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ABSTRACT

Green’s functions of vector and scalar potentials, and fields have been studied in layered

media composed of materials with positive and negative refractive indices, also referred to

as right-handed and left-handed materials, respectively. Since Green’s functions are noth-

ing but the potentials or fields due to a given point source in a given environment, they

facilitate the use of the superposition integral to calculate the radiation from an arbitrary

source in the same environment, as the Maxwell equations are linear for linear materials.

To begin with, the derivation of the spectral-domain Green’s functions in planarly layered

media is reviewed with the detailed investigation of their singularities, namely, the surface

wave poles, branch-point singularities, and the leaky wave poles. To incorporate left-handed

materials and real metals at optic frequencies into the study of multilayered structures, the

salient features of such materials are reviewed, with a special emphasis on their response to

electromagnetic waves. Once the spectral-domain Green’s functions have been studied in

multilayered structures composed of any kind of materials, artificial and/or natural, their

spatial-domain counterparts are obtained by i) numerical integration of the time-consuming

Sommerfeld integrals, and ii) the discrete complex image method. Although there are con-

tributions in both parts of the study, the main contribution of this work is to obtain the

closed-form approximations to the spatial-domain Green’s functions that can account for

any wave nature - spherical, cylindrical, and conical - at any distances from the source

location, i.e., near-, intermediate- and far-field zones. Although the main engine of this

approximation is the discrete complex image method, which was extensively used and dis-

cussed in the literature on the closed-form approximations of the spatial-domain Green’s

functions, its implementation has been modified in order to capture the branch-point contri-

butions of the integrals. As a result of this work, it was demonstrated that the closed-form

Green’s functions in the spatial domain can be obtained efficiently and accurately in all

ranges of materials and distances.
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ÖZETÇE

Kırılma indisi pozitif (doğal malzemeler) ve negatif (solak malzemeler) olan malzemeler-

den oluşturulan katmalı yapıların skalar ve vektörel potansiyel ve alan Green’s fonksiyonları

çalışıldı. Green’s fonksiyonları, noktasal bir kaynağın, herhangi bir geometride oluşturduğu

alan veya potansiyel bilgisi olduğundan ve lineer yapılarda Maxwell denklemleri lineer

olduğundan, herhangi şekildeki bir yapının oluşturacağı alan veya potansiyel bilgisi Green’s

fonksiyonlarının bindirme integralleri ile elde edilebilir. Başlangıç olarak, katmalı yapılarda

spektral tanım kümesindeki Green’s fonksiyonlarının elde edilmesinin üzerinden geçildi ve

bu yapılarda oluşabilecek olan tekillikler detaylı olarak incelendi. Solak malzemeleri ve optik

frekanslarındaki metalleri de katmalı yapılarda kullanabilmek için, bu tür yapıların dikkat

çekici özellikleri elektromanyetik dalgalara olan tepkileri göz önünde tutularak araştırıldı.

Katmanlı yapılarda (yapılar doğal malzemeler, solak malzemeler v.b. oluşabilir) spektral

tanım kümesindeki Green’s fonksiyonları elde edildikten sonra, uzamsal tanım kümesindeki

karşılıkları iki yolla elde edildi: 1) zaman alıcı Sommerfeld integrallerini nümerik olarak

alarak, ve 2) ayrık karmaşık imge metodu kullanılarak. Bu tezde, her iki kısma da katkılar

yapılmasına karşın en önemli katkı spektral tanım kümesindeki Green’s fonksiyonlarının

kapalı-form yaklaşık değerlerinin elde edilmesi olmuştur. Yaklaşık değerlerin elde edilmesinde,

literatürde yaygın bir şekilde kullanılan ve tartışılan ayrık karmaşık imgeler metodu çeşitli

değişikler yapılarak kullanılmıştır. Bu değişiklikler sonunda, dallanma noktasının etkisi

elde edilmiş ve çeşitli dalga tiplerinin (küresel, silindirik ve konik) kullanılmasıyla kaynağa

olan her mesafede (yakın, ara ve uzak mesafeler), yaklaşık değerler doğru bir şekilde elde

edilmiştir. Sonuç olarak, kapalı-form Green’s fonksiyonlarının, uzamsal tanım kümesinde

etkili, hızlı ve hatasız olarak elde edilebileceği gösterilmiştir.

Anahtar kelimeler: Green’s fonksiyonları, katmanlı yapılar, 3-adım DCIM, solak

malzemeler, yüzey dalgaları, yüzey plasmon polaritonları.
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Chapter 1

INTRODUCTION

From the time Marconi and his assistants successfully achieved the propagation of elec-

tromagnetic waves over large distances on earth, way beyond the line-of-sight distance to

the horizon, in early 1900s, radiation from infinitesimal dipoles, horizontal and vertical

with respect to the layer interface, have attracted a great deal of interests [1]. Originally,

the main interest was to understand the physical mechanisms of the wave constituents of

electromagnetic wave propagation over a lossy medium, in order to better design the first

versions of today’s widely used wireless communication systems. Once this goal has been

achieved successfully, with the help of the mathematical derivations of the fields due to

dipoles in layered media, it was realized that electromagnetic fields play as important role

in the analysis and design of high-frequency circuits as voltages and currents do in the low

frequency circuits. In other words, circuits operating in short wavelength regime, as com-

pared to the size of the circuit components, require the field quantities, rather than voltages

and currents, to asses their performances through their terminal parameters, such as the

input and output impedances, powers delivered to the load or drawn from the circuits, etc.

Therefore, recognizing the linearity of Maxwell’s equations in linear media, fields of a dipole

source in a given medium have been treated as the impulse responses of the medium, facili-

tating the analysis of arbitrary current density profile in the same medium via superposition

integral. When this view is coupled with the advancement of the computational power of

personal computers and workstations, it has paved the way for rigorous analysis of devices,

circuits and even systems, which were computationally intractable until recently, resulting

in a flurry of activities in the field of computational electromagnetics and optics. To be more

specific, Green’s functions have played an important role in the development of one of the

key numerical techniques employed in the analysis of layered structures in microwave and

antenna applications, namely, the method of moments, during the last three decades [2–12].
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Based on this evolutionary and chronological order of the perceived importance of dipole

radiation, it is safe to state that Green’s functions in the spatial domain are now important

for the sake of computational efficiency of the analysis of printed structures in multilayered

environment. Therefore, most of the recent study on Green’s functions have concentrated

on their efficient computation. To appreciate the proposed methods and approaches in the

literature to achieve this task, Green’s functions in the spectral and spatial domains need

to be defined, in general terms, in planar multilayered media first. For now, it would be

sufficient to known that spectral-domain Green’s functions in planar multilayered structures

can be obtained analytically, and their spatial-domain counterparts are obtained either

through inverse Fourier transform or inverse Hankel transform integrals (the latter is also

known as Sommerfeld integral), both of which require integration of complex and oscillatory

functions over infinite domains [6,13]. Based on this knowledge, it is obvious that there could

be two different approaches to improve the computational efficiency of these transformation

integrals: i) improving the computational efficiency of numerical evaluation of the integrals

via some transformation techniques [14–16], ii) trying to approximate the transformations in

closed forms [17–31]. As can be seen from the list of references for the latter approach, which

is by no means a complete list, the approximation of the spatial-domain Green’s functions in

closed forms have attracted significant amount of interest in computational EM community.

The work in this thesis falls into the second category, and the contributions can be stated as

follows: i) closed-form approximations of the spatial-domain Green’s functions are improved

to account for the conical waves, which is due to the branch-point singularities of the

spectral-domain Green’s functions; ii) singularities of the spectral-domain green’s functions

defined for multilayered planar structures composed of natural and artificial materials are

investigated; iii) Green’s functions defined for planar slabs of left-handed materials and real

metals, which may support surface plasmons, as well as surface waves and conical waves,

have been studied; iv) closed-form expressions of the spatial-domain Green’s functions of

potentials and fields have been obtained in general multilayered environment, including

layers that have been made up of LHMs, RHMs and real metals.

It would be instructive to give a brief historical development of the closed-form approx-

imations of the spatial-domain Green’s functions via discrete complex images, which are

nothing but spherical waves originating from a set of complex image points in space. The
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first published result on the discrete complex images of a dipole source in a half space or in a

microstrip structure is considered to be the article by D. G. Fang et. al., in 1988 [17], where

they proposed approximating the spectral-domain Green’s functions in terms of complex

exponentials, and transforming them into the spatial domain analytically with the help of

the Somerfeld identity. However, there were a couple of issues that rendered the algorithm

inefficient and not-robust, which were, namely, i) the inaccuracy of the resulting image

representation for intermediate and large distances (beyond a few wavelength, even less,

depending upon the geometry), ii) the noise sensitivity and instability of the exponential

approximation algorithm used in the work, the Prony’s method. As a result, they had to use

the so-called ”relay race” approach, in which complex images were used up to a distance,

beyond which the surface-wave pole contributions were used only. It is understandable

that not being able to predefine the switching distance encouraged the researchers to find

a single expressions for all ranges involved. As a result, unified closed-form expressions

for the spatial-domain Green’s functions were derived specifically for thick microstrip sub-

strates [18], carrying almost the same problems as those of the previous approach, except

for the relay race implementation. The method starts with the extraction of the surface-

wave poles (SWP) and quasi-static terms (corresponding to the large spectral portion of

the inverse Hankel transform integrals, or to the low frequency limit), and then, the rest is

approximated in terms of complex exponential functions via Prony’s method. Hence, the

transformation integral, i.e., the Sommerfeld integral, can be evaluated analytically in closed

forms facilitated by the known analytical transforms of the SWP contributions, quasi-static

terms and the discrete complex-image terms. Even though the proposed approach had a

few problems to be resolved, which are, namely, i) the geometry specific extraction of the

quasi-static terms, ii) the noise sensitivity of Prony’s method, and iii) the large amount

of samples required for the implementation of Prony’s method, it has inspired some new

work and provided the underlying algorithm for the following work. This approach was

first extended to microstrip structures with a superstrata [19], still suffering from almost

the same problems as the original approach. However, with the introductions of the gen-

eralized pencil-of-function method for exponential approximation [20], which is much less

noise sensitive as compared to Prony’s method and its variants, and the two-level sam-

pling algorithm [21], which significantly reduces the number of samples required for the
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exponential approximation, the algorithm has proved to have a potential to be robust and

accurate for all ranges of distances. Since then, there have been a plenty of publications

that propose improvements and/or new approaches for the closed-form representation of

the spatial-domain Green’s functions, and this thesis is also one of them, trying to improve

the original algorithm to incorporate any types of materials and to cover any ranges of

distances.

It is imperative to define the basic steps of the derivation of the spectral-domain and

spatial-domain Green’s functions, in order to provide the details of the contributions in

this thesis. Therefore, Chapter 2 starts with the derivation of these Green’s functions in

unbounded media, and followed with the derivations in multilayered media. Then, the wave

constituents of dipole radiation in layered media are discussed, and transformation between

the spectral-domain and spatial-domain representations are provided with critical study of

the surface wave poles. In Chapter 3, the fundamentals of the wave propagation in left-

handed materials are given in addition to the discussions of the surface wave poles and other

wave constituents in such materials. As the main contribution of the thesis, the derivation

of the closed-form approximations of the spatial-domain Green’s functions is introduced,

with special emphasis given to the conical waves in certain layer configurations, and to the

structures composed of LHMs and RHMs, all in Chapter 4. In order to cover the whole

spectrum of the materials, several examples of layer configurations are studied and their

results are provided in Chapter 4, for the sake of discussions and conclusions.
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Chapter 2

GENERAL DERIVATIONS AND DISCUSSIONS OF GREEN’S

FUNCTIONS

The concept of Green’s function in electromagnetic problems is equivalent to the impulse

response in circuit and system problems [13]. In circuit and system theory, if one knows the

impulse response of a time-invariant linear system, the response of an arbitrary input signal

can be simply calculated as the convolution of the impulse response with the input signal.

Equivalently, the response of the system in the frequency domain can be determined by the

multiplication of the Fourier transforms of the input signal and impulse response of the sys-

tem, as the convolution operator in time domain corresponds to multiplication in frequency

domain. In physical terms, Fourier transformation makes it possible to write the frequency

content of signals by the use of functions which form an orthogonal set such as sines, cosines,

complex exponentials, etc., in time domain. By taking the Fourier transform of the input

signal and the impulse response of the system, one can easily obtain the frequency content

of the output signal by a simple multiplication of the frequency domain representations

of the input signal and the impulse response (the frequency domain representation of the

impulse response is called the frequency response) of the system. To determine the output

signal of the system in time domain, a Fourier transform must be performed. Note that the

impulse input signal for circuit and system problems is defined in time domain, δ(t) , as

the input signals in such systems are usually functions of time. However, in EM problems,

since the field and/or potential distributions due to an arbitrary source distribution in space

are important, the impulse source in space will be the source for the Green’s function. In

other words, since Green’s functions in EM problems play the role of the impulse response

in system theory, point source, which is an impulse source in space, plays the role of the

impulse function in time.

The field and potential Green’s functions for general unbounded and layered structures

in spectral domain will be be derived in sections 2.1 and 2.2, respectively. Then, in section
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2.3, a basic discussion on transforming the spectral (spectrum: equivalent to the frequency

domain in circuit and system theory) domain Green’s functions into spatial (space: equiv-

alent to time domain in circuit and system theory) domain will be given.

2.1 Derivation of Spectral-Domain Green’s Functions in Unbounded, Homo-

geneous and Isotropic Media

Since electric and magnetic fields can be written in terms of vector and scalar potentials,

their Green’s functions can also be obtained from the Green’s functions of the potentials

using the same relations. So, the field expressions in terms of potentials are given below,

skipping their derivations for the sake of brevity, [13]:

E(r) = −jωA(r)−∇φ(r) (2.1)

µH(r) = ∇×A(r) (2.2)

where φ(r) and A(r) are the scalar and vector potentials, respectively, and they are related

by the Lorentz gauge as

∇ ·A(r) = −jωεµφ(r) (2.3)

Note that ejωt time convention is used and suppressed in this work, and µ and ε are the

permeability and the permittivity of the medium, respectively. Substituting (2.3) into (2.1)

results in the following electric field expression in terms of the vector potential:

E(r) = −jω

[

Ī +
∇∇
k2

]

·A(r) (2.4)

where Ī = x̂x̂+ŷŷ+ẑẑ is called the idem factor or idem diad. From (2.2) and (2.4) one can see

that, if Green’s function for the vector potential is known, Green’s functions for the electric

and magnetic fields can be obtained by simple differentiations. Hence, finding Green’s

functions for fields reduces down to obtaining Green’s function for the vector potential, for

which the governing equation is the inhomogeneous Helmholtz equation:

∇2A(r) + k2A(r) = −µJ(r) (2.5)

To find the Green’s function for the vector potential, the source term is assumed to be

an electric current dipole oriented in an arbitrary direction α̂, represented as J(r) =
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α̂Ilδ(r − r′). Hence the solution of the Helmholtz equation for a point source is obtained as

A(r, r′) = α̂µIl
e−jk|r−r′|

4π|r− r′| (2.6)

where r and r′ are the observation and source points, respectively, and k(= ω
√

ǫµ) is the

wave number of the medium. Once the vector potential is obtained, substituting (2.6) into

(2.4), and (2.6) into (2.2) would result in the electric and magnetic fields, respectively, in a

homogeneous, isotropic and unbounded medium:

E(r) = −jω

[

Ī +
∇∇
k2

]

· α̂µIl
e−jk|r−r

′|

4π|r− r′| (2.7)

H(r) = ∇× α̂µIl
e−jk|r−r

′|

4π|r− r′| (2.8)

So far, the Green’s functions for potentials and fields have been obtained due to a dipole

source in α-direction in an unbounded medium. For the sake of illustration and of getting

some intuitive feelings, 3D plots of the magnitudes of the potentials and the field components

of an x-directed dipole in free-space are provided in Figs. 2.2 - 2.7 at the operating frequency

of 1.0GHz. The data for these plots were obtained for the geometry shown in Fig. 2.1, where

the source and observation planes are explicitly shown. It should be noted that all results

Figure 2.1: The locations of the x-directed dipole and the observation plane. (Observation
plane is at z=-0.1 m.)

shown above are for an x-directed electrical dipole with unit strength, i.e., Il = 1 in (2.6),



Chapter 2: General Derivations and Discussions of Green’s Functions 8

−1
0

1

−1

0

1
0

0.5

1
x 10

−6

x (m)y (m)

|A
|

−1
0

1

−1

0

1
0

5

10
x 10

10

x (m)y (m)

|φ
|

a b

Figure 2.2: The magnitude of (a) vector and (b) scalar potentials on the observation plane
shown in Fig. 2.1.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−3000

−2000

−1000

0

1000

2000

3000

x (m)y (m)

E
−

fie
ld

, x
 c

om
po

ne
nt

Figure 2.3: Real part of E-field, x component on the observation plane shown in Fig. 2.1.



Chapter 2: General Derivations and Discussions of Green’s Functions 9

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−1500

−1000

−500

0

500

1000

1500

x (m)y (m)

E
−

fie
ld

, y
 c

om
po

ne
nt

Figure 2.4: Real part of E-field, y component on the observation plane shown in Fig. 2.1.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−2000

−1000

0

1000

2000

x (m)y (m)

E
−

fie
ld

, z
 c

om
po

ne
nt

Figure 2.5: Real part of E-field, z component on the observation plane shown in Fig. 2.1.



Chapter 2: General Derivations and Discussions of Green’s Functions 10

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−50

0

50

100

150

200

x (m)y (m)

H
−

fie
ld

, y
 c

om
po

ne
nt

Figure 2.6: Real part of H-field, y component on the observation plane shown in Fig. 2.1.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−60

−40

−20

0

20

40

60

x (m)y (m)

H
−

fie
ld

, z
 c

om
po

ne
nt

Figure 2.7: Real part of H-field, z component on the observation plane shown in Fig. 2.1.



Chapter 2: General Derivations and Discussions of Green’s Functions 11

and that the field results shown in Figs. 2.3 - 2.7 were obtained by numerical differentiation

performed on the vector and/or scalar potentials, according to the expressions provided in

(2.1) and (2.2).

2.2 Derivation of Spectral-domain Green’s Functions in Layered Media

As a starting point of the study of Green’s functions in layered media, the potential and

field Green’s functions in unbounded, homogeneous and isotropic media were derived and

their relations with each other were obtained in section 2.1. Note that since the vector

potential due to a point source in unbounded media can be represented in closed-forms as

spherical waves, as given in (2.6), all Green’s functions in the spatial domain were obtained

analytically. However, this is not the case for a layered medium, where the Green’s functions

can usually be represented in closed forms in the spectral domain only. Therefore, in this

section, the field and potential Green’s functions in the spectral domain will be derived in a

planarly layered structure, as shown in Fig. 2.8. Throughout this work, the location of the

source is assumed to be the origin of the whole system, and the observation point(s) may

be in any layer, with its coordinates specified as referenced to the origin.

Figure 2.8: A general layered medium.

Based on a simple reasoning, Green’s functions of the potentials and fields in layered
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media can be deduced from those obtained in unbounded medium by taking into account

the reflections and transmissions at the planar interfaces of the layers. However, closed-form

reflection and transmission coefficients at the planar interface between two media can only

be defined for incident plane waves, and, as noted in section 2.1, Green’s functions of the

vector potential and the fields in an unbounded medium are in the forms of spherical waves

and the spatial derivatives of the spherical waves, respectively. Therefore, the spherical

wave nature of the solutions given in (2.1) and (2.2) need to be expanded in terms of plane

waves by using the Weyl identity:

e−jkr

r
=

1

π

∫ ∞

−∞

∫ ∞

−∞
dkxdkye

−jkxx−jkyy e−jkz|z|

j2kz
(2.9)

where k2 = k2
x + k2

y + k2
z and |r| =

√

x2 + y2 + z2. Note that (2.9) is the 2D inverse Fourier

transform of the spectral-domain Green’s functions obtained in an unbounded medium,

and provides the plane wave spectrum of a point source, including the contributions of the

evanescent spectrum (k2 < k2
x + k2

y , yielding dominantly imaginary kz) as well as those of

propagating spectrum (k2 ≥ k2
x + k2

y , yielding dominantly real kz.) Since the medium is

translationally invariant on xy-plane, the phase matching condition requires that kx and ky

are the same in all layers involved, leaving the propagation along the stratification to be

determined in each layer only.

Before going into the details of the derivation of Green’s functions in layered media,

it would be instructive to address the issue of non-uniqueness of the potentials in layered

media. In unbounded homogeneous media, it can be shown that a single vector component

of the vector potential in the direction of the dipole is sufficient to define the rest of the

fields. However, it is a well-known fact that this is not the case if there is a plane boundary,

for which a single vector component cannot describe the electromagnetic field everywhere

[5, 32]. This is due to the solenoidal behavior of the magnetic field generated by a dipole.

