we have a regular period with a regular price pr and a clearance period with a

markdown price pc. In the regular period, if the seller sets a price pr then he sells the product

with probability (1 − pr

θ ). The discounting decision means the seller knows that the product

quality is not distributed between 0 and 1 anymore, but takes its value from the interval [0, pr

θ ].
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Therefore, after updating the characteristics of distribution of the product quality, the probability

of selling an item in the clearance period corresponds to (1− pc

pr
). Hence, the expected profit of the

clearance period that needs be maximized is equal to (1− pc

pr
)pc, and simply taking the derivative

with respect to pc gives us the optimal clearance price as p∗c = pr

2 . Note that the overall expected

profit for the selling season can be written as v(π1) = (1− pr

θ )pr + pr

θ (1− pc

pr
)pc. After substituting

p∗c = pr

2 instead of pc in TP and taking its derivative with respect to pr gives us the optimal

regular price that the seller charges to his product at the beginning of the selling season, and it

is p∗r = 2θ
3 .

Now, we can compare the expected total profit of the seller in the no information update

scenario with the expected total profit that he earns in the information update scenario when

he observes unlimited demand in both cases. Thus, we can see the ratio of the performance of

the static pricing to the dynamic pricing. The total expected profit which is to be maximized

in the no information update scenario is (1 − pr

θ )pr, and the optimal regular price p∗r = θ
2

gives its maximum value. Hence, the seller’s optimal profit is θ
4 . On the other hand, the total

expected profit of the season in which the seller updates the distribution of the product quality

is TP = (1− pr

θ )pr + pr

θ (1− pc

pr
)pc, and by the proposition 15, the optimal prices of the regular

period and the clearance period that maximizes TP are p∗r = 2θ
3 and p∗c = θ

3 , respectively. Hence,

the optimal total profit for the information update scenario turns out to be θ
3 . The following

corollary sums up the implication derived from this comparison.

Corollary 17 Under unlimited demand model, there is the following ratio between the total

expected profits of the no information update (static pricing)and the information update (dynamic

pricing) scenarios.

Expected profit of static pricing
Expected profit of dynamic pricing

=
3
4

(4.19)

This ratio is used a benchmark statistics in our numerical results in section 4.6.

Proposition 18 For the no information scenario with random demand, the optimal price that
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maximizes the total expected profit is, θ
2 which is the same price as the optimal price for that

scenario with unlimited demand.

Proof: As in the proof of proposition 15, assume that the seller does not update the dis-

tribution of the product quality, but differently, random demand is observed during the selling

season. In this case, a sale occurs if there is at least one customer arriving to the store and the

product quality makes the customer utility non-negative at the predetermined price. Thus, the

purchase probability can be written as P (D > 0)Pr(q ≥ p
θ ). Here, note that since the demand is

independent of price, the optimal price is θ
2 as in proposition 15.

Proposition 19 For the information update scenario with random demand the total expected

revenue which is to be maximized is

v(π1) = p (1− pr

θ
) pr +

(
(1− p)(1− pr

θ
) +

pr

θ

)(
p

pr−pc

θ

θ − pr
+ p(1− p)

)
pc

Proof: Assume that the seller updates once the distribution of the product quality during the

selling season as he observes the sales thus far. Random demand assumption is still valid, so a

sale occurs if and only if there is both a demand for the product and quality of that product that

satisfies the customer’s utility. In its general form, the total expected profit to be maximized can

be expressed as follows:

v(π1) = P (S = 1|πr
1) pr + P (S = 0|πr

1) P (S = 1|πc
1,0) pc

Note that since there is a single product, a single customer arrival to the store is enough for

the demand side of the problem. Considering the potential single demand that may be observed

during the selling season as a Bernoulli random variable and the product quality as a standard

uniform random variable, the purchase probabilities in the above expression are written explicitly
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as follows:

P (S = 0|πr
1) = P (Dr = 0)P (q ≥ pr

θ
) + P (Dr ≥ 0)P (q <

pr

θ
)

= (1− p)(1− pr

θ
) +

pr

θ

P (S = 1|πr
1) = P (Dr > 0)P (q ≥ pr

θ
)

= p (1− pr

θ
)

P (S = 1|πc
1,0) = P (Dr = 0)P (Dc > 0)

P (q ≥ pc

θ , q ≥ pr

θ )
P (q ≥ pr

θ )

+ P (Dr = 0)P (Dc > 0)
P (q ≥ pc

θ , q < pr

θ )
P (q < pr

θ )

+ P (Dr > 0)P (Dc > 0)
P (q ≥ pc

θ , q < pr

θ )
P (q < pr

θ )

= P (Dr ≥ 0)P (Dc > 0)
P (pc

θ < q ≤ pr

θ )
P (q < pr

θ )
+ P (Dr = 0)P (Dc > 0)

= p
pr−pc

θ

θ − pr
+ p(1− p)

Here, p is used to represent the success probability in the Bernoulli distribution of demand and

note that both pr and pc should be less or equal to the quality parameter of the customer, θ, in

order to be able to sell the product.

