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ABSTRACT

We present a method to calculate the pair potentials for folding of protein secondary 

structures. In the first part of the method necessary training data are generated to 

compute the potentials. For this purpose a Go-type model and dynamic optimization is 

used to compute the optimal folding trajectories. A coarse-grained model for a helix and 

a beta sheet, each consisting of 12 residues has been constructed by representing each 

amino acid as a bead. The dynamic optimization gives the total optimal force acting on 

each residue (bead) to fold the protein from an initial configuration to its native state. 

Next, forces between pairs of residues are derived from this data. This is done by first 

projecting the optimal residue forces onto the pair-wise directions between residues and 

expressing these mean forces as (nonlinear) functions of pair-wise distances. We show 

how to compute the forces between pairs from the mean forces. We next incorporate the 

derived pair forces into the dynamic model. Thus, for new initial conditions folding is 

achieved in a predictive way by simulating this model without any need for 

optimization. We further show that the folding pathways obtained by such “simple” 

simulation are similar to folding pathways which can be obtained by the rigorous 

dynamic optimization. To measure similarity between folds we use MPCA (Multi-way 

Principal Component Analysis).  In addition, mean forces between pairs are presented 

and analyzed. 
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ÖZETÇE

Tezimizde, protein ikincil yapılarını optimal olarak katlayan amino asit çiftleri 

arasındaki potensiyelleri hesaplama metodu sunmaktayız. Bu metodun ilk bölümünde 

çiftler arası potensiyelleri hesaplamak için gerekli olan veriler üretilmektedir. Bu 

nedenle optimal katlanma yollarını hesaplamak icin Go-modeli ve dinamik 

optimizasyon kullanılmıştır.  Herbiri 12 amino asit içeren bir heliks ve bir - tabakalı 

yapı  oluşturuldu. Bu şekilde, her amino asidi bir boncuk ile gösterilen kaba ölçekli 

yapılar elde edildi. Dinamik optimizasyon, proteinin bir başlangıc konfigurasyonundan 

onun doğal haline katlanmasını sağlayan her boncuk uzerindeki toplam kuvveti 

bulmaktadır. Sonraki adımda bu veriden amino asit çiftleri arasındaki  kuvvetler 

çıkartılmaktadır. Bu da şöyle yapılmaktadır: ilk olarak optimal kuvvetlerin amino asit 

çiftleri yönünde izdüşümleri alınr ve sonra bu ortalama kuvvetler amino asit çiftleri 

arasındaki uzaklığın doğrusal olmayan bir fonksiyonuyla ifade edilir. Bu ortalama 

kuvvetlerden amino asit çiftleri arasındaki kuvvetlerin nasıl hesaplandığını 

göstermekteyiz. Sonra çıkardığımız çiftler arası potensiyelleri dinamik modelimize 

eklemekteyiz. Böylece, verilen herhangi bir başlangıç konfigurasyonu icin, önceden 

tahmin edici bir yol olarak benzetim yolu ile katlama başarılmıştır. Bu modelde 

optimizasyona ihtiyaç kalmamaktadır. Ayrıca, bu basit modelle oluşturulan katlanma 

yollarının dinamik optimizasyon sonucu elde edilen katlanma yollarıyla benzer 

olduğunu gostermekteyiz.  Bu katlanmalar arasındaki benzerliği göstermek icin çok 

boyutlu temel bileşen analizi kullanmaktayız. Ek olarak, amino asit çiftleri arasındaki 

ortalama kuvvetler gösterilip analiz edilmektedir. 
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Chapter 1

INTRODUCTION

Proteins are one of the most abundant macromolecules in living organisms and they 

have crucial functions in biological processes. They can serve as catalyst for 

biochemical reactions, store and transport other molecules and carry signals from cell to 

cell. Some proteins have important role in immune responses, cell adhesion and cell 

cycle. Proteins also provide mechanical support and generate movements to cells and 

tissues, such as actin and myosin in muscle[1] .

The diversity of functions performed by proteins arises from the enormous number 

of three dimensional shapes they have. After being synthesized, the majority of proteins 

must be converted to folded compact structures in order to function. This process is 

known as Protein Folding. Only correctly folded proteins have long term stability in 

biological environment and failure in this process may cause severe diseases. Some of 

these diseases such as cystic fibrosis result from the fact that incorrectly folded proteins 

can’t do their functions properly. Sometimes, misfolded proteins form aggregates in the 

cell and deposition of these aggregates may cause several diseases such as Alzheimer’s, 

and Parkinson’s diseases[2, 3]. 

Understanding the protein folding is important to discover cures for diseases that 

stem from misfolding or aggregation. Protein folding has been studied in many aspects 

by computational and experimental methods. More information for protein folding is 

given in section 2.2.  

In this thesis dynamics of folding is investigated. Specifically, folding dynamics is 

determined by the pair interaction potential between residues. Several types of pair 

potentials were developed and those potentials are used to fold the protein. One type of 

pair potentials is the physics-based potentials which are used in simulations to acquire 
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detailed information about the folding dynamics [4]. However, calculation of these 

interaction potentials is computationally expensive. Another type of potential is the 

knowledge based potential [4]. These are statistical potentials which are derived from 

known protein structures using distribution of atom pairs. Usually they are used for 

protein structure prediction; however, the application of these potentials in protein 

folding dynamics studies is not common.  In section 2.3 detailed information about pair 

potentials is introduced.  

One aim of this thesis is to develop pair potentials for optimal folding of secondary 

structures.  These potentials are derived for a coarse grained system in which an amino 

acid is represented by a bead. In order to obtain the data for the computation of the 

potentials an optimization model which was developed by Guner et al.[5] is used. In 

this model, the dynamic model is the Newton’s equation of motion.  This model is 

explained in section 3.1.  Optimization gives the total force acting on each bead to fold 

the protein from an initial configuration to its native state.  

 Pair interaction potential is defined as mean force acting in a pair direction and 

these mean forces are modeled as a function of pair distance using results of 

optimizations starting from random different initial conformations.  It is called mean 

force because the average effect of other beads on the interaction of a certain pair is 

included implicitly. The pair potential derivation method is given in section 3.2. 

Another objective of this thesis is to use these learned pair potentials in folding 

simulations. By doing so, optimal folding path is achieved without carrying out an 

optimization again. In section 3.3 a method for using these mean forces for folding 

simulations is presented.  It should be checked whether the trajectories obtained using 

derived pair potentials are similar to those of optimization simulations since it is 

claimed that these derived pair potentials result from optimal paths. In order to compare 

trajectories MPCA (Multi-way Principal Component Analysis) method is implemented. 

This method is explained in section 3.3. 

Optimizations were carried out for secondary structures; helix and beta sheet (see 

section 2.1 for the information about structure of a helix and a beta sheet). Pair 



Chapter 1: Introduction 3

potentials are obtained using results of these optimizations. Then, these derived 

potentials are implemented into folding simulations. Trajectories of these simulations 

are analyzed whether they represent optimal path or not, using MPCA method. In 

chapter 4 results are presented and analyzed.  In chapter 5 thesis is concluded with a 

short summary and suggestions for future work. 
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Chapter 2

LITERATURE REVIEW

 2. 1 Protein Structure

Proteins are linear polymers composed of monomers which are called amino acids. 

The function of a protein is directly related to its three dimensional shape which in turn 

is determined by its amino acid sequence. There are 20 different amino acids and these 

amino acids are linked each other by peptide bond when forming proteins. Amino acids 

are composed of four parts; amino group, carboxylic acid group, a hydrogen atom and a 

distinctive R group (Figure 1). The difference in chemical properties of amino acids 

stem from R group which is often referred as side chain. According to these side chains 

amino acids may be hydrophobic, polar or charged properties.

Figure 1   The general  structure of an amino acid[6]
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The three dimensional structure of a protein is also known as protein conformation. 

Conformation of protein is determined by phi () and psi () angles. Phi and psi are 

the angles of rotation around N-C  and C -C’ (C is the backbone carbon atom 

bounded side chain and C’ is the carbon atom in the carboxyl group, Figure 1 ) bonds 

respectively. In addition, only certain combinations of phi and psi angles are allowed 

because of steric hindrance between backbone and side chain atoms.

Protein structure can be interpreted in four levels. Amino acid sequence is the 

primary structure of proteins. Some structures regularly repeat in proteins such as 

helices,  sheets and loops; these structures are the secondary structures. Tertiary 

structure is formed by the combination of secondary structure elements into compact 

globular units (domains). Final structure is quaternary structure and it refers to the 

spatial arrangements of polypeptide chains (Figure 2).