In the case of an x-directed HED in a layered structure, as seen in Fig. 2.8, at least two

components of the vector potential are needed, since the magnetic field generated by the

dipole has two components on the boundary: one is normal (z component) and the other is

parallel (y component) to the planar surface. Since the normal component is discontinuous,

and the parallel component is continuous between two different regions, a single component

of the vector potential cannot describe the overall magnetic fields in all the regions. Since

the ultimate goal is to satisfy the boundary conditions of the fields at the interface, any
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combinations of the vector and scalar potentials that satisfy the necessary boundary condi-

tions could be satisfactorily employed, as some suitable combinations were proposed in [5],

in addition to the traditional form of the vector and scalar potentials. In the traditional

form, the normal component (z-component) of the vector potential is assumed in addition

to the component that is in the same direction as the dipole. Therefore, in the traditional

form, the components of the vector potential Green’s function due to any arbitrary dipole

orientation in a layered structure stratified in z-direction can be written as

ḠA = (x̂x̂ + ŷŷ)GA
xx + ẑx̂GA

zx + ẑŷGA
zy + ẑẑGA

zz (2.10)

where GA
ij is i-component of the vector potential due to the dipole in j-direction. As the

result of the selection above, i.e., the traditional form, the horizontal dipoles are assumed to

result in two components of the vector potentials (e.g. GA
xx and GA

zx for x-directed dipole),

whereas the vertical dipoles ought to yield only one component of the vector potential (e.g.

GA
zz for z-directed dipole) to describe the electromagnetic fields everywhere in the layered

medium. Moreover, the scalar potentials due to a vertical dipole and horizontal dipole are

not the same. Therefore, one needs to define five potential functions (3 for HED or HMD

and 2 for VED or VMD) in order to be able to obtain all the field components uniquely in

a layered structure.

2.2.1 Spectral-Domain Green’s Functions in Source Layer - Horizontal Electric Dipole

(HED) and Horizontal Magnetic Dipole (HMD)

The derivation of the spectral-domain Green’s functions for an HED starts with writing the

longitudinal field components in an unbounded medium, with the constitutive parameters

of the source region, which is assumed to be layer-i in this work with the constitutive

parameters of εi and µi. Hence, by using (2.7) and (2.8), the longitudinal field components

in the source layer i are obtained as 1:

Ezi = − jIl

4πωεi

∂2

∂z∂x

e−jkir

r
(2.11)

Hzi = − Il

4π

∂

∂y

e−jkir

r
(2.12)

1Note that, throughout this work, field expressions are written for the geometry shown in Fig. 2.8, where
the source is always at the origin, i.e., r

′ = 0. The author believes that this convention is better suited for
layered media when writing the field expressions in any layer of the structure.
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As stated earlier, the spherical wave term (e−jkir/r) in both expressions needs to be ex-

panded in terms of plane waves, in order to account for the reflections and transmissions at

the boundaries. This can simply be achieved by using the Weyl identity 2.9) in (2.11) and

(2.12), resulting in the following longitudinal field components:

Ezi =
±Il

8π2ωεi

∫ ∞

−∞

∫ ∞

−∞
dkxdkykxe−jkxx−jkyye−jkzi|z| (2.13)

Hzi =
Il

8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdkykye

−jkxx−jkyy e−jkzi|z|

kzi
(2.14)

where the ± sign is due to the derivative of e−jkzi|z| with respect to z variable: + sign for

z > 0 and − sign for z < 0. It may be necessary to emphasize the following facts one

more time: i) kx and ky are equal in all layers due to the phase matching condition at the

boundaries; ii) e−j(kxx+kyy) is considered to be the kernel of the 2D inverse Fourier transform;

and therefore, iii) the rest of the terms in the integrands are the Fourier transforms of the

longitudinal fields generated by an HED in an unbounded medium. As a result of these

observations, the spectral-domain representations of the fields can be considered as the plane

waves propagating in z-direction, and working in the spectral domain requires the tracking

of the longitudinal variation of the fields only. Therefore, the fields in a layered medium can

be written intuitively by considering the reflected waves from the boundaries as follows:

Ezi =
Il

8π2ωεi

∫ ∞

−∞

∫ ∞

−∞
dkxdkykxe−jkxx−jkyyFTM (2.15)

Hzi =
Il

8π2

∫ ∞

−∞

∫ ∞

−∞
dkxdkyky

e−jkxx−jkyy

kzi
FTE (2.16)

where

FTE = e−jkzi|z| + Ae
hejkziz + Ce

he−jkziz

FTM = ±e−jkzi|z| + Be
hejkziz + De

he−jkziz (2.17)

It is intuitive because, as can be seen from the expressions in (2.17), the total fields inside

the source region are written as the sum of incident wave and the reflected waves from upper

and lower boundaries, modifying only the z variation. Note that once the fields due to an

HED are obtained, those for an HMD can be written directly by the principle of duality:

E → H, H → −E, J → M, M → −J, ε → µ, µ → ε, leading to the replacement of

Il→ −jωµIA, where A is the area of the current loop modeling the magnetic dipole.
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After having obtained the longitudinal field components Ezi and Hzi due to an HED

and HMD in layered media in terms of unknown coefficients, it is time to determine these

coefficients by imposing the continuity of the fields at the two boundaries, i.e., at z = di−h

and z = −h. Since the details of the implementation of the boundary conditions have been

well documented [6, 13], for the sake of brevity, it is not repeated here, only the unknown

coefficients A, B, C and D are provided in terms of the reflection coefficients defined at the

interfaces, [20]:

Ae,m
h = e−jkzi(di−h)R̃i,i+1

TE,TM

[

e−jkzi(di−h) + R̃i,i−1
TE,TMe−jkzi(di+h)

]

MTE,TM
i (2.18)

Be,m
h = e−jkzi(di−h)R̃i,i+1

TM,TE

[

e−jkzi(di−h) − R̃i,i−1
TM,TEe−jkzi(di+h)

]

MTM,TE
i (2.19)

Ce,m
h = e−jkzihR̃i,i−1

TE,TM

[

e−jkzih + R̃i,i+1
TE,TMe−jkzi(2di−h)

]

MTE,TM
i (2.20)

De,m
h = e−jkzihR̃i,i−1

TM,TE

[

−e−jkzih + R̃i,i+1
TM,TEe−jkzi(2di−h)

]

MTM,TE
i (2.21)

where Mi, the generalized reflection coefficient R̃j+1,j
TE,TM , and the Fresnel reflection coeffi-

cients Rj,j+1
TE,TM are defined as

MTE,TM
i =

[

1− R̃i,i+1
TE,TMR̃i,i−1

TE,TMe−jkzi2di

]−1
(2.22)

R̃j+1,j
TE,TM =

Rj+1,j
TE,TM + R̃j,j−1

TE,TMe−jkzj2dj

1−Rj,j+1
TE,TMR̃j,j−1

TE,TMe−jkzj2dj

(2.23)

Rj,j+1
TE =

µj+1kzj − µjkz(j+1)

µj+1kzj + µjkz(j+1)
(2.24)

Rj,j+1
TM =

εj+1kzj − εjkz(j+1)

εj+1kzj + εjkz(j+1)
(2.25)

With the knowledge of the unknown coefficients, the Green’s functions for the z components

of the electric and magnetic fields, when the source and the observation points are in the

same layer i, can simply be deduced from (2.15-2.17) as:

G̃E
zx =

1

2ωεi
kx

[

±e−jkzi|z| + Be
hejkziz + De

he−jkziz
]

(2.26)

G̃H
zx =

1

2ωεi
ky

[

e−jkzi|z| + Ae
hejkziz + Ce

he−jkziz
]

(2.27)

where the longitudinal propagation constant in layer-i is defined as kzi =
√

k2
i − k2

x − k2
y =

√

k2
i − k2

ρ. It is a well-known fact that, for a layered structure stratified in z-direction

(referred to as the longitudinal direction), the transverse field components can be determined
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from the longitudinal field components by using the following relations [13]:

H̃t =
1

k2 − k2
z

[
∂

∂z
∇tH̃z + jωε∇t × ẑẼz

]

(2.28)

Ẽt =
1

k2 − k2
z

[
∂

∂z
∇tẼz − jωµ∇t × ẑH̃z

]

(2.29)

Substituting the longitudinal field components in the spectral domain, (2.15), (2.16), the

following spectral-domain Green’s functions for the transverse fields are obtained:

G̃E
xx =

−jωµi

2(k2
i − k2

zi)

[

k2
x

k2
i

∂

∂z
FTM +

k2
y

jkzi
FTE

]

(2.30)

G̃E
yx =

−jωµikxky

2(k2
i − k2

zi)

[
1

k2
i

∂

∂z
FTM +

j

kzi
FTE

]

(2.31)

G̃H
xx =

kxky

2(k2
i − k2

zi)

[

FTM −
j

kzi

∂

∂z
FTE

]

(2.32)

G̃H
yx =

−1

2(k2
i − k2

zi)

[

k2
xFTM −

jk2
y

kzi

∂

∂z
FTE

]

(2.33)

Since field Green’s functions have higher order singularities than those for the poten-

tials, because of the spatial derivatives involved in their derivations from the potentials

(2.2) and (2.4), in most computational tools, the potential Green’s functions are employed

in the solution of the mixed-potential integral equations (MPIE) for the analysis of printed

circuits. Therefore, Green’s functions for potentials play crucial role in computational elec-

tromagnetics, as well as in the efficient computation of the field Green’s functions. The

spectral-domain expressions of the potential Green’s functions can simply be obtained by

remembering that µH = ∇×A and A = x̂Ax + ẑAz, for x-directed electric dipole in layered

media, and that such relations hold for the spectral representations of these quantities. As

a result, one can obtain the components of the vector potential as

Ãx =
µ

jky
H̃z (2.34)

Ãz = − µ

jky
H̃x (2.35)

where the derivatives with respect to one of the transverse directions, x and y, are imple-

mented in the spectral domain simply by using ∂/∂x = −jkx and ∂/∂y = −jky, as kx

and ky are unique in the entire structure due to the phase-matching condition. Hence, the

components of Green’s function of the vector potential due to x-directed dipole are obtained
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as

G̃A
xx =

µi

j2kzi

[

e−jkzi|z| + Ae
hejkziz + Ce

he−jkziz
]

(2.36)

G̃A
zx =

−µi

j2kzi

[
kxkzi

k2
ρ

(Ae
h + Be

h) ejkziz +
kxkzi

k2
ρ

(De
h − Ce

h) e−jkziz

]

(2.37)

Then, the Green’s function for the scalar potential due to an HED can be obtained by

substituting the components of the vector potential Green’s functions into the Lorentz

gauge (2.3), which results in

G̃q
x =

1

j2εikzi

[

e−jkzi|z| +
k2

ziB
e
h + k2

i A
e
h

k2
ρ

ejkziz +
k2

i C
e
h − k2

ziD
e
h

k2
ρ

e−jkziz

]

(2.38)

It should be stated one more time that the Green’s functions corresponding to an HMD can

be obtained from those of an HED by applying the principle of duality, as noted earlier in

this section.

2.2.2 Spectral-Domain Green’s Functions in Source Layer - Vertical Electric Dipole (VED)

and Vertical Magnetic Dipole (VMD)

Similar to the derivation of the Green’s functions due to an HED source in layered media,

the derivation of Green’s functions for a VED starts with writing the longitudinal field

components in an unbounded medium, with the constitutive parameters of the source layer-

i, as

Ezi = −jIlωµi

4πk2
i

(

k2
i +

∂2

∂z2

)
e−jkir

r
(2.39)

Hzi = 0 (2.40)

where it is observed that the magnetic field has only the transverse components. Because

of this, VED source is known to be the source of only TM waves, while VMD source, whose

longitudinal electric field is zero as can simply be deduced from the dual of the fields of

VED, (2.39) and (2.40), can only excite TE waves. Then, the spherical wave part of the

field, e−jkir/r, are expressed as an integral sum of the plane waves using the Weyl identity

(2.9) as

Ezi =
−Il

8π2ωεi

∫ ∞

−∞

∫ ∞

−∞
dkxdky

(

k2
i +

∂2

∂z2

)

e−jkxx−jkyye−jkzi|z| (2.41)

Once the plane wave representation of the longitudinal field due to a VED are obtained in

an unbounded medium, the influence of the rest of the layers on this field can be accounted
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for by the reflections and transmissions of the plane wave constituents of the field at the

upper and lower boundaries:

Ezi =
−Il

8π2ωεi

∫ ∞

−∞

∫ ∞

−∞
dkxdky

k2
ρ

kzi
e−jkxx−jkyyFTM (2.42)

where

FTM = e−jkzi|z| + Ae
ve

−jkziz + Be
ve

jkziz (2.43)

As before, the unknown coefficients A and B can be obtained by imposing the boundary

conditions at the upper and lower interfaces, resulting in

Ae,m
v = e−jkzihR̃i,i−1

TM,TE

[

e−jkzih + R̃i,i+1
TM,TEe−jkzi(2di−h)

]

MTM,TE
i (2.44)

Be,m
v = e−jkzi(di−h)R̃i,i+1

TM,TE

[

e−jkzi(di−h) + R̃i,i−1
TM,TEe−jkzi(di+h)

]

MTM,TE
i (2.45)

Hence, by using the equations that relate the longitudinal field components to transverse

components (2.29), the following field Green’s functions are obtained:

G̃E
xz =

jkx

2ωεkzi

∂

∂z
FTM (2.46)

G̃E
yz =

jky

2ωεkzi

∂

∂z
FTM (2.47)

G̃H
xz = − ky

2kzi
FTM (2.48)

G̃H
yz =

kx

2kzi
FTM (2.49)

Finally, following the same procedure as in the case of HED and HMD, the potential Green’s

functions are obtained as

G̃A
zz =

µi

j2kzi

[

e−jkzi|z| + Ae
ve

−jkziz + Be
ve

jkziz
]

(2.50)

G̃q
z =

1

j2kziεi

[

e−jkzi|z| + Ce
ve−jkziz + De

ve
jkziz

]

(2.51)

where the coefficients A and B are given in 2.44 and 2.45, respectively, and the coefficients

C and D are obtained as:

Ce,m
v = e−jkzihR̃i,i−1

TM,TE

[

−e−jkzih + R̃i,i+1
TM,TEe−jkzi(2di−h)

]

MTM,TE
i (2.52)

De,m
v = e−jkzi(di−h)R̃i,i+1

TM,TE

[

−e−jkzi(di−h) + R̃i,i−1
TM,TEe−jkzi(di+h)

]

MTM,TE
i (2.53)

where M and the generalized and Fresnel’s reflection coefficients are given in (2.22), (2.23)

and (2.24-2.25), respectively.
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Note that, in all the derivations in this section, the source and observation points are

assumed to be in the same layer, namely, layer-i, and because of this, the spectral-domain

representations of the Green’s functions consist of a direct-wave term (e−jkzi|z|), and two

reflected-wave terms (one from upper boundary and the other from lower boundary of the

source layer), except for the components of the Green’s functions that exist only because of

the interface, like G̃A
zx. However, in the case of a different observation layer from the source

layer, the direct term in the source layer needs to be combined with one of the reflected-wave

terms in order to find the amplitude of the incident wave at one of the boundaries. Then,

one needs to define a transfer function to find the amplitudes of the up- and down-going

waves in the observation layer. These issues will be discussed in details in the following

section.

2.2.3 Spectral-Domain Green’s Functions - Observation Layer Different from Source Layer

As reminded in the previous section, in cases of different source and observation layers, a

transfer function needs to be devised to take care of the crossing of the waves from one layer

to another. Naturally, this process has to start from the source layer, as the amplitude of the

incident wave from a point source can be uniquely defined. However, in order to facilitate

the derivation, it would be nice to introduce a generic field expression in an arbitrary layer

in terms of up- and down going waves. For this purpose, let the TE-mode field distribution

in region-(j) of Fig. 2.8 be written as follows (where j = i−m):

GTE
j (z) = A−

j

(

ejkzjz + R̃j,j−1
TE e−jkzjzejkzj2(−z−m−h)

)

(2.54)

where A−
j is the amplitude of the down-going wave in layer-j. Likewise, the field distribution

of the same mode in region-(j + 1) is also written as:

GTE
(j+1)(z) = A−

j+1

(

ejkz(j+1)z + R̃j+1,j
TE e−jkz(j+1)zejkz(j+1)2(−z−m+1−h)

)

(2.55)

Since these field representations are the steady-state distributions in the corresponding

layers, the down-going waves in region-j can be accounted for by the transmission of the

down-going waves in region-j +1 and the reflection of the up-going waves in region-j, which
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is written at the interface between layer-(j + 1) and layer-(j), i.e. at z = −m + 1− h, as

A−
j ejkzj(−z−m+1−h)

︸ ︷︷ ︸

Down-going wave in region-(j)

= T j+1,j
TE A−

j+1e
jkzj(−z−m+1−h)

︸ ︷︷ ︸

The transmitted wave from region-(j + 1) to region-j

+ A−
j R̃j,j−1

TE e−jkzj(−z−m+1−h)ejkzj2(−zm−h)R̃j,j+1
TE

︸ ︷︷ ︸

The up-going wave in region-(j) reflected at the boundary

(2.56)

where T k,k−1 is the transmission coefficient from region-(k) to region-(k − 1) (i.e. T k,k−1 =

1 + Rk,k−1). Note that the TE and TM-mode waves must be analyzed separately, since

the reflection and transmission coefficients are different for the two polarizations. This can

be simply done by changing the polarizations of the transmission and generalized reflection

coefficients in (2.56). By solving for A−
j in (2.56), independent of the polarization, one can

obtain the following expression for the amplitude of down-going wave in region-(j) in terms

of the amplitude of down-going wave in region-(j + 1) (where j = i−m)

A−
j = A−

j+1

T j+1,je−j(kz(j+1)−kz(j))(h+z−m+1)

1−Rj,j+1R̃j,j−1e−jkzj2dj
(2.57)

Using the same approach, the expression for the amplitude of the up-going wave in region-

(j), in terms of the amplitude of the up-going wave in region-(j − 1) (where j = i + m) is

given by

A+
j = A+

j−1

T j−1,je−j(kz(j−1)−kz(j))(zm−1+di−h)

1−Rj,j−1R̃j,j+1e−jkzj2dj
(2.58)

Since the only known amplitudes are of the up-going and down-going waves in the source

region, i.e. A+
i and A−

i , by using the amplitude transfer functions given in (2.57) and (2.58)

in an iterative fashion, starting from the source region, one can obtain the overall fields in

the observation region, which is different from the source region. The amplitudes of the

up and down-going waves in the source region are obtained simply by writing the fields in

the source layer as a sum of up-going and down-going waves. As an example, the vector

potential GA
xx, as obtained in (2.37), is given in spectral domain as follows

G̃A
xx ∝

[

e−jkzi|z| + Ae
hejkziz + Ce

he−jkziz
]

(2.59)

where the coefficients A and C are given in (2.18) and (2.20), respectively. The relation in

(2.59) must be written in the following form

A+
i

[

e−jkziz + R̃i,i+1
TE ejkzize−jkzi2(di−h)

]

(2.60)
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to obtain A+
i (amplitude of up-going wave in the source region) and

A−
i

[

ejkziz + R̃i,i−1
TE e−jkzize−jkzi2h)

]

(2.61)

to obtain A−
i (amplitude of the up-going wave in the source region). Therefore, by writing

(2.59) according to (2.60) and (2.61), one can obtain the amplitude of up-going and down-

going waves in the source region as

A+
i =

1 + R̃i,i−1
TE e−jkz2h

1− R̃i,i+1
TE R̃i,i−1

TE e−jkzi2di

(2.62)

A−
i =

1 + R̃i,i+1
TE e−jkz2(di−h)

1− R̃i,i+1
TE R̃i,i−1

TE e−jkzi2di

(2.63)

Starting with these values, one can determine the amplitudes of the waves in the observation

region, when it is different than the source region.

2.3 A basic discussion on the transformation of Green’s functions from Spec-

tral domain to Spatial domain

In the previous section, the field and potential Green’s functions are obtained for general,

homogeneous and layered media, in spectral domain. As discussed at the beginning of the

chapter, the spectral domain Green’s functions are related to the spatial domain ones via the

inverse Fourier transform, which was introduced by the Weyl identity (2.9) for EM problems.

By using the Weyl identity in the general, homogeneous medium case, all the wave vectors

are summed in the spectral domain, which results in a spherical wave propagating away

from the source point in the spatial domain, which are shown in Figs. 2.2 - 2.7. For this

case one may argue that the frequency response of the medium is 1 for all the wave number

values. In the case of the layered structures, again all the wave vector components are

summed, but this time, the frequency response is determined by the reflections from the

boundaries, which were derived in the previous section in detail.

