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ABSTRACT

Since carbon and silicon lie in the same group of elements in the periodic table

and have similar electronic configurations, the possibility of having silicon nanotubes

similar to the conventional carbon nanotubes have attracted much recent attention.

Single walled silicon hexagonal nanotubes (hNTs) should be formed by rolling-up

graphene-like silicon sheets. In recent literature, many correlative theoretical predic-

tions have been performed on such silicon nanotubes.

In this thesis work, a semi-empirical tight-binding molecular dynamics (TBMD)

technique is employed in the simulation studies of single walled silicon hNTs. Ap-

propriate tight-binding pair potential parameters are obtained by fitting the results

of ab initio calculations. We optimized the silicon hNTs having the same predicted

total energy values reported in the literature. The effects of chirality and diameter

on the energetics, strain energies, and electronic density of states of single walled sil-

icon hNTs have been studied on several types of armchair and zigzag nanotubes. We

present the results of our TBMD simulations and discuss about the possible stability

of silicon hNTs.
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ÖZETÇE

Karbon ve silikon elementleri periyodik tabloda aynı grupta bulundukları ve ben-

zer elektronik konfigürasyonlara sahip oldukları için bilinen karbon nanotüpler gibi

silikon nanotüplerin de bulunması olasılığı son zamanlarda büyük ilgi toplamaktadır.

Tek duvarlı hekzagonal silikon nanotüpler (hSiNT) grafin benzeri silikon yüzeylerin

yuvarlanmasıyla olus.turulabilirler. Literatürde bulunan kuramsal öngörülerin pek

çoğu bu tür silikon nanotüpler üstünedir.

Bu tezde tek duvarlı hekzagonal silikon nanotüplerin simulasyonu yarı-ampirik

sıkı-bağ moleküler dinamik (TBMD) teknikleri kullanılarak yapılmaktadır. Uygun

sıkı-bağ çift potansiyel parametreleri ab initio hesaplama sonuçlarına çakıs.tırılarak

belirlenmis.tir. Hekzagonal silikon nanotüpler için bu değerler literatürde verilen

toplam enerji değerlerini verecek s.ekilde optimuma getirilmis.tir. Farklı simetrik yapıdaki

tek duvarlı hSiNT’ler için çalıs.malar yapılarak kiralite ve yarıçapın enerji, germe en-

erjisi ve elektronik durum yoğunluğu üzerine etkisine bakılmıs.tır. TBMD simulasyon

sonuçlarımız verilmis. ve hSiNT’lerin kararlı olup olamayacakları tartıs.ılmıs.tır.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Since the discovery of single wall carbon nanotubes (SWCNTs) more than a decade

ago, other types of nanotubes have been predicted. Ideal SWCNTs are considered as

graphene sheets rolled up to make hollow cylinders, unique one dimensional nanos-

tructures with their exceptional mechanical and electronic properties. For example,

SWCNTs can be metal or semiconductor depending on the diameters and chiralities

[1]. In addition, they have a number of remarkable mechanical properties with regard

to their flexibility, their ability to withstand twisting distortions, and their ability to

withstand compression without fracture. For instance, SWCNTs can be bent around

small circles or about sharp bends without breaking [1].

Silicon has been one of the most important materials for electronic devices and

silicon-based materials have been the focus of extensive research. Furthermore, in the

field of nanotechnology, new forms of stable silicon in the nano-dimension are required

to sustain the current silicon based technology. Due to their apparent compatibility

with the silicon-based micro-electronics and the prospects of becoming the most ver-

satile building materials for nano-electronic devices, a great interest with the low

dimensional silicon nano-structures had been aroused in nanotechnology [2]. More-

over, due to the fact that silicon and carbon are in the same column of the periodic

table and own four valance electrons, silicon nanotubes similar to the conventional

SWCNTs attracted much attention.

Given the similar electronic configurations of silicon and carbon atoms and the

technological importance of silicon, silicon nanotubes have been the subject of many

theoretical studies, even if only at a speculative level. Many groups have predicted
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the possible stability of silicon nanotubes. However it should be noted that although

silicon atoms have similar electronic structure with carbon atoms, their behavior in

forming chemical bonds is quite different [1]. For example, sp2 hybridization is stable

in carbon and it can easily form two dimensional planar structures and nanotubes

composed of only sp2 bonds. However, silicon has been well known as just being in the

form of diamond. Due to the lack of sp2 hybridization in silicon, we might conclude

that silicon cannot form local planar structures and nanotubes. But nevertheless even

though the difficulties in having an sp2 structure for silicon, many theoretical studies

on silicon nanotubes have been done using atomic simulation techniques in recent

years [2-14].

Theoretical studies have played an important role in the development of the science

surrounding carbon nanotubes. For example, even before any experimental observa-

tions, the electronic properties of SWCNTs have been predicted. These predictions

that the conductivity of SWCNTs depend on the diameter and the chirality have been

confirmed experimentally. In the literature, two types of silicon nanotubes are studied

using ab initio calculations: SW silicon hexagonal nanotubes (h-NTs) [2,4,5,7-13] and

SW silicon gear-like nanotubes (g-NTs) [5-7]. Like SWCNTs, the analogous SW sili-

con hexagonal nanotubes (h-NTs) are formed by rolling-up the graphene-like silicon

sheets. In addition, gear-like nanotubes (g-NTs) are formed by rolling the (111) sheet

of the diamond structure.

Unlike SWCNTs, the analogous silicon h-NTs, based on rolling-up graphene-like

sheets, are yet to be made. Recently, the synthesis of silicon nanotubes has been

demonstrated by various groups, each using a different growth process. However,

the structural properties of the fabricated silicon nanotubes are different from those

of CNTs. The thickness of ideal SWCNTs are less than one nanometer, i.e. a few

Angstroms. However, the thickness of the shells of the fabricated silicon nanotubes

are more than several nanometers with the shells consisting of crystalline silicon [15].

Even though ideal SW silicon h-NTs have never been observed experimentally, theo-

retical studies on such silicon nanotubes have been performed.
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Most of the simulation studies revealed how unfavorable the SiNT structure is with

respect to the most stable silicon diamond structure. Fagan et al [4] [11] investigated

the stability of SWSiNTs with the structures of SWCNTs, namely single wall silicon

h-NTs. They have shown that there is a significant cost to produce graphenelike

sheets of silicon, but once they are formed, the cost to produce a SWSiNT by curving

the graphenelike sheet into a cylinder is of the same order of the equivalent cost in

carbon. In addition, they established theoretical similarities between SWCNTs and

silicon h-NTs. Their results revealed that the electronic properties of silicon h-NTs

are similar to those of SWCNTs; depending on the diameter and chirality, they may

exhibit metallic or semiconductor behavior. Çıracı et al [10] have also shown that

zigzag SW h-NTs are metallic for 6 ≤ n ≤ 11 and a band gap starts to open for

n ≥ 12. The strain energies of zigzag and armchair silicon h-NT structures have also

been obtained by Barnard et al [9]. The results indicate the dependence of the strain

energies on both diameter and chirality. They have found that the strain energy for

a zigzag (n, 0) h-NT is lower than the stain energy of an armchair nanotube (n, n),

for the same value of n. Yang et al [5] studied SW silicon h-NTs and g-NTs with

different diameters and chiralities. They performed the calculations of total energies

and electronic properties of silicon h-NTs and g-NTs using VASP (Vienna Ab initio

Simulation Package).

In the present work, we apply TB models, so successfully used to study mechanical

and electronic properties of SWCNTs [18-22], to the silicon h-NTs that have sp2

hybridization. The stability, mechanical and electronic properties SWCNTs have

been well explained by Dereli et al [18-22] using the TBMD model. In this thesis,

silicon h-NTs are built in analogy with SWCNTs. Silicon h-NTs are constructed by

replacing the carbon atoms. Several groups have performed geometrical optimization

of such nanotubes and reported average distances between nearest silicon atoms in

SW silicon h-NTs with different chiralities. The nearest neighbor distances for the

SW silicon h-NTs are found by Çıracı et al [10] around 2.22Å. In addition, Fagan

et al [4] [11] have found that the nearest neighbor distances for the (6,6) and (10,0)



Chapter 1: Introduction 4

nanotubes are around 2.245Å.

In addition, the TBMD model that we have employed in our studies is almost the

same with the TBMD model used by Dereli et al [18-22] in their simulation studies

of SWCNTs. We used the TBMD method adopted from L. Colombo [25]. First we

formed graphenelike silicon sheet with the ab initio [5] calculated nearest neighbor

separation 2.245Å. Then we bent the graphenelike silicon sheet and periodic boundary

conditions were imposed in axial direction along the tube and free boundary conditions

in the radial direction. All the simulations presented in this work are carried out in

the canonical (NVT) ensemble. The Newtonian equations of motion are integrated

using the velocity Verlet algorithm. Using the same techniques, an isolated SWCNT

were simulated effectively by Dereli et al.

The basic idea of the TBMD technique is the representation of one-electron wave

function as a linear combination of localized atomic orbitals, assuming a minimal basis

set and short ranged interactions. The use of TB method coupled with MD plays the

role of a bridge between model potential and first principle simulations [25], [26]. The

TBMD model that we have employed in our simulation studies has been mainly devel-

oped at the semi-empirical level, i.e. TB Hamiltonian matrix elements are considered

as parameters to be fitted. A number of approximations are further introduced in

order to reduce the overall computational workload as much as possible. The basic

theory of TB formalism and key features of TBMD technique will be discussed in more

detail in Chapter 2 and Chapter 3. The TB hopping integrals, scaling functions and

repulsive potential are determined by fitting a suitable database obtained either from

experiments or first principles calculations. The TB functional forms suggested by

Goodwin et al [27] for the hopping parameters and pairwise potential are introduced

in the third chapter.

TB parameters for carbon and silicon can be found in the literature. In our studies

we have adopted TB parameters for carbon and silicon suggested by Xu et al [23] and

Kwon et al [24], respectively. Both Xu et al and Kwon et al developed TB interatomic

potentials in which they adopted the functional forms given by Goodwin et al [27]
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for the dependence of the TB hopping parameters and the pairwise potential on the

interatomic separation. It is clear that the usefulness of a TB model in describing a

wide variety of structures is closely related to its transferability. For example, the set

of TB parameters for carbon suggested by Xu et al [23] is transferable to the graphene

structure. Therefore Dereli et al adopted these parameters in their TBMD simulation

studies of SWCNTs and successfully optimized nanotubes. In other words, the TB

model presented by Xu et al for carbon is transferable to the graphene structure

and the results that Dereli et al have obtained by adopting this model in TBMD

simulation studies of SW Carbon NTs are in good agreement with those obtained

from ab initio calculations.

On the other hand, the TB model for silicon presented by Kwon et al [24] accu-

rately describes the behavior of silicon in crystalline phases. However, their model

does not give the energy curve of the hexagonal silicon graphenelike sheets. We

adopted from their model only the free parameters contained in the scaling functions

for the TB hopping integrals. Then for the set of parameters that we have adopted

from Kwon et al, the energies of the silicon h-NTs are fitted to the ab initio results

with a nonlinear least-squares fitting routine to extract values for the two-body func-

tional parameters. Our basic strategy to derive the set of TB parameters for silicon

graphenelike structures is discussed extensively in Chapter 3. Once we have deter-

mined the TB parameters for the silicon graphenelike structures, any parameter is

once-for-all-fixed. No further adjustments of them have been operated during the

simulation. At each MD step the total force on each of the nuclei to move atoms is

computed. The contributions to the total force is discussed extensively in this the-

sis, i.e. Hellmann-Feynman contribution and the contribution due to the repulsive

potential.