Figure 2  Protein structures[7]

Since, this study focuses on folding of secondary structures; some more information 

should be given about helices and beta sheets. Helix is a rod like structure which tightly 

coiled backbone forms inner part of the rod and the side chains extend outward in a 

helical form (Figure 3). Helices can be right-handed or left-handed. If you hold helix, if 
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it moves away in clockwise direction then it is right handed otherwise it is left handed. 

The most common form of helices found in nature is the  helix. Most of the  helices 

are right handed and  and  angles in consecutive residues are approximately -600

and -500.  The  helix has 3.6 residues per turn and this structure has hydrogen bonds 

between C’=O of residue n and NH of residue n+4.  These hydrogen bonds have very 

significant role in stabilization of helices[1, 2, 8]. In this study,  helix is studied due to 

the fact that generally this type of helix is used most in the literature. 

Beta () sheets are major structural elements of globular proteins.  sheets are 

almost fully extended and built by polypeptide chains which are called  strands. 

strands are usually constituted by 5 to 10 residues and are in almost fully extended 

conformations. A  sheet is built by linking two or more  strands such that hydrogen 

bonds form between C’=O group of one  strand and NH group of adjacent  strand. 

strands may form  sheets in two way; antiparallel and parallel. If adjacent beta strands 

are opposite in direction, NH group to C’=O group, then it is an antiparallel  sheet. 

Otherwise it is parallel  sheet. These two kinds of  sheets have different pattern of 

hydrogen bonds[1, 2, 8] .

Figure 3  A right handed  helix structure[9]
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Figure 4 Antiparallel and parallel beta sheets [10]

 2. 2 The Protein Folding Problem

2.2.1 Introduction

Protein folding is the process by which a polypeptide chain folds into its 

characteristic structure, known as native state.  The question of how an amino acid 

sequence dictates its native state is the most fundamental problem of folding.  There 

have been many studies in the field of protein folding since 1960s (Figure 5). The main 

objectives of these studies can be summarized as understanding the mechanism of 

protein folding and fundamental principles of folding transition, determination of 

principles for sequence structure, identification of major driving forces for folding[11, 

12]. In the rest of this section, several aspects of folding dynamics will be mentioned 

since it is the main objective of this thesis.
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Figure 5 Growth of The Protein folding field The average number of publications per year in protein 
folding field (left y axis) and the average number of publications per year that are dedicated to application 
(right y axis) were plotted every five years between 1970 and 2004, and 2005–2006. The first dataset was 
generated by searching articles in PubMed that contain the keyword ‘protein folding’ or ‘protein 
unfolding’ in either title or abstract. The second dataset was extracted from the previous dataset by 
searching with the following additional keywords: ‘engineering’, ‘design’, ‘misfolding’, ‘aggregation’, 
‘amyloid’ and ‘amyloid disease’[11].

2.2.2 Levinthal Paradox

There has been enormous number of studies in order to understand the protein 

folding kinetics. The question of how proteins find their native structure so quickly is 

one of the main goals of these studies. Cyrus Levinthal one of the pioneer scientists 

who worked on this problem, made a comment about complexity of folding in late 

1960s which was later called “Levinthal paradox”. It can be expressed as follows. The 

number of possible configurations of a protein consisting of 101 amino acids is 3100

(each bond can have one of three states) and if the protein were able to search 1013

configuration per second then it would take 1027 years to search all possible 

configurations. However, in reality, proteins fold on a time scale of minutes at most. 

Levinthal concluded that proteins must follow specific folding pathways rather than 

randomly searching conformational space[13].
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2.2.3 Energy Landscape Theory 

The fastness of folding (compared to random search) can be explained by the energy 

landscape theory. An energy landscape describes the free energy of protein as a 

function of conformational properties, such as dihedral angles. Each conformation is 

represented as a point in a multi-dimensional surface. To achieve efficient folding, the 

energy landspace should resemble a funnel, because the conformational space is 

reduced as the native state is approached (Figure 6).

Figure 6 A rugged energy landscape [14]

 In addition the shape of this funnel shows the kinetics of folding. For example in 

bumpy landscapes local minima are the transition states and they determine the rate of 

folding (i.e. the funnel of the fast two state kinetics has smoother shape).Furthermore, 

according to this theory transition states may have different conformations (ensemble of 

states) rather than specific conformations [14].
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2.2.4 Folding Mechanisms

Different models have been proposed to explain mechanism of protein folding. First, 

nucleation-growth mechanism, which proposes the rapid formation of tertiary structure 

from an initial nucleus of secondary structure, was suggested. However, this model lost 

its favor after the studies of folding intermediates because it predicts the absence of 

folding intermediates. Then, the framework model has been suggested. According to 

this model, secondary structures form first followed by tertiary structure forms. Another 

model is the hydrophobic collapse which claims that the hydrophobic collapse is the 

main driving force to make protein take its compact shape. After the formation of the 

compact shape,  secondary structures fold more easily due to searching narrower 

conformational space[15, 16].  

In addition to models described above, several models have been proposed lately. 

The first one is the nucleation-condensation model which unites the hydrophobic 

collapse and framework mechanisms. This model remarks that a transition state consists 

of combination of long range tertiary interactions and secondary structure. Furthermore, 

it proposes that secondary structures are significant driving force of folding, but they 

need to be stabilized by tertiary interactions[15-17]. 

Moreover, it has been proposed that some proteins fold by stepwise assembly of 

foldon units rather than one amino acid at a time. In this model, folding proceeds by 

sequential stabilization; previously foldon units guide and stabilize subsequent foldon 

units to built native state[18].

 Another model is zipping and assembly mechanism (ZA) which hypothesizes that 

local structures form at independent sites along the chain and then these structures grow 

(zip) and assemble with other structures. According to this model, protein can fold so 

quickly because different small peptide pieces of chain can form local structure on the 

fastest timescales. Growing of these structures happen on slower time scales. The ZA 

method is much faster than straightforward Monte Carlo and molecular dynamics 

simulations because it doesn’t search for all conformational space[19-21].
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2.2.5 Experimental and Computational Methods

Many experimental techniques have been developed to study protein folding 

problem. Some of these are  fluorescence resonance energy transfer (FRET) methods 

that can observe the formation of particular contacts, hydrogen exchange methods that 

can give detailed information about structure and properties of folding intermediates, 

laser temperature jump methods that can provide information about folding kinetics. 

Techniques which give structural information are Nuclear Magnetic Resonance (NMR), 

mass spectrometry, atomic force microscopy (AFM) methods[11].

Experimental methods are not sufficient to explore protein folding. Therefore 

computational methods have been developed to have better interpretation of 

experimental data by making simulations to obtain detailed information about 

microstates during folding. Molecular Dynamics (MD) simulation, which uses physics 

based potentials to find the interactions between atoms, is one of the commonly used 

simulation methods. Duan and Kollman achieved folding of 36-residue villin headpiece 

up to 4.5 Å rmsd by performing microsecond all atom explicit solvent MD 

simulation[22]. Recently, IBM Blue Gene group of Pitera and Swope folded 20-residue 

Trp-cage peptide to nearly 1 Å rmsd using implicit solvent replica-exchange molecular 

dynamics simulation (REMD)[23].  Pande et al accomplished folding of villin to a rmsd 

of 3 Å by folding@home project (a distributed grid computing system)[11, 20].  

Another simulation method is Monte Carlo which is a stochastic simulation method. 

Vila et al. folded a 46 residue Protein A to 3.5 by performing an implicit solvent Monte 

Carlo dynamics[24].

Although all atom MD and MC simulations give detailed information about the 

folding dynamics, they require excessive computational time and resource. In order to 

make these simulations faster some modifications such as Coarse-graining have been 

done.  In Coarse-grained models, not all atoms are represented explicitly; pseudo atoms 

are used to represent a group of atoms. Discontinuous Molecular Dynamics (CG-DMD) 
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and Go models are examples of Coarse-grained models [25-27]. Dokholyan et al. 

obtained ensemble of transition states of Src Homology 3 (SH3) by using simplified 

models and rapid sampling DMD[11]. 

In addition, lattice models have been developed to make fast search on simplified 

conformational space.  In lattice models amino acids are represented by beads and these 

beads have restricted conformations as defined by their moves on the lattice. One of the 

most popular lattice models is HP model. In this model, each bead can be either H (non 

polar) or P (polar). For any sequence and structure, the interaction energy can be easily 

calculated since the system is very simplified.  Excluded volume constraints are 

included by avoiding occupation of one position by two beads. Two dimensional HP 

models resemble the general properties of globular proteins. Lattice studies have shown 

that secondary structures in proteins are stabilized by chain compactness[28].

