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ABSTRACT

In the last two decades, the idea of an emerging and evolving language has been studied

thoroughly. The main question behind this kind of studies is how a group of humans reaches

an agreement on the phonology, lexicon and syntax. The improvements in computational

tools led the researchers build and test models that have been ran computer simulations to

answer the question. Although the models are mere reflections of the reality, the results

have been often useful and insightful. This dissertation follows the same line and proposes

a new model, tested in a game based simulation methodology. Besides, this work tries to fill

the gap in the studies of lexicon compositionality and proposes a plausible explanation for

the transition from single word naming to multi word naming. The direction of the results

is in line with the previous research such as the emergence of a stable and communicative

language. Moreover compositionality in lexicon is observed with a very simple bag of words

syntax. The parameters influencing the results are analyzed in depth. Even though the

model does not meet the standards of the real world, future work hints insightful facts

about the transition from single word naming to syntax.
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ÖZETÇE

Bir dilin hiç bir öncülü olmadan ortaya çıkması ve evrim geçirmesi bilimadamlarınca son

20 yıldır detaylıca araştırıldı. Bu araştırmaların arkasındaki esas soru ise bir grup insanın

nasıl olup da ortak bir ses sistemi, kelime haznesi ve dilbilgisi üzerinde uzlaşması ve bu

uzlaşmaya göre iletişim kurması oldu. Gelişen hesaplama teknikleri ve bilgisayar araçları

sayesinde bu soruya cevap olabilecek sistemleri bilgisayarlarında modelleyip sonuçlarını al-

abildiler. Bu mezuniyet tezi de bu araştırma çizgisi dahilinde yeni bir model önermektedir.

Bu yeni modelin cevaplamak istediği soru ise, tek kelimelik dillerden, çok kelimeli dillere

geçişin nasıl gerekleştiğidir. Sonuçlar, tutarlı ve düzenli bir dil ortaya çıkması açısından

önceki sonuçları desteklemektedir. Yeni bir sonuç olarak da anlamlı parçalardan oluşan çok

kelimeli ve basit bir dilbilgisine sahip olan bir dil ortaya çıkmıştır. Tezde ayrıca bahsedilen

sonuca etki eden parametreler incelenmiştir. Model ve deneyler olgunlaşmamış ve ba-

sit gerçeklemeler olmalarına rağmen, geliştirilmeleri durumunda tek kelimeden dilbilgisine

geçişin nasıl olduğu konusunda daha fazla bilgi ve öngörü verebilecektir.
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Chapter 1

INTRODUCTION

Language is usually called as the hardest problem in understanding the human mind. Al-

though humans are not the only animals on earth to use a communication system such as

language, it can be claimed that the human language is far most the most complex of all.

There have been many attempts to teach other animals such as apes (Gardner and Gardner,

1969; Savage-Rumbaugh, 1985) or dolphins (Pack and Herman, 2004; Heidi, 2008) language.

If we compare such animals’ acquisition of language, which requires a lot of effort both on

the teaching and on the learning side, with a two year old human’s, which occurs with-

out explicit teaching, it will be obvious that human mind achieves it in a very completely

different way.

The question of ”how a human mind solves the problem of acquiring a natural language”

still lacks a full, comprehensive answer, despite many explanations since the times of the

ancient Greece. The answer is the beyond of the scope of the thesis, too. In spite of this

frustration in science in the last five decades, many cognitive phenomena behind the lan-

guage skill have been revealed. Many findings such as the identification of the critical age in

language acquisition and the discoveries in bilingualism, child language, cognitive linguistics

have helped us have a grasp in understanding how human mind solves the language puzzle.

The studies on language caused two main debates. First of them is nativist vs non-

nativist. Second one is gradual language evolution vs jumps in language evolution. As the

focus of the thesis is not addressing both discussions in detail, they will only be mentioned

shortly.

The former debate can be summarized around the question of ”Is language pre-wired,

innate or is it by product of other cognitive skills?”. The nativist fraction, initialized by

Chomsky with his famous book, ’Aspects of the theory of syntax’ (Chomsky, 1965), argues

that a great deal of linguistic abilities of humans is innate. Chomsky claims that there is
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a language acquisition device (LAD) in human mind that has been evolving through ages.

Others argue that general cognitive abilities are sufficient for linguistic skills to emerge

and specialized LAD is not necessary (Tomasello, 1985). The debate is far from a conclu-

sion; however it is obvious that both explanations have some useful insights, in addition to

drawbacks.

Latter discussion’s main domain is the path from the animal signals to the modern human

language. The main obstacle before discussing this issue is that language evolution did not

leave any fossils behind so that we can figure out the path it followed. Despite the lack

of physical evidence we can still propose some theories and test those theories. Bickerton

argues that there is a protolanguage stage before getting to fully developed human language

therefore there should be a sudden jump (Bickerton, 1998). On the other hand, Jackendoff

offers an explanation of a gradual trajectory of language evolution. Maynard-Smith and

Szathmary argue for a gradual evolution in terms of evolutionary biology (Maynard Smith

and Szathmry, 2000).

What can this thesis and similar language model simulations offer to these two crucial

debates in linguistics? It should be noted that, even though the language defined in those

simulations is not identical to a natural language, it is usually a plausible model of it. First of

all by these plausible models, language evolution experiments give powerful insights on the

requirements for a language to emerge. These requirements may be cognitive, environmental

or input based. Such conclusions apparently help answering the question of innateness.

Also the type of the required cognitive abilities may be an important clue, i.e. whether it

is specifically language related or not. Secondly by changing the settings, such as input,

meaning space, environment, we can have useful insights about the possible trajectories of

language evolution. For instance, there have been many studies that offered various paths

for that trajectory.

The language evolution studies can be separated based on their methodology. Some

of them uses anthropologic and sociolinguistic methodologies (Davidson, 2003; Comrie and

Kuteva, 2004), some use purely mathematical approaches (Nowak et al., 2000; Ferrer and

Sole, 2003) and there are various computational studies to explain the trajectory of language

evolution (Kirby, 2007; Kirby and Brighton, 2006). More details of the language evolution

studies will be explained in the next section.
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Besides the broad range of the language evolution studies, this thesis has a more specific

concentration: the compositionality of the lexicon with simple bag of words syntax. This

syntax contains only one predicate, which is the ’and’ operator. In order to observe the

concentrated field, the thesis follows a methodology of language game based models. The

language game based model can be categorized specifically as a multi word naming game

(MNG), although it is more generalizable than previous examples of MNG whose domain

was the color. MNG simulations are discussed in Section 2 in detail. On the composition-

ality issue besides MNG simulations which are interested in intra generational evolution of

language, Kirby (Kirby, 2007; Kirby and Brighton, 2006) and Batali (Batali, 1998a) have

also some research differing from MNG simulation in both methodology and approach. In

Kirby, the approach is inter generational as he uses the framework of Iterated Learning

Framework, which is discussed in the next sections. In Batali, the set of meanings is pre-

determined and the work aims to find out if the signals get decomposed into sub parts, to

infer the meaning by the neural networks.

The outline of the thesis is the following. The language evolution simulations are dis-

cussed in Chapter 2 in depth. In Chapter 3, the proposed new model is explained in

detail. In Chapter 4, four experiments and their results are presented. The first of these

experiments demonstrates the base result of this thesis. The other experiments modify some

of the parameters to see their effect on compositionality. Lastly Chapter 5 includes the

comparison of this study with the previous work and evaluates the dissertation.
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Chapter 2

LANGUAGE EVOLUTION SIMULATIONS

Before computational methods were employed, the studies on language evolution relied

on the intuition of their authors and were hard to falsify. Therefore there were many studies

from various fields such as archeology and anthropology, and most of them were hard to be

both proved and disproved. However computational approaches enabled researchers to build

a model, which is supposed to be realistic and plausible, and test the model in computational

simulations. Therefore the theory can be practically tested.