Now, the above value function can be written again but now using the purchase probabilities

in their explicit form as follows:

v(π1) = p (1− pr

θ
) pr +

(
(1− p)(1− pr

θ
) +

pr

θ

)(
p

pr−pc

θ

θ − pr
+ p(1− p)

)
pc

.
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4.5 Special Case 3: Constant Quality Scenario

This section investigates the special case where the qualities of inventories are known in

advance and all product qualities are assumed to be the same. Since the inventories do not vary

in quality, and all of the customers have the same willingness to pay till the end of the selling

season, there would be no need to update the price once it was set at the beginning of the season

according to the product quality.

As the quality ratings of the products are constant, an arriving demand is converted into a

sale if the customer’s utility when purchasing a product with quality q at price p is non-negative.

In this set up, since all products have the same quality ratings, the seller and even a customer

is indifferent to which products to be purchased. Therefore, instead of a purchase probability of

an item, P (q > p
θ ), we can use a binary variable η such that

η =





1 if q > p
θ

0 otherwise

Now, if the volume of incoming demand D exceeds the available inventory x and at price p if

the quality of a product is sufficient to make a customer’s utility non-negative, the seller expects

to earn P (D > x)xp where η is taken as 1. Besides, while the product quality q satisfies a

customer’s utility function at price p, if the number of arriving demands D is less than or equal

to the number of available inventory x, this time the seller expects to earn
∑x

j=0 P (D = j)jp.

Hence, expected total profit when there are x units of inventory available with product quality

q can be written as follows:

v(x) =





P (D > x)xp +
∑x

j=0 P (D = j)jp if η = 1

0 otherwise
(4.20)

Proposition 20 The optimal price is independent of the initial inventory level if the seller has

inventories with constant quality which is known in advance.
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Proof: Assume that the seller has inventories with constant quality which is known in ad-

vance, then it is clear that as long as the product quality q satisfies the utility of customers, he

will certainly sell as much as the arriving demand. Therefore, the seller charges the maximum

price p = qθ which gives a non-negative utility; and, it is basically the optimal price that can be

charged for all levels of inventory.

Proposition 20 leads to the following corollary.

Corollary 21 Keeping the customers’ sensitivity to quality constant, and multiplying the quality

of the inventory by a positive scalar a will lead the seller set a new optimal price p∗new = ap∗

4.6 Numerical Results

In this section, we will discuss the information update scenario and its comparison with

no information update scenario further with the help of numerical examples. The objective of

the illustrations is to offer some insight into how the optimal prices and the optimal profit of

the models with and without information update could respond to the changes of the following

system parameters:

• x: starting inventory level

• x− s: remaining inventory level in the clearance period

• ρ: coefficient that determines the starting time of the clearance period

• θ: customers’ sensitivity to quality

• h: holding cost

The presented models were programmed in Matlab Version 7.0. Several numerical exper-

iments were constructed to run the program with different sets of input to verify the models

and the numerical results. The optimal procedure was validated by a separate simulation study.
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The most challenging part of this work was the calculations of the sales probabilities for each

decision period, since the probabilities were dependent on two unknowns: volume of the arriving

demand and the quality of inventories. We used the purchase probability formulations given in

the previous sections.

We constructed 5 problems which only differ in the product quality distributions. We start

with a uniform distribution between 0 and 10, and then continue with uniform distributions

supported by the intervals with different lower bounds. In other words, each time, we contract

the intervals of the distributions. The distributions used in the example problems are abbreviated

U(0,10), U(2,10), U(4,10), U(6,10), U(8,10).

In the subsection 4.6.1, we compare the performance of the information update scenario

with no information update scenario for the base case problem. Then in the subsection 4.6.2, we

analyze the effect of initial inventory level x on the net revenue and the optimal prices for both

no information update scenario and the information update scenario, respectively. Next, the

subsection 4.6.3 follows to see the effect of remaining inventory level on the optimal clearance

price. In addition, the comparison of the optimal clearance price with the optimal regular price

for the same amount of inventory is discussed in this subsection. The effect of the coefficient ρ

that determines the starting time of the clearance period is studied in the following subsection

4.6.5, and the starting time of the clearance period to maximize the expected profit is found. The

subsection 4.6.5 is added to validate our modelling assumption about θ which is the customers’

sensitivity to the product quality. Finally, in the subsection 4.6.6, we extend the base case

problem by including a factor of holding cost, and the subsection 4.6.7 is aiming to give a brief

summary of our numerical results.

4.6.1 Performance comparison between the information update and the no information update

scenarios

Assume that there is no holding cost for the seller, and the value of θ, the parameter denoting

the customers’ sensitivity to product quality, is 1. Demand process is considered as a Poisson

process with rate 8, and it is also assumed that there is a unit purchase cost of 2. Then it
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Figure 4.1: Initial inventory level vs. net revenue in the information update scenario
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may be meaningful to choose the starting inventory level as 10 units, since as seen in figure 4.1,

the inventory level that maximizes the net revenue of the seller for all five problems is around

that value. Thus, the base case to be considered consists of 10 units of starting inventories

with random product qualities distributed uniformly between 0 and 10. Table 4.2 shows the the

Table 4.2: Optimal expected profit and optimal price

optimal price and the optimal total expected revenue of the seller for each of five problems in

the no information update scenario with 10 units of initial inventory. Recall that the customers’

valuations to the product quality is parameterized by a constant θ, and θ is taken as 1 in each of

the problem. In order to verify our calculations given in table 4.2, consider Proposition 12 which

says that the optimal price for the no information update scenario with an unlimited demand

is p∗ = θ
2 when the product quality ranges uniformly in the interval [0,1]. Now, consider the

case where the distribution of the quality is a Uniform distribution between 0 and 10. In this

case, by Proposition 12, the optimal price will be p∗ = 10θ
2 = 5 It is seen from table 4.2, the

optimal price for the no information update scenario with random demand is determined as 5.29

for U(0, 10) which is bigger than the optimal price of the scenario with an unlimited demand.