Finally in order to investigate the effects of chirality and diameter on the en-

ergetics, structural, and electronic properties of single wall SW silicon h-NTs, the

developed TBMD simulation method is employed in this thesis. We explored the

possibility of the existence of silicon h-NTs via our semi-empirical TBMD simulation
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method. In this thesis we also examined the diameter and chirality dependence of the

strain energies. We compared our results with the results obtained by the ab initio

calculations [4] [5] [5] [9] [10] [11].

This thesis is organized into five chapters. In the remaining part of this chapter,

we give a brief summary of molecular simulation techniques and introduce the hy-

bridization in carbon and silicon atoms. We define the geometry of SWCNTs and

the analogous SW silicon h-NTs. In the Chapter 2 of this thesis, an overview of MD

simulation methods, an introduction to the molecular dynamics and the basic theory

of the tight binding formalism are presented. The TB model coupled with MD and a

detailed explanation of the computational techniques employed in this thesis is pre-

sented in Chapter 3. In addition, appropriate tight-binding pair potential parameters

for silicon h-NTs that we have obtained by fitting the results of ab initio calculations

are introduced in this chapter. The results of our calculations have been presented

in Chapter 4. We investigated the effects of chirality and diameter on the energet-

ics, structural, and electronic properties of SW silicon h-NTs and commented on the

structural stability and possibility of the existence of SW silicon h-NTs. The ab initio

structural and electronic properties of hypothetical h-NTs are given and compared

with the results of our calculations. Finally, in Chapter 5, the conclusion is found.

1.1 Molecular Simulations

The basic concept of a molecular dynamics (MD) simulation is to simulate the time

evolution of a system. The classical MD simulation methods are in principle based on

atomistic level processes. In classical MD simulation, a molecular system is treated

as a collection of classical point particles and its dynamic evolution is governed by

Newtonian mechanics. In order to determine the forces acting on each particle in

a particular system, an interatomic potential function is used. The point like par-

ticles interact according to a given potential energy U(r1, r2, r3, ..., rN), where N is

the number of particles in the system. The evolution of the system is computed in

simulation time steps of a small time period δt. In classical MD simulations, the es-
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sential quantity to be known is the potential energy, since a system of classical point

particles obeys Newton’s equation of motion

fi = mi
d2ri

dt2
= −∇iU(r1, r2, r3, ..., rN) (1.1)

where the index i refers to one of the particles in the system and mi is the mass of

atom i.

For studying simple atomistic systems, the use of classical MD methods is well jus-

tified. The simple model potentials take into account only two particle interactions.

For simple systems, these model potentials may provide an adequate description of

the system. However, the use of classical MD to study more complex systems, such

as carbon and silicon structures, would require a more tedious work to construct

many-body empirical classical model potentials. Since the electrons are not sharply

localized in the neighborhood of their parent ions in such complex systems, elec-

tronic effects must be taken into account in these model potentials. But the classical

approaches using empirical many body potentials, proposed for calculating the prop-

erties of silicon and carbon, still do not guarantee the correct description of such

complex systems. Therefore, MD simulations of more complex molecular systems

employed to calculate their macroscopic properties with sufficient accuracy require

quantum mechanical treatments. The quantum mechanical MD simulation methods

are more feasible than classical MD methods to simulate the exact motion of atoms

within a system and extract macroscopic properties from the microscopic description

of the system connected with electronic influence.

First principles, or ab initio, MD methods provide an accurate description of

quantum mechanical behavior of molecular systems. However, MD simulations using

first principles approach would be much more time consuming and computationally

heavy. The most widely known first principles approach to MD is Car Parrinello

(CP) method. Car and Parrinello extended MD to include electronic effects within

the density functional framework [29]. In computer simulation studies of molecular

systems, there is a clear need to extend system sizes and simulation time scales. The

system size must be large enough to yield reliable macroscopic properties. In addition,
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the simulation time scales for the study of molecular systems must be long enough

to observe the physical effects. The first principles methods are highly accurate but

the system size that can be handled is restricted to tens, at most a couple of hun-

dred atoms. In addition, high computational workload due to the explicitly included

electronic effects limits the duration of the simulation.

In principle, of course, the Hamiltonian of the system depends on all electron-

electron and electron-nuclear interactions. However, to obtain a more tractable prob-

lem, we make the tight binding (TB) approximation. As a semi-empirical method,

TB approximation is a simplified but still quantum mechanical approach to molecular

dynamics. In other words, TBMD methods are in between ab initio or first principles

simulation methods and classical models for molecular dynamics, either as far as the

overall numerical efficiency and/or as far as the accuracy were concerned [18]. The

TB model assumes that each electron is well localized around a given nucleus. If this

is the case, then the atomic description is not completely irrelevant but the overlap

of the atomic wave functions require corrections to the picture of isolated atoms.

The TBMD program employed in this thesis has two main stages [25]. We start

with an initial tube structure and consider the evolution of the system. In our cal-

culations, electronic effects are treated in a natural way using a tight binding ap-

proximation method. In the first stage of our calculations, the electronic structure

of tubes are calculated by a TB Hamiltonian. In addition, the contribution to the

atomic forces due to the electronic structure is calculated in the first stage. Then

the contribution due to an empirical repulsive potential is added trivially. In other

words, nuclear motions are caused by the total force that is calculated from two main

contributions. Then in the second stage we use the total force on each of the nuclei

in the classical equations of motion to advance the nuclei. We will discuss TBMD

simulation techniques employed in this thesis in more detail in Chapter 3.
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1.2 Hybridization in Carbon and Silicon Atoms

Each carbon atom has six electrons which occupy 1s2, 2s2, and 2p2 atomic orbitals.

The 1s2 orbital contains two strongly localized electrons, and they are called core

electrons. Four electrons occupy the 2s22p2 orbitals, and these more weakly localized

electrons are called valance electrons. In the crystalline phase the valance electrons

give rise to 2s, 2px, 2py, and 2pz orbitals. Since the energy difference between 2s and

2p levels in carbon is small compared with the binding energy of the chemical bonds,

the electronic wave functions for these four valance electrons can readily mix with

each other. This mixing of atomic orbitals is called hybridization, and specifically the

mixing of the wave function of an electron which is in 2s state with the wave functions

of the electrons in n = 1, 2, 3 2p orbitals is called spn hybridization [1]. The strong

localization of the electrons in the inner atomic 1s orbitals results in hybridizations

involving only valance electrons in 2s and 2p orbitals. There is a very small overlap

between 1s orbitals on adjacent atomic sites in the solid. In other words, 1s core

orbitals do not generally affect the solid properties of carbon based materials.

Three possible hybridizations occur in carbon: sp, sp2 and sp3. The mixing of

wave functions of electrons occupying different atomic orbitals is essential for deter-

mining the dimensionality and structures of carbon based materials. In other words,

possible structures of carbon materials are closely related to the spn hybridization.

Carbon in the only element that can form structures from zero dimensions to three

dimensions. In spn hybridization, (n + 1) σ bonds per carbon atom are formed, these

σ bonds making a skeleton for the n dimensional structure [1]. For example, in sp3

hybridization, four σ defining a regular tetrahedron are sufficient to form a three

dimensional structure, which is known as the diamond structure. In addition, sp2 hy-

bridization forms a planar structure in two dimensional graphite known as graphene

sheet [1]. It is interesting that sp2 hybridization also forms a local planar structure

in the forms of cylinders, which is called carbon nanotubes.

Although three possible hybridizations occur in carbon, the other group IV ele-

ment silicon exhibits primarily sp3 hybridization. In other words, sp3 hybridization
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is more stable in silicon. Because sp2 hybridization is stable in carbon, it can easily

form two dimensional planar structures and nanotubes composed of only sp2 bonds.

However, silicon is well known as just being in the form of diamond. Due to the lack of

sp2 hybridization in silicon, we might conclude that silicon cannot form local planar

structures and nanotubes. The crystalline structure of three dimensional silicon is

cubic diamond similar to that of carbon diamond. However, unlike the carbon coun-

terpart, a graphene-like structure and single walled hexagonal silicon nanotube has

not been found in the nature yet. It is largely because silicon prefers sp3 hybridization

rather than sp2 hybridization. But nevertheless many researchers do not rule out the

possibility of the existence of silicon nanotubes. Recently many authors investigated

silicon nanotubes [22-34].

1.3 Carbon and Silicon Nanotubes

A single wall carbon nanotube (SWCNT) is basically described as a graphene sheet

(a single layer of graphite) rolled into a cylindrical shape so that the structure is one

dimensional with axial symmetry. The diameter of a carbon nanotube is of nanometer

size and the length of of the tube can be up to several micrometers. Because of its

very small size and the special electronic properties, a SWCNT is a unique material.

Because of the large variety of possible geometrical structures, which are determined

by the chiral vector, SWCNTs provide a family of structures with different diameter

and chiralities [1]. SWCNTs also have unique mechanical properties. For a detailed

discussion of the unusual properties of SWCNTs we refer to the book by Dresselhaus

et al [1].

Aforementioned it is known that graphite is a stable structure for carbon, whereas

for silicon diamond structure is the most stable [1]. In other words, the sp2 hybridiza-

tion is more stable in carbon, whereas the sp3 hybridization is more stable in silicon.

However, despite the difficulties having an sp2-like (graphenelike) structure for sili-

con, many researchers do not completely rule out the possibility of the existence of

single wall SW silicon h-NTs, i.e. silicon nanotubes with the structures of carbon
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nanotubes. In the literature, two types of silicon nanotubes are studied using ab ini-

tio calculations: SW silicon hexagonal nanotubes (h-NTs) [22,24,25,27-33] and SW

silicon gear-like nanotubes (g-NTs) [25-27]. Like SWCNTs, the analogous SW sili-

con hexagonal nanotubes (h-NTs) are formed by rolling-up the graphene-like silicon

sheets. In addition, gear-like nanotubes (g-NTs) are formed by rolling the (111) sheet

of the diamond structure.

In this thesis, silicon h-NTs are built in analogy with SWCNTs. SW silicon h-

NT structures are simply constructed by folding a graphenelike sheet of silicon into a

cylindrical shape. The periodic boundary conditions are applied along the axial direc-

tion of the tube. Like hypothetical silicon h-NTs, SWCNTs are formed by rolling up

infinite planar hexagonal lattice into a cylinder. Since SW silicon h-NTs have similar

geometric structures with SWCNTs, we introduce the structure of graphene struc-

ture (analogous to graphenelike silicon structure) and SWCNT structure (analogous

to SW silicon h-NT). In general, we will call both SWCNT and SW silicon h-NT as

SW hexagonal nanotube, since they are formed by rolling up planar hexagonal

1.3.1 The Geometry of a SW Hexagonal Nanotube

Each single wall hexagonal nanotube could be regarded as a rolled-up graphite (or

graphite-like for silicon) sheet in the cylindrical form. Generally, single wall nanotubes

can be characterized by two integers (n,m). Starting from a graphite sheet with the

primitive lattice vectors a1, a2 making an angle of 60o, the (n,m) tube is a cylinder

with the axis running perpendicular to the chiral vector Ch, so that atoms separated

by na1 + ma2 are wrapped onto each other. (See Fig. 1.1) The chiral vector

Ch = na1 + ma2 (1.2)

where n and m are integers. The integer pair (n,m) completely describe the geometry

of a nanotube. Because of the rotational symmetry of the 2D hexagonal lattice, it is

only necessary to consider n and m such that 0 ≤ |m| ≤ n. The cylindrical shape of

the tube exhibits a spiral conformation or chirality. This fact provides many possible



Chapter 1: Introduction 12

Figure 1.1: The unrolled hexagonal lattice of a nanotube (from Ref. 1).

structures for nanotubes, although the basic shape of the nanotube wall is a cylinder.

An armchair nanotube corresponds to the case of n = m, and a zigzag nanotube

corresponds to the case of m = 0. All other chiral (n,m) pairs correspond to chiral

nanotubes. Chiral nanotubes exhibit a spiral symmetry whose mirror image cannot

be superposed on the original one, whereas the mirror image of an armchair or zigzag

nanotube has an identical structure to the identical one. (See Fig. 1.2) In the figure

the terminations of the nanotubes are shown. However in this thesis we focus on

the periodic structure along the nanotube axis and in our studies we apply periodic

boundary conditions along the axial direction.

