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ABSTRACT 

 

Drug design is a highly expensive process that may take several years for a drug to be 

commercially available.  Most of the effort for this purpose is spent on unsuccessful ligands 

wasting the resources and considerable amount of time.  Therefore, developing 

computational tools for drug design has become one of the most widely studied areas in the 

past two decades.  The aim of these studies is coming up with increased number of 

candidates while eliminating the deficient candidates beforehand.  Structure-based drug 

design is a branch of such computational methods that is based on the fact that a drug has 

to be structurally and electrostatically compatible with its target protein’s active site.   

This thesis proposes various methods and algorithms for different stages of the 

structure-based drug design process.  An algorithm called SLICE for the mathematical 

representation of active sites of proteins is presented.  With this method, active sites can be 

represented as a union of convex hulls.  The outputs are planned to be used as geometrical 

constraints for an optimization model for fragment-based drug design.  For this model, 

ideas and propositions were presented in this thesis, including the necessary parameters, 

variables and constraints to be used.  These are yet open to discussion and are merely 

offered as a starting point for the development of the model.  In addition, a QSAR 

methodology for early prediction of drug activities is proposed.  This study proposes a 

series of methods to be applied composed of a regression study, a home-made classification 

method based on hyper-boxes and significance testing. 

The active site representation is applied on four different proteins and is observed to be 

covering the active site successfully for buried active sites, while a modified version of the 

algorithm is proposed for sites open to outer space.  The QSAR method is applied on a 

dataset of 45 DHP derivatives and the methodology is seen to be providing more accurate 

results than the reference methods available in the literature. 
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ÖZETÇE 

 

Bir ilacın tasarlanıp piyasaya sürülmesi, yıllar alabilen oldukça pahalı bir süreçtir.  

Emeğin çoğu başarısız molekülleri incelemek için  harcanmakta; bu da kaynakların ve 

zamanın boşa gitmesine neden olabilmektedir.  Bu nedenle, ilaç tasarımı için hesaplamalı 

metotlar geliştirme alanı son yirmi yıldır üzerinde çokça çalışılagelen bir konu olmuştur.  

Bu çalışmaların amacı, hem daha fazla ilaç adayı oluşturabilmek, hem de başarısız olacak 

adayları önceden belirleyip elemektir.  Yapı bazlı ilaç tasarımı da bu tip hesaplamalı 

yöntemlerin bir dalı olup bir ilacın hedef enziminin aktif bölgesiyle yapısal ve elektrostatik 

uygunluğa sahip olması gerekliliğine dayanmaktadır.   

Bu tez, yapı bazlı ilaç tasarımının çeşitli aşamaları için çeşitli metotlar ve algoritmalar 

önermektedir.  Proteinlerin aktif bölgelerinin matematiksel ifadesi için SLICE adlı bir 

algoritma sunulmaktadır.  Bu metotla aktif bölge, bir dışbükey örtüler  birleşimi olarak 

ifade edilmektedir.  Bu algoritmanın çıktıları, ileride ilaç tasarımı için oluşturulacak bir 

eniyileme modelinin geometrik kısıtları olarak kullanılabilecektir.  Bu tezde, bahsedilen 

eniyileme modeli için fikirler ve öneriler sunulmakta, gerekli olacağı düşünülen 

değişkenler, parametreler ve kısıtlar sıralanmaktadır. Bunlar sonradan geliştirilmek üzere 

bu model için bir başlangıç noktası olması amacıyla oluşturulmuştur.  Bunlara ek olarak, 

erken ilaç aktivitesi tahmini için bir “hesaplamalı yapı-aktivite ilişkisi” metodolojisi 

önerilmektedir.  Bu çalışma, regresyon araştırması, çok boyutlu kutu bazlı bir sınıflandırma 

metodu ve anlamlılık sınamasından oluşan bir dizi metottan oluşmaktadır. 

Aktif bölgelerin ifadesi dört ayrı protein üzerinde uygulanmış ve gömülü bölgelerin 

başarıyla kaplanabildiği görülmüş, tam gömülü olmayan bölgeler için ise algoritmanın 

modifiye edilmiş hali önerilmiştir.  Hesaplamalı yapı-aktivite ilişikisi metodu 45 DHP 

türevi üzerinde uygulanmış, referans metotlardan daha doğru sınıflandırmalar elde 

edilmiştir. 
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Chapter 1 

 

INTRODUCTION 

 

 

1.1. The Drug Design Process 

 

According to the 16th report of World Health Organization (WHO) on drug 

dependence, a drug in the pharmacological sense is “any chemical agent that alters the 

biochemical physiological processes of tissues or organisms [1].  Drugs are substances used 

as corrective measures against deviances from normal biological processes.  In general, 

they are designed to bind proteins (in most cases enzymes) having important roles in the 

metabolic pathway of a disease and to inhibit their activities.   

Drug discovery is a cumbersome and expensive practice.  To make a drug be 

commercially available, on the average, 10 drug candidates among millions of alternatives 

can survive to be tested on humans [2].  Before computational techniques were realized, the 

amount of time that was needed to commercialize a single drug was in the order of 5 years 

and the amount of money invested was in the order of $2,000,000,000 per drug approved.   

The search for new drugs has considerably paced in the past decades thanks to the 

enhancing number of three dimensional protein structures on hand obtained by X-ray 

crystallography and NMR (nuclear magnetic resonance) spectroscopy methods, and to the 

advances in computational and visualization methods.   Observing the structures of the 

active sites of proteins provides an understanding as to exploiting the Fisher’s lock and key 

model for drug design purposes [3], where the “locks” correspond to the active sites and 
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“keys” are the ligands to be designed, which will fit the lock geometrically and 

electrostatically, and the complex should also have a favorable energy [4].  Therefore, as 

the number of structurally available proteins increases, the amount of knowledge gained by 

the structural information also increases, which allows researchers to be able to reduce the 

size of the molecular structure sets in their quest for ligands [5].  

With the help of improved computational methods, rational drug design efforts 

considerably decrease the amount of time and resources used in the drug design process.  

Therefore, although there is need for improvement to perfect the process, structure-based 

drug design is widely used in academia and by industrial drug developers. In fact, it has 

been estimated that the computational efforts for this purpose necessitate exhausting more 

than 50% of the computer resources used in scientific research today [6].  

In rational drug design, it is critical to develop an effective methodology to mimic the 

criteria regarding issues such as specificity and efficacy as to choose the right drug 

candidates among a large set of molecules.  There are numerous computational drug design 

techniques that help diminishing the number of unsuccessful drug candidates prior to 

laboratory tests, which use different sets of such criteria in their algorithms.  Methods such 

as QSAR (quantitative structure-activity relationship) and molecular docking are widely 

used by the pharmaceutical industry for this purpose [7].  All these computational methods 

aim to minimize the number of false positives and the number of missed successful 

candidates so that the time spent in lab phases is diminished and finally to have candidates 

that are successful enough for further clinical trials at hand.   This study will focus on 

structure based computational drug design, since the developed design method falls in this 

area of research. 
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1.2. Structure Based Drug Design 

 

1.2.1. The Role of the Active Site 

 

A protein’s function depends on the interactions it makes with other proteins and 

ligands [8].  A drug molecule is designed to bind to its target protein.  The binding process 

takes place in the “active site” of the target, which is in general a pocket at the surface and 

holds the residues that are accountable for the substrate specificity (in terms of charge, 

steric interference, hydrophobicity) and the catalytic residues that are accountable for 

cofactor binding or that contain protons donors or acceptors [9].  Generally, the drug binds 

to the active site in order to inhibit another important binding process, and this course of 

action lies in the basis of structure based drug design.  In order to efficiently utilize the 

“lock and key” model that mimics the structural compatibility of the binding partners, 

firstly, the structure of the “lock” must thoroughly be examined. X-ray crystallography and 

NMR spectroscopy methods yield structures of proteins in high resolutions, allowing 

researchers to have detailed models of the active sites [3]. 

Before the actual design process begins, there are two crucial steps: one of them is the 

procedure explained above, i.e. the identification of the potential active site of the target 

molecule, and the other is the description and visualization of these sites.  The target may 

be an enzyme whose active site is already known.  But if this is not the case, discovering 

new sites and studying their appropriateness for ligand binding may be necessary [10].  It is 

suggested that on a certain protein, there may be more than one active site to target.  This is 

due to the fact that most proteins have more than one function and more than one binding 

partner with different active sites [11].  Therefore, for drug design purposes, the selected 

site may be an active site, in which catalytic activity takes place, such as the ones in 
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enzymes.  The selected site may also be a site used for communicating with other 

molecules necessary for the molecule to perform its activities [3,5,7].  Therefore, it is 

important to wisely decide which site to choose.   

Once the target site is selected, the geometrical representation of this pocket is another 

significant step in the structure based drug design process.  The volume and the accessible 

surface area of the pockets should be precisely defined and represented, since they define 

the three dimensional space that the drug molecule should bind.  For instance, representing 

the molecule in the stick and ball mode, where atoms are represented by hard spheres and 

the connections are represented by lines, provides very little information about the shape, 

and the volume of the active site [4].  There are a number of different representations of 

accessible surfaces in the literature all of which trying to capture the three dimensional 

space as closely as possible, since the drug molecule should fit in this space like a hand in a 

glove so that the affinity is maximized [10].  Active site representations in the literature is 

discussed in the Literature Review section.  

 

1.2.2. Methods of Structure Based Drug Design 

 

It can be said that there are three approaches to in silico drug design: inspection, virtual 

screening and de novo drug design.  In all these methods, the yields are not finalized drug 

products, but are compounds that have at least micro-molar affinity for the target molecule 

[7].  The lead is then modified in order to get rid of its undesired properties such as toxicity 

or insolubility, and finally is subjected to clinical trials [2].  In the first approach, generally 

a realized drug molecule that is known to fit the  active site of the target protein is slightly 

modified for maximizing the affinity by inspection, hoping that the new compounds will 

also have favorable properties [7].  In the second method, a database of available small 

molecules, which are generally modifications of certain template models, are docked into 



 
 
1. Introduction    5 

 

the active site.  Although virtual screening used to utilize libraries containing thousands of 

molecules, the trend today is more and more towards designing small libraries that are 

focused and specially designed for purpose, i.e. towards non-random screening [5,12].  The 

third approach, de novo drug design, is one of the most widely studied areas in drug 

discovery today.  In this approach, the knowledge on the structure of the target molecule is 

used in order to rationally develop novel “lead” molecules by bringing small molecules 

called “fragments” together and optimizing their conformations.  In addition, there are a 

few algorithms in the literature that handle de novo design by using atoms as building 

blocks [13]. 

In general, a main challenge in structure based drug design is predicting the orientation 

of the ligand, called “molecular docking”, and calculating the affinity of the complex.  

Therefore, docking algorithms with different scoring and optimization approaches are used 

in both virtual screening and de novo design methods.  Assuming that the three 

dimensional structure of the target molecule is known, docking methods aim to design and 

optimize a ligand structure that will fit in this active site [14].  Today, there are many 

docking algorithms, most of which sharing similar methodologies bearing original 

extensions [13].   Major algorithms, their methodologies, similarities and differences will 

be discussed in the Literature Review section. 

 

1.2.3. Apriori Analyses  

 
Prediction of designed ligands biological activities before they are subjected to lab tests 

is an important problem in drug design.  Since the amount of resources spent on a drug to 

be commercialized is really high, the possibility of wasting these resources on likely 

unsuccessful candidates should be decreased.  QSAR (quantitative structure-activity 

relationship) is one of such methods and aims to build regression models that describe the 
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activities of drugs based on experimental data and to extract activities of molecules based 

on these models [15].   The method is based on data-mining and is used frequently in the 

literature for early activity prediction purposes. 

In this thesis, a new QSAR methodology is presented.  Studies that have conducted 

QSAR research on the data set that the proposed methodology uses are explored in the 

Literature Review chapter. 

 

1.3. Contributions 

 

This thesis presents new methods and algorithms for the different stages of structure 

based drug design.  For the initial stage, a novel mathematical representation of active sites 

is presented. Then, for the design stage, a fragment library is proposed, which is to be used 

as the input of a proposed but yet-to-be-tested MINLP model for de novo design.  The 

offered model aims to minimize the energy of the binding process.  Finally, as the final 

stage, a QSAR method based on a home-made classification algorithm for drug 

effectiveness studies for elimination of unpromising drug candidates before the laboratory 

phase is presented.   

As explained in previous sections, the first step in structure based drug design is to 

identify and represent the active site of the target protein. For this purpose, this thesis 

presents a novel mathematical representation of target active sites based on convex hulls is 

presented.  There are different approaches used for representing the active site in the 

structure-based drug design literature, such as alpha-shapes, Delaunay triangulation or dot 

surfaces [4].  However, to our knowledge, no algorithm has utilized convex hulls as 

representative blocks.  The method in this study uses a greedy heuristic algorithm that aims 

to cover the accessible surface of the site by conjoint convex hulls, and characterizes the 
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space by linear inequalities, which are used as the geometric constraints of the energy 

minimization model.   

In drug design studies, once the representation of the target pocket is accomplished, the 

method to be used in the design must be decided.  Therefore, following the representation, 

the main idea about a new fragment based optimization model is proposed and the 

fragment library built for this purpose is presented.  It should, however, be noted that the 

proposed model is in the form of a concept, which is basically a list of ideas that the 

MINLP model can be based on.   

The proposed drug design method is aimed to be an optimization model itself, which 

can be claimed to be a new approach in structure based drug design.  Although operations 

research has been widely used for drug design purposes, an example to which is the genetic 

algorithm (GA) used by many docking algorithms to prune genetically undesired random 

instances of docking, all such uses of OR make iteration decisions within the main 

algorithm of the drug design method, whereas this study proposes usage of optimization as 

the ligand building process itself.  The idea of the MINLP model proposed in this thesis 

seeks to construct energetically favored leads by selecting and binding a set of molecular 

fragments subject to a set of geometric and chemical constraints, and having an objective 

function that tries to maximize the affinity and minimize the energy of the complex.  The 

fragment set that is composed for this purpose is composed of bound couples of small 

fragments that are claimed to be found frequently in ligands.  The inter-atomic distances, 

bond distances and torsional distances were also calculated to be used in the proposed 

optimization model.   

After developing candidate ligands, the scientist may want to computationally test the 

compounds activities to lower the number of molecules to be sent to laboratory.  Thus, 

lastly, this study puts forward an early prediction method to be implemented once the 

candidate molecules are designed for further elimination of molecules with undesired 
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chemical and biological characteristics so that the number of molecules to be clinically 

tested is reduced.  For this purpose, a new QSAR approach is proposed, which uses an 

integer programming algorithm [17] based on hyper-boxes for the classification phase.  The 

approach comprises an iteratively run series of optimizations and is a novel procedure that 

has achieved good accuracy results [15]. 
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Chapter 2 

 

LITERATURE REVIEW 

 

 

2.1 Representations of the Active Site 

 

Drugs are small molecules designed to inhibit certain undesired reactions within our 

body.  Although they might have various types of targets in molecular level, most try to 

bind a protein, be it an enzyme of a virus breaking down the DNA, or a protein that 

performs an important function in the pathway that the disease attacks.  Therefore, 

revelation of protein structures has great importance for drug design efforts.  A lot of 

resource and time are dedicated to solely revealing these structures [7]. 

Some proteins are the building blocks of cells and some carry out important functions 

in metabolism.  The various functions that proteins perform are dictated by their three 

dimensional conformations.  However, although having various shapes, all proteins are 

composed of the same group of units called amino acids.  Amino acids are organic 

molecules that are composed of an amino, a corboxyl, a hydrogen atom and a radical side 

chain group that are bound to a central alpha carbon atom (see Figure 2.1).  There are 20 

types of amino acids and this variety is due to the types of radical groups (side chains).  In 

a protein, amino acids are joined together by peptide bonds to form a polypeptide chain.  In 

the drug binding process, these bonds do not break, since they are covalent bonds; rather, 

noncovalent bonds are formed between the atoms of the drug molecule and the atoms of the 

side chains lying on the active  site of the protein [18].   
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Figure 2.1: Sketch of an amino acid. 

 

Active sites of proteins are generally small pockets on the surface of proteins.  As 

explained in the Introduction section, a drug should fit in the active site of the target protein 

like a hand in a glove to perform its expected functions.  The ligand and protein molecules 

should recognize each other by chemical attractions and also by compatibility of their 

structures.   Thus, considering the significance of this recognition process, one can easily 

acknowledge the fact that the starting point of any structure based drug design is the active 

site representation process [19]. 

There are many algorithms that aim to represent the active site as accurately as 

possible.  As explained below, most of these algorithms divide the space and form a grid to 

see where atoms are present and where not.  Some algorithms are based on purely 

geometric criteria while others aim to add some physical meaning to the representation 

process.   

Active site representation methods mostly rely on crystallized structures of 

macromolecules and their ligands obtained by X-ray crystallography and NMR 
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spectroscopy methods [20].  These structures are deposited in the Protein Databank (PDB) 

[21] developed by Rutgers University, New Jersey, and University of California, San 

Diego, which provides three dimensional biological macromolecular structures and tools to 

examine their associations to sequence, function, and disease.  There are 51155 structures 

as of June 3rd, 2008 in the database. 

There are three sources of information that can be used to infer ligand active site 

locations and shapes: protein structure, evolutionary information (sequence alignments) 

and ligand/substrate information [22].  If the structure of the target molecule is not known, 

homology modeling can be used.  In this procedure, a 3D model of the target protein is 

inferred from amino acid sequences of structurally similar (homologous) proteins [23].  

However, if the structure of the macromolecule is available but the crystal of its ligand is 

absent, the active site needs to be predicted.  There are various methods that accomplish 

this task by different approaches.  One approach may be identifying the “hot spots” on the 

surfaces, which certain functional groups may favor in binding [19].  Other algorithms may 

calculate pockets by geometrically finding out spaces larger than a certain threshold on the 

surface.  

In this section, major active site representation software and their methodologies are 

summarized.   
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2.1.1 Methods for Representation of Active Sites 

 

The program SURFNET [24] provides three dimensional contour surfaces using the 

density distributions of three dimensional data points.  The algorithm was developed by 

Roman A. Laskowski in 1995 and is one of the first predictive models for active site 

determination.  The program can be used to determine the locations and shapes of pockets 

and cavities of a protein as well as the space between two interacting macromolecules, such 

as a protein and its ligand. 

Gap regions between and within molecules are identified by fitting spheres in spaces 

between atoms.  For two molecules, a sphere between each atom pair (one from one 

molecule and one from the other) is placed such that it is tangent to the spheres formed by 

the van der Waals volumes of the atoms.  For an atom pair A and B, first the sphere tangent 

to this pair is formed, then, if the sphere overlaps with neighboring van der Waals volumes, 

it is shrunk so that it does not collapse with any atom but touches at least one.  Spheres 

having radii smaller than 1A° are rejected.  For each pair, this procedure is repeated.  The 

result is a set of spheres that represent the gap between the two molecules.  For 

representation of the cavities of one molecule, the same procedure is valid, only the pairs 

now belong to the same molecule. 

After forming the gap spheres, a three dimensional grid is formed, which contains the 

molecule, and grid density values for an atom are assigned to every grid point using the 

Gaussian density function: 

                                                        
2

0
kre−= ρρ  (2.1) 

where ρ is the density of a grid point that is r away from the atom, ρ0 is the density of the 

atom center and k is a constant calculated such that the ρ value is 100 at the van der Waals 

radius and 200 at the center, i.e.  
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vdWr

k 2

2ln
= .    (2.2) 

If there are covalently bonded atoms in the immediate neighborhood of the grid point, 

whose van der Waals volumes overlap, then the grid density of a grid point is the density 

value of the atom that has the maximum density value among all atom spheres that fall in 

that grid point.   

The program takes this density map to build the contours, and the surface of the gap 

region is obtained by forming the 3D contour surface built by polygons made up of all the 

interpenetrating gap spheres.  In this way, the size, and the shape of pockets and cavities 

are identified. 

POCKET [25] is one of the first algorithms that can identify pocket sites and cavities 

without the need for specifying some seed points that indicate the locations of the 

indentations.  The program automatically finds and displays the cavities as a collection of 

triangles and identifies their surrounding amino acids.   