 2. 3 Pair Potentials for Protein Folding

In folding studies, when pair potential concept is considered, two types of potentials 

are usually used. First type is physics based potentials which account for fundamental 

interactions between atoms. Second type is knowledge-based potentials derived from 

experimentally determined structures. The advantage of physics based potential is to 

give detailed information about folding kinetics and pathways. However, computation 

of these potentials in a simulation takes too much time. On the other hand, using 

knowledge-based potential doesn’t require much computational time and they are very 

useful in discrimination of  native folds and misfolded structure and protein structure 

prediction studies[4]. 

The concept of knowledge based potentials was first suggested by Tanaka and 

Scheraga[29]. Miyazawa and Jernigan[30] determined the effective inter-residue 

contact potentials which have been used extensively in protein native structure 

prediction studies.  Miyazawa and Jernigan[31] updated these contact potentials using 

1661 protein subunits. There have been many studies about these pair potentials and 
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generally potential of mean force (PMF) method is used to calculate these pair 

interaction potentials. The general definition of PMF is:

 )(ln)( rfkTrE 

where r is the distance (or some other parameter such as dihedral angle); )(rE is the 

energy at r; )(rf  is the probability density; k is Boltzmann’s constant and T is the 

absolute temperature [32].   The use of PMF can have many variations due to choice of 

these parameters such as selection of interaction sites to characterize residue-residue 

interactions and the reference state used for calculating the probability.  The most 

common way of selecting interaction site is to represent each residue by a single 

interaction site and it is usually the C and C   atoms or centroids of side chains. Kocher 

et al. showed that selecting side chains as the interaction site gives better threading 

results than selecting the C and C   atoms [33].  Bahar and Jernigan selected different 

atoms for each type of amino acid regarding them to be near the side-chain terminus. 

Advantages of taking multiple interaction sites are that specific interactions are 

explicitly taken at their original locations and are not smoothed out. Using multiple sites 

can expand the sample size and increase smoothness of the data[34].

Knowledge based potentials can be used in many ways in simulations. They can be 

used in on lattice simulations which give the overall tertiary fold, rather than details of 

secondary structures[35]. In addition, these potentials can be used in off-lattice 

simulations such as the work of Gunn et al.[36] in which a hierarchical method is used 

to determine tertiary structure of protein. In this method, helices and  strands are 

represented as cylinders and spheres are used to represent loops. It is assumed that 

secondary structures form before the formation of tertiary structures.  MC simulated 

annealing and genetic algorithm is used to make simulation. Hydrophobic potentials of  

Casari-Sippl[37] are used in these simulations. The method is applied to myoglobin and 

folded structure and a rmsd of 6.2 Å was obtained. 

There have been several studies regarding the distance dependency of interaction 

potentials. Bahar and Jernigan [34] developed a method to derive residue-specific 

(2.1)
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potentials for the interaction of side-chain pairs and side-chain backbone pairs.  

Multiple interaction sites are chosen to improve the specificity and smoothness of the 

distance dependent potentials.  Results of this study suggest that the most favorable 

attractive potentials between hydrophobic pairs are in the distance between 4 and 6 Å, 

whereas polar and charged pairs have stronger interactions in close interval between 2 

and 4 Å.  Tobi and Elber[38] obtained distance-dependent pair potentials by results 

optimization.  Energy function is the sum of pairwise interactions. The distance 

between two interaction sites, centers of side chains, is divided into 13 intervals and the 

energy of each interval is optimized independently. The result of this study is well 

aligned with the result of Bahar and Jernigan’s[34] work in the aspect of hydrophobic 

component of the potential. In addition, Mukherejee et al. acquired distance and 

orientation dependent pair potentials for residues. Interaction sites are side chains which 

are represented by a single ellipsoidal site. The potential is four dimensional; distance 

and angles between principal axis of and axis linking centers of ellipsoids and torsion 

angles[39]. 

Besides residue level potentials, atomic level pair potentials have been developed as 

well. Lu and Skolnick [4] developed a heavy atom distance-dependent knowledge-

based pair potential. Atoms are selected based on a residue specific and on intra-residue 

position specific properties; that is, C of ALA is different from C of ALA and is also 

different from C of ILE. Total number of different atoms is 167 and hydrogen atoms 

are neglected. The distance between any two atoms is divided 14 intervals and PMF 

method is used to find interaction potential. This atomistic pairwise potential has better 

selectivity for near-native structures. Moreover, another all atom level potential 

derivation method was suggested by Melo and Feytmans. 40 different heavy atom types 

are selected as the interaction site depending on bond connectivity, chemical properties 

and location (side-chain or backbone)[40].  

Generally, in the knowledge-based pair potentials the effect of chain connectivity is 

neglected. Skolnick at al. developed a method to find pair potential of effective inter-

residue interactions that explicitly contain chain connectivity. Gaussian chain is taken 
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as the reference for the constraint of chain connectivity. Keskin et al. extracted inter-

molecular inter-residue potentials for interactions taking place protein-protein interfaces

including the effect of chain connectivity [41, 42]. 

In addition to knowledge-based potentials, Erkip et al. developed a method for 

finding optimal parameters for Gaussian model of protein folding[43].  In Gaussian 

model, each amino acid is assumed as a bead and all covalent and non-covalent 

interactions are represented by Hooke’s law springs. Spring constants are the 

parameters to be optimized and these parameters depend on the type of amino acid pairs.  

The advantage of Gaussian model is that forces linearly depend on displacements so the 

global minimum (native conformation) can be easily found by matrix algebra. 

Minimum energy conformation, starting from initial conformation, is reached by 

iteratively computing the parameters. By this method minimum energy conformation 

comes closer to the native state. The method was applied to several small proteins, such 

as BPTI (predicted with a rmsd of  1.7 Å) [43, 44]. 
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Chapter 3

METHODS AND MODELS 

 3. 1 Optimization Model and Formulation

The optimization model developed by Guner et al.[5] is taken as a base for the 

optimizations performed in this thesis. In this model, each amino acid is represented by 

a C
  atom. The distance between bonded pairs is assumed to be 3.8 Å.  The dynamic 

model is based on Newton’s equation of motion:

                i
ii f

dt

dr

dt

rd
m  

2

2

for i=1,2, …., N                        

Where ir denotes the position vector of C atom of ith residue with respect to a 

fixed frame coordinate; m denotes the mass of the residue;    is the friction coefficient 

and if stands for the non-friction force acting on ith  bead (Figure 7). This equation is a 

deterministic equation since no random forces act on the residues. 

(3.1)
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Figure 7 Example representation of 4-beads system

It is assumed that left hand side of Equation (3.1) can be taken as zero since this 

term is much smaller than intermolecular forces. Since left hand side is equated to zero 

the friction coefficient can be taken as unity.  In addition it is assumed that if is 

composed of forces between bonded and nonbonded residues. if  can be expressed in 

terms of its components as:

NB
Ri

NB
Ai

B
Ri

B
Aii fffff ,,,, 

Here, subscript i denotes the residue index, A and R denote the attractive and 

repulsive components and superscripts B and NB denote bonded and nonbonded 

components.   

Attractive forces between bonded residues ( B
Aif , ) are represented by linear springs. 

Other components of if  represented by a single forceu ; 

NB
Ri

NB
Ai

B
Rii fffu ,,, 

(3.2)

(3.3)
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With these assumptions the equation of motion (Equation 3.1) can be written as:

              ur
dt

dr
   

                              

Where  TNrrrrr .....321 and  TNuuuuu .....321 are the sets of 

vectors for position of the beads and forces acting on the beads respectively.  

Connectivity matrix  [45]  is a symmetric Toeplitz matrix ( first off-diagonal elements 

are -1 and the diagonal elements are the sum of the corresponding row without its 

diagonal element).  

Optimization in this thesis aims to fold a protein to its native state by bringing pair 

distances to their native state values. Therefore modeling of pair potentials as a function 

of pair distances is the major objective of this study. By the minimization of pair 

distances, forces acting on beads are related to pair distances. 