This section discusses the previous work in the following outline. Firstly the previous

work is categorized by their focus and methodology briefly in Section 2.1. In Section 2.2,

the previous work is compared and contrasted by discussing specifics of the design and

approaches in the components of the simulations.

2.1 Categorization of language evolution simulations

The categorization of language evolution simulations can take into account either the focus

of the study or its methodology. These two classes of the studies are briefly mentioned in

the following sections. The details of their approach and design is compared and contrasted

in the Section 2.2, because it is easier to compare the approaches by observing the effects

of specific changes in the components of the simulations.

2.1.1 Language evolution simulations by their focus

Language evolution simulations can be classified based on their focus as the following.

• Innate LAD (Yamauchi, 2001; Turkel, 2002)

• Phonetics (de Boer, 2001, 2002; MacNeilage and Studdert-Kennedy, 1984)

• Lexicon (Hurford, 1989; Vogt, 2000; Steels and Kaplan, 1998; steels and Kaplan, 2002;

Pefors, 2000)



Chapter 2: Language evolution simulations 5

• Concepts and prototypes (Steels, 1996; de Jong, 2000; Belpaeme, 2002; Laskowski,

2006)

• Syntax (Kirby, 2001, 1999; Briscoe, 2002)

• Compositionality (Kirby, 2007; Smith et al., 2003; Neubauer, 2004)

2.1.2 Language evolution simulations by their methodology

The main method of language evolution simulations is known as agent based modeling

(Steels, 1997). This kind of modeling tries to analyze the behavior of agents which are

programmed at a very fine grained level (Steels, 1997). While these agents are participating

in local interactions, global properties may emerge.

In agent based simulations, in particular, the agents, which have internal cognitive capac-

ities such as memory and learning schemes, are the common element. In some experiments

those capacities do change throughout the simulation to model genetic evolution (MacLen-

nan, 1992; Briscoe, 1997). Another common element is the environment which is defined

by a meaning space, with which signals are associated. On the other hand, there are some

differences in the parameters of various simulations. For instance in some simulations the

population size is not fixed, i.e. there is an outflux and an influx (MacLennan, 1992; de Boer,

1997; Hutchins and Hazlehurst, 1995; Kirby, 2000, 1999). The linguistic interaction between

agents is often defined differently in different experiments. In Steelstype experiments, the

interaction is language games. In Batali (Batali, 1998a) and Kirby (Kirby, 2007; Kirby and

Brighton, 2006), the interaction is through neural networks.

The latest publications indicated that the language evolution studies are using two main

methodology, which is language game models and Iterated Learning framework.

Language game models

The model which is implemented for this dissertation is a language game models (Steels,

1996). The language games are formalized interactions between agents of the population

(Looveren, 2005). The task of the agents in language games is two fold. If the agent is the

speaker, its task is to describe accurately the referent ,topic, in a context which is in the
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environment. If the agent is the hearer, its task is to identify the referent correctly, by using

the linguistic cue, signals, i.e. the utterance.

The language games initiate as the following, two agents, a hearer and a speaker, are

chosen from the population. The speaker selects a topic. The type of the topic depends on

the design of the simulation. In some simulations the topic is an event (Steels) or an object

identified with a feature vector (Steels, 1996). Then the speaker sends a signal, or a set of

signals, to describe the topic. The hearer receives the signal, interprets it and points the

topic with a non linguistic cue. The speaker agrees or not, by pointing the topic which he

meant to speak about. This iteration of a kind of game is repeated by many times within

the population. Some researchers opt to reproduce a new set of agents, by crossing over the

fit and older genotypes.

At the end of the simulation, the model is evaluated by various evaluation measures

which will be discussed in the following sections.

Besides the common elements of the language game models presented above, there are

some variations in those models. These variations, which is discussed in Section 2.2, are

made for specific purposes e.g. to analyze different variables or to create a more realistic

mode.

Iterated Learning Framework (ILF)

As Kirby and Hurford (Smith et al., 2003) proposed in their work, they aimed not only to

explain phenomena such as the emergence of compositionality but also to create a frame-

work in which language evolution simulations can be run. This framework has four main

components; meaning space, signal space, learning agents, teaching agents. Meaning and

signal spaces may vary based on the environment, such as random or structured. Between

those two spaces, teaching agents use a language based on their hypothesis of the language.

Later on learning agents are trained by the utterances of the teaching agents. After train-

ing phase, learning agents end up with their own hypothesis over the meaning-signal pairs.

Then the teaching agents are removed from the simulations. This iteration is repeated for

more than thousand times, so that language is stabilized. First iteration is different then

the others; first users of the language i.e. first generation teachers, use random pairings.

There are a few things to be mentioned about the work of Smith et al (Smith et al.,
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2003). In his work there is no horizontal cultural transmission. However there are studies

which use ILF and focus on intra generational cultural transmission (Batali, 1998a) or the

communicative function of language (Smith, 2002).

Besides the work of Smith et al. there are also other studies that focus on composi-

tionality and syntax. Batali showed that compositionality emerges as agents hypothesize

meaning-signal pairs. In his study meanings are predetermined and discrete valued (Batali,

1998a).

2.2 General framework of the simulations

This section identifies the simulations’ main components and concepts on which it compares

the previous studies are based.

2.2.1 Signal space

Signal space is the form of the communication in language games. Signal space may contain

one or multiple word utterances. Although some studies, that implement multiple word

utterances, include a syntax, the latter section does not contain the discussion of syntax

studies. Because this study do not focus on syntax. In some cases all the elements of the

signal space are determined beforehand, i.e. the lexicon is given to the agents before the

experiment starts.

One word

One of the first language evolution simulations which is created by Hurford, uses one word

length signal space (Hurford, 1989). His experiment attempts to explain the children’s

language acquisition strategies. Another one word signal space example belongs to Yanco

and Stein (Yanco and Stein, 1993). In their case the lexicon is determined beforehand and

the robots are expected to acquire their meanings. MacLennan did comparable studies

(MacLennan, 1992). Cangelosi and Parisi (Cangelosi and Parisi, 1996) analyzed the emer-

gence of warning signals, e.g. an agent signals ”it is poisonous”, when it warns the others

about a mushroom in the environment. In their model which does not impose the agents

to signal, the genetic variability of the agents resulted in their choice of altruistic signaling.

So that the emergence of communication can be monitored. In general it is observed that
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the early examples of the language simulations employed simple one word length lexicon.

One of the reasons behind is the fact that they generally tried to address the role of the

communication, rather than the role and the emergence of language in particular.

The later experiments followed the previous ones which focused on the emergence of

the lexicon, so that the agents are imposed to signal and the lexicon is not determined

previously. De Jong and Steels produced important examples of those experiments. In their

experiments, the agents use one word length utterances to describe a topic in a context.

The experiments conclude with a coherent lexicon.

Another variant of this type of experiments includes stochasticity. This is done by letting

agents to misunderstand the word that they receive or by mutating their lexicon randomly

(steels and Kaplan, 2002). De jong and Steels (de Jong, 2000; Steels, 1996) employ this

variant differently, as sometimes the agents in their experiment do not pick the most optimal

signal in their repository. The agents use a probabilistic model over all signals and picks a

signal based on the signal’s probability.