Another method of transforming spectral domain Green’s functions into spatial domain,

which is more popular in computational EM, is the “Hankel Transform” which is given by

the following Sommerfeld integration [6]:

G =
1

4π

∫ ∞

−∞
dkρkρH

(2)
0 (kρρ)G̃(kρ) (2.64)
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where G and G̃ are the spatial and spectral domain Green’s functions, respectively and

H
(2)
0 is the Hankel function of the second kind. Since the Green’s functions are even in kρ

domain, another representation of (2.64) can be obtained by using the following identities:

J0(r) =
1

2

(

H
(1)
0 (r) + H

(2)
0 (r)

)

(2.65)

H
(2)
0 (r) = −H

(1)
0 (−r) (2.66)

which results in

G =
1

2π

∫ ∞

0
dkρkρJ0(kρρ)G̃(kρ) (2.67)

where J0 is the Bessel function. The Hankel transform can be seen as a another version

of the inverse Fourier transform: in the Hankel Transform, the total field is obtained by a

sum of cylindrical waves as opposed to the inverse Fourier transform, in which a plane wave

expansion is used. The nature of the cylindrical waves are defined by the Hankel functions,

with different directions and magnitudes, which create an orthogonal set that is able to

represent all kinds of waves in layered and general, unbounded structures. The Sommerfeld

integrals above are defined to be evaluated along the real axis of the complex kρ plane, but

other paths can also be defined for such integrations [6]. A typical integration path for the

Sommerfeld integral for the integration in (2.64), i.e. Sommerfeld integration path (SIP ),

is shown in Fig. 2.9. For the Sommerfeld integration in (2.67), the SIP shown in Fig. 2.9

Figure 2.9: Sommerfeld integration path on the complex kρ plane.

can be used on the positive real kρ plane. It must be noted that the SIP can be deformed

as long as it does not cross any of the singularities, i.e. surface wave poles (SWPs), shown

as crosses on the complex kρ plane in Fig. 2.9.
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The transformation in (2.64) and (2.67), i.e. the Sommerfeld integrals are difficult

to evaluate, since 1) the SWPs may be close to (or on) the integration path and 2) the

integrands are generally oscillatory and slowly convergent. These two problems must be

analyzed separately.

2.3.1 Contributions of SWPs and physics of guided waves in layered media

In general, there are two methods to overcome the first problem, i.e. obtaining a singularity-

free integrand on the integration path of the Sommerfeld integrals. The first one is as follows:

subtract the singularities from the integrands by using Cauchy integration formula, inte-

grate the remaining spectral domain Green’s function to obtain the spatial domain Green’s

functions, without the contributions from the SWPs, and finally add the contributions of

the SWPs in spatial domain, which are cylindrical waves with the wave number given by

the SWP. This method can be represented mathematically as follows [19]:

Gtot(ρ) = Gsw(ρ) + G(w/o)sw(ρ) (2.68)

where Gsw(ρ) is the surface wave contribution in spatial domain and given by

Gsw(ρ) =
1

4π

N∑

i=1

∫ ∞

−∞
dkρkρH

(2)
0 (kρρ)

2kρp(i)(Residue at kρp(i))

k2
ρ − kρp(i)

=
−j

2

N∑

i=1

kρp(i)H
(2)
0 (kρp(i)ρ)(Residue at kρp(i)) (2.69)

where kρp(i) is the location of the SWP on the complex kρ plane and N is the number

of poles. In (2.68), G(w/o)sw(ρ) is the spatial Green’s function, without the surface wave

contribution and given by:

G(w/o)sw(ρ) =
1

4π

N∑

i=1

∫ ∞

−∞
dkρkρH

(2)
0 (kρρ)

(

G̃(kρ)−
2kρp(i)(Residue at kρp(i))

k2
ρ − kρp(i)

)

(2.70)

It is widely known that the real parts of SWPs 2 lie between the minimum and maximum

values of the wave numbers of the differrent regions in the layered medium. The locations

of the SWPs (i.e. the values of kρ at which the generalized reflection coefficient is ∞) on

2If there is a lossy region in the layered medium, the SWPs are complex, i.e. they have an imaginary
part that describes the exponential decay along ρ direction of the surface between the different regions. If
all the regions are lossless, all the SWPs are purely real.
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the complex kρ plane can be found by using several techniques [33–36]. Here we present a

complex root finding algorithm, that finds the locations of the SWPs of layered media as

shown in Fig. 2.10.

Figure 2.10: Flow chart for the complex root finding algorithm.

As can be seen in Fig.2.10, the method first finds the SWPs (roots of 1/R̃) of the layered

medium assuming that all the regions are lossless. This is done by setting the imaginary

parts of the constitutive parameters of all the regions to zero. After that, if there is a lossy

region in the layered medium, Müller’s method is applied to determine the exact location

of the pole in the complex kρ plane. If all the regions are lossless, the location of the SWPs

found in the first step are returned. The reason for using two separate root finding algorithms

is that the bisection method, even it is very cheap computationally, can only determine the

roots of real valued functions, which is the case for lossless layered structures. On the other

hand Müller’s method can find complex roots but it is expensive computationally when

compared to bisection method. Therefore in the case lossy structures, where the SWPs are

complex, bisection method provides a guideline for the search location of Müller’s method,

since the real part of the complex SWP of the lossy structure is very close to the lossless
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one.

The second method to overcome the issue of singularities is deforming the SIP, so that

the surface wave poles are not close to the integration path. An example of such a path

deformation is shown in Fig. 2.11. As seen in Fig. 2.11, the SWPs are far away the integra-

tion path, therefore the integrand on the deformed integration path becomes smooth and

in turn, a singularity-free integration can be performed.

Figure 2.11: Deformed integration path on the complex kρ plane.

At this point, the physics of surface waves in layered structures must be introduced

to understand the nature of guided waves in layered structures. The SWP is the kρ value

that makes the denominator of the generalized reflection coefficient, (2.23), equal to 0, which

makes the generalized reflection coefficient∞, and therefore, since the generalized reflection

coefficient is directly related to spectral Green’s function, a singularity is observed at the

location of the SWP in the spectral domain Green’s function. To analyze the physics of

SWP further, an example will be given here. A three layered structure as seen in Fig. 2.12

has the following TE-mode generalized reflection coefficient:

R̃3,2
TE =

R3,2
TE + R3,1

TEe−j2kz2d

1 + R3,2
TER2,1

TEe−j2kz2d
(2.71)

As discussed above, at the location of the SWP, the denominator of the generalized

reflection coefficient must be 0, i.e. the following relation must hold:

1 + RTE
3,2 RTE

2,1 e−j2kz2d = 1−RTE
2,3 RTE

2,1 e−j2kz2d = 0

⇒ RTE
2,3 RTE

2,1 = ej2kz2d (2.72)

The same behavior is also seen in Transmission Line (TL) resonators, seen in Fig. 2.13.

In Fig.2.13, region-1 and region-3 of Fig. 2.12 are modelled by the impedances Z1 and Z3
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Figure 2.12: A three layered medium.

Figure 2.13: TL analogue of the layered medium seen in Fig. 2.12.

respectively. Intrinsic impedance of region-2 is modelled by the characteristic impedance of

the TL (Z1). Finally, the wave vector in z direction in region-2 is modeled by the complex

propagation constant γ. From TL theory, the structure in Fig.2.13 is said to be in resonance,

if the signal inside the TL is in phase with the input signal after one round-trip. Therefore

the resonance condition for the structure in Fig.2.13 is given by:

Γ2,1Γ2,3e
−j2γd = 1 (2.73)

Note that the equations (2.72) and (2.73) are identical. Therefore one can conclude that

“At the locations of surface wave poles, the layered structure is in resonance”.



Chapter 2: General Derivations and Discussions of Green’s Functions 27

2.3.2 Tail extrapolation for Sommerfeld Integration

The second problem about the Sommerfeld Integrals addressed above is the slow convergence

rate and highly oscillatory behavior of the integrand tails. Due to this fact, the Sommerfeld

integral must be evaluated up to a very high bound value, which makes it computationally

expensive, and even impossible for some cases. To overcome this fact, several series accel-

eration techniques are proposed [16, 37–39]. Here, we present a series acceleration method

that uses the proven and most popular integration then summation approach [16, 40]. In

the method proposed, for the Sommerfeld integration (2.67), the region between 0 and the

first zero crossing of J(kρρ) after the ℜ(kmax) 3 value of the system is integrated directly 4

to obtain:

Gkmax =

∫ ξ1/ρ

0
dkρkρJ0(kρρ)G̃(kρ) (2.74)

where ξ1/ρ is the first zero crossing of J0(kρρ) after the kmax value. Then, starting from

ξ1/ρ each section between the consecutive zeroes of J(kρρ) is integrated to obtain obtain a

series of which the Nth element is given by:

aN =

N∑

i=1

∫ ξi+1/ρ

ξi/ρ
dkρkρJ0(kρρ)G̃(kρ) (2.75)

where ξi/ρ is the ith zero crossing of J0(kρρ) after the kmax value of the layered medium.

Applying a Prony type exponential fitting routine (e.g. Generalized Pencil of function

(GPOF) [41]) to the series of length M in (2.75) gives a set of exponentials and exponents

of the form to approximate the series:

K∑

n=1

bneβnt (2.76)

where t is the sampling variable t = 1, 2, 3...M and K is the number of exponentials used

in the fitting, which is decided by investigating the singular value decomposition in an

intermediate step of GPOF. Therefore, the result of the integration, between the first zero

crossing of J0(kρρ) after kmax and ∞ is approximated by the coefficient bk which is the

3Here the ℜ part of the kmax value is taken, since kmax is complex for lossy materials.

4The integration in this region can be evaluated by using any of the method described in section 2.3.1.
Here the derivations are done assuming that the second approach, i.e. deforming the integration path is
used.
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amplitude of the exponential with the smallest exponent, i.e. |βk| ≈ 0. Therefore the result

of the overall Sommerfeld integral is obtained as:

G(ρ) =
1

4π

(

Gkmax(ρ) + G∞(ρ)
)

(2.77)

where G∞(ρ) is:

G∞(ρ) = bk such that |βk| ≈ 0 in (2.76) (2.78)

To demonstrate the proposed method, a simple example is given here. A PEC backed

dielectric slab shown in Fig.2.14 is analyzed at the frequency of f = 1GHz. The source

(HED) and observation points are on the surface between the dielectric and air, with a

separation of ρ = 10cm between them.

Figure 2.14: Example for the series acceleration technique proposed. (f = 1GHz)

The kmax value of this layered medium is
√

2k0 = 29.6192m−1. Therefore the first zero

crossing of J0(kρρ) = J0(0.1kρ) after the kmax value is obtained as kρ = 55.2008m−1 . (This

value is the second zero crossing of J0(0.1kρ); the first one is at kρ = 24.0483.) The spectral

domain Green’s function (µ0G̃
A
xx(kρ)), on the ℜ(kρ) axis, for the geometry in Fig.2.14 can

be seen in Fig.2.15.

As seen in Fig.2.15, there is a singularity, which is a SWP found to be at kρ =

22.3162m−1. In this example, the first approach given in section 2.3.1 is followed. There-

fore subtracting the contribution of this pole, by using (2.69), results in a smooth integrand,

as seen in Fig. 2.16. Since the SWP contribution is subtracted from the spectral domain

Green’s function, (2.68) must be modified such that contribution of the surface wave must

be added after the numerical integration and the approximation are obtained:

G(ρ) =
1

4π

(

Gkmax

(w/o)swp
(ρ) + G∞

(w/0)swp(ρ)
)

+ Gsw(ρ) (2.79)
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Figure 2.15: Spectral domain Green’s function (µ0G̃
A
xx(kρ)) for the geometry given in

Fig. 2.14.
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Figure 2.16: Spectral domain Green’s function (µ0G̃
A
xx(kρ)) for the geometry given in

Fig. 2.14, SWP contribution subtracted.
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where Gsw(ρ) is given in (2.69) and the subscript (w/o)swp means “without surface wave

pole”, which is discussed in (2.70). For the example shown in Fig. 2.14, the result of

the GPOF, applied to the series of length 21 obtained by (2.75), are shown in Table 2.1

(thereshold value for the GPOF, i.e. the ratio of the greatest and smallest singular value

used in the approximation, is set to 10−10). As seen in Table 2.1, the smallest exponent is

at i = 1, therefore the integral from ξ1ρ to ∞ can be approximated by b1. The result of

the fitting and the amplitude of the exponential with the smallest exponent, i.e. the direct

term, are plotted in Fig.2.17.

By using the results, the value of the integral is found to be:

G(ρ) =
1

4π

(

Gkmax

(w/o)swp(ρ) + G∞
(w/0)swp(ρ)

)

+ Gsw(ρ)

=
1

4π

(
µ0(−3.9835 − j1.6435) + µ0(2.6918 + j9.4995 × 10−11)

)
− µ0(0.9792 − j0.1747)

= −1.3597 × 10−6 − j3.8389 × 10−7 (2.80)

where µ0 = 1.2566 × 10−6. Note that Gkmax

(w/o)swp
(ρ) is obtained directly by numerical in-

tegration and Gsw(ρ) is obtained analytically as explained above. To check the valid-

ity of the result, the same example is analyzed by using Aitken method [16] which gave

−1.3597× 10−6 − j3.8389 × 10−7 as the result, which is the same as the result obtained by

the method proposed here. In general the difference between the two methods is less than

%0.01.
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i bi βi

1 2.6918 + j9.4995 × 10−11 −1.0202 × 10−12 − j6.3175 × 10−21

2 0.1352 − j3.6912 × 10−12 -1.7496+j3.1416

3 0.8111 + j5.4924 × 10−11 -0.0067+j3.1416

4 0.6779 + j3.6557 × 10−11 -0.0610+j3.1416

5 0.4642 + j9.1844 × 10−12 -0.1747+j3.1416

6 0.2484 − j1.3640 × 10−11 -0.3599+3.14156

7 0.0203 − j1.4521 × 10−11 -1.0644+j3.1416

8 0.0940 − j2.1630 × 10−11 -0.6405+j3.1416

Table 2.1: The result of the GPOF, applied to the series obtained for the example seen in
Fig. 2.14
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Figure 2.17: Result of the GPOF, applied to the series obtained by (2.75), for the example
shown in Fig. 2.14.
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Chapter 3

BASICS OF LEFT HANDED MATERIALS

Most of the materials in nature have positive real parts of permittivity (ε) and per-

meability (µ), therefore, from the Maxwell’s equations and causality principle, they form a

right handed triad of electric field (E), magnetic field (H) and the wave vector (k) [13]. Due

to this fact, such materials are called Right Handed Materials (RHM), when characterizing

them depending on their constitutive parameters. When both of the constitutive parame-

ters (ε and µ) have a negative real part, the three vectors E, H and k form a left handed

triad, due to which, this kind materials are called Left Handed Materials (LHM) [42–45].

Due to the difference of the propagation nature of waves in LHMs and RHMs, when an

EM wave travels from RHM (or LHM) to LHM (or RHM), the transmission angle becomes

negative compared to incident angle, therefore the refraction scheme between to different

media is called “negative refraction”.

LHMs and the concept of negative refraction have attracted a great flurry of interest in

recent years, due to their potential applications originating from building a perfect lens [46].

Although the theory of LHM was first proposed by Veselago [42], it was not popular until

the realization of negative permittivity and permeability materials artificially over the same

frequency band [47,48]. The structure that acts like an LHM was constructed using a peri-

odic combination of metallic novel microstructures called “Split Ring Resonators” (SRR),

to obtain negative values of µ [49] with thin wires, to obtain negative values of ε [50] simul-

taneously at the microwave region. Addition to such structures, several new structures were

proposed that support negative refraction at the visible spectrum [51–55]. Also several con-

stitutive parameter retrieval techniques were proposed to analyze such complex structures

by using their homogeneous equivalents, with the constitutive parameters obtained [56–58].

As a result of such a huge and diverse interest on the LHMs, their behavior in layered struc-

tures became crucial as they promise potential applications, such as cloaking devices [59,60]

and increasing the resolution of optical systems [46,61].
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In Section 3.1, the foundations of LHMs and negative refraction will be introduced

analytically and numerical results of refraction patterns of plane waves in layered media

will be given. Then, in Section 3.2 an analysis will be carried out in the spectral domain, to

understand the interesting behaviors observed in layered media composed of a combination

of RHMs and LHMs.

3.1 Analytical analysis of Left Handed Materials

3.1.1 Analytical Foundations of LHM Physics

In [44], the sign and square root branches for the LHMs are derived with respect to e−iωt

time convention. Here, the crucial steps of the derivation will be carried out with respect

to ejωt time convention for sake of completeness.

In LHMs, the relative constitutive parameters satisfy:

εr = |εr|e−jφε where φε ∈
(π

2
, π
]

(3.1)

µr = |µr|e−jφµ where φµ ∈
(π

2
, π
]

(3.2)

from which one can interpret that both the real and the imaginary (if lossy) parts of the

constitutive parameters are negative for LHMs. Here the definitions of the refractive index

and the intrinsic impedance are important, i.e. the phase information of the following

identities must be decided carefully:

n = |n|e−jφn (3.3)

η = |η|e−jφη (3.4)

which are given by the following square roots:

n =
√

εrµr =

√

|εr||µr|e−j(φε+φµ) =
√

|εr||µr|e−j
“

φε+φµ

2
+lπ

”

(3.5)

η =

√
µr

εr
=

√

|µr|
|εr|

e−j(φµ−φε) =

√

|µr|
|εr|

e
−j

“

φµ−φε

2
+lπ

”

(3.6)

As can be seen in (3.5) and (3.6), there are two possible solutions to the square roots, which

are not independent of each other. These two solutions for the square roots are given by:

φn =
φε + φµ

2
∈
(π

2
, π
]

(3.7)

ηn =
φµ − φε

2
∈
(

−π

4
,
π

4

]

for l = 0 (3.8)
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and

φn =
φε + φµ

2
∈
(

3π

2
, 2π

]

(3.9)

ηn =
φµ − φε

2
∈
(

3π

4
,
5π

4

]

for l = 1 (3.10)

Equivalently, the signs of the refractive index and the intrinsic impedance are given as:

n = −nr − jni; η = ηr ± ηi where l = 0 (3.11)

n = nr + jni; η = −ηr ± ηi where l = 1 (3.12)

The correct choice of the square roots can be obtained by using the causality principle,

which states that if ε(ω) and µ(ω) are transformed to the time domain via the inverse

Fourier transformation given by:

ε(t) =
1

2π

∫ ∞

−∞
dωε(ω)ejωt (3.13)

µ(t) =
1

2π

∫ ∞

−∞
dωµ(ω)ejωt (3.14)

ε(t) and µ(t) are strictly causal in the sense that

ε(t) = 0 t < 0 (3.15)

µ(t) = 0 t < 0 (3.16)

and ε(t) and µ(t) are real functions, which implies that

ε(−ω) = ε∗(ω), µ(−ω) = µ∗(ω) for real ω (3.17)

and ε(ω) and µ(ω) must be analytic functions for ℑ(ω) ≤ 0, due to the causality given

by (3.15) and (3.16). Therefore the singularities of ε(ω) and µ(ω) must lie in ℑ(ω) > 0.

Therefore the square roots that defines the refractive index and the intrinsic impedance

must be analytic in ℑ(ω) < 0, i.e. the branch cut introduced by the square root must be in

ℑ(ω) > 0. Due to these facts, one finds that

√

ε(ω) =
√

−|ε(ω)| = −j
√

|ε(ω)| (3.18)
√

µ(ω) =
√

−|µ(ω)| = −j
√

|µ(ω)| (3.19)

which corresponds to the choice given in (3.8), from which the signs of the refractive index

and the intrinsic impedance are given by (3.11)
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As the last step, one needs to determine the wave directions inside a LHM. Consider an

x-polarized wave propagating along the z-axis:

E = x̂E0e
−jkz (3.20)

H = ŷH0e
−jkz (3.21)

The average Poynting’s vector, i.e. the direction of power flow is given by:

S =
1

2
(E×H∗) = ẑ

|E0|2
2
ℜ(

1

Z∗
)e2kiz (3.22)

where ki is the imaginary part of wave vector k = ẑnk0, and Z is the wave impedance

(Z = ηZ0). By using the result obtained, i.e. the definitions given by (3.11), the direction

of the power flow and the wave vector are found to be:

S = ẑ|S| k = −ẑ|S| (3.23)

As seen in (3.23), the direction of the power flow is antiparallel with the direction of the

wave vector, which results in a left handed triad of E, H and k, as discussed at the beginning

of the Chapter. Also it must be noted that the exponential decay of the wave is in the same

direction with the direction of power flow, as seen in (3.22), which is the physical outcome

of the causality principle.