The optimization problem can be stated as a constrained optimal control problem 

that makes following minimization for the time interval between time t = 0 and final 

time tf :

Where r is an error vector representing the difference between the actual separation 

at time t and target separation at the native state for all non-bonded pairs:  

(3.4)

(3.6)

(3.5)
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Here, )()()( trtrtr ijij  is the distance vector for ij pair at time t and n
ijr  is the 

known distance difference vector of pair ij at native state. r  is constructed for 

nonbonded pairs and the dimension of r  is N
NN




2

)1(
 for N-beads system.  

r can be written more clearly as: 

The states r (t) have to satisfy the equation of motion or the state space model:

)(tur
dt

dr


0)0( rtr   (Initial condition)

The model contains bond length and excluded volume constraints in order to make the 

folding simulation more realistic. The bond length constraint is set with a ±10% 

tolerance and it is formulated as in [5]:

                               
22 1.19.0 bi

T
b lrHrl                for all i=1.2…N-1

Where Hi is the matrix that relates states to bond length, rHr i
T  is the square of the 

bond length for adjacent atoms and bl is the bond length. 

Excluded volume constraints are included in a similar way and they are expressed in 

optimization as in [5]: 

(3.7)

ijij dev 

(3.8)

(3.9)

(3.10)
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Where ijev  is the square of the excluded volume distance between ith and jth bead 

and ijd is the square of the minimum excluded volume distance.  The square of the 

excluded volume distance is calculated as:

rLrrrev ji
T

jiij ,

Where jiL ,  is the matrix that relates position to excluded volumes.

Excluded volume limit ( ijd ) means that two beads can not come closer than this 

value and it depends on the native state structure. The limit values for native pairs 

(having distance less than 7 Å in native state) are the distance between these pairs in 

native structure and 5.1 Å ( approximate hydrogen bond length)  is taken for other non-

native pairs. 

In addition, there are constraints on input (u (t)) values:

2)(2  tui

-2 and 2 are set as the limit values for inputs because for the smaller values 

optimization can not find feasible solution and for the higher values there can be abrupt 

changes due to excessive force. Using these limits, smooth trajectories can be obtained 

[5]. 

The optimization problem is solved using PENNON solver in AMPL environment 

using the method proposed in [5].  

The optimization adjusts the forces u(t) to drive the protein to desired structure. The 

dynamic model ( Equation 3.8 )  provides the motion under the optimal force field. In 

addition, optimization tries to satisfy excluded volume and bond length constraints 

during the folding.

(3.11)

(3.12)
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For many different initial protein configurations optimization provides us with data 

(i.e. optimal forces and pair distances) that will be used to derive the pair potentials as 

described in the next section. 

 3. 2 Pair Potential Derivation Method

Here, the method for the derivation of pair potentials is presented.  The dynamic 

model used for optimal folding is given in equation (3.4) as:

ur
dt

dr


For the demonstration purposes let’s write this equation for three beads without loss 

of generality.

121
1 )( urrk

dt

dr


23212
2 )()( urrkrrk

dt

dr


34323
3 )()( urrkrrk

dt

dr


where k is the spring coefficient between bonded pairs. 

If we subtract Equation (3.15) from Equation (3.13), one gets:

)( 13342312
13 uukrkrkr

dt

dr


Here, ijij rrr   is the distance vector between ith and jth beads.  The general form 

of Equation (3.16) can be represented as:

(3.13)

(3.14)

(3.15)

(3.16)



Chapter 3: Methods And Models 22

ij
ijdt

dr r

rrr ,11321 .... r

pairs. In this set there are 
2

)1(  NN
 vectors, so the dimension of ijr  is 

2

)1(
3




NN

since each vector has 3 elements. ijA is the vector with a dimension  
2

)1(
3




NN
 that 

gives relation for bonded terms. Example representation of ijA for 4 beads system for 

Equation (3.16) is given below.



































342423141312

100

010

001

000

000

000

100

010

001

000

000

000

000

000

000

100

010

001

13
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It is clear that 
2

ijij
T

ij rrr  . Now take the derivative of both sides with respect to 

time and to get the following equation:

dt

rd
r

dt

dr
r

ij

ij
ijT

ij 22 

Rearranging  Equation (3.19) leads to :

dt

dr
v

dt

dr

r

r

dt

rd
ijT

ij
ij

ij

T
ijij 

(3.17)

(3.18)

(3.19)

(3.20)

ij j i A  (u  u )
 

Where  is the set of vectors for distance vectors of all 
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Where, 
ij

T
ijT

ij
r

r
v   is the unit vector in ij-direction. Multiplying Equation (3.17) by 

T
ijv  leads to: 

)( ij
T
ij

T
ij

T
ij

ijT
ij uuvijav

dt

dr
v  r

Using Equation (3.20) Equation (3.21) can be written as:

)( ij
T
ij

T
ij

T
ij

ij
uuvijav

dt

rd
 r

From Equation (3.22) it is seen that change of pair distance is related to ijav T
ij

T
ij

r

and )( ij
T
ij uuv   terms. Pairwise mean force can be defined as net force acting on ij-

direction:

   ijijij
T

ij rguuv 

Optimization finds u (t) and r (t) for all time steps. The term )( ij
T
ij uuv   in 

Equation (3.23) can be easily calculated. The pair distance data ( ijr ) is also calculated 

using position data ( )(tr ).  Next modeling is done to compute an appropriate function g

for the Equation (3.23).  Pair distance data and mean force data are calculated using 

results of optimizations for many different initial conditions. Example representation is 

given below for pair 1-3 for many optimization runs (results of many optimizations are 

merged into a vector).

(3.21)

(3.22)

(3.23)
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Where 
i

r13  is the distance between pair 1-3 at ith time step.

X vector is ordered from minimum to maximum value and Y vector is ordered 

according to new order of X vector (time step indices should be same in both X and Y 

vectors. Then X and Y vectors are divided to 50 intervals and mean forces, which lie in 

the same interval, are averaged. As a result, for each distance interval corresponding 

mean force is obtained. Finally, curve fitting is made to this data to obtain the form of 

 ijij rg  . This procedure is done for all pairs. At the end, mean forces have been 

modeled as a function of pair distance data.  

 3. 3 Using Derived Mean Potentials for Folding Purposes

In this section a method for using mean forces in a folding simulation is presented. 

The mean forces are defined as a function of pair distance using the method explained 

in section 3.2. 

Let’s set 
j

ijiji vcu  where ijv  is the unit vector in ij-direction (Figure 8). ijijvc  is 

component of  iu in  ij-direction. Substitution of this equation into Equation (3.23) 

gives:

 ijij
ik

ikik
jk

jkjk
T

ij rgvcvcv 













 



(3.24)

(3.25)
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Figure 8 Resolution of the individual forces, ui

At each time step during the simulation, mean forces are calculated using pair 

distance data ( ijr ), since mean force pair distance relation  ijij rg is known. By 

knowing the right hand side of Equation (3.25), ijc ’s can be calculated by solving 

Equation (3.25) simultaneously for all pairs. Example representation for the Equation 

(3.25) for 4 beads system is given below. Since forces between bonded pairs are 

represented by a spring they are not included in this calculation.
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where  gij is the mean force in ij-direction.

Equation (3.26) can be written in general form as:

(3.26)
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gc A     

where  TNNgg 2,13 ..... g  ,  TNNcc 2,13 ..... c  and  A is the matrix composed of 

projections. 

For 12-bead system the dimension of A is 55 by 110.  cij’s are obtained by the 

solution of Equation (3.27).  Since A is rank-deficient in general, c is solved by:

gc 
 A

Where A  is the pseudo-inverse computed by using singular value decomposition 

method. 

After obtaining ijc ’s, they are used in the dynamic model:

 
j

ijijiiii
i vcrrkrrk

dt
dr

)()( 11

Equation (3.29) can be written for the whole system as: 

c
dt

dr

Where, V is the matrix composed of unit vectors between pairs.


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0.............................................0.......
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vv
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(3.29)

(3.30)

(3.31)

(3.27)

(3.28)

   r  V
dt
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 3. 4 Folding Trajectory Comparison Method

In order to assess the usefulness of derived pairwise forces, one needs to compare 

optimal folding paths obtained from (3.4) with those of obtained from dynamic 

simulation using (3.30).  

Multi-way principal component analysis (MPCA) method is used to make this 

comparison. MPCA method is generally used to monitor batch processes in chemical 

industry.  This method is a powerful tool for analyzing historical and diagnosing 

problems in plant operations [46-48].

MPCA is equivalent to performing ordinary PCA on a large two-dimensional matrix 

formed by unfolding a three-dimensional array in certain ways. For monitoring of batch 

processes, the most meaningful way of unfolding is that different batches are aligned in 

vertical side and in horizontal side measurement variables are aligned for all times 

(Figure 9). In normal PCA analysis, original data is rotated and projected into new 

reduced space defined by first few principal components. First principal component 

describes the largest amount of variation in the data and second one describes the 

second largest amount of variation and it goes like this for other principal components. 

By PCA method, data is represented adequately in a simpler and more meaningful way. 