This is an intuitive result in the presence of demand restriction. In addition, table 4.2 shows

that as the products tend to be more qualified, i.e. as the distribution of the product quality

is defined in smaller intervals, the seller gains more total expected profit by charging a higher

optimal price for the entire selling season.

For each problem, we generate the optimal total expected revenue, and determine the optimal
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Table 4.3: Optimal expected profit and optimal regular price

regular price for the information update scenario as in table 4.3. Similar to the no information

update scenario, if the qualities of the products close up, then it is sure that the seller will

set a higher regular price for his products in the beginning of the selling season. For instance,

if the qualities of the products begin to take values from the continuous interval [8,10] rather

than the interval [0,10], then the seller will set a higher price for his products in the regular

period. Contracting the distribution interval towards 10 means that the seller is assuming that

his products are at least at the quality level 8. The optimal profit corresponds to the optimal

regular prices is also increasing as the quality of products increases.

Another interesting result is the following. The seller earns the total expected profit of 35.95

by applying the static pricing strategy when he orders products within the quality interval of

[4, 10] from the manufacturer. However, if he had used the dynamic pricing strategy, he would

have earned even more total expected revenue, 36.14, by ordering products within the quality

interval of [2.75, 10].

The above discussion implies the following. The seller may accept to pay more per unit to

the manufacturer, and may have her make the quality control of the products and supply him

the ones with quality ratings at least 4. In such a case, the seller will not monitor the sales

during the selling season to learn about the quality of his products, and will not update the

distribution of the product quality. Thus, he will apply the static pricing. On the other hand,

the seller may not want to have the manufacturer make the quality control. He may purchase
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the products at lower quality ratings at a lower price, and may start with a subjective quality

distribution U [2.75, 10]. He prefers to learn about the quality of the products by observing the

customers’ response to the price which implies that the quality controllers are the customers. In

this case, although the seller pays less to the manufacturer for the products, he earns the same

profit by applying the dynamic pricing strategy.

Table 4.4: Marginal benefit of information updating

Considering the difference between the performance of the information update scenario and

the performance of the no information update scenario, table 4.4 can be seen as a brief summary

of the comparison of table 4.2 and table 4.3 which definitely says that the marginal benefit of

updating the quality distribution of the remaining products at some point in time during the

selling season, and charging a clearance price for the remaining part of the season is not negligible.

When the quality of the products ranges in a relatively wide intervals; for instance, when the

quality of the products takes its value from the interval [0,10], then using the information update

scenario instead of the no information update scenario provides almost 20% increase in the total

expected revenue of the seller. This value of the benefit to the seller decreases as the interval of

the product quality contracts. This is an intuitive result, since if the gap between the quality

of products gets smaller and smaller and approaches to 0, then the problem converges to the

constant quality scenario presented in section 4.5, and recall that in the that case it optimal to

use static pricing strategy for the entire selling season.

To compare the performance of the static pricing with the dynamic pricing further, we use the

benchmark statistics given in Corollary 17. Recall that under unlimited demand model, if the

seller starts with a single product with quality ranking q U(0, 1), there is the ratio 3/4 between
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Table 4.5: Performance of the static pricing compared to the dynamic pricing

the total expected profits of the no information update (static pricing)and the information

update (dynamic pricing) scenarios. As seen in the table 4.5, when we contract the quality

interval for the single item case, this ratio tends to approach to 1. This means that when the

product quality of the inventories close up, the performance of the static pricing approaches to

the performance of the dynamic pricing. In addition, in the table 4.5, the benchmark statistics

is seen as the lower bound of the performance ratio. Then, we investigate this performance

ratio for the base case and also for the other 4 problems with different quality distributions.

As seen in the table 4.5, when the initial inventory level is increased to 10, the gap between

the performance of the static and the dynamic pricing gets smaller for a given interval of the

product quality. This is an intuitive result. As we have discussed before, for a given interval of

the product quality when there are more inventory on hand, the quality effect weakens. However,

one of the main reasons is the quality effect that stimulates the seller to adjust the sales price

dynamically. Therefore, when the quality effect weakens, the performance of the static pricing

approaches to the performance of the dynamic pricing.

4.6.2 Effects of initial inventory level

• on the net revenue:

In order to better understand the impact of initial inventory level on the net revenue, so
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as to determine the optimal inventory level to start with, we first consider the net profit

of the seller as the inventory level increases. For each level of inventory, five problems are

constructed such that all model parameters in these problems, as well as their demand

distributions are identical except the cumulative distribution of their product quality.

It is seen in figure 4.1, for each problem that the net revenue of the seller is concave in

the starting inventory level, x which means that the value of an additional inventory is

decreasing with the initial inventory level x. Concavity with respect to the starting level

of inventory is critical to determine the optimal level of initial inventory.

