
Statistical Thermodynamics of Residue Fluctuations in 

Native Proteins

by

Osman N. Yogurtcu

A Thesis Submitted to the 

Graduate School of Engineering 

in Partial Fulfillment of the Requirements for 

the Degree of 

Master of Science

in

Computational Science and Engineering

Koc University

August 2008



ii

Koc University 

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Osman N. Yogurtcu

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final 

examining committee have been made.

Committee Members:

Date:

Burak Erman, Prof. (Advisor)

Attila Gürsoy, Assoc. Prof.

Özlem Keskin, Assoc. Prof.



iii

ABSTRACT

We have formulated the statistical thermodynamics of residue fluctuations of native 

proteins at constant temperature and pressure. The underlying assumptions of the two 

elastic network models, the Gaussian Network Model (GNM) and the Anisotropic Network 

Model (ANM) are studied and their limits of validity are discussed. The statistical 

mechanical model adopted allows generalization of the elastic network models. We have 

validated our results by using trajectories obtained from extensive molecular dynamics 

simulations. Analysis of the trajectories shows that the principal axes of the fluctuation 

correlation matrix coincide with the principal axes of the radius of gyration tensor. This 

establishes the connection between residue fluctuations and protein geometry. 
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ÖZETÇE

Tezimizde, proteinlerdeki aminoasitlerin hareketlerinin izobarik ve izotermal ortamdaki 

istatistiksel termodinamiği formüle edildi. Aminoasit hareketliliğini inceleyen iki elastik ağ 

modeli (ENM), Gaussian Ağ Modeli (GNM) ve Anisotropik Ağ Modeli’nin (ANM) 

temelleri bu formülasyon üzerinden incelendi, gerçeğe yakınlıkları tartışıldı. Buradan 

hareketle genelleştirilmiş bir elastik ağ modelinin nasıl olması gerektiği istatistiksel 

mekanik diliyle sunuldu. Sonuçlarımız moleküler dinamik simülasyonları ile doğrulandı. 

Buna ek olarak, proteinlerin, genel olarak, ana salınım ekseni ile ana yapısal ekseninin

çakışık olduğu gözlemlendi ve böylelikle tümel aminoasit hareketleri ile protein geometrisi 

arasında bir bağlantı olduğu gösterilmiş oldu.
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PREFACE

During the course of my Master's thesis studies, I have been many times posed the question 

"What do you research?" This happened so many times that I had to develop an automated 

response to this question which must be clear but striking as well; otherwise, my friendly 

chats would never progress any further. So, often times, my educated answer went like this: 

"I study the functionality of protein fluctuations." This answer saved a lot of my 

conversations. Some even said, "gees, do the proteins fluctuate?" and I replied "oh, sure 

they do."

I lived happily sometime until Prof. Alper Erdogan, being an excellent scientist, asked me 

"What makes the proteins fluctuate? What forces are there?" I was stunned and could not 

answer. It was the time when I realized that I was lacking the most important trait on the 

road to becoming a good scientist and that was perseverently asking the right questions 

(and producing the best answers). I think, experience is the key to success in science –it is 

maybe even more important than in other professions- and I hope I can learn my lessons as 

fast/painless as I could.

Surely, this thesis will not elucidate the hidden secrets of life and livings. However, please 

do consider the amount of work done as a first step in my scientific career (hopefully).

A journey of a thousand miles
begins with a single step.

Chinese Proverb
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Chapter 1

INTRODUCTION

Proteins are chemical compounds which bear crucial importance to the maintenance of 

cell homeostasis and they constitute at least 50% of the dry mass of the cells. They actively 

participate in numerous cellular processes including catalysis of biochemical reactions, cell 

division and motility. Proteins are composed of amino acids. There are 20 standard amino 

acids. The amino acids polymerize by means of peptide bonds and form the proteins 

(Figure 1.1). After peptidization, the amino acids in the protein molecule are called 

residues. 

A protein molecule can be studied in four structural levels. The sequence of residues in 

a protein gives the primary structure. The spatial order of proteins without considering the 

radical (R) groups in amino acids is the secondary structure. The α-helices, β strands and 

turns are of secondary structure. The tertiary structure includes the geometric coordinates 

of all the atoms of a protein. If multi-tertiary structures merge and form a super complex, 

then this complex is called the quaternary structure. Hydrogen bonds, van der Waals, ionic 

and hydrophobic interactions and disulphide bonds play an important role in making the 

tertiary and quaternary structure stable; while; only the hydrogen bonds and hydrophobic 

interactions stabilize the secondary structure (Figure 1.2).
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Figure 1.1: The covalent bond formed between the α-corboxyl and α-amine groups of 

amino acids is called the peptide bond. 1 mole of H2O is released after the formation of the 

peptide bond [1].

Protein molecules are nanoscopic structures and naturally cannot be seen by the naked 

eye. Three dimensional data about the proteins are gathered through elaborate imaging 

techniques, such as X-Ray Crystallography, Nuclear Magnetic Resonance (NMR) 
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Spectroscopy, electron microscopy and Neutron Diffraction. These data are then deposited 

to protein databanks e.g. PDB. A quick recent search on PDB website yielded that the 

longest globular protein (PDB ID: 2uva) has an approximate height of 27 nm and a width 

of 25 nm.

Figure 1.2: Protein structure, from primary to quaternary structure [1]

Proteins are flexible structures: their atoms exhibit fluctuations over time about well 

defined mean positions; and particularly, the backbone covalent bonds have the rotational 

freedom. The complexity of the protein structure can be better understood with the 

Levinthal Paradox according to which, for example, a 100-residue protein can assume 3100

= 5.1047 different conformations (considering the twist and turn of backbone covalent 

bonds). It is this flexibility that paves the way for proteins to perform various biological 

functions, including muscular contraction, cellular transportation.