The language games in these experiments are referred as ”simple naming game” (Loov-

eren, 2005). They exhibit a very simple structure of communication, exchanging one signal

at a time.

Multi words without syntax

The difference between the single word games and multi word games is that the signal

received by the agent can be decomposed into smaller parts all of which are associated

with different meanings out of the meaning space (Meaning space is described in detail in

the following section.). In many studies this property is called as compositionality (Vogt,

2000). However in the literature there is an unsettled discussion about compositionality and

syntax as (Looveren, 2005) points out in his PhD thesis. Many authors refer those terms

interchangeably. Syntax combines compositional parts via syntactical rules. As it will be

discussed in later section, multi word games utilize a very small subset of syntactical space,

which is simply the ’and’ predicate. This structure is an example of an uncomplicated

syntax, such studies are not so useful in terms of the the explanation of syntax emergence.

Thus I would prefer to differentiate this sort of research from the other syntax research and

include it in the research of lexicon.
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There are a few studies on multi word language games. First of them belonging to

Crumpton, similar to MacLennan’s work, which is discussed in the previous section (Crump-

ton, 1994). In his experiment the agent sends a signal, does an action or opts to do nothing,

after receiving the signal from the sending agent. The lexicon and the set of actions are

fixed for the agents, thus the task can be reduced to acquiring the associations between

actions and signals. Crumpton implemented two symbol signals but he concluded that such

enhancements were not successful.

Another study involving a multi signal scheme belongs to Neubauer (Neubauer, 2004).

In his work, the lexicon of interacting agents converge on a common lexicon while describing

colors which they perceive through three different color channels. Agents structure cate-

gories of colors and relate them to words. Moreover the agents are able to generalize some

of the subcategories to a broader category. For instance, if the third channel is commonly

below 0.5 for all the colors, subcategories of 0−0.2 and 0.2−0.5 are merged to a generalized

category of ”below 0.5”. After common categories and a lexicon to describe those categories

emerge, agents use a bag of words, contains three words to describe a color composed of

three channels. There is a key conclusion about compositionality in his work. Neubauer

(Neubauer, 2004) states that multi word structure emerges only if the environment is struc-

tured i.e. the meanings in the environment exhibit a regularity. This is in line with Kirby’s

findings (Kirby, 2007) in which it is concluded that the compositionality in the experiment

only emerges when the meaning space is structured not random. Further details of the

study are not given here as it doesn’t use language game model.

A key issue in multi word games is the problem of word boundaries. This question has

also been studied by language acquisition researchers, in real life. 8 month old infants can

correctly identify the beginning and the ending of the words by using the statistical infor-

mation (Saffran, 1996). Therefore in an experiment it is usually assumed that the parsing

of the signals into smaller elements is innate for the agents. Removing this assumption

is not a difficult task. Parsing can be done by simply searching the lexicon for possible

parses. However there are two drawbacks for this simple method. The first one is possible

ambiguities. Secondly, the signal will be perceived as non decomposable, if the lexicon does

not contain the sub parts of the whole signal. As a result the agent does not learn the

sub parts of the signal (Looveren, 2005). If the experiment includes a complicated syntax,
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parsing takes place within the model, thus parsing problem is solved.

2.2.2 Meaning space

The meaning space refers to the set of meanings to be expressed. The choice of a meaning

space is based on two criteria. Firstly the focus of the experiment is important, e.g. if the

case is compositionality, meaning space is tuned between being structured vs unstructured

(Kirby, 2007; Laskowski, 2006). Second criterion for the choice of a meaning space is its

relation to the real world, i.e. more realistic representations are used dominantly in time.

For instance the continuous meaning space is frequently chosed in the designs than discrete

meaning space.

One of the common assumptions about the meanings is that the perception of a meaning

is innate and universal. It is innate because all the agents in the simulations are assumed to

perceive the environment. It is universal because their perception is identical. For instance

the color or the size perception is the same among the agents.

Discrete meaning space

The earliest examples of language evolution simulations included discrete meaning spaces.

The first example of them, which is also mentioned in the previous section, belongs to

Hurford. The meanings, in his case the concepts, are discrete, fixed and shared (Hurford,

1989). Also the studies that focus on syntax and compositionality make use of atomic

meanings in order to simplify the semantical side of the issue (Kirby, 2007).

The model of Steels (Steels, 1996) proposes a different meaning representation; a discrete

valued vector. As a result the potentially expressed meaning space is still finite but not

predefined. The meaning vector contains features with corresponding discrete values.

Continuous meaning space

With a continuous meaning space, the categorization -or discretization, of the meanings

is left to agents. This change has two important benefits for the study. It overrides the

assumption of discrete meanings, which has already been unrealistic. Secondly, letting the

agents to come up with their own internal representation of meanings, such as quantization
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or categorization, makes agents ore human like (Laskowski, 2006). Besides, the overall result

is less predictable as interaction plays a bigger role.

One of the first examples of continuous meaning representation is proposed by Steels

(Steels, 1996). In his work, the feature values are continuous. The agents have to divide the

meanings into subparts. This division algorithm within each agent is innate and universal

for the simulation. This algorithm, which is called discrimination trees, tries to achieve to

distinguish objects by using the divisions in the meaning space. Smith (Smith et al., 2003)

also used a similar model in which he defines non linguistic communication differently.

Another line of research which makes use of continuous meaning spectrum is prototype

based models. Vogt (Vogt, 2000), by using robots, implemented prototypes which are cate-

gorical points in the meaning space. In this case, categorization is based on the prototypes,

which represent the structured meaning space best. In similar works, the categorization is

still discrete. It is discrete because a topic is either a member of a category or not. More-

over, a topic can not be a member of multiple categories. In order to tackle this, Belpaeme

(Belpaeme, 2002) proposed another model including graded membership and overlapping

categories. His model represents colors only. The recent example of prototype based models

belongs to Laskowski, in which he also tried to tackle the discretization problem (Laskowski,

2006).

2.2.3 Topic

In language game models, topic refers to the subject of the language game. If the subject is

correctly guessed by the hearer in a language game, the communication ends with success.

The topic is an important variant in the simulations.

In the experiments of Steels, topic is a physical object which is defined by a feature

vector (Steels, 1996). In Smith’s work (Smith et al., 2003) topic is also an object, this time

the values of the feature vector are continuous. In Kirby’s study on compositionality of

language space, the topics are also objects which are defined by short feature vectors filled

with discrete values (Kirby, 2007). In the Talking Heads (Steels, 1996) and in the work of

Vogt (Vogt, 2000),the objects are physically grounded objects, such as a green square on

a whiteboard and the agents are also robots. All of the mentioned experiments contain a

finite object set.
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In comparison with the experiments that center the emergence of lexicon, the experi-

ments on syntax require more complex topics. In work of the Kirby (Kirby, 1999) the topic

is a whole sentence, as one of the issues is the evolution of word order in languages. In

the study of emergence of the cases, which is conducted by Steels, the topic is the relation

between actions and objects (Steels). In Belpaeme’s work, the topic is the color (Belpaeme,

2002).

2.2.4 Context

In language games, context refers to the set of objects which is available for the agents,

while communicating. The context can contain either all of the possible topics, e.g. when

they are finite, or just a portion of it.

In the works of Steels and Smith, the context contains random, finite, pre-generated ob-

jects. In Steels’ experiments the context is fixed through out the simulation. In some studies

context is not random to analyze the effect of the context. In Kirby’s work (Kirby, 2007)

context is an important variable. The topics in the context are structured/unstructured and

with high/low density. He concluded that compositionality emerges in the structured con-

texts. In line with Kirby, Webb found that structured context has significant consequences

(Webb, 2005). In prototype based models, the context is structured and finite in order to

infer clusters in feature/meaning space (Laskowski, 2006).