The method commences by assigning densities to every (x,y,z) position by moving a 

sphere of radius r in the x direction, y direction and z direction separately  in discrete steps 

of size δ and checking if the center of any atom in the protein falls into the sphere in each 

position.  Then, the regions with contact and no contact are checked to see the path and 

regions of no contact surrounded contact regions are assigned a value of 1, and the 

remaining space is assigned a value of 0.  The pocket regions are accepted to be the regions 

with assignments of 1. 

After the density map is obtained, a modified version of the marching cubes algorithm 

of Knox [26].  The macromolecule is divided into cubes of size δ x δ x δ, and then the 

vertices are checked to identify different surface indentations.  Each cube is assigned a 

value to indicate to which indentation the cube belongs to.  A density value of 0 in one of 

the vertices indicates that a surface passes through the cube.  If there is such a vertex, other 
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vertices are checked to see if there is a value of 0, and if there is such a vertex, value of the 

neighbor cube, which share the same vertex is checked to see if the neighbor belongs to 

another surface.  In this case, the value of the neighbor is assigned to the current cube.  If 

there is no such neighbor, a new value is assigned.  At later iterations, some surfaces that 

belong to the same pocket will merge.  Such a case is observed when a cube has more than 

one vertex that is neighbors of cubes of different assignments.  Let there be three different 

assignments a, b and c of the cube.  Then, a merging procedure is applied, which is 

changing the values of all the cubes that have values a, b and c to a same value.  Having 

assigned the cube vertices, the surface is modeled as a set of triangles.  Also, the volume of 

the macromolecule is provided using the following formula: 

                                                        ∫=
S

ndsxV .  (2.3) 

where x is the x component of vector defining the center of a triangle, and n is the outward 

normal of the triangle 

The program is used for identifying and visualizing the pockets and cavities, calculating 

their volume and finding the amino acids surrounding them.  These are all accomplished 

without the need of any reference point, i.e., the only input that the algorithm needs is the 

PDB coordinates of the molecule. 

LIGSITE [27], a predictive program developed in 1998 by Hendlich et al., is an 

extension of POCKET [25].  The prediction procedure of LIGSITE also begins with the 

scanning algorithm of POCKET.  However, in POCKET, the grid is scanned only in x, y 

and z axes, making the program miss the pockets with an orientation of 45°  to these three 

axes.  Therefore, it can be said that the success of POCKET depends on the orientation of 

the protein in the grid.  LIGSITE gets rid of this problem by scanning the grid also along 

the four cubic diagonals. 

At the beginning, the program assigns all of the cubes in the grid a 0 value, indicating 

solvent accessible areas.  With the scanning, the cubes containing a protein atom is then 
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given a value of -1, whereas a solvent accessible cube’s value is increased by 1 when the 

cube is within two solvent inaccessible regions in each axis or diagonal scan.  Therefore, 

the solvent accessible areas have values ranging from 0 (not buried in the molecule) and 7 

(deeply buried).  Pockets are determined as neighbor cubes having values more than a 

threshold value (2 is the default threshold of LISGSITE).  Cavities are special regions 

which are composed of 7-valued cubes. 

The procedures for the geometrical representation of the surfaces and the calculation of 

the volumes are the same as in POCKET.  The main advantages of this program compared 

to POCKET are its speed and a more accurate prediction algorithm.  LIGSITE can 

distinguish pockets from cavities, and also has the adjustable threshold and step-size 

features, which enable the user to avoid or encourage identifying small bumps and to 

choose between a better representation and a faster response, respectively. 

Being an implementation of LigSite, Q-Site Finder [8] also aims to find out cavities of 

a given macromolecule for docking and drug design purposes.  The program especially 

focuses on the problem of dependence of the output pockets’ sizes on the protein’s size, 

which is claimed to be present in LigSite, POCKET, and in some other algorithms.  As in 

LigSite, Q-Site Finder divides the protein into grid points and the van der Waals energy of 

a methyl probe in each grid point is calculated.  What differentiates the program from its 

references is the clustering algorithm embedded in the main algorithm.  The probes that 

have energies above a threshold are selected and are clustered according to their closeness 

in space.  Then the total energy of each cluster is calculated, the clusters are ranked 

according to these values, and the most favorable cluster is picked as the first predicted 

active site.   

The aim of Q-Site Finder is to keep the volumes of predicted pocket sites as small as 

possible while maintaining the accuracy.  Thanks to the new clustering algorithm and better 

choice of parameters, Q-Site Finder is a more accurate and a more realistic program than its 
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reference algorithms in the sense that it catches a high percentage of the pockets while 

minimizing the number of false positives.  Purely geometrical algorithms tend to find larger 

pockets as the size of the protein gets larger, which decreases accuracy because the 

majority of the ligands are small molecules.  Q-Site Finder takes care of this problem with 

its energy-based algorithm. 

PASS (Putative Active Sites with Spheres) [28] is a computational tool that was 

developed by G.P. Brady Jr. and P.F.W. Stouten for the DuPont Pharmaceuticals Company.  

The main aim of the tool is to predict and visualize all potential active sites of a protein.  

The software is used as a front-end to virtual screening studies, predicting different active 

sites.  Therefore, it can be used when the active site is unknown, or alternative ones are 

sought.  The algorithm is fast, taking 20 seconds for a moderate sized protein to come up 

with a visual output of the active site. 

This method describes the active site as a set of probe spheres.  First, the PDB file of 

the protein is read assigning elemental atomic radii and coordinates to the atoms.  Second, 

probe spheres are placed by solving the following problem for each unique tripartite atom 

set of the protein: given the three atoms i, j, k with positions Pi, Pj, Pk, and radii σi, σj, σk, 

find position Rp of a probe sphere and its radius σp such that the sphere is exactly tangent to 

all three atoms.  With this step repeated for all possibilities, the protein is covered with 

probe spheres.  Third, the spheres are filtered according to three rules: the sphere should 

not overlap with the accretion substrate’s atoms, it should not collide with the protein’s 

atoms, and it should be buried.  The third rule is tested by counting the number of atoms 

that sits within a 8°A radius, and the spheres having this value below an empirically 

determined threshold are filtered out.  The remaining spheres are accreted onto a scaffold 

built by the previous probe spheres, new spheres are added to fill the empty spaces opened 

due to filtration, and then filtered again.  This procedure is repeated until no newly added 

sphere survives the filter.  Finally, the algorithm ends having filled all cavities and the 
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empty spaces lying in the protein with a set of evenly separated, buried probe spheres, none 

of which sterically clashes with the protein.  The program then smoothes the spheres; 

renders and colors the protein, the spheres, and ligands.   

PASS is a geometric visualization program, which allows the user to gain an insight of 

the volume and the three dimensional shape of the protein cavities, later to be used in 

docking or be interfaced with functional genomics tools. 

CAST [29] was developed by Liang et al. in 1997, which is a program that extends 

related programs of Edelsbrunner and colleagues and aims to identify pockets and cavities 

of proteins and to gain insight about quantitative measures of the three dimensional shapes 

of these structures.  The output of the program is comprised of the volume, the surface area 

of each concavity, and the atoms that build them, as well as the atoms that construct the 

mouths of pockets, the surface area and the perimeter of these mouths.  Features that were 

newly developed and not present in previous methods of Edelsbrunner et al. are the surface 

area and volume calculations. 

The algorithm uses the Delaunay triangulation [30], the alpha shape (or dual complex) 

of the triangulation, and the discrete flow method.  The difference between the Delaunay 

tessellation and the alpha shape of atom centers of the protein in three dimensions gives the 

cavities.  Having found the occupied and empty tetrahedra with these methods, the discrete 

flow method pours the “obtuse” empty tetrahedra into “acute” empty tetrahedra, merges 

them, and provides the pocket sites.  The difference between obtuse and acute empty 

tetrahedra is that none of the surfaces of the acute empty tetrahedra contain an edge on one 

of the lines that unite atom center couples, which are drawn during the alpha shape 

construction phase, while some of the surfaces of the obtuse empty tetrahedra contain such 

edges.  The mouths of the pockets are also found in this phase, which are the outer surfaces 

of the pockets that face the empty space.  The details of the alpha shape and the discrete 

flow methods can be found in [31]. 
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The program makes use of available programs.  Atomic radii are assigned by using 

PDB2ALF, 3D weighted Delaunay tessellation is made by DELCX, and to compute the 

alpha shape (dual complex), MKALF is utilized [31].  Then CAST takes the output and 

computes the volume and surface area of pockets and cavities, surface area and 

circumference of the mouth regions.  A visualization program can be used to visualize 

these structures by using the output that CAST provides. 

To conclude, CAST can identify and measure most probable active sites of proteins 

without ligands as well as the unoccupied space in active sites for drug design purposes, 

and the description of these sites is in the form of a union of three dimensional tetrahedra.   

Coleman and Sharp from the University of Pennsylvania developed the algorithm 

TravelDepth [32] in 2006, which quantitatively describes the shapes of the surface 

indentations.  The algorithm finds the “non_Euclidean macromolecule avoiding” minimum 

distance of every surface point to a reference point.  The output is a discretized 

approximation of the actual three dimensional shape of the protein.  Although they are 

unbounded in one direction, the algorithm can be used to describe tunnels and also DNA 

grooves; nevertheless, disregards the cavities that are closed empty spaces in proteins. 

“Travel depth” is defined as the minimum distance a solvent probe has to travel from a 

surface point to the reference point through the solvent.  Finding this distance is equivalent 

to the shortest path problem, which is a very well known NP hard problem in literature.  

The protein is turned into a graph by discretizing the structure into grid cubes.  However, 

before discretizing, all cavities are removed, since the probe should travel through the 

molecule to reach to the reference point.  The grid spacing should be small enough such 

that every atom of the macromolecule is represented by at least one grid point and any 

concave indent in the surface is represented by at least one grid center.  The TravelDepth 

algorithm takes the grid spacing to be 1A° for this purpose.  



 
 
2. Literature Review    19 

 

The convex hull of the macromolecule is calculated by using the readily available 

algorithm QuickHull [33] and then, the center of every grid cube is checked to see whether 

it is inside the convex hull or not.  The ones outside the convex hull are classified as the O 

class, and the ones inside the convex hull is checked once again to classify them into I, S 

and B classes, which represent the cubes inside the molecular surface and not containing 

any points of the surface, the cubes inside the molecular surface but containing a surface 

point, and the cubes between the surface and the convex hull borders respectively.   After 

this classification, a careful definition of neighbors is made for each class type to make sure 

that depth spreads into the molecular surface, i.e. into the S class cubes, but not through the 

molecule, that is into the I class cubes.  The algorithm then assigns a distance of zero for 

the O class and indefinitely large distances for B and S classes.  Then, for every neighbor j, 

distance of a cube i (di) is calculated by calculating the sum of the distance of its neighbor j 

(dj), plus the distance between i and j, and choosing the minimum among them.  That is: 

                                               )),((min jidistdd j
j

i +=   (2.4) 

where j is an element of all neighbors of i. 

The calculation begins with the O classes, assigning them a distance of zero, and 

recursively assigning distances to their neighbors and then to the neighbors of their 

neighbors and so on.  For the assignment process, the program utilizes Dijkstra’s shortest 

path algorithm [34]. 

The algorithm is fast and reliable, which was tested on various known structures.  The 

method quantitatively defines the binding pocket shapes and therefore can be used as a 

preprocessor for library screening purposes or for ligand docking.   

DrugSite [22] is another geometry-based active site identification program, which was 

developed by An et al. in the year 2004.  The major contribution of the program is that it 

can differentiate “druggable” active sites from the other pockets according to certain 

threshold parameters, which can be tuned by the user based on observations.  The 
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algorithm computes the van der Waals potential map on a grid, adding a physical sense to 

the process while not requiring any chemical structural information of the ligand.   

In the algorithm, first the ligand and the water molecules are excluded from the PDB 

structure.  Then, a grid is formed and for each grid point, the algorithm first calculates the 

cumulative potential using the Lennard-Jones potential formula: 
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where i is a member of the set of grid points, j is a member of the set of atoms, rij is the 

distance between point i and atom j, and Ajc and Bjc are calculated according to the 

ECEPP/3 molecular mechanics force field.  The motivation of this calculation is based on 

the fact that van der Waals forces are lower close to the pocket area, since there are no or a 

few atoms in the neighborhood of the grid points in this area.  After the energy map is 

created, it is space-averaged ten times to stress the regions with higher values.  The pockets 

are then obtained by contouring the map according to the following contouring level: 

                                )(*)( maprmsdthresholdmapmeanlevel −=  (2.3) 

where the threshold is an empirically designed value that affects the size of the pockets 

obtained, and rmsd stands for the root mean square deviation. 

After coming up with the pockets, the program deletes the ones smaller than 100Ǻ, 

since the authors have examined from available data in the PDB that ligands tend to be 

larger than this size.  DrugSite characterizes the pocket sites by triangulating the grid space.  

The output then can be utilized in docking and de novo drug design studies.  The algorithm 

also finds alternative druggable active sites for a protein. 

The authors came with another algorithm called the PocketFinder [35] in 2005, one 

year after they developed the DrugSite.  The program identifies the pocket sites by utilizing 

only the protein structure as an input.  In the algorithm, the van der Waals map is calculated 

just like DrugSite does, and the pocket envelopes are created according to the same criteria.  
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The novelty in this algorithm is the capability to predict the actual active sites of proteins 

by classifying the pockets according to their shapes and physiochemical properties.   

The latest algorithm to our knowledge that identifies and describes active sites of 

proteins is the PocketPicker [36], which was developed by Schneider et al. in December 

2006.  The program is a grid based detection method that is able to translate the shape 

information and the buriedness of an identified pocket into correlation vectors.   

Schneider et al. use grids to calculate how buried the concavity is by observing the 

neighborhood of every grid.  The shape and buriedness information is stored in descriptors, 

which are specifically designed for easy comparison of various pocket site conformations.  

The method first takes the protein in a rectangular grid having mesh size of 1Ǻ .  For each 

probe, the algorithm searches for neighbor atoms within 30 rays having a size of 10Ǻ x 9Ǻ, 

originating from the probe and equally dividing the sphere, calculates the number of atoms 

that fall in these regions to classify the probe into six clusters with different buriedness 

indices. 

Being able to compare the shape descriptors is one of the most useful functions of the 

algorithm.  The method compares two structures by creating 20 distance bins that range 

from 1Ǻ to 20Ǻ for every 21 bipartite combinations of the two molecules’ six classes A, B, 

C, D, E and F.  Therefore, the method comes up with shape descriptors having 20 x 21 = 

420 dimensions.  Then the pocket shapes are compared by calculating the distance d 

between the two structures r and s using the following formula: 

                 ∑
=

−=
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1
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ii srd   (2.6) 

where i is an element of the 420-dimensional descriptor.  The algorithm is proved to be a 

promising tool for the representation and the comparison of active sites, providing better 

resolutions with the 30 directional scanning algorithm and outperforming most of the 
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algorithms that rely on computational geometry, such as CAST, PASS and SURFNET in 

terms of reliability. 

 

2.2 Structure Based Drug Design  

 

2.2.1 Drug Design Principles 

 

Designing a successful drug is not a trivial effort, since it has to meet many conditions.  

Firstly, the molecule should exhibit favorable target selectivity, i.e. the designed drug 

should not bind to molecules that have important metabolic duties, but only to its target.  If 

the drug binds to enzymes that carry out vital tasks, side affects occur.  Also, the drug 

should be “orally bioavailable”, that is the molecule should not be too large, should have 

membrane permeability, and should be soluble to be absorbed.  Moreover, the toxicity 

levels of the drug should be minimized [37].  These characteristics of a drug-like molecule 

are called the ADME (absorption, distribution, metabolism and excretion) properties 

Lipinski et al. [38] published threshold values for parameters of four characteristics 

marking the absorbability and permeability of the molecules in 1997, and these rules have 

been accepted by the drug design literature as the starting filter of drug candidates.  

According to the Lipinski’s “rule of five”, a drug-like molecule should have: 

� not more than 5 hydrogen bond donors 

� not more than 10 hydrogen bond acceptors 

� a molecular weight under 500 g/mol 

� a partition coefficient log P less than 5 

It should be noted that Lipinski’s properties are not adequate for a molecule to be 

considered as a successful drug, but are the necessary conditions for a molecule to be 
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regarded as a drug candidate [39].  The first two rules are about the atom types, the third 

rule does not allow the molecule to be very large and the last one is about the solubility of 

the molecule.  

After the pioneering work by Lipinski, many other properties that affect oral 

bioavailability are discussed such as molecular flexibility, or polarity of the surface area 

[40].  

Another feature called the binding affinity has major importance for computational drug 

design, which is correlated with the spontaneity and energetical favorability of the binding 

process.  Affinity is strongly related to the enthalpy change (∆H) and the entropy change 

(∆S) due to the binding process, and is directly related to the Gibbs free energy of binding 

(∆G), where 

      STHG ∆−∆=∆    (2.7)   

Here, T refers to the temperature that the process takes place in.   

For a favorable binding process, affinity needs to be maximized, i.e. ∆G needs to be 

minimized.  Ernesto Freire from the Johns Hopkins University reports in Protein Reviews 

that this value can be decreased by arbitrary values of enthalpy and entropy, but that a 

“strong favorable binding enthalpy is crucial” based on the data on HIV-1 protease 

inhibitors, implying that the weight of enthalpy change is more than the entropy change in 

binding affinity [37].  That is, in most cases, a minimized enthalpy is preferred over a 

maximized entropy.  This makes sense when the stability issue is contemplated.  

Maximized entropy means more flexibility and spontaneity, however, this value should not 

be too high, since the complex should be stable to some extent; otherwise, the affect of the 

drug will not be in the desired levels.  In fact, in rational drug design, more practical 

properties begin to enter the picture, such as the easiness of formulation, availability, 

stability and crystallinity of the molecule [40].  
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2.2.2 Molecular Interactions 

 

As explained above, a successful drug has a strong affinity with its target.  One way of 

increasing affinity is to maximize the number of noncovalent bonds between the target and 

the ligand.  In theory, the more atoms the ligand molecule has, the more is the stability; 

however, the ADME properties say that a molecule that large cannot be a good drug 

candidate.  Therefore, it is crucial for a drug design method not to violate the Lipinski 

constraints while maximizing affinity.  

There are three types of noncovalent interactions: ionic, hydrogen and van der Waals 

interactions.  Ionic bonds are built by an electron transfer between oppositely charged 

atoms.  Hydrogen bonds, on the other hand, are formed by polarization between a hydrogen 

donor (or a hydrogen atom bonded to a N, F or I atom) and a hydrogen acceptor, which is 

electronegative in nature.  Van der Waals interaction occurs between every atom couple 

that are close enough.  This proximity is different for every atom type, and is called the van 

der Waals distance [41]. 

The strength of a bond is measured by the energy needed to break the interaction: the 

more this energy, the stronger the bond.  The energies of the noncovalent bonds vary from 

atom to atom, however it can be claimed for an “average atom” that the strongest attraction 

among these is formed by an ionic bond, with an approximate energy of 3 kcal/mole in 

water.  Hydrogen bonds bear about one third of this energy, and van der Waals interactions 

are quite weak, having energy approximately one tenth of ionic bonds have [42].  It can be 

said that the stability of the complex depends on the total strength of the non-covalent 

bonds that it bears.   

The draft model that is presented in this thesis is attempted to be built on these 

interactions, aiming maximized affinity between the designed ligand and the active site of 
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its target protein.  On the other hand, by taking Lipinski’s rule of five into consideration, 

the designed ligand is supposed to be prevented from being an unrealistic candidate. 

 

2.2.3 Fragment-Based de Novo Drug Design Algorithms 

 

The idea of an optimization model for drug design purposes that is aimed to be initiated 

with this thesis is based on designing ligands by combining fragments together by 

optimizing the affinity of the whole structure.  Therefore, it is seen necessary to present 

here some of the major fragment-based design methods from the literature.  

In the late 80s, a new approach based on computational de novo ligand design was born 

and was considered as an alternative to the high throughput screening methods, which 

involve exhaustively docking a database of molecules and searching for good drug 

candidates among them.  Today, there are numerous de novo design algorithms that use 

various types of building blocks, search methods and scoring functions [43].  In all these 

algorithms, the purpose is to come up with ligands having favorable pharmacokinetic 

properties from scratch using atoms or more frequently molecular fragments, which is a 

completely different approach than screening, and is more flexible than modifying some 

existing drug molecule.  However, this flexibility comes with the price of increased 

combinatorial difficulty.  Not only there exist multiple topologies, but also a single one has 

multiple conformations [44].  Therefore, the criteria and the optimization techniques used 

in the filtration process has major importance in de novo design.  