This thesis has three chapters. In Chapter 2, we present our theoretical approach to 

generalize the elastic network models which provide important insights for understanding 

the flexibility-function relations of proteins. In Chapter 3, we discuss our results.
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Chapter 2

STATISTICAL THERMODYNAMICS OF RESIDUE FLUCTUATIONS IN 

NATIVE PROTEINS

2.1 Introduction

A protein in aqueous solution constitutes a system whose atoms exhibit fluctuations 

over time about well defined mean positions. The aqueous medium forms the reservoir at 

constant temperature and pressure. The magnitude of fluctuations may be large relative to 

atomic radii as indicated by experiment. Fluctuations in atomic coordinates are well 

characterized by experiments [2]. In theory, fluctuations are studied at various levels of 

approximation, ranging from all-atom to coarse-grained scales. Studying the fluctuations of 

the α-carbons, Cα, is a convenient approximation where each successive α-carbon pair is 

connected by a virtual bond of fixed length. In the present study, we adopt this level of 

approximation.

Coarse-grained models of fluctuations started with the important observation that the 

large amplitude fluctuations of the protein G-actin could be described in the harmonic 

approximation by a single parameter only [3]. Based on this simple picture of the elastic 

fluctuations of a protein, the Gaussian Network Model, GNM, was proposed [4,5], 

according to which the Cα’s were assumed analogous to the junctions of an amorphous 

network whose fluctuations were similar to those given in the random amorphous network 

model proposed by Flory [6,7]. As in the random network model, the GNM was based on 
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an isotropic description of residue fluctuations where only the number of neighbors of a 

given residue is important. Another model was then introduced to estimate the directions of 

fluctuations [8,9]. The latter is referred to as the Anisotropic Network Model, ANM. The 

GNM and models that followed it, collectively referred to as the Elastic network Models, 

ENM, are found to provide important insights for understanding the structure-function 

relations of proteins. For this reason, and because of their immediate applicability to all 

kinds of proteins without size restrictions, they found wide use during the past decade [5,8-

43]. In general, these studies and several others that are cited by them, elaborate on 

different levels of approximation of the ENM’s. They try to identify the force constants 

associated with the models, compare the different models, associate the models with NMR 

data, optimize the model parameters over databases, apply the models to drug design 

problems and prediction of binding sites, folding cores, allosteric effects and hot residues. 

In this thesis, we present the statistical thermodynamics of fluctuations in the Cα based 

coarse-grained approximation and investigate the statistical basis of the two elastic network 

models, GNM and ANM. Specifically, we elaborate on their general features and limits of 

validity of the assumptions on which they are based. We validate our statements and 

conclusions by direct comparison with 6-40 ns molecular dynamics trajectories on ten 

different proteins [44].

2.2 Theory

In this section, we present the thermodynamic and statistical basis of fluctuations in 

native proteins. We use the entropy representation for the fundamental relation [45],

                    R,SS VU,        (2.1)
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where S,U,V,R are the mean (thermodynamic) values of the entropy, energy, volume, and 

position vectors of Cα’s, respectively. Water is not shown explicitly in the fundamental 

relation and only a single protein molecule is considered. The protein and its environment 

constitute a small system and the fundamental relation and its arguments are regarded in 

this sense. In physics, the extensive variables are those that change proportionately to the 

size of the system while the intensive variables do not depend on the system size [46]. The 

extensive variables exhibit fluctuations about their native values. The distribution 

 R,f ˆV̂,Û  of the instantaneous extensive variables R, ˆV̂,Û  are given by the relation,

                














 



  R

FF
R ˆ

T
V̂

T

P
Û

T
k

T
,

T

P
,

T
Skexpˆ,V̂,Ûf

11 11                    (2.2)

where k is the Boltzmann constant and 





T
,

T

P
,

T

1
S

F
 is given as:

                                                 

                                               R
FF

,,S 





T
V

T

P

T

U
S

TT

P

T

1
                  (2.3)

and P is pressure (defined as 
V

U




 ) and F (defined as 
R




U
) is the force vector that 

contains the forces acting on the Cα’s. The distribution now takes the explicit form

                 
























   R

F
R

F
R ˆ

T
V̂

T

P

T

Û
k

T
V

T

P

T

U
Skexpˆ,V̂,Ûf 11        (2.4)

The correlation of fluctuations of the ith and jth residues may now be obtained from
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                              RRRRRRR ˆ,V̂,Ûfˆˆ T
jjii

T
ji                      (2.5)

where the superscript T denotes transpose and the summation is over all allowable 

microstates.

Using Eq. 2.4 in Eq. 2.5 leads to

ji  FP,T,j

iT
ji kT

















F

R
RR                      (2.6)

where the variables to be kept fixed are indicated as subscripts. The derivation of Eq. 2.6 is 

given in Callen [44], which is outlined briefly in Appendix A.1. 

Equation 2.6 forms the basis of all elastic network models for fluctuations in native 

proteins. The right-hand side of Eq. 2.6 may be evaluated if the energy of the system is 

known as a function of residue positions. For the case of pairwise potentials, the most 

general form of this relation is

          














c
ij

ij
ijijij

R

R
fEE 0        (2.7)

where, Eij
0 is the interaction energy of the residues i and j, Rij

c is the sum of the van der 

Waals radii which we define as the contact distance, i.e., the separation below which 

residues i and j repel each other, and fij is a dimensionless function of its arguments. A 

representative functional form for fij is the Mie potential which is given in Appendix A.2.

and which we use for illustrative purposes in order to give an explicit interpretation of Eq. 
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2.6. For more detailed discussion of potentials the reader is referred to the work of 

Micheletti et. al [41]. 