3.1.2 Numerical Examples on the Propagation of Plane Waves in LHM

Here, numerical examples that demonstrate the propagation, reflection and transmission of

plane waves in LHMs are demonstrated. Before giving the results, the Snell’s law must be

reminded, to understand the analytical reasoning for the negative refraction. Assume that

a plane wave is obliquely incident, from region-1 to region-2, on a plane dielectric boundary

between them. By the Snell’s law, the direction of the reflected and transmitted waves are

given, in terms of the incident angle, by [62]:

θi = θr (3.24)

sin(θt)

sin(θi)
=

n1

n2
(3.25)

where θi, θr and θt are the angles of the incident, reflected and the transmitted waves and n1

and n2 are the refractive indices of region-1 and region-2, respectively. By using the Snell’s
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law one can easily show that the direction of the transmitted wave depends highly on the

combinations of the signs of the refractive indices of the two different media. The resulting

wave propagation patterns for the four different combinations can be seen schematically

below in Fig.3.1, where the boundary between the two different regions is the plane z = 0.

Figure 3.1: Different propagation patterns for the 4 different combinations of the media.
A plane wave is sent from region-1 with the incident angle of θi. (a) and (b): Ordinary
refraction, (c) and (d): Negative refraction.

In Fig.3.1, k̂i, k̂r and k̂t are the directions of the incident, reflected and transmitted

wave vectors, respectively and Ŝi, Ŝr and Ŝt are the directions of the incident, reflected and

transmitted Poynting vectors, respectively. The magnitudes of the reflected and transmitted

waves can be determined by using the Fresnel’s Reflection coefficients given by (2.24) and

(2.25). By using the fact that the z component of the wave number is given by, for example
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for the incident wave kzi = ki cos(θi), the Fresnel’s reflection coefficients have the following

form:

Rj,j+1
TE =

µr2 cos(θi)ki − µr1 cos(θt)kt

µr2 cos(θi)ki + µr1 cos(θt)kt
(3.26)

Rj,j+1
TM =

εr2 cos(θi)ki − εr1 cos(θt)kt

εr2 cos(θi)ki + εr1 cos(θt)kt
(3.27)

All the directions of the wave vectors are shown in Fig.3.1. Also the Fresnel’s transmission

coefficients are determined by T = 1 + R. Therefore, by using these forms of the Fresnel’s

reflection coefficients, one can first find the directions of the wave vectors by using the

Snell’s law given in (3.25) and then the amplitudes of the reflected and transmitted waves

are found by using the Fresnel’s reflection coefficient given in (3.26) and (3.27). As can

be seen, when one of the media is RHM and the other LHM, a negative refraction is

observed (Fig.3.1 (c) and (d)), whereas, when both of the media is of the same kind, an

ordinary refraction is observed(Fig.3.1 (a) and (b)). Since the Snell’s law is valid for all

kinds of materials including RHMs and LHMs, all the concepts derived from the Snell’s law,

(e.g. total reflection, Brewster’s angle ...) can be determined by the appropriate choice of

refractive index sign.

To analyze the propagation of plane waves in layered media, a code that determines

the propagation pattern is written by using the amplitude transfer function discussed in

Chapter 2. The code can be seen in appendix B. Below, two interesting examples are

demonstrated to analyze the propagation of waves in layered media.

The Brewster’s Angle

As an example, the Brewster’s angle, i.e. the incidence angle at which there is no reflected

wave, is determined by setting the numerator of the Fresnel’s reflection coefficients (3.26)

and (3.27) equal to zero, which are obtained as:

θTE
b = arcsin

(√

1− µr1εr2/µr2εr1

1− (µr1/µr2)2

)

(3.28)

θTM
b = arcsin

(√

1− εr1µr2/εr2µr1

1− (εr1/εr2)2

)

(3.29)

A numerical example is given below, at which a plane wave with unit magnitude is sent

with the incident angle of the Brester’s angle, where it is found to be the same for an
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RHM-RHM interface and its RHM-LHM counterpart. For the RHM-RHM interface the

constitutive paremeters of the different regions is (εr1 = 1, µr1 = 2, εr2 = 3, µr2 = 4) and

for the RHM-LHM interface, (εr1 = 1, µr1 = 2, εr2 = −3, µr2 = −4). The frequency of

operation is f = 1GHz. For these values of constitutive parameters, the Brewster’s angle is

found to be 37.7612 degrees for the TM case. The result obtained by the code in appendix B

can be seen Fig.3.2
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Figure 3.2: The propagation pattern of waves at Brewster’s angle, 37.7612 degrees, TM-
mode, ℜ part of H-field, y-component. (a) RHM-RHM interface, (b)RHM-LHM interface.
f = 1GHz for both of the simulations.

A Lossy Slab

As the second example, the propagation pattern of plane waves in a layered geometry,

where a lossy material is put in air (εr1 = εr3 = 1, µr1 = µr3 = 1), is analyzed. To see

the difference in the propagation patterns between the RHM and LHM slabs, the slab is

analyzed both for an RHM slab (εr2 = 2− j0.4, µr2 = 1.5− j0.4) and its LHM counterpart

((εr2 = −2 − j0.4, µr2 = −1.5 − j0.4)). The frequency of operation is f = 1GHz and the
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incident angle is taken to be 45 degrees. The results obtained by the code in appendix B

can be seen in Figs. 3.3 and 3.4, for TE and TM modes respectively.
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Figure 3.3: The propagation pattern of waves in a lossy slab geometry with the incident angle
of 45 degrees, TE-mode, ℜ part of E-field, y-component. (a)RHM-RHM-RHM configuration
(b)RHM-LHM-RHM configuration. f = 1GHz for both of the simulations.

As can be seen in the results, the propagation patterns of the waves changes dramatically

depending on the constitutive parameter combinations. As discussed in section 3.1.1, a

negative refraction is observed between two different materials. But when the two materials

are of the same kind, an ordinary refraction occurs.

3.2 Behavior of Left Handed Materials in Spectral Domain

As analyzed in Chapter 2 the locations of the singularities in the spectral domain Green’s

functions are very important, since they have a very high influence on the spatial domain,

and also their exact locations must be known to make the evaluation of Sommerfeld integrals

easier, or perform the Discrete Complex Image Method (DCIM), which will be discussed in

Chapter 4.

In the case of layered media composed of only RHMs, it is widely known that all the sin-

gularities lie between the kmin and kmax values of the structure [63]. Also, these singularities
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Figure 3.4: The propagation pattern of waves in a lossy slab geometry with the incident
angle of 45 degrees, TM-mode, ℜ part of H-field, y-component. (a)RHM-RHM-RHM con-
figuration (b)RHM-LHM-RHM configuration. f = 1GHz for both of the simulations.

are because of the resonance of the layers (as discussed in Section 2.3.1), which results in a

SWP in the generalized reflection coefficient. In the case of layered structures composed of

a combination of RHMs and LHMs, the possible pole locations can be between kmin up to

∞ [64–68]. Moreover, another singularity due to the discontinuity of two different regions,

i.e. Surface Plasmon-Polariton (SPP), can be observed in a RHM-LHM interface [69–74].

These two sources of singularities will be analyzed analytically and numerically in this

Section.

3.2.1 Surface Wave Poles in Layered Structures containing LHMs and the Concept of

Critical Thickness

For a layered geometry seen in Fig.3.5, the generalized reflection coefficient is given by:

R̃i,i+1
TE,TM =

Ri,i+1
TE,TM + R̃i+1,i+2

TE,TMe−jkz(i+1)2d(i+1)

1−Ri+1,i
TE,TMR̃i+1,i+2

TE,TMe−jkz(i+1)2d(i+1)
(3.30)

The SWP, as discussed in Chapter 2, is the kρ value at which the denominator of the

generalized reflection coefficient becomes zero. Therefore, at the location of the SWP, the
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Figure 3.5: A layered geometry defining the coordinate system.

following resonance condition must hold:

Ri+1,i
TE,TMR̃i+1,i+2

TE,TM = ejkz(i+1)2d(i+1) (3.31)

Obviously, the location of the ℜ part of the SWP can be on three different sections on the

ℜ(kρ) axis, which are shown in Fig.3.6.

Figure 3.6: Sections on the ℜ(kρ) axis for the investigation of the SWPs.

The resonance condition given by (3.31) only checks if there is a resonance in region-

(i + 1). But since the generalized reflection coefficient is obtained in an iterative fashion,

starting with the Fresnel’s reflection coefficient between the regions-(N−1) and (N), if there

is a resonance in any region between region-(N) and (i), it will be seen as a singularity in

the generalized reflection coefficient. In other words, the resonance of a layered structure

do not depend on the location of the source. In the discussion below, only the resonance

condition of region-(i + 1) is investigated without loss of generality.
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Analyzing the resonance condition, (3.31), reveals that for structures that can handle

SWPs at locations greater than the kmax value, i.e. section3 of Fig.3.6, as the thickness

of the structure increases (d(i+1) in (3.31)), the ℜ part of the SWP migrates towards the

kmax value from right. This is due to the fact that, the ℑ part of kz(i+1) must be smaller to

satisfy the resonance condition for the greater d(i+1) values, since the change in the reflection

coefficients, i.e. multiplication given by the RHS of (3.31), cannot change as rapidly as the

exponential decay given by the LHS. By using this information, one can define a “Critical

Thickness” for the slab, beyond which it is guaranteed that all the SWPs lies between the

kmin and kmax values of the structure, i.e. in section2 of Fig.3.6. By using this fact, at

the location of the critical thickness, the SWP must be at a location very close to the kmax

value, i.e. the following equality must hold:

R
i+1,i(σ)
TE,TM R̃

i+1,i+2(σ)
TE,TM = ejkz(i+1)2d(i+1) (3.32)

where the superscript σ of the reflection coefficients means that they are evaluated at kρ =

(1 + σ)kmax with 0 < σ ≪ 1. Solving for d(i+1) gives the critical thickness value for region-

(i + 1) as:

dTE,TM
crit = ℜ




ln
(

R
i+1,i(σ)
TE,TM R̃

i+1,i+2(σ)
TE,TM

)

j2kz(i+1)



 (3.33)

To analyze the migration of poles as a function of the region thickness and the concept of

critical thickness, a numerical example is given here. The layered media shown in Fig.3.7

is analyzed at the frequency of f = 1GHz. For the values of constitutive parameters,

Figure 3.7: The geometry of the SWP migration example.
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the critical thickness of the slab is found to be dTE
crit = 4.4991cm and dTM

crit = 3.3631cm,

at σ = 10−6, for TE and TM-modes, respectively. The locations of SWPs are plotted in

Figs.3.8, 3.9, 3.10 and 3.11 for various thicknesses of the slab.
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Figure 3.8: The location of the SWP at d = 3cm (less than critical thickness), for the
geometry shown in Fig.3.7, TE-mode. A single, positive SWP is observed.

As can be seen in the results shown in Figs.3.8, 3.9, 3.10 and 3.11, after the critical

thickness value, all the SWPs lies between kmin and kmax values of the structure. Another

important result that can be obtained from the figures is that there are two different kinds of

SWPs in such structures. The first one is the positive SWP, which has a negative imaginary

part and the second one is the negative SWP, which has a positive imaginary part. Since the

surface waves cannot grow exponentially along the surface in passive media in the direction

of propagation, which is defined to be positive ρ [63], the surface wave poles with positive

imaginary part are not physical. Therefore, due to the even nature of the generalized

reflection coefficient, their negative values must be taken which defines a surface wave with

negative phase velocity, and decays exponentially in the direction of propagation. This fact

is important when determining the spatial domain Green’s functions, by using Sommerfeld

integrals or DCIM, as will be discussed in Chapter 4.
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Figure 3.9: The location of the SWP at d = 4.4991cm (at critical thickness), for the
geometry shown in Fig.3.7, TE-mode. A single, positive SWP is observed.
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Figure 3.10: The location of the SWPs at d = 20cm (greater than critical thickness), for
the geometry shown in Fig.3.7, TE-mode. One positive (kswp1) and one negative (kswp2)
SWPs are observed.
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Figure 3.11: The location of the SWPs at d = 25cm (greater than critical thickness), for
the geometry shown in Fig.3.7, TE-mode. A single, negative SWP is observed.

3.2.2 Surface Plasmon-Polaritons in Layered Structures containing LHMs and the Concept

of Threshold Thickness

The surface plasmon polariton is the kind of surface wave that is generated due to the

discontinuity at the interface of two different materials. Unlike the case of SWPs, SPPs

can be generated in a two layered geometry as seen in Fig.3.12. SPPs decay inside both of

Figure 3.12: A two layered geometry defining the coordinate system.

the regions exponentially (z component of the wave vectors in both of the media is purely

imaginary (for lossless materials) or have a very small real part (for lossy materials)), and
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due to this fact they are always in section3 of Fig.3.6. Mathematically, the SPP wave vector

is obtained from the pole of the Fresnel’s reflection coefficient, which is given by:

Ri,i+1
TE =

µi+1kzi − µikz(i+1)

µi+1kzi + µikz(i+1)
(3.34)

Ri,i+1
TM =

εi+1kzi − εikz(i+1)

εi+1kzi + εikz(i+1)
(3.35)

therefore at the location of the SPP pole the following equality must hold:

µi+1kzi = −µikz(i+1) for TE-mode (3.36)

εi+1kzi = −εikz(i+1) for TM-mode (3.37)

By solving for kρ in the relations (3.36) and (3.37), the location of the SPP pole is given by:

kTE
sp = k0

√

µriµr(i+1)(µr(i+1)εri − µriεr(i+1))

µ2
r(i+1) − µ2

ri

for TE-mode (3.38)

kTM
sp = k0

√

εriεr(i+1)(εr(i+1)µri − εriµr(i+1))

ε2
r(i+1) − ε2

ri

for TM-mode (3.39)

The regions where the 2-layered structure shown in Fig.3.12 can handle SPPs in TE-mode

are plotted in Fig.3.13 [71]. By using the duality principle, the chart for the TM-mode can
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Figure 3.13: The combinations of the constitutive parameters of the 2-layered structure
shown in Fig.3.12, TE-mode. In the region shown with SW−, SPPs with negative wave
numbers are generated, whereas, in the region shown with SW+, SPPs with positive wave
numbers are generated.

be simply obtained by interchanging the ε values with µ values.
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The SPPs can also seen as singularities of the generalized reflection coefficient in a

multilayered structure, as seen in Fig.3.5. From a simple comparison of the generalized and

Fresnel’s reflection coefficients ((3.30) and (3.34) or (3.35)), it is obvious that the locations

of the SPP wave vectors would be different. However, for large thicknesses of region-(i+1),

the generalized reflection coefficient converges to Fresnel’s reflection coefficient as the second

terms, both in the numerator and denominator of the generalized reflection coefficient, tend

to zero exponentially due to the loss in the slab (since the wave number of SPP is greater

than the wave number of region-(i + 1)1); and, as a result, in the limit d(i+1) → ∞, the

locations of SPP wave vectors of the layered structure converges to the analytically obtained

SPP pole location for the two-layer structure, i.e. (3.38) or (3.39). Using this information,

one can define a threshold thickness, beyond which the analytical SPP wave vector can

be used with negligible error for the layered configuration. At the the threshold thickness

value, Fresnel’s and generalized reflection coefficients must be approximately equal to each

other, at a location near the SPP wave number, i.e. the following inequalities must hold

simultaneously:
∣
∣
∣R̃

i+1,i+2
TE,TM

∣
∣
∣ eℑ(kz(i+1))2dTE,TM

thr

∣
∣
∣R

i,i+1
TE,TM

∣
∣
∣

≤ σ

∣
∣
∣R

i+1,i
TE,TM

∣
∣
∣

∣
∣
∣R̃

i+1,i+2
TE,TM

∣
∣
∣ eℑ(kz(i+1))2dTE,TM

thr ≤ σ (3.40)

where 0 < σ ≪ 1. Using (3.40), the threshold thickness value (the maximum value of dthr,

such that both of the inequalities are satisfied) is obtained as:

dTE,TM
thr = max







∣
∣
∣
∣
ln

(
σ|Ri,i+1

TE,TM
|

|R̃i+1,i+2
TE,TM

|

)∣
∣
∣
∣

|2ℑ
(
kz(i+1)

)
| ,

∣
∣
∣
∣
ln

(

σ

|Ri,i+1
TE,TM

||R̃i+1,i+2
TE,TM

|

)∣
∣
∣
∣

|2ℑ (kz2) |







(3.41)

In (3.41), the Fresnel’s and generalized reflection coefficients are evaluated not at kρ = ksp,

where they may be singular, but in a near vicinity like kρ = (1 + σ)ksp. Therefore, (3.41)

guarantees that the analytical expressions (3.38) or (3.39), can be used as the SPP wave

vector for the layered structure, with a region-(i + 1) thickness greater than the threshold

thickness value, with a negligible error given by σ. It is obvious that (3.41) is derived given

1Here the same approach that was used to analyze the thickness dependence of SWPs (the only region
under consideration is region-(i+1) of Fig.3.5) is used to analyze locations of SPP wave vectors in layered
structures, without loss of generality.
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that the observation layer is region-i, therefore the interface between region-i and (i + 1)

must support SPPs for the given polarization to be able to use (3.41). If the interface

between region-(i) and (i + 1) does not support SPPs, a threshold thickness value can be

obtained by changing the observation layer to region-(i + 2) (i.e. defining the generalized

reflection coefficient from region-(i + 2) to region-(i + 1)) under the condition that the

interface between region-(i + 1) and (i + 2) supports SPPs.

To analyze the migration of SPPs depending on thickness values in layered structures,

several examples of three layered structures, shown in Fig.3.14, those handle SPPs are given

here.

Figure 3.14: The three layered geometry used to analyze the thickness dependent behavior
of SPPs.

Metallic Slab, TM mode SPP

Thickness dependent behavior of the SPP wave vectors in a metal slab, with constitutive

parameters of εr2 = −33.22− j1.17 and µr2 = 1 is studied at λ0 = 852nm for two different

configurations of the surrounding media: (i) region-1 and -3 are free-space, and (ii) region-1

and -3 are different dielectric materials with εr1 = 2, µr1 = 1 and free-space respectively.

Since only the permittivity value of metals has a negative real part, only TM waves can

generate SPPs in such structures. By (3.39), the SPP wave vectors for the two layered semi-

infinite structures are found to be ksp = (1.0154−j0.0006)k0 and ksp = (1.4587−j0.0016)k0



Chapter 3: Basics of Left Handed Materials 49

for configuration (i) and (ii), respectively, where k0 = (2π/λ0) is the free-space wavenum-

ber. For the two configurations, the threshold thickness values are obtained from (3.41), TM

mode, as 175.5nm and 137.5nm for configuration (i) and (ii) respectively with σ = 10−3.

The locations of the SPP wave vectors are shown in Figs.3.15 and 3.16 for two different

thicknesses of the metal slab in each configuration, one below and the other above the

threshold thickness values. As seen in Figs.3.15 and 3.16, for two different slab configura-
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Figure 3.15: SPP poles of the metal slab for different thicknesses, observation layer: region-
1. region-2 is metal with εr2 = −33.22 − 1.17j, µr2 = 1, and the thickness d. region-1 and
region-3 are free-space.

tions, there are two SPP wave vectors for the thickness less than the corresponding threshold

thickness values. For configuration (i), Fig.3.15, both of the SPP wave vectors are observed

as singularities of the generalized reflection coefficient (ksp1 = (1.0007 − j2.16 × 10−6)k0

which corresponds to long range SPP and ksp2 = (1.2983− j0.0183)k0 which corresponds to

short range SPP [75]), whereas in configuration (ii), Fig.3.16, one of the SPP wave vectors

is seen as a singularity (ksp2 = 1.4803 − j0.0037) and the other is observed as a dip in the

reflection coefficient. This is due to the fact that the SPP pole at the metal-air (between

region-2 and resion-3) is less than the wavenumber of region-1, which makes it possible for
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Figure 3.16: SPP poles of the metal slab for different thicknesses, observation layer: region-
1. region-2 is metal with εr2 = −33.22 − 1.17j, µr2 = 1, and the thickness d. region-1 is a
dielectric material with εr1 = 2, µr1 = 1, and region-3 is free-space.

an incident radiating wave in region-1 to excite SPP at the metal-air interface, thus result-

ing in a dip on the reflection coefficient plot at kρ = ksp1, as shown in the inset of Fig.3.16.

However for configuration (i), since both of the SPP poles are greater than the wave number

of region-1, they could only be excited by the evanescent waves at the dielectric-metal in-

terface, resulting in pole singularities on the generalized reflection coefficient plot, as shown

in Fig.3.15.