• on the optimal prices:

1. No information update scenario:

We first start with the simpler setting to determine an optimal price for the available

inventory with random quality at the beginning of the selling season and not to

allow the seller update the distribution of product quality, and so change this price

throughout the season. Hence, there is a single price for the inventories for the entire

season.

Recall that, this problem is called ”No information update scenario” in the section

4.3. Consider the probability of a sale. In previous sections, it is demonstrated that

a potential demand to a product is converted into a purchase if and only if q ≥ p
θ , so

the probability of a sale can be written as P (q ≥ p
θ ) = 1− P (q < p

θ ) which expresses

that the seller sells a product with quality q if and only if this sale is going make a

customer’s utility non-negative.

Now, consider each problem where the product quality of an available inventory uni-

formly takes a value from the continuous intervals [0, 10], [2, 10], [4, 10], [6, 10], [8, 10].

Then, the corresponding probability of selling a product with the worst quality is

going to be (1 − (p − a)/(10 − a)) for each problem when the seller sets price p for
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Figure 4.2: Initial inventory level vs. optimal price
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the products, and where a is the lower bound of the support of the distribution of

the corresponding problem such that a ∈ {0, 2, 4, 6, 8}. Moreover, multiplying these

probabilities with price p and the number of units sold, s, will give the expected rev-

enue to go till the end of the selling season. As the seller is a profit maximizer, and as

the optimal price that gives the highest revenue is p∗ = 5 in each problem when the

seller is assumed to have only the products with the worst quality, it is reasonable

that the seller will never set a price p which is lower than p∗ = 5.

Note that p∗ = 5 is the optimal price to be set when the seller has the worst products

in his stock. For the quality distributions, U(0, 10), U(2, 10), U(4, 10) of the first

three problem, in fact the utility constraint implies that if the seller wants to sell all

of his products, i.e. if he wants to set a price that provides a non-negative utility

to the customers even when the worst products with quality 0, 2, 4, respectively, are

purchased, then he should set a price which is less than or equal to 0, 2, 4 in the

corresponding problems. However, the aim of the seller is to maximize the expected

revenue, but not to sell all the inventories at a lower price than he should charge.

Hence, as seen in figure 4.2, the optimal price to be set is at least 5, that is, the

optimal price for the case in which the seller is assumed to have the products with

worst quality.

For both of the last two problems, where the product qualities take values from the

continuous intervals, U(6, 10) and U(8, 10), respectively, the optimal price, p∗, that

should be set when the seller has products with the lowest quality in the quality

interval is still 5. On the other hand, if the aim of the seller were to provide a

non-negative utility even from a purchase of the worst product, the utility constraint

would lead him to set a price which less than or equal to 6 and 8, respectively. These

two constraints do not contradict with each other, and they together imply that a

profit-maximizer seller should set a price which is at least 6, and 8, respectively, in

the corresponding problems. Figure 4.2 verifies the discussion that we have made.

As seen, the optimal prices for the problems with the distribution of product quality
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U(6, 10) and U(8, 10) are found at least 6 and 8, respectively.

In addition, we see in figure 4.2 that as the inventory level increases, the quality effect

becomes to be more dominant, since the likelihood of having more qualified products

increases on the average, so the likelihood of having more items which are in the

purchasing region increases. Therefore, it is reasonable that the seller sets a higher

price when there are more inventories on hand at the beginning of the selling season.

In addition, it is clear that as the product quality tends to raise, for the same amount

of starting inventory, the seller should set a higher price.

The last point that should be mentioned in this case is, as seen again in figure 4.2, as

the seller contracts the quality interval, variations in the product quality will decrease.

Therefore, the effect of having more initial inventory will decrease as the qualities of

products close up. This argument is validated in figure 4.2, when the product qualities

take values from the continuous interval [8,10], the seller starts to increase the optimal

price if the initial inventory level is increased to 9; however, he begins to set a higher

optimal price in the base if the initial inventory level is increased to 2. We see that

there is a significant effect of one additional product on the optimal price increase if

the product qualities of the inventories vary in a bigger interval.

2. Information update scenario:

The results of numerical computations given in the figure below represents optimal

regular prices, set in the beginning of the selling season, for different levels of starting

inventory level from 1 to 10 for each starting cumulative distribution of the product

quality: U(0, 10), U(2, 10), U(4, 10), U(6, 10), U(8, 10). Here, we see two effects acting

together for determining the optimal regular price as to the level of initial inventory

on hand, demand effect and the quality effect. If an imaginary vertical line is drawn

starting from the point corresponding to the inventory level 6 on the x-axis, on the

left hand side of this imaginary line, the demand effect dominates the quality effect,

and on the right hand side of this line, the leading effect is the quality effect.

As the interval for the product quality is contracted, i.e. as the qualities of the
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products close up, the quality effect weakens, and the problem turns into a traditional

pricing problem where only the demand effect determines the optimal price. Demand

effect has been studied in traditional pricing models with no quality component.

Gallego and van Ryzin [14] and Zhao and Zheng [36] show that the optimal price

decreases with increasing inventory and when there is less time.

In this study, we verify that this intuition is not always correct: the optimal price

may be non-decreasing in the starting level of inventory when the products are with

random quality by the dominance of the quality effect over the demand effect.
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Figure 4.3: Initial inventory level vs. optimal regular price
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In order to better understand the quality effect in figure 4.3, consider two scenar-

ios, scenario 1 and scenario 2. All model parameters of these two scenarios are

identical except the initial inventory level in the beginning of the regular period.