Referring to Fig. 1.1, in the x, y coordinates the real space unit vectors a1 and a2

of the hexagonal lattice can be written as:

a1 = a0

√
3(

√
3

2
,
1

2
)a2 = a0

√
3(

√
3

2
,−1

2
) (1.3)

with a0 denoting the nearest neighbor distance in the hexagonal lattice, which is equal

to 1.42Å in the graphene. The lattice constant of the hexagonal lattice is defined as

a = a0

√
3 and is simply equal to a = 1.42

√
3 = 2.46Å in the graphene. The inner
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Figure 1.2: Classification of nanotubes: (a) armchair, (b) zigzag, and (c) chiral nan-
otubes (from Ref. 1).

products between the primitive lattice vectors a1 and a2 are

a1.a1 = a2.a2 = a2, a1.a2 =
a2

2
(1.4)

where a is the lattice constant. Then the circumferential length L of the cylinder

formed by rolling the hexagonal planar structure is given by

L = |Ch| =
√

Ch.Ch = a
√

n2 + m2 + nm (1.5)

and the radius of the cylinder is

r =
L

2π
=

a

2π

√
n2 + m2 + nm (1.6)

Briefly, the structure of a SWNT, which is formed by rolling a graphite (or

graphite-like for silicon) sheet in the cylindrical form, is simply specified by the chiral

vector. In Fig. 1.1 the vector
−→
OA define the chiral vector Ch and the vector

−−→
OB

define the translational vector T of the nanotube. The vector T is parallel to the

nanotube axis and is normal to the chiral vector Ch in the unrolled hexagonal lattice

structure. The translational vector T and some other vectors, which are derived from
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the chiral vector, should be defined in order to completely specify the structure of the

nanotube.

For a detailed discussion of the characteristic vectors and other related parameters

of nanotubes we refer to the book by Dresselhaus et al [1]. The book also offers a

program for generating parameters and atomic coordinates of a general (n,m) nan-

otube.
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Chapter 2

PRELIMINARIES

This chapter offers first an overview on materials simulation methods at the atomic

scale. The methods of modeling the atomic interactions can roughly be divided into

three categories. The first principles, or ab initio, methods are the most rigorous

ones. Only a few well controlled approximations to exact quantum mechanics are

made. Semi-empirical methods contain more drastic approximations and may also

contain empirically defined parameters. Empirical methods are a group of methods

that are tuned to reproduce an empirically defined fitting set. The three categories,

their drawbacks and benefits are briefly described in Section 2.1. In this thesis the

emphasis is on semi-empirical tight-binding molecular dynamics (TBMD). Therefore

it is discussed in detail followed by an introduction to the molecular dynamics (MD)

and tight binding (TB) formalism. In section 2.2 we discuss the basics of MD scheme

while in section 2.3 we present the basic theory of TB formalism. The TB model

coupled with MD will be introduced in Chapter 3.

2.1 Simulation Methods

Modeling of matter at the microscopic level is based on a comprehensive description

of the constituent particles. In fact, such a description must in principle be based on

quantum mechanics. For a general atomic or molecular system consisting of electrons

and nuclei, the interactions and evolution of such a system is governed by the time

dependent Schrödinger equation. The most rigorous quantum mechanical approach

to the systems of interest are called first principles methods. They do not employ any

empirical parameters in the calculation. Exact quantum mechanical calculations of

the properties of the systems at the nano scale are based on solving the many body
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time dependent Schrödinger equation and obtaining the many body wave function

Ψ(r1, ..., rn, t). These methods explicitly include electronic effects and provide highly

accurate electronic structures. Unfortunately these calculations are computationally

heavy, therefore limits the system size and simulation time. First principles approach

to molecular dynamics have been used, for example, for structural studies of small

carbon and silicon clusters. Because of the absence of empirical fitting, the results of

first principles calculations are very reliable and serve as a useful reference for testing

the accuracies of more approximate approaches.

Classical molecular dynamics (MD), on the other hand, represents atoms or molecules

as point particles interacting through forces that depend on the separation of these

objects. Classical MD simulations determine the force laws between particles from

empirical potentials that have been fitted to reproduce some properties of the system

that are determined either from experimental data or from first principles calculations.

In other words, the classical approximation to the quantum mechanical nature of a

system is the result of adapting the potential arising from the interactions between

particles to a variety of different kinds of information. These include the results of

quantum mechanical first principles energy and electronic structure calculations and

experimental data obtained by thermodynamic and spectroscopic means. Although

model potentials are not ideal for the study of the properties of molecular systems,

they are used because they are simple to implement. Furthermore, the classical ap-

proach using model potentials allow the simulation of systems consisting of up to

millions of atoms.

The simplest approximation for the model potentials takes into account only two-

particle interactions. For simple systems, such as a collection of noble gas atoms,

these models may provide an adequate description of the system. In the atomic

state, noble gases have completely filled electronic shells which is a highly stable

configuration. From the point of view of the band structure, the noble gases are fine

examples of extreme tight binding solids. Since all the electrons can be considered

to be core electrons, there is a very little electronic density between ion cores and
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all the electrons remain well localized in the neighborhood of their parent ion cores.

Therefore, such simple systems can be treated as a collection of classical particles and

the results obtained by using the classical molecular dynamics approach for studying

such simple systems are adequately accurate.

However, using classical MD to study more complex systems, such as carbon and

silicon structures, would require a more tedious work to construct many-body empiri-

cal classical potentials. Moreover, the classical approaches using empirical potentials,

proposed for calculating the properties of silicon and carbon, do not guarantee the

correct description of such complex systems in various environments and in different

phases. Stillinger-Weber (SW) potential, a many-body potential for silicon, is the

most widely used model potential for calculating the properties of liquid silicon [16],

[17]; however, the accuracy of the results is still far from being satisfactory. The elec-

trons in carbon and silicon structures, are not sharply localized in the neighborhood

of their parent ion cores. Therefore, electronic effects must be taken into account.

But most of these empirical potential methods are classical in nature and cannot

account for electronic effects in carbon and silicon systems. In the first principles

methods case, on the other hand, quantum mechanical interactions among electrons

and ion cores receive rigorous treatment based on solving the many body time depen-

dent Schrödinger equation. Unfortunately to perform such calculations on reasonable

size samples would require heavy computational resources. This ensures that the ex-

act quantum mechanics calculations cannot be considered as an efficient way to study

such complex systems, as for the case of classical dynamics approaches.

In this thesis, we employed a semi-empirical Tight-Binding Molecular Dynamics

(TBMD) simulation technique for single walled (SW) hexagonal silicon nanotubes (h-

NTs). We start with an initial tube structure and consider the evolution of the system

into two stages. The electronic structure of the carbon and silicon nanotubes are cal-

culated by a TB Hamiltonian. Following an elaborate electronic structure calculation,

we determine the quantum mechanical forces, so called Hellmann-Feynman forces, on

each of the nuclei. In other words, once the full spectrum of eigenvalues and eigenvec-
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tors of the TB Hamiltonian is determined, we can calculate Hellmann-Feynman forces

straightforwardly. Hellmann-Feynman Theory and Hellmann-Feynman contribution

to the atomic forces are discussed in Chapter 3. Furthermore, the other contribution

to the total force on nuclei is the result of the effective repulsive potential, which is

expressed as a 4th-order polynomial with the argument of the sum of pairwise po-

tentials between atoms. In fact, as discussed in Chapter 3, the effective repulsive

potential and pairwise potential are known analytically.

Finally, in the second stage, the total force on each of the nuclei is used in the

classical equations of motion to advance the nuclei. In other words, the dynamic

motions of nuclei are still governed by Newtonian mechanics and described by the

classical molecular dynamics. The nuclei positions, velocities and accelerations are

updated according to the velocity Verlet algorithm, as discussed in Chapter 2. This

procedure is repeated for each molecular dynamics time step.

2.2 Basics of Molecular Dynamics

In this section, the general approach used in classical MD simulations and the tech-

niques used to solve the classical equations of motion are discussed. In MD, to account

for the movement of the particles in the system over time, the simulation is broken

into a series of sequential time steps. Given an initial set of positions, velocities and

accelerations, the subsequent time evolution of the system is determined. In order to

find out, how the system evolves in time, equations of motion for each particle are

solved on step by step basis. This is called the integration of the equation of motion.

The equations of motion for each particle are numerically integrated forward in sim-

ulation time steps using finite difference methods. Most of the MD simulation codes

tend to use the Verlet type algorithms or the predictor-corrector algorithm as a finite

difference method to solve the differential equations of motion numerically.
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2.2.1 Integration of Equations of Motion

Given the particle positions, velocities, accelerations and other dynamic information

at time t, we attempt to obtain the positions, velocities etc. at a later time t +

δt, to a sufficient degree of accuracy. In addition, to start a simulation, the set of

positions, velocities and accelerations should be assigned initially to the particles.

The macroscopic properties of the system of interest are then calculated at each MD

simulation time step.

A velocity Verlet algorithm has been chosen for the program that is used in this

thesis. In comparison to other integration algorithms, such as Gear’s predictor-

corrector algorithm, it is relatively simple. There are several integration schemes

of various complexity and order [31]. But the discussion is limited to the the ve-

locity Verlet algorithm, which is employed in this thesis, and the predictor-corrector

algorithm. The predictor-corrector integration scheme is considered computationally

heavy, however, it has an accuracy advantage and therefore it is used most widely in

MD simulations [31].

Gears predictor-corrector method is composed of three steps: prediction, evalua-

tion, and correction. In the prediction step, an estimate of particle positions, velocities

etc. at a later time t + δt is obtained by Taylor expansion about time t:

rp(t + δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) + ...

vp(t + δt) = v(t) + δta(t) +
1

2
δt2b(t) + ...

ap(t + δt) = a(t) + δtb(t) + ...

bp(t + δt) = b(t) + ... (2.1)

where the superscript p indicates that the values are the predicted values. Since

Taylor series is an infinite series, the predicted values will have slight errors due to

the truncation of the series after the third order term. However, left uncorrected over

many time steps, these slight truncation errors can build up to significant values,

resulting in inaccurate data. Therefore, it is necessary to correct the values predicted

in Eq. (2.1). In the evaluation step, from the new positions rp(t + δt), the forces at
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time t + δt, and hence the correct accelerations ac(t + δt) are calculated. Comparing

corrected accelerations for each particle with the predicted acceleration from Eq.

(2.1), the size of the error in the prediction step is estimated:

∆a(t + δt) = ac(t + δt)− ap(t + δt) (2.2)

Finally, in the correction step, the corrected positions, velocities, etc can be written.

Typically

rc(t + δt) = rp(t + δt) + c0∆a(t + δt)

vc(t + δt) = vp(t + δt) + c1∆a(t + δt)

ac(t + δt) = ap(t + δt) + c2∆a(t + δt)

bc(t + δt) = bp(t + δt) + c3∆a(t + δt)) (2.3)

A detailed discussion of how to choose the coefficients c0, c1, c2, c3, ... can be found in

Ref [31]. A typical stepwise MD simulation, based on the Gears predictor-corrector

algorithm, works as follows:

(a) set the initial positions, velocities, accelerations etc. at time t;

(b) ’predict’ the positions, velocities, accelerations etc. at time t + δt using the

current values of these quantities;

(c) ’evaluate’ the forces, and hence the correct accelerations at time t + δt, from

new positions rp(t + δt);

(d) ’correct’ the predicted values of positions, velocities, accelerations etc. using

new accelerations;

(e) store new positions, velocities, accelerations etc

(f) calculate the physical quantities of interest.

