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ABSTRACT

In the first part of this thesis, the spin-1/2 quantum Heisenberg spin-glass system is

studied in all spatial dimensions d by renormalization-group theory. Strongly asymmetric

phase diagrams in temperature and antiferromagnetic bond probability p are obtained in

dimensions d ≥ 3. The asymmetry at high temperatures approaching the pure ferromagnetic

and antiferromagnetic systems disappears as d is increased. However, the asymmetry at

low but finite temperatures remains in all dimensions, with the antiferromagnetic phase

receding from the ferromagnetic phase. A finite-temperature second-order phase boundary

directly between the ferromagnetic and antiferromagnetic phases occurs in d ≥ 6, resulting

in a new multicritical point at its meeting with the boundaries to the paramagnetic phase.

In d = 3, 4, 5, a paramagnetic phase reaching zero temperature intervenes asymmetrically

between the ferromagnetic and reentrant antiferromagnetic phases. There is no spin-glass

phase in any dimension [1].

In the second part, we focus on the thermodynamic properties of Apollonian networks

(AN) using renormalization-group theory. Our calculations, for (1) ferromagnetic (F) per-

colation models and both (2) antiferromagnetic (AF) and (3) weakened-AF percolation

models, reveal no finite-temperature phase transition for the entire range of bond proba-

bility p, exhibiting an infinite F phase for (1) and an infinite SG-like phase for (2) and

(3). However, the Ising spin glass studied on an AN small-world network shows a phase

transition as p is increased, between the F and SG-like phases, as a function of disorder, for

all temperatures T . We develop an exact recursion matrix method to calculate nonuniform

local order parameters. The calculation of the average magnetization and the SG order

parameter shows that the phase boundary between F and SG-like phases is first order, gov-

erned by a nonuniform fixed distribution. The exact values of the local order parameters,

as functions of the interactions, show complicated distributions. Analysis of the parameters

reveals correlations of the F phase within the SG-like phase [2].
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ÖZETÇE

Tezin ilk kısmında, spin-1/2 kuantum Heisenberg spin camı modeli her d boyut için,

renormalizasyon grubu kuramı kullanılarak hesaplanmıştır. Sıcaklık ve antiferromanyetik

bağ yoğunluğu p’ye bağlı olarak, d ≥ 3 için güçlü asimetrik faz diyagramlar elde edilmiştir.

d’nin artmasıyla, saf ferromanyetik ve antiferromanyetik sistemlere yaklaşıldıkça, yüksek

sıcaklıklardaki asimetri kaybolmaktadır. Öte yandan düşük ve orta sıcaklıklarda, antiferro-

manyetik fazın ferromanyetik fazdan çekinmesi şeklindeki asimetri her d boyutta mevcuttur.

d ≥ 6’da, ferromanyetik ve antiferromanyetik fazlar arasında, paramanyetik fazla buluştuğu

noktada yeni bir çoklu kritik noktaya yol açan, ikinci dereceden direk bir faz geçişi bulun-

maktadır. d = 3, 4, 5’te sıfır sıcaklığa kadar uzanan paramanyetik faz, ferromanyetik ve

antiferromanyetik fazı asimetrik biçimde ayırmaktadır. Hiçbir boyutta spin camı (SC) fazı

gözlenmemiştir.

İkinci kısımda, renormalizasyon grubu kuramı kullanılarak Apollon küçük dünya ağlarının

termodinamik özellikleri incelenmiştir. (1) Ferromanyetik (F) perkolasyon ve hem (2) anti-

ferromanyetik (AF), hem de (3) zayıflatılmış antiferromanyetik perkolasyon modelleri için

yapılan hesaplarda, hiçbir bağ olasılığı p için sonlu sıcaklıkta faz geçişi gözlenmemiş, (1) için

sonsuz bir F faz, (2) ve (3) için sonsuz bir SC benzeri faz elde edilmiştir. Öte yandan, Apol-

lon küçük dünya ağında Ising spin camı modelinde, bağ yoğunluğu p artırıldıkça, F ve SC

benzeri fazlar arasında tüm sıcaklıklarda faz geçişi bulunmaktadır. Sistemin düzen parame-

trelerinin kesin çözümü için bir tekrarlama matrisi yöntemi geliştirilmiştir. Hesaplanan

ortalama mıknatıslanma ve SC düzen parametreleri, F ve SC benzeri fazlar arasındaki faz

geçişinin birinci dereceden olduğunu ve sabit bir bağ dağılımı tarafından yönetildiğini or-

taya koymuştur. Bağ dağılımının fonksiyonu olan düzen parametrelerinin kesin çözümleri,

komplike dağılımlar göstermektedir. İncelenen düzen parametreleri, SC benzeri fazın içinde

F korelasyonlar olduğuna işaret etmektedir.
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Chapter 1

INTRODUCTION

1.1 Phase Transitions

The equation of state of a thermodynamic system, f( ~K) = 0, where each element of ~K is a

macroscopic parameter of the system (such as pressure P , volume V , temperature T , for a

fluid system), defines a surface in an N -dimensional space, where N is the dimension of ~K.

In thermodynamic equilibrium, each of the regions in the N -dimensional parameter space

which differs from other regions by the behaviour of its thermodynamic potentials, densities

and response functions is called a phase. Changing the macroscopic parameters so that the

system enters a new phase is called a phase transition.

According to Ehrenfest’s and Fisher’s classifications, a first-order phase transition occurs

where the free energy is singular, and the first derivative of the free energy with respect

to one or more of the macroscopic parameters is discontinuous, whereas a discontinuity or

divergence in the second derivative of the free energy is defined as a second-order phase

transition [3].

1.1.1 First-Order Phase Transitions

At temperature T = 0, a transition may occur from the ground state of a phase to the

ground state of another phase. At a finite temperature T , there may be a transition be-

tween states which are perturbations of the ground states of different phases. When this

transition is abrupt, then these two states coexist on the phase transition line which re-

sults in discontinuities in the first derivatives of the free energy. Such phase transitions are

defined as first-order phase transitions.

As an example, the phase diagrams of fluid and magnetic systems are shown in Figures

1.1 and 1.2. The PT projection of the PρT parameter space of a fluid system, where ρ
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is the density, exhibits three phases, namely solid, liquid and gaseous phases separated by

first-order transition lines except for the critical point denoted by C which terminates the

first-order phase boundary between liquid and gas phases. The ρT projection indicates that

there is a jump between the densities of liquid and gaseous states which coexist on the

first-order transition line. Similarly, the HT projection of the HMT parameter space of a

uniaxial magnetic system, where H is external magnetic field and M is magnetization, and

H-field is oriented along the axis of magnetization, includes ferromagnetic and paramagnetic

phases. On the first-order phase boundary the two ferromagnetic phases, where most of the

spins are aligned either in one direction or its opposite, coexist. At temperatures T > Tc

there is a paramagnetic phase, where the magnetization is zero for H = 0.

For the magnetic system, the order parameter, which is chosen such that it is finite in

first-order transitions and vanishes in second-order phase transitions, is given by

M ≡ 〈si〉 =
1

N

∂

∂H
logZ , (1.1)

where si is the spin component along the H-field direction, and N is the number of spins.

In Fig. 1.2 (b), there is the appearance of non-zero magnetization at zero magnetic field

for T < Tc, with the sign of magnetization either positive or negative. This phenomenon,

called spontaneous symmetry breaking, results in a discontinuity in the first derivative of

the free energy with respect to H at H = 0. For a fluid system, the order parameter of the

lquid-gas transition is given by the density difference between the liquid and gas phases,

ρl − ρg, since it is finite for T < Tc and vanishes for T ≥ Tc, as shown in Fig. 1.1 (b).