While, in the first scenario, the seller starts with one unit of inventory, in the sec-

ond scenario, he has 10 units of products in his stock. Consider selling one unit

of product in both scenarios, i.e. consider the case where the seller will be observ-

ing only one unit of demand for his products, so will be selling at most one unit

of inventory depending on whether the utility constraint of an arriving customer is

satisfied or not. Under these circumstances, in scenario 1 for all quality distribu-

tions, U(0, 10), U(2, 10), U(4, 10), U(6, 10), U(8, 10), the probability of the event that

the quality of the product on hand is lower than pr

θ . In other words, the likelihood of

the event that the product with the highest quality in scenario 2 will be sold in the

regular period is higher than the likelihood of the event that the product in scenario

1 will be sold in that period, since it is more likely that maximum product quality in

the second scenario is bigger than the product quality of the single item in the first

scenario. Therefore, the practice of raising the regular price as the starting inventory

level increases is reasonable.

Moreover, in figure 4.3, it is seen that at the same inventory level, when the product

quality of the inventories is higher, the seller will set a higher optimal regular price

for this fixed amount of inventory. Hence, we can conclude that as the quality of the

products increases, the optimal regular price set for these products also increases.

4.6.3 Effects of remaining inventory level on the optimal clearance period

In this subsection, we investigate the behavior of the clearance price as the remaining inven-

tory increases, i.e. as the unsold inventory in the regular period increases.

As seen in figure 4.4, the clearance price is non-decreasing in the number of remaining

inventory. In order to understand the intuition behind the monotonicity of clearance price in

the number of remaining inventory, consider the simplest case where the seller has 1 unit of
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Figure 4.4: Remaining inventory level vs. optimal clearance price
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inventory left when the product quality of the starting inventories is assumed to be distributed

uniformly in [0, 10]. By our modelling assumptions, note that this is the product with lowest

quality in the seller’s hand since the customers prefer first the products with higher qualities.

The price to be set in the clearance period for this remaining product is 3.5 as can be seen in

figure 4.4. However, if the seller is left with 2 units of inventories in the clearance period, it

means that the seller has the product with the lowest quality together with the second worst

quality of product. Compared to the first case, now he is left with a relatively better product

in quality, and aiming to sell just one unit of item in the clearance period will lead him to set a

higher price. This is an illustrative example of why the optimal clearance price is higher than

the one set in the first case.

In addition, starting with more qualified initial inventories leads the seller set a higher clear-

ance price for a fixed amount of remaining inventory. In other words, consider that the seller

starts with 10 units of inventories in two parallel systems which have identical parameters, but

different quality distributions. Let the quality distribution of the system 1 and the system 2

be U(0, 10) and U(8, 10), respectively. Then, as expected the quality of the products will be

higher on average in the system 2. The seller might be left with the same number of remaining

inventories in the clearance period, and if this is the case, he will set a higher clearance price in

the system 2, since the quality of the remaining inventory on average is expected to be higher

in the second system.

Now, drawing the attention to the last point of the graph of the base case with U(0, 10) that

corresponds to the remaining inventory level 10 in figure 4.4, it is seen that there is a drastic

drop in the optimal price compared to the optimal regular price set for the same amount of

inventory in figure 4.3. This is a good point to explain the reason of the significant difference in

the optimal prices set to the same amount of inventory in the regular and the clearance period.

In fact, having 10 units of remaining inventories in the clearance period implies that the seller

could not sell anything in the regular period. Recall that there may be two reasons for not

being able to sell the inventories: 1) absence of sufficient number of demand or 2) shortage of

sufficient number of qualified products. Assuming the seller carries all of the starting inventories
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to the clearance period because of the absence of demand in the regular period means that the

seller could not receive any signal about customers’ preferences in the regular period. In such

a case, diminishing time will force the seller ignore the effect of inventory level on price, and

the seller will determine a clearance price as if he had carried the entire inventory to the next

period, so the prices should go down in the clearance period. Another reason of this drastic drop

may be the misperception of the product quality by the seller in the beginning of the season

which means that the seller might overestimate the product quality in the beginning and set an

unrealistically high price for the regular period.

4.6.4 Effects of the coefficient ρ

Recall that the mean of the demand process in the base case is 8. This means that the seller

expects to see 8 units of demand on the average during the entire selling season. Moreover,

we know that the seller monitors the customers to be able to update fairly the distribution

of the product quality, and so the price for the remaining inventories at some point in time

during the selling season. Since the seller is a profit-maximizer, it is acceptable that he will be

willing to know the best time for the updates in the quality distribution of the products and the

optimal price in order to maximize his expected profit. The idea of dividing the total demand

of the entire season into two parts, and finding the best time for it corresponds to finding the

starting time of the clearance period that maximizes the seller’s expected profit. Hence, this

subsection is aiming to find answers to the following critical question: ”When should the seller

start the clearance period in order to optimize the total expected profit? (i.e. when should he

update the distribution of product quality and set a discount (clearance) price to the remaining

inventories?)”