The steps from (b) to (f) represent one molecular dynamics step. The molecular dy-

namics step is repeated as long as the simulation is run, so a discrete time development

of the system and its dynamics is obtained.

The MD simulation program employed in this thesis updates atomic positions,

velocities and accelerations according to the velocity Verlet algorithm. The integration
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equations of the velocity Verlet algorithm are

r(t + δt) = r(t) + δtv(t) +
1

2
δt2a(t)

v(t + δt) = v(t) +
1

2
[a(t) + a(t + δt)] (2.4)

The workings of a molecular dynamics simulation using the velocity Verlet integration

algorithm can be represented as follows:

(a) set the initial positions, velocities, accelerations etc. at time t;

(b) update the positions;

(c) calculate the forces, and hence the accelerations at time t + δt, from new

positions rp(t + δt);

(d) update the velocities;

(e) store new positions, velocities, accelerations;

(f) calculate the physical quantities of interest.

From the beginning of the simulation, the steps from (b) to (f) are repeated as long

as the simulation is run.

2.2.2 The Verlet Neighbor List

The most time consuming part of a molecular dynamics simulation is the evaluation

of the forces on each particle from the particle positions at each simulation time step.

Calculation of the forces on each particle require the determination of the potential.

Most of the model potentials are expressed analytically as a function of the relative

distances between constituent particles. Therefore, once the distances between parti-

cles are calculated, the potential due to particle interaction are evaluated. Then the

forces on each particle, hence accelerations are calculated straightforwardly. In order

to reduce implementation time, in most cases, only the interactions of a particle with

the particles within a potential cutoff sphere are taken into account. If particles are

separated by distances greater than the potential cutoff, the program skips to the end

of the force calculation loop and considers the next neighbor.
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In our calculations, short range interactions are assumed and only the nearest

neighbor interactions are taken into account. In other words, we choose the cutoff

distance between the nearest neighbor and the next nearest neighbor of carbon or

silicon atoms in the system of interest. Testing whether atoms are separated by less

than the cutoff distance is a part of the overall computation. At the first step in a

MD simulation, a list is constructed of all neighbors of each atom, and from time to

time the neighbor list is reconstructed.

For the beginning of the molecular dynamics simulation, the simulation time step

value must be set. The time step δt must be significantly smaller than the typical

time taken for a particle to travel its own length. Since the new positions, velocities

etc for each particle at time t+ δt are computed as an approximation to the values of

these quantities at time t, the smaller the simulation time step, the more accurately

will the solution follow the correct trajectory. On the other hand, a time step that is

too small wastes computational resources. Time step length is therefore a compromise

between accuracy and stability. Thus the extent to which δt can be increased without

prejudicing the stability of the simulation should be investigated. The typical time

step is approximately 1 fs in equilibrium simulations.

2.3 Separation of Electronic and Nuclear Motions

For a general system with N nuclei and n electrons, the Hamiltonian can be written

as

H(R, r) = TN(R) + Hel(r) + V (R, r), (2.5)

where R and r are the collective indexes used to denote, respectively, the coordinates

of the nuclei and electrons. The first and second terms of the Hamiltonian correspond

to the kinetic energy of the nuclei and the energy of the electron system, respectively.

The last term V (R, r) includes all the interaction energies among nuclei themselves

and between nuclei and electrons. Moreover, the electronic Hamiltonian Hel(r) can
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be written as

Hel(r) = Te + Vee, (2.6)

where Te represents kinetic energy of the electrons and Vee includes all electron-

electron interaction energies. Various terms of the Hamiltonian in Eq. (2.3.1) are

explicitly given by

Te =
n∑

i

(− h̄2

2me

)∇2
i , (2.7)

Vee =
1

2

n∑

i6=j

1

rij

, (2.8)

HN(R) =
N∑

k

(− h̄2

2Mk

)∇2
k, (2.9)

and

V (R, r) =
1

2

N∑

k 6=l

ZkZl

Rkl

−
N∑

k

n∑

i

Zk

|Rk − ri| (2.10)

where Rk, Mk, and Zk represents the position, mass, and charge of the kth nucleus

respectively, and me is the electron mass.

2.3.1 Adiabatic Representation

Based on the rationale that the nuclear mass is much larger than the electron mass, we

can use an adiabatic approximation in order to describe the dynamics of the general

system described by the Hamiltonian (2.5). The nuclei with heavy mass move much

slower than the electrons with light mass, and therefore nuclear kinetic energies are

generally much smaller than those of electrons. If we fix the position of the nuclei (R

fixed), then the eigenfunctions of electrons corresponding to the fixed configuration

of the nuclei would be determined by the following Hamiltonian equation,

[Hel(r) + V (R, r)]φn(R, r) = εn(R)φn(R, r) (2.11)
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where φn(R, r) and εn(R) are called the adiabatic electronic wave functions and energy

eigenvalues of the electrons with fixed nuclear coordinates R. Since the adiabatic

eigenfunctions φn(R, r) form a complete orthonormal set, the molecular wave function

Ψ(R, r) can be can be expanded in the adiabatic basis set φn(R, r), i.e.

Ψ(R, r) =
∑
n

χn(R)φn(R, r) (2.12)

where χn(R) is the corresponding nuclear wave function in the adiabatic representa-

tion. The molecular Schrödinger equation is

Hn(R, r)Ψ(R, r) = EΨ(R, r). (2.13)

By substituting the expansion in Eq. (2.12) into Eq. (2.13) and integrating over the

electron coordinates, we obtain the coupled equations

[TN(R) + εm(R)]χm(R) +
∑
n

∧mn(R)χn(R) = Eχm(R) (2.14)

where ∧mn(R) is the non-adiabatic coupling operator which arises from the action of

the nuclear kinetic energy operator TN(R) on the electron wave function. Explicitly

∧mn(R) = −h̄2
∑

i

1

Mi

[Ai
mn

∂

∂Ri

+
1

2
Bi

mn] (2.15)

where Ai
mn and Bi

mn are defined as

Ai
mn = 〈φm| ∂

∂Ri

|φn〉 =
∫

φ∗m
∂

∂Ri

φndr (2.16)

Bi
mn = 〈φm| ∂2

∂R2
i

|φn〉 =
∫

φ∗m
∂2

∂R2
i

φndr (2.17)

It is clear that the operator ∧mn(R) is the result of the non-adiabatic coupling between

different adiabatic states.

The rigorous approach to get the nuclear wave function χn(R) in the adiabatic

representation is to solve the coupled Schrödinger equation (2.14). However, since the

adiabatic approximation assumes that the nuclear kinetic energies are much smaller
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than those of electrons, the non-adiabatic terms Amn and Bmn, which result from

the nuclear motions, are generally small. In other words, the dependence of Amn

and Bmn on nuclear coordinates R is relatively weak compared to that of εn(R).

Consequently, neglecting the non-adiabatic coupling in Eq. (2.14), we obtain the

adiabatic approximation for the nuclear wave function

[TN(R) + εn(R)]χn(R) = Eχn(R) (2.18)

It is clear, in the adiabatic approximation, that the energy eigenvalues defined in

Eq. (2.11) is the adiabatic potential for the nuclear motion. Replacing the adiabatic

potential εn(R) by the notation Vn(R), one obtains the Born-Oppenheimer approxi-

mation

[TN(R) + Vn(R)]χn(R) = Eχn(R) (2.19)

Therefore, as a consequence of the adiabatic approximation, we achieve a complete

separation of electronic motion from that of nuclei. Then we find electronic eigenvalues

at given fixed nuclear coordinates R and we use εn(R) as the potential for the nuclei.

Finally using the Born-Oppenheimer approximation Eq. (2.19), one can solve the

nuclear dynamics problem. In the next subsection, we will show that how we can

simply calculate the forces on the nuclei from the adiabatic potential without the

need of the adiabatic electronic wave functions φn(R, r). As we calculate the forces

on each nuclei, the rest will be a classical molecular dynamics problem.

2.3.2 Hellmann-Feynman Theory

The Hellmann-Feynman theory provides a convenient means to compute forces on the

nuclei for a molecular system in the adiabatic or Born-Oppenheimer approximation.

It is named for its independent provers Hans Hellmann (1936) and Richard Feynman

(1939). Consider a system where the motions of electrons are governed by the Hamil-

tonian H(λ) that depends on some parameters λ. Let |φ(λ)〉 be an eigenstate of H(λ)

with an energy eigenvalue ε(λ).

H(λ)|φ(λ)〉 = ε(λ)|φ(λ)〉 (2.20)
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Since the adiabatic eigenstates |φ(λ)〉 form a complete orthonormal set, the adiabatic

energy eigenvalue ε(λ) can be expressed as the expectation value of the Hamiltonian

H(λ)

ε(λ) = 〈φ(λ)|H(λ)|φ(λ)〉 (2.21)

Differentiating both sides with respect to the parameter λ yields

∂ε(λ)

∂λ
= 〈∂φ(λ)

∂λ
|H(λ)|φ(λ)〉+ 〈φ(λ)|H(λ)|∂φ(λ)

∂λ
〉+ 〈φ(λ)|∂H(λ)

∂λ
|φ(λ)〉 (2.22)

Using the fact that |φ(λ)〉 is an eigenstate of the Hamiltonian H(λ) with energy

eigenvalue ε(λ), above equation can be simplified as

∂ε(λ)

∂λ
= ε(λ)〈∂φ(λ)

∂λ
|φ(λ)〉+ ε(λ)〈φ(λ)|∂φ(λ)

∂λ
〉+ 〈φ(λ)|∂H(λ)

∂λ
|φ(λ)〉

= ε(λ)[〈∂φ(λ)

∂λ
|φ(λ)〉+ 〈φ(λ)|∂φ(λ)

∂λ
〉] + 〈φ(λ)|∂H(λ)

∂λ
|φ(λ)〉

= ε(λ)
∂

∂λ
〈φ(λ)|φ(λ)〉+ 〈φ(λ)|∂H(λ)

∂λ
|φ(λ)〉

(2.23)

However, since |φ(λ)〉 is normalized, the first term vanishes and we obtain

∂ε(λ)

∂λ
= 〈φ(λ)|∂H(λ)

∂λ
|φ(λ)〉 (2.24)

which is known as the Hellmann-Feynman theory.

Since the adiabatic or Born-Oppenheimer approximation assumes fixed nuclear

geometries, we can take nuclear coordinates R as parameters. In addition, adiabatic

eigenvalues ε(R) of the electrons at the given fixed nuclear coordinates, defined in

Eq. (2.11), is the adiabatic potential for the nuclear motion. (See Eq. (2.18) and Eq.

(2.19)) Consequently, the Hellmann-Feynman theory provides that

∂ε(R)

∂R
= 〈φ(R)|∂H(R)

∂R
|φ(R)〉 (2.25)
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where H(R) is the Hamiltonian for electronic motion, which is defined as

H(R, r) = Hel(r) + V (R, r) (2.26)

where Hel is the electronic Hamiltonian and V (R, r) includes all the electron-nuclear

and nuclear-nuclear interactions. Thus the force acting on the ith nucleus can now

be straightforwardly calculated from the adiabatic potential ε(R) via the Hellmann-

Feynman theory
−→
f i = −∇iε(R) (2.27)

Eq. (2.27) states that the force acting on the ith nucleus is simply the negative

gradient of the adiabatic eigenvalue or potential ε(R) with respect to the ith nuclear

coordinate. This is a great simplification because at each molecular time step the

forces needed to move atoms can be calculated numerically without the need of elec-

tronic wave functions φn(R, r). For simplicity, we will call
−→
f i the Hellmann-Feynman

contribution to the atomic forces. Up to now, we left out the nuclear-nuclear inter-

actions in our derivation. In fact, as discussed in Chapter 3, the repulsive potential

due to nuclear-nuclear interactions are short ranged and known analytically. The

forces due to the repulsive potential term can be trivially calculated and added to the

right side of Eq. (2.27). Finally, the effective repulsive potential and the numerical

Hellmann-Feynman contribution to the total force will be discussed in more detail in

the third chapter.