The right-hand side of Eq. 2.3 can be expressed in terms of Ψ, the Euler form for 

generalized thermodynamic potential of the independent variables T, P, and F, as 

 
T

,P,T F
 . Knowing this relationship leads to five equations:

 F,P,T

FR PVTSU

    
T

S



       (2.8)

P
V






F
R






where F and R are 3N dimensional, but here we represented them as scalars for the clarity 

of the discussion. The four variables Ψ, T, P, and F may be eliminated among these five 

equations to yield U = U(S,V,R). The forces are then obtained from U according to the 

relation 

 
R

R,V,SU
F






Considering pairwise potentials ijE and concentrating on the position variables only, i.e., 

neglecting S and V dependence, the forces may be written as



Chapter 2: Statistical Thermodynamics of Residue Fluctuations in Native Proteins  9







j j

ijE

R
EF ijiRi                                (2.9)

Thus, the 3N dimensional force vector is obtained as a function of the position vectors of 

all the α-carbons. Performing the differentiations, shown in Appendix A.2., for the Mie 

potential, the following general relation is obtained:

   RΓF 3N      (2.10)

where, Γ (3N) is a 3Nx3N matrix. Two different ordering of the Γ (3N) matrix is used in the 

study of elastic network models. We name them as block representation and standard MD 

representation. For details see Appendix A.3. In the block representation described in 

Appendix A.3., eq 2.10 reads as: 

        

 

 

  
















































Z

Y

X

N

N

N
X

Z

Y

X

R

R

R

Γ

Γ

Γ

F

F

F

Z

Y

00

00

00

                            (2.11)

In Eq. 2.11, ΓX
(N), ΓY

(N) and ΓZ
(N) are NxN. In the remaining sections, we will use the block 

representation. The order of the matrices, 3Nx3N or NxN, will be self-evident and will not 

be shown explicitly unless needed for clarity. 

The derivative has to be evaluated for the correlation of fluctuations defined in Eq. 

2.6. 
j

i

R

F



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This derivative is written as:

       ikikj
k

ij

k

j
ij

k

i ΛΓR
R

Γ

R

R
Γ

R

F















     (2.12)

The last equality in Eq. 2.12 defines the matrix j
k

ij
ik R

R

Γ
Λ




 where 

k

ij

R

Γ




 is third order, 

and its inner product with the position vector Rj gives a second order matrix that has the 

following block form:

        

















ZZ

YZYY

XZXYXX

Λ

ΛΛ

ΛΛΛ

                 (2.13)

where the symmetric lower half is not shown. The block matrices are of dimensions NxN, 

with

 
























 jk

jk

ij
ij

ij

ji

jiXX
R

Λ

Γ

ΛXX

2
2

2

                            (2.14)

where Xi and Xj are the X-components of the ith and jth residues, respectively. The terms for 

YYΛ  and ZZΛ  are obtained similarly where Y and Z replaces the X’s respectively. The first 

off-diagonal term XYΛ  is obtained as:
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  
























 jk

jk

ijij
ij

ij

ji

jiYYXX
R

Λ

Γ

Λ

2

XY

2

     (2.15)

The terms for the other off diagonal blocks are written similarly, by replacing the variables 

in Eq. 2.15 accordingly. The derivation of Eqs. 2.14 and 2.15 are described in more detail 

in Appendix A.2.

Substituting Eq. 2.15 in Eq. 2.12 and using Eq. 2.6 leads to

  1 ijijji ΛΓkTRR T      (2.16)

Equation 2.16 can be rearranged to give the correlation matrix as the product of a 

correction matrix C and the GNM result:

  1 ΓCkRR T        (2.17)

where, E is the identity matrix and the correction matrix C is C = (E+Γ-1Λ)-1. When Λ

vanishes, the GNM result is obtained.

Thus, Γ-1 represents the isotropic part of fluctuations in which the X, Y, and Z 

components cannot be identified independently, and there is no explicit dependence on a 

coordinate system. It consists of three identical sub-matrices on the diagonal, which are the 

inverses of the matrices given in Eq. 2.11. The three matrices, ΓX, ΓY and ΓZ are identical as 

may be verified from Eq. A.3.2. This part is an indicator of the neighborhood effect in 
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fluctuations. The correction matrix, C, contains nonzero diagonals as well as off-diagonal 

sub-matrices, which are functions of X, Y, and Z, and hence reflects the effects of 

anisotropy in proteins.

The structure of Eqs. 2.10, 11, 14 and 15 shows that any potential, which is a scalar 

function of the distances between residue pairs will yield identical forms for the Γ and Λ

matrices. The only difference will arise from the scalar entries of the Γ matrix in Eq. 2.11

and the front factors
2

ij

ij

R

Γ
in Eq. 2.15.

In the next section, we discuss the various elastic network models in terms of Eq. 2.10.