This section takes a look at a selection of fragment-based de novo algorithms and the 

methods they use.   

LUDI [45] is a fragment-based design algorithm, which was developed by Böhm in 

1991.  The program basically aims to build hydrogen bonds between the active site atoms 

and fragments from a fragment library first, and then tries to connect the fragments together 
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by different kinds of fragments called “bridges” from another library.  It requires the 

coordinates of the protein from its PDB structure, the position of the active site, and the 

possible bonding partners within the active site as input.  Having these at hand, the 

algorithm separates the different types of possible bonding partners into aliphatic, aromatic, 

hydrogen donors and acceptors.  Then it draws their influence regions in many possible 

conformations, which are limited in number and are predefined according to statistical data 

about bond distance and angle preferences.  The program also take advantage of another 

program called GRID, and uses it to determine the energetically favorable sites on the 

surface that fragments might be placed.  These too are taken into consideration as well as 

the outcome achieved from the rule based approach.  Then all are checked if there is a van 

der Waals trespass.  The regions that pass this test are called “active sites”. 

The algorithm then initiates the fragment binding process.  It first checks for couples, 

triplets or quadruples of these active sites that are close enough to each other for multiple 

atoms of a fragment to bind.  The fragment library is composed of fragments in their 

energetically optimized conformations, which are calculated using available energy field 

CVFF [46].  However, the program allows new fragments to be added to the library if 

needed.  Fragments are treated as rigid bodies, but different conformations of a single 

fragment are included in the library, which provides a certain level of flexibility.  Then the 

program fits the fragments that suits to each candidate active site group from their pre-

defined “promising” atoms.  The algorithm allows fitting multiple fragments to a region, 

and then the user needs to select the most desirable ones by hand.   

The last step is to connect the bound fragments.  The program accomplishes it by 

marking the close fragments and their closest hydrogen atoms with their bound heavy 

atoms and uses these to select the bridge fragment to be connected to these heavy atoms.  

The bridge fragments are selected from a separate library through a similar fashion.    
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HOOK [47] requires the coordinates of the active site, the description of the functional 

regions on the active site and a database of “skeletons”, whose conformations are known, 

as inputs.  The main idea of the program is to place fragments called skeletons in the active 

site and then “hook” these skeletons to the surface by building non-covalent interactions.  

Skeletons have predefined hooks on themselves to be bound to the functional groups.   

The program uses three types of probes in order to discover possible attraction sites: a 

hydrogen acceptor, a hydrogen donor and a hydrophobic group.  The grids achieving 

attractions below a certain level for each type of probes are labeled as “vacant”.  The grids 

achieving favorable attractions are labeled as “donor”, “acceptor” and “hydrophobic”.  

Each group has a certain CHARMM [48] potential and this is used for later assessment of 

fragment bindings.  The algorithm compares the geometry of the hooks on skeletons and 

the geometry of the functional sites, then overlaps these and computes an overlap score by 

using Lennard-Jones potential, where a certain threshold should be met for the interaction 

not to be rejected.   It checks for possible clashes of the skeleton with the protein, and 

rejects the conformation if there exist such collusions.  Then, finally, the unbound regions 

of the skeleton are bound to the functional groups by using extra carbon atoms. 

Another fragment-based de novo design algorithm is LigBuilder [20] developed in 

Peking University in 1999.  Initially, the algorithm uses POCKET [25] to analyze the 

protein and to determine the binding, which is then divided into grids.  The method used 

for detecting the functional areas of the active site is the same as HOOK uses. 

After detecting the attractive sites, the algorithm starts to select fragments to be bound.  

The structure should have an initially bound molecule in its active site in order for the 

program to start the fragment selection procedure.  Hydrogen atoms on this molecule and 

on the fragments are determined, and a selected fragment is bound to the molecule by 

building a covalent bond between the heavy atoms connected to the hydrogen atoms.  Then 

an energetically favorable conformation is searched by turning the bond by 15° increments.  
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All conformations having local minima are kept in memory and are treated as different 

molecules.  Then the resulting structure is checked if it bumps into the protein, and is 

rejected if so.  The molecule is also subjected to a knowledge based set of rules about the 

reasonability of its chemistry, and also to Lipinski’s rules. 

Because every favorable conformation is treated as a different molecule, the number of 

possible structures built by the program is huge.  The growing procedure should therefore 

be controlled, and this is achieved by a genetic algorithm.  The new generation is created 

by the elitism algorithm, where 10% of the best members of the old population is kept in 

the new generation, and the remaining is achieved by randomly selecting fragments from 

the library.  With this approach, the average fitness of the population is increasing in each 

iteration.  The favorability of the structures is measured by the ∆G value.  The program 

then stops when a user defined number of iterations is reached.  The last generation is the 

candidate ligands at hand. 

CONCERTS [49] by Pearlman et al. (1995) has a different methodology then the 

algorithms above to some extent.  The main difference is that CONCERTS conduct 

molecular dynamics on a database of fragments together within the active site, where the 

fragments do not “see” each other, i.e. they do not interact with each other, but only with 

the active site.  At predetermined intervals, fragments that are in favorable conformations 

are tried to be bound to each other.  However, these connections are not final; they can be 

broken for building more energetically favorable connections in later iterations.  In the case 

that all fragments have been checked for possible more favorable interactions, the 

algorithm stops when a certain number of steps is reached. 
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2.3 QSAR  

 

A lot of resource is spent for a drug candidate to be tested in laboratory, and all is 

wasted if the molecule turns out to be toxic or having adverse pharmacokinetic features.  

Therefore, predicting the activities of drug candidates before lab phases is an important 

problem in computational drug design, since there may be a tremendously large number of 

candidates among which many unsuccessful instances exist [50].   

Data-driven methods used for this purpose derive their prediction models from 

experimental data [51].  QSAR (quantitative structure-activity relationship) is one of such 

methods that aim to build correlations between the chemical structure of the molecule and 

its activities like reaction ability, solubility and target activity [52] assuming that similar 

chemical structures will lead to similar activities.  The correlation model is built on the 

molecules, whose activities are known through experiments.  The objective is to eliminate 

the molecules that have high levels of toxicity based on this model.  Usually the numeric 

values of biological activities are unknown; however, activities of molecules can be 

classified into two classes based on their toxicity levels as high-activity and low-activity 

[53]. 

The QSAR approach proposed in this thesis is applied on calcium channel antogonists 

(dihydropyridine derivatives), which is a subgroup of a class of drugs that are used for the 

treatment of cardiovascular diseases by inhibiting the Ca2+ flux into the cells.  Therefore, 

here, QSAR methods in the literature that are applied on the same data set are studied. 

One of the earliest studies on this group of drugs was a conformational analysis applied 

on 45 2,6-dimethyl-3,5-dicarbomethoxy-4-X-phenyl-1,4-dihydropyridine derivatives [54].  

The model relating structure and activity was built by multiple linear regression (MLR) 

based on the conformations of the two rings found in the molecules.   
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Takahata et al. [55] also conducted QSAR analysis on 1,4-dihydropyridine calcium 

channel blockers and compared the model building success of PCA (principle component 

analysis) with MLR’s.  The variables of the model were adopted from the QSAR study of 

Gaudio et al. and they obtained the most predictive variables by calculating the weights of 

each variable in the model derived by PCA, and these predictive variables were used to 

classify the data set into high and low activity classes.  

Following this study, another QSAR algorithm with the same data set was applied by 

Viswanadhan et al. [83] called PCANN, which was also based on PCA.  Predictive 

variables were calculated by PCA and a back-propagation neural network trained by cross 

validation was used for activity prediction, whose outputs were compared to the outputs 

gained by using MLR and a hologram QSAR model.  It was exhibited that the best 

prediction results were achieved by the PCANN method.   

Another study by Takahata et al. [53] conducted in 2003 compared NN (neural 

networks) with PCA by classifying the same 45 DHP derivatives into high and low activity 

classes first by using classical descriptors and then using the calculated ones.  The outcome 

at the end of the study was that NN outperformed PCA in classifying the data and the 

proposed descriptors achieved just as good accuracies as the classical descriptors obtained. 

A genetic algorithm was applied to regression analysis by Shamsipur et al. [52] on a 

different set of the same kind of drugs.  Again, relevant descriptors were selected by 

building a linear model once by MLR and once by PLS (partial least squares) methods for 

comparison purposes.  Genetic algorithm was used to prune the unsuccessful regression 

models among a large number.  PLS was concluded to be outperforming MLR for 

regression purposes. 

Another study conducted in 2003 by Schleifer et al. [56] compared the toxicity 

prediction strengths of three different QSAR methods.  The prediction methods 

(comperative molecular field analysis), CoMSIA (comparative molecular similarity indices 
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analysis), and GRID/GOLPE (generation of optimal linear PLS estimations) were based on 

probe-ligand interaction energies.  With this study, functional groups on the molecules 

were revealed and all methods succeeded in predicting the toxicity levels of the data set 

with favorable R2 values. 

The same 45 DHP derivatives were studied by Yao et al. [57], where LSSVM (least 

square support vector machines) method was used to obtain a seven descriptor regression 

model and to classify the molecules.  The results were compared with reference methods 

from the literature and were found to be achieving the best accuracy and regression results 

among these.   

Si et al. in 2006 conducted QSAR study on the same data set [58] in which GEP (gene 

expression programming) was used to build the regression model that described the 

log(1/IC50) values of the drugs and to extract the most important descriptors.   Descriptors 

were calculated in CODESSA [59] and the heuristic method built in CODESSA was 

compared with GEP.  A successful six-descriptor model was obtained and GEP was proved 

to be providing satisfactory QSAR models.   
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Chapter 3 

 

MATHEMATICAL DESCRIPTION OF THE ACTIVE SITE 

 

The success of computational drug design efforts considerably depends on the 

effectiveness of the algorithm that expresses the structure of the active site of interest.  

Coming up with an algorithm that will describe the inner volume of the active site of any 

given protein is a highly complex problem.  The difficulty is mostly due to the fact that the 

problem is in three dimensions and that proteins may have any shape, which is often 

irregular and asymmetric.  However, the major challenge is to turn the site interior, which 

is a virtual volume surrounded merely by “points”, into a space that is enclosed by a 

continuous surface [60], which is vital for the design algorithm to be able to recognize the 

feasible region that the ligand will be placed in.  It is almost impossible to represent the 

space exactly, since any computer algorithm will inevitably involve a certain degree of 

digitizing.  Therefore, the mathematical representation of this three dimensional geometry 

will be an approximation.   

It can be said that the most widely used surface model to represent the active site is the 

Delaunay triangulation  model [4], which forms triangles from neighboring three atoms, 

whose circumcircle does not involve any other points in the set.  Popular algorithms such 

as DOCK [61], AutoDOCK [62] and FlexX [63] are examples to the docking methods that 

use triangulation.   

  In the proposed approach, a heuristic algorithm is used that aims to cover the inner 

surface of the site as closely as possible for a good representation, with as few convex hulls 

as possible for a low computational complexity.  In the literature, there are many 
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algorithms that simplify a nonconvex polyhedron into a set of convex polyhedra [64].  

However, all these algorithms either utilize the knowledge about the adjacency of the 

points that build up the polyhedron, or the boundary of the polyhedron is already 

distinguished and defined.  The algorithm offered in this study, on the other hand, has no 

information but the coordinates of the points, therefore differs from those algorithms.   

Other than such generalized algorithms, there are many algorithms specialized in 

finding the active site of a given protein as studied in the Literature Review chapter.  

However, to our knowledge, none of them describe the active site as a set of convex hulls, 

a representation technique that would come in handy when building an optimization 

program for drug design purposes. 

The motivation behind the choice of convex hulls as building blocks in order to 

represent a binding pocket’s shape is the wish to utilize this mathematical representation as 

a part of an optimization model for drug design purposes.  This shape defines the feasible 

region that the ligand atoms will be placed in by the optimization algorithm.  Active sites 

have extremely random shapes, but it is very probable that a given pocket’s shape will have 

a non-convex nature.  To describe a non-convex shape in terms of a set of convex hulls 

helps decreasing the complexity of the proposed model, since it will already be nonlinear in 

nature due to distance and angle calculations of the atoms.   

A convex hull is defined as the minimal convex set of a set of points in an N 

dimensional space.  In computational geometry, however, it usually refers to the boundary 

of the minimal convex set of a set of points in three dimensional space [65-66].  

Mathematically, a convex hull in 3D is represented by a series of linear inequalities that 

defines an intersection of half spaces.  The left hand side of each inequality describes a 2D 

façade of the hull, while the direction of the inequality defines the feasible half space. 

    Ax + By + Cz + D ≤ 0                 (3.1) 

A series of such inequalities describes a three dimensional convex structure.   
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3.1 Assumptions 

 

In order to simplify this problem, a number of assumptions are made.  First, atoms are 

assumed to be dimensionless and are represented by points, each of whose coordinate in the 

3D Euclidean space is indicated by the center of mass of the atom that it represents.  (It 

should be noted here, however, that van der Waals distance of every atom should be taken 

into account later on while placing the candidate ligand’s atoms by the optimization model 

in the form of constraints prohibiting trespass upon these borders.)  The coordinates of the 

protein atoms are obtained from their crystal structures stored in PDB.  Second, proteins 

are assumed to be rigid bodies, whose atom coordinates does not shift.  This means that it is 

assumed that the proteins stay in the conformation.  Another assumption about the nature of 

a common active site’s geometry essentially marks what the algorithm is built on.  The 

assumption is that the “interspace” all along the active site is always larger than the space 

between neighboring atoms.  The use of this assumption is explained below.   

 

 3.2 Representation of the Active Site 

 

 The algorithm proposed in this thesis is based on a sweeping method that slides a thin 

slice that is formed by two parallel planes and the region between them.  The motivation 

behind using such a method can be understood by explaining some methods, which were 

studied as candidate algorithms in this thesis but were found to be inefficient and 

ineffective. 
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 3.2.1 First Attempts 

 

 Methods that first come to mind that involve building triangulations from neighboring 

points or that are based on dividing the space into grids and checking for points in those 

grids have already been applied in the literature; however, they are not based on building 

convex hulls.  Rather, they either merely build surfaces but not describe the volume of the 

pocket or define the volume by a collection of grids, as explained in detail in the Literature 

Review section.  Therefore, to represent the active site in terms of convex hulls, a new 

algorithm had to be developed. 

 First, a sphere enlargement algorithm was attempted.  According to this algorithm, in 

each iteration, the active site was supposed to be inspected by a series of spheres that share 

the same central point, which is in the “middle” of the pocket’s most buried surface.  At the 

beginning, a very small sphere was to be built and then this sphere would be enlarged until 

it hits an atom. Then it would search for the second atom and so on until there were four 

atoms that could build a convex hull.  The algorithm would go on in the same respect, but 

after the fourth atom, a new atom would be considered within the convex hull only if the 

convex hull that was built by the already accepted atoms and the new one contained no 

atoms inside.  Then once there remained no atoms to be included, the center would be 

placed on the “top” of the newly built convex hull and the next iteration would begin with a 

small sphere without considering the atoms below the center atom.  The reason for not 

considering those atoms is the following: if they were considered, the next convex hull 

could never be built since it would always contain the points already added to the previous 

convex hull.  The top of the convex hull was defined to be the surface having the largest 

area, based on the assumption that the space in the pocket is larger than the spaces between 

neighboring atoms.   
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Figure 3.1: The sphere algorithm 

 

 This algorithm looked promising for some smooth shaped pockets, but as it was told 

before, proteins tend to have non-smooth shapes and so do their active sites.  First of all, 

the choice of the location of the center affected the representation tremendously, and there 

was no optimal location to place this center, since the best place differed for every other 

protein in terms of the output obtained.  Secondly, the algorithm missed the spaces that 

branched sideways as shown in 2D in Figure 3.1 by large grey points.  Here, the largest 

convex hull in 2D that could be built by the first iteration can be seen.  The color 

differences of the points that build the shape indicate that they are included in the convex 

hull in different sphere instances.  The next iteration will be started from the upper part of 

the convex hull facing the inner space of the active site by placing the next center in the 

middle of the upper surface of the convex hull.  Since the points below this surface cannot 

be added to the next convex hull, the space surrounded by the larger grey points is simply 
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missed by the algorithm, and much work has to be done for the algorithm to detect the 

missed spaces and to conduct iterations in these missed spaces.  However, it would amplify 

the complexity tremendously and also its feasibility was questionable, since pocket shapes 

are highly random. 

 

 
Figure 3.2: The rod algorithm 

 

 Other algorithms based on other three dimensional shapes led to problems very similar 

to the sphere algorithm, and will not be explained here.  However in the algorithm based on 

rod enlargement, the output was different.  In that algorithm, a rod was placed “all along” 

the pocket as high as possible, and was enlarged sideways to include points in convex hulls.  

One rod could cover one turn of the pocket if it contained turns.  After an iteration was 

complete, the next rod was placed above the largest surface of the most recent convex hull 
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and another iteration was to be conducted (see Figure 3.2).  This algorithm looks more 

efficient than the sphere algorithm, because it requires fewer iterations to cover the active 

site, but it still has the problem of missing spaces, and it needs to be branched from every 

surface just like the sphere algorithm.  Moreover, the height of the rod has to be modified 

in each iteration, and the feasibility of an algorithm that would come up with these 

optimum heights is, again, questionable. 

 These algorithms do not provide effective and efficient methods for pocket coverage, 

since in each, every enlargement was constrained by the shape of the three dimensional 

form.  The rod algorithm, on the other hand, reaches better solutions since it already covers 

the pocket site along with its height, and is enlarged only sideways; however, as explained 

above, this height needs to be optimized in each iteration.  The location of the initial rod 

placed in each iteration is also an important decision to be taken, since it determines the 

fate of the final space covered, and this does not have an optimum answer for all pockets 

either.  Thus, another idea is applied, which is not based on 3D forms and would not 

require decisions throughout the iterations that would lead to random consequences.  Such 

an algorithm is presented here as the sweeping slice algorithm. 

   

 3.2.2 The SLICE Algorithm 

 

The proposed algorithm SLICE that covers a given active site by convex hulls is a 

greedy heuristic method that is based on sweeping a slice.  The only inputs of the algorithm 

is the information that indicates which atoms are the three outmost atoms that build up the 

“mouth” of the pocket, that is the opening face of the pocket to the exterior, and the 

coordinates of the atoms that are present in the protein.  The steps of the algorithm can be 

seen in Flowchart 3.1. 
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Flowchart 3.1: The SLICE algorithm 
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Each main iteration of the program includes many iterations, where in each the “slice” 

is slid a little bit inwards of the pocket.  On the other hand, each main iteration corresponds 

to a new convex hull: the new main iteration is started and a new convex hull is sought 

when the new points met by sliding the slice do not contribute to the current convex hull 

anymore.  The details are presented below.  

There are three point sets in the program. One is the “to-be-considered points” set, 

which, in a certain main iteration, contains the points that are not part of the representation.  

These points are yet to be considered and decided whether they should be in the 

representation or not in the following iterations.  The other set is the “selected points” set, 

and the third is the “considered points” set.  The prior set includes the points selected to be 

building the convex hulls that are part of the representation, whereas the latter includes the 

points that are met by the program in each iteration of a main iteration.  Whenever the 

program meets a point in an iteration, it includes the point into the “considered points” set 

and then decides whether the point should be included in the current convex hull or not, i.e. 

whether it should be included in the “selected points” set.  The “considered points” set adds 

all of the members of the “to-be-considered” set one by one to itself in each iteration of a 

main iteration, and is updated to be empty at the beginning of every main iteration.  The 

selected points can never be excluded from the “selected points” set, only a new member 

can be added, whereas the size of the “to-be-considered points” set keeps diminishing in 

each main set, since the selected points are excluded from this set except for the three 

points that are part of the starting surface of the next convex hull.  The details of these 

selections will be explained later. 