2.4 The Tight Binding Formalism

The full periodic crystal Hamiltonian, H, in the vicinity of each lattice point, is ap-

proximated by the Hamiltonian of a single atom located at the lattice point. Here we

also assume that, for an atom at the origin, the bound levels of the atomic Hamilto-

nian, Hat, are well localized. We can write the atomic Schrödinger equation as

Hatψn = Enψn, (2.28)
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where ψn is a bound level of the atomic Hamiltonian, Hat, and En is the energy of

the corresponding atomic level. Since we assume that the bound levels of the atomic

Hamiltonian are well localized, we require that ψn(r) be very small at a distance

greater than the lattice constant. In the extreme case in which the electronic density

between ion cores is very little, as for the noble gases, the crystal Hamiltonian, H,

differs from the Hamiltonian of a single isolated atom, Hat, only at distances from

r = 0 to a distance of the order of the lattice constant. If this is the case, ψn(r) will

be an excellent approximation to a stationary-state wave function for the full crystal

Hamiltonian, with energy eigenvalues being equal to the energy of the atomic level,

En. However, to study more complex systems, such as carbon and silicon structures,

where all the electrons are not well localized in the neighborhood of each lattice point,

we need to make corrections to this extreme case. Therefore, the crystal Hamiltonian

can be approximated as

H = Hat + ∆U(r), (2.29)

where ∆U(r) is the correction to the atomic potential to produce the full periodic

Hamiltonian of the crystal from the atomic Hamiltonian. In other words, the bound

level of the atomic Hamiltonian, ψn(r), which satisfies the atomic Schrödinger equa-

tion Eq. (2.28), will also satisfy the crystal Schrödinger equation, provided that the

correction term ∆U(r) vanishes whenever ψn(r) is not small. When this is the case,

using R as a collective index to denote the coordinates of each of the N sites in

the lattice, each atomic level ψn(r) would yield N degenerate levels in the periodic

potential, with wave functions ψn(r - R), for each N sites in the lattice.

According to Bloch’s theorem, under a crystal lattice translation which carries r

to r + R we have

ψ(r + R) = eik . Rψ(r) (2.30)

and the N linear combinations of these degenerate wave functions is
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ψ(r) =
∑

R
eik . Rψn(r - R) (2.31)

which satisfies the Bloch condition, Eq. (2.30), with wave vector k, while continuing

to display the atomic character of the levels. Furthermore, the crystal Schrödinger

equation is

Hψ(r) = (Hat + ∆U(r))ψ(r) = ε(k)ψ(r), (2.32)

where ε(k) is the energy bands of the crystal. However, when we assume that the

solution of the full crystal Schrödinger equation is N linear combinations of degen-

erate atomic wave functions, Eq. (2.31), ε(k) is simply equal to the energy of the

atomic level, En, regardless of the value of k. This deficiency is due to the unreal-

istic assumption that ∆U(r) vanishes whenever ψn(r) is not small. A more realistic

assumption is that ψn(r) is small, but not precisely zero, when ∆U(r) is appreciable.

Following this assumption, retaining the general form of the solution, Eq. (2.31), we

seek a solution to the full crystal Schrödinger equation that is a linear combination

of Wannier functions:

ψ(r) =
∑

R
eik . Rφ(r - R), (2.33)

where the Wannier function φ(r) is not necessarily an exact atomic stationary-state

wave function. In fact, whenever the product ∆U(r)ψn(r) is small, we expect the

function φ(r) to be close to the atomic wave function ψn(r) or to wave functions

which are degenerate with ψn(r). Furthermore, the ψn(r), localized atomic wave

functions, constitute our basis set, and so we can express φ(r) in the form of a linear

combination of them

φ(r) =
∑
n

cnψn(r) (2.34)

If we multiply the crystal Schrödinger equation, Eq. (2.32), by the atomic wave

function ψ∗m(r) and integrate over all r, we have
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∫
ψ∗m(r)Hatψ(r)dr +

∫
ψ∗m(r)∆U(r)ψ(r)dr = ε(k)

∫
ψ∗m(r)ψ(r)dr. (2.35)

The first term on the right of Eq. (2.35) is simply equal to

∫
ψ∗m(r)Hatψ(r)dr =

∫
(Hatψm(r))∗ψ(r)dr = En

∫
ψ∗m(r)ψ(r)dr. (2.36)

Then we find that

(ε(k)− Em)
∫

ψ∗m(r)ψ(r)dr =
∫

ψ∗m(r)∆U(r)ψ(r)dr. (2.37)

Finally, using the orthogonality condition for the atomic wave functions

∫
ψ∗m(r)ψn(r)dr = δnm (2.38)

and substituting (2.33) and (2.34) into (2.37), we arrive at an eigenvalue equation

that determines the band energies ε(k) and coefficients cn:

(ε(k)− Em)cm = −(ε(k)− Em)
∑
n

{ ∑

R 6=0

∫
ψ∗m(r)ψn(r - R)eik.Rdr}cn

+
∑
n

{ ∑

R 6=0

∫
ψ∗m(r)∆U(r)ψn(r - R)eik.Rdr}cn

+
∑
n

{
∫

ψ∗m(r)∆U(r)ψn(r)dr}cn

(2.39)

where ∆U(r) is the deviation of the full periodic crystal potential from the atomic

potential.

The third term on the right of Eq. (2.39) contains the product ∆U(r)ψn(r). We

interpret our assumption of well localized atomic levels to mean that ∆U(r)ψn(r) is

small because we expect the atomic wave functions ψn(r) to become small at distances

large enough for the deviation ∆U(r) to be appreciable. Consequently, following our

assumption of well localized atomic levels, it is clear that the second term is small. In
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addition, the integrals in the first and second terms on the right of Eq. (2.39), whose

integrands contain the product of two atomic stationary-state wave functions centered

at different lattice sites, are called overlap integrals. The orthogonality condition for

the atomic wave functions, Eq. (2.38), says that two atomic wave functions are

orthogonal if they are bound levels of the Hamiltonian of the same atom. In other

words, atomic wave functions are associated with the atomic orbitals and they are

orthogonal if the orbitals are on the same atom. It is not true, obviously, if the orbitals

are on different atoms. As a matter of fact, it is precisely the overlap of the orbitals

on different atoms which creates the bond between the carbon and silicon atoms.

Clearly, to solve the eigenvalue equation, Eq. (2.39), and determine the band

energies of the full crystal at each molecular dynamics simulation time step will require

the evaluation of overlap integrals and computational workload increases accordingly.

Therefore, there is a clear need to make a number of approximations in order to

simplify the integrals but retain the molecular orbital description. In fact, the tight

binding approximation deals with the case in which the atomic description is not

completely irrelevant but the overlap of atomic wave functions require corrections to

the picture of isolated atoms. In other words, overlap integrals are generally small

and the tight binding approximation exploits the smallness of these integrals. The

tight binding method eliminates these difficult integrals and includes them in the

eigenvalue equation, Eq. (2.39), as parameters that have been fitted to reproduce

some properties of the system that are determined either from experimental data or

from first principles calculations.

To simplify the eigenvalue equation, Eq. (2.39), and to keep the tight binding

parameters as low as possible, we make another approximation. The second approxi-

mation is to express the solution to the full crystal Schrödinger equation in the form

of a linear combination of bound levels of a single isolated atom. In other words, the

basis set is derived from the atomic Hamiltonian which is assumed to be the same as

the molecular electronic Hamiltonian for an isolated atom. Mathematically we can

write electronic states of one electron moving in an average field due to the other
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electrons and ion cores as

Hψi = Eiψi, (2.40)

where H is the reduced one-electron Hamiltonian, ψi is its ith eigenfunction and Ei

is the corresponding energy. In addition, we can write the one electron states of an

atomic Hamiltonian as

Hαφα = εαφα, (2.41)

where Hα is the one electron atomic Hamiltonian, and φα, εα refer to the one elec-

tron atomic orbital and the energy of the single particle state in the atomic picture,

respectively. (For an isolated atom, this is an exact expression.) In the tight binding

formulation, the φα constitute our basis set and so we express the molecular orbitals

in the form of a linear combination of them

ψi = Σαciαφα (2.42)

Operating on molecular orbitals with the molecular electronic Hamiltonian, H, we

get

Hψi = H(Σαciαφα) = Eiψi. (2.43)

Rewriting Eq. (2.42) in Dirac notation

H|i〉 = ΣαciαH|i〉 = Ei|i〉, (2.44)

we can express the corresponding energy as

Ei = Σα,βc∗βiciα〈β|H|α〉. (2.45)

Clearly, the second approximation is simply assuming that the molecular electronic

Hamiltonian, H, acts on the atomic orbitals as

H|α〉 = Hα|α〉 = εα|α〉 (2.46)

Beforehand we stated the orthogonality condition for atomic orbitals. In our tight

binding formulation atomic orbitals, φα, introduced in Eq. (2.41), constitute our

basis set and we have assumed that φα and φβ are orthogonal, i.e., that 〈α|β〉 = δαβ,
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which is true only if the orbitals are on the same atom. (In this thesis, sp3 basis

set is used for carbon and silicon, i.e. we have used the minimal basis of one s and

three p orbitals per carbon or silicon atom.) Finally, as a consequence of the second

approximation, we note that 〈β|H|α〉 = 0 for α, β on the same atom.

The third approximation of the tight binding method deals with the interactions

between atoms, especially between atomic orbitals, in the molecular structure. The

tight binding overlap parameters, which are included in the eigenvalue equation (2.43)

to replace overlap integrals, are restricted to the first neighbor shells of the structures.

In other words, only two-center integrals are taken into account, i.e. 〈β|H|α〉 = 0

for α, β on distant atoms and 〈β|H|α〉 6= 0 for α, β on nearest neighbor atoms.

Undoubtedly, this approximation leads to a great simplification to the eigenvalue

equation (2.43) and the tight binding Hamiltonian, which will be discussed in more

detail in the next chapter.

In general, of course, 〈β|H|α〉 has to depend on the interatomic separation [25].

In the tight binding model, however, 〈β|H|α〉 are parameters which are calculated

for the nearest neighbor separation in the equilibrium structure and then allowed to

vary according to a distance dependent scaling function. The final approximation of

the tight binding model is that short-ranged interactions are assumed. In the next

chapter, the consequences of this assumption will be discussed in detail and the short-

ranged scaling functions used in this thesis will be introduced. In addition, suggested

pairwise potentials and short-ranged effective repulsive potentials will be introduced.
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Chapter 3

METHODOLOGY

In 1989 Goodwin, Skinner and Pettifor (GSP) presented a novel method of ob-

taining transferable tight binding (TB) parameters and applied it to silicon [27]. The

lowest energy geometries obtained by Goodwin et al using the TB molecular dy-

namics method agree with those found by using accurate ab initio molecular orbital

techniques. A transferable TB model for silicon is found by fitting the energies of sil-

icon in various bulk crystal structures and examining the functional parametrizations

of the TB forms. The functional forms suggested by Goodwin et al for the hopping

parameters and pairwise potential are introduced in this chapter.

In the GSP model, the TB parameters were restricted to the first neighbor shells

of the structures [27]. However, Kwon et al [24] have argued that it is impossible to

choose a unique cutoff distance in the GSP tight binding model that satisfies the con-

dition that all crystalline structures of silicon have only nearest neighbor interactions.

They addressed the problem of the GSP model in Ref. [24] and examined alterna-

tive scaling forms for the hopping parameters that can be used with a single unique

cutoff distance in molecular dynamics simulation studies of different crystalline sili-

con structures. They started with the GSP tight binding model and allowed greater

functional freedom to provide a better fit to the bulk silicon crystal structures. We

do not discuss their strategy and refer to the paper [24]. The resulting set of tight

binding parameters suggested by Kwon et al are listed and the deficiencies of their

model when applied to SW silicon hexagonal nanotubes (h-NTs) will be discussed in

the rest of the chapter.