It is in fact straightforward to show that the HMT parameter space is analogous to the

PρT parameter space, as will be discussed in Section 1.1.4.

1.1.2 Second-Order Phase Transitions

In Figs. 1.1 and 1.2 at T = Tc there is no discontinuity in the order parameters, and this

type of phase transition is called a second-order phase transition. However, if one looks

at the thermodynamic response functions such as the specific heat Cv for the fluid system

or the isothermal susceptibility χT for the magnetic system, one expects a singularity or

a divergence in these functions which arises from the behavior of the order parameters as

a function of T at the critical point. Since the thermodynamic response functions are the
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Figure 1.1: Phase diagrams of a fluid [4]. Note that the phase boundary between solid and
liquid phases does not terminate in a critical point because of the absence of translational
symmetry in the solid phase.

second derivatives of the free energy, a singularity or divergence in these type of functions

was classified by Fisher and Ehrenfest as a second-order phase transition [3].

Consider the behavior o a thermodynamic quantity Q, a first derivative of the free energy,

as the macroscopic parameter Kα is varied, with all other parameters Kβ 6=α fixed. Then,

the thermodynamic response function R is given by

R ∼
[

∂Q

∂Kα

]

Kβ 6=α

. (1.2)

For instance, the specific heat for a magnetic system is of the form

CH =

[

∂U

∂T

]

H
, (1.3)

where U is the internal energy. The specific heat either diverges or stays finite, exhibiting

a cusp. In the latter case, the derivative of the specific heat is discontinuous, and the phase

transition is again classified as second order.

Large fluctuations at all length scales are observed in a system at its critical point, since

the correlation length ξ goes to infinity. That is, in a magnetic system, there are islands of

infinite size1 which have positive, negative or zero magnetizations fluctuating at all length

scales, showing a fractal behavior [5]. Hence, the system is said to be scale invariant, as will

be discussed in more detail in the next section.

1The term infinite size refers to a system in its thermodynamic limit, namely the number of microscopic
components of the system are in the order of ∼ 1023.
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Figure 1.2: Phase diagrams of a magnetic system [4].

1.1.3 Scale Invariance

As mentioned in section 1.1.2, at a critical point, there are fluctuations at all length scales,

leading to scale invariance, or in other words, self similarity. The fractal structure results

from the competition of fluctuating long-range and short-range orders. That is, one will

always see the same structure regardless of the scale at which one looks at the system.

Mathematically, a critical point, where the self-similarity occurs, is a singular point, where

the entire set of thermodynamic functions exhibit power-law singularities. Thus, it is ap-

propriate to assign an exponent λ to each function F (t) [4]:

λ = lim
t→0

log |F (t)|
log |t| , where t ≡ T − Tc

Tc
. (1.4)

That is,

F (t) ∼ |t|λ . (1.5)

Each of the critical exponents for the thermodynamic functions is marked with a Greek

letter. Table 1.1 indicates some critical exponents for fluid and magnetic systems.

1.1.4 Universality

The microscopic details of the system are usually irrelevant near the second-order phase

transitions [5], leading to a principle called universality: systems with different microscopic

components may behave similarly near the critical point.
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Fluid System Magnetic System

Specific Heat CV ∼ |t|−α CH ∼ |t|−α

Order Parameter ρl − ρg ∼ (−t)β M ∼ (−t)β

Isothermal Response Function κT ∼ |t|−γ (Compressibility) χT ∼ |t|−γ (Susceptibility)

Critical Isotherm(t = 0) P − Pc ∼ |ρl − ρg|δ H ∼ |M |δ

Correlation Length ξ ∼ |t|−ν ξ ∼ |t|−ν

Table 1.1: Definitions of some critical exponents for fluid and magnetic systems [4].

The equivalence between fluid and magnetic systems is quite straightforward. A two-

state magnetic system which consists of classical interacting up and down spins is described

by the Ising model. On the other hand, a fluid system can be mapped to a lattice-gas model

as follows [3]: The volume V of the fluid system is divided into fixed volumes v. In every v,

there is either a molecule or v is empty. Then the interactions between the molecules can be

thought of as interactions between the fixed volumes v, and the large kinetic energy of each

molecule at T > Tc results in rapid movement of molecules between the volumes v which

corresponds to rapid flipping of the spins in the magnetic system. At these temperatures the

size of fluid droplets is less than a critical value, insufficient to build long-range order because

of the decreasing magnitude of the inter-molecular interaction. Additionally, at T ≫ Tc,

the fluid system approaches the ideal gas limit, where interactions between molecules can

be neglected. On the other hand, at lower temperatures, the interacting molecules will form

islands, a long-range order as in the magnetic system where the majority of spins prefer

either up or down alignment. At the critical point, there will be a competition between

the large islands (ξ → ∞) of interacting molecules and macroscopic vacancies in volume V ,

resulting in a second-order transition from long-range order to short-range order. Even if

the ρT phase diagram is not symmetric like the MT phase diagram, their equivalence at Tc

is confirmed by the behaviour of the order parameter ρliquid − ρgas of the fluid system and

M of the magnetic system: In 3 dimensions, near the critical point, both order parameters

depend on T as

O ∼ (T − Tc)
β , β ≃ 1

3
, (1.6)

where O denotes the order parameter of the system in question. That is, approaching Tc
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from the low-temperature side, the order parameters exhibit a power-law behavior with

critical exponent β.

Each critical exponent is the same for fluid and magnetic systems. In general, one can

find broad groups of systems which exhibit the same critical exponents, known as universal-

ity classes. Table 1.2 shows some of the universality classes with their corresponding critical

exponents, among them the Ising, Potts2, Heisenberg3, and X − Y 4 classes. According to

Table 1.2, both magnetic and fluid systems belong to 3D Ising universality class.

Universality class α β γ δ ν η

2D Ising 0(log) 1/8 7/4 15 1 1/4

3D Ising 0.1 0.33 1.24 4.8 0.63 0.04

3D X-Y 0.01 0.34 1.3 4.8 0.66 0.04

3D Heisenberg (mean-field) −0.12 0.36 1.39 4.8 0.71 0.04

2D Potts, q=3 1/3 1/9 13/9 14 5/6 4/15

2D Potts, q=4 2/3 1/12 7/6 15 2/3 1/4

Table 1.2: Some of the universality classes [4].

1.2 Renormalization-Group Theory

Assigning critical exponents to the thermodynamic functions and building universality

classes with respect to them gave researchers a better understanding of phase transitions

and critical phenomena. However new questions arose in the 1960’s: what is the underlying

reason why second-order transitions fall into universality classes, how exponent equalities

arise, how critical exponents take the same value as Tc is approached from above or below,

and how the critical exponents depend on the spatial dimension of the system [4]. A theory

which describes exactly what is happening near and at the critical point should also answer

these questions.

2The Potts model with q states is the most general version of the Ising model. The energy of the system
decreases when neighboring sites have equal states.

3In the classical Heisenberg model, a spin can take an arbitrary orientation in a unit sphere, and parallel
alignments at neighboring sites decrease the energy of the system.

4Similar to the classical Heisenberg model, but with two dimensional spin vectors in a unit circle.