LHM slab, TE mode SPP

Thickness dependent behavior of the SPP wave vectors in a LHM slab, with constitutive

parameters of εr2 = −3 and µr2 = −0.9 is studied at λ0 = 852nm for two different config-

urations of the surrounding media: (i) region-1 and -3 are free-space, and (ii) region-1 and

-3 are different dielectric materials with εr1 = 0.5, µr1 = 1 and free-space respectively. For

this configuration, only TE waves can generate SPPs, since the combinations of the consti-

tutive parameters of neighbor media has a solution of (3.38) only. By (3.38), the SPP wave
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vectors for the two layered semi-infinite structures are found to be ksp = (−3.1539)k0 and

ksp = (−3.4755)k0 for configuration (i) and (ii), respectively. For the two configurations,

the threshold thickness values are obtained from (3.41), TE mode, as 624.6nm and 452.0nm

for configuration (i) and (ii) respectively with σ = 10−3. The locations of the SPP wave

vectors are shown in Figs.3.17 and 3.18 for two different thicknesses of the LHM slab in

each configuration, one below and the other above the threshold thickness thickness values.

As seen in Figs.3.17 and 3.18, for two different slab configurations, there are two SPP wave
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Figure 3.17: SPP poles of the LHM slab for different thicknesses, observation layer: region-
1. region-2 is LHM with εr2 = −3, µr2 = −0.9, and the thickness d. region-1 and region-3
are free-space.

vectors for the thickness less than the corresponding threshold thickness values. Since, the

wavenumber of region-1 is less than the wavenumber of region-3 in configuration (ii), both

of the SPP wave vectors are seen as singularities in reflection coefficient.

Metallic slab, both TE and TM mode SPPs

To demonstrate a structure that supports SPPs for both the TE and TM modes, a metal

slab with the constitutive parameters of εr2 = −10 − 0.1j and µr2 = 1 is put between
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Figure 3.18: SPP poles of the LHM slab for different thicknesses,observation layer: region-1.
region-2 is LHM with εr2 = −3, µr2 = −0.9, and the thickness d. region-1 is a dielectric
material with εr1 = 0.5, µr1 = 1, and region-3 is free-space.

free-space with εr1 = 1 and µr1 = 1 and a LHM medium with εr1 = −10 and µr1 =

−0.1. This configuration supports TM mode SPPs at the interface between region-1 and -2

(ksp = (1.0541 − j0.0006)k0) and TE mode SPPs at the interface between region-2 and -3

(ksp = (−1.0541 − j0.0005)k0). By TM mode (3.41) and with the observation layer taken

to be region-1, the threshold thickness value is obtained as 244.5nm, and for the TE mode,

with the observation layer taken to be region-3, the threshold thickness value is obtained as

238.3nm for σ = 10−3. The locations of the SPP wave vectors are shown in Figs.3.19 and

3.20 for different thicknesses of the metal slab for TM and TE modes respectively.

As seen in Fig.3.19, the location of the TM mode SPP wave vector changes depending

on the thickness of the slab, due to the reflections from the interface between region-2 and

-3. As in the previous cases, for thickness values greater than the threshold thickness, the

location of the SPP wave vector coincides with the one that is found by (3.39). In the TE

mode case, Fig.3.20, for thickness values less than the threshold thickness, the SPP wave

vector generated in the interface between region-2 and -3 is seen as a singularity in the
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Figure 3.19: SPP poles of the LHM slab for different thicknesses, observation layer: region-
1, TM mode. region-2 is metal with εr2 = −10−j0.1, µr2 = 1, and the thickness d. region-1
is free-space and region-3 is LHM with εr3 = −10, µr1 = −0.1.

reflection coefficient. For thickness values greater than the threshold thickness value, the

SPP wave vector coincides with the one that is found by (3.38), when the observation layer

is region-3. But the SPP wave vector is not observed in the reflection coefficient, when the

observation layer is region-1, due to the exponential decay in the slab.
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Figure 3.20: SPP poles of the LHM slab for different thicknesses, observation layer: region-
1, TE mode. region-2 is metal with εr2 = −10− j0.1, µr2 = 1, and the thickness d. region-1
is free-space and region-3 is LHM with εr3 = −10, µr1 = −0.1.
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Chapter 4

APPROXIMATION OF SPATIAL DOMAIN GREEN’S FUNCTIONS

As discussed in Chapter 2, the transformation of Green’s functions from spectral domain

to spatial domain is obtained by the following Sommerfeld integrals:

G =
1

4π

∫

SIP
dkρkρH

(2)
0 (kρρ)G̃(kρ)

G =
1

2π

∫

SIP
dkρkρJ0(kρρ)G̃(kρ) (4.1)

where G and G̃ are the spatial and spectral domain Green’s functions, respectively and H
(2)
0

and J0 are the Hankel function of the second kind and the Bessel function, respectively. SIP

is the Sommerfeld integration path which was discussed in detail in Chapter 2 (An example

of SIP is given in Fig.2.9). The evaluation of the Sommerfeld-type integrals is a time

consuming process, due to the oscillatory and singular behavior of the integrand and the

bounds of the integration which extends to ∞, as discussed in Chapter 2. Due to this fact,

several approximation methods were introduced to eliminate the numerical integration.

In Section 4.1, an historical overview of approximation methods for spatial domain

Green’s functions will be given. In Section 4.2, the method that uses complex exponentials

to approximate the Green’s functions, i.e. Discrete Complex Images Method (DCIM), will

be analyzed, and a new approach: 3-level DCIM will be introduced. Finally, in Section 4.3,

numerical examples will be given to demonstrate the situations when the 3-level DCIM

works or not.

4.1 Approximation methods for the evaluation of spatial domain Green’s func-

tions: An historical overview and existing methods

To overcome the computationally expensive numerical integration of Sommerfeld integrals,

an approximation method for the spectral domain Green’s function by complex exponentials

was first introduced by Chow et.al. [18] for an HED over a thick substrate and extended to a

general geometry by Mittra and Aksun [19]. In this method a single level approach was used,
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which obtained the uniformly-spaced samples of the spectral domain Green’s functions on a

single path and approximated them by complex exponentials by using Prony’s method [76].

Then by using the Sommerfeld identity:

e−jkr

r
= − j

2

∫

SIP
dkρkρH

(2)
0 (kρρ)

e−jkz |z|

kz

= −j

∫

SIP
dkρkρJ0(kρρ)

e−jkz |z|

kz
(4.2)

spatial domain Green’s functions are obtained as a superposition spherical waves, of which

the amplitudes and phases are determined by the results of complex exponential fitting, i.e.

Prony’s method. There were several difficulties in the implementation of this method such

as the maximum range of the approximation and determining the number of exponentials

to approximate the spectral domain Green’s functions. These problems were eliminated by

the robust approach of Aksun [21], which used a 2-level approach for the approximation.

By using this method, the bounds of the approximations were assigned automatically. Also

a better approximation scheme is obtained by using the Generalized Pencil-of-Function

method (GPOF) [41], which is less noise sensitive compared to the original Prony’s method,

and also provides a good measure for choosing the number of exponentials. The 2-level

approach gives good results for a variety of cases, but for structures: i) with lossy materials

and ii) with no SWPs, the method fails to give correct results especially in the far-field

region, as stated in [26, 31]. A number of modifications for the DCIM were introduced

recently to increase the efficiency of the method [27, 77, 78], which will be discussed and

improved in Section 4.2.

The other approximation techniques include:

1) Analytical approximations with rational function fitting: This method [29,31] first ob-

tains the analytical behavior of the spatial domain Green’s functions near the source point,

i.e. ρ→ 0, which represents the asymptotic behavior of the spectral domain Green’s func-

tions. Then, after subtracting this contribution from the spectral domain Green’s function,

a rational function fitting is applied. Therefore the total spatial domain Green’s function is

obtained as a sum of the contributions of the analytical part and the result of the fitting,

which are a set of line sources, that generates cylindrical waves in the spatial domain by
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using following integral identity:
∫ ∞

−∞

1

k2
ρ − k2

ρp

H
(2)
0 (kρρ)kρdkρ = −jπH

(2)
0 (kρρ) (4.3)

This method gives results those are in good agreement with the results obtained by numerical

integration. But as shown in [29, 31] an intense number of analytical derivations must

be carried to obtain the asymptotic behavior of the spectral domain for different layered

structures. Therefore one can argue that the method is not fully numerical, and a fully

numerical method that gives results with the same accuracy would be preferred.

2) Rational function fitting only: This method [25,28] first obtains the quasi-static im-

ages analytically, which represent spherical waves in spatial domain. Then, after subtract-

ing the contribution of the quasi-static images from the spectral domain Green’s function,

a rational fitting algorithm, vector fitting (VECT-FIT) [79], is applied. As the result, an

approximation that contains a set of spherical (quasi-static images) and cylindrical (result

of VECT-FIT) waves is obtained in spatial domain by using the integral identities (4.2) and

(4.3). This method obtains good results for a variety of different geometries. But since the

approximation of rational functions, i.e. the VECT-FIT algorithm, needs relatively higher

computational resources and the extraction of quasi-static terms is not unique and can be

very tedious, as stated by the authors [28], a fully numerical and unique approach would be

preferred.

3) A combination of rational functions and complex exponentials fitting: This method [30,

80] can be seen as a mixture of the DCIM and the one given in 2) above (Rational function

fitting only). In this method, a two-level approximation is applied on the sampling paths

those are exactly the same as the 2-level DCIM. The first level of the method is the same as

DCIM and the second level is the application of VECT-FIT to the spatial domain Green’s

function, after the subtraction of the terms obtained in the first level. Therefore, the total

spatial domain Green’s function is obtained as a sum of spherical (from the first level, i.e.

exponential fitting) and cylindrical (from second level, i.e. VECT-FIT) waves by using the

integral identities (4.2) and (4.3), respectively. The shortcomings of this method is similar

to the method of the kind given in 2), i.e. the computationally expensive and non-unique

nature of VECT-FIT. Therefore a cheaper method would be preferred that gives the same

accuracy.

As can be seen, the approximation methods first approximates the spectral domain
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Green’s functions by using analytical approaches or fitting algorithms. Then by using

the appropriate integral identities, a transformation from the spectral domain to spatial

domain is obtained. But due to the facts those are stated above, a fully numerical, robust,

automatic and unique method would be preferred for the approximation of spatial domain

Green’s functions.

4.2 The Discrete Complex Images Method (DCIM)

4.2.1 An overview of 2-level DCIM

In the two level approximation approach [21], the spectral domain Green’s function is sam-

pled along two paths on the complex kρ plane as shown in Fig.4.1.

Figure 4.1: Paths of approximation for 2-level DCIM on complex kρ plane.

In Fig.4.1, kmax is the maximum value of the real parts of the wave vectors of the layers

and k0 is the wave vector of the source region. The paths mapped to complex kz plane can

be seen in Fig.4.2 below. To be able to use GPOF, the samples must be taken linearly with

respect to the variable of fitting, t. Therefore, the following mappings are made between

the linear sampling variable t and wave vector component in z-direction, kz , (to be able to

use the Sommerfeld identity given in (4.2)).

For Cap1: kz = −jk0[T02 + t] 0 ≤ t ≤ T01

For Cap2: kz = k0

[

−jt +
(

1− t
T02

)]

0 ≤ t ≤ T02 (4.4)

By using the mapping given in (4.4), the values of kzmax1 and kzmax2 shown in Fig.4.2 are
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Figure 4.2: Paths of approximation for 2-level DCIM on complex kz plane.

given by:

kzmax1 = −jk0(T01 + T02)

kzmax2 = −jk0(T02) (4.5)

by using (4.5), the values of kρmax1 and kρmax2 shown in Fig.4.1 are found to be:

kρmax1 = k0

√

1 + (T01 + T02)2

kρmax2 = k0

√

1 + (T02)2 (4.6)

As seen in (4.6), one must be careful when deciding on the boundaries of approximation.

In other words, kρmax2 must be greater than the kmax value as seen in Fig.4.1. An example

of the approximation paths and sampling locations on the complex kρ and kz planes are

plotted below in Figs. 4.3 and 4.4 for T01 = 1 and T02 = 2.

Before starting the 2-level approximation, the locations of surface wave poles must be

found and subtracted from the integrand, i.e. from the spectral domain Green’s function

G̃, by using the Cauchy integration formula, as discussed in detail in Chapter 2. For this

purpose, numerical root finding algorithms as discussed in Chapter 2 or the modified VECT-

FIT algorithm as given in Appendix C can be used. After the subtraction of the surface

wave poles, in the first step of the 2-level DCIM, the spectral domain Green’s function,

G̃ × kz is sampled on the Cap1, and by applying GPOF, a set of exponentials of the form
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Figure 4.3: Approximation paths and sample point locations of 2-level DCIM on complex
kρ plane for T01 = 1 and T02 = 2. 10 sample points are taken on both paths.

are obtained[21]:

f(kρ)
(

∼= G̃× kz0 for kρ ∈ Cap1

)

=

N1∑

n=1

b1neβ1nt =

N1∑

n=1

a1ne−α1nkz0

α1n =
β1n

jk0
a1n = b1ne−jk0α1nT02 (4.7)

where b1n and β1n are the coefficients and exponents obtained from the GPOF method,

and N1 is the number of exponentials used for this approximation. After the first set of

exponentials are obtained as seen in (4.7), they are subtracted from the remaining part of

the integrand, and the second level of the approximation is performed on the path Cap2 seen

in Figs.4.1 and 4.2, which gives the following results:

G̃× kz0 − f(kρ) ∼=
N2∑

n=1

b2neβ2nt =

N2∑

n=1

a2ne−α2nkz0 for kρ ∈ Cap2

α2n =
β2nT02

k0(1 + jT02)
a2n = b2nek0α2n (4.8)

where b2n and β2n are the coefficients and exponents obtained from the GPOF method,

and N2 is the number of exponentials used for this approximation. Therefore the spatial

domain Green’s function is given by the sum of the exponentials obtained in the 2-level



Chapter 4: Approximation of Spatial Domain Green’s Functions 61

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

Re(k
z
/k

0
)

Im
(k

z/k
0)

 

 

C
ap2

C
ap1

Figure 4.4: Approximation paths and sample point locations of 2-level DCIM on complex
kz plane for T01 = 1 and T02 = 2. 10 sample points are taken on both paths.

approximation, by using the Sommerfeld identity (4.2), which is given by:

G(ρ) =

N1∑

n=1

a1n
e−jk0r1n

r1n
+

N2∑

n=1

a2n
e−jk0r2n

r2n
(4.9)

where

rin =
√

ρ2 + (−jαin)2 (4.10)

A number of different paths were introduced that work without the subtraction of

SWPs [27, 77]. They use a higher number of sampling points and exponentials to approxi-

mate the spectral domain Green’s functions, which can be more expensive computationally.

4.2.2 The 3-level DCIM

As discussed in [26,31], the most important shortcoming of the 2-level DCIM is its lack of

capturing the contribution of the branch point. In spatial domain, the contribution of the

branch point is seen as lateral waves [18, 81] which has the following asymptotic behavior

for large ρ:
e−jk0ρ

ρ2
(4.11)
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where k0 is the branch point of the structure 1. The other contribution that plays an

important role in spatial domain Green’s function is the SWPs, which is seen as cylindrical

waves and has the following asymptotic behavior for large ρ:

e−jkswpρ

√
ρ

(4.12)

where kswp is the wave number of the SWP. As can be seen in (4.11) and (4.12), when the

SWP has an imaginary part, the contribution of the surface waves decay exponentially, and

as the result, the contribution of the branch point, i.e. the lateral wave, determines the

far-field behavior of the spatial domain Green’s function. This situation can be seen in [31]:

1) Lossless materials when the spectral domain Green’s function does not have proper poles,

2) Lossy materials and 3) When a pole is very close to the branch point. To overcome this

problem, the sampling paths of the 2-level DCIM are modified, which results in a 3-level

approximation that is capable of capturing the contribution of the branch point. 3 such

sampling paths are given below.

3-level DCIM: Approach 1

This approach was proposed in [78]. In this approach, the spectral domain Green’s function

is sampled along three paths on the complex kρ plane as shown in Fig.4.5. The paths

mapped to complex kz plane can be seen in Fig.4.6 below. The following mappings are

Figure 4.5: Approximation paths for the first 3-level DCIM method on complex kρ plane.

1In structures where the radiating medium is air, k0 is the wave number of free-space.
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Figure 4.6: Approximation paths for the first 3-level DCIM method on complex kz plane.

made between the linear sampling variable t and wave vector component in z-direction, kz

(to be able to use the integral identity given in (4.2)).

For Cap1: kz = −jk0 [T02 + (T01 − T02) t] 0 ≤ t ≤ 1

For Cap2: kz = k0 [(T ′
03 − jT03)− (T ′

03 + j(T02 − T03))t] 0 ≤ t ≤ 1

For Cap3: kz = k0 [1− (1− T ′
03 + jT03)t] 0 ≤ t ≤ 1 (4.13)

By using the mapping given in (4.13), the values of kzmax1, kzmax2 and kzmax3 shown in

Fig.4.6 are given by:

kzmax1 = −jk0T01

kzmax2 = −jk0T02

kzmax3 = k0(T
′
03 − jT03) (4.14)

by using (4.14), the values of kρmax1, kρmax2 and kρmax3 shown in Fig.4.5 are found to be:

kρmax1 = k0

√

1 + (T01)2

kρmax2 = k0

√

1 + (T02)2

kρmax3 = k0

√

1− (T ′
03 − jT03)2 (4.15)

As in the case of 2-level DCIM, one must be careful when deciding on the boundaries of

approximation. In other words, kρmax2 must be greater than the kmax value as seen in

Fig.4.5. An example of the approximation paths and sampling locations on the complex kρ
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and kz planes are plotted below in Figs.4.7 and 4.8 for T01 = 3, T02 = 2, T ′
03 = 0.01 and

T03 = 0.01.
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Figure 4.7: Approximation paths and sample point locations of the first 3-level DCIM
approach on complex kρ plane for T01 = 3, T02 = 2 and T ′

03 = 0.01 and T03 = 0.01. 10
sample points are taken on all the three paths.

3-level DCIM: Approach 2

In the second three level approximation approach, the spectral domain Green’s function is

sampled along three paths on the complex kρ plane as shown in Fig.4.9. The paths mapped

to complex kz plane can be seen in Fig.4.10 below. The following mappings are made

between the linear sampling variable t and wave vector component in z-direction, kz (to be

able to use the integral identity given in (4.2)).

For Cap1: kz = −jk0

[
T02

T03+1 + t
]

0 ≤ t ≤ T01

For Cap2: kz = k0

[
1

T03+1

] [

−jt +
[

1− t
T02

]]

0 ≤ t ≤ T02

For Cap3: kz = k0

[

1− t
T03+1

]

0 ≤ t ≤ T03 (4.16)
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Figure 4.8: Approximation paths and sample point locations of the first 3-level DCIM
approach on complex kz plane for T01 = 3, T02 = 2 and T ′

03 = 0.01 and T03 = 0.01. 10
sample points are taken on all the three paths.

By using the mapping given in (4.16), the values of kzmax1, kzmax2 and kzmax3 shown in

Fig.4.10 are given by:

kzmax1 = −jk0

(
T02

T03 + 1
+ T01

)

kzmax2 = −jk0

(
T02

T03 + 1

)

kzmax3 = k0
1

T03 + 1
(4.17)

by using (4.17), the values of kρmax1, kρmax2 and kρmax3 shown in Fig.4.10 are found to be:

kρmax1 = k0

√

1 +

(
T02

T03 + 1
+ T01

)2

kρmax2 = k0

√

1 +

(
T02

T03 + 1

)2

kρmax3 = k0

√

1−
(

1

T03 + 1

)2

(4.18)

An example of the approximation paths and sampling locations on the complex kρ and kz

planes are plotted below in Figs. 4.11 and 4.12 for T01 = 1, T02 = 200 and T03 = 99.

As discussed in Chapter 3, in layered structures which contain a combination of lossy

LHMs and RHMs, there can be SWPs and SPPs singularities which have positive imaginary
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Figure 4.9: Approximation paths for the second 3-level DCIM on complex kρ plane.

Figure 4.10: Approximation paths for the second 3-level DCIM on complex kz plane.

parts. A positive imaginary part in the wave vector is not physical, since it represents an

exponentially growing function in the direction of power flow for ejωt convention. Therefore

only the singularities with negative imaginary parts are added as surface wave contributions

to the spatial domain Green’s functions. But, since the spectral domain Green’s functions

are even in kρ domain, there can be singularities in the first quadrant of the complex kρ

plane for this kind of layered structures. Due to this fact, the paths introduced above

cannot be used in the approximation process of spectral domain Green’s functions, since

the paths can cross the singularities with positive imaginary parts. To handle this problem,

a sampling path is introduced below that passes on the real kρ axis.
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Figure 4.11: Approximation paths and sample point locations of the second 3-level DCIM
approach on complex kρ plane for T01 = 1, T02 = 200 and T03 = 99. 10 sample points are
taken on all the three paths.
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Figure 4.12: Approximation paths and sample point locations of the second 3-level DCIM
approach on complex kz plane for T01 = 1, T02 = 200 and T03 = 99. 10 sample points are
taken on all the three paths.
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3-level DCIM: Approach 3

In the third three level approximation approach, the spectral domain Green’s function

is sampled along three paths on the complex kρ plane as shown in Fig.4.13. The paths

mapped to complex kz plane can be seen in Fig.4.14 below. The following mappings are

Figure 4.13: Approximation paths for the third 3-level DCIM on complex kρ plane.