Xu et al [23] developed for carbon a similar TB interatomic potential in which

they adopted the scaling form given by Goodwin et al for the dependence of the TB



Chapter 3: Methodology 35

hopping parameters and the pairwise potential on the interatomic separation. Their

TB model for carbon has shown to have good transferability when applied to a wide

variety of carbon structures. The parameters for the scaling forms in their model

are chosen primarily by fitting first principles or ab initio results of energy versus

nearest neighbor interatomic separation for different carbon structures with special

emphasis on the diamond and graphite. The set of TB parameters suggested by Xu

et al reproduced excellently the energy curves of the two structures [23], i.e. graphite

and diamond (See Fig. 1 of Ref [23]).

A single wall carbon nanotube is basically described as a graphene sheet (a single

layer of graphite) rolled into a cylindrical shape so that the structure is one dimen-

sional with axial symmetry. Since the set of TB parameters for carbon suggested

by Xu et al is transferable to the graphene structure [23], Dereli et al [18] [19] [20]

adopted these parameters in optimizing single wall carbon nanotube using TBMD

simulations. Dereli et al bent the graphene sheet and periodic boundary conditions

were imposed in axial direction along the tube and free boundary conditions in the

radial direction. So effectively an isolated SW carbon NT were simulated [18] [19]

[20] to investigate their physical properties using TBMD method adopted from L.

Colombo [25]. The TBMD scheme and the design of the computational tools will be

discussed in the next sections.

It is known that graphite is a stable structure for carbon, whereas for silicon

diamond structure is the most stable [1]. In other words, the sp2 hybridization is more

stable in carbon, whereas the sp3 hybridization is more stable in silicon. However,

despite the difficulties having an sp2-like (graphenelike) structure for silicon, many

researchers do not completely rule out the possibility of the existence of single wall

(SW) silicon h-NTs, i.e. silicon nanotubes with the structures of carbon nanotubes. In

the literature, two types of silicon nanotubes are studied using ab initio calculations:

SW silicon hexagonal nanotubes (h-NTs) [2] [4] [5] [7] [8] [9] [10] [11] [12] [13] and SW

silicon gear-like nanotubes (g-NTs) [5] [6] [7]. As introduced in the first chapter, SW

silicon g-NTs and h-NTs are formed by rolling the (111) sheet of the silicon diamond
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structure and silicon graphenelike sheet, respectively [5]. In this thesis, we studied

SW silicon h-NTs using the same strategy that Dereli et al [18] [19] [20] developed for

SW carbon nanotube TBMD simulations. In our studies, silicon h-NT structures are

constructed by folding a graphenelike sheet of silicon into a cylindrical shape. The

periodic boundary conditions are applied along the axial direction of the tube.

Aforementioned, Kwon et al [24] have presented a TB model for silicon that ac-

curately describes the behavior of silicon in crystalline phases. However, their model

does not give the energy curves of the hexagonal silicon graphenelike sheets. Using

the results of the ab initio studies of silicon graphenelike sheet [4] and SW silicon

h-NTs, we first determined the position of the energy curves for the graphenelike sili-

con sheet structures or namely SW silicon h-NTs, i.e. energy versus nearest neighbor

interatomic separation. Fagan et al [4] found that the silicon graphenelike sheet has a

total energy per atom value of 0.79 eV higher than the total energy per atom for the

silicon in the crystal structure. They also noted that the nearest neighbor interatomic

separation is found to be 2.25Å at equilibrium structure. Once we have determined

the position of the energy curve for the silicon graphenelike sheet structure or namely

SW silicon h-NTs, we extracted the set of TB potential parameters from the results

of the ab initio [4] calculations using a nonlinear least-squares fitting routine. We

present our basic strategy to extract the TB parameters in Section 3.2.

Before we present the results of our TBMD simulation studies of SW silicon h-NTs

in Chapter 4, this chapter offers an overview of the methods employed in this thesis.

In Section 3.1 we introduce our TBMD scheme which is presented by L. Colombo

[25] and adopted for SWCNT TBMD simulation studies by Dereli et al [18] [19]

[20], introduce the functional forms suggested by Goodwin et al [27] for the hopping

integrals and pair potentials and finally introduce the set of TB potential parameters

suggested by Xu et al [23] and Kwon et al [24] for carbon and silicon respectively.

The method that we have used to find the appropriate potential parameters for silicon

graphenelike sheet structures or SW silicon h-NTs from the ab initio results will be

presented in Section 3.2. Finally in Section 3.3 we present the method that we have



Chapter 3: Methodology 37

adopted for computing the total forces on nuclei at each MD step.

3.1 TB Matrix and Parametrizations

In order to calculate the electronic structure of a molecular system using the TB

model, we start with the many body Hamiltonian of the system written in the adi-

abatic approximation. But the TB model assumes that the total Hamiltonian can

be simplified into a series of reduced one electron Hamiltonians [25], [28] i.e. that

each electron feels an average field made up of the nuclei and all other electrons.

Furthermore, single particle wave functions are represented as a linear combination

of atomic orbitals, i.e. ψn = Σic
n
i φi, where ψn is the nth single particle wave function

and the set of atomic orbitals {φi} is our basis set. Finally, the energy eigenvalues of

the single particle states are found by solving the Schrödinger equation

(Hij − εnSij)c
n
i = 0 (3.1)

where εn is the nth eigenvalue and cn
i is the ith component of the nth eigenvector.

And we have

Hij = 〈φi|H|φj〉 (3.2)

Sij = 〈φi|φj〉 (3.3)

where the indices i and j run over all the basis elements, i.e. atomic orbitals. For

an orthogonal basis set, Sij is simply a unit matrix. When the basis set is a set

of atomic orbitals, Sij = 0 only if orbitals are on the same atom, however it is not

true if the orbitals are on different atoms. Therefore, for the non-orthogonal basis

set, the overlap integrals
∫

φiφjdr must be calculated explicitly. The evaluation of

overlap integrals causes a high computational workload [25] [18] [19] [20]. However

it is possible to define an orthogonal set of orbitals, which are known as Löwdin

orbitals. Hypothetical basis orbitals are centered around each ion with the same

angular symmetries of single atom eigenstates. In other words, the non-orthogonality

of basis orbitals is neglected and a new orthogonal basis set is defined. Now we
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have Sij = δij. Furthermore, in order to represent the |φi〉 basis orbitals in a more

convenient way, we use two labels, i.e. |φlα〉, where α refers to the ion around which

the orbital is centered and l is the quantum number index referring to the orbital

type. The energy eigenvalue equation finally reduces to

(〈φlα|H|φl′α′〉 − εnδll′δαα′)c
n
lα = 0 (3.4)

It is clear that in a system consisting of n atoms with Z valance electrons per

atom, the electronic Hamiltonian matrix, 〈φlα|H|φl′α′〉, of dimension nZ × nZ will

be constructed at each time step of the simulation. Within our semi-empirical TB

model, we make a number of simplifications to the electronic Hamiltonian matrix.

The elements of the Hamiltonian matrix are evaluated by fitting a suitable database

obtained either from experiments or by first principles methods. In this thesis, sp3

basis set is used for the carbon and silicon structures, i.e. one s and three p orbitals per

atom. Consequently, the diagonal elements of the electronic Hamiltonian matrix are

simply the atomic orbital energies of the corresponding atom labeled by α. For carbon

and silicon molecular systems, the diagonal elements of the matrix 〈φlα|H|φl′α′〉 are

Es and Ep, which are adjusted so that an isolated carbon or silicon atom in the ground

state is at zero energy. These are [23], [24]:

Atomic orbital energies Carbon Silicon

Es (eV) -2.99 -5.25

Ep (eV) 3.71 1.20

In addition, the off-diagonal elements of the electronic Hamiltonian matrix correspond

to the hopping integrals between atoms. They are simply described by a set of

orthogonal sp3 two-center hopping parameters hγ, where γ denotes the four tight-

binding overlaps, ssσ, spσ, ppσ, ppπ. The hopping parameters for carbon and silicon

are well known [23], [24]:
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Hopping Parameters Carbon Silicon

hssσ(r0) (eV) -5.0 -2.038

hspσ(r0) (eV) 4.7 1.745

hppσ(r0) (eV) 5.5 2.750

hppπ(r0) (eV) -1.55 -1.075

In general, of course, the hopping parameter hγ has to depend on the interatomic

distance, and our model does that. In our TB model, hγ is calculated for fixed

interatomic distances, and then is allowed to vary according to a scaling function

sγ(r) as

hγ(r) = hγ(r0)sγ(r) (3.5)

where hγ(r0) is the tight-binding overlap at the fixed nuclei geometry. Here, r0 denotes

the nearest neighbor atomic separation in the equilibrium structure. Furthermore, the

functional form suggested by Goodwin et al [27] for the scaling function that we have

adopted in our calculations is

sγ(r) = (
r0

r
)n exp{n[−(

r

rcγ

)ncγ + (
r0

rcγ

)ncγ ]} (3.6)

where r0 is the nearest neighbor atomic separation. For the parameters n, ncγ and

rcγ see the reference papers [23], [24].

Once we construct the electronic Hamiltonian matrix, we can simply obtain the

electronic band structure energy Ebs by diagonalizing the TB matrix, and thereby

summing over all the single electron energy eigenvalues [25]:

Ebs =
∑
n

εnf(εn, T ) (3.7)

where f(εn, T ) is the Fermi-Dirac distribution. In addition, the effective repulsive

potential Erep due to the interactions among ion cores can be expressed as a sum of

appropriate pair potentials:

Erep =
∑
α

f [
∑

β

φ(rαβ)] (3.8)
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Then the total energy of the molecular system with ion cores and valance electrons

can be written as

Etotal = Ebs + Erep. (3.9)

In Eq. (3.8), φ(rαβ) is the appropriate pair potential between atoms α and β, which is

in the form suggested by Goodwin et al [27]. In addition, f is a functional expressed

as a 4th order polynomial.

φ(r) = φ0(
d0

r
)m exp{m[−(

r

dc

)mc + (
d0

dc

)mc ]} (3.10)

f(x) =
4∑

n=0

Cnxn (3.11)

where x is the sum of the pair potentials from the neighbors of an atom.

3.2 TB Potentials for Carbon and Silicon

In the suggested forms of the pair potential φ(r) and scaling functions sγ(r) for both

carbon [23] and silicon [24] molecular systems, short-range interactions are assumed

and only the nearest neighbor interactions are taken into account. Therefore, the

coefficients in Eq. (3.10) and Eq. (3.6) are determined by requiring that φ(r) and

sγ(r) go smoothly to zero at the cutoff distance, which is between the nearest neighbor

and the next nearest neighbor distance of carbon or silicon atoms in the SW carbon

NTs and silicon h-NTs. The parameters for the two-body pair potentials φ(r) and

the coefficients of the functional f(x) =
∑4

n=0 Cnx
n that are suggested for carbon and

silicon by Xu et al [23] and Kwon et al [24] are
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Two-body parameters Carbon (Ref. [23]) Silicon (Ref. [24])

m 3.30304 6.8755

mc 8.6655 13.017

dc (Å) 2.1052 3.66995

d0 (Å) 1.64 2.36

C0 (eV) -2.5909765 0

C1 (eV) 0.5721151 2.1604385

C2 (eV) -1.7896349× 10−3 -0.1384393

C3 (eV) 2.3539222× 10−5 5.8398423× 10−3

C4 (eV) -1.2425117× 10−7 -8.0263577× 10−5

Aforementioned the TB model presented by Xu et al [23] for carbon is transferable to

the graphene structure and the results that Dereli et al [18] [19] [20] have obtained by

adopting this model in TBMD simulation studies of SWCNTs are in good agreement

with those obtained from ab initio calculations. However, the TB model presented

by Kwon et al [24] for silicon does not give the energy curve of the hexagonal silicon

graphenelike sheets. Using a nonlinear least-squares fitting routine, we determined

the set of TB potential parameters for silicon graphenelike sheet structures or SW

silicon h-NTs from the results of the ab initio calculations [4].