Chapter 1: Introduction 7

1.2.1 Scaling Theory of Kadanoff

The first attempt was made by Leo P. Kadanoff in 1966 [6], where he linearized the flows

of the parameters under scale change, which map a thermodynamic system to another,

equivalent thermodynamic system with less degrees of freedom, in the parameter space

near the critical point by writing down recursion relations, for a magnetic system of the

form

t′ = bytt , where t ≡ T − Tc

Tc
, (1.7)

H ′ = byHH , (1.8)

where t is reduced temperature, H is the magnetic field, b is the length rescaling factor,

and the exponents yt and yH determine the dependence of linearized recursion relations

on b. In position space, the procedure for obtaining these relations is as follows: Divide

the lattice into cells of length b, giving clusters of bd sites, where d is the dimension of the

lattice. Select the alignment of the majority of the spins and replace each cell by a new

spin variable s′i with this alignment eliminating the degrees of freedom of bd − 1 spins. The

new system will have N ′ = N/bd spins. The essential condition for making the new system

thermodynamically equivalent to the original one is that the partition function must be

preserved,

ZN ′(H′) = ZN (H) , (1.9)

where H and H′ denote the Hamiltonians of original and rescaled systems, respectively.

This kind of transformation maps a point (t,H) to another point (t′(t,H),H ′(t,H)) in the

parameter space, where the primed variables refer to the parameters of the rescaled system.

The rescaled system has a Hamiltonian of the same form as the original system, but with

different parameters t′ and H ′. If this transformation is iterated, the successive mappings

result in a flow in the parameter space. Additionally, the length scale of the system will

change such that any quantity ~r with dimensions of length will be transformed as

~r ⇒ ~r′ = b−1~r , (1.10)

in the units of lattice spacing.

The flows in the parameter space are governed by fixed points where the system is

invariant under a rescaling. At a fixed point, we have two equations for the correlation
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length ξ, namely,

ξ′ = b−1ξ , and (1.11)

ξ′ = ξ ≡ ξ∗ . (1.12)

There are two solutions for the correlation length ξ: ξ = 0 (trivial solution) or ξ → ∞
(critical point).

For a magnetic system with recursion relations given in Equations 1.7 and 1.8, the point

in the parameter space where ξ → ∞ is (t,H) = (0, 0), which is the critical point in Fig.

1.2 (a). Around t = H = 0 one can linearize t′(t,H) and H ′(t,H), in order to obtain the

recursion relations 1.7 and 1.8.

The critical exponents can be derived from Kadanoff’s scaling theory. For instance, the

scaling form of the dimensionless free energy per particle f = 1
N logZ can be calculated

near the critical point in order to obtain the exponent α. The partition function should be

preserved, so:

f(t,H) = b−df(t′,H ′) = b−df(bytt, byHH) , (1.13)

In order to find the exponent α which is defined in the thermal direction, that is, approaching

the critical point by varying t(T ) and keeping H = 0 constant, one can choose b = t−1/yt

which leads to

f(t,H) ∼ td/yt , (1.14)

at H = 0, that is, approaching the critical point from the thermal direction. f scales like5

f ∼ t2−α, which gives α = 2 − d
yt

.

The scaling theory of Kadanoff was successful in explaining phenomena near and at the

critical point. However, it did not provide any method to calculate quantities away from

criticality. Furthermore, it did not introduce any way of determining the recursion relations.

These two issues were solved in K. G. Wilson’s later work [7].

5Taking the second derivative of f over T , the factor 2 in the exponent is canceled, and the specific heat
Cv is obtained, which scales like Cv ∼ t−α as given in Table 1.1.
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Figure 1.3: The decimation procedure with length rescaling factor b = 2 in the one-
dimensional chain. The renormalized system consists of N/b sites.

1.2.2 The Renormalization Group

In 1971, the work of K. G. Wilson describing the momentum-space renormalization group6

was a breakthrough, showing that the recursion relations were analytic and could be cal-

culated for systems away from criticality. The method was applied to position space by

Nelson and Fisher in 1975 [8].

For a one-dimensional Ising chain with periodic boundary conditions, the transformation

can be done exactly by summing over half of the degrees of freedom of the system, as in fig.

1.3, while preserving the partition function Z, which leads to the recursion relations for all

length scales. The original Hamiltonian of the system is

−βH = J
∑

〈ij〉

sisj +H
∑

i

si , (1.15)

where β = 1/kBT , si is the spin variable, J the interaction constant between spins, and H

is external magnetic field, is mapped to

−β′H′ = J ′
∑

〈i′j′〉

si′sj′ +H ′
∑

i′

si′ + G̃ . (1.16)

Here, the subscripts i′ and j′ refer to the indices of each of N ′ spins in the renormalized

system. The closed-form recursion relations are J ′(J,H), H ′(J,H), and G̃(J,H), where G̃ is

the additive constant which contributes the free energy. Analysis of the recursion relations

yields the fixed points (J∗,H∗) = (0, 0) and (J∗,H∗) = (∞, 0) where the latter is the critical

point.

RG transformations in higher dimensions can be formulated using methods such as

cluster or Migdal-Kadanoff approximation procedures, which we shall use in Chapter 2.

6The momentum-space renormalization group transformation is performed by integrating out large
wavevectors in ~k-space, where ~k is the wavevector, and the Hamiltonian of the system is a function
of all possible ~k.
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Consider the linear recursion relations in Eqs. 1.7 and 1.8 generating a flow near a fixed

point in parameter space. The two exponents yt and yH control the behavior of an RG flow

near the fixed point: If, for instance, yt < 0, the fixed point is said to be stable in that

direction7 since the scaling field t drives the system to the fixed point. In contrast, when

yt > 0, the scaling field t drives the system away from the fixed point. In this case, the

fixed point is said to be unstable in that direction8[4]. When the exponents of all linearly

independent parameters in the parameter space are negative, the fixed point is completely

stable, and its basin of attraction is a thermodynamic phase. Thus, it is called a phase sink.

On the other hand, when there is at least one unstable direction9, the fixed point governs

a phase boundary between thermodynamic phases.

1.3 Spin Glasses

Atoms are located randomly throughout a glass, and in contrast to the liquid-solid transition

where atoms rearrange into a crystal structure, the rearranging time of the atoms in a glass

into a crystal structure diverges upon cooling, known as the divergence of the relaxation

time. At a critical temperature Tc called glass transition temperature, they become frozen

in a spatial random configuration, because of diverging free energy barriers to relaxation [5].

This kind of phenomenon also applies to disordered lattice systems with nonuniform inter-

actions between lattice sites where frustration occurs, leading to spin glasses, a phase with

spins frozen in random orientations [9]. Frustration is competition between ferromagnetic

and antiferromagnetic interactions. For instance, a loop with an odd number of antiferro-

magnetic (AF) interactions leads to frustration since one of the spins will have an unstable

state [5].

For a disordered system with non-uniform interaction strengths between the lattice sites,

the most general Hamiltonian for nearest-neighbor (nn) interactions between Ising spins is

given by

H = −
∑

〈ij〉

Jijsisj , (1.17)

7When the fixed point is stable in the direction of the flows, the field is called an irrelevant field.

8When the fixed point is unstable in the direction of the flows, the field is called a relevant field.

9There is a third possibility, yt = 0, where the field is said to be marginal, and higher order terms become
important in the analysis of the flows.
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where si = ±1. Eq. 1.17 is called the Edwards-Anderson model. It is also known as the Ising

spin glass (SG) model. Each Jij is distributed identically and independently according to a

multinomial distribution. Since the study of the spin glasses is complicated, the distribution

function is usually assumed to have a simple form, for example:

P (Jij) = pδ(Jij − J) + (1 − p)δ(Jij + J) , (1.18)

or P (Jij) =
1√

2πJ2
exp

(

−(Jij − J0)
2

2J2

)

. (1.19)

Eq. 1.18 is the ±J model where Jij = J (F coupling) with probablity p, or Jij = −J (AF

coupling) with probablity 1 − p, for J > 0, whereas eq. 1.19 is the Gaussian model with

mean J0 and variance J2 [9].