Last issue to mention about context is the bottleneck effects. The limited context causes

a bottleneck effect to form a expressivity and regularity in the language. Although it is not

referred as context, in ILF context corresponds to the set of meanings. In such studies, the

agents are prompted by a set of meanings and they produce a language, based on their

hypothesis (Details of ILF is given in Section 2.1.2).

2.2.5 Non linguistic communication

The necessity of non linguistic communication roots from the real life phenomena called as

joint attention. In language acquisition of children, joint attention plays an important role.

It serves the purpose of agreement on the topic (or object) between the speakers. In child

learning, it takes place by pointing or gazing. This ability in children begins to appear very

early. Although this ability reduces the uncertainty in real life communication, it can not
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resolve the uncertainty. There is still ambiguity to some extent, e.g. when the parent points

to a dog, does he refer to its ear, legs or color?

In language game models, there are two ways to model this fact. First solution is to

model gazing or pointing, as if the referrer refers the whole body of the referent which

becomes the topic. This interaction is noiseless, i.e. the hearer correctly interprets the

referent. Second option is noisy non linguistic communication. The referrer ambiguously

points to the referent which may be one of the topics. Although the former is the most

frequent choice of design, the latter is also used in some studies (de Jong and Steels, 2003;

Steels and Kaplan, 1998).

2.2.6 Population and social network

The simulation contains agents in an environment. The speaker and the hearer are chosen

among the agents. This choice creates a degree of freedom. In many cases, pairing the agents

is done randomly. Although in some studies social network is not random and structured

(Ke, 2004; Coupe, 2004). In order to resemble real life human groups, clusters are generated.

Inter cluster interaction is set to a low level whereas intra cluster interaction is set to a high

level. This way, different linguistic properties such as bilingualism (Castello et al., 2008)

emerge within different clusters.

2.2.7 Genetic variation

Genetic variation refers to the cognitive abilities of the agents in the next generation. Not

all the simulations implement genetic variation. For instance, the simulations in which

the population size is fixed, genetic variation does not exist. In Briscoe, the offspring

obtains the grammar of her parents, after a series of crossover or mutation (Briscoe, 1997).

In MacLannan, the agent shares her parents’ signal-action table entries with a crossover

(MacLennan, 1992).

2.2.8 Evaluation measures

The termination of a simulation is determined based on the number of the language games

or on the simulation’s behavior (Laskowski, 2006). However ending simulations either way

is not sufficient to conclude the experiment, therefore evaluation techniques are needed
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to compare different experiments, find out the trajectory and observe the behavior of the

evolution in the experiments.

Communicative success

Communicative success is the most primitive measure in language evolution experiments. It

shows how well the agents are doing in communicating. In numbers, it is simply the ratio of

the successful game count to the number of all games. The timing of the measurement may

vary; the measure can be cumulative or instantaneous. In the former, perfect communication

score is not be expected, although in the latter the stable languages score hundred percent.

Communicative success is necessary in explaining the result of the experiment however it is

not sufficient. For example a population may communicate well, but this doesn’t indicate

anything about the cognitive structure of the agents and the specifics of the language such

as lexicon and syntax.

In some studies fitness score is used instead of the communicative success (Steels, 1997).

Nevertheless some researchers devised their own fitness score definitions. Perfors defines

fitness as the number of correct replacements of the unknowns in the agent’s table, in which

association of the meanings and signals are kept (Pefors, 2000). The definition of fitness

score in Oliphant is similar to the definition of communicative success. Kirby tells in (S.,

1996) that Oliphant’s definition is more formalized.

Lexical coherence

Lexical coherence measures the agreement between the lexicons of the agents among popu-

lation. This measurement is calculated by comparing the lexicons of the agents (Looveren,

2005). High values of lexical coherence do not always indicate stability and communicative

success; e.g. the agents of the population may utter the same word for every topic yet they

do not communicate at all (Looveren, 2005).

Compositionality

The compositionality measure which is proposed by (Smith et al., 2003) is ”the degree of

correlation between the distance between pairs of meanings and the distance between the

corresponding pairs of signals”. This correlation is calculated by taking all possible meaning
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pairs into account 〈mi,mj〉 such that i6=j and their corresponding signals 〈si, sj〉. Then

the distance between those pairs are calculated and the correlation between 4mij ,4sij is

computed.

Lexicon size

Lexicon size of agents in different models is compared for issues of compositionality and

efficiency. If the lexicon size is small and the model is stable at the end of the simulation,

then the agents can express more, relative to the number of topics in the environment

(Looveren, 2005). Intuitively it is obvious that relatively low lexicon size is a candidate for

high expressivity and compositionality.
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Chapter 3

A NEW SIMULATION

This thesis proposes a new language game simulation in this chapter and experiments

with the model. The experiments and their results are in the Chapter 4. Having told the

related work in this field in Chapter 2, this section first tells the motive behind this new

simulation in Section 3.1, and outlines the simulation then specifies the details of it in

Section 3.3. Lastly, the chapter concludes with a short discussion of the model in Section

3.4.

3.1 The Motive

This thesis proposes a new model to tackle the following questions.

• Can compositionality emerge without a complex syntax but with a simple bag of words

rule, through a language game based simulation?

• Can such a compositionality fill the transition between one word naming to multiple

word naming?

• What are the effects and pressures on the emergence of such compositionality?

The methodology to answer these questions is the following.

1. Design a language game, take into account: compositionality and realization

2. Design a language game based model -simulation, in which the language game is

played between agents Define measures (metrics) to measure compositionality

3. Run the simulation with the defined parameters

4. Observe if the simulation converges to a communicative population with a composi-

tional language
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5. See the effects and pressures on compositionality by changing the parameters

3.2 The story of the simulation

The simulation tries to realize the interacting agents. The agents live in an environment

which contains not only the agents but also a set of objects. The agents’ only activity is a

language game which is as the following. A randomly determined agent sees an object and

says some words to describe it. Then another randomly determined agent hears the words

and tries to guess the object that the speaking agent talked about. When he decides on an

object, he points the object to the speaking agent. If the object is the one that the speaker

described, the speaking agent nods to tell that the other agent is right. If the object is not

the one that the speaker described, the speaking agent shakes his head to tell that the other

agent mistook. The game ends and another game starts somewhere in the environment.

At the end of the simulations, the agents are either good at communicating with oth-

ers about the objects or they still fail to do so although they did plenty exercise on the

game. Besides their success in communication, the size and structure of their vocabulary

are evaluated.

3.3 The realization of the simulation

The previous section gave a rough outline of the simulation. This section will discuss the

details to implement the story that was told.

3.3.1 The objects and the context

The objects are represented as a vector that contains discrete valued (0 or 1) n features. It

is obvious that discrete values are insufficient realizations because the real world is as con-

tinuous as our perception. However this simplification in this simulation helps us decrease

the complexity and focus on the questions of compositionality and lexicon, by assuming

that the representation problem is solved. With such an assumption, the task becomes

simpler, although it leaves out the possibility of a combined solution for language evolution

and discretization. A different approach, which is not implemented in this study, is using a

continuous feature space and incorporating discretization within the learning methods.
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Figure 3.1: An agent picks an object out of all objects

Figure 3.2: The agent says some words to describe the object

Figure 3.3: Failed game: Another agent hears the words and guesses the object, but the
speaking agent shakes his head as the hearer picked the wrong object

Figure 3.4: Successful game: Another agent hears the words and guesses the object. The
speaking agent nods as the hearer picked the correct object
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The context is all the objects in the environment. The objects are randomly generated

n-tuple vectors. All the objects in the environment are distinct. All the agents can see all

the objects at any time.