2.3 Comparison of Different Elastic Network Models

2.3.1 The Gaussian Network Model

In the GNM the correction matrix C is taken as the identity matrix, and Eq. 2.17 takes

the simple form 1 ij
T

ji ΓRR , where the matrix Γ is defined as

      











 







k

cutoffij

cutoffij

ij

kji*γ

rRandji0

rRandji*γ

Γ                  (2.18)

Here, Rij is the distance between the ith an jth Cα’s that are within an interaction distance 

of rcutoff, *γ  is the force constant representing this interaction. Residues separated by a 

distance larger than rcutoff  are assumed not to interact.
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According to the GNM assumption, the potential governing the interactions of a residue 

with its neighbors is isotropic. This is a consequence of the equality of the three 

submatrices shown in Eq. 2.11. Thus, the environment of a residue is isotropically smeared 

out and reference to an external coordinate system is not possible. In the general 

formulation, orientational correlations are embodied in the off-diagonal block matrices of 

Λ. These matrices equate to zero in the GNM. One way to interpret this is that the direction 

of fluctuation of each residue changes randomly in time, which is the definition of isotropy. 

This also follows from the condition that the off-diagonal elements of the supermatrix Γ in 

Eq. 2.11 are zero, i.e., the correlations ji YX   and the similar mixed terms for ji  are 

identically zero in the GNM. In order to understand this condition in more depth, we 

consider two limiting cases: Case (i) The fluctuations of residue i and j are totally 

uncorrelated. Then ji YX   averages out to zero. Case (ii) The directions of fluctuations 

of two residues are correlated, and these directions are in turn correlated with an externally 

fixed direction, then, and only then, the off-diagonal terms identified by 

1/22
j

1/22
iji YX/YX   will be nonzero and equate to a value between -1 and 1. 

Terms that result from the realization of case (ii) are missing in the GNM. GNM identifies 

effects coming from the density of neighbors surrounding a given residue. The spatial 

variation of neighbor density is the essential driving force that identifies the differences in 

the mean square fluctuations and their correlations with neighbors. 

2.3.2 The Anisotropic Network Model

The ANM was introduced by Hinsen [8] in order to couple the fluctuations of residues 

and domain motions to an external coordinate system. The model rests on the rotationally 

invariant form of the harmonic potential  ijijU R  given as     20
ijijijijij kU RRRR 
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where ijR  is the instantaneous value of the vector from residue i to j, ijR  is its reference 

value, and vertical bars denote the magnitude. It is worth pointing out here that the 

presence of the magnitude ijR  in the pair potential renders the Γ  matrix of Eq. 2.10 ijR

dependent, whereas the Γ  of the GNM consists of ijR  independent constants. The 

differences between this potential and the GNM potential are further discussed in the 

Discussion section. Thus, the major interest of the ANM is centered around approximating 

the Λ  matrix. In this approximation, the ijΛ  term given in Eq. 2.15 as 

  ijij
ij

ij YYXX
R

Γ





2

2  is replaced by   ijij
ij

YYXX
s

γ


2
, where γ is the spring 

stiffness constant and sij is the magnitude of the vector between residues i and j. However, 

the Γ  term in Eq. 2.16 is omitted in the ANM. Thus, effects coming from topology are not 

represented in the ANM directly. However, these missing terms, which are identified in the 

three diagonal block matrices, can indirectly be incorporated into the model by 

independently adjusting the front factor of the diagonal block. Inasmuch as the Γ matrix 

includes effects from neighbor densities in addition to those that are absent in Λ , its 

inclusion into the ANM is expected to improve the agreement with experimental data. The 

shortcomings of the ANM which are already acknowledged in the literature are perhaps 

due to the absence of the Γ term [47, 48].

There is a basic correspondence between the Hessian matrix H of ANM and Λ. 

Considering the H matrix in the block representation (see Appendix A.3.), the 

correspondence between Λ and H would look as follows: 
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                (2.19)

2.4 Relationship of Fluctuation Directions to Protein Geometry

In this and the remaining sections, we use molecular dynamics trajectories of ten 

proteins (PDB codes: 1BFT, 1BZD, 1CD0, 1CJQ, 1CQK, 1MR8, 1QNZ, 1VFB, 1X2I, 

AND 1VII) for validating the basic features of the theory presented. Details of the 

molecular dynamics simulations are given in Appendix A.5. Previously, Micheletti et. al. 

[41], compared MD results with Gaussian model results. Their in depth analysis of MD 

trajectories and Gaussian models and their conclusion that quadratic models can efficiently 

characterize the vibrational motions of proteins near their native state encouraged us to go 

further in this direction.

When expressed in the block representation, the fluctuation correlation matrix has 

block diagonal and block off-diagonal components. The diagonal block matrices contain 

information from both Γ  that are associated with neighbor density, and Λ. The off-diagonal 

block matrices contain information on the coupling of fluctuations to an external coordinate 

system through Λ. In this section, we discuss the second issue in more detail. 

In modal space, the long wavelength fluctuations are those that relate to thermodynamic 

coordinates of the system [45]. The short wavelength modes are those that identify 

localized events. Among the thermodynamic coordinates are the volume and shape. On this 

basis, we postulate that the eigenvectors of the longest wavelength mode of fluctuations lie 

along the three principal directions of the moment of inertia tensor. This establishes a 

relationship between fluctuations and protein geometry or shape.
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We use the results of the molecular dynamics trajectories to calculate the three principal 

directions of the fluctuation correlation matrix from the longest wavelength mode and 

compare these with the principal directions of the moment of inertia tensor.

From the molecular dynamics trajectory of a protein of N residues, the tx3N matrix of 

position vectors R  of C ’s is constructed for t snapshots. The instantaneous mean 

centered fluctuation, ΔR is

         
  RμRR 

3Nxt
                 (2.20) 

where the dimension of the matrix is indicated in square brackets and R is the instantaneous 

fluctuation matrix composed of Ri
t position sub-matrices for atoms
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R               iii ZYXt
iR                  (2.21)

and μR is the mean of the fluctuations over the t snapshots. 