The main idea of the algorithm is to build adjacent convex hulls that cover the inner 

space of the pocket as closely as possible.  Given the inputs, the algorithm takes the three 

atoms that are present on the mouth of the pocket and builds the 2D simplex with these 

points as the starting surface of the initial convex hull.  These first three points are taken 
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into both the “selected points” and the “considered points” set.  Then, the algorithm takes a 

thin slice into account, which is formed by the starting surface and a surface parallel to it.  

This parallel surface is a very small distance away from the starting surface and is placed 

closer to the “bottom” of the pocket.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: Convex hull enlargement attempt in the SLICE algorithm 

 

Once the two parallel surfaces are built, it is checked if there is an atom that falls into 

this slice.  It should be noted that the slice is taken thin enough so that only one atom at a 

time can be present in it.  If there is an atom in the slice, a convex hull is built with the 

three starting atoms and the current atom found in the slice.  If not, the slice is slid lower 

until there is an atom within.  The algorithm goes on in a similar fashion, such that the next 
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atom is sought by iterating the slice lower and lower, and once found, the convex hull is 

enlarged by adding the atom into the selected atoms set.  However, in every time 

corresponding to a possible enlargement of the convex hull, the algorithm checks whether 

an atom is present inside the newly formed hull.  This step is crucial since the algorithm is 

to present hollow convex hulls to express the inner-space.  The case in which there is an 

atom in the newly enlarged convex hull is illustrated in Figure 3.3.  

If this is the case, the new convex hull is not accepted, the point is not included in the 

“selected points” set and the algorithm goes on with the search of the next atom.  At some 

point, if the whole active site is not convex by nature, which is an extremely rare occasion, 

the algorithm will not accept any other point to enlarge the current convex hull.  At this 

point, the algorithm builds the convex hull with the selected atoms and goes on to build the 

next convex hull, which is to be placed adjacent to the previous one.  Each façade of a 

convex hull is a 2D simplex build up of three atoms.  Therefore, in order to build an 

adjacent convex hull, the next set of starting points should be composed of the three points 

of one of the façades of the previous convex hull.  Choice of these starting points has major 

importance for the algorithm, since according to this choice; the heuristic will determine 

the direction of the object to grow.  The reason why this choice is significant is illustrated 

in Figure 3.4 and Figure 3.5. 

 

 

 

 

 

 

 

Figure 3.4: Two cases of wrong choice 
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Figure 3.5: The right choice 

 

Here, there is an important issue to be noted.  Since active sites have highly random 

shapes, the pocket may exhibit even “u-turns”, and in such a case, “downward” becomes 

“upward”.  Therefore, the algorithm should have an updatable direction rule.  This is 

handled through updating a point called the “ceiling” every iteration j to be the middle 

point of the j-nth starting surface that is the starting surface of the convex hull, which is n 

hulls before the current one.  This “n” is a number that can be changed by the user 

according to the shape of the active site.  If the algorithm needs to keep track of every 

move because there are many turns and cavities, this “n” should be small.  However, 

keeping “n” very small in every case may not work.  A convex hull may attempt to 

discover a cavity, but may need to go on towards the original direction afterwards.  For 

smooth shapes, a small “n” is not recommended.  In this study, n was taken to be 3 due to 

inspection. 

In the design phase of this study, only the atoms building up the active site were taken 

into account to lower the time needed for the iterations.  For this purpose, we utilized 

methods that provide the active site of a protein called ConSurf [67] and Q-Site Finder [8].  

starting surface
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These programs present the active site as a set of amino acids that construct it and different 

applications offer different sets of amino acids for the same pocket site, which required 

taking the union of these into account.  Therefore, the input, which is comprised of the 

atoms building up the active site, did not include only the atoms present on the surrounding 

contour of the pocket site, but it included many of the neighboring atoms as well.  One can 

venture the cumbersome effort of distinguishing only the contour atoms among hundreds 

by hand; however, this algorithm does not require such an input.  Our purpose was to 

develop an automated algorithm that is able to detect the active site given only the 

coordinates of the protein atoms and the three atoms on the mouth of the active site.  Thus, 

for our purposes, the challenge illustrated by Figures 3.4 and 3.5 is inevitable.   

To deal with this problem, a greedy approach is used.  It is assumed that the direction of 

the enlargement should be through the largest space that is “below” the previous convex 

hull, since the other neighboring spaces, which are indicated by convex hull 1 and convex 

hull 2 in Figure 3.4, are formed by atoms that are in interaction, thus the interspace between 

these are usually smaller than the interspace formed by the active site.   

However, this assumption may not hold in some cases, although such cases are 

estimated to be rare.  First, sizes of the spaces within interacting atoms change depending 

on types of interactions, thus on the atom types.  Also, active sites have tremendously 

varying shapes.  Moreover, only a ratio of the 3D shapes of proteins is known today.  

Therefore, the smallest “diameter” of the pocket space of the protein may be of the same 

size as or even smaller than the “diameter” of the space lying between the surrounding 

atoms.  Such a case may occur if surrounding atoms have large van der Waals radii, 

building weak bonds and not sitting very close to each other; while the atoms in the 

referred part of the active site have small van der Waals radii building close interactions.  
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Figure 3.6: The case of having a smaller inter-space in the pocket than the inter-space 

between surface atoms. 

 

In such a situation, the heuristic will pick the wrong direction and the algorithm will 

fail to describe the active site accurately.  This is due to the fact that the program considers 

atoms as points, and does not take their van der Waals radii into consideration.  To solve 

this problem, knowledge about the atom types and the binding relationships can be fed to 

the program and the algorithm can be extended so that it calculates the vdW radii by 

exploiting this information and thus more precisely determines the space that the ligand can 
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go into.  Nevertheless, it is obvious that such an extension would increase the complexity 

of the algorithm and also it can be said that the probability of such an occurrence is 

considerably low looking at the population of known active sites. 

According to the stated assumption, the starting three points of the next convex hull are 

decided to be the points that sit on the corners of the largest simplex that faces the space 

“below” the previous convex hull.  Here, two remarks should be made.  First, the reason of 

stressing the need of the simplex facing below is because the largest simplex of the 

previous convex hull may be facing upwards, which will take the algorithm to the wrong 

direction while the correct direction is “downwards”, which is towards the interior of the 

protein.  Here, it should be stated that the direction towards the interior of the pocket is 

taken by the algorithm as the opposite direction of the one pointing towards the middle of 

the previous convex hull.  Second, the reason to put “below” in quotation marks is not only 

because where “below” indicates depends on the reference points we take, but also the 

active site may exhibit turns and loops, thus changing the direction to be followed 

continuously.   

 

 

 

 

 

 

 

 

Figure 3.7: Directionality in the SLICE algorithm 
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The next convex hull is started if there are no points left that are not included in the 

“considered points” set.  It is started from this selected surface and is formed by applying 

the same procedure used in building the first one.  In each main iteration that a new convex 

hull is to be built, the points of the previous convex hull are removed from the set of “to-

be-considered points” except for the three points comprising the current starting surface.  

Initially, the starting surface is automatically included as one of the facets of the next 

convex hull, and then the sweeping algorithm takes over. 

After building the first two convex hulls, it is observed that there is some space left out 

that need to be included in the complex (see Figure 3.9).  This is true for every consecutive 

couple of convex hulls (ith and i+1st convex hulls) to be built.  These spaces are between the 

simplexes of the i+1st convex hull that look “upwards” and the simplexes of the ith convex 

hull that look “downwards” having common points.  Convex hulls are built by the atoms of 

these coupled simplexes if there are no atoms in the resulting convex hulls.  This is 

accomplished by considering each one of the downward looking surfaces of the ith convex 

hull and each upward looking surface of the i+1st convex hull that shares one or more 

common points with one of the former set.  Each surface couple facing each other and 

sharing common points is considered to see if they need to be added to the complex and is 

united if the convex hull comprising of the points that construct them has no point inside it.  

This newly built uniting convex hull is merged to the existing complex.  

The algorithm goes on by building convex hulls and uniting the spaces between the ith 

and the i+1st convex hulls until there are no points left to be considered.   

The active site is then described as a set of convex hulls, thus as a set of linear 

inequalities representing the border and interior of the convex hulls.  The number of convex 

hulls depends on the shape of the active site.  The more turns there are, the more convex 

hulls are likely to be.  Also, this number increases with increasing number of straits in the 

active site.  The number of facets of each convex hull may also differ, but the minimum 
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number of facets that a convex hull may have by definition is four.  Therefore, each convex 

hull will have equal to or more than four simplexes and there will be as many linear 

inequalities as there are simplexes. 

The algorithm is coded in MATLAB [68], a high level programming language.  In the 

development phase of the algorithm, visual inspection was used to measure the 

effectiveness of the algorithm.  MATLAB has the feature to draw graphs in three 

dimensions, thus the input points and the resulting convex hulls can be inspected together, 

and it can be seen whether the active site is covered closely enough.  The transparency 

level of the 3D shapes can be tuned by the user, allowing examining to control if any points 

were included in the output.   

 

3.2.3 Case Studies and Comments 

 

This algorithm does not miss any spaces that are determined by points; however, it has 

its own shortcomings.  The algorithm works perfectly fine for active sites that are 

completely buried within the protein, that is a pocket surrounded by atoms, such as the case 

study presented in the Appendix for the protein “v-kit” (homo sapiens v-kit Hardy-

Zuckerman 4 feline sarcoma viral oncogene homolog) that goes by the PDB name 1T46 

[69].  However, the algorithm fails to cover the space closely when the pocket is not 

surrounded by atoms.  Since each move in the algorithm depends on the existence of 

points, the method struggles for such active sites and builds thinner and thinner convex 

hulls since it can find points that are far away from each other.  Such a case is represented 

with a dihydrofolate reductase, (PDB id: 1VJ3) [70].  The two other case studies are for 

3BGY [95] and 1IKT [96]. 

Moreover, the uniting algorithm that is embedded into the main method is open to 

further development.  In certain instances, the surfaces that are united are very small, yet 
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there are larger ones beside them left disunited since uniting them would cause inclusion of 

points within the structure.  In fact, these points that are included in the structure by uniting 

algorithms can be ignored, since the main body of the structure accomplishes to draw the 

“inner” space that does not contain any points.  The points that will be included can be 

negligible in some cases, but it depends on the case as it is always with the proteins.  

Therefore, the user can decide if he/she should ignore these points or not.   

 

The Case Study with 1T46 

 

The protein “V-kit” is a part of the provirus of Hardy-Zuckerman 4 feline sarcoma virus 

and is claimed to be the cause of gastrointestinal stromal tumor.  This protein causes 

mutation on the gene “c-kit” and thus causes encoding of a transmembrane receptor for a 

growth factor named “stem cell factor” which leads to the development of gastrointestinal 

cancer [71]. 
 

 
Figure 3.8: 1T46 and Gleevec docked into its active site 
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Figure 3.9: The tunnel active site of 1T46 zoomed 

 

As it can be observed clearly from Figure 3.9, the active site of 1T46 is a tunnel, which 

means that the site is totally covered with atoms (points).  This allows the algorithm to 

detect the site more closely. 

The output active site representation of this protein can be seen in Figure 3.10.  In this 

figure, the very thin red structure whose a little part is seen in the marked space is the 

structure formed by the coordinates of the atoms of Gleevec, a ligand that was designed for 

this active site to suppress binding of this protein to the “c-kit” gene.  The active site 

representation is supposed to be covering the ligand structure while not including any of 

the atoms inside.  In the figure, we see a certain area seems to be uncovered, where there 

are few atoms that describe the shape.   
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Figure 3.10 

 

This problem may be addressed by the to-be-designed mathematical problem with a 

relaxation of the constraint that all points should be in one of the convex hulls.  A penalty 

function can be added to the objective function instead.  This issue will be addressed in the 

following section, where a draft optimization model is presented.  Another solution is to 

ignore the points included by the “unite” algorithm.  Below are the figures displaying that 

case. 

Figure 3.11 is a screenshot from the 4th iteration.  As it can be seen from the figure, the 

missed space is smaller than the case before and the part of Gleevec that could be seen in 

the previous figure is completely covered by the convex hulls. 
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Figure 3.11 

 
Figure 3.12 
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In the figure above, 1T46 is covered completely ignoring the points included by the 

“unite” algorithm.  It can be observed that there are many points within the structure close 

to the walls of the convex hulls; however, this problem can be handled by the optimization 

model with the help of a constraint telling the model that the van der Waals sphere around 

of surface atoms should not be violated.  Since points that build up the protein are at most 

that far from each other, this may solve the problem.  Also, as told before, the structure 

succeeds in capturing the inner space, which is the main goal of the study. 

 

The Case Study with 1VJ3 

 

Another protein called pneumacystis carinii dihydrofolate reductase cofactor (PDB id: 

1VJ3) [94] was taken into consideration and its active site was represented by the SLICE 

algorithm.  The protein and the ligands of 1VJ3 (Tab and Ndp) are presented from different 

points of view in Figures 3.13-a and 3.13-b 

           
Figures 3.13-a and3.13-b: 1VJ3 with Tab and Ndp docked into the active site.  
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As it can be seen from the figure below, the active site has wide openings to the outer 

space.  This brings the result that the site is partially covered with points, which creates a 

challenge for the SLICE algorithm.   

 

 
Figure 3.14: Active site of 1VJ3 

 

Since a lot of space was missed with no points included in the “unite” algorithm, the 

following results are obtained by ignoring the existence of those points in the structure.  

Figures 3.15-a and 3.15-b are screenshots from the 9th iteration with 1VJ3.  It is observed 

that some parts of the ligands are still missed and not covered by the algorithm since there 

are no points of the protein in these areas.
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Figure 3.15-a: 9th iteration. Missed spaces observed from side view. 

 
Figure 3.15-b: 9th iteration. Missed space observed from top view. 
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Apart from the missed spaces observed in iteration 9, there is one more missed part at 

the end of the run.  Also, there are points included in the output structure since the “unite” 

algorithm did not take the points included during the uniting process.  However, these are 

again tolerable, since the points are close to the walls of the convex hulls and can be 

handled by the optimization model. 

 

 
Figure 3.16: The end result of the run 
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The Case Study with 3BGY 

 

The SLICE algorithm was also tried on a beta barrel structure found on an mRNA 

capping viral protein: 3BGY [95] with acetate ions attached.  The structure of the protein 

composed of two chains can be seen below.  The two chains have exact beta barrel 

structures, and the algorithm is run only with the B chain, which has two acetate ions as 

ligands bound at the middle of its barrel to see the active site clearly in the figures.   

    
 
  
 

 

Figure 3.18 clearly exhibits the tunnel that the barrel forms.  The algorithm is expected 

to provide good results, since the active site is completely surrounded with points.  The 

output’s success was measured in terms of capturing the space comprised by the barrel this 

time.  The ligand’s coverage was not important in this case, since its size was very small. 

The active site was represented once to obtain a structure with no points inside, i.e. the 

“unite” algorithm did not ignore the points included while uniting the convex hull.  The 

output is seen in Figure 3.19 with a missed space that is marked.  

 

Figure 3.17: 3BGY. The beta 
barrel studied belongs to the chain 
seen on the left. 

Figure 3.18: Solvent accessible surface of 3BGY. 
The tunnel is seen on the left. 
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Figure 3.19: Representation without points inside 

The output of the run ignoring the points included within the “unite” algorithm is 

presented below.  The tunnel was successfully covered by the algorithm.  (See Figures 

3.20-a and b.) 

 
Figure 3.20-a: The representation of the tunnel in the B chain of 3BGY. 
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Figure 3.20-b:  The representation of the tunnel in the B chain of 3BGY. 

 

The Case Study for 1IKT 

 

The last case was the sterol carrier protein type 1(SCP-2) like domain of human 

multifunctional enzyme type 2 (MFE-2) with a PDB id of 1IKT.  The active site’s shape is 

like a tube with half of it cut open.  The structure can be seen below. 

      
Figure 3.21-a and 3.21-b: 1IKT with its ligand from different points of view 
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The active site was represented ignoring the points included with the “unite” algorithm.  

The result can be seen in Figures 3.21-a and b.  The algorithm covered the active site 

completely. 

 

 
Figures 3.22-a and 3.22-b: The representation of the active site of 1IKT
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Chapter 4 

 
CONCEPTUAL MODEL FOR FRAGMENT ASSEMBLY 

 

 

In this section, the basis of a conceptual MINLP model idea for fragment-based drug 

design is presented.  The motivation behind presenting this draft model is merely to provide 

a starting point for future studies.  Also, a fragment library developed for this purpose will 

be presented.   

 

4.1 Assumptions 

 
As explained in section 2.2.1, one of the major goals of structure based drug design is 

to design ligands that have maximized binding affinity with its target.  In this draft, 

maximum affinity is sought by maximizing the number of non-covalent bonds between the 

target and the ligand.  The aim is to minimize the enthalpy change of the binding process, 

which is claimed to be a more important task than maximizing the entropy by Freire [37].  

Also, as it was with the active site representation, atoms are considered to be 

dimensionless; however, their van der Waals regions are aimed to be presented as 

inaccessible by the related constraints.  Both the active site and the fragments are accepted 

as inflexible; however, although their values are yet to be revealed, intervals are allowed 

for the distances, bond angles and torsional angles of the fragments, which aim to provide a 

certain degree of flexibility to the design of the ligand molecule. 

 

 



 
 
4. The Design Phase    62 

 

4.2 The Proposed Idea and the Conceptual Model 

 

The claim that optimization can be used to design ligands by optimally selecting and 

binding fragments together is a bold one, and needs a lot of research before coming up with 

the model itself.  One of the main problems about this idea is incorporating flexibility of 

the molecules into the model.  Proteins are in fact not rigid molecules, and they have 

different modes of movements.  Nevertheless, this challenge is not special to optimization.  

There are flexible screening and docking algorithms such as FlexX [63] and DREAM++ 

[73]; however, no method claims to be incorporating this effect exactly in their algorithms.  

Others incorporate many possible conformations of fragments in order to add flexibility to 

some degree.  Another challenge is to come up with the objective function, which is 

supposed to maximize affinity, but the definition of affinity itself can be a vague concept.  

What is usually done in structure based drug design is to come up with a model that will 

represent the energy of the whole structure.  As was studied in the Literature Review 

chapter, most de novo design methods merely use energy fields, which are essentially 

approximations, and some others use rule based algorithms. 

The proposed preliminary optimization modeling idea aims to design a ligand that will 

fit in the mathematically described active site and will have favorable interactions with the 

surface atoms.  The model is supposed to select fragments among a set to form a ligand 

molecule and assigns their binding configurations.  The resulting molecule is supposed to 

make non-covalent bonds with the active site side chains that contain hydrogen acceptors 

and donors, negatively or positively charged atoms.  In the absence of hydrogen bond 

acceptors/donors, it builds van der Waals interactions with the surface atoms.   

The feasible ligand for the drug to be placed in is represented by the union of convex 

hulls incorporated by the SLICE algorithm.  This region is represented by a series of linear 

inequalities, which are convex in nature.  An optimization model that is supposed to set the 
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locations and types of the fragments to be bound together and placed in the active site 

forming a candidate ligand for the protein in consideration needs to decide in which convex 

hull a particular fragment atom will be placed.  Since this space is defined as the union of a 

set of convex hulls, which is defined by “or” operators, disjunctive logical relations [74] 

need to be used to make this decision to set.  Because of this and due to many other 

decisions to be taken, the model is an IP in nature. 

Moreover, the model should calculate distances between the atoms, bond angles and 

torsional angles of the whole structure, since these values will be constrained by physical 

laws.  These calculations involve nonlinear operations, which leads the model to be 

nonlinear.  Therefore, it can be said that the model of the proposed idea is an MINLP 

model. 

 

4.2.1 The Objective Function 

 

The objective function of the model may contain the following elements: 

 

∑∑ ∑∑∑∑ −−++=
l j HULL

jlHULLjl

l j i

ijl
vdWvdW

ijl
hh

ijl
ii chvtVtVtVz )()***(max .

)()()()()()( λ  

(4.1) 

 

where V(b) indicates the value of the non-covalent bond type b: ionic for b = i, hydrogen for 

b = h and van der Waals for b = vdW.  t(b)ijl is the variable indicating if the surface atom i 

and the lth atom of fragment number j builds this type of a non-covalent bond, vjl is the 

variable indicating if lth atom of jth fragment exists in the ligand, ch(HULL) jl is 1 if this atom 

is present in the convex hull indexed as HULL, and λ is the penalty function parameter.  