Thermodynamic quantities Q̄({Jij}) depend on the specific configuration of interaction

strengths {Jij} in the system, but to understand the physical properties of the system, one

typically looks at the configurational average Q̄, which is independent of {Jij}:

[

Q̄
]

=

∫

∏

〈ij〉

dJijP (Jij) Q̄({Jij}) . (1.20)

In Section 3, we will give a method for the exact calculation of the site-dependent magneti-

zation m ≡ 〈si〉 and the spin-glass order parameter q ≡ 〈s2i 〉 as a function of bond set {Jij},
which can be applied to other thermodynamic quantities as well.
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Chapter 2

QUANTUM SPIN-GLASS SYSTEMS

2.1 Quantum-Mechanically Induced Asymmetry in the Phase Diagrams of

Spin-Glass Systems

A conspicuous finite-temperature effect of quantum mechanics is the critical temperature

differentiation between ferromagnetic and antiferromagnetic systems.[10, 11, 12, 13] This

is a contrast to classical systems where, e.g., on loose-packed lattices ferromagnetic and

antiferromagnetic systems are mapped onto each other and therefore have the same critical

temperature. We find that this quantum effect is compounded and even more robust in spin-

glass systems, which incorporate the passage from ferromagnetism and antiferromagnetism

via quenched disorder.

Thus, in the present work, the phase diagrams of the spin-1/2 quantum Heisenberg

spin-glass systems are calculated in all dimensions d ≥ 3. In the space of temperature T

and concentration p of antiferromagnetic bonds, remarkably asymmetric phase diagrams

are obtained, in very strong contrast to the corresponding classical systems. Whereas, in

the limit of d → ∞, the differentiation of the critical temperatures of the ferromagnetic

and antiferromagnetic pure systems disappears, the Tp phase diagrams remain strongly

asymmetric at low but finite temperatures, where quantum fluctuations remain dominant

independent of dimensionality. A direct second-order phase boundary between ferromag-

netic and antiferromagnetic phases, not seen in classical systems, is found in d > 5. In

lower d, a paramagnetic phase intervenes between the ferromagnetic and antiferromagnetic

systems. Our calculation is an approximation for hypercubic lattices and, simultaneously,

a lesser approximation for hierarchical lattices [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

The spin-1/2 quantum Heisenberg spin-glass systems have the Hamiltonian −βH =
∑

〈ij〉 Jijsi · sj ≡ ∑

〈ij〉−βH(i, j), where 〈ij〉 denotes a sum over pairs of nearest-neighbor

sites. Jij is equal to the ferromagnetic value of J > 0 with probability 1 − p and to the

antiferromagnetic value of −J < 0 with probability p. We solve this model by extending the
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Suzuki-Takano rescaling [25, 26, 12, 30, 31, 13, 32, 27, 28, 29, 33] to non-uniform systems

and to length-rescaling factor b = 3, necessary for the a priori equivalent treatment of

ferromagnetism and antiferromagnetism, followed by the essentially exact treatment [34, 35]

of the quenched randomness giving the non-uniformity. In one dimension,

Tr(j,k)e
−βH = Tr(j,k)e

∑4n
i

{−βH(i,j)−βH(j,k)−βH(k,l)}

≃
4n
∏

i

tr(j,k)e
{−βH(i,j)−βH(j,k)−βH(k,l)} (2.1)

=
4n
∏

i

e−β′H′(i,l) ≃ e
∑4n

i
{−β′H′(i,l)} = e−β′H′

,

where the sums and products i are over every fourth spin along the chain, the traces are

over all other spins, and −β′H′ is the renormalized Hamiltonian. Thus, the commutation

rules are correctly accounted for within four-site segments, at all successive length scales in

the iterations of the renormalization-group transformation. The trace tr is performed by

quantum algebra, as given below.

The rescaling is extended to dimensions d > 1 by bond-moving, namely by adding bd−1

interactions resulting from the decimation of Eq.(1.4), to obtain the renormalized interac-

tion strength J ′
i′j′ = R({Jij}), where {Jij} includes bd interactions of the unrenormalized

system. The interaction constant values {Jij} are distributed with a quenched probabil-

ity distribution P(Jij) [34, 35], which starts out as a double-delta function but quickly

becomes complicated under its renormalization-group transformation, given by the convo-

lution P ′(J ′
i′j′) =

∫

[
∏i′j′

ij dJij P(Jij)]δ(J
′
i′j′ − R({Jij})). This equation actually involves bd

convolutions (for example, 729 convolutions for the d = 6 system discussed below), which

are constituted of triplet convolutions of interactions in series (decimation) and pairwise

convolutions of interactions in parallel (bond-moving). The quenched probability distribu-

tion P(Jij) is kept numerically in terms of histograms. The number of histograms multi-

plicatively increases under rescaling, until a calculationally acceptable maximum is reached.

After this point, the number of histograms is kept constant by implementing a binning pro-

cedure before each pairwise or triplet convolution. We employ a new binning procedure, in

which bins are demarked so as to contain equal probabilities, as opposed to equal interaction

intervals as done previously. Starting from the lowest J value and moving to greater ones,
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histograms in each consecutive bin are combined, to interaction value J = ΣpiJi/Σpi and

imposed equal probability p = Σpi = 1/nbin. In this process, histograms at the boundaries

of bins are apportioned between the consecutive bins. Thus, our calculation has 125,000 his-

tograms after each decimation and 40,000 histograms after each pairwise bond moving. The

global flows of the quenched probability distributions yield the phase diagrams. Analysis of

the unstable fixed points and unstable fixed distributions attracting the phase boundaries

yields the order of the phase transitions.

Calculations are done for the quantum Heisenberg spin-glass systems in integer dimen-

sions. No finite-temperature phase transition occurs in d = 1, 2. The phase diagrams for

d = 3, 4, 5, 6, 8, 10 are shown in Fig.2.1. They are all strikingly asymmetric, especially in the

middle p and low-temperature (would-be spin-glass phase) region. In d = 3, our calculated

ratio of the critical temperatures of the pure antiferromagnetic and ferromagnetic systems

is TAF
C /TF

C = 1.48. This value is to be compared with the values of 1.13 found in the cubic

lattice [10, 11] and 1.22 found in the b = 2, d = 3 hierarchical lattice [12, 13]. This critical

temperature difference is consistent with the lower ground-state energy of the antiferromag-

netic system, as calculated [9] in d = 3. Our calculated ratios of the antiferromagnetic and

ferromagnetic critical temperatures, for d = 4, 5, 6, 8, 10, decrease as 1.22, 1.12, 1.07, 1.02,

1.01 respectively. On the other hand, it is seen that although the phase boundaries leading

to the pure ferromagnetic and antiferromagnetic critical points regain symmetry as d is in-

creased, the low-temperature phase diagrams remain asymmetric. The ferromagnetic phase

penetrates the antiferromagnetic region at low temperatures. Thus, quantum fluctuations

present at low temperatures favor the ferromagnetic phase over the antiferromagnetic phase.

In d ≥ 6, a second-order phase boundary occurs directly between the ferromagnetic and an-

tiferromagnetic phases, as is not seen in classical spin-glass systems. A new multicritical

point occurs where all three second-order boundaries meet.