Let ρ be the coefficient that determines the best starting time of the clearance period which

is the best time of dividing the total demand into two parts. So, if the total demand of an

entire season is a Poisson random variable with mean λ, then the demand of the regular and the

clearance periods are also Poisson random variables with means ρλ, and (1− ρ)λ, respectively.

As seen in figure 4.5, regardless of the product quality, the optimal value of ρ is around 0.5.
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This is intuitively reasonable, since the decision of when to update the quality distribution, so

as to set a discount price depends on a core tradeoff. Naturally, the longer the regular period,

the more time there is to monitor the customers preferences and thus the greater the value of

the collected information, but the shorter the clearance period where the seller will apply this

information. In other words, if the seller waits for a long time to gather more information about

the customers’ valuations to the products to ensure that he will be charging the best price for

the remaining inventory, he foregoes the opportunity of applying this information due to the

lack of time in the clearance period. On the other hand, if he starts the clearance period before,

he will be updating the product quality distribution inaccurately and setting an unfair price to

the remaining inventories in the clearance period due to the lack of information.

4.6.5 Effects of the parameter θ

In this subsection, we validate what we have claimed about the necessary and sufficient

condition for converting a demand arrival into a purchase in the previous sections. Recall that

if a price set for a product with quality q is less than or equal to the customers’ valuation to

that quality, then the sale of that product occurs. Measurement of the customers’ valuations to

products with different quality is not an easy work even though it is known that all customers

are homogenous, i.e. their valuations are identical to a product quality, and it is denoted by a

constant θ. So, as mentioned before in the problem description, the seller is assumed to measure

customers’ sensitivity to quality by multiplying the quality scale by this constant parameter θ

and then compare it to the price, p, set for the products. For the customers, if the value of the

product quality, in currency unit, is bigger than the price set, then it means that the customers’

utility will be non-negative from a purchase of this product. Thus, a sale will occur.

Based on the above discussion, it is seen that figure 4.6 is consistent, since it shows that the

optimal regular price linearly increases if the customers’ valuations to quality is increased. In

fact, a change in θ has an effect on the optimal regular price as similar to multiplication by a

constant scalar. In addition, we see the same effect of θ on the optimal regular price in each of

the example problems regardless of the differentiation in the quality distributions.
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Figure 4.6: θ vs. optimal regular price

4.6.6 Effects of holding cost

In order to provide an additional insight about the problem with information update scenario,

we include a factor of holding cost to the model. We use the base case problem to see the effect of

having a holding cost per unit. Recall that the seller has a purchase cost of 2 per item regardless

of the quality rating of the product that is purchased. The cost of holding the stock is based on

the annual interest rate. If the annual interest rate, r, is taken as 10%, the annual holding cost

of per item will be 0.2. Since our problem is defined for seasonal products, it is meaningful to

assume that the selling season is shorter than one year. For instance, let the selling season take

6 months, so the seasonal holding cost of per item will be 0.1. According to figure 4.5, each of

the periods will take 3 months. Therefore, we assume that the holding cost of per item in the

regular period, hr, and the holding cost of per item in the clearance period, hc are the same and

are equal to 0.05 in the base case.
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We investigate the effect of the holding cost h = hr = hc on the optimal regular price and

on the optimal total expected revenue in the base case problem. Then, we show the effect of

the initial inventory level on the optimal expected revenues in the presence of different values of

holding costs.

optimal regular price in base case problem
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Figure 4.7: Optimal regular prices for different holding costs in base case

Considering the base case problem, the figure 4.7 shows that the optimal regular price takes

its highest value when the seller does not have a holding cost. As the holding cost per item

increases, the seller will set a lower regular price for his products. This is an intuitive result,

since when it is more costly to hold the inventory on hand, the seller will be more willing to sell

his products. Thus, he will set a lower price for the inventory as the holding cost increases.

Figure 4.8 shows the effect of the holding cost on the optimal expected profit for the base

case. Recall that when the seller has no holding cost, he earns 28.4 from the base case scenario.

However, based on the discussion in the beginning of this subsection, if the holding cost is set as

0.05 for each period, he will earn 27.52. So, there will be a 3% decrease in the seller’s expected

profit when a holding cost of 0.05 per item for each period is added to the problem. In fact, this

is an expected result, considering that the seller holds in his stock x = 10 units of inventory in
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Figure 4.8: Holding cost vs. optimal expected profit

the regular period, and x− s units of inventory in the clearance period where s ∈ {0, 1, . . . , x}.
Figure 4.8 also verifies another expected result, that is, the optimal expected profit of the seller

decreases as the holding cost per item increases.

Finally, we investigate the effect of the initial inventory level on the optimal expected profit

of the seller for different values of holding costs in the base case scenario. Figure 4.9 verifies

that the concavity of the optimal profit with respect to the initial inventory level is preserved

in the presence of the holding cost.

Hence, based on the three discussion above, we see that adding a holding cost factor to the

problem may not create a big difference from what we have shown for this problem before.