The objective function aims to maximize the affinity that is the total value gained by the 

non-covalent bonds and to minimize the number of atoms in the ligand that are not placed 
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in one of the convex hulls.  This relaxation was inspected in Chapter Three as a proposal in 

the case that the mathematical representation misses some space in the active site.   

 

4.2.2 Variables 

 

The model has to take many decisions leading to existence of many binary variables.  

The following paragraphs are dedicated to the binary variables. 

There should be a variable indicating if a surface atom of the protein is interacted with 

the ligand or not.    

                                     




=
                               otherwise ,0

interacted is i atom surface if  ,1
ip   (4.2) 

The number of fragments to be used in the ligand is not definite, so a variable as the 

following may be useful.   

                           




=
                               otherwise  ,0

used is  jnumber fragment  if  ,1
jq    (4.3) 

The maximum number of fragments that can be placed is calculated as follows based 

on Lipinski’s weight constraint saying that the ligand should not exceed 500g/mol.   

                                             







=

min
max

/500
mw

molg
j   (4.4) 

Here, mwmin indicates the minimum molecular weight among all the fragments present 

in the fragment library.   

If each fragment in the library is accepted as a certain type, then the type of fragment 

number j used in the ligand has major importance.  It should be noted here that the 

fragment instances in the libraries themselves are not used in the ligand.  Rather, one 

instance among the multiple copies of all fragment types is selected to be the jth fragment in 

the ligand.   
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



=
                                    otherwise  ,0

g   typeof is  jnumber fragment  if  ,1)(
gj

tq   (4.5) 

Selection of the fragments depends on the conformation of the ligand in a whole and 

the number of interaction it makes.  Therefore, the model should decide which fragment 

should be selected and bound to which fragment and if it can interact with a surface atom. 





=
                                                            otherwise  ,0
bound covalently arek  and jnumber fragment  if  ,1

jkqq  (4.6) 

      






=

                                                       otherwise  ,0
 jnumber fragment  of atom l    with 

 bondcovalent -non makes i atom surface if  ,1
th

ijlpq  (4.7) 

The fragment library is composed of coupled fragments that are covalently bound to 

each other.  Two fragments can be bound from different atoms and thus the outputs have 

different conformations.  The model should decide which conformation to use if fragments 

j and k are to be building covalent bonds. 







=

                                                                           otherwise  ,0
k and j numbersfragment  boundfor   template theas    

 used ish  and g ypesfragment t bound of conform. c if  ,1 th

)(
jkghc

cqq  (4.8) 

The model then selects based on the previous variable between which atoms of the 

bound fragments takes this covalent bond place. 








=

                                                                       otherwise  ,0
knumber fragment  of atom m    with 

 bondcovalent  makesk number fragment  of atom l if  ,1
th

th

)(
jklm

cbqq   (4.9) 

 






=
                                                                 otherwise  ,0

fragment a within bondcovalent  a    
 todue bondcovalent  make  and  atoms ligand if  ,1

)(
νµ

µν
cbwlig  (4.10) 
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





=
                                                                 otherwise  ,0

fragments obetween tw bondcovalent  a    
  todue bondcovalent  make  and  atoms ligand if  ,1

)(
νµ

µν
cbblig  (4.11) 

     




=
                                                       otherwise  ,0

bondcovalent  makes  and  atoms ligand if  ,1)( νµ
µν

cblig  (4.12) 

When building covalent bonds, it is evident that one or more atoms of each fragment 

are replaced with the atom of the partner fragment with which the bond is made.  This 

should be taken into account, since this replaced atom cannot be used for future bonds 

anymore, and does not take place in the ligand.   





=
                                                                                 otherwise  ,0
 making bondfor  replaced is jnumber fragment  of atom l if  ,1 th

jlr  (4.13) 

A fragment atom is either existing in the ligand or not, either because the atom is 

replaced, or because the fragment number j is not selected to take place in the ligand at all. 

      




=
                                                                   otherwise  ,0

ligand in the exists jnumber fragment  of atomlth  if  ,1
jlv  (4.14) 

For understanding the nature of the interaction between the surface atom and the 

fragment atoms, each fragment’s capability of making a non-covalent bond should be 

known.  

Fragments may either be neutral, which means that they cannot make a hydrogen or 

ionic bond but only van der Waals bonds, or they may have atoms that are hydrogen 

donors, hydrogen acceptors, negatively charged or positively charged.  The importance of 

the nature of the non-covalent bonds can be seen in the objective function, since it 

calculates the value of each type of interaction separately. 

                   






=

                                                 otherwise  ,0
i atom surface with bond ionic    

 makes jnumber fragment  of atom l if  ,1 th

)(
ijl

it  (4.15) 
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





=

                                               otherwise  ,0
i atom surface with bondhydrogen     

 makes jnumber fragment  of atom l if  ,1 th

)(
ijl

ht  (4.16) 

                






=

                                                     otherwise  ,0
i atom surface with interation der Waals   van 
 conducts jnumber fragment  of atom l if  ,1 th

)(
ijl

vt  (4.17) 

The following variable indicates to which atom of the ligand a selected fragment atom 

corresponds. 

                             








=

                                                 otherwise  ,0
 ligand  theof atom   theas    

 used is jnumber fragment  of atom l if  ,1
th

th

µµjlca  (4.18) 

Along with all these decisive variables, the coordinate of each atom of the ligand is to 

be determined. 

              ligand  theof atom   theof scoordinate: thµ

µ

µ

µ

µ

















=

zc

yc

xc

Xc  (4.19) 

The coordinates of the ligand atoms will be equal to their corresponding fragment 

atoms 

            fragment j  theof atom l  theof scoordinate: thth

















=

jl

jl

jl

jl

zf

yf

xf

Xf  (4.20) 

Then, one more binary variable should be devoted to the convex hulls indicating if a 

fragment atom is placed in the HULLth convex hull or not. 





=
                                                                         otherwise  ,0

HULL hullconvex in  is jnumber fragment  of atom l if  ,1 th

. jlHULLch  (4.21) 
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Finally, since all atoms should be connected to each other in the ligand, we introduce a 

flow Fµν.   

                            Fµν. : flow from atom µ to ν (4.22)  

The reason for the existence of this variable will be explained in 4.2.4. 

 

 

4.2.3 Parameters 

 

The variables being introduced, the necessary parameters are to be presented.   

 

A(HULL)p , B(HULL)p , C(HULL)p and D(HULL)p : parameters of the system of linear 

inequalities Ax + By + Cz ≤ D of plane p belonging to the HULLth convex hull. 

V
(i)
, V

(h), V(vdW) : values of an ionic bond, hydrogen bond and van der Waals interaction 

respectively 

ats i(at) : atom type at of surface atom i. (N,C,O,H,S…) 

atfjl (at) : atom type at of fragment j atom l. (N,C,O,H,S…) 

vdW(at) : vdW distances of every type of atom 

mwg : molecular weight of fragment type g 

Xai = 
















i

i

i

za

ya

xa

: coordinates of the surface atoms 

Ta
(n)

i = 1 if surface atom i is neutral, 0 otherwise. 

Ta
(i)

i = 1 if surface atom i is positively charged, 0 if negatively charged. 

Ta
(h)

i = 1 if surface atom i is hydrogen donor, 0 if acceptor. 

Tf
(n)

gw = 1 if wth atom of fragment g is neutral, 0 otherwise 

Tf
(i)

gw = 1 if wth atom of fragment g is negatively charged, 0 if positively charged. 
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Tf
(h)

gw = 1 if wth atom of fragment g is a hydrogen acceptor, 0 if donor. 

mind
(i) 
, mind

(h) 
, mind

(vdW) and maxd
(i) 
, maxd

(h) 
, maxd

(vdW) : min and max distances of 

for each type of non-covalent bonds 

Dist
(c)

ghcwx = distance between two bound atoms w and x of conformation c formed by 

fragment types g and h 

θθθθghcwxy : bond angle between the three connected atoms s t and u of conformation c 

formed by fragment types g and h  

ωωωωghcwxyz : torsional angle formed by the bound atoms s t u and v within conformation c 

formed by fragment types g and h  

Repghcwx = 1, if wth atom of fragment g and xth atom of fragment h is replaced to form 

cth conformation of g and h, 0, otherwise. 

ffbghcwx = 1 if wth atom of fragment g and xth atom of fragment h make bond 

fbgw(w’) = 1 if wth and (w’)th atoms of fragment type g are connected 

Dµ  = demand of atom µ 

 

 

4.2.4 Constraints 

 

Existential constraints:  

 

Firstly, an atom l of fragment j should exist if its fragment is selected and it is not 

replaced, and cannot exist if these two constraints do not hold. 

                                               jljl rv ≤                for ∀j, l. (4.23)  

                                               
jjl qv ≤                 for ∀j, l. (4.24) 

                             0≥++− jljlj vrq              for ∀j , l. (4.25) 
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A fragment type g can be used as the jth fragment only if the jth fragment is used. 

                                       jgj
t qq ≤)(  for ∀g, j. (4.26) 

Fragment j and k can make bond if both are selected. 

                                    0≥− jkj qqq  for ∀j, k. (4.27) 

For the lth atom of fragment j to be used as the ligand’s µth atom, the lth atom of 

fragment j should exist.  

     jljl vca ≤µ  for ∀j, l, µ. (4.28) 

To use the cth conformation of the fragment types g and h as the bound j-k couple, j 

should be of fragment type g and k should be of fragment type h. 

                                       
hk

t
jkghc

c

gj
t

jkghc
c

qqq

qqq

)()(

)()(

≤

≤
 for ∀j, k, g, h, c. (4.29) 

 

 

Constraints related to non-covalent bonding: 

 

Surface atom i can make non-covalent bond with lth atom of fragment j if fragment j 

and surface atom i both make interaction, and if lth atom of fragment j exists.  

                                      

jlijl

ijlj

ijli

vpq

pqq

pqp

≤

≥−

≥−

       

0

0

  for ∀i, j, l. (4.30) 

Surface atom i can make a non-covalent bond with lth atom of fragment j if both atoms 

are not of neutral type.   

                                             i
n

ijl Tapq )(1−≤  for ∀i, j, l. (4.31) 

The type of the lth atom of fragment j can be determined from the type of the atom it 

corresponds to in the fragment library.  So, if the fragment type g corresponds to j and the 
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atom index of the fragment type w corresponds to l, which is controlled by the condition “l 

= w”, this non-covalent bond cannot be built if this atom is of neutral type. 

                      )1(* )(
gw

n

gjijl Tfqtpq −≤  for ∀ w = l, g, i, j. (4.32) 

The type of the non-covalent bond between surface atom i and the lth atom of fragment j 

is ionic if such a bond exists and if one of the atoms is negatively charged and the other is 

positively charged.  The same is also true for the hydrogen bond, where one of the atoms 

should be a hydrogen donor and the other a hydrogen acceptor. 

                                                    
ijlijl

h

ijlijl
i

pqt

pqt

≤

≤
)(

)(

  for ∀ i, j, l. (4.33) 
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[ ])1(*)1(**

)1(*)1(**
)()()()()(

)()()()()(

gw
h

i
h

gw
h

i
h

ijlijl
h

gw
i

i
i

gw
i

i
i

ijlijl
i

TfTaTfTapqt

TfTaTfTapqt

−−+≥

−−+≥
   for ∀ w = l, g, i, j. (4.34) 

There will be a minimum and a maximum distance of the non-covalent bond between 

surface atom i and the lth atom of fragment j in the case that such a bond is established. 

)1.()1.( )2()1(
ijlijljliijlijl pqMdXfXapqMd −+≤−≤−−    for ∀ i, j, l,   (4.35) 

where 

)()()()()()()2(

)()()()()()()1(

.*.*.*

.*.*.*
vdW

ijl
vdWh

ijl
hi

ijl
i

ijl

vdW
ijl

vdWh
ijl

hi
ijl

i

ijl

axdmtaxdmtaxdmtd

indmtindmtindmtd

++=

++=
   (4.36)    
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Constraints related to covalent bonding: 

 

To use cth conformation of fragments g and h as the j-k complex, j and k should be 

covalently bound. 

                                jkjkghc
c qqqq ≤)(  for ∀ j, k, g, h, c. (4.37) 

l
th atom of fragment number j makes covalent bond with mth atom of fragment number  

k if the lth and mth
 atoms are used in the fragment and if the corresponding atoms make 

bond in the selected conformation c of fragment types g and h, and not otherwise. 

jkghc
c

ghcwxkmjljklm
cb qqffbvvqq )()( *2 ++≥+   for ∀ l = w, m = x, j, k, g, h, c 

                    (4.38) 
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vqq
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≤
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  for ∀ j, k, l, m  (4.39) 

                   jkghc
c

ghcwxjklm
cb qqffbqq )()( *≤  for ∀ l = w, m= x, j, k, g, h, c 

   (4.40) 

If lth atom of fragment number j has to make covalent bond in complex j-k but has been 

replaced, this complex cannot be selected. 

                      ∑−≤
x

ghcwxjljkghc
c ffbrqq *)1()(     for ∀ l =w, j, k, g, h (4.41) 

A covalent bond between the ligand’s µth atom and νth atom should take place if they 

are used. 
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  for ∀ µ , ν   (4.42)   
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If µth and νth atoms of the ligand correspond to lth and mth atoms of the same fragment j, 

and if lth and mth atoms correspond to the wth and w’ th atoms of fragment type g and if wth 

and w’ th atoms are connected within fragment g, µth and νth atoms should be connected too. 

gj
t

jmjlwgw

cbw qcacafblig )(
)'(

)( )(*2 ++≥+ νµµν          for ∀ l = w, m = w’, g, µ, ν 

   (4.43) 

On the other hand, if µth and νth atoms of the ligand correspond to lth atom of fragment j 

and  mth atom of fragment k, and if these atoms’ corresponding library fragment atoms w of 

fragment g and x of fragment h make covalent bond, µth and νth atoms should be connected 

too. 

jklm
cb

kmjl

cbb qqcacalig )()( 2 ++≥+ νµµν  for ∀ j, k, l, m, µ, ν (4.44) 

If neither of the two conditions is satisfied, µ and ν are not connected, 

        µνµνµν
)()()(*2 cbwcbbcb ligliglig +≤  for ∀ µ, ν  (4.45) 

and if either one of the two conditions is satisfied, µ and ν are connected. 

              
µνµν

µνµν

)()(

)()(

cbwcb

cbbcb

liglig

liglig

≥

≥
  for ∀ µ, ν  (4.46) 

 

Constraints related to atom replacements: 

 

An atom l of fragment j is replaced if j and k complex is used and the atom has to be 

replaced to use this conformation.  

                     ghcwxjkghc
c

jl epRqqr .*)(=     for ∀ w = l, j, k, g, h, c, x   (4.47) 

Fragment j cannot make a complex with fragment number k if the corresponding to-be-

replaced atom has been replaced before. 

 )1().1()1( gjghcwxjljk qtMepRrqq −+−+−≤    for ∀ w = l, j, k, g, h, c, x  (4.48) 
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Constraints related to atom coordinates: 

 

Coordinate of the µth atom of the ligand will be same as the coordinate of its 

corresponding fragment atom’s coordinate 

                          
)1(*

)1(*

µµ

µµ

jljl

jljl

caMXfXc

caMXfXc

−−≥

−+≤
 for ∀j, l, µ (4.49) 

If an existing lth atom of fragment j is in one of the convex hulls, its coordinates should 

obey all inequalities representing the convex hull, where convex hull HULL is defined by 

the system of linear inequalities ax + by + cz ≤ d, each representing a plane and the 

direction of the interior space. 

jljlHULLpjlpjlpjlp vMchMdzfcyfbxfa *)1(**** ).( +−+≤++          for ∀ HULL, p, j, l 

  (4.50) 

Van der Waals radii of the fragment atoms should not collide with the vdW radii of all 

atoms. 

gj

at

atgwatati

at

atjli qtMatfvdWatsvdWXfXa ***.|||| ).()().()( ++≤− ∑∑

hkgjhx

at

at

at

atgwatjlkm qtMqtMatfvdWatfvdWXfXf ****.|||| )().()( +++≤− ∑∑      for ∀ l=w, 

m=x, g, h i, j≠k   

   (4.51) 

Bond distances between connected atoms µ and ν should be equal to the corresponding 

atoms’ distances of the corresponding conformation c formed by fragment types g and h.  

This relationship is built through atoms l and m, which are atoms of a dual complex built 

by fragments j and k.  They may be members of j, members of k, or one of them may be a 

member of j and the other a member of k.  On the other hand, if these atoms are not 

expressed or do not make a bond, no restrictions are put forward. 
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 for ∀ l = w, m = x, g, h, c, j, k, µ, ν (4.52)  

Similar constraints are also required for the bond angles: 

 
1

1

),,(

),,(

zXcXcXcang

zXcXcXcang

ghcwxy

ghcwxy

+≤

−≥

θ

θ

ονµ

ονµ
         (4.53)  

where the constraints have to be taken into consideration for the cases if two of the atoms 

are from fragment j and if two of the atoms are from fragment k.  Therefore, the two 

constraints will exist two times for each z1 value presented below: 
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  for ∀ l = w, m = x, l’ = y, g, h, c, j, k (4.54) 
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  for ∀ l = w, m = x, m’ = y, g, h, c, j, k (4.55) 

 

Similar constraints for the torsional angles: 
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where the same procedure is applied for each combinations of the four atoms for two 

fragments.  Below is a z2 for the case when two of the atoms are from fragment j and two 

are from fragment k.  
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 for ∀ l = w, m = x, l’ = y, m’ = z, g, h, c, j, k   (4.57) 

 

There are cases when the three atoms whose bond angle are to be calculated and cases 

when the four atoms whose torsional angle are to be calculated are not from two fragments 

but more.  The model does not take these cases into consideration with its current 

constraints.  How these cases can be incorporated is a task proposed for future research. 

The last but not the least is the constraint assuring that all atoms of the ligand are 

connected to each other.  For this constraint to hold, the ligand should be considered like an 

undirected graph, where atoms act like the nodes and bonds act like the edges of the graph.  

For a graph to be connected there should be a path between every couple of nodes on the 

graph [75].  This can be assured if a certain demand is attached to every node and a supply 

to one of the nodes (denoted as ν’ in the constraints), so that demands have to be supplied 

from the neighboring atoms and every neighbor should be communicating to at least one 

other node. 
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4.3 The Fragment Library 

 

 4.3.1 The Motivation 

 

Fragment based drug design is based on the idea that a candidate ligand is to be built 

from a set of fragments, which are small molecules that can be found in the nature alone.  It 

is assumed in this approach that organic compounds can be broken down into such basic 

fragments, and they can be combined together to form other organic structures.  Fragment-

based drug design is a more flexible approach than modifying a successful ligand or 

screening a database of available ligands [63].  The general method in fragment-based de 

novo design is to build hydrogen bonds with the surface atoms with fragments selected 

from a library and then to connect these with spacer fragments, which is an iterational 

approach in essence [45].  As studied in the Literature Review section, the main aim of 

fragment-based approaches is to obtain as many different structures as possible so that the 

possibility of achieving a successful ligand is increased. 

This study proposes an idea about building a ligand by using optimization methods, 

which uses fragments as building blocks and forms energetically favorable structures.  The 

model builds non-covalent bonds with the surface atoms and combine these fragments 

together according to an affinity maximization objective and subject to geometrical and 

chemical constraints.  As explained in previous sections, the geometrical constraints are 

obtained from the convex hull algorithm, which will represent the feasible region into 

which the fragments can be placed.  This section proposes a fragment library that can be 

used by such an optimization model. 
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4.3.2 Methods  

 

The fragments used in this study are taken from the literature, a fragment set also used 

in a fragment-based drug design algorithm called LigBuilder developed by Wang et al. 

[20].  The fragments are presented in Figures 4.1, 4.2, 4.3 and 4.4.  The set here aims to 

contain the fragments that are most commonly come across in available ligands.  However, 

new fragments can be added to this set if the user sees the need. 