The phase transition, between ordered phases, that is driven by quenched randomness

presents a contrast to phase transitions between ordered phases driven by a systemwise uni-

form interaction. The latter phase transition is obtained, at low temperatures, by driving

a uniform interaction that favors another ordered phase over the existing one. Under these

conditions, essentially the entire system remains in one ordered phase until the phase tran-

sition point is reached, when essentially the entire system changes over to the other phase.
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Throughout this process, the ordered domains are compact and have fractal dimensionality

equal to spatial dimensionality, which translates to having a renormalization-group eigen-

value exponent of y = d, the condition for a first-order transition [37]. By contrast, the phase

transition with quenched randomness is obtained, at low temperatures, by driving quenched

local interactions that favor the other ordered phase over the existing phase. This means,

for example, increasing the number of random antiferromagnetic bonds when the system is

in the ferromagnetic phase. Under these conditions, the ferromagnetic domains avoid the

random localities of antiferromagnetic bonds in the system. The ferromagnetically ordered

domains loose weight as the transition is approached, so that the average magnetization

decreases. At the phase transition, the ordered domains are not compact and have fractal

dimensionality less than the spatial dimensionality, so that the magnetization is zero. This

translates to the renormalization-group eigenvalue exponent y < d, meaning a second-order

phase transition. The converse happens when the phase transition is approached from the

opposite side, with non-compact antiferromagnetic domains avoiding the random localities

of the ferromagnetic bonds. Thus, we find that whereas phase transitions between ordered

phases are first order when driven by a uniform interaction, they are second order when

driven by quenched randomness.

In d = 3, 4, 5, the paramagnetic phase reaching zero temperature (as an extremely

narrow sliver in d = 5) intervenes between the ferromagnetic and antiferromagnetic phases.

In all cases, the ferromagnetic phase penetrates, reaching the high p values of 0.63 and 0.83

respectively in d = 3, where there is a zero-temperature paramagnetic interval, and d ≥ 4,

where there is no zero-temperature paramagnetic interval. The antiferromagnetic phase

recedes at low temperatures, thereby showing a reentrant phase boundary [35].

There is no spin-glass phase, in the quantum system, in any dimension. The quantum

version of the Sherrington-Kirkpatrick model [38], namely the spin-1/2 quantum Heisen-

berg model with equivalent-neighbor interactions, with a symmetric gaussian distribution,

studied from the high-temperature side, yields a finite-temperature phase transition, which

has been interpreted as a transition to a low-temperature spin-glass phase [39]. This model

should be similar to our studied models at p = 0.5 in the large d limit. Thus, we also find

a finite-temperature phase transition (Fig.2.1), but the low-temperature phase is explicitly

a ferromagnetic phase with quenched bond randomness. The latter phase has considerable
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Figure 2.1: Phase diagrams of the quantum Heisenberg spin-glass systems in temperature
1/J versus antiferromagnetic bond concentration p for d = 3 to 10. All transitions are
second-order, between the ferromagnetic (F), antiferromagnetic (AF), and paramagnetic
(P) phases.

amount of short-range antiferromagnetic correlations, as seen in Ref.[40].

2.2 Appendix

The operators −β′H′(i, l) and −βH(i, j) − βH(j, k) − βH(k, l) of Eq. 2.1 act on two-site

and four-site states, respectively, where at each site the spin is in quantum state σ =↑ or ↓.
The trace tr in Eq. 2.1 is, in terms of matrix elements [12],

〈uizl|e−β′H′(i,l)|ūiz̄l〉 =
∑

vj ,wk

〈ui vj wkzl|e−βH(i,j)−βH(j,k)−βH(k,l)|ūi vj wkz̄l〉 , (2.2)

where ui, vj , wk, zl, ūi, z̄l are single-site state variables. Thus, Eq. 2.2 is the contraction

of a 16 × 16 matrix into a 4 × 4 matrix. Basis states that are simultaneous eigenstates

of parity (p), total spin magnitude (s), and total spin z-component (ms) block-diagonalize

these matrices and thereby make Eq. 2.2 manageable. These sets of 4 two-site and 16

four-site eigenstates, denoted by {|φp〉} and {|ψq〉} respectively, are given in Tables I and
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p s ms Two-site eigenstates

+ 1 1 |φ1〉 = | ↑↑〉
+ 1 0 |φ2〉 = 1

√

2
{| ↑↓〉 + | ↓↑〉}

− 0 0 |φ4〉 = 1
√

2
{| ↑↓〉 − | ↓↑〉}

Table 2.1: The two-site basis states, with the corresponding parity (p), total spin (s), and
total spin z-component (ms) quantum numbers. The state |φ3〉 is obtained by spin reversal
from |φ1〉. The renormalized two-site Hamiltonian −β′H ′(i, l) is diagonal in this set, with
the diagonal elements of |φ1−3〉 and |φ4〉 being 1

4J
′ +G′ and −3

4J
′ +G′ respectively.

II. The diagonal blocks are given in Tables I and III. Due to the microscopic randomness

of the spin-glass problem, the four-site Hamiltonian mixes states of different parity, as seen

in Table IV. Eq. 2.2 is thus rewritten as

〈φp|e−β′H′(i,k)|φp̄〉 =
∑

u,z,ū,z̄,v,w

∑

q,q̄〈φp|uizl〉〈uivjwkzl|ψq〉 × (2.3)

〈ψq|e−βH(i,j)−βH(j,k)−βH(k,l)|ψq̄〉〈ψq̄|ūivjwkz̄l〉〈ūiz̄l|φp̄〉 .

There are only two rotation-symmetry independent elements of 〈φp|e−β′H′(i,l)|φp̄〉 ≡ 〈φp||φp̄〉
in Eq.2.3, which have p = p̄ = 1, 4 (thereby leading to one renormalized interaction constant

J ′ and the additive constant G′). From Eq. 2.3, 〈φ1||φ1〉 = 〈ψ1||ψ1〉+ 1
2〈ψ2||ψ2〉+ 1

6 〈ψ3||ψ3〉+
1
2〈ψ6||ψ6〉 + 1

2〈ψ7||ψ7〉 + 1
2〈ψ9||ψ9〉 − 〈ψ9||ψ10〉 + 1

2〈ψ10||ψ10〉 + 1
3〈ψ16||ψ16〉 and 〈φ4||φ4〉 =

〈ψ9||ψ9〉+ 2〈ψ9||ψ10〉+ 〈ψ10||ψ10〉+ 1
2 〈ψ11||ψ11〉+ 〈ψ11||ψ12〉+ 1

2 〈ψ12||ψ12〉+ 〈ψ15||ψ15〉, with

〈ψq||ψq̄〉 ≡ 〈ψq|e−βH(i,j)−βH(j,k)−βH(k,l)|ψq̄〉. From Table I, the renormalized interaction

constant is given by J ′ = ln(〈φ1||φ1〉/〈φ4||φ4〉).
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p s ms Four-site eigenstates

+ 2 2 |ψ1〉 = | ↑↑↑↑〉
+ 2 1 |ψ2〉 = 1

2
{| ↑↑↑↓〉+ | ↑↑↓↑〉+ | ↑↓↑↑〉+ | ↓↑↑↑〉}

+ 2 0 |ψ3〉 = 1
√

6
{| ↑↑↓↓〉+ | ↑↓↑↓〉+ | ↑↓↓↑〉

+| ↓↑↑↓〉+ | ↓↑↓↑〉+ | ↓↓↑↑〉}
+ 1 1 |ψ6〉 = 1

2
{| ↑↑↑↓〉 − | ↑↑↓↑〉 − | ↑↓↑↑〉+ | ↓↑↑↑〉}

+ 1 0 |ψ7〉 = 1
√

2
{| ↓↑↑↓〉 − | ↑↓↓↑〉

− 1 1 |ψ9〉 = 1

2
{| ↑↑↑↓〉 − | ↑↑↓↑〉+ | ↑↓↑↑〉 − | ↓↑↑↑〉}

|ψ10〉 = 1

2
{| ↑↑↑↓〉+ | ↑↑↓↑〉 − | ↑↓↑↑〉 − | ↓↑↑↑〉}

− 1 0 |ψ11〉 = 1
√

2
{| ↑↓↑↓〉 − | ↓↑↓↑〉

|ψ12〉 = 1
√

2
{| ↑↑↓↓〉 − | ↓↓↑↑〉

+ 0 0 |ψ15〉 = 1

2
{| ↑↑↓↓〉 − | ↑↓↑↓〉 − | ↓↑↓↑〉+ | ↓↓↑↑〉}

|ψ16〉 = 1
√

12
{| ↑↑↓↓〉+ | ↑↓↑↓〉 − 2| ↑↓↓↑〉

−2| ↓↑↑↓〉+ | ↓↑↓↑〉+ | ↓↓↑↑〉}

Table 2.2: The four-site basis states, with the corresponding parity (p), total spin (s), and
total spin z-component (ms) quantum numbers. The states |ψ4,5〉, |ψ8〉, |ψ13,14〉 are obtained
by spin reversal from |ψ2,1〉, |ψ6〉, |ψ9,10〉, respectively.
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ψ1 ψ2 ψ3