4.6.7 Summary

In this subsection, we give a summary of the work presented and the main results of the

study. We illustrate our numerical results by analyzing the optimal policy for five examples which

differ in the product quality distribution. We compare the information update strategy with

no information update strategy under the same settings to prove that updating the cumulative



Chapter 4: Pricing of Perishable Products with Random Quality 91

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

initial inventory level

op
tim

al
 e

xp
ec

te
d 

pr
of

it

x=10/theta=1/I/h initial inventory level vs. optimal expected profit

 

 
h=0
h=0.05
h=0.10
h=0.15
h=0.2

Figure 4.9: Optimal expected profit vs. inventory level in the presence of holding cost



Chapter 4: Pricing of Perishable Products with Random Quality 92

distribution function of product quality is valuable. We examine the effects of the system

parameters on the optimal policy. The parameters that we consider are the initial inventory level,

remaining inventory level, the starting time of the clearance period, the customers’ valuations

to the product quality and the holding cost. It is ensured that when the initial product quality

is assumed to be higher, the seller sets a higher initial price to maximize his revenue, and gains

more profit. In addition, it is shown that the maximum expected revenue is non-decreasing

and concave in the initial inventory. We verify that when the initial inventory level is high,

the seller will post a higher price, since the chance of having qualified goods will increase if he

starts with more inventories. The results also show that when the quality of the products are

taken very close to each other, the changes in the optimal price returns to its traditional form,

i.e. a decrease in the inventory level is observed. Moreover, the optimal price for the clearance

period is non-decreasing in the remaining inventory, and the best time to start the clearance

period is found as midpoint of the selling season. Customers’ valuations to quality are analyzed

and it is shown that for more quality sensitive customers, the seller will set a higher regular

price. Finally, we consider for the base case problem, the effect of an additional cost, namely

the holding cost, on the optimal policy.

4.7 Conclusion

In this chapter, we aim to determine the optimal pricing policy when the seller has perishable

products which are at random quality. To our knowledge, this was the first attempt to solve

the pricing problem of perishable products in the presence of an uncertain quality component.

The main idea was to find the best strategy given uncertainty on the product quality when the

goal of the seller is to determine a pricing policy for the finite selling season that maximizes the

total expected revenue. We formulated the problem as a dynamic optimization problem. The

difficulty of solving the problem under this setting was essentially the construction of the sales

probabilities. Part of the task in formulating the model was to design these probabilities in such

a way that numerical calculations will be tractable.

We first presented the model with the information update scenario where the distribution
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of the product quality was updated according to the number of unsold inventory at some point

in time during the selling season. Then, the models with the no information update scenario,

with the single-product scenario and with the constant quality scenario were presented. All of

the modelling scenarios were examined under both a random demand and an unlimited demand

settings. We determined the optimal pricing strategies for these scenarios.

Finally, we presented our numerical results aiming to illustrate the behavior of the model

and to assess the impact of varying problem parameters on the optimal expected revenue and

the optimal prices. We compared the information update strategy with no information update

strategy under the same settings to prove that updating the cumulative distribution function

of product quality is valuable. The results have shown that the information update scenario

performs significantly better than no information update scenario.
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Chapter 5

CONCLUSION

In the scope of this thesis, we considered two different dynamic inventory allocation problems

with stochastic demand. In the first problem, the seller applies a capacity allocation rule that

controls which and how many of the randomly arriving requests should be accepted. On the other

hand, the second problem uses dynamic pricing policy for the products with random quality and

determines how to adjust the price to enhance the expected total revenue during a finite selling

season by updating the distribution of the product quality of the remaining inventory for the

rest of the selling season.

In the first part, we aimed to study a well-known revenue management problem first intro-

duced in [19]. Since our objective was to understand the behavior of the optimal policy when the

system parameters change, we used event-based dynamic programming as an approach to prove

the structural properties of the model, by first showing that the certain event operators preserve

monotonicity, concavity, and supermodularity properties. In fact, basic structural properties of

the optimal policy of our model were established in the earlier studies, but little is known about

the effects of the system parameters on the optimal policy. In this thesis, the effects of varying

system parameters were examined for this model, guidelines for predicting the response of the

optimal policy to changes in random system parameters were given.

In the second part of this thesis, we aimed to determine the optimal pricing policy when

the seller has perishable products which have random qualities. To our knowledge, this was

the first attempt to solve the pricing problem of perishable products with random quality. The

main idea was to find the best pricing strategy for the finite selling season that maximizes the

total expected revenue given an uncertainty on the product quality. We presented our numerical

results aiming to illustrate the behavior of the model and to assess the impact of varying problem
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parameters on the optimal expected revenue and the optimal prices. We compared the dynamic

pricing strategy with the static pricing strategy under the same settings. The results verified

that the dynamic pricing strategy performs significantly better the static pricing strategy.
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Appendix A

REVIEW OF ORDER STATISTICS

A.1 Distribution of a Single Order Statistics

Order statistics study the properties and applications of ordered random variables. We refer

the reader to [11] for a comprehensive survey of order statistics and its applications.

Let X1, X2, . . . , Xn be random variables arranged in order of magnitude as follows:

X1 ≤ X2 ≤ . . . ≤ Xn

Hence,

X1 = min{X1, X2, . . . , Xn}

X2 = min{{X1, X2, . . . , Xn} − {X1}}

Xn = max{X1, X2, . . . , Xn}

The ordered values of independently and identically distributed sample are known as the order

statistics, and Xi is called the ith order statistics for all i ∈ {1, 2, . . . , n}. Together with rank

statistics, order statistics are among the most fundamental tools in non-parametric statistics

and inference.

In this thesis, X1, X2, . . . , Xn are n independent ordered variates, each with a cumulative

distribution function F (x). Let Fr(x), r = 1, . . . , n denote the cdf of the rth order statistics Xr.