 

 

Figure 4.1: Hydrocarbons, amines, alcohols, ethers, aldehydes and ketones 
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Figure 4.2: Acids, esters, amides, amidino and guanidine groups, single rings 

 
Figure 4.3: Multiple rings 
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Figure 4.4: Fragments with sulphur, with phosphorus, and halogens 

 

The fragments are drawn in MarvinSketch, an easy-to-use molecule editing program 

developed by ChemAxon that accomplishes some useful tasks such as molecular surface 

calculation or orbital electronegativity illustration.  Then, the fragments are fed into an 

efficient library generation platform ILIB DIVERSE [72].  Chemical bonds between each 

pair of fragments are built by ILIB DIVERSE, which calculates the optimal 3D structures 

of possible binding conformations.  These are then subjected to filtering for eliminating the 

outputs according to the criteria that are determined by the user.  In this study, the 

molecules that are impossible to be found in nature, that are toxic and that have higher 

molecular weights than the default threshold of the program were eliminated.   

Once all the feasible possible conformations of the combinations of fragment pairs, 

bond distances, bond angles and torsional angles were to be calculated.  A bond angle is 
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defined as the angle formed by three bound atoms A, B, and C.  .  Given the center atom A, 

this angle is then the angle θ between two vectors BA
�

and CA
�

, where 
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  (4.1) 

Since the dot product of two vectors BA
�

and CA
�

 is calculated as: 

)cos(|||| θCABACABA
����

=• ,  

the angle θ can be calculated by the following formula: 

                                          

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 •
=

||||
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CABA

CABA
��

��

θ  (4.2)   

Torsional angle (or dihedral angle) on the other hand, is the angle between two planes 

formed by consequently bound four atoms.  As it can be seen in the figure below, the first 

plane is defined by atoms A, B and C, and the second one is determined by atoms B,C and 

D. 

 

 
Figure 4.5: Torsional angle of four bound atoms [97] 
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The angle between two planes is equal to the angle between their surface normals.  

Normal vector of a plane is any vector that is perpendicular to the plane, i.e. a vector 

perpendicular to all vectors on the plane.  For three points A, B and C on the plane, a 

normal vector is calculated by the cross product of the two vectors formed by these three 

atoms.   

                                              CBBAn
��

�

×=  (4.3) 

To find the torsional angle, first the normal vectors of the two planes are calculated, and 

then the angle between two vectors can be found by using Formula 4.2. 

The calculations for the bond distances, bond angles and torsional angles were coded in 

MATLAB to extract these parameters for all dual combinations of fragments.  These 

calculations were conducted to be used in the optimization model for setting constraints on 

the fragment locations, thus on the whole structure’s conformation. 

 

4.3.3 Results  

 

There are 57 fragments in the fragment set that led to a 1600 coupled fragments.  Since 

each couple may have multiple conformations, it is not possible to present all outputs here.  

Nevertheless, one such example will be investigated. 

The combination of amine (NH3) and benzene (C6H12) fragments can be seen below.  

This combination led to one type of conformation for every possible N-C bond. 
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Figure 4.6: Amine bound to a benzene ring 

 

center atom side atoms bond angle 

1 2 6 119.653 

1 2 12 120.172 

1 6 12 120.175 

2 1 3 120.17 

2 1 11 120.45 

2 3 11 119.38 

3 2 4 120.04 

3 2 10 119.992 

3 4 10 119.968 

4 3 5 119.949 

4 3 9 119.98 

4 5 9 120.071 

5 4 6 120.107 

5 4 8 119.933 

5 6 8 119.96 

6 1 5 120.078 

6 1 7 120.506 

6 5 7 119.414 

12 1 13 120.214 

12 1 14 120.158 

12 13 14 119.628 

Table 4.1: Bond angles of the amine-benzene complex 
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atoms forming plane 1 atoms forming plane 2 
torsional angle 

between planes 

1 2 6 1 2 12 179.982 

1 2 6 1 6 12 0.017 

1 2 6 2 1 3 179.671 

1 2 6 2 1 11 0.003 

1 2 6 6 1 5 0.139 

1 2 6 6 1 7 179.838 

1 2 12 1 6 12 179.982 

1 2 12 2 1 3 0.346 

1 2 12 2 1 11 179.979 

1 2 12 12 1 13 170.948 

1 2 12 12 1 14 895.044 

1 6 12 6 1 5 0.122 

1 6 12 6 1 7 179.820 

1 6 12 12 1 13 903.449 

1 6 12 12 1 14 171.067 

2 1 3 2 1 11 179.674 

2 1 3 2 3 11 0.322 

2 1 3 3 2 4 0.517 

2 1 3 3 2 10 179.454 

2 1 11 2 3 11 179.677 

2 3 11 3 2 4 0.195 

2 3 11 3 2 10 179.776 

3 2 4 3 2 10 179.972 

3 2 4 3 4 10 0.028 

3 2 4 4 3 5 0.235 

3 2 4 4 3 9 179.842 

3 2 10 3 4 10 179.972 

3 4 10 4 3 5 0.263 

3 4 10 4 3 9 179.814 

4 3 5 4 3 9 179.923 

4 3 5 4 5 9 0.077 

4 3 5 5 4 6 0.233 

4 3 5 5 4 8 179.684 

4 3 9 4 5 9 179.923 

Table 4.2: Torsional angles of the amine-benzene complex 
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atoms forming plane 1 atoms forming plane 2 
torsional angle 

between planes 

5 4 6 5 6 8 0.082 

5 4 6 6 1 5 179.579 

5 4 6 6 5 7 179.878 

4 5 9 5 4 6 0.310 

4 5 9 5 4 8 179.606 

5 4 6 5 4 8 179.917 

5 4 8 5 6 8 179.917 

5 6 8 6 1 5 179.496 

5 6 8 6 5 7 179.795 

6 1 5 6 1 7 179.698 

6 1 5 6 5 7 0.298 

6 1 7 6 5 7 179.700 

12 1 13 12 1 14 179.898 

12 1 13 12 13 14 0.101 

12 1 14 12 13 14 179.899 

Table 4.2 cntd.: Torsional angles of the amine-benzene complex 
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Chapter 5 

 
THE QSAR STUDY 

 

 

Early prediction of activity-related properties of drug candidates is an important step in 

the drug design process.  Characteristics such as toxicity and undesirable pharmacokinetic 

features often surface during clinical studies wasting time and resources.  Therefore, there 

is need for computerized methods to predict such effects of drug candidates before the 

laboratory phase.   

QSAR (quantitative structure-activity relationship) is one of the widely used methods 

for this purpose [15].  The method is a data mining procedure, which utilizes available 

experimental data to draw the correlation between the chemical structure of candidate 

molecules and their biological and chemical activities such as the biotransformation and 

reaction abilities, solubility and target activity [52].  The assumption here is that similar 

structures have similar chemical activities. 

In this chapter, a QSAR method is used to predict the effectiveness levels of a class of 

drugs called calcium channel blockers (antagonists) for comparison purposes,  since this 

class is widely examined in early prediction studies as presented in the Literature Review 

chapter.  Activities of the molecules are classified into two classes based on their 

effectiveness levels: high-activity and low-activity.  Drug effectiveness levels are based on 

their experimental IC50 values, i.e. the concentration of an inhibitor that inhibits 50% of the 

enzymatic reaction in consideration [76]. 
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5.1 Strategies, Methods and Models 

 

QSAR studies comprise a number of steps, and the methods used in each step have 

importance as to contributing the accuracy of the activity prediction.  Traditionally, first, a 

set of numeric molecular attributes that describe various properties of the molecules, such 

as the number of double bonds or the molecular charge, is generated.  These attributes are 

called molecular descriptors, and one may generate hundreds of such attributes for a given 

molecule.  Therefore, there is need for a regression model that will select the most 

important descriptors that significantly affect the molecule’s behavior.  Once these major 

attributes are selected, the molecules are classified by a classification method that is trained 

on the selected descriptors’ values of the available experimental data [53, 56-58].  

Here, however, although following the idea of the traditional methodology, a different 

QSAR approach is presented.  This approach is composed of a series of iteratively operated 

steps and involves a significance test procedure for the first time.  The flowchart of the 

proposed methodology is presented below: 

 
Flowchart 5.1: Steps of the proposed QSAR methodology 
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As it can be seen from the flowchart, after building the initial regression model for 

selecting the informative descriptors, the initial classification analysis is conducted.  If the 

accuracy is not satisfactory, a significance test is run to see if there are more significant 

descriptors in terms of classification.  The details of the significance test will be presented 

later on in this chapter. 

 

5.1.1 Calculation of the Molecular Descriptors 

 

Application of the QSAR method starts with the feeding procedure of the structures to 

the computer environment.  The 3D structures of the molecules are drawn through energy 

minimization in HyperChem [77], and the molecular descriptors of the optimized structures 

are generated by CODESSA [78].  CODESSA calculates eight types of descriptors: 

constitutional, topological, geometrical, electrostatic, CPSA (charged partial surface area), 

MO- (molecular orbital-) related, quantum chemical, and thermodynamic, which sum up to 

172 descriptors. 

 

5.1.2 Regression Analysis 

 

As the regression model to select the most informative descriptors, we used the PLS 

(partial least squares) method [79], which is used for the first time in a QSAR study on 1-4 

DHP derivatives.  PLS is an MLR (multiple linear regression) method, which describes a 

set of dependent variables Y as a linear combination of the set of independent variables X 

minimizing the distance between the actual Y values and the function values.  The reason 

that PLS is selected in this study is that the method is especially successful in cases having 

many descriptors but few instances [15].  In this study, we have 172 descriptors and only 

45 molecules.   
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The statistics software MINITAB [80] is utilized for regression runs.  The PLS 

algorithm in MINITAB generates coefficients for the independent variables (molecular 

descriptor values) and a linear model for the dependent variable (the experimental IC50 

value).  The coefficients indicate how much the corresponding descriptors contribute to the 

IC50 level in the following way: the higher the absolute value of a descriptor’s coefficient 

is, the more the descriptor is affecting the molecules behavior and vice versa.  However, 

the coefficients are standardized first not to be affected by the very different magnitudes of 

the descriptors.  Therefore, the descriptors that have the largest absolute valued 

standardized coefficients are selected as the most significant ones. 

After building the regression model and selecting the most relevant descriptors, the 

classification study is to be conducted.  However, here, the difference between regression 

and classification should be illustrated, since the regression coefficients that indicate the 

correlation between the independent variables and the dependent variable may not be that 

explanatory of the descriptors’ effectiveness in terms of classifying the molecules.  This 

issue is studied through the following example. 

 
Figure 5.1: The difference between classification and regression 
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The figure illustrates a two-dimensional data having two classes represented by the 

squares and the circles.  The black line represents the linear regression model of the data, 

and the slope of the line corresponds to the coefficient of the independent variable; whereas 

the dashed line is the line that separates the two classes, which has a completely different 

slope.  This may also be implemented to higher dimensions.   

Although there is such a difference between classification and regression, this study 

uses PLS to obtain a preliminary model that describes the effectiveness.  Also, since there 

are many descriptors, PLS is useful for selecting a few of them initially to perform the 

initial classification analysis.  Like the two dimensional case, some of the significant 

descriptors obtained from the regression analysis may not be very informative for the 

classification study, and there may be other descriptors that are more informative than 

these.  Then these more informative ones should replace the less significant ones.  One note 

should be made here: although there may be a replacement of descriptors, these new ones 

should also describe the dependent variable, thus cannot have very low standard 

coefficients.  Moreover, as the number of selected descriptors increase, the probability that 

these really significant descriptors are selected in the regression analysis increases. 

 

5.1.3 Classification 

 

The classification of the molecules using the selected descriptors is carried out by 

utilizing the hyper-box classification method, which is a mixed-integer linear programming 

based model and is a very reliable classifier that can solve hard problems with high 

accuracy rates [17].  The algorithm encloses multidimensional data in hyper-boxes by 

solving an MILP, where hyperboxes are assigned to classes and data are assigned to 

hyperboxes.  The strength of the algorithm is that it can assign multiple hyperboxes to a 

class, and thus allowing hyperboxes covering as few as a single instance each, which 
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considerably increases accuracy by minimizing overfitting.  In this study, the hyperbox 

classification model is used to classify the 45 molecules into high and low activity classes.  

Initially, the model is run using the descriptors coming from the initial regression analysis, 

and then rerun after conducting the significance test.  The classification runs will be 

repeated iteratively as long as there is an insignificant descriptor in the model to be 

replaced.  

The classification method by itself is compared with other 51 classification methods 

available in the WEKA software [81]   

 

5.1.4 Significance Test 

 

The above explained problem of overrating the contributions of the descriptors to 

classification of the molecules into high and low active classes is solved by making a 

significance test after the classification run.  The procedure followed in this test is as 

follows:  Let X be the set of molecules in the data set and D be the set of selected 

descriptors for the classification analysis.  Let X be separated into two classes after the 

classification process: A and B.  If the classification run is successful, variances of the 

descriptor values for each class have to be smaller than the variance of the descriptor values 

of the whole set X.  For a descriptor i in D, the sample variance of that descriptor’s value 

for a molecule set j is represented by Sij.  Then the following value for molecule sets j and 

k obeys the F distribution: 

                                                 υη
σ

σ
fSS

S

S
ikij

iik

iij == 22
22

22

/
/

/
 (5.1) 

The fυη value is distributed under the F distribution with degrees of freedom υ and η.  

Here, 1−= nυ  and 1−= mη , where n is the number of values descriptor i takes in drug 

set j and m is the number of values descriptors i takes in the drug set k.   
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In the significance test, the aim is to accept or reject a hypothesis by posing an 

alternative hypothesis and calculating the corresponding p-value.  P-value of an outcome 

value is the probability of obtaining a statistic value at least as contradictory to the original 

hypothesis H0 as the value of the outcome [82].  If the p-value is lower than the 

significance level, the null (original) hypothesis is rejected.  Here, our null hypothesis is 

that the variance of the descriptor i values for the whole drug set j is smaller than or equal 

to the variance of the values for a molecule set k.  Then, the alternative hypothesis Ha 

becomes the opposite of this claim, which is what we expect to happen from the results of a 

successful classification.  Analytically: 

                                                 ikij SSH ≤=0   (5.2) 

and  

                                                 ikija SSH >=  (5.3) 

The significance level for this test is 0.1, i.e. the fυη value needs to have a p-value 

smaller than 0.1 for the null hypothesis to be rejected.   

Three models are constructed with the regression analysis composed of 7, 10 and 15 of 

descriptors.  The reason for building different models with different number of descriptors 

is to see the more significant descriptors in the larger models to replace the less significant 

ones in the smaller models.  As it has been explained, the probability of selecting the 

significant descriptors and both the representative power of the regression analysis and the 

accuracy of the classification analysis improve as the number of selected descriptors 

increases [15].  This strategy is seen to be a successful approach and to be increasing the 

accuracy of the classification analyses. 
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5.2 Implementation to DHP Derivatives 

 

The new QSAR approach was implemented on 45 variants of 1,4-d,hydropyridine 

calcium channel antagonists (DHP).   

 

5.2.1 The Data Set 

 

The 45 1,4-dihydropyridine calcium channel antagonists are taken from the literature 

for comparison purposes.  The data set, used in this application was obtained from a 

template structure containing two ring structures.  The diagram of this template is presented 

in Figure 5.2.  The 45 DHP derivatives are constructed by attaching various fragments to 

the numbered positions of the X ring.  These fragments and their positions can be seen in 

Table 5.1.  Also, log(1/IC50) values of the molecules are provided in this table, which are 

used as a measure of drug efficacy.  Since the IC50 value represents the concentration of the 

inhibitor necessary to reach a threshold inhibition level, a high IC50, thus a low log(1/IC50) 

indicates low effectiveness.  In this study, classification of the data set was conducted 

according to the cutoff value used in the literature [53,56,57,83] acquired in laboratory 

tests.  Molecules that have log(1/IC50) values lower than 5.72 were categorized as low-

activity drugs and are indicated by asterisks in Table 5.1 and the molecules having higher 

values were set as high-activity drugs [57]. 

 
Figure 5.2: DHP derivatives template molecule 
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antagonist X
log 

(1/IC50)
antagonist X

log 
(1/IC50)

1 3'-Br 8.89 23* 3'-NMe2 6.05
2 2'-CF3 8.8.2 24* 3'-OH 6.00
3 2'-Cl 8.66 25* 3'-NH2 5.70
4 3'-NO2 8.40 26* 3'-OAc 5.22
5 2'-CH=CH2 8.35 27* 3'-OCOPh 5.20
6 2'-NO2 8.29 28* 2'-NH2 4.40
7 2'-Me 8.22 29 4'-F 6.89
8 2'-Et 8.19 30* 4'-Br 5.40
9 2'-Br 8.12 31* 4'-I 4.64
10 2'-CN 7.80 32* 4'-NO2 5.50
11 3'-Cl 7.80 33* 4'-NMe2 4.00
12 3'-F 7.68 34* 4'-CN 5.46
13 H 7.68 35* 4'-Cl 5.09
14 3'-CN 7.46 36 2',6'-Cl2 8.72
15 3'-I 7.38 37 F5 8.36
16 2'-F 7.37 38 2'-F,6'-Cl 6.12
17 2'-I 7.33 39 2',3'-Cl2 7.72
18 2'-OCH3 7.24 40 2'-Cl,5'-NO2 7.52
19 3'-CF3 7.13 41 3',5'-Cl2 7.03
20 3'-CH3 6.96 42 2'-OH,5'-NO2 7.00
21 2'-OC2H5 6.96 43 2',5'-Me2 7.00
22 3'-OCH3 6.72 44* 2',4'-Cl2 6.40

45* 2',4',5'-(OCH3)3 3.00  
Table 5.1: The data set and their experimental –log(IC50) values 

 

As explained in the previous section, the molecular structures were generated and their 

energy optimizations were carried out in HyperChem, and the molecular descriptors were 

computed by CODESSA.  The program calculated 172 descriptors for the 45 molecules; 

however, 45 of these descriptors had the same or very close values for all of the members 

of the data set and thus were eliminated, since they could not provide any information 

regarding classifying these molecules.  After the elimination process, the calculated number 

of descriptors reduced to 127.  Because the number of attributes were too large compared 

to the number of instances, PLS was selected as the regression method, and for the 
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regression runs, the software MINITAB was used.  The classification runs were made using 

the Hyper-Box model of Türkay and Üney [17].   

 

5.2.2 Results 

 

To explain the -log(IC50) values of the data set, regression analysis was conducted.  

This model was used to obtain the starting descriptive attributes, which were used in the 

initial classification runs.  Three models were built by the PLS runs: 7, 10 and 15 attribute 

regression models.  The motivation to construct three models is have many descriptors at 

hand so that insignificant descriptors of the 7 and 10 attribute models can be replaced with 

the significant ones from the 15 attribute model to increase the accuracy of classification. 

The PLS regression study was conducted in MINITAB.  The program does not 

explicitly hand over a regression model and the selected attributes.  Instead, it provides 

parameters such as the loadings, fits and coefficients.  As explained before, the relevant 

attributes are the ones that have the largest standardized absolute value coefficients.  Table 

5.2 presents the initial selected descriptors, their standardized absolute value coefficients 

and their contributions to the regression model’s R2.  Regression models having fewer than 

7 attributes had very low R2 values and thus were not considered.   

Once the initial descriptors were obtained from the regression studies, three binary 

classification runs were made with the 7, 10 and 15 descriptors with the hyper-box 

classification algorithm.  The molecules were classified as high active and low active by 

randomly selecting 66% of the data (29 descriptors) as the training set and the remaining as 

the test set.  The results of the initial classification runs are presented in Table 5.3.  The 10 

and 15 attribute model reached an accuracy of 100%, whereas the 7 attribute model’s 

accuracy needs to be improved, where the hyperbox method placed one molecule in both 

classes, hence the “half placements” observed in Table 5.3.  As claimed before, it can be 
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inferred from the results that increased number of descriptors increase the classification 

accuracy.  This is due to the fact that the –log(IC50) value is better explained with more 

attributes.  The low accuracy result of the 7 attribute classification run indicates the 

possibility that there are insignificant descriptors in terms of classifying the data set into 

high and low activity molecules.   