ψ1
1

4
(J1 + J2 + J3) 0 0

ψ2 0 1

4
(J1 + J2 + J3) 0

ψ3 0 0 1

4
(J1 + J2 + J3)

ψ6 ψ9 ψ10

ψ6
1

4
(−J1 + J2 − J3)

1

2
(J1 − J3) 0

ψ9
1

2
(J1 − J3) − 1

4
(J1 + J2 + J3)

1

2
J2

ψ10 0 1

2
J2

1

4
(J1 − J2 + J3)

ψ7 ψ11 ψ12

ψ7
1

4
(−J1 + J2 − J3)

1

2
(J1 − J3) 0

ψ11
1

2
(J1 − J3) − 1

4
(J1 + J2 + J3)

1

2
J2

ψ12 0 1

2
J2

1

4
(J1 − J2 + J3)

ψ15 ψ16

ψ15 − 3

4
J2

√

3

4
(J1 + J3)

ψ16

√

3

4
(J1 + J3)

1

4
(−2J1 + J2 − 2J3)

Table 2.3: Diagonal matrix blocks of the unrenormalized three-site Hamiltonian −βH(i, j)−
βH(j, k) − βH(k, l). The Hamiltonian being invariant under spin-reversal, the spin-flipped
matrix elements are not shown. The additive constant 3G at the diagonal elements is not
shown. The interaction constants J1, J2, J3, which are in general unequal due to quenched
randomness, are from −βH(i, j), −βH(j, k), −βH(k, l) respectively.
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Chapter 3

APOLLONIAN SMALL-WORLD NETWORKS

Small-world networks were introduced in 1998 by Watts and Strogatz [41]. The defining

characteristic of small-world networks is that the average shortest-path length scales like

logN , where N is the number of sites in the network.

Many real-life networks, such as the Internet [43, 44, 45], the collaboration graph of film

actors, power grids [46], are small-world networks. In order to understand the dynamics

behind social, biological, technological networks, various small-world network models have

been developed to date: Watts and Strogatz’s network [41] (WS network), Newman and

Watts’ network [49], hierarchical-lattice small-world networks proposed by Hinczewski and

Berker [18], and Apollonian networks (AN) introduced by Andrade et al. [50] are a few

examples. Among them, hierarchical-lattice small-world networks and AN’s have an ad-

ditional property: a power-law degree distribution which makes a network scale free, like

in the well-known Barabàsi and Albert’s network model [47, 48] (BA network) where pref-

erential attachment occurs, in other words, growth of the network happens in such a way

that new sites are preferentially attached to existing sites with large numbers of nearest

neighbors. Usually, small-world networks have large clustering coefficients1 like regular lat-

tices, a measure of the network being highly clustered. In this chapter, we will focus on the

thermodynamics of AN’s.

There have been various studies on AN, dealing with both their statistical and ther-

modynamic properties. After the first study of AN [50], the same authors introduced the

Random Apollonian Network (RAN) in Ref. [42], for which they calculated the statisti-

cal characteristics, as well as th behavior of percolation and epidemic spreading processes

on the network. Oron et al. developed variations on the topology of AN. [54]. Zhang et

al. calculated correlations in RAN [52] and introduced another AN class which is called

1The clustering coefficient C(i) of a site i is the ratio between the number of bonds among the nearest-
neighbor set A(i) of site i and the total possible number ki(ki −1)/2, where ki is the coordination number
of site i, and the clustering coefficient C of the network is the average of C(i) over all i [42].
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Figure 3.1: Construction of an Apollonian network. Empty boxes are the edges of the
main triangle, whereas full triangles, full squares, and full circles are 1st, 2nd and 3rd
generations, respectively. Following this procedure ad infinitum, an AN is obtained in the
thermodynamic limit.

EAN (Evolutionary Apollonian Network), focusing on its statistical properties. In addition,

correlated electron systems were studied on AN [55].

The network characteristics of AN can be summarized as follows: AN’s are scale-free,

that is, display a power-law degree distribution with P (k) ∼ k1−γ [50] with γ ≃ 2.585, where

k is the degree; they have small-world properties due to their short average shortest-path

length l̄ ∼ logN [51]; and they have a large clustering coefficient limN→∞C = 0.828 [50].

Figure 3.1 shows the growth pattern of an AN. In this chapter, we look at the thermody-

namics of the Edwards-Anderson model discussed in section 1.3 on an AN focusing on the

percolation and spin-glass cases. The percolation examples which Ref. [42] investigates are

random failures and intentional attacks on networks, which are first introduced by Albert et

al. [56]. However, to date a site-percolation or bond-percolation of the Edwards-Anderson

model is not studied on AN. Thus, we will examine a disordered system on a network with

each sites having two states such as, for instance, whether the members of a social network

share a common belief or not, or whether the nodes of a computer network are online or

offline, etc.
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Figure 3.2: (a) Bond (edge) percolation on an AN. (b) A spin-glass system on an AN, where
full bonds represent J > 0 (ferromagnetic coupling), and dashed bonds J < 0 (antiferro-
magnetic coupling).

The spin-1/2 Edwards-Anderson model is given by

−βH =
∑

〈ij〉

Jijsisj , (3.1)

with a bond distribution for the spin-glass case

P (Jij) = pδ(Jij + J) + (1 − p)δ(Jij − J) , (3.2)

where Jij = J > 0 for F coupling with probability 1 − p, and Jij = −J for AF coupling

with probability p. Similarly, for the bond-percolation case, the distribution function is

P (Jij) = pδ(Jij − J̃) + (1 − p)δ(Jij) , (3.3)

where Jij = J̃ = J for F bond-percolation and Jij = J̃ = −J for AF bond-percolation,

both with probability p, and Jij = 0 with probability 1 − p for both cases.

The hierarchical structure of AN allows us to form an exact renormalization-group trans-

formation as follows: The crucial step of the RG transformation is the star-triangle trans-

formation, which eliminates one site in the middle of the star, generating renormalized

interactions among the three outer sites, as shown in Fig. 3.3(a). That is,

e−β′H′(s1,s2,s3) =
∑

σ=±1

e−βH(σ,s1,s2,s3) (3.4)

generates the following recursion relations for a non-uniform system, which connect the

original interaction constants of a star to the renormalized interaction constants of a triangle:
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Figure 3.3: (a) The star-triangle transformation. (b) Decimation of three sites using the star-
triangle transformation. (c) Another star-triangle transformation renormalizes the system
to (d).

J̃13 =
1

4
log

γ1γ3

γ2γ4
, J̃23 =

1

4
log

γ1γ4

γ2γ3
, (3.5)

J̃12 =
1

4
log

γ1γ2

γ3γ4
, G̃ =

1

4
log γ1γ2γ3γ4 ,

where

γ1 = 2cosh(J1 + J2 + J3) , γ2 = 2cosh(J1 + J2 − J3) , (3.6)

γ3 = 2cosh(J1 − J2 + J3) , γ4 = 2cosh(−J1 + J2 + J3) .