Likewise, MPCA method can help to understand the variation of the measured variables 

about their average trajectories[48]. 
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Figure 9 Unfolding three dimensional array [49]

The aim of this version of MPCA is to decompose three-way array into series of 

principal components of score vectors (tr) and loading matrices (Pr) plus residual matrix 

E. tr  vectors are orthogonal and related only to batches whereas Pr  are orthonormal and 

related to variables and their time variation. Each element of tr vector corresponds to a 

single batch and gives the overall variability of this batch to other batches.  This 

decomposition can be shown as:

EPtX
L

r
rr  

1

Where L is the number of principal components used and   denotes the following 

multiplication: X(i, j, k)= t(i)P(j, k).

In order to make this decomposition, the nonlinear iterative partial least squares 

(NIPALS) algorithm [50](see Appendix A) is used. It is a simple and effective 

algorithm to find principal components in a sequential way. 

(3.32)
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It is now explained how MPCA method can be used for discriminating trajectories 

or batches. For the data obtained from simulations or batches, the three dimensional 

matrix, X (I, J, K), is constructed. Where, I is the number of simulations, J is the 

number of variables and K is the number of time steps in a simulation.  In order to 

remove the nonlinear behavior of process, data should be mean centered. It is 

accomplished by subtracting each column of X by its mean. Then, by MPCA 

decomposition method, score vectors (tr )  and loading vectors (Pr) are acquired for the 

X matrix (mean centered X).  Similar or different simulations can be easily 

differentiated by means of plot of first and second score vectors (t1 and t2 ) . Because, 

points (t1 and t2) for similar simulations are clustered whereas scatter points of different 

simulations stay separate from this cluster. In addition, plot for second and third score 

vectors can be used together with the plot of first and second score vectors. Additional 

to score plots, sum of squares of the residual is also used to discriminate simulations. 

The sum of squares of residual (SSR) is calculated as:


 


K

k

J

j
i jkiEQ

1 1

2),,(

Where Qi is the sum of squares for ith simulation and E is the residual obtained from 

MPCA decomposition.  In Q plot, similar simulations have close Q values whereas 

different simulations don’t have.  The criteria for being close to a certain region or a 

value are determined by the confidence limits. Confidence interval for the t score plot is 

determined by the equation:

  2/1
2/,1 /11 nst refn   

Where, n, sref  are the number of observations and the estimated standard deviation 

of the t-score sample 2/,1 nt  is the critical value of the t-distribution with n-1 degrees 

of freedom at significance level α/2. In order to use this equation it is assumed that 

(3.33)

(3.34)
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elements of score vectors are normally distributed. The confidence interval is calculated 

for each of score vector by using Equation (3.34) and elliptical contour, whose center is 

0 and distance on the principal axes is the confidence limits for score vectors, is drawn. 

The simulations whose score points lie in this regions is assumed as similar simulations, 

otherwise they are accepted as different[48, 51]. 

Control limit for SSR is given as:

Where, m is the sample mean, v denotes the variance of the sample, α is the 

significance level, 2

,/2 2 


vm
 denotes the critical value of the chi-squared variable with 

2m2 / v degrees of freedom at significance level α[48, 51].  

Up to now, discrimination of simulations within a data set is studied. Now, analysis 

of a simulation which is not inside a data set is presented.  It is again questioned 

whether this given simulation, Xnew( J,K) , is similar to reference data set or not. First, 

column mean of reference data set is subtracted from Xnew  . Then, score vectors of Xnew 

are predicted using loading matrices of reference data set (obtained from MPCA 

decomposition).  This is achieved by following equation: 

rNewr PXt    

Where rt  is the rth predicted score for the new simulation NewX is the mean centered 

data, Pr is the loading matrix of reference data set. After obtaining rt , it is checked 

whether the plot of first and second predicted scores is in the acceptable region which is 

defined already by using score vectors of reference data set. 

Data for the new simulation is reconstructed as in the Equation (3.37) using these 

predicted score vectors and loading vectors of reference data set.

  2

,/2 22/
 

vm
mvSSR  (3.35)

(3.36)
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reference

R

r
rredictednew XPtX  

1
Pr,

Where  referenceX  is the mean of reference data. 

Square prediction error (SPE) is calculated using predicted data and original data by 

using Equation (3.38).

    
 


K

k

J

j
newedictednew kjXkjXSPE

1

2

1
Pr, ,,

The calculated SPE is checked whether it is in the acceptable limit or not. 

Acceptable limit is the confidence limit generated for SSR using reference data set. 

If SPE is high (not under the confidence limit) and predicted score is in the 

acceptable limit, then model is not correct. In other case, if SPE lies inside the control 

region but score values are not in the confidence interval, then model is correct however, 

simulation is different from reference simulations.  If both SPE and predicted scores are 

in the confidence interval then this new simulation is similar to reference data set[48]. 

Now, implementation of MPCA method to our data is presented. It is important to 

define the variables for the comparison of trajectories. In our simulations, position of 

data is obtained during the folding.  There are several ways of defining the data for 

trajectory comparison. One way is using the pair distance data.  For the 12 beads system, 

total number of pairs is 66 and distances between pairs are easily calculated using 

position data. Matrix having 66 columns (each column represents time variation of a 

pair distance) is formed for each simulation and then this data is used in MPCA method.  

Choosing pair distance as a comparison method is meaningful because it is rotational 

invariant and analyzing variation of all pair distances can give better result for the 

discrimination of trajectories. 

Another method is to construct the variable matrix. The matrix can be formed by the 

following properties of a simulation; root mean square deviation (rmsd), number of 

(3.37)

(3.38)
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contact pairs (if the distance between pairs is less than certain value, i.e. 7Å, then it is 

assumed that these pairs are in contact), and energy of the protein (can be defined as 

sum of squares of pair distances). In this case, matrix having three columns is 

constructed for each simulation. Then MPCA method is applied to this data. 
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Chapter 4

RESULTS AND DISCUSSION

The model given in section 3.1 is applied to helix and beta sheet secondary 

structures: The coarse-grained models are used throughout our calculations. 550 

optimization runs were made for a helix with 12 residues and 500 runs for a beta sheet 

containing 12 residues. Using the results of these optimizations the pair potentials are 

found as described in section 3.2.  Then, these pair potentials are used in simulations 

which start from different random initial conformations. The method given in section 

3.3 is used to perform these simulations. In order to analyze whether the trajectories 

obtained from these simulations are in optimal folding region, the method presented in 

section 3.4 is applied.  Results are presented and analyzed for the helix and the beta 

sheet in sections 4.1 and 4.2, respectively.  

.  

 4. 1 Results for the Helix

The backbone representation of the helix is given in Figure 10.

Figure 10 Backbone representation of the helix
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4.1.1 Pair Potentials for the Helix

The pair potential is defined as the mean force acting between residues. The pair 

potentials for the helix are derived using data obtained from optimizations. The mean 

force vs. pair distance data is obtained for all pairs. In order to simplify the analysis of 

the potentials easier, these pair potentials are clustered according to the sequence 

separation of pairs. To enhance clustering, the plots are based on Mean Force vs. 

n
ijij rr    ( n

ijr  is the pair distance at native state). The plots for 9 clusters are given in.

In these plots the unit of pair distances is Angstrom (Å). 
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Figure 11 Clusters of mean forces according to sequence separations of pairs. ijr denotes ijr
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From the plots in, it is seen that potentials can be clustered according to sequence 

separation. That is, pairs whose sequence separations are the same, have similar trends 

for potentials. In these plots, all potentials are superimposed for pairs which have same 

sequence separation. Average potential for each cluster is calculated and these average 

potentials are given in Figure 12 and Figure 13 for pairs having sequence separation k =

5-10 and k =2-4 respectively. In Figure 12 it is seen that potentials are very similar for 

pairs having greater sequence separation. On the other hand, the potentials for pairs 

which are close in sequence don’t have similar trends. In fact for helix structure close 

pairs on sequence are native pairs.  These two figures show the important characteristics 

of pair potentials for folding of helix. It can be said that interactions between native 

pairs are more specific than long interactions for helix. 