 

descriptor abs std coeff R2

moment of inertia c 0.200060 0.3208
zx shadow/zx rectangle 0.190382 0.5327
yz shadow 0.160966 0.7060
moment of inertia b 0.141894 0.7887
relative number of double bonds 0.129344 0.8222
min partial charge (Qmin) 0.109508 0.8436
xy shadow/xy rectangle 0.108719 0.8545

yz shadow 0.362224 0.3208
min partial charge (Qmin) 0.237551 0.5327
relative number of rings 0.222727 0.7060
gravitation index (all bonds) 0.194466 0.7887
momen of inertia c 0.191894 0.8222
avg information content (first order) 0.287006 0.8437
zx shadow/zx rectangle 0.174063 0.8545
moment of inertia b 0.155643 0.8663
xy shadow/xy rectangle 0.146396 0.8832
avg structural information (first order) 0.138678 0.8997

yz shadow 0.690157 0.3208
relative number of rings 0.328803 0.5327
relative number of double bonds 0.276340 0.7060
min partial charge (Qmin) 0.271366 0.7887
gravitation index (all bonds) 0.262456 0.8222
topographic electronic index (first order) 0.244745 0.8437
xy shadow/xy rectangle 0.238495 0.8545
moment of inertia c 0.235894 0.8663
avg information content (first order) 0.223088 0.8832
Kier and Hall index (third order) 0.194655 0.8997
relative number of O atoms 0.169296 0.9052
avg structural information (first order) 0.164614 0.9126
number of O atoms 0.163997 0.9212
zx shadow 0.163665 0.9273
RPCS (relative positive charges) 0.150060 0.9319

7-Attribute Model

10-Attribute Model

15-Attribute Model

 
Table 5.2: Initially selected descriptors for the three models 
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high low high low
high 8 1 high 9 0
low 3.5 3.5 low 0 7
accuracy 71.875% accuracy 100%

7-attribute model 10-attribute model

 
Table 5.3: Confusion matrix for the initial models obtained by the Hyper-Box classifier 

 

Once the initial classification runs were complete, a significance test on the class 

variances were conducted, and p-values for the models were obtained as explained in 

Section 4.1.4.  A p-value below a certain α value indicates that the null hypothesis, where 

the variance of the whole set is claimed to be smaller than or equal to the variance of the 

respective class, can be rejected with a 1-α confidence against the alternative hypothesis, 

where the variance of the whole set is claimed to be larger than the class’ variance.  The p-

values for the 7-descriptor model are presented in Table 5.4.  Here, it can be observed that 

certain descriptors are more significant for different classes.  The p-value of the descriptor 

“minimum partial charge” for the high-activity class is notably low indicating that this 

descriptor is significant in terms of classifying the data in the high-activity class.  Also, the 

p-values of the descriptors “xy shadow / xy shadow rectangle” and “moment of inertia” are 

smaller than 0.2 for the low-activity class, which is due to the similarity of the values that 

these descriptors took in this class.  This being the case, “relative number of bonds” and 

“zx shadow / zx rectangle” descriptors are considerably large for both classes.  To see other 

descriptors’ significance values, the significance test was also performed on the 10 and 15 

descriptor models.  The results of these tests are presented in Tables 5.5 and 5.6. 
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class sample var p value

all data 1.86433 x 10-12

high-activity class 2.45364 x 10-12 0.69553

low-activity class 2.14177 x 10-13 0.02475

all data 4.78054 x 10-9

high-activity class 5.43046 x 10-9 0.59965

low-activity class 4.97706 x 10-9 0.58132

all data 3.31775 x 10-5

high-activity class 1.70621 x 10-5 0.13479

low-activity class 7.54847 x 10-5 0.89063

all data 3.06989 x 10-12

high-activity class 3.66341 x 10-12 0.63273

low-activity class 1.48766 x 10-12 0.25311

all data 7.13736 x 10-10

high-activity class 6.56676 x 10-10 0.45377

low-activity class 1.42946 x 10-9 0.85419

all data 3.4584 x 10-12

high-activity class 1.7292 x 10-13 0.00001

low-activity class 1.03752 x 10-11 0.94724

all data 3.79668 x 10-9

high-activity class 4.22108 x 10-9 0.58499

low-activity class 1.45006 x 10-9 0.18189

relative number of double bonds

minimum partial charge

xy shadow/xy rectangle

moment of inertia c

zx shadow/zx rectangle

yz shadow

moment of inertia b

 
Table 5.4: Results of the significance tests for the initial classification run for the  

         7-descriptor model 
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class sample var p  value

all data 1.86433 x 10-12

high-activity class 1.16597 x 10-12 0.25525
low-activity class 1.35135 x 10-12 0.36348

all data 4.78054 x 10-9

high-activity class 6.01771 x 10-9 0.66672
low-activity class 3.42624 x 10-9 0.35775

all data 3.31775 x 10-5

high-activity class 2.11057 x 10-5 0.26358
low-activity class 5.47244 x 10-5 0.79829

all data 3.06989 x 10-12

high-activity class 1.42173 x 10-12 0.13663
low-activity class 4.34283 x 10-12 0.72743

all data 52,852.91667
high-activity class 76,877.77778 0.74696
low-activity class 26,295.23810 0.19943

all data 3.44650 x 10-12

high-activity class 2.17778 x 10-13 0.00025
low-activity class 7.40571 x 10-12 0.89243

all data 3.79668 x 10-9

high-activity class 3.99492 x 10-9 0.55730
low-activity class 1.93239 x 10-9 0.20762

all data 0.020193333
high-activity class 0.026119444 0.68250
low-activity class 0.012628571 0.29218

all data 0.001135933
high-activity class 0.001102111 0.50635
low-activity class 0.001158476 0.55053

zx shadow/zx rectangle

moment of inertia c

avg information content (first order)

minimum partial change

gravitation index (all bonds)

moment of inertia b

yz shadow

relative number of rings

xy shadow/xy rectangle

 
Table 5.5: Results of the significance tests for the 10-descriptor model 
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class sample var p  value

all data 1.12216 x 10-13

high-activity class 7.02339 x 10-14 0.25570
low-activity class 8.13117 x 10-14 0.36331

all data 2.72483 x 10-6

high-activity class 1.04685 x 10-6 0.08732
low-activity class 5.03054 x 10-6 0.84296

all data 1.99608 x 10-6

high-activity class 1.26980 x 10-6 0.26358
low-activity class 3.29242 x 10-6 0.79829

all data 6.35861 x 10-11

high-activity class 7.84348 x 10-11 0.65476
low-activity class 5.42829 x 10-11 0.45061

all data 4.29394 x 10-11

high-activity class 4.76203 x 10-11 0.59009
low-activity class 4.17239 x 10-11 0.52315

all data 2.08129 x 10-13

high-activity class 1.38454 x 10-14 0.00031
low-activity class 4.46041 x 10-13 0.89167

all data 2.28424 x 10-10

high-activity class 2.40350 x 10-10 0.55730
low-activity class 1.16261 x 10-10 0.20763

all data 1.64377 x 10-7

high-activity class 1.59522 x 10-7 0.50650
low-activity class 1.96183 x 10-7 0.63843

moment of inertia c

zx shadow

yz shadow

relative number of O atoms

relative number of double bonds

minimum partial charge

xy shadow/xy rectangle

number of O atoms

 
Table 5.6: Results of the significance tests for the 15-descriptor model 
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class sample var p  value

all data 0.006598345
high-activity class 0.009597693 0.74696
low-activity class 0.003282790 0.19943

all data 1.35371 x 10-12

high-activity class 6.73992 x 10-13 0.16061
low-activity class 2.28121 x 10-12 0.80728

all data 2.52100 x 10-9

high-activity class 3.26083 x 10-9 0.68250
low-activity class 1.57660 x 10-0 0.29219

all data 2.16152 x 10-8

high-activity class 3.30726 x 10-8 0.77258
low-activity class 7.61959 x 10-9 0.10254

all data 6.58340 x 10-9

high-activity class 6.12045 x 10-9 0.47961
low-activity class 8.25509 x 10-9 0.66517

all data 1.41814 x 10-10

high-activity class 1.37590 x 10-10 0.50634
low-activity class 1.44629 x 10-10 0.55053

all data 6.23883 x 10-9

high-activity class 4.81514 x 10-9 0.36704
low-activity class 9.10702 x 10-9 0.74275

gravitation index (all bonds)

Kier and Hall index (third order)

avg structural information content (first order)

relative number of rings

avg information content (first order)

RPCS

topographic electronic index (first order)

 
Table 5.6 (cntd.): Results of the significance tests for the 15-descriptor model 

 

The insignificant descriptors of the 7-descriptor model were replaced by the significant 

descriptors of the 15-descriptor model, since more of the –log(IC50) values are described in 

this model.  For the 7 attribute model the p-value of the descriptor “zx shadow / zx 
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rectangle” remains over 0.5 for both classes.  Moreover, the p-value of “relative number of 

double bonds” is very high for the low-activity class and the remains above 0.4 for the 

high-activity class.  Therefore, these two descriptors are to be removed and replaced by 

other two descriptors that are found to be significant from the 15-attribute model.  The 

descriptor having the minimum p-values for this model was “minimum partial charge”, but 

it was already in the 7-attribute model.  “zx shadow” and “RPCS” received significantly 

low p-values: the former with a p-value of 0.08732 for the high-activity class and the latter 

with a p-value of 0.10254 for the low-activity class.  (See Table 5.4)  These were placed in 

the new 7-descriptor model.  The descriptors selected after the significance test can be seen 

in Table 5.7. 
 

selected descriptors

moment of inertia c
zx shadow
yz shadow
moment of inertia b
RPCS
min partial charge (Qmin)
xy shadow/xy rectangle  

Table 5.7: Selected descriptors for the 7-descriptor model after significance tests 

 

With these new descriptors, classification of the 45 molecules was repeated by the 

hyper-box model using the same training and test set rule.  The result was a success: an 

accuracy of 100% was reached as can be observed from Table 5.8, where the accuracy and 

classifications are presented.  Therefore, it can be said that the procedure offered based on 

significance testing and replacement of insignificant descriptors with significant ones paid 

off.   
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high low
high 9 0
low 0 7
accuracy 100%  

Table 5.8: Confusion matrix for the final 7-descriptor model obtained by the Hyper-Box 

   classifier 

 

The results were compared with the available classification methods in WEKA [81], a 

widely used data-mining tool.  Some of the most frequently used classification methods 

from this tool are briefly studied below.   

A multilayer perceptron [84] is basically a network built by processing elements called 

perceptrons that compute an output represented by a nonlinear activation function of a 

linear combination of multiple inputs.  Another classification method is the logit boost, 

which is also called the additive logistic regression [85], which, as the name indicates, uses 

the logistic regression model for the learning phase.  The bayesian network [86] is 

essentially a directed cyclic graph, whose nodes correspond to the variables and the edges 

between the nodes have probability values.  Such a graph and the probabilities are first 

learned by the training run and this graph is then used to carry out inference by maximizing 

the likelihood.  Naive Bayes simple and naive Bayes updatable [87] are methods that are 

also based on Bayesian networks.  They both have the naive assumption that the variables 

are independent from each other, and build the graph and probabilities accordingly.  K-star 

is the upgraded version of the k nearest neighborhoods method [88].  Both K-star and LWR 

(locally weighted regression) [89] are instance based, i.e. they build query specific local 

models.  This is contrary to what neural networks or decision trees make, which is building 

global representations of the target functions.  LWR assigns instance based weights to 

variables to build the regression model.  Another statistical model is the logistic classifier 

[90] that constructs a logistic regression model having two classes.  This method is a 
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generalized version of the least squares regression method.  It assumes that the logarithm of 

the likelihood ratio of the distributions of the two classes is linear in the observations.  

SMO (sequential minimal optimization) [91] trains a support vector classifier by breaking a 

large quadratic programming (QP) optimization problem into smaller QP problems 

utilizing polynomial kernels.   OneR (one rule) [87] learns a rule from each attribute of a 

one-level decision tree and then picks one rule that has the smallest error rate.  A nice 

classifier that can handle multiple classes is the multiclass classifier [92], which handles the 

classes by utilizing other two-class distribution classifiers.  A threshold-based classifier 

[87] uses a distribution classifier and aims to minimize the misclassification error by 

putting an upper threshold on the probability output.  The last but not the least is the 

decision stump [93], which classifies data also by using a threshold that is captured by the 

maximum likelihood function. 

For classification with the methods available in WEKA, 66% of the data set was 

separated into a training set and the remaining into a test set.  The following table shows 

the results obtained by the most frequently used classifiers of WEKA and also the best 

results obtained from other methods.  The outputs from the methods not presented here 

were very poor and was not comparable.  Tuning parameters of the classifiers were 

WEKA’s default values.   

It can be seen from Table 5.9, the proposed method received better results than all of 

the classification methods available in WEKA did.  Among the WEKA algorithms, the 

ones based on instances and distribution classifiers performed better than others.  For the 7-

attribute classification, the best result from WEKA turned out to be an accuracy of 68.75% 

whereas the hyperbox method received and accuracy rate of 100%.  For the 10-attribute 

case, the best result achieved by WEKA algorithms was 75% whereas the hyperbox 

method again achieved 100%.   
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classification method 7-attribute 10-attribute

Bayes network 62.50 56.25
naive Bayes 43.75 50.00
naive Bayes simple 56.25 56.25
naive Bayes updatable 43.75 50.00
logistic 68.75 68.75
multilayer perceptron 50.00 62.50
SMO 62.50 62.50
K-star 62.50 75.00
LWR 56.25 68.75
logit boost 56.25 68.75
multiclass classifier 68.75 68.75
threshold selector 37.50 37.50
decision stump 62.50 75.00
oneR 43.75 75.00

accuracy (%)

 
Table 5.9: Accuracies obtained by the algorithms in WEKA 

 

The methodology was also compared with the QSAR methods proposed in the 

literature and applied on the same data set of 45 DHP derivatives, and it was seen that it 

outperforms all these methods.  The regression results can be seen in Table 5.10 and the 

classification results are presented in Table 5.11. 

 

method R
2

MLR [83] 8 0.550
PCANN [83] 8 0.730
CoMFA [56] 8 0.872
CoMSIA [56] 8 0.908
GRID/GOLPE [56] 8 0.821
HM [57] 7 0.870
LSSVM [57] 7 0.870
PLS 7 0.854
PLS 10 0.899
PLS 15 0.932

number of 
variables

 
Table 5.10: Regression results of the reference methods for the same data set 
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method accuracy (%)

PCA [53] 82.2
BPNN [83] 88.9
LDA [57] 86.7
LSSVM [57] 91.1
hyperbox, 7-attribute 100.0
hyperbox, 10-attribute 100.0  

Table 5.11: Accuracies of the reference methods for the same data set 

 

The R2 values indicate how successful is the linear model built by the regression model 

in describing the IC50 values of the molecules.  However, it should be noted that this study 

used regression for selecting the most descriptive attributes from many, and then these 

selected ones were subjected to a significance test and were changed if seen necessary.  

Therefore, the R2 values are not enough to measure the success of the methodology, but 

only the success of the regression method used.  Although the R2 value of the PLS method 

with the 15-attribute case is better than the R2 values of the other methods, such a 

comparison would not be fair since these methods use less attributes to achieve their R2 

values.  Nevertheless, the PLS results for the 7-descriptor case still performs better than 

three of the other methods and seems comparable with the rest.   

To compare the whole methodology that is composed of the regression, significance 

and classification studies, the classification accuracy is a better measure.  The 

classifications results of the reference methods are presented in Table 5.11.  It can be seen 

that the hyperbox method again achieved the best results among these methods.  With this, 

the success of the methodology proposed in this thesis in classifying this data set into low 

and high active classes was established.  It can be said that the 10 and 15-attribute models 

are not necessary for this data set, since a 100% accuracy was already achieved with the 7-

attribute model.  
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Chapter 6 

 

CONCLUSION and FUTURE WORK 

 

 

The motivation of this thesis was to develop tools to be used for a fragment-based 

structure based drug design based on the idea that opmization itself can be used to design 

ligands.  This idea is built on the prerequisite that the active site is represented by the union 

of a set of convex hulls, and a fragment library is available.   

Proteins have massively many different types of shapes and an algorithm that can 

represent the active site of any protein is a hard problem.  This study realized the first 

prerequisite partly achieving close representations for protein pockets that are completely 

buried, thus are completely surrounded with atoms.  However, the algorithm has hard time 

describing the active sites that have large openings to the outer space.  For such proteins, 

the constraint that there should be no atoms within the represented active site is offered to 

be relaxed.  In this way, a larger volume of the active site can be represented and also the 

atoms within the site are close to the walls of the convex hulls, allowing the assumption 

that the mathematical programming model to be developed for this purpose can handle 

these by putting a constraint on the van der Waals regions of all atoms prohibiting placing a 

fragment atom within these regions. 

The algorithm may be run by starting from different regions of the active site that is 

taking the initial surface from a different part of the site each time.  The outputs may be 

taken into consideration together to be used as geometric constraints of the drug design 



 
 
6. Conclusion and Future Work    106 

 

model as future work.  Moreover, some dummy points that are thought to be helpful for the 

algorithm to extract better outputs may be introduced to the active site by the user. 

Another task that may be useful is to further automatization of the SLICE algorithm.  In 

the current edition, the user introduces the starting surface, but a method that will 

automatically detect the pocket mouth may be developed.  The “unite” algorithm may also 

be studied so that it can optimize the surfaces to be united between the jth and the j+1st 

convex hulls.  However, this task is not trivial, since there is no rule that will optimize the 

united surfaces without including a point within the structure.  

The second prerequisite was successfully implemented.  A fragment library composed 

of feasible dual combinations of 57 fragments is built, and their bond distances, bond 

angles and torsional angles were calculated.  These will hopefully be used in future studies 

as parameters for geometrical constraints of the optimization model.   

The main part of the project, i.e. the mathematical programming algorithm that 

energetically optimizes the structure comprising the protein active site and fragments by 

binding fragments together and building non-covalent bonds with the site surface was 

attempted.  A conceptual model was obtained, which needs further development before it 

can be used for drug design purposes.  The constraints for the bond angles and torsional 

angles have to be developed further for the cases when atoms whose bond or torsional 

angles are to be calculated belong to more than one fragment type.  Besides these 

constraints, there may be a number of new constraints to be posed.  However, many 

presumably valid constraints, variables and parameters were introduced in this study.  

Therefore, it is believed to be having achieved a starting point for future developers.   

Lastly, an evaluation strategy for the activities of generated ligands was developed.  

This strategy was essentially a QSAR study utilizing a home-made classification algorithm 

developed by Üney and Türkay.  The methodology offered in the study was proved to be 
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achieving better accuracy results than all of the reference methods for a dataset of DHP 

derivatives. 

As a conclusion, this thesis initiated a fragment-based drug design project by proposing 

an algorithm for mathematical representation of the active site of proteins, building a basis 

for the optimization model for drug design purposes and presenting a methodology for 

early prediction of the activities of the designed ligands. 



 
 
Bibliography    108 

 

 

 

BIBLIOGRAPHY 

 

[1] G. Economou, J. N. Ward-McQuaid, A Cross-over Comparison of the Effect of 

Morphine, Pethidine, Pentazocine, and Phenazocine on Biliary Pressure, J. Gut, 12 (1971), 

218-221. 

[2] Richard B. Silverman, The Organic Chemistry of Drug Design and Drug Action, 

Academic Press Ltd, London, (2004). 

[3] Regine S. Bohacek, Colin McMartin, Wayne C. Guida, The Art and Practice of 

Structure-Based Drug Design: A Molecular Modeling Perspective, Medicinal Research 

Reviews, 16, 1, (1996), 3 – 50. 

[4] Hans J. Wolters, Geometric Modeling Applications in Rational Drug Design: A Survey, 

J. Computer Aided Geometric Design, 23, 6 (2006), 482-494. 

[5] Hugo Kubinyi, Combinatorial and Computational Approaches in Structure-Based Drug 

Design, J. Current Opinion in Drug Discovery and Development, 1, (1998), 16-27. 

[6] Mati Karelson, Molecular Engineering and Drug Design, in Changing the Way 

Research is Done, European Commission, Brussels, (2003). 

[7] Amy C. Anderson, The Process of Structure-Based Drug Design, J. Chemistry & 

Biology, 10, (2003), 787–797. 

[8]  A. T. Laurie, R. M. Jackson, Q-SiteFinder: An Energy-Based Method for the Prediction 

of Protein-Ligand Binding Sites, J. Bioinformatics, 21, (2005), 1908–1916. 

[9] M. Dixon, E. C. Webb, C. J. R. Thorne, K. F. Tipton, in Enzymes (3rd edition), 

Longman, London, (1979), 220-243. 