Then the cdf of the largest order statistics Xn is given by.

Fn(x) = Pr(Xn ≤ x) = Pr(all Xi ≤ x) = [F (x)]n
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Likewise we have

F1(x) = Pr(X1 ≤ x) = 1− Pr(X1 > x) = 1− Pr(all Xi > x) = 1− [1− F (x)]n

These are important special cases of the general result for Fr(x):

Fr(x) = Pr(Xr ≤ x)

= 1− Pr(Xr > x)

= Pr(at least r of the Xi are less than or equal to x)

=
n∑

i=r


n

i


Fi(x)[1− F (x)]n−i

Note that the term in the summation is the binomial probability that exactly i of X1, X2, . . . , Xn

are less than or equal to x.

A.2 Joint Distribution of Two Order Statistics

The joint cumulative function of Xr and Xs where 1 ≤ r < s ≤ n is denoted by Fr,s(x, y).

For x < y, we can write

Fr,s(x, y) = Pr(at least r Xi ≤ x, at least s Xi ≤ y)

=
n∑

j=s

j∑

i=r

Pr(exactly i Xi ≤ x, exactly j Xi ≤ y)

=
n∑

j=s

j∑

i=r

n!
i!(j − i)!(n− j)!

Fi(x)[F (y)− F (x)]j−i[1− F (y)]n−j

Also for x ≥ y, the inequality Xs ≤ y implies Xr ≤ x, thus

Fr,s(x, y) = Fs(y)
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Appendix B

BINOMIAL MODEL FOR NO INFORMATION UPDATE WITH

RANDOM DEMAND

Let Q be the number of items with sufficient product quality as to the price p and let X = 1

be the event that among D arriving customers, one customer precisely demands the product

with quality q(i). Then the distribution we derived for the event X is called the hypergeometric

distribution. We can define observing a demand for the product with quality q(i) for some

i ∈ {1, 2, . . . x} as success and the rest coming for the other products as failure. Since we have

x products that can be sold at price p, (N = x), with 1 successes in the population (M = 1 a

demand for the product i with quality q(i)) and D customers arriving to the store (n = D), the

probability of observing the event X = 1 is the following:

P (X = 1) =

0
@M

1

1
A
0
@N −M

n− k

1
A

0
@N

n

1
A

=

0
@ 1

1

1
A
0
@ x− 1

D − 1

1
A

0
@ x

D

1
A

=
D

x
(B.1)

So, the probability of observing a demand for an item which belongs to the set of sufficiently

qualified products would be independent of the price charged at the beginning of the season and

more significantly, the quality of that product. If the seller observed a deterministic demand D,

where Q ≤ D ≤ x, then, D could be considered as an unrestricted demand, since the demand

constraint did not prevent a sale of a product with a sufficient quality. In this case, the total

expected revenue could have been written as follows:

v(πx) = p
D

x
P (q(1) >

p

θ
) + p

D

x
P (q(2) >

p

θ
) + . . . + p

D

x
P (q(x) >

p

θ
) (B.2)
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As the product quality is identically and independently distributed with πx, the above expression

turns out to be

v(πx) = p D
(
1− πx

(p

θ

))
(B.3)

Moreover, even for a stochastic demand D where again Q ≤ D ≤ x, the total expected revenue

could have been written as follows:

v(πx) = p P (q(1) >
p

θ
)




x∑

d=Q

P (D = d)
d

x




+ p P (q(2) >
p

θ
)




x∑

d=Q

P (D = d)
d

x




...

+ p P (q(x) >
p

θ
)




x∑

d=Q

P (D = d)
d

x




= p x (1− πx(
p

θ
))




x∑

d=Q

P (D = d)
d

x




Now, consider that the seller observes a stochastic demand D where D < Q ≤ x. In such a case,

since the arriving demand is less than the number of products with sufficient quality, Q, and

the seller does not update the price during the season according to the quality of the remaining

inventory on hand, considering that arriving customers randomly select a product; but, they

select it among the items that satisfy a non-negative utility is reasonable to find the purchase

probabilities. In the above formulation, we just need to make the arriving demand come to

the product with sufficient quality so N is now equal to Q; thus, the probability of observing

the event X = 1 is equal to D
Q anymore. The total expected revenue could have been written

explicitly as follows if the demand was deterministic and equal to D.

v(πx) = p
D

Q
P (q(1) >

p

θ
) + p

D

Q
P (q(2) >

p

θ
) + . . . + p

D

Q
P (q(x) >

p

θ
) (B.4)
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As the product quality is identically and independently distributed with πx, the above expression

turns out to be

v(πx) = p x
D

Q

(
1− πx

(p

θ

))
(B.5)

Moreover, even for a stochastic demand D where again D ≤ Q, the total expected revenue could

have been written as follows:

v(πx) = p P (q(1) >
p

θ
)

(
Q∑

d=0

P (D = d)
d

Q

)

+ p P (q(2) >
p

θ
)

(
Q∑

d=0

P (D = d)
d

Q

)

...

+ p P (q(x) >
p

θ
)

(
Q∑

d=0

P (D = d)
d

Q

)

= p x (1− πx(
p

θ
))

(
Q∑

d=0

P (D = d)
d

Q

)
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