In addition, it is observed that potentials have two distinct regions around native 

state distance for pairs having sequence separation k = 5-10 (Figure 12): 

.0and0  n
ijij

n
ijij rrrr  In all potentials, at large distances potentials have 

linear regimes.  This is the first stage of folding. After coming closer to certain 

distances, interactions become more specific to residue pairs. In this part of folding, pair 

potentials don’t have linear behavior. This structure of potentials can be better 

interpreted using movies of these optimizations. In these movies, it is seen that in the 

first part of folding residues come closer and then ordering of residues occur at short 

distances between pairs.  In the region  0 n
ijij rr  data are more scattered. In this 

region Mean Force can be either attractive or repulsive. Repulsive forces may be due to 

the fact that optimization should repel pairs to bring them to their native distances when 

the distance between these pairs smaller than native state value. Moreover, in some 

cases optimization may have to bring pairs closer temporarily in order to allow some 

other residues to rearrange themselves. In such cases, mean force would be attractive. 

In Figure 13 it is seen that pair distances don’t become less than native value. This is 

explained as follows. In the optimization the excluded volume limits for native pairs are 

set equal to their native state distances.  Since optimization satisfies excluded volume 
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constraints, pair distances don’t be less than native values. In general the mean forces 

for native pairs are attractive except for the pairs having sequence separation k=2. 

                          

Figure 12  Average mean forces for clusters having sequence separation 5-10, ijr denotes ijr

Figure 13 Average mean forces for clusters having sequence separation 2, 3, and 4, ijr denotes ijr
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4.1.2 Folding Test Simulations of the Helix Using Obtained Pair Potentials

The derived pair potentials were used in folding simulations for helix by applying 

the method described in section 3.3.  The functional forms of these pair potentials for 

helix are given in Appendix A.1. For 100 new initial conditions, which were randomly 

generated, folding simulations were performed.  In Figure 14 RMSD distribution is 

given for these test simulations. It is observed that some of simulations fold to left-

handed helix. RMSD distribution is corrected by taking two reference structures for 

RMSD calculation: right-handed and left-handed helix. RMSD of a simulation is 

calculated for both reference structures and the one with the lower value is accepted.  

The reason why some simulations fold to left-handed helix is due to the fact that 

distances between pairs in native state are the same for right-handed and left-handed 

helices. Since our potential tries to bring residue pairs to their native state values, some 

initial conditions simulations may converge to left-handed helix structure. In addition, 

Figure 14 shows that these pair potentials successfully fold the helix. 

Figure 14 RMSD distribution of test simulations



Chapter 4: Results And Discussion 39

4.1.3 Trajectory Analysis of Test Folding Simulations 

The trajectories obtained from test folding simulations for 100 random initial 

conditions are analyzed using the method described in section 3.4. Pair distance data of 

the simulations are used to make this analysis.  It is investigated whether the trajectories 

of these test simulations belong to the family of similar trajectories that are obtained 

from optimization simulations. Figure 15 shows t score plots for optimization 

simulations and test simulations with 99% confidence limit. In this figure, it is observed 

that most of t scores are in control region. This can show that the trajectories of test 

simulations are in optimal folding region. However, t score plot is not sufficient by 

itself to make this conclusion. Square prediction error (SPE) plot should support the 

same result. Figure 16 shows SPE plots for optimization and test simulations. The SPE

values for most of the test simulations lie in the confidence interval.  As a result, by 

looking at Figure 15 and Figure 16 together, it can be said that acceptable folding 

pathways for helix can be achieved with the derived pair potentials. 

Figure 15  t score plots for optimization simulations and test simulations.  Dot: 

Optimization simulations, Circle: Test simulations, elliptical contour: control region with 99% 

confidence limit.



Chapter 4: Results And Discussion 40

Figure 16 Square prediction error ( SPE) plot for optimization simulations and test simulations. Dot: 

Optimization simulations, Circle: Test simulations, line: control region with 99% confidence limit

In order to check whether this trajectory comparison method is reliable, a negative 

test is performed. These test simulations were performed as follows. From the mean 

force for each pair, )( ijij rg  , the component of  in  ij- direction only is extracted. It is 

achieved by taking the terms k=i in the first summation and k=j in the second 

summation in Equation 3.25. As a result of this operation, coefficients are obtained as: 

)(
2

1
ijijjiij rgcc 

.

These coefficients are next used in the Equation 3.30 in order to make folding 

simulations. These simulations fold to helix to certain degree (the mean RMSD value of 

these test simulations is 2.2 Å).  Figure 17 and Figure 18 show t score plots and SPE

values for both these simulations and optimization simulations. Neither t scores nor SPE

values of these simulations are in control region. So, the trajectories of these 

simulations are not similar to those of optimization simulations. This test illustrates that 

this method can discriminate the trajectories. 
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Figure 17 t score plots for optimization simulations and negative test simulations.  Dots represent 

optimization simulations, circles are for negative test simulations. The elliptical contour shows the control 

region with 99% confidence limit

Figure 18 Square prediction error plot optimization simulations and negative test simulations.  Dots 

show the optimization simulations, circles denote the negative test simulations. The line shows the 

control region with 99% confidence limit
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4.1.4 Force analysis at equilibrium 

It is analyzed that whether forces acting on beads at equilibrium obtained from test 

folding simulations converge to theoretical values.  The theoretical values for the forces 

acting on the residues at equilibrium can be obtained by setting 0
dt

dr
in the 

dynamic equation ur
dt

dr
 . Then theoretical residue forces at equilibrium are 

obtained as NN ru  . This can be easily calculated since the native state positions 

of residues are assumed to be available.  After incorporating the pair forces the dynamic 

model is given by Equation (3.30) c

reconstructed by the Equation: 

c

Figure 19 shows the theoretical forces and reconstructed forces for one simulation. It 

is clearly seen that they are very similar. 

(4.1)

  r  V where the residue forces were 

u †V
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Figure 19 Theoretical forces vs.  calculated forces for one simulation.  x,y and z components of 

forces are plotted.  red line: y=x  

The equilibrium force analysis can be made in another way as following. The 

dynamic model used in folding test simulations is cVr
dt

dr
  .  Left-hand side 

of this equation becomes zero in the equilibrium.   Theoretical solution of coefficients 

(c ) at equilibrium can be obtained by minimum norm solution. In folding simulations 

which are performed by using obtained pair potentials the coefficients are calculated 

(see section 3.3).  Here it is checked that whether the calculated coefficients are the 

same or similar to the theoretical coefficients. Figure 20 shows theoretical coefficients 

and calculated coefficients for one simulation. It is seen that they are highly correlated. 

It should be noted that these calculated coefficients and reconstructed forces don’t 

have to be same with the theoretical ones. In fact the theoretical and calculated values 

are not similar for all test simulations. They are similar for the simulations which have 

better RMSD values. As a conclusion, calculated coefficients and reconstructed forces 

at equilibrium may converge to theoretical values in our algorithm. 
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Figure 20  Theoretical coefficients vs.calculated coefficients vs. for one simulation, red line: y=x  

4.1.5 Which Pairs Are More Important for Folding of the Helix?

Now we want to identify the critical pairs for folding. Are the interactions of all 

pairs needed to fold a helix?  In section 4.1.1 it is shown that potentials of short pairs 

are more specific compared to the potentials of long pairs. In order to see the effect of 

pairs, simulations are performed by using potentials of certain pairs. First only 

potentials of pairs having sequence separation two are used. Then potential of pairs 

having sequence separation 3 is added and simulations are performed. For the same 

initial conditions simulations are repeated by increasing the number of pairs used.  

Mean RMSD values of these simulations are given in Figure 21 . It is seen that addition 

of the pairs having sequence separation greater than 6 doesn’t improve the folding much. 

On the other hand, the effect of pairs having sequence separation up to 6 is seen very 

clearly in Figure 21.  It can be concluded that the interactions for short pairs are more 

effective and important for folding of a helix than interactions of long pairs.  
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Figure 21  Mean Rmsd plots of folding simulations performed by using potentials of certain pairs

In order to interpret Figure 21 better, final conformations of the simulations using 

increasing number of pairwise interactions are shown in Figure 22 . These simulations 

were performed starting from the same initial conformation. When only the native pairs 

with relatively small separation (k=2-4) are used, the conformation is very compact. 