 
 
Bibliography    109 

 

[10] Murad Nayal and Barry Honig, On the Nature of Cavities on Protein Surfaces: 

Application to the Identification of Drug-Binding Sites, J. Proteins: Structure, Function, 

and Bioinformatics, 63, (2006), 892–906. 

[11]  A. S. Aytuna, A. Gursoy, O Keskin, Prediction of Protein–Protein Interactions by 

Combining Structure and Sequence Conservation in Protein Interfaces, J. Bioinformatics, 

21(12), (2005), 2850-2855. 

[12]  Paul J. Gane, Philip M. Dean, Recent Advances in Structure-Based Rational Drug 

Design, J. Current Opinion in Structural Biology, 10, (2000), 401–404. 

[13]  R.D. Taylor, P.J. Jewsbury and J.W. Essex, A Review of Protein-Small Molecule 

Docking Methods, Journal of Computer-Aided Molecular Design, 16(3), (2002), 151-166. 

[14]  I. M. Kapetanovic, Computer-Aided Drug Discovery and Development (CADDD): In 

Silico-Chemico-Biological Approach, J. Chemico-Biological Interactions, 171, (2008), 

165–176. 

[15] P. Kahraman, M. Turkay, Classification of 1,4-Dihydropyridine Calcium Channel 

Antagonists Using the Hyperbox Approach, J. Ind. Eng. Chem. Res., 46, (2007), 4921-

4929. 

[16] T. Solmajer, J. Zupan, Optimization Algorithms and Natural Computing in Drug 

Discovery, J. Drug Discovery Today: Technologies, 1 (3), (2004), 247-252. 

[17] F. Uney, M. Turkay, A Mixed-Integer Programming Approach to Multiclass Data 

Classification Problem, Eur. J. Oper. Res., 173 (3), (2006), 910-920. 

[18]  J. Tooze, C. Branden, Introduction to Protein Structure. USA: Garland Publishing 

Inc., (1999), 251-281.  

[19]  C. Sotriffer, G. Klebe, Identification and Mapping of Small-Molecule Binding Sites in 

Proteins: Computational Tools for Structure-Based Drug Design, J. Il Farmaco, 57, (2002), 

243–251. 



 
 
Bibliography    110 

 

[20]  Renxiao Wang, Ying Gao, and Luhua Lai, LigBuilder: A Multi-Purpose Program for 

Structure-Based Drug Design, J. Mol. Model, 6, (2000), 498 – 516. 

[21]   J. H. M. Berman, Z. Westbrook, G. Feng, T. N. Gilliland, H. Bhat, I. N. Weissig, P. 

E. Bourne Shindyalov, The Protein Data Bank, J. Nucleic Acids Research, 28, (2000), 235-

242. 

[22]  J. An, M. Totrov, R. Abagyan, Comprehensive Identification of “Druggable” Protein 

Ligand Binding Sites, J. Genome Informatics, 15(2), (2004), 31–41. 

[23] M. S. Johnson, N. Srinivasan, R. Sowdhamini, T. L. Blundell, Knowledge-Based 

Protein Modeling, J. Crit. Rev. Biochem. Mol. Biol., 29, (1994), 1-68. 

[24] Roman A. Laskowski, SURFNET: A Program for Visualizing Molecular Surfaces, 

Cavities, and Intermolecular Interactions, Journal of Molecular Graphics, 13 (5), (1995), 

323-330. 

[25] David G. Levitt and Leonard J. Banaszak, POCKET: A Computer Graphics Method 

for Identifying and Displaying Protein Cavities and Their Surrounding Amino Acids, J Mol 

Graph., 10 (4), (1992), 229-34.  

[26]  C. K. Knox, J. C. Wenstrom, 3D Visualization of Neural Structures, in Proceedings, 

Society for Computer Simulation, Eastern Multi-Conference, Nashville, (1990) 12-17.   

[27] Manfred Hendlich, Friedrich Rippmann, and Gerhard Barnickel, LIGSITE: 

Automatic and Efficient Detection of Potential Small Molecule-Binding Sites in Proteins, 

Journal of Molecular Graphics and Modelling, 15, (1997), 359–363. 

[28] G. Patrick Brady Jr., Pieter F. W. Stouten, Fast Prediction and Visualization of 

Protein Binding Pockets with PASS,  Journal of Computer-Aided Molecular Design, 14 

(4), (2000), 383-401. 

[29] J. Liang, H. Edelsbrunner, C. Woodward, Anatomy of Protein Pockets and Cavities: 

Measurement of Binding Site Geometry and Implications for Ligand Design  



 
 
Bibliography    111 

 

[30] D. T. Lee and B. J. Schachter, Two Algorithms for Constructing a Delaunay 

Triangulation, International Journal of Parallel Programming, 9 (3), (1980), 219-242. 

[31] J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, S. Subramaniam, Analytical Shape 

Computation of Macromolecules: I. Molecular Area and Volume Through Alpha Shape, J. 

Proteins: Structure, Function, and Bioinformatics, 33 (1), (1998), 1-17. 

[32] Ryan G. Coleman, and Kim A. Sharp, Travel Depth, a New Shape Descriptor for 

Macromolecules: Application to Ligand Binding, Journal of Molecular Biology, 

362 (3), (2006), 441-458. 

[33] C.B. Barber, D. P. Dopkin, H. T. Huhdanpaa, The Quickhull Algorithm for Convex 

Hulls, ACM Trans. on Mathematical Software, 22(4), (1996), 469-483. 

[34] R. K. Ahuja, K.Mehlhorn, J. Orlin, R. E. Tarjan, Faster Algorithms for the Shortest 

Path Problem, Journal of the ACM (JACM), 37 (2), (1990), 213-223. 

[35] J. An, M. Totrov, R. Abagyan, Pocketome via Comprehensive Identification and 

Classification of Ligand Binding Envelopes, J. Molecular and Cellular Proteomics, 4, 

(2005), 752-761.  

[36] M. Weisel, E. Proshak, G. Schneider, PocketPicker: Analysis of Ligand Binding-Sites 

with Shape Descriptors,  Chemistry Central Journal, 1, (2007), 1-17. 

[37] Ernesto Freire, Thermodynamics Guide to Affinity Optimization of Drug Candidates, 

Protein Reviews vol 3, ed. J. E. Ladbury, New York: Kluwer/Plenum, (2005). 

[38] C. A. Lipinski, Drug-Like Properties and the Causes of Poor Solubility and Poor 

Permeability, J. of Pharm. and Tox. Methods, 44, (2000), 235-249. 

[39] Lipinski, C., Lombardo, F., Dominy, B., and Feeney, P, Experimental and 

Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and 

Development Settings, Adv. Drug Deliv. Rev, 46 (1-3), (2001) 3-26. 



 
 
Bibliography    112 

 

[40] D. F. Veber, S. R. Johnson, H. Cheng, B. R. Smith, K. W. Ward, K. D. Kopple, 

Molecular Properties that Influence the Oral Bioavailability of Drug Candidates, J. Med. 

Chem., 45 (12), (2002), 2615-2623. 

 

[41] George A. Jeffrey, An Introduction to Hydrogen Bonding (Topics in Physical 

Chemistry),  Oxford University Press, USA, (1997). 

[42] B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential 

Cell Biology, Garland, New York, (1998). 

[43] William L. Jorgensen, The Many Roles of Computation in Drug Discovery, Science 

303, (2004), 1813-1817. 

[44] Gisbert Schneider and Uli Fechner, Computer Based de Novo Design of Drug-Like 

Molecules, Nature Reviews, 4, (2005), 649-663. 

[45] Hans-Joachim Bohm, The Computer Program LUDI: a New Method for the de Novo 

Design of Enzyme Inhibitors, J. Comp. Aid. Mol. Des., 6, (1992), 61-78. 

[46] G. N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of 

Polypeptide Chain Configurations, J. Mol. Biol, 7, (1963), 95. 

[47] M. B. Eisen, D. C. Wiley, M. Karplus, R. E. Hubbard, HOOK: a Program for Finding 

Novel Molecular Architectures that Satisfy the Chemical and Steric Requirements of a 

Macromolecule Binding Site, J. Proteins, 3, (1994), 199-221.  

[48] A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. Evanseck, M. 

J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. 

T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. 

Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wio´rkiewicz-

Kuczera, D. Yin, and M. Karplus, All-Atom Empirical Potential for Molecular Modeling 

and Dynamics Studies of Protein, J. Phys. Chem., 102, (1998), 3586-3616. 



 
 
Bibliography    113 

 

[49] D. A. Pearlman, M. A. Murcko, CONCERTS: Dynamic Connection of Fragments as 

an Approach to de Novo Ligand Design, J. Med. Chem., 39, (1996), 1651-1663. 

[50] A. Bugrim, T. Nikolskaya, Y. Nikolsky, Early Prediction of Drug Metabolism and 

Toxicity: Systems Biology Approach and Modeling. Drug Discov. Today,  9 (3), (2004), 

127-135. 

[51] C. Helma, In Silico Predictive Toxicology: The State of the Art and Strategies to 

Predict Human Health Effects, Curr. Opin. Drug Discov. Des., 8, (2005), 27-31. 

[52] B. Hemmateenejad, R. Miri, M. Akhond, M. Shamsipur, QSAR Study of the Calcium 

Channel Antagonist Activity of Some Recently synthesized Dihydropyridine Derivatives: 

An Application of Genetic Algorithm for Variable Selection in MLR and PLS Methods, 

Chemom. Intell. Lab. Syst., 64, (2002), 91-99. 

[53] Y. Takahata, M. C. A. Costa, A. C. Gaudio, Comparison Between Neural Networks 

(NN) and Principle Component Analysis (PCA): Structureactivity Relationships of 1,4-

Dihydropyridine Calcium Channel Antagonists (Nifedipine Analogues, J. Chem. Inf. 

Comput. Sci., 43, (2003), 540-544. 

[54] A. C. Gaudio, A. Korolkovas, Y. Takahata, Conformational Analysis of the 1,4-

Dihydropyridines Linking the Structural Aspects to the Biological Binding Event: A Study 

of the Receptor-Site Conformation, J. Mol. Struct., 303, (1994), 255-263. 

[55] Y. Takahata, M. C. A. Costa, A. C. Gaudio, A Comparative Study of Principal 

Component and Linear Multiple Regression Analysis in SAR and QSAR Applied to 1,4-

Dihydropyridine Calcium Channel Antagonists (Nifedipine Analogues, J. Mol. Struct., 394, 

(1997), 291-300. 

[56] K.-J. Schleifer, E. Tot, CoMFA, CoMSIA and GRID/GOLPE Studies on Calcium 

Entry Blocking 1,4-Dihydropyridines, Quant. Struct.-Act. Relat., 21, (2002), 239-248. 



 
 
Bibliography    114 

 

[57] X. Yao, H. Liu, R. Zhang, M. Liu, , Z. Hu, A. Panaye, J. P. Doucet, B. Fan, QSAR 

and Classification Study of 1,4-Dihydropyridine Calcium Channel Antagonists Based on 

Least Squares Support Vector Machines, Mol. Pharm., 2 (5), (2005), 348-356. 

[58] H. Z. Si, T. Wang, K. J. Zhang, Z. D. Hu, B. Fan, QSAR study of 1,4-

Dihydropyridine Calcium Channel Antagonists Based on Gene Expression Programming, 

Bioorg. Med. Chem., 14, (2006), 4834-4841. 

[59] A. R. Katritzky, V. S. Lobanov, M. Karelson, Comprehensive Descriptors for 

Structural and Statistical Analysis, Reference Manual, Versions 2.0 and 2.13; University of 

Florida: Gainsville, FL, (1997). 

[60] Marco Attene and Michela Spagnuolo, Automatic Surface Reconstruction from Point 

Sets in Space, in Eurographichs 2000, ed. M. Gross and F.R.A. Hopgood, 19 (3), (2000). 

[61] D. T. Moustakas, P. T.Lang, S. Pegg, E. Pettersen, I. D. Kuntz, N. Brooijmans, R. C. 

Rizzo, Development and Validation of a Modular, Extensible Docking Program: DOCK 5, 

J. Comput. Aided Mol. Des., 20, (2006), 601–619. 

[62] D. S. Goodsell, G. M. Morris, A. J. Olson, Automated Docking of Flexible Ligands: 

Applications of AutoDock, J. Mol. Rec., 9 (1), (1998), 1-5. 

[63]  Matthias Rarey, Bernd Kramer, Thomas Lengauer and Gerhard Klebe, A Fast 

Flexible Docking Method using an Incremental Construction Algorithm, Journal of 

Molecular Biology, 261 (3), (1996), 470-489.  

 [64] B. Chazelle, L. Palios, Decomposing the Boundary of a Nonconvex Polyhedron, J. 

Algorithmica, 17, (1997), 245-265. 

[65] F. P. Preparata, S. J. Hong, Convex Hulls of Finite Sets of Points in Two and Three 

Dimensions, J. Commun. ACM, 20 (2), (1977) 87–93. 

[66] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational 

Geometry, Algorithms and Applications, Springer, (2000).  



 
 
Bibliography    115 

 

[67] A. Armon, D. Graur and N. Ben-Tal, ConSurf: an Algorithmic Tool for the 

Identification of Functional Regions in Proteins by Surface Mapping of Phylogenetic 

Information, Journal of Molecular Biology, 307 (1), (2001), 447-463. 

[68] MATLAB, The MathWorks, Inc., (1984-2008).  

[69] C. D.  Mol, D. R. Dougan, T. R.  Schneider, R. J.  Skene, M. L.  Kraus, D. 

N.  Scheibe, G. P. Snell, H. Zou, B. C. Sang, K. P. Wilson, Structural Basis for the 

Autoinhibition and STI-571 Inhibition of c-Kit Tyrosine Kinase, J.Biol.Chem., 279, 

(2004), 31655-31663. 

[70] V. Cody, D. Chan, N. Galitsky, D. Rak, J. R. Luft, W. Pangborn, S. F. Queener, C. 

A.  Laughton, M. F. Stevens, Crystal Structure and Molecular Modeling Studies on the 

Pneumocystis Carinii Dihydrofolate Reductase Cofactor Complex with TAB, a Highly 

Selective Antifolate, J. Biochemistry, 39, (2000), 3556-3564. 

[71] C. M. Silva, R. Reid, Gastrointestinal Stromal Tumors (GIST): C-kit Mutations, 

CD117 Expression, Differential Diagnosis and Targeted Cancer Therapy with Imatinib, J. 

Pathol Oncol Res., 9(1), (2003), 13-19.  

[72] T. Langer, G. Wolber, Virtual Combinatorial Chemistry and in Silico Screening: 

Efficient Tools for Lead Structure Discovery, J. Pure Appl. Chem., 76 (5), (2004), 991–

996. 

[73] S. Makino, T. J. A. Ewing, I. D. Kuntz, DREAM++: Flexible Docking Program for 

Virtual Combinatorial Libraries, J. of Comp.-Aided Mol. Design, 13, (1999), 513–532. 

[74] I. E. Grossman, Review of Nonlinear Mixed-Integer and Disjunctive Programming 

Techniques, J. Optimization and Engineering, 3, (2002), 227–252. 

[75]  

[76] Y. Cheng, W. H. Prusoff, Relationship Between the Inhibition Constant (K1) and the 

Concentration of Inhibitor which Causes 50 Percent Inhibition (I50) of an Enzymatic 

Reaction, J. Biochem Pharmacol., 22 (23), (1973), 3099-3108.   



 
 
Bibliography    116 

 

[77] HyperChem. 7.5, Hypercube, (2003) 

[78] A. R. Katritzky, V. S. Lobanov, M. Karelson, Comprehensive Descriptors for 

Structural and Statistical Analysis, Reference Manual, Versions 2.0 and 2.13, University of 

Florida: Gainsville, FL, (1997). 

[79] Garthwaite, P. H. An interpretation of partial least squares. J. Am. Stat. Assoc., 89 

(425), (1994), 122-127. 

[80] MINITAB Statistical Software, Release 14 for Windows; MINITAB Inc.: State 

College, PA, (2003). 

[81] WEKA 3: Data Mining Software in JaVa; The University of Waikato: Hamilton, New 

Zealand, (2005). 

[82] J. L. Devore, Probability and Statistics for Engineering and the Sciences, 5th Edition, 

Duxbury, CA, (2000). 

[83] V. N. Viswanadhan, G. A.Mueller, S. C. Basak, J. N. Weinstein, Comparison of a 

Neural Net Based QSAR Algorithm (PCANN) with Hologram and Multiple Linear 

Regression-Based QSAR Approaches: Application to 1,4-Dihydropyridine-Based Calcium 

Channel Antagonists. J. Chem. Inf. Comput. Sci., 41, (2001), 505-511. 

[84] B. Widrow, M. A. Lehr, 30 Years of Adaptive Neural Networks: Perceptron, 

Madaline and Backpropagation, Proc. IEEE, 78 (9), (1990), 1415-1442. 

[85] J. Friedman, T. Hestie, R. Tibshirani, Additive Logistic Regression: A Statistical 

View of Boosting, Ann. Stat.,  28 (2), (2000), 337, 407. 

[86] D. Heckerman, A Tutorial on Learning with Bayesian Network; Technical Report; 

Microsoft Research Advanced Technology Division, Microsoft Corporation: Redmond, 

WA, (1996). 

[87] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and 

Techniques, 2nd Ed., Morgan Kaufmann: San Francisco, (2005). 



 
 
Bibliography    117 

 

[88] G. C. John, E. T. Leonard, K*: An Instance-Based Learner Using an Entropic 

Distance Measure, In Proceedings of the 12th International Conference on Machine 

LearninG, Morgan Kauffman: San Francisco, (2001), 108-114. 

[89] W. S. Cleveland, S. J. Delvin, Locally Weighted Regression: An Approach to 

Regression Analysis by Local Fitting, J. Am. Stat. Assoc., 83 (403), (1988), 596-610. 

[90] A. J. Scott, M. J. Symons, Clustering Methods Based on Likelihood Ratio Criteria, 

Biometrics, 27, (1991), 387-397. 

[91] J. Platt, Fast Training of Support Vector Machines using Sequential Minimal 

Optimization. In Advances in Kernel Methods Support Vector Learning, B. Scholkopf, C. 

Burges, A. Smola Eds.; MIT Press: Cambridge, MA, (1999), 185-208. 

[92] D. M. J. Tax, R. P. W. Duin, Using Two-Class Classifiers for Multiclass 

Classification. In 16th International Conference on Pattern Recognition (ICPR’02), 

International Association for Pattern Recognition (IAPR): Durham, NC, 2, (2002), 20124. 

[93] Y. Qu, B. L. Adam, Y. Yasui, M. D. Ward, L. H. Cazares, P. F. Schellhammer, O. J. 

Semmes, Boosted Decision Tree Analysis of Surface-Enhanced Laser Desorption 

/Ionization Mass Spectral Serum Profiles Discriminates Prostate Cancer from Noncancer 

Patients, J. Clin. Chem., 48, (2002), 1835-1843. 

[94] V. Cody, D. Chan, N. Galitsky, D. Rak, J. R. Luft, W. Pangborn, S. F. Queener, C. A. 

Laughton, and M. F. G. Stevens, Structural Studies on Bioactive Compounds. 30. Crystal 

Structure and Molecular Modeling Studies on the Pneumocystis carinii Dihydrofolate 

Reductase Cofactor Complex with TAB, a Highly Selective Antifolate, J. Biochemistry, 39 

(13), (2000), 3556 -3564. 

[95] D. Benarroch, P. Smith, S. Shuman, Characterization of a Trifunctional Mimivirus 

mRNA Capping Enzyme and Crystal Structure of the RNA Triphosphatase Domain, J. 

Structure, 16 (4), (2008), 501-512. 



 
 
Bibliography    118 

 

[96] D. M. Haapalainen, G. Merilainen, J. E. Jalonen, P. Pirila, R. K. Wierenga, J. K. 

Hiltunen, T. Glumoff,  Crystal Structure of the Liganded SCP-2-Like Domain of Human 

Peroxisomal Multifunctional Enzyme Type 2 at 1.75 A resolution, J.Mol.Biol., 313, (2001) 

1127-1138 . 

[97] http://www.pumma.nl/index.php/Theory/Potentials 