3.3.2 The words and the word bag

At the beginning the lexicon of the agents is empty. Every agent utters a random bag of

words after seeing an object for the first time, in order to initiate a lexicon. The random

words which are 5 characters long build their lexicon. Throughout the simulations the

meanings of the words evolve. Some of the words may become extinct.

A speaking agent produces a bag of words to describe an object to the hearing agent.

The word bag has a length limit. The speaking agent fills the word bag with words one by

one. All of the words in the word bag have to be distinct. However the agent may stop

putting a new word before reaching the length limit, if the agent does not have any optimal

words left in its lexicon. In this case the speaking agent puts the ’null’ word into the word

bag. The exception of the ’null’ word is, the word bag can contain more than one ’null’

word, whereas other words can not be repeated. This exception makes the real length of the

word bag a variable, which is between 0 and the limit, because ’null’ word is not actually a

word. At last, the speaking agent says the words in the word bag, without a specific order.

3.3.3 The agents

The agents have two capabilities and a dynamic memory all of which are identical and

innate. These traits do not change over time, e.g. size of the memory does not increase

or decrease. First capability is describing an object, second one is guessing the described

object. The structure of the memory and the capabilities are described in the later sections

in detail.

The memory

The memory of the agents contains the history of the games that the agent takes part in.

The agent has a limited memory capacity. If the memory reaches that limit, the oldest

game in the memory is deleted in order to free space.

The agents remember the following information about the games.
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• The object that is used in the game and the object’s feature vector

• The word bag that describes the object

• The result of the game (success or failure)

An example of a memory is shown in the Table 3.1.

Game Number The feature vector Result of the game The word-bag

1 10001 0 W1W2W3

2 11101 1 W2W1null

3 11001 1 W7W6W4

4 10001 1 W1nullW5

Table 3.1: The memory of an agent after 4 games. The game requires 3 words. The objects
have 5 discrete features.

The speaking agent

The available inputs for the speaking agent to describe the object are the object itself, the

context and its memory. The desired output is a bag of words. The algorithm proposed for

an agent to play the role of speaking agent is given in Table 3.2.

This learning table is given to the decision tree algorithm, specifically to an ID3 (Quinlan,

1986), as the training set. The learning table is built by the contents of the memory and its

rows contain the information of object of the game, result of the game and the corresponding

word that is told to describe the object. Every game has k words in the word bag, thus it

is included in the learning table by k rows. If the memory contains the information of n

past games, then the learning table has n ∗ k rows. The input columns of the learning table

are the feature of the object and the result of the game. The output column contains the

word which described the object in the game. Table 3.3 is a learning table example, which

belongs to the agent whose memory is given in Table 3.1. In this example k equals to 3

and n equals to 4, therefore the learning table contains 12 instances to train ID3.
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1. Pick an object randomly

2. If the object has never been seen, say a random bag of words and go to 8

3. Build a learning table and train a decision tree with the learning table

4. Classify the picked object and find a corresponding word by using the trained decision

tree

5. Unless the word is the ”null” word, exclude the word temporarily from the memory

till the end of the game

6. Unless the word bag is full, go to 3

7. Tell the contents of the word bag without a specific order.

8. See what the hearing agent pointed, and with a non linguistic cue, tell him if he is

right or wrong.

Table 3.2: The algorithm of the speaking agent role

In step 4, after training phase, in order to produce a word bag, ID3 classifies an instance.

An example of the instance is shown in Table 3.4, where the object, that the agent picked

in step 1, has the feature vector of 10101. Besides the feature vector, classified instance

contains the field of the game result. The result of the game in the classified instance

does not vary, and is always set to 1. The reason behind this choice is that the classified

instance needs to be closer to the instances of the successful games. This design choice can

be criticized by claiming that the field of game result would be redundant if the learning

table contained only successful games. In such a case the learning table would be empty till

a game ends successfully. However with the current algorithm, the agent is able to produce

an output, even if he never succeeded in a game.

After ID3 gives an output, for instance w2, the algorithm reaches step 5 If the bag of

word is full, the agent says the its contents. If it is not, the algorithm goes back to step 3,
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Input Input Output

Object Features Result of the game Word

10001 0 W1

10001 0 W2

10001 0 W3

11101 1 W2

11101 1 W1

11101 1 null

11001 1 W7

11001 1 W6

11001 1 W4

10001 1 W1

10001 1 null

10001 1 W5

Table 3.3: The learning table, the input for the decision tree algorithm

and creates another learning table. The new learning table does not contain the instances

whose output is contained by the accumulated word bag. The reason behind this exclusion

is preventing the agent to put a word into the bag more than once. The exception of this

rule is the ’null’ word. The ’null’ word is not excluded from the learning table.

In step 7, the speaker has a full bag of words. The speaking agent utters the words in

the bag with no specific order. The motive for not keeping the order, by which the words

are accumulated, is to break any structural pattern that may be caused by the ordering of

the words. As a result, it is ensured that the words in the bag are only connected by the

’and’ operator and the order of words does not play any role.

In step 8 the speaking agent tells the hearer that he is right or wrong depending on the

object that the hearer pointed. The speaker remembers this actual result of the game.
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Input Input Output

Object Features Result of the game Word

10101 1 ?

Table 3.4: The instance to be classified by ID3

The hearing agent

When the agent is the hearer in the game, his task is determining that object that is

described by the speaker. The framework of the algorithm for guessing is similar to the

framework of speaking algorithm. However the details of the steps differ. The algorithm

for the hearing agent is given in Table 3.5.

1. Take the word bag that is told by the speaking agent as input

2. Build a learning table and train the decision tree with the learning table

3. Classify the word bag, and find the object, to which the word bag refers, by using the

decision tree

4. Tell the speaking agent the object with a non linguistic cue

5. Observe the non linguistic expression of the speaker to see if the game is successful or

not

Table 3.5: The algorithm of the hearing agent role

The available pieces of information for the hearing agent are its memory and the word

bag, which is told by the speaker. In step 2, the hearing agent builds a learning table from

its memory. This learning table, which is different from the learning table of the speaking

algorithm, contains the previous games’ word bags and the results of the games as the input

columns. The only output column contains the references to the objects. The number of

rows in the learning table equals to the game count of the memory. The Table 3.6 shows
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an example of such a learning table. The learning table belongs to the agent whose memory

is shown in Table 3.1. In this example the length of the word bag is limited to 3 and the

objects have 5 features. Trained ID3 by the learning table, finalizes Step 2.

Input Input Input Input Output

1stWord 2ndWord 3rdWord Result of the game Object

W1 W2 W3 0 O1

W2 W1 null 1 O2

W7 W6 W4 1 O3

W1 null W5 1 O4

Table 3.6: The learning table that is built by the hearer

In step 3, ID3 classifies the instance which contains the word bag that is heard and the

result of the game as the input fields. The result of the game is set to 1 due the reason

explained in Section 3.3.3. Table 3.3.3 is an instance example to be classified by the trained

ID3. In this example the word bag, that is heard, contains the words: W3, W1 , W5.

Input Input Input Input Output

1stWord 2ndWord 3rdWord Result of the game Word

W3 W1 W5 1 ?