For the convenience of molecular dynamics simulation, we require the pair poten-

tial φ(r) and scaling functions sγ(r) to go smoothly to zero at some designated cutoff

distance. In our TB model for silicon h-NTs, we choose a cutoff distance of 3.6Å.

Indeed, the scaling functions sγ(r) for the TB hopping matrix elements go to zero

smoothly at 3.6Å (See Fig. 1 of Ref [24]). Therefore, our basic strategy is as follows:

For the set of tight binding parameters (hγ, n r0, rcγ, and ncγ) suggested by Kwon et al

[24] the energies of the silicon h-NT are fitted to the ab initio results with a nonlinear

least-squares fitting routine to extract values for the two-body functional parameters

(φ0, d0, dc, m, and mc, Cn). Fagan et al [4] found that the silicon graphenelike sheet

has a total energy per atom value at T = 0K of 0.79 eV higher than the total energy

per atom for the silicon in the crystal structure. They also obtained a number of
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Figure 3.1: Total energy Etot per atom of silicon in the (10,0) SW silicon h-NT
structure as a function of nearest neighbor distance r. The position and the shape of
the curve is determined from the results of the ab initio calculations [4] and using the
analogy between SW carbon NTs and SW silicon h-NTs.

the order of 0.04 eV/atom to curve the sheets into a cylinder to form a silicon (10,0)

h-NT. In addition, they reported that the nearest neighbor distances for the (10,0)

h-NT at equilibrium is around 2.245Å [4]. From their results and using the analogy

between SW carbon NTs and SW silicon h-NTs we determined the position and the

shape of the energy curve for (10,0) SW silicon h-NT. Finally, we concluded that once

we determine the band structure energy per atom value for (10,0) silicon h-NT, the

repulsive energy contribution to the total energy can be obtained by subtracting the

the band structure energy from the calculated T = 0K total energy/atom.

TB hopping matrix elements hγ are scaled properly for silicon graphenelike sheet

and silicon h-NTs in the TB model suggested by Kwon et al [24], i.e. they smoothly

go to zero at the designated cutoff 3.6Å which is between the first neighbor and the

next nearest neighbor distance. Therefore the TB parameters required for describing

the electronic structure of silicon h-NTs are obtained from Kwon’s work on the TB

model for silicon. These parameters (hγ, n r0, rcγ, and ncγ) are introduced in Section

3.1. We have calculated the band structure energy of silicon (10,0) h-NT using these



Chapter 3: Methodology 43

2.20 2.22 2.24 2.26 2.28 2.30
rHAL

-22.0

-21.5

-21.0

-20.5

EbsHrLHeVL

Figure 3.2: Band structure energy Ebs per atom of silicon in the (10,0) silicon h-NT
structure as a function of nearest neighbor distance r. The circles are the results of
the semi-empirical TB calculation using the TB parameters suggested by Kwon et al
[24]; the solid line is the fitting third order polynomial function.

parameters at various interatomic separations and we have obtained the band struc-

ture energy function Ebs(r). Then we have determined the repulsive energy function

Erep(r) by subtracting the band structure energy function Ebs(r) from the ab initio

[4] calculated total energy function Etot(r), i.e.,

Erep(r) = Etotal(r)− Ebs(r) (3.12)

Finally, the resulting repulsive energy function Erep(r) is fitted with a nonlinear

least-square fitting routine to the functional form Erep =
∑

α f [
∑

β φ(rαβ)]. Unlike the

GSP model, repulsive energy is not a sum of pair potential φ(rαβ)] in our model. The

repulsive energy is a sum of a functional f of the pair potential φ(rαβ)], similar to the

expressions in the TB models of Xu et al [23] and Kwon et al [24]:

φ(r) = φ0(
d0

r
)m exp{m[−(

r

dc

)mc + (
d0

dc

)mc ]} (3.13)

f(x) =
4∑

n=0

Cnxn (3.14)
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Figure 3.3: Repulsive energy Erep per atom of silicon in the (10,0) SW silicon h-NT
structure as a function of nearest neighbor distance r obtained by subtracting Ebs(r)
from the total energy function Etotal(r)
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Figure 3.4: Radial dependence of the repulsive pair potential φ(r) as a function of
separation r between atoms, as given by Eq. (3.13)
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In our fitting we required that φ(r) go smoothly to zero at the cutoff distance, which

is between the nearest neighbor and the next nearest neighbor distance silicon atoms

in the SW silicon h-NTs. The repulsive pair potential φ(r) and the embedding energy

function are plotted in figures 3.4 and 3.5.

Our work on SW carbon NTs with various chiralities using the tight binding model

presented by Xu et al [23] for carbon have shown that the band structure energy

governs the total energy of the tube. For SW carbon NTs with different layer values

and chiralities we have obtained similar values for the repulsive energy per atom. It

is well known that the equilibrium nearest neighbor distances for the SW carbon NTs

with different chiralities are around 1.42Å [1]. As long as the SW carbon NT remains

stable with small fluctuations from the equilibrium structure, the repulsive energy

remains the same for each tube structure. It is expected since for a given set of tight

binding two-body potential parameters [23] the repulsive energy of the tube depends

only on the interatomic separation, which is the same at equilibrium, i.e. 1.42Å, for

the SW carbon NTs with different chiralities. Therefore, the position of the total

energy curves for different nanotubes are determined by the band structure energy of

the tube. (See Fig. 3.6)

Çıracı et al [10] reported similar average distances between nearest silicon atoms

in SW silicon h-NTs with different chiralities. The nearest neighbor distances for the

SW silicon h-NTs are around 2.22Å. Similar to SW carbon NTs, in our tight binding

calculations the repulsive energy of SW silicon h-NTs with different chiralities are the

same as long as the tubes remain stable. Furthermore the contribution to the forces

on each silicon atom due to the repulsive potential energy does not affect the stability

of the tube. Following the results obtained by Çıracı et al we conclude that the set

of tight binding two-body potential parameters that we have found for (10x0) can be

used for TBMD simulations of SW silicon h-NTs with different chiralities.
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Figure 3.5: The embedding energy function f(x) plotted as a function of x [See Eq.
(3.14)]. x is the sum of the pair potentials from the neighbors of an atom.
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Figure 3.6: Total energy Etot per atom of (10,0) (the upper curve) and (10,10) (the
lower curve) SW carbon NTs as a function of nearest neighbor distance r. The circles
are the results of the TB calculation using the TB parameters suggested by Xu et al
[23].



Chapter 3: Methodology 47

The resulting TB two-body potential parameters

for SW silicon h-NTs:

m 11.31

mc 10.08

dc (Å) 3.24

C0 (eV) 15.601913204

C1 (eV) -2.810801971× 10−2

C2 (eV) 8.394181545× 10−2

C3 (eV) -7.249640335× 10−3

C4 (eV) 2.246487249× 10−4

3.3 Hellmann-Feynman Contribution to the Atomic Forces

For a molecular system in the adiabatic or Born-Oppenheimer approximation, as we

discussed in the third section of this chapter, the Hellmann-Feynman theory provides a

convenient means to compute the forces on the nuclei. Once we calculate the adiabatic

electronic energy eigenvalues of single electron states and thereby the band structure

energy of the system by summing energy eigenvalues up to the highest occupied level,

we can solve the nuclear dynamics problem using the band structure energy as the

adiabatic potential for the nuclei [25].

In addition, the contribution to the total force on the nuclei due to the effective

repulsive potential can be trivially calculated. In fact, the repulsive potential is known

analytically. (See Section 3.2 and Ref. [23], [24]) Finally, the total force on each of the

nuclei is used in the classical molecular dynamics stage of the simulation to update

the nuclei positions, velocities and accelerations.

Nuclear motion is governed by the Hamiltonian

HN = TN + Vn + Erep (3.15)

where TN is the kinetic energy of the nuclei, Erep is the repulsive energy due to nuclear-

nuclear interactions, and Vn correspond to the adiabatic potential for the nuclear
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motion in the Born-Oppenheimer approximation (See Section 2.3 and Ref. [32], [33],

[30]). The forces needed to move nuclei are calculated from the two potential terms,

the adiabatic potential Vn and the repulsive potential Erep. The adiabatic potential

Vn is equal to

Vn = Ebs =
∑
n

εnf(εn, T ) (3.16)

According to the Hellmann-Feynman theory (See Section 2.3 and Ref. [33]), the

contribution to the forces on the nuclei due to the adiabatic potential can be ob-

tained by simply calculating the negative gradients of the adiabatic electronic energy

eigenvalues. The force acting on the ith nucleus due to the adiabatic potential is

−→
f i = − ∂

∂−→r i

∑
n

εnf(εn, T ) = −∑
n

〈ψn| ∂H

∂−→r i

|ψn〉f(εn, T ) (3.17)

where H is the reduced single electron Hamiltonian. The TB approach requires that

Hψn = εnψn (3.18)

where ψn is the wave function, which describes the nth single electron state and εn is

the corresponding energy eigenvalue. In our TB formulation, the non-orthogonality

of basis orbitals is neglected and a new orthogonal basis orbital set |φlα〉 is defined

(Löwdin orbitals) [25]. Here l is the quantum number index referring to the orbital

type and α labels the ion around which the orbital is centered. Therefore, the sin-

gle particle wave function is expressed as a linear combination of orthogonal atomic

orbitals:

ψn =
∑

lα

cn
lα|φlα〉 (3.19)

Consequently, we have

〈ψn| ∂H

∂−→r i

|ψn〉f(εn, T ) =
∑

lα

∑

l′α′
cn
l′α′〈φl′α′| ∂H

∂−→r i

|φlα〉cn
lα (3.20)

The products 〈φl′α′|H|φlα〉 correspond to the elements of the single particle Hamilto-

nian, i.e. Hlαl′α′ . However, in our TB model, as noted in the previous section, the

matrix elements are calculated for fixed interatomic distances and allowed to vary
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according to the scaling function s(r). (See Eq. (3.6)) We have

Hlαl′α′(r0) = 〈φl′α′|H|φlα〉 (3.21)

where r0 is the nearest neighbor separation at the equilibrium structure. Then

Hlαl′α′(rαα′) = s(rαα′)Hlαl′α′(r0) = s(rαα′)〈φl′α′|H|φlα〉 (3.22)

Finally, the force on the ith nucleus due to the adiabatic potential is given by

−→
f i = − ∂

∂−→r i

∑
n

εnf(εn, T ) = −∑
n

〈ψn| ∂H

∂−→r i

|ψn〉f(εn, T )

= −∑
n

f(εn, T )
∑

lα

∑

l′α′
cn
l′α′〈φl′α′| ∂H

∂−→r i

|φlα〉cn
lα

= −∑
n

f(εn, T )
∑

lα

∑

l′α′
cn
l′α′

∂Hlαl′α′(rαα′)

∂−→r i

cn
lα

(3.23)

where the matrix elements Hlαl′α′(rαα′) are defined in Eq. (3.21)

In the above derivation we left out the repulsive potential energy function Erep.

Since it is known analytically, the forces due to Erep can be calculated straightfor-

wardly. To find the total force on the ith nucleus, the contribution due to the repulsive

potential energy, −∂Erep

∂
−→r i

, is trivially added to the Hellmann-Feynman forces.