With the addition of other pairs with separation up to 7, the final conformation is much 

closer to the native state. 
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Figure 22 Evolution of the final fold using different pair interactions

We reconstructed the total force acting each bead by its pairwise components and 

we used these pairwise forces in dynamic model (3.30).  For each residue there are 10 

non-bonded pairwise components. The contribution of these components for each 

residue is analyzed. The magnitudes of these pairwise forces were calculated for each 

residue for each time step using data of 100 test simulations. Then, for each residue the 

number of occurrence of its pairwise interactions with the three highest magnitudes was 

recorded. The data are clustered according to sequence separation of pairwise 

components. Figure 23 shows the frequency plot of these pairwise forces. The trend is 

similar to Figure 21. Pairs having sequence separation k=2-6 have the most significant 

contribution to the force field.
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Figure 23 Frequency plot of pairwise components with maximum interactions

4.1.6 Analysis of Mean Potential Recovery in Folding Simulations 

Here, we want to find out how much of the mean potentials are recovered in folding 

simulations. Since, as mentioned in section 3.3, there is a rank deficiency of the system, 

mean potentials are not recovered exactly.  However folding simulations give very good 

results. One way of making this analysis is to calculate the pair potentials using the data 

acquired from the simulations. So, folding simulations are performed for 200 random 

initial conditions by using derived pair potentials. Results (trajectory and force data) of 

these simulations are used to calculate pair potentials. For several pairs the mean 

potential derived from optimization data and the recovered mean potential calculated 

from simulations are given in Figure 24. These plots show that pair potentials are 

recovered very well for long pairs. For short pairs potentials are not recovered as good 

as in the case of long pairs. However, for short pairs this result is acceptable since the 

difference is not much and general trend of potential is conserved. 

However in simulations excluded volume constraints may be violated due to errors 

in force reconstruction. In our test simulations, it was seen that maximum average 
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violation of only 10% in some of the pairs. Excluded volume violation is unavoidable 

since there are always errors due to averaging. 
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            Pair  1-3                                                   Pair  2-6

   

    Pair  3-8                                                  Pair  4-10

Pair  5-12                                                                    Pair 1-11

Figure 24 Pair potential plots for  derived from both optimization data and simulation data for several pairs,

*: derived from simulations, ο : derived from optimizations, x-axis: Pair distance, y-axis : Mean force
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 4. 2 Results for the Beta Sheet 

Beads 1 through 6 and beads 7 through 12 form the two strands of the beta sheet, 

respectively as shown below (Figure 25).

Figure 25 Backbone representation  of  the beta sheet

4.2.1 Pair Potentials for the Beta Sheet

For a beta sheet, clustering of forces according to sequence separation does not lend 

itself to any meaningful result as in the case of helix. This is because potentials for 

residues on the same strand and for residues on the opposite strands may not have the 

same characteristics. For instance, pair 7-11 (both residues on the same strand) and pair 

5-9 (residues on different strands) behave differently despite having the same sequence 

separation k=4. This is illustrated in Figure 26. The mean force for the pair 5-9 is 

mostly attractive while the opposite is true for the pair 7-11.  
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Figure 26  Mean Forces of pairs 7-11 and 5-9. ijr denotes ijr

Due to this difference in behavior, we classify the pairs into two groups: pairs whose 

residues are on the different strands; and pairs whose residues are on the same strand.  

First interactions acting across the two strands are analyzed. Figure 27 shows the mean 

forces for the interactions between residues 1-6 on one strand and residues 7-12 on the 

opposite strand. In the first three plots, all six mean forces for the interactions between 

residues (1, 2, and 3) and (7-12) have the same trends. As sequence separation increases, 

the attractive mean forces have relatively steady forces for a wider range of n
ijij rr  .

This situation is effective for the interactions among beads with maximum sequence 

separation, at the two ends of the strands away from the turning point, i.e. between 

(1,2,3) and (9, 10, 11 and 12). Mean forces acting between these residues are as high as 

possible to bring them to their native state separation. 

Interactions of beads (1, 2, 3) with the other two residues 7, 8 are of the same nature 

but last for a much smaller range of n
ijij rr  (no flat region is observed). They are 

also more repulsive and smaller in magnitude. This is due to the fact that the sequence 

separations between (1-3) and (7-8) are smaller than (1-3) and (9-12). 

In addition, interactions across the two strands become more specific as one 

approaches the turning point. We see this change in the characteristics of interactions 
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between the rest of the residues (4, 5, and 6) and the residues on the opposite strand (7-

12). As seen in the fourth plot in Figure 27, residue number 4 is in transition, bearing 

similarities to the residues (1, 2, and 3) but at the same time having its own distinct 

behavior. We see more of this distinction in the interactions of residues 5 and 6. The 

magnitudes of interactions of (4, 5, and 6) are smaller and they are more repulsive than 

those of (1, 2, and 3). In general it can be concluded the further away the residues are 

from the turning point, the more similar their mean interaction forces across the beta 

strands are. 

Finally the mean forces among the residues that are located on the same strand are 

analyzed. Figure 28 shows these mean forces. These forces are mostly repulsive since 

these residues repel each other in order to stretch and form the strand structure. 
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Bead 1 Bead 2

Bead 3      Bead 4

Bead 5 Bead 6

Figure 27  Mean forces for pairs whose residues are on different strands, x-axis: pair distance, y-axis : Mean 

force
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Bead 1 Bead 2

Bead 3 Bead 4

Bead 5 Bead 6

Figure 28 Mean forces for pairs whose residues are on the same strands, x-axis: n
ijij rr  , y-axis : 

Mean force
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4.2.2 Folding Test Simulations of the Beta Sheet 

Derived pair potentials for the Beta sheet is used in folding simulations as described 

in section 3.3. The functional forms of pair potentials are given in Appendix A.2.  For 

200 random different initial conformations, the folding simulations were performed. 

Figure 29 shows RMSD distribution of these simulations. The mean RMSD of these 

simulations is 1.42 Å. Although, this RMSD value is not as good as in the case of helix, 

it is still a good result for folding. 

Figure 29 The RMSD distribution of Test Simulations

4.2.3 Trajectory Analysis of the Test Simulations

t score plots and SPE plot for these test simulations are given in Figure 30 and 

Figure 31 respectively. Both t score and SPE points of most of the test simulations lie in 

the same region with those of optimization simulations. So, it can be concluded that the 

trajectories of these test simulations are similar to those of optimizations. 



Chapter 4: Results and Discussion 56

Figure 30 t score plots for optimization simulations and test simulations. Dots represent the  

optimization simulations, circles show test simulations, the elliptical contour shows the 99% 

confidence limit

Figure 31 Square prediction error (SPE) plot for optimization simulations and test simulations. See 

legend for figure 30.
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4.2.4 Force Analysis at equilibrium 

Theoretical values of forces and coefficients at equilibrium are calculated as in 

section 4.1.4. Figure 32 and Figure 33 shows theoretical and calculated values of both 

forces and coefficients for one simulation. It is seen that theoretical and calculated 

coefficients are close to each other. 

Figure 32 Theoretical coefficients vs. calculated coefficients vs. for one simulation, blue line: y=x  
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Figure 33 Theoretical forces vs. Reconstructed forces for one simulation, blue line: y=x  

4.2.5 Important Pair interactions for folding of Beta Sheet

The analysis of effect of the pairs for folding of beta sheet is different than that of 

helix. In helix, pairs are clustered according to sequence separation and it is shown that 

the effects of short pairs are more important. However, for beta sheet it is not useful to 

cluster pairs according to sequence separation. At first the effect of native pairs is 

analyzed. In order to do this, a folding simulation was performed by using only the 

interaction of native pairs. In this simulation 2.06 RMSD was achieved. The structure of 

turning point couldn’t be achieved well by using native pairs only. So some pair 

interactions are needed in order to acquire stretched strands (Figure 35). Then for the 

same initial conformation another folding simulation is performed by adding two pairs 

(1-6 and 7-12) to native pairs. Two pairs (2-6 and 7-11) which can result stretching of 

strands are added and simulation was performed again. As the pairs on the same strand 

are added better RMSD value is obtained. When all pairs are used 0.68 RMSD is 

obtained (Figure 34). As a result it can be concluded that native pairs can bring two 

strands closer effectively. However structure of turning point and structure of strands 
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are not adequately obtained using only native pairs. Other pairs are needed to make 

folding better. 

Figure 34 RMSD plots of several simulations 

Figure 35  Final structures of several simulations 
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4.2.6 Analysis of Mean Force Recovery 

It is questioned whether mean forces are recovered as well as helix case. It is done 

as in section 4.1.6.  Starting from 500 random different initial conformations folding 

simulations were performed the pair potentials obtained from optimization data.  

Results (trajectory and force data) of these simulations are used to calculate pair 

potentials. For several pairs the mean potential derived from optimization data and the 

recovered mean potential calculated from simulations are given in Figure 36. These

plots show that pair potentials are recovered very well in folding simulations of the beta 

sheet. 
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Pair 1-11 Pair 2-6

Pair 7-10 Pair 3-11

Pair 1-7 Pair 2-12

Figure 36  Mean force plots for derived from both optimization data and simulation data for several pairs, 

ο: derived from simulations, * : derived from optimization, x-axis: Pair distance, y-axis : Mean force
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Chapter 5

CONCLUSION

Study of pair potentials for folding is critical for understanding the process of 

protein folding. In this thesis, we obtained pair potentials for optimal folding of 

secondary structures (helix and beta sheet). The pair potential is defined as mean force 

for pairwise interaction. A method is developed to derive the mean forces from folding 

pathways. In order to obtain optimum folding pathways a dynamic optimization method 

developed by Guner et al. is used. In this method amino acids are represented by beads. 