Table 3.7: The instance to be classified by the trained ID3

The classification result is an internal, non linguistic reference to an object. The agent

points the object to the speaker. In step 5 he observes the expression of the speaker to see

if the game ends with a communicative success or not. The agent remembers the game with

this actual result.

3.3.4 Parameters, evaluation and experiments

The experiments are designed to observe the effects of the parameters on the evaluation

measures. The parameters are as the following.
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• The length of the word bag

• The number of objects in the environment

• The number of objects in the context

• The length of the feature vector

• The agent’s memory capacity

• The population size

Some of these parameters are dependent, e.g. the object count depends on the feature

count, because the latter is limited by the former. Bearing these dependencies in mind, the

parameters will vary in different runs of the simulations. In the experiments, the following

evaluations will be done.

• The communicative success

• The compositionality measure proposed in (Kirby, 2002)

• The compositionality measure proposed in this dissertation (it will be referred as the

second measure of compositionality)

Communicative success is the average communicating score between all agent pairs. The

communicating score between a pair of agents is retrieved over all objects in the context.

As mentioned in part 2.2.8, there are two different ways of measuring the communicative

success. First one is cumulative, which computes the overall score for the whole simulation

and second one is instantaneous, which computes the communicative success of the popu-

lation at a given time. By using the first way of measuring, the value can almost never be

calculated as 1.0, due to the failures in the games at the early stages. However it converges

to 1.0, in a perfectly communicating population. On the other hand, instantaneous mea-

sure is better to analyze the trajectory of the simulations, because the measured values are

comparable through the simulation.
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The compositionality of a language can be measured by the method in (Kirby, 2002),

which is described in the Section 2.2.8. However this measure has to be modified for this sim-

ulation. Because the original definition includes the distance between two signals, whereas

in this study there are word bags instead of signals. As this definition is incompatible with

the word bags, the distance between two word bags needs to be defined. For this simulation

the following distance measure is proposed. Suppose that si and sj are a pair of word bags

and contain the words 〈wi1, wi2, wi3〉 and 〈wj1, wj2, wj3〉 respectively. The distance between

the word bags are
√

length(wordbag)− size(containedij), where containedij is the inter-

section set of si and sj . The other definitions in the Section 2.2.8 are kept unchanged.

Lastly the measured compositionality values of all the agents are averaged.

Second compositionality measure that is proposed by this thesis is: compositional−word−count
lexicon−size .

The compositional word count is the number of distinct words that are contained by all si

and sj word bag pairs, where the word bags are told by the agent for two different objects

i and j.

3.4 Discussion of the model

There are two issues which need to be discussed. First issue is the compatibility of the model

with the cognitive aspects. This issue is observable in two points, first of them is the learning

schemes and the second point is the guessing algorithm. In the model, learning schemes

of the speaker and the hearer include different algorithms. The algorithms differ not only

by their functionalities, which are inherently different, but also by their details in learning.

For instance, their learning tables are totally different. On the other hand it may be argued

that humans do both tasks of speaking and guessing, in a similar manner and use the same

learning scheme. Second point is that hearing agent guesses without knowing explicitly

what words mean, whereas a human would determine the described object by assessing

the meanings of the words. Although there are some intuitions behind the argument of

incompatibility, this model is a possible explanation of the emergence of a compositional

lexicon, because how human mind solves the problem is still an open question.

Second issue is the ’null’ word. The reason behind such a design decision is releasing

the pressure on the speaking agent to speak, in case that there are no optimal words left.

Moreover the exception of the ’null’ word creates a degree of freedom in the length of the
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word bag (see Section 3.3.2 for details.) Although the iteration of putting a word into the

word bag is done until the length limit is reached, the count of non null words may not be

equal to the length limit. As a result, the agents may end up using a varying length of word

bags. The length of a word bag becomes a variable to study.
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Chapter 4

EXPERIMENTS AND RESULTS

This chapter contains the information on 4 experiments with model presented in Chap-

ter 3. First of these experiments demonstrates the base result of this thesis. Following

experiments modify some of the parameters to see their effect on the evaluation measures.

4.1 Experiment 1: The new model leads to a stable language with high com-

municative success and compositionality

The first experiment is conveyed to test the new model with a set of default options for

stability. The parameters can be seen in Table 4.1.

A run of the experiment starts with an initial state and ends when the communicative

score exceeds 91.0%. To evaluate the experiment, after every 500 games, the communicative

success and the compositionality are measured. In order to decrease the effect of chance, this

run is repeated for 10 times. The instantaneous measured values of each run are averaged.

The evaluations are given in sections 4.1.1 and 4.1.2. Besides the quantitative analysis in

these sections, Section 4.1.3 contains a qualitative analysis of the ID3 representations to

depict the evolution of meanings.

Parameter Value

Agent Count 10

Object Count 10

Length of the feature vector 4

Length of the word bag 5

Memory size 200

Table 4.1: The parameters of the first experiment



Chapter 4: Experiments and results 29

4.1.1 The communicative success

It is observed that, at the end of each run, the agents can communicate about every object

in the context. The communicative success converges to 1.0 as the agents play more games.

The result can be seen in Figure 4.1

Figure 4.1: Measured communicative success, after every 500 games (Standard deviation of
the error < 0.001)

4.1.2 The compositionality

The computed values by using the compositionality measure of Kirby, which is explained in

2.2.8, show that a high compositionality exists even after the first iterations of the game, as

it is seen in Figure 4.2.

If we compare the compositionality of Kirby with the baseline, which is nearly 0 corre-

lation, it is clear that compositionality is high above baseline.

If the second measure of compositionality is used, which is described in 3.3.4, it is clear

that 20 % of the words are used to describe other objects, which signals compositionality.

The result can be seen in Figure 4.4.

4.1.3 The Decision tree, ID3

This section makes a qualitative analysis on compositionality, by depicting an agent’s inter-

nal meaning representation, which is an ID3. The Figure 4.5 shows the state of the ID3,
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Figure 4.2: Kirby’s compositionality measure after each 500 games (Standard deviation of
the error < 0.001)

after 7000 games when the communicative success of the population is 91 % . The size of

the observed agent’s lexicon is 6. This shows that, for this specific experiment, 6 words are

sufficient to describe 4 featured, 10 objects. This is not perfect compositionality, although

it signals compositionality significantly.

4.2 Experiment 2: Compositionality peaks when the number of words equals

to the number of features

Section 4.1 shows that the model leads to compositionality and stability for a given set of

parameters. This experiment tunes one of the parameters, the length of the word bag, in

order to see its effect on compositionality. Fixed parameters are shown in Table 4.2.

Parameter Value

Agent Count 10

Object Count 10

Length of the word bag 5

Memory size 200

Table 4.2: The parameters of the second experiment
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Figure 4.3: Second compositionality measure, computed after each 500 games (Standard
deviation of the error < 0.001)

The length of the word bag is the variable of this experiment. The length of word bag is

incremented by 1 in each run, starting from 1 to 7. All 8 iterations continue till the agents

are communicatively successful.

In this experiment, the number of games needed for a stable language and both compo-

sitionality measures are computed.

The main result of this experiment is that the compositionality peaks when the length

of the word bag equals to the number of features. The values for Kirby’s compositionality

measure are analyzed in Figure 4.6. It is seen that it peaks when the length of the word bag

is 5, which is equal to the number of features. The evidence from the second compositionality

measure is also in line with the result of the first compositionality measure. The graph in

Figure 4.8 contains the values for the second measure. The peak of the graph is when the

length of the word bag is 5.