Figure 4.14: Approximation paths for the third 3-level DCIM on complex kz plane.

made between the linear sampling variable t and wave vector component in z-direction, kz

(to be able to use the integral identity given in (4.2)).

For Cap1: kz = −jk0 [t + T02] 0 ≤ t ≤ T01

For Cap2: kz = −jk0 [t] 0 ≤ t ≤ T02

For Cap3: kz = k0

[

1− t
T03

]

0 ≤ t ≤ T03 (4.19)
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By using the mapping given in (4.19), the values of kzmax1, kzmax2 and kzmax3 shown in

Fig.4.14 are given by:

kzmax1 = −jk0 (T01 + T02)

kzmax2 = −jk0 (T02)

kzmax3 = 0 (4.20)

by using (4.20), the values of kρmax1, kρmax2 and kρmax3 shown in Fig.4.14 are found to be:

kρmax1 = k0

√

1 + (T02 + T01)
2

kρmax2 = k0

√

1 + (T02)
2

kρmax3 = k0 (4.21)

An example of the approximation paths and sampling locations on the complex kρ and kz

planes are plotted below in Figs. 4.15 and 4.16 for T01 = 1, T02 = 2 and T03 = 1.
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Figure 4.15: Approximation paths and sample point locations of the third 3-level DCIM
approach on complex kρ plane for T01 = 1, T02 = 2 and T03 = 1. 10 sample points are taken
on all the three paths.

Before starting the 3-level approximation, the locations of surface wave poles must be

found and subtracted from the integrand, i.e. from the spectral domain Green’s function G̃
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Figure 4.16: Approximation paths and sample point locations of the third 3-level DCIM
approach on complex kz plane for T01 = 1, T02 = 2 and T03 = 1. 10 sample points are taken
on all the three paths.

by using the Cauchy integration formula. The locations of the SWPs can be found by the

root finding algorithm discussed in Chapter 2 or the modified VECT-FIT algorithm given

in Appendix C. After the subtraction of the surface wave poles, in the first step of the

3-level DCIM, the spectral domain Green’s function, G̃× kz is sampled on the Cap1, and by

applying GPOF, a set of exponentials of the form are obtained:

f1(kρ)
(

∼= G̃× kz0 for kρ ∈ Cap1

)

=

N1∑

n=1

b1neβ1nt =

N1∑

n=1

a1ne−α1nkz0 (4.22)

where b1n and β1n are the coefficients and exponents obtained from the GPOF method, and

N1 is the number of exponentials used for this approximation. The coefficients transformed

to kz domain are given by:

α1n =
β1n

jk0(T01 − T02)
a1n = b1ne−jk0α1nT02 for approach 1 (4.23)

α1n =
β1n

jk0
a1n = b1ne

−jk0α1n
T02

T03+1 for approach 2 (4.24)

α1n =
β1n

jk0
a1n = b1ne−jk0α1nT02 for approach 3 (4.25)

After the first set of exponentials are obtained as seen in (4.22), they are subtracted from
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the remaining part of the integrand, and the second level of the approximation is performed

on the path Cap2, which gives the following results:

G̃× kz0 − f1(kρ) ∼= f2(kρ) =

N2∑

n=1

b2neβ2nt =

N2∑

n=1

a2ne−α2nkz0 for kρ ∈ Cap2

α2n =
β2nT02(T03 + 1)

k0(1 + jT02)
a2n = b2ne

k0
α2n

T03+1 (4.26)

where b2n and β2n are the coefficients and exponents obtained from the GPOF method, and

N2 is the number of exponentials used for this approximation. The coefficients transformed

to kz domain are given by:

α2n =
β2n

k0(j(T02 − T03) + T ′
03)

a2n = b2nek0α2n(T ′

03−jT03) for approach 1 (4.27)

α2n =
β2nT02(T03 + 1)

k0(1 + jT02)
a2n = b2ne

k0
α2n

T03+1 for approach 2 (4.28)

α2n =
β2n

jk0
a2n = b2n for approach 3 (4.29)

After the second set of exponentials are obtained as seen in (4.26), they are subtracted from

the remaining part of the integrand, and the second level of the approximation is performed

on the path Cap3, which gives the following results:

G̃× kz0 − f1(kρ)− f2(kρ) ∼=
N3∑

n=1

b3neβ3nt =

N3∑

n=1

a3ne−α3nkz0 for kρ ∈ Cap3 (4.30)

where b3n and β3n are the coefficients and exponents obtained from the GPOF method, and

N3 is the number of exponentials used for this approximation.The coefficients transformed

to kz domain are given by:

α3n =
β3n

k0(1− T ′
03 + jT03)

a3n = b3nek0α3n for approach 1 (4.31)

α3n =
β3n(T03 + 1)

k0
a3n = b3nek0α3n for approach 2 (4.32)

α3n =
β3nT03

k0
a3n = b3nek0α3n for approach 3 (4.33)

Therefore the spatial domain Green’s function is given by the sum of the exponentials

obtained in the 3-level approximation, by using the Sommerfeld identity (4.2), which is

given by:

G(ρ) =

N1∑

n=1

a1n
e−jk0r1n

r1n
+

N2∑

n=1

a2n
e−jk0r2n

r2n
+

N3∑

n=1

a3n
e−jk0r3n

r3n
(4.34)
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where

rin =
√

ρ2 + (−jαin)2 (4.35)

where the coefficients αi and ai are given above for the different approaches of 3-level DCIM.

4.2.3 Comments on the branch point contribution

As discussed above, the intention of the 3-level method is to be able to capture the branch

point contribution. Here, the mathematical background of the fact that lateral waves that

decay with 1
ρ2 for ρ→∞ can be approximated by spherical waves, i.e. the far-field behavior

of spatial domain Green’s functions can be approximated by the DCIM even when the

surface wave contribution becomes weak, when ρ → ∞, if the contribution of the branch

point is captured.

Let the following exponential is obtained by the DCIM:

e−jkr1

r1
(4.36)

where r1 is given by:

r1 =
√

ρ2 + (−jα1) (4.37)

as given in (4.34) and (4.35) and α1 is the exponent obtained by the DCIM. When ρ→∞,

the square root in (4.37) can be approximated by:

√

ρ2 + (−jα1) ∼= ρ

(

1− α2
1

2ρ2

)

(4.38)

combining (4.36) with (4.38) gives:

e−jkr1

r1

∼= e−jkρejk
α2
1

2ρ

ρ
(

1− α2
1

2ρ2

) ∼= e−jkρ

ρ

1 + jk
α2

1
2ρ

1− α2
1

2ρ2

(4.39)

by using the Taylor expansion for fractions i.e.:

1

t
= 1 + t + t2 + ... for |t| < 1 (4.40)

gives the following relation (where t ≡ α2
1

2ρ2 in (4.40)):

1

1− α2
1

2ρ2

∼= 1 +
α2

1

2ρ2
(4.41)
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substituting (4.41) into (4.39) results in:

e−jkr1

r1

∼= e−jkρ

ρ

[

1 + jk
α2

1

2ρ

] [

1 +
α2

1

2ρ2

]

(4.42)

by grouping the same terms in (4.42), the following relation is obtained:

e−jkr1

r1

∼= e−jkρ

ρ
+ jk

α2
1

2ρ2
e−jkρ + O(

1

ρ3
) (4.43)

Now suppose that 2 exponentials are fitted to the data, obtained from a path that is close

to the branch point. Using (4.43), one can obtain the following relation in spatial domain:

a1
e−jkr1

r1
+ a2

e−jkr2

r2

∼= (a1 + a2)
e−jkρ

ρ
+

jk

2

(
a1α

2
1 + a2α

2
2

) e−jkρ

ρ2
+ O(

1

ρ3
) (4.44)

From the result obtained in (4.44), it can be concluded that the DCIM method can represent

lateral waves (i.e. a wave with the algebraic decay of 1
ρ2 as given in 4.11) if the following

relations hold:

a1 + a2
∼= 0

α1 + α2 ≇ 0 (4.45)

in (4.44). To investigate this behavior, a problematic case for the 2-level DCIM, a layered

geometry that contains lossy materials, is analyzed by applying the DCIM method only

on the data obtained from second path (Cap2) of the 3-level DCIM as discussed in Section

4.2.2. Before the application of DCIM, the SWPs are subtracted analytically. The example

geometry can be seen in Fig.4.17. The results of the fitting are tabulated below in Table 4.1.

Figure 4.17: A geometry that is known to be problematic for the 2-level DCIM: A PEC
backed, lossy slab. (f = 10GHz)
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Method Path T02 T03(−T ′
03) a1 + a2 α1 + α2

2-lvl Cap2 2 − −0.0006 + j0.0103 −2.509 × 10−2 − j2.8597 × 10−1

3-lvl, approach 1 Cap2 0.1 0.01 − 0.01 0.02057 + j0.0109 −3.4898 × 10−6 + j4.3693 × 10−5

3-lvl, approach 1 Cap2 2 0.01 − 0.01 0.0130 + j0.01807 −1.7739 × 10−3 − j2.3609 × 10−3

3-lvl, approach 1 Cap2 20 0.01 − 0.01 −0.0134 + j0.0164 −9.4937 × 10−2 − j8.2253 × 10−2

3-lvl, approach 2 Cap2 1 99 −0.0131 − j0.0168 1.8777 × 10−9 + j6.5919 × 10−10

3-lvl, approach 2 Cap2 200 99 −0.0129 − j0.0578 −6.3126 × 10−3 + j1.8262 × 10−4

3-lvl, approach 2 Cap2 2000 99 −0.0006 − j0.0055 2.0466 × 10−2 − j1.1210 × 10−2

3-lvl, approach 3 Cap2 0.01 1 0.0085 − j0.0016 −2.6062 × 10−11 + 9.0802 × 10−12

3-lvl, approach 3 Cap2 2 1 −0.0013 − j0.0057 −6.1649 × 10−9 + j1.1410 × 10−3

3-lvl, approach 3 Cap2 20 1 −0.0006 − j0.0051 1.9767 × 10−2 − 1.1712 × 10−2

Table 4.1: The results of the different DCIM methods applied only on the path indicated. As the test, G̃A
xx data of the geometry

shown in Fig.4.17, after the subtraction of the SWP, is used. For all the cases, 100 data points are taken.
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As can be seen in Table 4.1, the 2-level approach cannot capture the contribution of the

branch point, since the value of α1 +α2 is relatively high. For the 3-level DCIM approaches

the value of α1 + α2 is smaller, therefore they can capture the contribution of the branch

point, as long as the second bound for the approximation, T02, is not very high. The

numerical results of the whole DCIM method applied to different geometries can be seen in

the next section.

4.3 Numerical Examples

In this section numerical examples of layered structures will be given to show the robustness

and the efficiency of the 3-level approximation method. Since all the 3 approaches give the

same results in most of the cases, only the results of the second approach are shown in the

examples, unless otherwise is indicated.

4.3.1 Surface Wave Pole very close to branch point

This example is given in [29]. The geometry seen in Fig.4.18 is studied at f = 4.075GHz.

The locations of the observation and the source (HED) points are at the interface between

the air and the dielectric layer (z = h = 0).

Figure 4.18: Geometry of the example: SWP very close to branch point and no SWP.

For this geometry the free space wave vector is k0 = 85.3466m−1. The TE-mode surface

wave pole is found to be at ksw,TE = 85.3489 = 1.00001440k0 and the TM-mode surface

wave pole is found to be at ksw,TM = 126.1984 = 1.478658k0 . For this example, in 2-

level approximation, the following constants are used: T01 = 100 and T02 = 3, number of

samples=100 for both of the paths, and the number of exponentials used are N1 = 6 and

N2 = 7 for vector potential and N1 = 5 and N2 = 6 for scalar potential Green’s functions.
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In the 3-level approximation the following constants are used: T01 = 100, T02 = 200 and

T03 = 99, number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3 respectively. The

number of exponentials used are N1 = 4, N2 = 5 and N3 = 4 for vector potential and

N1 = 4, N2 = 7 and N3 = 5 for scalar potential Green’s functions. The results of numerical

integration and both the 2 and 3-level DCIMs are plotted below in Figs.4.19 and 4.20, for

the vector and the scalar potentials, respectively.

Since the TE-mode surface wave pole is very close to the branch point, the contribution

from the branch point becomes crucial and the 2-level DCIM gives errors for large ρ values.

4.3.2 No surface wave poles

The geometry seen in Fig.4.18 is studied at f = 3GHz [29]. The locations of the observation

and the source (HED) points are at the interface between the air and the dielectric layer

(z = h = 0). For this geometry the free space wave vector is k0 = 62.8318m−1. There is

no TE-mode surface wave pole at f = 3GHz and the TM-mode surface wave pole is found

to be at ksw,TM = 76.9527 = 1.4786k0. For this example, in 2-level approximation, the

following constants are used: T01 = 100 and T02 = 3, number of samples=100 for both of

the paths, and the number of exponentials used are N1 = 6 and N2 = 5 for vector potential

and N1 = 5 and N2 = 4 for scalar potential Green’s functions. In the 3-level approximation

the following constants are used: T01 = 100, T02 = 200 and T03 = 99, number of samples

are 50, 100 and 100 for Cap1, Cap2 and Cap3 respectively. The number of exponentials used

are N1 = 3, N2 = 3 and N3 = 3 for vector potential and N1 = 3, N2 = 3 and N3 = 4 for

scalar potential Green’s functions. The results of numerical integration and both the 2 and

3-level DCIM are plotted below in Figs.4.21 and 4.22.

Since there are no SWPs for the vector potential case, the contribution of the branch

point determines the far-field behavior. Since the 2-level DCIM cannot capture the contri-

bution of the branch point, it gives errors for large values of ρ.
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Figure 4.19: Magnitude of vector potential of the geometry in Fig.4.18 at f = 4.075GHz.
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Figure 4.20: Magnitude of scalar potential of the geometry in Fig.4.18 at f = 4.075GHz.
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Figure 4.21: Magnitude of vector potential of the geometry in Fig.4.18 at f = 3GHz.
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Figure 4.22: Magnitude of scalar potential of the geometry in Fig.4.18 at f = 3GHz.
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4.3.3 A lossy, PEC backed material

This example is given in [24]. The geometry seen in Fig.4.23 is studied at f = 10GHz. The

locations of the observation and the source (HED) points are at the interface between the

air and the dielectric layer (z = h = 0).

Figure 4.23: Geometry of the example: lossy, PEC-backed slab.

For this geometry the free space wave vector is k0 = 209.4395m−1 . For this example,

there are two TM-mode surface wave poles found at ksw,TM,1 = 213.2321 − j4.0539 =

(1.0181− j0.0193)k0 , and (ksw,TM,2 = 392.9631− j19.0667 = (1.8762− j0.0910)k0 , and one

TE-mode surface wave pole found at (ksw,TE,1 = 342.7213−19.8548j = (1.6363−j0.0947)k0 .

For this example, in 2-level approximation, the following constants are used: T01 = 100 and

T02 = 3, number of samples=100 for both of the paths, and the number of exponentials

used are N1 = 3 and N2 = 4 for vector potential and N1 = 4 and N2 = 4 for scalar potential

Green’s functions. In the 3-level approximation the following constants are used: T01 = 100,

T02 = 200 and T03 = 99, number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3

respectively. The number of exponentials used are N1 = 3, N2 = 3 and N3 = 5 for vector

potential and N1 = 3, N2 = 3 and N3 = 7 for scalar potential Green’s functions. The results

of numerical integration, 2 and 3-level DCIM are plotted below in Figs.4.24 and 4.25.

Since the SWPs have an imaginary part, the contribution of the SWPs disappears for

large ρ values due to the exponential decay of the surface waves. As a result, the contribution

of the branch point determines the far-field behavior, therefore it becomes crucial to capture

the contribution of the branch point. As seen in the results, the 2-level approach generates

results with a decay of 1/ρ for large ρ values, since it cannot capture the contribution of

the branch point, as discussed in Section 4.2.3. In the 3-level case, the method can capture

the contribution of the branch point, and as the result, it generates results with a decay
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Figure 4.24: Magnitude of vector potential of the geometry in Fig.4.23 at f = 10GHz.
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Figure 4.25: Magnitude of scalar potential of the geometry in Fig.4.23 at f = 10GHz.
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of 1/ρ2 for large ρ values. This behavior can be seen in Fig.4.24, where two lines with the

indicated slopes are plotted. The situation is the same for the other examples, when a SWP

with imaginary part is observed.

4.3.4 A combination of lossy and lossless materials in a PEC backed geometry

The geometry seen in Fig.4.26 is studied at f = 10GHz. The locations of the observation

and the source (HED) points are at the interface between the air and the dielectric layer

(z = h = 0).

Figure 4.26: Geometry of the example: both lossy and lossless materials in a PEC-backed
geometry.

For this geometry the free space wave vector is k0 = 209.4395m−1. The TE-mode

surface wave pole is found to be at ksw,TE = 281.8020 − j2.5031 = (1.3455 − j0.0119)k0

and the TM-mode surface wave pole is found to be at ksw,TM = 355.5048 − j11.7667 =

(1.6974 − j0.0561)k0 . For this example, in 2-level approximation, the following constants

are used: T01 = 100 and T02 = 3, number of samples=100 for both of the paths, and the

number of exponentials used are N1 = 4 and N2 = 4 for vector potential and N1 = 4 and

N2 = 5 for scalar potential Green’s functions. In the 3-level approximation the following

constants are used: T01 = 100, T02 = 300 and T03 = 99, number of samples are 50, 100

and 100 for Cap1, Cap2 and Cap3 respectively. The number of exponentials used are N1 = 3,

N2 = 4 and N3 = 4 for vector potential and N1 = 3, N2 = 5 and N3 = 5 for scalar potential

Green’s functions. The results of numerical integration and the 2 and 3-level DCIM are

plotted below in Figs.4.27 and 4.28.

The solution is very similar to the case of PEC backed lossy structure. Since the SWP
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Figure 4.27: Magnitude of vector potential of the geometry in Fig.4.26 at f = 10GHz.
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Figure 4.28: Magnitude of scalar potential of the geometry in Fig.4.26, at f = 10GHz.
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contribution decay exponentially the branch point contribution determines the behavior

when ρ → ∞. Since the contribution cannot be captured by the 2-level approach, it gives

errors in the far field region, as discussed in the previous example.

4.3.5 A lossy slab in air

The geometry seen in Fig.4.29 is studied at f = 4GHz. The locations of the observation

and the source (HED) points are at the interface between the air and the upper boundary

of the dielectric layer (z = z′ = 0).

Figure 4.29: Geometry of the example: a lossy material in air.

For this geometry the free space wave vector is k0 = 83.7758m−1. The TE-mode surface

wave pole is found to be at ksw,TE = 117.0866−j4.6437 = (1.3976−j0.0554)k0 and the TM-

mode surface wave pole is found to be at ksw,TM = 89.1354−j0.4889 = (1.0640−j0.0058)k0 .

For this example, in 2-level approximation, the following constants are used: T01 = 100 and

T02 = 2, number of samples=100 for both of the paths, and the number of exponentials

used are N1 = 4 and N2 = 3 for vector potential and N1 = 4 and N2 = 4 for scalar potential

Green’s functions. In the 3-level approximation the following constants are used: T01 = 100,

T02 = 200 and T03 = 99, number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3

respectively. The number of exponentials used are N1 = 3, N2 = 5 and N3 = 5 for vector

potential and N1 = 3, N2 = 5 and N3 = 5 for scalar potential Green’s functions. The

results of numerical integration and the 2 and 3-level DCIM are plotted below in Figs.4.30

and 4.31.
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Figure 4.30: Magnitude of vector potential of the geometry in Fig.4.29 at f = 4GHz.
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Figure 4.31: Magnitude of scalar potential of the geometry in Fig.4.29 at f = 4GHz.
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4.3.6 A multi-layered structure in air

This example is taken from [82]. The geometry seen in Fig.4.32 is studied at f = 47.393GHz.

The location of the source point is 2.5mm above the uppermost slab (h = 2.5mm) and the

results are obtained along a line as shown in Fig.4.32.