We can decompose ΔR into orthogonal modes of fluctuation using the Singular Value 

Decomposition, SVD:

   
       NxNNxttxt3Nxt 333

TVSUR      (2.22)

where, U and V are orthonormal matrices of the left singular (ui’s) and right singular 

vectors (vi’s), respectively. The vi vector defines the direction of motion of α-carbon atoms 
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in the ith mode of fluctuation, ui bears the time dependency of the directions of motions. 

The diagonal S matrix contains the singular values is  for this decomposition which weight 

the modal fluctuations. The singular values are sorted in decreasing order.

Alternatively, Equation 2.22 can be written as the sum of modal fluctuations:

       
     

 


N

i Nx

T
i

xt3Nxt
s

3

1 311
ii vuR      (2.23)

The longest wavelength mode of fluctuations is then 

  Ts 111
1 vuR       (2.24)

where, the superscript 1 in parenthesis identifies the longest wavelength mode. We denote 

the longest wavelength fluctuation vector for the ith frame of the trajectory by    i1R . 

The elements of the fluctuation covariance matrix, CF, can be calculated 

  
 

        
i

T

3x3
ii

t
111

RRCF      (2.25)

Applying eigenvalue decomposition to this symmetrical covariance matrix yields the 

eigenvalue and eigenvector matrices, D and Q, respectively.

        T
FFFF QDQC       (2.26)
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In this equation, vectors of the eigenvector matrix QF are the principal coordinate axes 

of the fluctuations. DF is a diagonal matrix with eigenvalues in descending order. The 

eigenvalues show the variation of the trajectory along the corresponding eigenvectors. 

The moment of inertia tensor of the protein is calculated by multiplication of the atomic 

coordinate matrix, R0, retrieved from the PDB file, with itself. Here the R0 matrix is

            
 
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R                                       (2.27)

and the moment of inertia tensor, IC , is

 
00 RRC I  T

3x3
     (2.28)

Applying eigenvalue decomposition to this symmetrical matrix yields the eigenvalue 

and eigenvector matrices, DI and QI , respectively:

        T
IIII QDQC       (2.29)

In this equation, columns of the eigenvector matrix QI are the principal directions of the 

moment of inertia tensor. ID  is a diagonal matrix with eigenvalues in descending order. 

The eigenvalues show the variation of the shape of the protein along the corresponding 

eigenvectors. Using the molecular dynamics trajectories for 10 proteins and their 
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corresponding geometry information, we calculated the angles between the principal 

directions of the moment of inertia tensor and those of the longest wavelength mode of 

fluctuations. The results are given in Figure 2.1. The filled circles show the angles between 

the principal moment of inertia direction and the principal direction of the longest 

wavelength fluctuation that corresponds to the largest eigenvalue of the fluctuation 

covariance matrix. With the exception of two proteins, the principal axes of fluctuation 

coincide with the principal geometry axes. The two outliers show a difference of about 20o

between the fluctuation and geometry principal axes. The squares and plusses denote 

results for the remaining two principal directions. 

•Angle between the first 
principal directions
□Angle between the second 
principal directions
+Angle between the third 
principal directions

Figure 2.1: Angles between the principal directions of the moment of inertia tensor and of 

the longest wavelength mode of residue fluctuations.

We also compared the ratios of the eigenvalues for the moment of inertia tensor and 

those of the 3x3 fluctuation covariance matrix. The results are shown in Figure 2.2 where 
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the abscissa is the ratio of an eigenvalue of the covariance matrix to the root sum of squares 

of the three eigenvalues. The ordinate is the same ratio for the moment of inertia tensor. 

Only the largest eigenvalues are included in the figure. The points lie approximately on a 

45o line which is drawn in the figure to guide the eye. The correlation coefficient of the 

points relative to the 45o line is 0.85 and the standard deviation is 0.09. There is an outlier 

point in the figure. If this point is ignored, the correlation coefficient and the standard 

deviation become 0.97 and 0.07, respectively.

Figure 2.2: Scatter plot of normalized largest of the three eigenvalues of moment of inertia 

tensor plotted against the corresponding eigenvalue of the longest wavelength fluctuation 

covariance matrix. The normalization is made by dividing each eigenvalue by the root sum 

of squares of the three eigenvalues.
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2.5 Coupling the GNM to External Coordinates

The Gaussian Network Model is based on the internal coordinates of a protein and 

information on the relation of residue fluctuation directions to an external coordinate 

system is lacking. However, the observation that the principal directions of the fluctuation 

matrix coincide approximately with the principal directions of the moment of inertia tensor 

may be used to introduce external coordinates to the GNM. Moment of inertia tensor 

matrix is of size three and its entries are the moment of inertia values for the three 

coordinate axes, x, y and z. In this section we discuss the possibility of relating GNM 

results, to external coordinates, approximately and at least in the long wavelength modes. 

We take the external coordinates to lie along the three principal directions of the moment of 

inertia tensor of the protein. More specifically, we attempt to obtain the averages 

ji XX  , ji YY  , ji ZZ  , ji YX  , ji ZX  , jZYi  where the X , Y

and Z ’s are now along the principal directions of the moment of inertia tensor. 