Another observation about compositionality is the emergence of a holistic language when

the length of the word bag is 1. When the word bag contains only one word, the language

obviously becomes holistic i.e. all the objects are associated with a single word which can

not be decomposed. The first evidence that supports this hypothesis is from the computed

values of Kirby’s compositionality measure. The graph in Figure 4.6 shows the varying

values for compositionality which is at its lowest level when the length of word bag is 1.

Secondly, the graph in Figure 4.8 also shows that, the compositionality is 0, for the first
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Figure 4.4: Lexicon Size with time

value of the length of the word bag. This is an expected result when the language is

completely holistic. Last evidence is a qualitative one. The ID3 in Figure 4.7 belongs to

an agent at an instance when the communicative success is 95 % and the word bag length

is limited to 1. It is seen that the size of the lexicon equals to the number of objects, which

is 10. To sum up, the stable language is holistic, when the length of the word bag is 1.

This experiment is an opportunity to examine and compare two compositionality mea-

sures. First observation is that Kirby’s compositionality measure does not get below 0.63

which is significantly high for a correlation measure. This shows that even holistic lan-

guages score high with Kirby’s compositionality. Thus the values of the measure may not

be significant whereas they are useful for comparison. On the other hand, the second com-

positionality measure gives better results. For instance the measured value is 0, when the

language is on the farthest point from compositionality i.e. the length of the word bag is

1. Thus it is a good candidate for being a better compositionality measure rather than the

measure proposed in (Kirby, 2002).

Last conclusion of the second experiment is derived from the amount of games needed

to reach a stable language. Previously, it is shown that the languages, which have a shorter

word bag in the language game, are merely compositional. On the other hand, less com-

positional languages require fewer games to reach stability in comparison with more com-
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Figure 4.5: State of the ID3 of an agent, when the language is stable, after 7000 games

positional ones. The graph in Figure 4.9 supports this conclusion. This conclusion brings

a trade off between compositionality and effort. Although this thesis does not address this

issue, at least for this simulation, there has to be another pressure on the language to be

more compositional because holistic language requires less effort.

Figure 4.6: Kirby’s compositionality based on the word bag size



Chapter 4: Experiments and results 34

Figure 4.7: The state of ID3 of an agent, when the language is stable and word bag length
is 1

4.3 Experiment 3: Fewer objects in context creates bottleneck effect on com-

positionality

This experiment aims to find out the effect of the number of objects in the context on

compositionality. This effect is observed by running experiments for different numbers of

context objects. The other parameters seen in Table 4.3 are fixed. The variable increments

by 2 from 4 to 16. For each value of the variable, the experiment is run 10 times till the

language reaches stability. After termination, the compositionality measures are computed

and they are averaged to reduce the effect of chance.

The main result of this experiment is that if the context contains fewer objects, the

agents develop a more compositional lexicon according to both compositionality measures.

Trajectory of compositionality for different values of object count is seen in Figure 4.10.

Compositionality is calculated by using both formulas and they are indicated in the same

figure. This conclusion is in line with the previous research on the bottleneck effect. Dif-

ferently from the previous work, the effect on the evolution of compositional lexicon is now

shown.
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Figure 4.8: Second compositionality based on the word bag size

Figure 4.9: The number of games needed for a stable language, variable is the size of the
word bag

4.4 Experiment 4: In the model, the agents reach a reasonable agreement on

the descriptions of the off context objects

This experiment tests the model if the agents produce similar word bags for the non context

objects. The parameters of the experiment are given in Table 4.4. All the parameters other

than the number of objects in the context are fixed. The number of the context objects is

the variable to observe the effect of the bottleneck on developing a language that covers all

possible objects. The number of features is 4, thus the number of possible distinct objects

is 24. The varying number of objects in the context goes from 4 to 14 increased by 2.

The previous experiment shows that, in the runs of simulations, the agents can not

only manage to reach a high communicative success on the context objects but also build

a compositional lexicon. On the other hand, this result does not inform about their com-

municative success if they were tested on the off context objects. This experiment aims to
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Parameter Value

Agent Count 10

Number of features 4

Size of the word bag 4

Memory size 200

Table 4.3: The parameters of the third experiment

Figure 4.10: The compositionality measure for varying the size of the context

analyze their agreement on the word bags that are created for off context objects, after the

language reaches stability.

In order to test the agents on off context objects, a method needs to be devised. This

method should measure how much the agents are in agreement on the descriptions of the

objects. The proposed method measures the agreement between each agent pair and av-

erages the values. The agreement between two agents is computed as the following. Let i

and j be two agents and sio, sjo be a pair of word bags retrieved by asking the agents the

description of all off context objects each of which is denoted by o. The agreement between

a pair of agents becomes the average similarity of the word bag pairs, sio, sjo. The similarity

of two word bags is the ratio of the size of the intersection set to the length of the word bag.

For comparison purposes, the same agreement measure is used with context objects.

Besides, the communicative success of the population is computed.

The chart in Figure 4.11 shows the partial agreement on the descriptions of both context



Chapter 4: Experiments and results 37

Parameter Value

Agent Count 10

Size of the word bag 4

Length of the feature vector 4

Memory size 200

Table 4.4: The parameters of the fourth experiment

and off context objects. The context contains 10 objects and the off context contains 6

objects. X-axis is the total number of games played.

Figure 4.11: The agreement on the descriptions of both context and off context objects.
The context contains 10 objects. (Standard deviation of the error < 0.001)

It is seen in the chart that the agents’ agreement on context objects is rapidly increases.

As a consequence the communicative success among the agents also inclines. At first sight,

the slight improvement in average agreement on off context objects may not seem to be a

promising result. However those objects were never included in the games that the agents

played for many times. Therefore it shouldn’t be surprising that the measure on off context

objects keeps its line at the same level. On the other hand, the level of the line is far from a

random baseline. This means after the language becomes stable, the agents are able to not

only communicate about the context objects perfectly but also communicate about the off
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context objects to random baseline. Random baseline computed with random word bags

out of the lexicon of the agents.

Figure 4.12: The consensus on the descriptions of both context and off context objects. The
context contains 6 objects. (Standard deviation of the error < 0.001)
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Chapter 5

CONCLUSIONS

This section discusses and evaluates the study in the following outline. The section 5.1

discusses the work in comparison with the previous studies. The section 5.2 summarizes

the contribution of this study, with the obtained results. The section 5.3 evaluates the

study and model if the work reaches an expected level for a language evolution simulation.

The section 5.4 gives a basic plan for the future work.

5.1 Comparison with the previous studies

The comparison with previous studies is not straightforward, because some aspects and

parts of this thesis do not have counterparts in other studies. However the results are

comparable to some extent. The comparison made with the previous base results of the

experiment, research of compositionality and other MNG simulations.

Firstly, in line with the past research, this study shows that after an iteration period, a

population of agents reaches to a significant degree of communication when the initial states

of the agents are empty. The previous work also reached this result. Nonetheless final result

does not say much about the trajectory of this convergence on its own. For example the

amount of games needed for stability differs from previous research. As the Section 4

explains, the amount of games needed depends on different parameters. The parameters

that affect the rate of the convergence, behave similarly as they did in the works of (Steels,

1997, 1996; Looveren, 2005). When the parameters, such as the number of agents, objects

and features increase the convergence time also increases.