Figure 4.32: Geometry of the example: A multi-layered structure in air. The observation
locations are taken to be on the line, where the distance between the line and the source
point is λ0 = 6.33mm.

For this geometry the free space wave vector is k0 = 992.5966m−1. The TE-mode

surface wave poles are found to be at ksw,TE1 = 1121.5166m−1 = 1.12k0, ksw,TE2 =

1245.4442m−1 = 1.25k0 and the TM-mode surface wave poles are found to be at ksw,TM1 =

1021.1547m−1 = 1.03k0 and .ksw,TM2 = 1181.4495m−1 = 1.19k0. The results obtained by

numerical integration and 3-level DCIM, along the vertical line seen in Fig.4.29 (z = −15mm

to 2.5mm) can be seen in the figures below.

Since the results are obtained on the vertical line, the number of exponentials fitted

in the 3-level approximation is changed for each data point on the line, since a different

spectral domain Green’s function is obtained. Therefore the tolerance values for the GPOF

are set to be tol1 = 10−4, tol1 = 10−2 and tol1 = 10−4. As can be seen in the results, the

3-level approach gives excellent results for this case also.
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Figure 4.33: Magnitude of vector potential of the geometry in Fig.4.32 at f = 47.393GHz.
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4.3.7 A PEC backed LHM

The geometry seen in Fig.4.35 is studied at f = 1GHz. The locations of the observation

and the source (HED) points are at the interface between the air and the dielectric layer

(z = h = 0).

Figure 4.35: Geometry of the example: A PEC backed LHM slab.

For this geometry the free space wave vector is k0 = 20.9439m−1. The TE-mode surface

wave poles are found to be at ksw,TE1 = 21.1320m−1 = 1.0089k0 , ksw,TE2 = 25.3469m−1 =

1.2102k0 and the TM-mode surface wave pole is found to be at ksw,TM = 34.4150m−1 =

1.6431k0. The parameters used in the 3-level DCIM, approach 3, are: T01 = 100, T02 = 2

and T03 = 1, number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3 respectively.

The number of exponentials used are N1 = 4, N2 = 4 and N3 = 5 for vector potential and

N1 = 5, N2 = 4 and N3 = 5 for scalar potential Green’s functions. The results of numerical

integration and the 3-level DCIM are plotted below in Figs.4.36 and 4.37.

As seen in the results, the 3-level DCIM can approximate geometries containing LHMs.
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Figure 4.36: Magnitude of vector potential of the geometry in Fig.4.35 at f = 1GHz.
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Figure 4.37: Magnitude of scalar potential of the geometry in Fig.4.35 at f = 1GHz.
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4.3.8 A Lossy Slab of LHM in air

The geometry seen in Fig.4.38 is studied at f = 1GHz. The locations of the observation

and the source (HED) points are at the interface between the air and the dielectric layer

(z = h = 0).

Figure 4.38: Geometry of the example: A lossy LHM slab in air.

For this geometry the free space wave vector is k0 = 20.9439m−1. The TE-mode surface

wave pole is found to be at ksw,TE = (53.8399 − j0.2813)m−1 = (2.5706 − j0.0134)k0

and the TM-mode surface wave pole is found to be at ksw,TM = (39.8186 − j1.9000)m−1 =

(1.9011−0.09071)k0 . The parameters used in the 3-level DCIM, approach 3, are: T01 = 100,

T02 = 2 and T03 = 1, number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3

respectively. The number of exponentials used are N1 = 3, N2 = 4 and N3 = 4 for vector

potential and N1 = 4, N2 = 4 and N3 = 6 for scalar potential Green’s functions. The results

of numerical integration and the 3-level DCIM are plotted below in Figs.4.39 and 4.40.

As seen in the results, the 3-level DCIM can approximate geometries containing lossy

LHMs. As in the case of RHMs, the contribution of the branch point is captured by the

3-level approach in LHMs.
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Figure 4.39: Magnitude of vector potential of the geometry in Fig.4.38 at f = 1GHz.
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Figure 4.40: Magnitude of scalar potential of the geometry in Fig.4.38 at f = 1GHz.
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4.3.9 A combination of RHM and LHM in a PEC backed geometry

The geometry seen in Fig.4.41 is studied at f = 1GHz. The location of the source point

is 1mm above the uppermost slab (h = 1mm) and the results are taken on the interface

between the LHM and the RHM (z = −11mm).

Figure 4.41: Geometry of the example: A combination of LHM and RHM in a PEC backed
structure. The source point is at h = 1mm and the observation points are at the interface
between regions 1 and 2.

For this geometry the free space wave vector is k0 = 20.9439m−1. The TE-mode surface

wave pole is found to be at ksw,TE = (23.0402 − j0.2034)m−1 = (1.1001 − j0.0097)k0 and

the TM-mode surface wave pole is found to be at ksw,TM = (−64.7608 − j2.24499)m−1 =

(−3.0921 − j0.1071)k0 . The results obtained by numerical integration and 3-level DCIM,

approach 3, along the interface between the LHM and the RHM (z = −11mm) can be seen

below. The parameters used for the approximation are: T01 = 100, T02 = 3 and T03 = 1,

number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3 respectively. The number of

exponentials used are N1 = 5, N2 = 5 and N3 = 5 for vector potential and N1 = 5, N2 = 6

and N3 = 6 for scalar potential Green’s functions. The results of numerical integration and

the 3-level DCIM are plotted below in Figs.4.42 and 4.43.

As can be seen in the results, the 3-level DCIM gives excellent results in near, interme-

diate and far field regions of the geometry, when the source and observation points are in

different regions.
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Figure 4.42: Magnitude of vector potential of the geometry in Fig.4.41 at f = 1GHz.
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Figure 4.43: Magnitude of scalar potential of the geometry in Fig.4.41 at f = 1GHz.
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4.3.10 A discussion on the perfect lens and numerical examples of lossy perfect lens

It is well known that, in conventional optical systems the resolution of the image is limited

by the wavelength of the light. More specifically, the area on which the light is focussed

cannot be less than a square wavelength of the light. This behavior of the traditional lenses

is because of the fact that the evanescent spectrum (kρ > k) decays exponentially and

as a result some of the information is lost and a point image (of a point source) cannot

be obtained. The analytical solution to this problem is to use a slab of LHM with the

constitutive parameters of ε = −1 and µ = −1 in air, which was first proposed by Pendry

in 2000 and discussed in detail in [46]. An example of the perfect lens configuration can be

seen in Fig.4.44. As can be seen in Fig.4.44, the rays are negatively refracted and as the

Figure 4.44: The ray directions in a perfect lens.

result, a slab of LHM with the constitutive parameters of ε = −1 and µ = −1 is able to

form an image both inside and outside the slab. Mathematically, to obtain a perfect image

(the exact same image of the objects), all the wave vectors on the image location must be in

phase and magnitude with the wave vectors of the object after passing through the perfect

lens. To understand this fact, the generalized transmission and reflection coefficients must

be analyzed. For the geometry seen in Fig. 4.44, the generalized reflection and transmission

coefficients are found to be R̃ = 0 and T̃ (kz) = ejkzd respectively [46]. As can be seen easily,

the generalized transmission coefficient makes it possible to transfer the phase information

for the visible spectrum (0 < kρ < k0) and the magnitude information for the evanescent

spectrum (k0 < kρ), which results in the exact same spectral domain information in the

image location with the source. Therefore, one can conclude that a slab of LHM with the

constitutive parameters of ε = −1 and µ = −1 forms the exact same image of the object,
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due to which such layered structures are called the perfect lens.

Here a study on the lossy perfect lens will be carried out to understand the effect of

losses on the physics of the perfect lens. For this purpose, 2 different geometries are used.

In the first one, effect of losses on the waves generated on the surface of the lossy perfect

lens is investigated by changing the loss value. In the second one, the effect of losses on

the image resolution is analyzed by comparing the changes seen in the spectral and spatial

domain Green’s functions as a function of loss.

Numerical example of lossy perfect lens: change of potential on the perfect lens surface

depending on the loss.

To see the effect of losses on the wave components those are generated on the surface of the

lossy perfect lens, the geometry seen in Fig.4.45 is studied at f = 1GHz. The locations of

the observation and the source (HED) points are at the interface between the air and the

upper boundary of the dielectric layer (h = z = 0). As can be seen in Fig.4.45, the perfect

Figure 4.45: Geometry of the example: A lossy perfect lens in air with the object on the
boundary between the lens and air.

lens has a loss both in the permittivity and permeability values, i.e. κ. Below there are

4 examples for different values of κ, where the 3-level DCIM is applied to the GA
xx of the

geometry. The following constants are used in the 3-level DCIM, approach 3: T01 = 100,

T02 = 0.5 and T03 = 1 and the number of exponentials used are as follows: for κ = 1,

N1 = 4, N2 = 4 and N3 = 5, for κ = 0.1, N1 = 10, N2 = 6 and N3 = 6, for κ = 0.01,

N1 = 12, N2 = 6 and N3 = 5 and for κ = 0.001, N1 = 20, N2 = 6 and N3 = 4. The results

can be seen below in Figs.4.46-4.49.
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Figure 4.46: Magnitude of vector potential of the geometry in Fig.4.45 at f = 1GHz and
κ = 1.

As can be seen in the results, as the losses decrease, more wave components are seen

on the surface and as the result, stronger interferences are observed on the surface of the

perfect lens. Also, it is seen that the 3-level DCIM gives very good results for the case of

lossy perfect lens.
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Figure 4.47: Magnitude of vector potential of the geometry in Fig.4.45 at f = 1GHz and
κ = 0.1.
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Figure 4.48: Magnitude of vector potential of the geometry in Fig.4.45 at f = 1GHz and
κ = 0.01.
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Figure 4.49: Magnitude of vector potential of the geometry in Fig.4.45 at f = 1GHz and
κ = 0.001.

Numerical example of lossy perfect lens: effect of losses on the resolution

To analyze the effect of losses to the image resolution, the geometry seen in Fig.4.50 is

analyzed at f = 1GHz. The source (HED) is put 5mm above the surface of the lossy

perfect lens and the results of the Green’s functions, both in spectral and spatial domain,

are collected at the image plane as shown in Fig.4.50 (h = 5mm and z = 20mm). The

Figure 4.50: Geometry of the example: A lossy perfect lens in air with the object 5mm
above the lens.
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spectral and spatial Green’s functions (for the vector potential) are plotted in Figs. 4.51

and 4.52, respectively.
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Figure 4.51: Spectral domain Green’s function for the vector potential of the geometry
shown in Fig. 4.50, for different values of κ.

For sake of eliminating crowded images, only the result of 3-level DCIM, 3rd approach for

κ = 10−4 is given. For the other values κ, the 3-level DCIM, 3rd approach gives the correct

results. The following constants are used in the 3-level DCIM, approach 3: T01 = 100,

T02 = 0.5 and T03 = 1 and the number of exponentials used are N1 = 7, N2 = 4 and

N3 = 4.

As can be seen in the results, when the loss of the perfect lens is small, a better image

resolution is obtained, since an higher portion of the spectral domain Green’s function is

transferred to the image plane, as seen in Fig. 4.51.

4.3.11 A slab between two different semi-infinite dielectrics, at high frequency

The geometry seen in Fig.4.53 is studied at f = 30GHz. The locations of the observation

and the source (HED) points are at the interface between the air and the upper boundary

of the dielectric layer (z = h = 0). For this structure, since one of the surrounding media

has a dielectric constant greater than the slab, there are no surface waves. The results of
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Figure 4.52: Spatial domain Green’s function for the vector potential of the geometry shown
in Fig. 4.50, for different values of κ. The circles are the result of 3-level DCIM.

numerical integration, and the 3-level DCIM are plotted below in Figs.4.54 and 4.55 below.

During the 3-level DCIM, as in the previous cases, VECT-FIT is run and 2 surface wave-

like (cylindrical waves) poles are obtained for the GA
xx and 4 surface wave-like (cylindrical

waves) poles are obtained for the Gq
x between k0 and kmax =

√
4k0 = 2k0. The values of the

pole locations and the corresponding residues are tabulated below in Table 4.2. For this case

the following parameters are used for the 3-level DCIM: T01 = 100, T02 = 200 and T03 = 99,

Figure 4.53: Geometry of the example: A slab between 2 different semi-infinite dielectric
materials.



Chapter 4: Approximation of Spatial Domain Green’s Functions 100

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k
0
ρ

|G
A xx

|

 

 

Numerical Integration

3 level DCIM

Cylindrical Wave Contribution

3 level DCIM (without Cyl. Wave subtraction)

Figure 4.54: Magnitude of vector potential of the geometry in Fig.4.53 at f = 30GHz.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
4

10
6

10
8

10
10

10
12

10
14

10
16

k
0
ρ

|G
q x|

 

 

Numerical Integration

3 level DCIM

Cylindrical Wave Contribution

3 level DCIM (without Cyl. Wave subtraction)

Figure 4.55: Magnitude of scalar potential of the geometry in Fig.4.53 at f = 30GHz.
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number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3 respectively. The number

of exponentials used are N1 = 3, N2 = 3 and N3 = 8 for vector potential and N1 = 3,

N2 = 3 and N3 = 6 for scalar potential Green’s functions.In Figs.4.54 and 4.55, also the

results obtained by 3-level DCIM, without subtracting the cylindrical wave contributions

are plotted. For this case the following parameters are used: T01 = 100, T02 = 200 and

T03 = 99, number of samples are 50, 100 and 100 for Cap1, Cap2 and Cap3 respectively. The

number of exponentials used are N1 = 3, N2 = 9 and N3 = 6 for vector potential and

N1 = 3, N2 = 8 and N3 = 5 for scalar potential Green’s functions.

GA
xx Gq

x

Pole location Residue Pole location Residue

(1.3493-j0.0127)k0 1.75 × 10−2 + j5.15 × 10−3 (1.3497 − j0.0126)k0 9.30× 10−3 + j3.52 × 10−3

(1.1433-j0.0510)k0 7.47 × 10−2 + j1.88 × 10−2 (1.3493 − j0.0308)k0 −3.49 × 10−3 − j4.04 × 10−3

(1.1910 − j0.1101)k0 −7.20 × 10−3 − j5.11 × 10−3

(1.1435 − j0.0507)k0 5.37× 10−2 + j2.16 × 10−2

Table 4.2: Pole-residue pairs obtained by VECT-FIT for the geometry shown in 4.53 at
f = 30GHz.

The surface-wave like behavior is the result of the leaky wave nature of the structure [6].

Since the frequency is high, (in other words, the thickness of the slab is high compared to

the wavelength) the contribution of the branch point of region−1 is suppressed by the leaky

waves, therefore, capturing only the branch point contribution of region−3 is sufficient to

approximate the spatial domain Green’s functions for this case.
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4.3.12 3-level DCIM error: A slab between two different semi-infinite dielectrics, at low

frequency

The geometry seen in Fig.4.53 is studied at f = 1GHz. The locations of the observation

and the source (HED) points are at the interface between the air and the upper boundary

of the dielectric layer (z = h = 0). For this structure, since one of the surrounding media

has a dielectric constant greater than the slab, there are no surface waves. The results of

numerical integration, and the 3-level DCIM are plotted below in Figs.4.56 and 4.57 below.

For this example, VECT-FIT could not find any poles between k0 and kmax = 2k0 values

for both the GA
xx and Gq

x cases. In the 3-level DCIM, the following parameters are used:

T01 = 100, T02 = 200 and T03 = 99, number of samples are 50, 100 and 100 for Cap1, Cap2

and Cap3 respectively. The number of exponentials used are N1 = 3, N2 = 3 and N3 = 4

for vector potential and N1 = 3, N2 = 3 and N3 = 4 for scalar potential Green’s functions.

As can be seen, the results obtained by the 3-level DCIM has errors, since it is not

capable of capturing the second branch point. The only contribution captured is the branch

point of region−1. Therefore, since there are no leaky wave contributions for this example

and therefore both of the branch point contributions needed to be captured, the 3-level

DCIM does not work for these kind of structures.
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Figure 4.56: Magnitude of vector potential of the geometry in Fig.4.53 at f = 1GHz.
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Figure 4.57: Magnitude of scalar potential of the geometry in Fig.4.53 at f = 1GHz.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis, field and potential Green’s functions of layered media were obtained for

layered structures that contain RHMs, LHMs and metals by numerical integration and a

modified approximation technique: 3-level DCIM. It was seen that the 3-level DCIM can

solve the problematic cases of the original 2-level DCIM, as well as geometries those include

LHMs. The results obtained by the 3-level DCIM were verified with the results obtained

by numerical integration.

The study started with the general derivation of Green’s functions for unbounded general

and layered media. Then, to be able to solve the geometries that contain LHMs, the

physical and analytical concepts of LHMs were investigated with a special emphasis on the

singularities that cannot be seen in ordinary layered media, i.e. layered media containing

only RHMs. At that stage, two new concepts: critical and threshold thicknesses, were

presented to obtain a guideline for the possible locations of the singularities of such layered

structures.

In the second part of the thesis, the original 2-level DCIM was analyzed in detail, and

the problems of the method were discussed. The mostly pronounced problem of the original

DCIM, i.e. lack of capturing the branch point contribution, was solved by the modified

3-level DCIM. It was shown both analytically and numerically that the contribution of the

branch point can be captured by the 3-level DCIM, and as the result, the spectral domain

Green’s functions of the structures containing lossy slabs and structures with no surface

wave poles can be approximated with great accuracy, both in near and far-field regions,

which cannot be done by using the original 2-level approximation. Since the locations of the

singularities may vary in layered media that contain LHMs, several 3-level DCIM versions

were introduced to handle all kinds materials with arbitrary constitutive parameters and

thicknesses. Several numerical examples of spatial domain Green’s functions were presented,

and it was shown that the results obtained by numerical integration and the 3-level DCIM
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are in very good agreement.

Even though the 3-level DCIM gives very good results in a variety of different cases, it

cannot approximate the Green’s functions of layered media with two different branch points,

when the thicknesses of the slabs are small compared to wavelength. This problem can be

solved by using both of the branch points in the approximation. To be able to achieve this,

the paths of approximation need to be redefined carefully to capture the contributions of

the branch points, by using the correct value of wave numbers, which is the future work for

this study.
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Appendix A

GENERALIZED PENCIL OF FUNCTION ALGORITHM

The generalized pencil of function algorithm (GPOF) is used in Chapter 2 and 4. In

Chapter 2, it is used to determine the direct term of the series which is used to accelerate

the convergence of Sommerfeld integration tails. In Chapter 4, it is used to approximate the

spectral domain Green’s functions by a set complex exponentials. Since the method plays

an important role in the applications, it is given as an appendix here.

Consider an EM transient signal which can be approximated as follows:

yk =

M∑

i=1

bi · esiδtk k = 0, 1, 2, ...N − 1 (A.1)

where bi are the complex residues, si are the complex poles and σt is the sampling interval.

In order to find the poles, one can use the following algorithm [41,83]:

1. Construct the following matrices:

Y1 = [y0,y1, ...,yL−1] (A.2)

Y2 = [y1,y2, ...,yL] (A.3)

(A.4)

where

yi = [yi, yi+1, ..., yi+N−L−1]
T (A.5)

and L is the pencil parameter and its choice is around L = N/2.

2. Find the Z matrix as follows:

V D−1UH = SV D(Y1) (A.6)

V ← [V ]M×M

U ← [U ]M×M

D ← [D]M×M

Z = D−1UHY2V (A.7)



Appendix A: Generalized Pencil of Function Algorithm 107

where SV D and H are the singular value decomposition and the complex conjugate

transpose of a matrix respectively. The number of exponentials to be used to approx-

imate the data, M , is decided according to the singular values of matrix Y1.

3. The poles of the system are obtained as:

si =
log zi

δt
i = 1, 2, 3, ...,M (A.8)

where zi’s are the eigenvalues of the Z matrix evaluated in step 2.

4. The residues are found from the least-squares solution of the following system:











1 1 ... 1

z1 z2 ... zM

...
...

...
...

zN−1
1 zN−1

2 ... zN−1
M














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

b1
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bM








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=


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

y1

y2
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yM











(A.9)

For the sake of completeness, the following MATLAB function, which implements the

GPOF algorithm, is also given here.
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% This Matlab script file approximates a given

% function with complex exponentials by using

% the Generalized Pencil of Function (GPOF)

% in the following form:

% f(t)=B(1)*exp(e(1)*Dt*t) + B(2)*exp(e(2)*Dt*t) + ... + B(M)*exp(e(M)*Dt*t)

% Input arguments:

% f: Samples pf the function which is going

% to be approximated

% tol: tolerance value for the number of exponentials. Singular values

% with greater normalized magnitude are included.