Here an original bond Ji refers to the bond between site i and σ, whereas the renormalized

bond J̃ij refers to a contribution to the renormalized bond between sites i and j. As in fig.

3.3, before every decimation process, we combine the contributions that connect the same

sites to each other, where n = 2 for the bigger triangle in Fig 3.3 (c) and (d), and n = 3 for

the star in (c), ultimately leading to the triangle in (e).

In order to implement the renormalization group for a disordered system on an AN, we

use Nobre’s method. This method, applied to hierarchical lattices [14, 15, 16] by Nobre [57]

and Ohzeki et al. [58], has been successful in determining the thermodynamic phases and

multicritical points of the Ising spin glass. First, we produce a sample pool of 106 triangles
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where each edge of a triangle follows one of the initial distributions in Eqs. 3.2 and 3.3,

depending on the model. Then, randomly choosing three triangles from this initial pool

repeatedly, we apply the RG transform on each triplet of triangles, until we have produced

another pool of renormalized triangles of size 106. Note that at each step, the middle one

of the three contributions on each arm of the star obeys the initial distribution, given by

either Eq. 3.2 or 3.3.

Tracing out the states of decimated sites at each RG step corresponds to an inverse

process of construction of an AN. RG flows are generated in an 3 · 106 dimensional space,

leading to a multinomial distribution for each bond of each renormalized triangle in the

pool. Keeping the renormalized triangle pool size on the order of ∼ 106 allows us to locate

the phase boundaries and other thermodynamic properties clearly, overcoming the compu-

tational difficulty in [58], which arises from lattices of finite size and finite number of bonds

in the pool. We observe [Jij ] and σJij
=
√

[J2
ij ] − [Jij ]

2, where [Q] is the configurational

average of a renormalized quantity Q over the renormalized distribution. In our analysis of

the flows, we realize that three scenarios arise:

〈Jij〉 → ∞ and
σJij

〈Jij〉
→ 0 , F phase ,

〈|Jij |〉 → ∞ and
〈Jij〉
σJij

→ 0 , SG-like phase , (3.7)

〈Jij〉 → 0 and σJij
= 0 , P phase .

The paramagnetic (P) phase only occurs for p = 1 in the AF bond-percolation model.

In order to determine whether the phases which we call F and SG-like are in fact F and

SG phases, we calculate the order parameters, that is, the ferromagnetic order parameter

(magnetization) M ≡ [m] ≡ [〈si〉], and the spin-glass order parameter Q ≡ [q] ≡
[

〈si〉2
]

. In

an F phase, both order parameters should be finite, whereas in an SG phase, Q should be

finite and M should vanish.

To calculate the magnetization and the SG order parameter, we add a magnetic field

Hσ to site σ,

m =
∂ logZ

∂Hσ

∣

∣

∣

∣

Hσ=0
, (3.8)

which modifies the Hamiltonian of the system in Fig. 3.3 (a), such that

−βH(s1, s2, s3, σ) = J1s1σ + J2s2σ + J3s3σ +Hσσ +Ks2s3σ , (3.9)
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where K is a three-site interaction which is generated by an original Hamiltonian with only

{Ji,Hσ} terms upon renormalization. Mathematically, when adding an Hσ term, adding

K makes the RG-space closed under repeated iterations, since the number of independent

variables are equal to the number of linearly independent γi . Then,

m =

[

∂ logZ

∂Hσ

]

Hσ=0
=

[

∂ logZ

∂K ′
α

]

K ′
α=0

[

∂K ′
α

∂Hσ

]

Hσ=0
where K ′

α =
{

H ′
1,H

′
2,H

′
3,K

′} ,

(3.10)

in terms of renormalized interaction constants K ′
α, where summation over repeated indices

is implicit. Under repeated iterations, eq. 3.10 becomes

m =
∂ logZ

∂K
(n)
δ

∂K
(n)
δ

∂K
(n−1)
γ

. . .
∂K

(2)
β

∂K
(1)
α

∂K
(1)
α

∂Hσ
, (3.11)

where K
(i)
α = 0 for all derivatives. In order to reach the fixed point, the n→ ∞ limit should

be taken, which is necessary for calculating the thermodynamic densities. In closed form,

eq. 3.11 can be rewritten as

m(0) = µ(n)
1×4T

(n)
4×4T

(n−1)
4×4 . . .T

(2)
4×4V

(1)
4×1 , (3.12)

where the subscripts refer to the dimensions of the matrices T(i) and vectors µ(n), V(1),

defined as:

µ(n) ≡ ∂ logZ

∂K
(n)
δ

, T(i) ≡
∂K

(i)
β

∂K
(i−1)
α

, and V(1) ≡ ∂K
(1)
α

∂Hσ
. (3.13)

In order to obtain a finite magnetization, one should take the limits2 limH→0 limN→∞M

where N is the number of sites. The system should be renormalized until reaching the phase

sink, where the analysis of the eigenvalues and left eigenvectors of T(i), together with Eq.

3.12 lets us calculate the site-dependent magnetization of the original system. However,

in the SG-like phase, it is difficult to reach the phase sink, yet we can clearly identify the

SG-like phase since [Jij ] /σJij
→ 0. On the other hand, ∂ log Z

∂K
(n)
δ

∣

∣

∣

∣

K
(n)
δ

=0

= 0 except for the

fixed point, which results in vanishing of the order parameters.

To overcome this issue, we choose half of the spin configurations for a renormalized trian-

gle obtained as a result of n successive RG transformations, where n is sufficiently large. A

triangle with Ising spins has 23 = 8 configurations, {↑↑↑ , ↑↑↓ , ↑↓↑ , ↓↑↑ , ↓↓↓ , ↓↓↑ , ↓↑↓ , ↑↓↓},

2These limits are not interchangeable, as proved by Rudolph Peierls. It is easy to show that m = 0 for a
finite-size system under zero magnetic field by using the spin-reversal argument.
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where half of them are mostly up and another half are mostly down configurations. The spin

configurations we choose are {↑↑↑ , ↑↑↓ , ↑↓↑ , ↓↑↑}, and for n sufficiently large, only one of

these configurations minimize the energy of the system while the probabilities of the other

three states go to zero. The eigenvectors of these configurations are:

↑↑↑: µ(n) = [+1,+1,+1,+1] ,

↑↑↓: µ(n) = [+1,+1,−1,−1] ,

↑↓↑: µ(n) = [+1,−1,+1,−1] ,

↓↑↑: µ(n) = [−1,+1,+1,−1] .

Using one of these eigenvectors such that the corresponding state minimizes the free

energy of the renormalized system, one can calculate a finite m and q for each triangle

in the pool of triangles, in other words, as a function of the bonds {Jij} on a triangle.

Ultimately, M and Q are calculated exactly by taking a configurational average over the

entire pool.