If this work is compared with the previous work on compositionality, there are impor-

tant differences. First of all, many compositionality research incorporates a complex syntax

(Kirby, 1999, 2000). On the other hand, there are a few studies that focus on compo-

sitionality without syntax similar to this thesis. If those are compared with this thesis,

there are some similarities. The work of Batali, resembles this thesis based on the approach
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(Batali, 1998a). Batali also worked on the association of features with tokens. But his

work was pre-wired e.g. the meaning set was predetermined and the length of the signal

was fixed. The meanings in this thesis are dynamic, and are based on the objects in the

context. There are also differences in methodology, where Batali’s work (Batali, 1998b) is

using trained neural networks and ILF, rather than language game simulations. Kirby’s

work on compositionality of meaning spaces (Kirby, 2007) is also non comparable in some

aspects. His work was inter generational, whereas this thesis focuses on intra generational

evolution of language. Secondly in (Kirby, 2007) the existence of compositional and holistic

languages are assumed before hand to analyze their advantages in the ILF.

Being one of the rare MNG studies, the main contribution of this model to language

evolution is on the field of compositionality without a complex syntax. Such MNG simula-

tions previously showed that compositionality may emerge without a complex syntax. The

only syntactical rule in this study is a word bag, which is sometimes referred as the ’and’

operator (Looveren, 2005). This study, which is line with previous studies, proposes a more

general framework, because in previous MNG simulations the focus is very limited such as

color (Belpaeme, 2002; Neubauer, 2004).

5.2 Contribution

There are three main contributions of this dissertation. First of them is its explanation

for the transition of the language from single words to multiple word chunks. Second

contribution is the results of the experiments on compositional lexicon emergence. Last one

is its methodology.

First and main contribution is that this work offers a transition scenario from single word

languages to multiple word languages. Previous studies proposed plausible explanations

for the emergence of lexicon. In these studies there were no explanations about how the

words get together to express a wider set of meanings. That is why; many studies on the

emergence of syntax have been carried out. The Section 2 contains the detailed literature

review. This work is between syntax and lexicon studies and it offers another account of

explanation which is as the following. This work shows that, with the model proposed here,

the words can combine to form different meanings. Although the model does not explicitly

enforce a rule for combining words, a rule emerges from the learning schemes. This rule is
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a simple ’and’ predicate. The ’and’ predicate is the proposed explanation for the transition

from single word naming to a syntactical language, although it signals a very simplistic

syntax which contains only one rule.

Second class of contributions consists of the results of the experiments. The first exper-

iment demonstrates the base result which is discussed in the previous paragraph. Second

experiment shows that compositionality in the lexicon peaks when the length of the word

bag equals to the feature count. This information theoretical result is significant because it

tells that the agents tend to use compositional words more, if the number of words in their

word bag equals to the feature count. Third experiment observes the known bottleneck

effects, this time they are depicted for compositionality of the lexicon. The conclusion is

that if the agents are shown fewer objects, they tend to have a more compositional lexicon.

Last experiment shows that the agents in the model do not only agree perfectly on the word

bags of the context objects but also agree to a significant extent on word bags of the off

context objects. This conclusion is important because the model leads to agents that have

similar inner representations for meanings.

Last remark about the results has to be made on the cost of compositionality. In the

first experiment it is shown that the compositionality comes with a price of more language

games i.e. more exercise and time. Hypothetically speaking, if there was a pressure of

time and effort on population, compositional language would not emerge. This result is

significant, because, for at least this model, there has to be other tendencies to lead the

language among the agents towards building a compositional lexicon.

In the methodology of the thesis, there are a few new approaches used, although most

aspects of the work resemble previous language game simulations. First of them is using a

machine learning algorithm in the learning schemes of the agents. Second one is the unified

non linguistic and linguistic cognitive aspects of learning.

Although there is plenty of previous work which uses machine learning algorithms such as

neural networks, in the language game models there are not any specific type of algorithms.

At first sight, it may be claimed that replacing these specific algorithms with a ML algorithm

is not a novel approach. This criticism is right to an extent, because based on the results; the

functionality of the algorithm is similar to the previous ones. However using an algorithm

which is well described, conventional, multi purpose and which roots in ML background



Chapter 5: Conclusions 42

has some other benefits. First of all, when the learning framework is transformed to a ML

background, all the tools in this literature such as discretization, quantization, filtering etc.

are available. Secondly when the framework of the learning is standardized, it is easy to

replace the algorithm with another ML algorithm in order to see if the other algorithm can

produce similar or better results. Lastly, using a conventional ML algorithm rather than a

specially tailored algorithm is simpler and more convenient.

Last contribution about the methodology is interesting in terms of the debate on nativism

vs non nativism. In language game models, the learning schemes of the agents contain

algorithms of which discrimination game (Steels, 1996; Looveren, 2005; Vogt, 2000) and

prototypes (Laskowski, 2006) are the examples of. These examples are designed to replace

a non linguistic skill. This skill is distinguishing the objects in the environment with their

discriminating features or categorizing the objects, as in the case of prototype models. It

is obvious that these algorithms are not language related. An important observation about

these algorithms are they the models that root in non nativist camp, because the cognitive

skill used in the language game is non linguistic. Linguistic side of the learning scheme takes

place after the non linguistic algorithm finds the optimal solution e.g. discriminating all the

objects. In other words, the words in the language emerge after meaning representations,

which are produced by non linguistic processes, emerge.

On the other hand the model in the thesis takes a different line, by using an ID3 as the

learning scheme. ID3 tries to find the features that distinguish objects, as the discrimination

algorithm does. Its difference from the discrimination algorithm is that ID3 co-evolves with

the lexicon. The meanings of the words change throughout the simulation. The framework

in which ID3 is used can be claimed neither as non linguistic nor linguistic whereas the

discrimination tree is non linguistic. Therefore this model is closer to the nativist camp.

5.3 Evaluation

A language evolution simulation is evaluated on the basis of its compatibility with the

reality as well as its success in producing a stable result. This thesis achieves the latter aim.

However the success in the former aim needs to be questioned.

First of all, the agents and the structure of the game are close to reality as it is proven by

their survival through plenty of criticism after being implemented in the previous studies.
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On the other hand, the objects and the algorithm that the agents use to do the task may

not seem realistic at first sight.

The assumption of discrete features has been attacked by some studies (Steels, 1996). To

some extent this criticism is right. On the other hand, this assumption is a reasonable choice

in order to simplify the model by which focusing on other issues such as agent capabilities

is possible.

The learning schemes of the agents cause the biggest question mark about the compat-

ibility of the model with the reality. Firstly, the hearing agent only knows the association

of the word to an object reference, without knowing the explicit meaning of that word. On

the other hand, humans seem to have the knowledge of the explicit meanings of the word.

In other words, they can assess the meaning of a word without creating any association to

an object, unlike the hearing agent. Secondly, totally different algorithms of the hearer and

the speaker can be seen as unrealistic, when compared with humans. But it should be noted

that, to do well in the language game, humans may be using different algorithms, too. As it

is not absolutely known how human mind solves the problem this is a possible hypothesis.

5.4 Future work

The future work can move in two important directions. Firstly, a continuous feature space

can be incorporated to the model, instead of a discrete one. In order to achieve this goal

without major changes in the model, discretization algorithms can be a solution for this

transition. However it should be noted that these algorithms are not always successful in

machine learning problems. Therefore it should be tested to see whether such a future work

produces similar results or not.

Second direction is transforming the cognitive skills of the agents to a more realistic

level in order to overcome the problems that are mentioned in the Section 5.3. Similarity

between the agent approach and the human approach to a task, will enlighten more on the

evolution of a natural language.
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During his years at the graduate school, he studied language change, language evolution,

computational and cognitive linguistics. In all the fields he submitted his work to various

conferences.

He enrolled Phd Program in Cognitive and Linguistic Sciences at Brown University in

September, 2008.