Our first assumption is that residues fluctuate along preferred directions relative to an 

external coordinate system. Molecular dynamics simulations indeed show that this 

assumption is valid to a significant degree. In order to define the anisotropy in fluctuation 

(including all modes) we calculated the smallest and largest normalized eigenvalues of the 

3x3 fluctuation correlation matrix FC  for each residue and obtained the distribution of the 

ratio of the smallest to the largest eigenvalue for the residues of each protein. If the 

fluctuations are isotropic, then the eigenvalues will be close to 1/3, each, and the ratio of 

the smallest to the largest eigenvalue will be around unity. If, on the other hand, the 

residues fluctuate along preferred directions, this ratio will be close to zero. The first and 

second lines in Table 2.1 show the mean and the standard deviation of the ratio for each 

distribution, respectively. The minimum and maximum ratios of each distribution are 

presented in the fourth and third rows, respectively. The mean values are much smaller 
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than unity and the standard deviations are small. Thus, the data shows a significant degree 

of anisotropy of residue fluctuations. Detailed plots are given in Appendix A.6.

Table 2.1: Anisotropy of fluctuations in MD simulations for Cα’s.

1BFT 1BZD 1CD0 1CJQ 1CQK 1MR8 1QNZ 1VFB 1X2I 1VII Average

Mean 0.34 0.23 0.26 0.22 0.19 0.23 0.27 0.29 0.18 0.08 0.23

Stdev 0.15 0.12 0.14 0.12 0.11 0.15 0.14 0.15 0.12 0.08 0.13

Min 0.09 0.05 0.02 0.05 0.02 0.02 0.02 0.05 0.05 0.01 0.04

Max 0.74 0.56 0.67 0.61 0.55 0.72 0.63 0.85 0.55 0.41 0.63

Below, we calculate the components of the fluctuation correlation matrix from GNM 

with respect to the principal directions of the moment of inertia tensor and compare with 

the corresponding results from MD.

The longest wavelength components of the correlations are obtained from the GNM 

according to the relation

        1j1i
1

jijijiji vv
λ

ZZYYXX
1

 RR      (2.30)

where, 1λ  is the smallest singular value, and 1iv  is the ith element of the singular direction 

corresponding to 1λ , and 1jv  is for the jth element. Based on the assumption that residues 

fluctuate along preferred directions, and that all residues fluctuate in phase in a pure mode 

allows us to write  
212 /

ii XX  and jiji XXXX  , etc., for all i and j. In 

this notation, Eq. 2.30 is now written as

jijijiji RRZZYYXX       (2.31)
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The entries on the left hand side of Eq. 2.31 are the unknowns, and the elements of the 

NxN correlation matrix ones on the right hand side are known from GNM. A higher level 

of system of equations using linear algebra looks like this:

      
1
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ZYX

R


(2.32)

We are searching for a R  matrix that satisfies Eq. 2.32.

The set of equations given by Eq. 2.31 corresponds to   21 /NN   independent 

equations. The number of unknowns iΔX , iY , and iZ  are 3N in number. We search for 

the solution of the 3N unknowns using the   21 /NN  equations. For 6N the number 

of equations exceeds the number of unknowns, therefore different solutions are possible. 

We obtained the solutions for the 3N variables using nonlinear equation solver of Matlab®. 

This solver applies the Levenberg-Marquardt [49] method to the problem and needs a set of 

initial values of the 3N variables. Several solutions were obtained with different initial 

values for the R  matrix of Eq. 2.32. The internal coordinate system for the set of 3N 

unknowns calculated using a given set of initial conditions are in general different than 

those calculated using another set of initial conditions. 
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Figure 2.3: Scatter plot of corresponding entries of the correlation matrices obtained with 

the present method using unity matrix (abscissa) and using PDB coordinates for the Cα’s 

(ordinate) as initial guesses for the nonlinear equation solution applied on the first mode of 

the correlation matrix of the GNM.

Each solution corresponds to a different internal reference frame. However, all different 

solutions become identical when expressed in the principal coordinates of the 3x3 

correlation matrix by simple rotation as follows:

     3333 xNxNx
R FQRR 

where QF is the principal direction matrix of Eq. 2.26 and ∆RR is the rotated version of 

solution for residue fluctuation direction.
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In Figure 2.3, we show this identity for two solutions for one of which all the entries of 

the initial Nx3 R  matrix were taken as unity and for the other, the PDB coordinates were 

assigned as the initial set for the 3N variables. Once the components of the fluctuation 

vectors are obtained in the principal coordinate system, we form the 3Nx3N correlation 

matrix. In Figure 2.3, the abscissa and the ordinate of a circle show the values of the 

correlation matrix obtained from the first and second solutions. The solutions are identical 

up to the third decimal point. Same is true for the other modes.

Having evaluated the elements of the fluctuation correlation matrix T
ji RR  by the 

numerical solver described above using GNM results for the longest wavelength, we now 

compare with the corresponding values obtained from MD trajectories. We note that the 

elements ji RR  obtained for the GNM are in good agreement with the corresponding 

values from MD if the spring constant in the Γ matrix of the GNM is taken as 0.2.

As noted before by Doruker et. al. [42], there is a general correspondence between the 

eigenmodes of the GNM and MD simulations. In Figure 2.4 we compare the values of the 

correlation matrix obtained for 1CQK by MD and GNM. A good agreement was obtained 

when the first mode of MD simulations (ordinate values) and the first three modes of GNM 

were compared as may be seen from Figure 2.4.
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Figure 2.4: Scatter plot of corresponding entries of the correlation matrices obtained with 

the present method and from the 6 ns. MD simulation of the MAK33 Antibody (PDBID: 

1CQK)

In Figure 2.5, we compare the contour plots for the anticorrelations obtained from the 

first three modes of the GNM (Figure 2.5-a) and from the first mode of MD simulations 

(Figure 2.5-b). A comparison of Figures 2.5-a and 2.5-b shows the close resemblance of 

the results from MD and GNM. 
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a) b)

Figure 2.5: Contour plots for the anticorrelations in residue fluctuations obtained from the 

first three modes of the GNM (a) and from the first mode of MD simulations (b). The 

values in the upper right-hand block matrices in the plots express the correlation values in 

the dominant principal coordinate axis.