% Output arguments

% e: Array containing the complex poles

% B: Array containing the complex residues

% M: Number of exponentials

function[e,B,M]=gpof_mod2fig(f,tol)

N=length(f);

G=f(1:N);

L=floor(N/2);

start=cputime;

% Construct the information vectors

for i=1:L

Y1(:,i)=G(i:i+N-L-1);

end;

%

for i=1:L

Y2(:,i)=G(i+1:i+N-L);

end;

% Apply the singular value decomposition to Y1.

[U,D,V]=svd(Y1);

count=0;

for ii=1:length(D(1,:))
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if abs(D(ii,ii))/abs(D(1,1))>tol

count=count+1;

else

break;

end

end

M=count;

DD=D(1:M,1:M); %since D is already a diagonal matrix

UU=U(:,1:M);

VV=V(:,1:M);

% Find the complex poles

Z=inv(DD)*UU’*Y2*VV;

z=eig(Z);

e=log(z);

for i=1:N

for k=1:M

ZZ(i,k)=z(k)^(i-1);

end;

end;

% Find the complex residues.

if M==0

B=0;

else

B=ZZ\diag(diag(G));

end

%

% Find the total cpu time.

%

approxtime=cputime-start;

% Construct the approximated function fapprox

for k=1:N
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fapprox(k,1)=0.0;

for i=1:M

fapprox(k,1)=fapprox(k)+B(i)*exp(e(i)*(k-1));

end;

end;

error=norm(diag(diag(G))-fapprox);

% Plot the original function and the approximated functions

figure;

plot(real(fapprox),’r+’);

hold on

plot(real(G));

xlabel(’Data points’);

ylabel(’magnitude of the functions’);

legend(’magnitude of approximated function’,’Real part of original function’);
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Appendix B

PLANE WAVE SOLVER TOOL FOR LAYERED MEDIA

In Chapter 3, a number of propagation pattern results in layered media are shown. A

code that calculates the amplitude transfer function in each layer, given in (2.63), is used to

obtain these results. The amplitude of the incident field, i.e. the amplitude of the up-going

wave in the source region, A+
i , is set to a complex quantity with the magnitude of 1. By

adding phase to this quantity, a propagation pattern on a plane or a movie on a line is

obtained. This code, written in MATLAB, is given below.

function kk=field_plotter(theta,f,E,M,D,polarization,mag_check,...

...geom_check,movie_check,z,x,zres,xres,movframe)

% theta: incident angle (degrees)

% f: frequency of operation (Hz.)

% E: permittivity of each layer, starting with the incident layer (unitless)

% M: permeability of each layer, starting with the incident layer (unitless)

% D: thickness of each layer (m.)

% polarization: 1: TE, 2: TM

% mag_check: 1: real part, 2: imaginary part, 3: absolute value of the solution

% geom_check: 1: only line, 2: only surface

% movie_check: 0: no movie, 1: only line movie

% z: thickness of the first and last layers (m.) (must be positive)

% x: thickness in x direction (m.) (must be positive)

% zres: resolution in z direction

% xres: resolution in x direction

% movframe: total movie frames

%%% Aytac Alparslan 7 Apr. 2008

%%%% allocation of the layers

h=0;
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midlayerthick=sum(D);

zstart=-(midlayerthick+z(2));

if length(z)==2

zend=z(1);

elseif length(z)==1

zend=z;

else

error(’Please check the thickness values of the first and last layers’);

end

zgeom=linspace(zstart,zend,zres);

xgeom=linspace(0,abs(x),xres);

%%% physical parameters

if polarization==2 %% interchange the values to handle TM polarization

Ex=M; M=E; E=Ex; clear Ex;

end

c0=3e8;

kk=sqrt(E(1)*M(1))*2*pi*f/c0;

if real(E(1))<0 && real(M(1))<0

lhstart=-1;

elseif real(E(1))>0 && real(M(1))>0

lhstart=1;

else

error(’No field can propagate in the first layer’);

end

teta=theta*pi/180;

kkx=sin(teta)*kk;

xph=abs(x)*kkx;

N=length(E);

%%% the solution generator

if geom_check==1 && movie_check==0

phase=0;
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elseif geom_check==1 && movie_check==1

phase=-lhstart.*linspace(0,2*pi,movframe);

elseif geom_check==2

phase=lhstart.*linspace(0,xph,xres);

else

error(’Please choose the geometry to show the solution...’);

end

fprintf(’Generating solution file...\n’);

tic

for kkk=1:length(phase)

for ii=1:length(zgeom)

kk(kkk,length(zgeom)-ii+1)=fieldfun2(theta,N,f,E,M,D,zgeom(ii),h,phase(kkk));

end

end

toc

if mag_check==1

kk_plot=real(kk); pl_term=’Real part ’;

elseif mag_check==2

kk_plot=imag(kk); pl_term=’Imaginary part ’;

elseif mag_check==3

kk_plot=abs(kk); pl_term=’Magnitude ’;

else

error(’Please choose what kind of result is needed...’);

end

%%%the plotter

maxval=max(max(kk_plot)); minval=min(min(kk_plot));

zgeom=zgeom-z(1)+z(2);

if geom_check==1 && movie_check==0

plot(zgeom,kk_plot);

axis([min(zgeom) max(zgeom) minval maxval]);

title([pl_term ’of the solution’]);
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xlabel(’Z (m.)’);

line([h h],[minval maxval],’LineStyle’,’--’,’LineWidth’,2);

hh=0;

for kl=length(D):-1:1

hh=hh-D(kl);

line([hh hh],[minval maxval],’LineStyle’,’--’,’LineWidth’,2);

end

elseif geom_check==1 && movie_check==1

while 1

for ii=1:length(phase)

plot(zgeom,kk_plot(ii,:));

axis([min(zgeom) max(zgeom) minval maxval]);

title([pl_term ’of the solution’]);

xlabel(’Z (m.)’);

line([h h],[minval maxval],’LineStyle’,’--’,’LineWidth’,2);

hh=0;

for kl=length(D):-1:1

hh=hh-D(kl);

line([hh hh],[minval maxval],’LineStyle’,’--’,’LineWidth’,2);

end

pause(0.1);

end

end

elseif geom_check==2

[Z,X]=meshgrid(zgeom,xgeom);

hold on;

%surfc(X,Z,kk_plot,’LineStyle’,’none’); %surface

contourf(X,Z,kk_plot,linspace(minval,maxval,50),’LineStyle’,’none’); %contour

axis equal;

axis ([min(xgeom) max(xgeom) min(zgeom) max(zgeom)]);

xlabel(’X (m.)’); ylabel(’Z (m.)’);
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title([pl_term ’of the solution’]);

colorbar;

line([0 x],[h h],’LineStyle’,’--’,’LineWidth’,2);

hh=0;

for kl=length(D):-1:1

hh=hh-D(kl);

line([0 x],[hh hh],’LineStyle’,’--’,’LineWidth’,2);

end

end

return;

%%%the solver

function fieldE=fieldfun2(theta,N,f,E,M,D,Z,h,phase)

% generated by E. Pinar Karabulut

teta=theta*pi/180; %angle of incidence in radian

c=3e8; %speed of light

DD=[D 0];

freq=f;

w=2*pi*freq; %angular frequency

% propogation constants of the layers

n=sqrt(E.*M); % refractive index of each layer

for klm=1:length(E)

if real(E(klm))<0 & real(M(klm))<0 %is the layer lhm?

n(klm)=-n(klm); signer(klm)=1;

else

signer(klm)=0;

end

end

k=n.*w/c;%propagation constant of each layer

ki=k(1,1); kix=ki*sin(teta);

kz=sqrt(((w*n./c).^2)-kix^2);

for klm=1:length(kz)
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if imag(kz(klm))>0

kz(klm)=-kz(klm);

end

end

for klm=1:length(kz)

if signer(klm)==1 & real(kz(klm))>0

kz(klm)=-kz(klm); %if lhm, change the wave vector

end

end

% fresnel reflections

tt=1;

for t=2:N

R(tt)=(M(t)*kz(t-1)-M(t-1)*kz(t))/(M(t)*kz(t-1)+M(t-1)*kz(t));%TE

tt=tt+1;

end

T=R+1;

Rinv=-R;

Tinv=Rinv+1;

% GRC

GRC=zeros(1,N);

%%% eps=-0.99 mu=-0.99 means pec

if E(N)==-0.99 & M(N)==-0.99

GRC(N-1)=-1;

else

GRC(N-1)=R(N-1);

end

GRC(N)=0;

A=zeros(1,N);

A(1)=1*exp(-j*phase); %up-going wave’s amplitude in source layer.

dist11=h+cumsum([0 D]);

dist1=dist11;
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zz=Z;

for t=N-2:-1:1

GRC(t)=R(t)+(T(t)*Tinv(t)*GRC(t+1)*exp(-j*kz(t+1)*2*DD(t))/...

...(1+GRC(t+1)*R(t)*exp(-j*kz(t+1)*2*DD(t))));

end

% Amplitude Transfer function and corresponding fields

dd=-dist1;

for t=1:N-1

A(t+1)=(A(t)*(T(t)*exp(-j*kz(t)*dist1(t))/(1+GRC(t+1)*R(t)...

...*exp(-j*kz(t+1)*2*DD(t)))))*exp(j*kz(t+1)*dist1(t));

if zz>=dd(t)

fieldE=A(t)*(exp(j*kz(t)*zz)+GRC(t)*exp(-j*kz(t)*zz)...

...*exp(-j*kz(t)*2*dist1(t)));

break

else

fieldE=A(N)*exp(j*kz(N)*zz);

end

end

return;

As an example, to obtain the pattern in Fig.3.3.b, the following input must be given:

kk=field_plotter(45,1e9,[1 -2-0.2j 1],[1 -1.5-0.2j 1],...

...[0.6],1,1,2,0,[0.6 0.6],1,70,70,0);

To see the movie of the propagation of waves on a lie for the same geometry, the following

input must be given:

kk=field_plotter(45,1e9,[1 -2-0.2j 1],[1 -1.5-0.2j 1],...

...[0.6],1,1,1,1,[0.6 0.6],1,70,70,0);

The code with the graphical user interface can be obtained from aytac@ieee.org.
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Appendix C

VECTOR FITTING ALGORITHM

C.1 The VECT-FIT Algorithm

The vector fitting algorithm was first proposed in power delivery and systems community

[79]. It is then applied to EM problems to approximate the spectral domain Green’s func-

tions in terms of rational functions [28,30].

The method is capable of fitting rational functions to the frequency response of systems

of the form:

f(s) ≈
N∑

n=1

cn

s− an
+ d + sh (C.1)

In (C.1), note that the constants d and/or h can be zero depending on whether the system is

strictly proper, proper or improper. If the system is strictly proper, i.e. order(numerator) =

order(denominator) − 1, both of the coefficients would be zero. If the system is proper,

i.e. order(numerator) = order(denominator), only h would be zero and if the system is

improper, i.e. order(numerator) = order(denominator) + 1, both of the coefficients would

be non-zero. In the derivation below, the system is assumed to be improper as it is the

most general case. The vect-fit algorithm solves the problem of approximation of frequency

responses of linear systems in 2 stages as follows [79]: 1. Pole identification Consider the

rational approximation given in (C.1). Consider a set of starting poles ān and multiply f(s)

by an unknown function σ(s) which gives the following augmented problem:




σ(s)f(s)

σ(s)



 =





∑N
n=1

cn

s−ān
+ d + sh

∑N
n=1

c̃n

s−ān
+ 1



 (C.2)

In (C.2), note that the poles of the rational approximation og σ(s) and f(s)σ(s) has the

same pole locations. Multiplying the second row of (C.2) gives the following relation:

(σ(s)f(s))fit ≈ σfitf(s)

N∑

n=1

cn

s− ān
+ d + sh ≈

(
N∑

n=1

c̃n

s− ān
+ 1

)

f(s) (C.3)
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At a given frequency point, sk, (C.3) can be written as a matrix equation as follows:

Akx = bk (C.4)

where

Ak =
[

1
sk−a1

... 1
sk−aN

1 sk
−f (sk )
sk−a1

... −f (sk )
sk−aN

]

x = [c1 ... cN d h c̃1 ... c̃N ]T , bk = f (sk ) (C.5)

In (C.5), Ak and x are row and column vectors respectively. By writing (C.4) at a set of

frequency points, s1...sM , a linear matrix equation is formed as:

Ax = b (C.6)

where the unknowns cn, c̄n, h and d are the elements of x.

When the two sum of partial fractions in (C.3) are written as a fraction, the following

relation is obtained:

(σf)fit (s) = h
ΠN+1

n=1 (s− zn)

ΠN
n=1(s− ān)

, σfit(s) =
ΠN

n=1(s− z̄n)

ΠN
n=1(s − ān)

(C.7)

from (C.7), f(s) can be written as:

f(s) = h
ΠN+1

n=1 (s− zn)

ΠN
n=1(s− z̄n)

(C.8)

As seen in (C.7) and (C.8), the zeros of σ(s) becomes the poles of f(s). Therefore by

calculating the zeros of σfit(s), one can get a set of poles for fitting the original function

f(s). To determine the zeros of σfit(s) consider the following linear system:

Y (s) = σfit(s)U(s) (C.9)

where σfit(s) is written in the form of sum of partial fractions in the second row of (C.2).

The state-space realization of this system is:

ẋ = A′x + B′u

y = C ′x + D′u (C.10)

where

A′ = diag(ā1...āN )

B′ = [1...1]T

C ′ = [c̃1...c̃N ]

D′ = 1 (C.11)
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Interchanging the input and output gives the state space realization of inverse of σfit(s) as

follows:,

ẋ =
(
A′ −B′D′−1C ′

)
+ B′D′−1u

u = −D′−1C ′x + D′−1y (C.12)

From (C.12), the inverse of σfit(s), i.e. 1/σfit(s), is given by:

U =
(
−D′−1C ′(sI − (A′ −B′D′−1C ′))−1B′D′−1 + D′−1)

)
Y (C.13)

The zeros of the function σfit(s), are given by the eigenvalues of the matrix A′−B′C ′, where

the elements A′, B′ and C ′ are given in (C.11). The reason for this fact is clear in (C.13): The

denominator of 1/σfit(s), i.e. the zeros of σfit(s), comes from (sI − (A′ − B′D′−1C ′))−1,

which is equal to eigenvalues of sI − (A′ − B′C ′) (since D′ = D′−1 = 1). 2. Residue

Identification Step 1 of vect-fit algorithm is done in an iterative fashion, until a convergence

is reached. After a convergence is obtained, the residues of the fractions are found as the

solution of the following equation:

Ax = b (C.14)

where kth row of the matrix A, the vector x and the kth element of vector b are given as:

Ak =
[

1
sk−a1

... 1
sk−aN

1 sk

]

x = [c1 ... cN d h]T , bk = f (sk ) (C.15)

Together with the poles obtained in Step 1, the solution of (C.15) gives a rational function

fitting shown in (C.1).

C.2 Modifying the VECT-FIT Algorithm for extracting poles of Green’s func-

tions

In the discussion above, the poles are extracted in the form given in (C.1). In the case of

extracting poles of Green’s functions, which corresponds to the poles of surface waves which

are cylindrical waves, the following integral identity is used to obtain the spatial domain

Green’s functions from spectral domain Green’s functions:

∫ ∞

−∞

1

k2
ρ − k2

ρp

H
(2)
0 (kρρ)kρdkρ = −jπH

(2)
0 (kρpρ) (C.16)
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where kρp is the pole of Green’s function in spectral domain. As seen in (C.16), the poles

of the Green’s function must be extracted in the form:

g(kρ) ≈
N∑

n=1

cn

k2
ρ − k2

ρp,n

(C.17)

To use the vector fitting algorithm for this purpose, following changes are applied to the

original vector fitting algorithm:

1. The system is assumed to be strictly proper in quadratic sense, i.e. order(numerator) =

order(denominator) − 2. This step is crucial, since both of the coefficients h and d

given in (C.1) must be zero to apply the integral identity to the result of the fitting.

The changes made in the original vector fitting algorithm are:

Ak =
[

1
s2
k
−a2

1
... 1

s2
k
−a2

N

−f(sk)
s2
k
−a2

1
... −f(sk)

s2
k
−a2

N

]

(C.18)

x = [c1 ... cN c̃1 ... c̃N ]T

2. The imaginary parts of the poles must be negative to ensure that the fields defined by

the RHS of (C.16) obey causality and radiation conditions, i.e. they must vanish at

infinity. In the original vect-fit algorithm, the poles and corresponding residues come

in complex conjugate pairs. In the case of extracting the poles of Green’s functions,

the pole locations are enforced have negative imaginary parts with the corresponding

residues as discussed in [28].

By using the changes given above, the surface wave poles of the Green’s functions can

be found by the VECT-FIT algorithm. For this purpose, a set of rational functions of the

form shown in (C.17) is fitted to the spectral-domain Green’s functions on the line shown

in Fig.C.1. After the fitting, a set of rational functions are obtained as follows:

G̃

j2kzi
=

N1∑

n=1

c1,n

k2
ρ − k2

ρp1,n

+

N2∑

n=1

c2,n

k2
ρ − k2

ρp2,n

where Re(kρp1,n) ∈ [k0, kmax] (C.19)

As seen in (C.19), the set of poles kρp1,n have a real part between k0 and kmax. Since the

real parts of surface wave poles of a layered structure lies in this region, the set kρp1,n with

c1,n makes a pole-residue pair which are used to extract the surface wave singularities from

the spectral domain Green’s functions as follows:

F̃ (kρ) = G̃−
N1∑

n=1

c1,n

k2
ρ − k2

ρp1,n

2jkzie
jkzi|z| (C.20)
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Figure C.1: The path on which the vect-fit algorithm is used to extract poles of the spectral-
domain Green’s functions.

By applying DCIM to the remaining spectral-domain Green’s functions, F̃ (kρ) in (C.20),

an improved DCIM is obtained which can approximate spatial-domain Green’s functions

by a set of point (exponentials obtained by DCIM) and line (rational functions obtained by

vect-fit) sources as:

G(ρ) =

M∑

i=1

a1,i
e−jkir1,i

4πεir1,i
− j

4εi

N1∑

n=1

c1,nH
(2)
0 (kρp1,nρ) (C.21)

It must be noted that the derivation above is done under the assumption that all the regions

of the layered medium are RHMs. By changing the bounds of the possible SWP locations,

the SWPs and SPPs can also be captured by using the VECT-FIT algorithm. For sake of

completeness a MATLAB code of VECT-FIT is given here.

function [poles,residues,conver,checker]=vectfitem2(f,s,poles,...

...residues_old,count,checker,tol)

%inputs:

%f: data samples

%s: sampling points

%residues_old: residues from the previous iteration

%count: current number of iteration (for statistical purpose)

%checker: error term from the previous iteration (for statistical purpose)

%tol: tolerance for stop

%outputs:

%poles: poles obtained
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%residues: residues obtained

%conver: convergence variable

%checker: error term of the current iteration (for statistical purpose)

Np=size(f);

Npole=length(poles);

A=[]; b=[];

[k,l]=size(poles);

if k==1

poles=poles;

elseif l==1

poles=poles’;

else

error(’Please check the initial pole locations’);

end

if Np(1)<Np(2)

f=f’;

s=s’;

elseif Np(1)>Np(2)

f=f;

s=s;

else

error(’Please check f vector’);

end

Np=size(f);

for kk=1:Np(1)

Adum=[];

for M=1:Np(2)

K1=1./(s(kk,M)^2-poles); K2=-K1.*f(kk,M);

K=[K1 K2]; Adum=[Adum;K];

end

A=[A;Adum]; b=[b f(kk,:)];
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end

b=b.’;

for col=1:length(A(1,:));

Escale(col)=norm(A(:,col),2);

A(:,col)=A(:,col)./Escale(col);

end

x=A\b; x=x./Escale.’;

for N=1:length(poles)

Ahat(N,N)=poles(N).^2;

end

C=[]; C(1:Npole,1)=x(1:Npole,1);

C(1:Npole,2)=x(Npole+1:2*Npole,1);

C=C.’;

for N=1:length(poles)

Ahat(N,N)=poles(N);

end

newpoleident=norm(poles);

Hhat=Ahat-ones(length(C(2,:)),1)*C(2,:);

oldresident=abs(sum(residues_old));

poles=eig(Hhat);

poles=poles.’;

%%%determination of residues

clear A K1 K2 K;

A=[];

for kk=1:Np(1)

Adum=[];

for M=1:Np(2)

K1=1./(s(kk,M).^2-poles);

Adum=[Adum;K1];

end

A=[A;Adum];
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end

residues=A\b;

newresident=abs(sum(residues));

checker(count)=abs(newresident-oldresident)/max(abs(residues));

if checker(count)>tol

conver=0;

else

conver=1;

end

The original version of the vect-fit algorithm can be downloaded from the webpage of

the author of [79]: http://www.energy.sintef.no/Produkt/VECTFIT/MENU.htm
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