Chapter 4: Results and Discussion 50

Chapter 4

RESULTS AND DISCUSSION

In our calculations, we have used the TBMD algorithms involving the above men-

tioned two-body potential parameters together with the tight binding parameters for

band structure energy calculations adopted from the work of Kwon et al [24]. All

the simulations presented in this work are carried out in the canonical (NVT) ensem-

ble. A periodic boundary condition is applied in the axial direction. The Newtonian

equations of motion are integrated using the velocity Verlet algorithm with a time

step equal to 1 fs. To avoid an inaccurate integration, the velocities of the constituent

atoms are occasionally rescaled to maintain the temperature of the system at the

target value. Before starting the production phase of the simulations, a careful study

of the time step is done. In our simulations studies, we have chosen the time step to

be 1 fs, which is adequate and widely used in simulations of atomic motions.

Our results show that the total energy per atom decreases with increasing diameter

both for the armchair and zigzag silicon h-NTs. To reveal the structural and energetic

features of silicon h-NTs, we have studied various tubes with different diameters and

chiralities. Chirality, radius and the calculated total energy per atom value are given

in tabular form below for each silicon h-NT that we have studied in this thesis.
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Type Chirality Radius (Angstroms) Total Energy / Atom (eV)

zigzag (4,0) 2.54025503 -3.633640722

zigzag (5,0) 3.14582542 -3.697235337

zigzag (6,0) 3.75595820 -3.740119148

zigzag (8,0) 4.98288949 -3.775546569

zigzag (9,0) 5.59817862 -3.786355265

zigzag (10,0) 6.21419018 -3.794399753

zigzag (13,0) 8.06487713 -3.808708760

zigzag (17,0) 10.5357191 -3.817373606

armchair (3,3) 3.26570374 -3.702285770

armchair (5,5) 5.38914145 -3.783077559

armchair (6,6) 6.45606254 -3.797763123

armchair (7,7) 7.52442725 -3.806600907

armchair (8,8) 8.59368655 -3.812328984

armchair (9,9) 9.66353901 -3.816251426

armchair (10,10) 10.7338052 -3.819054244

A. Energetics and Stability

Using TBMD simulation method, we obtained total energy (eV/atom) values for

the SW silicon h-NTs with chiralities (6,6), (7,7), (8,8), (10,0) as a function of simu-

lation time. (See figure 4.1) In our calculations, the hexagonal tubes maintain their

shape for little disturbance of atoms up to around 3000 MD steps. The bondlengths

between neighboring silicon atoms in the nanotube structures, which is 2.245Å, varied

little among the nanotubes. Silicon nanotubes are stable around up to 3 ps and then

deviations from the ideal structures occur. After 3 ps of equilibration time one atom

is detached and the number of detached atoms increases as the simulation proceeds.

In Fig. 4.1 sharp peaks after 3 ps of relaxations indicate the detachment of atoms.

They are highly metastable structures. In addition, it is observed that small diameter

nanotubes collapse more easily.
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Figure 4.1: Total energy (per atom) for SW silicon h-NTs with chiralities (6,6),
(7,7), (8,8), (10,0) as a function of simulation time. Bond breakings between the
silicon atoms around 3ps. The number of detached atoms increases as the simulation
proceeds.
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Figure 4.2: Total energy (per atom) for SW (6,6) silicon h-NT as a function of
simulation time at various temperatures. As the temperature increases, nanotube
collapse more easily.
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Figure 4.3: Total energy (per atom) for SW (10,0) silicon h-NT as a function of
simulation time at various temperatures. As the temperature increases, nanotube
collapse more easily.
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Figure 4.4: Examples of the detachment of atoms during TBMD simulations.

Our predictions about the stability of silicon h-NTs show similar results from

Fagan et al [4] [11]. Fagan and coworkers explored the possibility of the existence

of silicon h-NTs. They emphasized that the energy differences between the total

energies per atom for the tubes and the corresponding bulks is much bigger for silicon

structures, compared to the carbon structures. This implies the very improbable

appearance of a silicon nanotube, namely a single walled silicon h-NT.

Çıracı et al reported their analysis of silicon h-NT in [?]. The ab initio molecular

dynamics calculations showed that nanotubes with small diameters transform into

clusters even at low temperatures. On the other hand, they reported that silicon

nanotubes with relatively large diameters remained stable up to 0.5 ps at higher

temperatures up to 800K. Structural instability of the tubes is enhanced at higher

temperatures [10].

To further study the stability of silicon h-NTs, we examined temperature effects.

During MD simulations, the position and the velocity of each atom is calculated at

each time step. A temperature scale is used

1

2
mv2

i =
3

2
kBT (4.1)
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Temperature affects the structural properties and stability of silicon h-NTs. Tem-

perature effect is examined for the armchair (6,6) and zigzag (10,0) tubes. (Figure

4.2 and Figure 4.3) As the temperature increases, nanotubes collapse more easily. In

the temperature range between 0.1-100K, our silicon h-NTs become less stable with

increasing temperature. Zhang et al [6] found that silicon nanotubes can exist in

the structures analogous to those of SWCNTs at 0.1K. But they did not mention

the time duration that the tubes exist stably at 0.1K. Moreover, they explored the

stability of silicon nanotubes at higher temperatures. They found that considerable

structural deformations can occur when the temperature was raised to 10− 30K.

B. Electronic Structure

Fagan et al [4] [11] established theoretical similarities between silicon h-NTs and

SWCNTs. Their results showed that the electronic and structural properties of silicon

nanotubes are similar to those of carbon nanotubes. They found that the armchair

nanotubes are metallic and all other nanotubes present an energy gap. On the other

hand, Çıracı et al [10] analyzed more systematically the electronic structure of silicon

h-NTs. Their analysis showed that zigzag single wall silicon h-NTs are metallic for

6 ≤ n ≤ 11 and a band gap starts to open for n ≥ 12. The reason for variety of

results may be that different methods used.

In our studies, electronic density of states are obtained for the armchair (9,9),

(10,10) and zigzag (5,0), (10,0) SW silicon h-NTs. We have shown that, depending

on chiralities, as happens to carbon nanotube structures, they may present metallic

or semiconducting behaviors. Figure 4.4 shows the calculated electronic density of

states. We have found that the armchair nanotubes with chiralities (9,9), (10,10) are

metallic and the small diameter zigzag nanotube with chirality (5,0) is semiconductor

whereas the (10,0) zigzag nanotube is metallic. In Figure 4.4 the density of electronic

states at the Fermi energy (EF = 0) is finite for metallic (9,9), (10,10) and (10,0)

nanotubes, but zero for semiconducting zigzag (5,0) nanotube. Our results are in a

good agreement with the results of ab initio calculations by Çıracı et al.
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Figure 4.5: The calculated electronic density of states for the armchair (9,9), (10,10)
and zigzag (5,0), (10,0) SW silicon h-NTs.
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C. The Strain Energy

Dresselhaus et al [1] have discussed the elastic properties of SWCNTs. By rolling

a graphene sheet to form a SWCNT the total energy of the tube is increased with the

curvature of the nanotube. The strain energy thus increases with decreasing nanotube

diameter, so that a nanotube with small diameter may be less stable than a nanotube

with a larger nanotube Dresselhaus et al. In other words, the stability of a nanotube

of particular chirality will depend on the strain energy associated with chirality.

Moreover, the energy associated with the curvature of a h-NTs should vanish in

the limit as the cylindrical structure becomes a flat sheet [35]. In their study of

energetics of SWCNTs, Gao et al [35] modeled the basic energetics of the nanotubes

by approximating the nanotube as a membrane with a curvature 1
rt

and bending

modulus [34] of κ. When we consider a silicon h-NT as an elastic sheet, the strain

energy Estrain is inversely proportional to the diameter of the nanotube, rt. Assuming

h as the thickness of the sheet, from which nanotubes are formed, the strain energy

per unit area is given by [35]
Estrain

A
=

κh3

24r2
t

(4.2)

and the strain energy per atom is given by

Estrain

N
=

Aκh3

N24r2
t

(4.3)

where N is the total number of atoms. Radius of curvature is also equal to the mean

radius of the nanotube. Considering that the number of atoms in the nanotube wall

is equal to N = 2πrtLρ and the area of the sheet is A = 2πrtL, where L is the length

of the nanotube and ρ is the number density. Finally we have

Estrain

N
=

κh3

ρ24r2
t

(4.4)

and
Etotal

N
=

κh3

ρ24r2
t

+ E0 (4.5)

where E0 is the energy per atom for the nanotubes as 1
rt

goes to 0, i.e. flat sheets.
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Figure 4.6: The calculated total energy (per atom) for (n, 0) zigzag and (n, n) armchair
single walled silicon h-NTs as a function of the nanotube diameter.

The strain energies of zigzag and armchair silicon hexagonal nanotube structures

have also been obtained by Barnard et al [9] on the basis of DFT calculations. They

have shown that we can understand the functional dependence of the strain energy

of a silicon h-NT from the simple arguments given for an elastic thin film. In their

studies, the argument for the dependence of strain energy per particle Es

N
on 1

r2
t

for

a silicon hexagonal nanotube is confirmed by an ab initio calculation of the strain

energies of many zigzag and armchair h-NTs with different diameters.
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Figure 4.7: The calculated total energy (per atom) versus the inverse square of the
nanotube radius for (n, 0) zigzag and (n, n) armchair single walled silicon h-NTs.
Linear fits are used to determine the strain energies.
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In figure 4.7, we have plotted the obtained total h-NT energy (per atom) values

versus 1
r2
t
. Using the simple argument for an elastic thin film, from the linear fits,

the intercepts give an estimate of the energy of flat graphenelike silicon sheets. We

obtained graphene-like structure energy (per atom) values for the armchair and zigzag

h-NT structures, as -3.8308 eV and -3.82742 eV, respectively. These results are in an

agrement with the ab initio calculated total energy value of 3.83 eV by Fagan et al

[4]. In addition, the slope of each fit give a value of 1.37225 eV for the armchair h-NT

structure and 1.25945 eV for the zigzag structure. This result suggests the chirality

dependence of the strain energy. A similar result has been obtained by Barnard et

al, i.e. the strain energy for a zigzag (n,0) h-NT is lower than the stain energy of an

armchair nanotube (n,n), for the same value of n [9].
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Chapter 5

CONCLUSION

In this thesis, a systematic study about the possible stability of silicon hexagonal

nanotubes (hNTs) is presented. We investigated the effects of chirality and diameter

on their energetics, structural, and electronic properties. The ab initio structural and

electronic properties of hypothetical h-NTs are given and compared with the results

of our calculations.

Single walled silicon hNTs are built in analogy with SWCNTs. We studied SW

silicon h-NTs using the same strategy that Dereli et al [18-22] developed for SWCNT

TBMD simulations. Silicon hNTs are simply constructed by folding a graphenelike

sheet of silicon into a cylindrical shape. Graphenelike silicon sheets are formed with

the ab initio calculated nearest neighbor separation. Then we bent the graphenelike

silicon sheet and periodic boundary conditions were imposed in axial direction along

the tube and free boundary conditions in the radial direction.

First we optimized the silicon h-NTs having the same predicted total energy values

reported in the literature. We obtained appropriate tight-binding potential parame-

ters by fitting the results of ab initio calculations. Then starting with an initial tube

structure, we considered the evolution of the system. In our calculations, electronic

effects are treated in a natural way using a tight binding approximation method. A

detailed explanation of the TBMD simulation techniques that we have employed is

presented.

All the simulations presented in this work are carried out in the canonical (NVT)

ensemble. Silicon hNTs exist stably around up to 3 ps and atoms are detached after

3 ps, according to our TBMD simulation studies. Our calculations revealed that

the silicon h-NTs, formed by rolling up hexagonal graphenelike silicon structures are
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metastable structures.

Predictions about the electronic properties of this material is presented. In ad-

dition, electronic properties of SWCNTs and those of silicon h-NTs are compared.

Finally, we obtained strain energies of silicon h-NTs. Using the simple argument for

an elastic thin film, from the linear fits, we estimated the energy of flat graphenelike

silicon sheets. Moreover we showed the chirality dependence of the strain energy.
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