Chapter 3: Conclusions and Discussions 28

Chapter 3

CONCLUSIONS AND DISCUSSIONS

Statistical thermodynamics of fluctuations, represented by the Onsager relation given 

by Eq. 2.6 gives a general format for analyzing fluctuations in native proteins in a constant 

temperature-pressure bath. The right-hand side of Eq. 2.6 depends only on the mean 

positions of the residues and the forces that are functions of these mean positions. The 

relationship of mean positions to forces is obtained from thermodynamics by the spatial 

gradient of the governing potential. In the present thesis, we used the general Mie potential 

as an example to illustrate the various derivations for the models. It is to be noted that the 

choice of a translationally and rotationally invariant potential function is satisfactory for 

this purpose, and the Mie potential is one of them. The gradient of a general potential 

results in Eq. 2.12 that contains two matrix components, Γ and Λ. In the most rigorous 

thermodynamic treatment, both of these matrices should contribute to the correlations as 

indicated in the present work. The GNM, being an isotropic approximation does not 

contain the Λ term. The ANM, on the other hand has been formulated with the Λ term only. 

It should be noted that these are approximate models, and the agreement of their results 

with a wide range of experimental data is remarkable. Recently, the approximation implicit 

in the GNM with the Λ term missing has been criticized by Thorpe on the grounds that this 

leads to loss of rotational invariance [50]. However, the GNM potential is non-metric and it 

is constructed by counting the number of neighbors of a given residue, only [48]. The same 

is true for the ANM. Thus, the absence of the Γ and Λ terms in these models is 

inconsequential as long as the models lead to consistent results. The present thesis is only 

an attempt to indicate the complete picture if the potentials were taken in their full 
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generality. In order to have a deeper understanding of the contributions of the Γ and Λ

matrices, we discuss the problem in some more detail here. For the interest of transparency, 

we adopt the widely used Lennard-Jones potential obtained by taking m = 12 and n = 6 in 

the Mie potential. In this case, the total energy E of the system is obtained from Eq. A.2.1

as
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where, ijR  is now the distance between residues i and j for which the potential is a 

minimum. Expanding Eq. 3.1 in Taylor’s series and keeping the first two terms leads to the 

Gaussian approximation [42]
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Here, Rij and ijR are the magnitudes, as appropriately indicated by Hinsen [8]. 

Linearization of Eq. 3.2 for small displacements leads to the following expression which is 

used in the literature for the ANM:
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The steps leading to the term in the square brackets in Eq. 3.3, starting from Eq. 3.2 are 

outlined in Appendix A.4. The energy expression given by Eq. 3.3 is invariant under an 

infinitesimal rigid body rotation of the system about an axis. 

The GNM replaces the harmonic term of Eq. 3.2 by 2)( ijRRij   which may be written 

in the equivalent form as 2)( ji RR  . This leads to the GNM expression:

ΔRΓΔRT

2

1
0  EE                 (3.4)

where Γ is now a matrix whose elements are independent of Rij. 

The term in the parentheses 2)( ijRRij   in the GNM expression is the difference between 

the vector Rij from residue i to j at any time and its average value ijR . There is no 

contribution to the energy if the vector Rij lies along ijR , and if their magnitudes are equal. 

However, it is also possible that Rij may exhibit a pure rotation without its magnitude being 

changed. In this case, 2)( ijRR  will not be zero and pure rotations will be contributing to 

the energy. We note that the fluctuations of residues have a strong tendency to lie along a 

fixed direction, as implied by the MD data presented in Table I and by the more detailed 

calculations based on the MD trajectories for the ten proteins. In this case, the error 

introduced to the Gaussian formulation by pure rotational contributions is small, which 

justifies the adequacy of the Gaussian model as shown by a wide body of literature.

For the first time we show, using MD trajectories for 10 different proteins, that there is 

a strong direct relation between protein geometry and anisotropy of fluctuations. This 

observation, if verified by further examples, is expected to have far-reaching consequences 
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in the understanding of protein structure-function relations among which we can count 

protein design and docking studies.

Finally, using the geometry-fluctuation relation concept, we showed that the GNM can 

predict the anisotropy of fluctuations, at least in the few longest wavelength modes. 

Obviously, extending the GNM to predict anisotropy of fluctuations is only an attempt for 

understanding the fundamental features of the model and its limits. Otherwise, the ANM, 

properly formulated with both the Γ and Λ terms, is most suitable for predictions of 

anisotropic fluctuations.



Chapter 3: Conclusions and Discussions 32

APPENDIX

A.1. Onsager Relation

The gradient of  N̂,ˆ,V̂,Ûf R  with respect to /TF reads
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where, the subscripts of f on the right-hand side indicate that the system is in contact with a 

reservoir corresponding to U, V, N. Equation A.1.1 is valid irrespective of system size and 

is therefore suitable for the study of a single protein. Following Callen [45] and using A.1.1

in the definition for the correlation of fluctuations, Eq. 2.5, we obtain
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The intermediate steps leading to the right-hand side of Eq. A.1.2 are given in Callen, p 

427 [45]. 
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A.2. Derivation of Matrix Entries Using Mie Potential

The intermolecular potential that forms the basis of the formulation has to be a scalar in

Rij’s and must be translation and rotation independent. In this Appendix, we give a special 

form for this potential, the Mie potential, so that the general theory presented in the text can 

be checked by means of this example potential.