First we focus on the F bond-percolation case. Its distribution for the entire set of

bonds on an AN is given by Eq. 3.3 for Jij = J > 0 with probability p and Jij = 0 with

probability 1 − p. One may expand the recursion relations in eq. 3.5 into a series in the

high-temperature limit, namely for Jij ≪ 1. For instance, in fig. 3.3, after step (c), the

renormalized bond J ′
ij is equal to the sum of the renormalized bond J̃ij and the original

bond Jij at the edge of the triangle, in other words, J ′
ij = Jij +J̃ij(J1, J2, J3). Expanding J ′

ij

into a series in the high temperature limit, under zero magnetic field, the recursion relations

for J ′
ij become

J ′
12 = J12 + J1J2 ,

J ′
13 = J13 + J1J3 , (3.14)

J ′
23 = J23 + J2J3 ,

where Jij = 0 or Jij > 0, and similarly Ji = 0 or Ji > 0. This result is independent of

p, that is, even when p ≪ 1, in the thermodynamic limit, the flows are in the direction

of the strong-coupling limit J → ∞. So, the system is still in the F phase even when the
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temperature T → ∞ and p→ 0. This analytic argument is also verified with numerical RG

flows for the entire range of temperature T and ferromagnetic bond probability p. This type

of phenomenon is closely related to the percolation threshold pc, below which the network

is divided into disconnected segments. In AN pc = 0 [50, 59], that is the network stays

integrated in large clusters when p → 0, which is related with the infinite-extent order we

found on the AN.

In contrast to the F percolation model, the AF percolation model exhibits an infinite-

extent SG-like behavior. Its distribution for the entire set of bonds on an AN is given

by for Jij = J < 0 with probability p, and Jij = 0 with probability 1 − p. In an AF

percolation model, depending on whether a loop of bonds in the lattice includes an even or

odd number of AF interactions, the loop stays either antiferromagnetic or one of the spins

may become frustrated. Thus, it is impossible to derive a simple analytic expression. So

to check whether there is a phase transition, we confine ourselves to numerical calculations,

again for the entire range of temperature T , and AF bond probability p. We find that for

all T and p except for p = 1, the model exhibits an SG-like behaviour, so,

〈|Jij |〉 → ∞ and
〈J ′

ij〉
σJ ′

ij

→ 0 , for 0 < p < 1 . (3.15)

The p = 0 case is trivial, since there is no system at all, as in the F percolation model. At

p = 1 all bonds are antiferromagnetic with equal interaction strengths, so σJ ′
ij

= 0, resulting

in a P phase.

In order to check whether there is a P to SG-like phase transition for 0 < p < 1 on an

AN, we introduce another model, which we call the weakened-AF model, where Jij = J < 0

with probability p, and Jij = cJ with probability 1 − p, where 0 < c < 1. The limits of c

are, for c = 1, an AN with pure AF bonds of equal strengths, and for c = 0, the AF bond

percolation model which we covered above. The distribution function of the weakened-AF

case for the ±J model is given by

P (Jij) = pδ(Jij − J) + (1 − p)δ(Jij − cJ) , for 0 < c < 1 . (3.16)

At very high temperatures, for very high c, such as c = 0.99, σJ ′
ij

diverges for p ≪ 1,

whereas 〈J ′
ij〉 → 0, showing an SG-like behavior everywhere. We conclude that for all

percolation models, in the interval 0 < p < 1, there is no phase transition at all. The AN



Chapter 3: Apollonian Small-World Networks 28

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

p

1/
J

F SG−like

σ
J
/〈J

ij
〉→ 0 〈J

ij
〉/σ

J
→ 0

Figure 3.4: Phase diagram of an Ising spin glass on an AN in terms of temperature 1/J
versus antiferromagnetic bond probability p. At low p values, there is a ferromagnetic phase,
whereas at higher p values, there is an SG-like region. The phase boundary is first order
and converges to p = 0.5 when T → ∞.

topology exhibits an infinite robustness.

The Ising SG model on an AN is even more interesting. Its distribution for the entire

set of bonds on an AN is given by eq. 3.2: Jij = J > 0 with probability 1−p, and Jij = −J
with probability p. Fig. 3.4 shows the phase diagram of the Ising SG model on an AN.

There is a phase transition between the F and SG-like regimes, and the phase boundary

converges to p = 0.5 for T → ∞. In order to check the order of the phase boundary,

and whether the phase on the right hand side of the boundary is in fact an SG phase, we

calculate the exact order parameters for each triangle in the pool, that is, as a function

of their interaction strengths. A configurational average of the order parameters over the

entire pool of triangles gives the average magnetization and SG order parameter of the

system as shown in fig. 3.5. There is a discontinuity in the order parameters indicating

that there is a first-order phase transition between F and SG-like phases. Furthermore,

the magnetization in the SG-like phase converges to zero only when T → ∞ and p = 0.5,

that is, there are F correlations in the SG-like phase for all temperatures. Additionally,
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even if we consider a positive magnetization m near the fixed point, the unrenormalized

system chooses a negative magnetization when p is greater than 0.5. This is an intriguing

phenomenon which may be unique to scale-free networks: An antiferromagnetic correlation

of the few leading spins with a considerable amount of nearest neighbors results in flipping

the magnetization, as in the percolation studies on Bàrabasi-Albert networks [60].

The distributions of the order parameters are given in figs. 3.6 and 3.7. We see that

the distributions, which are stuck in a narrow interval for high temperatures, extend to

intervals [−1, 1] for the magnetization and [0, 1] for the SG order parameter in intermediate

temperatures, exhibiting a complicated distribution. For very low temperatures, the spins

have either m = ±1, or m = 0 on average, as expected. The evolving distribution of peaks

with temperature T and AF bond probability p reveals the highly interesting structure of

non-uniform order parameters in pT space. Fig 3.8 shows the nonuniform order parameters

versus temperature T ∼ 1/J for three different values of AF bond probability p. From these

distributions, one can clearly see the ferromagnetism inside the SG-like phase.
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Figure 3.5: The magnetization and spin-glass order parameters versus antiferromagnetic
bond probability p (left column) and temperature 1/J (right column). The discontinuities
in the order parameters indicate that the phase transition is first order.
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Figure 3.6: The local magnetization distributions in terms of magnetization m versus prob-
ability.
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Figure 3.7: The local spin-glass order parameter distributions in terms of q versus proba-
bility.
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Figure 3.8: The order parameters in terms of m vs. temperature 1/J (left column), and
in terms of q vs. temperature 1/J (right column). From first to last row, p = 0.2, 0.5, 0.9,
respectively. Colors represent the height of the peaks in Figs. 3.6 and 3.7: the higher a
peak, the darker is the corresponding color.
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Chapter 4

CONCLUSIONS

The importance of quantum SG models is related to high-Tc superconductivity. In a super-

conducting material of type II, at T = 0, under hole or electron doping depending on the

material, there is a phase transition from an AF insulating phase to an SG phase, which has

not been explained yet. Our present calculation on quantum Heisenberg nearest-neighbor

SG models reveal that there is no phase transition to an SG phase in any dimension. Thus,

how an SG phase emerges in a superconducting material is still a challenging question. In

addition, the asymmetry in the low temperature phase diagrams indicates a new kind of

competition between the ordered phases, not seen in classical models.

Even if a crystal structure is a regular lattice, the question whether an electronic model

or a quantum SG model exhibits any SG behavior on a small-world network should also be

investigated. Our calculations on a classical SG model produced rich results regarding the

SG behavior with ferromagnetic correlations and may motivate the scientific community to

the examination of quantum SG models on small-world networks.

Analyzing the AN thermodynamic results shown here, there are important questions to

be answered: Do the heights of the histograms in the order-parameter distributions in figs.

3.6 and 3.7 obey a power-law distribution? If so, is the exponent obtained related to any

process in real life? Additionally, does the bond probability pm=0 where the magnetization

goes to zero, e.g. pm=0 = 0.5 in fig. 3.5, depend on the exponent of the power-law degree

distribution? Depending on the height of the tail of P (k) when k is large, the value pm=0 =

0.5 may shift either towards the p = 1 or p = 0 directions.

For future work, we are interested in both whether the non-uniform order parameters

exhibit a power-law behavior, and the relation between the order parameters and power-law

behaviours of the degree distribution in small-world networks.
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