The Mie potential is written in its full generality as
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where Eij
0 is the interaction energy of the residues i and j, Rij is the distance between them, 

conventionally taken as the distance between α-carbons, and Rij
c is the distance when the 

two residues are in contact. For Eij
0<0 and the special case of n = -2, and (m/n) 0-, the 

term in the first squared brackets in Eq. A.2.1 goes to unity and the Mie potential reduces 

to the harmonic potential.

The gradient is obtained by the chain rule,
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Using the Mie potential for Eq. 2.7, using Eq. A.2.2 in the differentiation and rearranging 

the terms into a matrix form, we obtain Eqs. 2.10 where Γ is a NxN matrix the components 

of which are functions of Rij
2. They are obtained from the Mie potential as follows: 
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The gradient of Γ is needed for obtaining the Λ matrix defined by Λik = Γij,kRj. In order to 

perform this differentiation, we first take the first column of the Γ matrix, take its gradient, 

which gives a vector and then dot this with R and obtain the first column of Λ. Applying 

the same operation to the remaining columns of Γ leads to the 3Nx3N Λ matrix. 

Rearranging the terms leads to Eqs. 2.14 and 2.15. The derivative 2
ijij R/  that appears in 

these equations is given as follows for the Mie potential:
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A.3 Permutation of Correlation Matrix Entries

Before we discuss the general features of Eq. 2.10, we point out that there are two different 

representations of the matrices Γ and Λ with respect to ordering of the X, Y, and Z 

coordinates of the N residues. The use of one instead of the other causes confusion. In its 

full generality, the left-hand side of Eq. 2.10 consists of the various products of ΔXi, ΔYi, 

ΔZi and ΔXj, ΔYj, ΔZj expressed with respect to a laboratory fixed coordinate system 

OXYZ. In the block representation, the elements of R  are arranged as

 N21N21N21 ΔZ,....,ΔZ,ΔZ,ΔY,....,ΔY,ΔY,ΔX,....,ΔX,ΔXcolR . In other elastic 

network models the standard MD representation is used according to which, 

 NNN
t Z,Y,X,....,Z,Y,X,Z,Y,Xcol  222111R . The correlation matrix C is 

accordingly written either as C = <ΔRΔRT > or Ct = <ΔRtΔRtT >. Both C and Ct  are of 

order 3Nx3N, where N is the number of residues. The passage from one to the other is 

made by C = TCtTT where, T is a 3Nx3N permutation matrix formed as: 
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In the block representation the matrices Γ  and Λ are partitioned into submatrices as 
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where, each submatrix is NxN. The second submatrix Λ(XY) for example, has the mixed 

products ΔXiΔYj.

A.4 Linearzation of Hinsen’s Potential

Starting with the term in the parenthesis, 2)RR( ijij  , in Eq. 3.1 and expanding leads to:

22 2 ijijijij RRRR          (A.4.1)

We approximate (A.4.1) with respect to Rij by writing the second term as 222 ijijij RRR 

to obtain 
222
ijijijij RR)RR(  . Linearizing the term 2

ijR as ijij RR  leads to:

      222
ijjijiijijijijij RRRRRR  RRRR (A.4.2)

After a series of rearrangements, we get:
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 2jijjijjiii RRRRRRRRRR 

22 2 jijijjijjiii RRRRRRRRRRRR 
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This is the linearized form used in Hinsen’s work and in all subsequent applications of 

ANM. It is valid for small displacements because it rests on the linearization assumption 

used in its derivation. This form of the energy is invariant if an infinitesimal rigid body 

rotation is applied.

A.5. MD Simulation Configuration

The same approach as Yogurtcu et. al. [44] is used. The MD simulations were performed 

with NAMD [51] with CHARMM27 [52] force-field parameters for 6 ns. The protein 

complexes were solvated using the TIP3 water molecules in the VMD [53] package. 

Particle-mesh Ewald [54] was applied in the simulations. We used the VMD Autoionize, 

adding sodium and chlorine ions, to neutralize the system. NVT ensemble and periodic 

boundary conditions with a rectangular box were applied in the simulations. The 

temperature in the simulations was kept constant at 300 K by using Langevin dynamics. 

Initial equilibration was done for 10,000 steps, followed by 6-40 ns runs. The time step was 

2 fs. The first 1-ns runs were further discarded to assure that the data collected are after 

equilibration. Trajectories were sampled at 40-ps intervals. The simulations were carried 

out in a Linux-based cluster from a Racksaver cluster and each node has two 3.06 GHz Intel 

Pentium Xeon processors and Beowulf Cluster with nodes having Intel Pentium 4 2.4 GHz 

processors.

A.6. Distributions of Anisotropy Values

The distributions of the anisotropy values for the ten proteins are given in Figure A.6.1. 

The abscissa in the ten figures below is the ratio of the eigenvalues as described in the 

thesis, and the ordinate is the frequency of observation. The proteins are identified in each 

subfigure. All of the figures above show that the peaks are significantly shifted to smaller 
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values that is the signature of anisotropy. The values given in Table 2.1 are taken from 

these graphs. 
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Figure A.6.1: The distributions of the fluctuation anisotropy values for the ten proteins
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