The dynamic model is based on the Newton’s equations of motion. Folding is achieved 

by bringing pairs to their native state distances. Deviation of pair distances from their 

native state values is minimized during folding. Excluded volumes and bond lengths are 

implemented as constraints. Forces acting on each bead and position of beads are 

obtained using this optimization method. Using this force and position data, obtained 

from many optimizations, pairwise mean forces are derived. 

In this study, optimal folding paths for a generic helix and beta sheet, both 

containing 12 residues, are obtained for many different random initial conformations.  

Pairwise mean forces are derived using the optimization data. A method for using these 

pair potentials in dynamic folding simulation is presented. Starting from many different 

random initial conformations, the folding test simulations were performed using derived 

potentials. In these simulations, helix and beta sheet are successfully folded with mean 

RMSD values, 0.44 and 1.42 Å respectively. Multi-way Principle Component Analysis 

(MPCA) method is implemented to analyze whether the trajectories of these test 

simulations are similar to those of optimizations. Pair distance data of trajectories are 

used for this analysis. It was shown that the trajectories of these test simulations are 

similar to those obtained from optimizations. 
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We have shown the important characteristics of these pair potentials. For example, 

in helix contribution of the pairs having long sequence separation (k > 7) to the folding 

is relatively insignificant. For beta sheet, interactions between native contact pairs can 

bring the two strands closer. However, additional some non-native interactions are 

needed to shape these strands better.

In addition, the pair potentials we obtained are distance-dependent and sequence-

specific but not residue-specific. So, ab initio folding is not possible with these 

potentials but optimal folding pathways can be obtained by knowing the native state 

structure.

Our pair potential derivation method is not restricted to secondary structures. It can 

be applied to any dynamic folding pathway. So, potentials for tertiary interactions can 

be derived using folding pathways for a complete protein structure. However, many 

optimization runs for folding of a tertiary structure take too much time. This time 

problem can be overcome as follows:  Secondary structures are assumed to be formed 

beforehand and afterwards optimization can be performed to fold them to compact 

native structure. Optimization model can be modified to pack these secondary structures 

optimally. Since pairwise mean forces for secondary structures were developed, only 

mean forces for tertiary interactions should be determined.

As a future work, a hierarchical method to combine and coordinate the mean forces 

for secondary and tertiary interactions can be studied.  If that can be achieved, near-

optimal pathways for folding of a protein will be acquired without performing an 

optimization simulation. Since folding simulations with these derived pair potentials are 

much faster than optimizations simulations, rich data for conformational sampling of 

optimal pathways can be obtained. 
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APPENDIX

A.1 Pair Potentials for Helix

For helix structure curve fitting is made for two regions of pair potentials; pair distance 

greater than native value and pair distance smaller then native value.  This is done because 

potentials have different structure in these regions. Linear fitting is made when pair 

distance is smaller than that of native value and its functional form is : 

nrmg ijij 

Table 1 Coefficients for the function of pair potential for the distance smaller than n
ijij rr   (  for pairs 

having sequence separation greater than 5) 

BEAD BEAD m n
1 6 -2.644 16.33

1 7 -0.332 -2.046

1 8 -0.228 0.712

1 9 1.216 -15.282

1 10 0.928 -19.488

1 11 -0.116 -6.566

1 12 1.428 -22.598

2 7 -0.52 0.868

2 8 -1.194 10.526

2 9 1.11 -11.546

(A.1)
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2 10 1.778 -26.344

2 11 -0.084 -6.912

2 12 1.44 -24.382

3 8 -0.93 5.258

3 9 1.954 -21.552

3 10 2.414 -33.568

3 11 0.446 -12.176

3 12 2.554 -42.38

4 9 -2.554 18.888

4 10 -0.596 3.062

4 11 2.292 -20.664

4 12 2.996 -33.412

5 10 -2.816 20.454

5 11 -3.618 33.034

5 12 6.206 -58.348

6 11 -1.578 10.966

6 12 0.42 -10.524

7 12 -2.178 13.798

For pair distance greater than that of native state value third order polynomial fitting is 

made and its coefficients are given.  The function for this fitting is given as:

nrmlrkrg ijijijij  23
(A.2)
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Table 2 Coefficients for the function of pair potential for the distance greater than n
ijij rr   (  for pairs 

having sequence separation greater than 5) 

BEAD BEAD k l m n
1 6 0.05 -2.02 27.474 -119.5

1 7 0.034 -1.542 24.872 -129.586

1 8 0.02 -0.992 17.248 -87.994

1 9 0.022 -1.268 24.48 -143.61

1 10 -0.006 0.31 -4.458 18.044

1 11 0.006 -0.434 11.994 -97.332

1 12 0.008 -0.624 16.058 -123.15

2 7 0.036 -1.45 20.322 -92.702

2 8 0.024 -1.154 19.65 -104.068

2 9 0.02 -1 17.054 -85.634

2 10 -0.004 0.292 -5.234 32.274

2 11 0 -0.074 4.022 -41.156

2 12 0.006 -0.42 11.27 -91.168

3 8 -0.008 0.188 1.056 -19.56

3 9 0.026 -1.216 20.06 -108.152

3 10 -0.012 0.81 -14.322 80.328

3 11 -0.006 0.414 -7.156 41.896

3 12 0.006 -0.344 8.714 -70.246

4 9 0.074 -2.878 37.612 -156.756

4 10 0.004 -0.17 4.048 -26.334

4 11 0.012 -0.616 11.174 -56.158

4 12 0.014 -0.786 15.43 -89.41

5 10 0.034 -1.338 19.306 -91.456

5 11 0.014 -0.756 14.556 -82.7
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5 12 0.014 -0.694 12.348 -64.266

6 11 0.052 -2.144 30.448 -140.014

6 12 0.028 -1.31 21.18 -112.434

7 12 0.042 -1.7 23.302 -103.386

Table 3 Coefficients for the function of pair potential for the distance greater than n
ijij rr  (  for pairs 

having sequence separation less than 5) 

BEAD BEAD k l m n
1 3 3.974 -76.898 494.076 -1055.82

1 4 0.322 -7.946 64.008 -166.112

1 5 0.076 -2.354 23.176 -64.76

2 4 2.884 -58.578 396.65 -898.058

2 5 0.428 -10.348 81.516 -203.552

2 6 0.12 -3.586 34.646 -101.62

3 5 9.588 -188.214 1229.57 -2674.06

3 6 0.578 -14.302 116.434 -309.788

3 7 0.094 -2.764 27.576 -88.198

4 6 8.638 -168.708 1095.714 -2367.57

4 7 0.54 -13.044 102.596 -256.606

4 8 0.076 -2.35 23.78 -69.514

5 7 11.328 -222.35 1452.724 -3158.07

5 8 0.362 -8.634 67.814 -169.048

5 9 0.112 -3.334 33.084 -99.568

6 8 13.606 -267.756 1755.034 -3831.96

6 9 0.67 -16.436 131.606 -337.46
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6 10 0.116 -3.442 34.208 -108.954

7 9 10.98 -212.144 1363.072 -2912.82

7 10 0.436 -10.364 81.046 -204.772

7 11 0.058 -1.758 17.554 -50.642

8 10 11.104 -216.992 1410.502 -3049.67

8 11 0.334 -8.068 63.536 -156.67

8 12 0.06 -1.884 19.314 -57.004

9 11 5.654 -110.888 723.98 -1574.55

9 12 0.426 -10.576 85.306 -221.788

10 12 7.556 -148.412 968.98 -2105.49

A.1 Pair Potentials for Beta Sheet

For beta sheet curve fitting is made for two regions of pair potentials; pair distance 

greater than native value and pair distance smaller then native value.  Third order 

polynomial is fitted to data:

nrmlrkrg ijijijij  23

Table 4 Coefficients for the function of pair potential for the distance greater than n
ijij rr 

BEAD BEAD k l m n
1 3 7.412 -152.912 1050.326 -2405.07

1 4 1.92 -60.436 634.92 -2229.1

1 5 0.844 -36.672 531.754 -2574.08

1 6 -2.012 108.716 -1956.85 11722.88

1 7 -0.062 4.082 -84.358 553.87

1 8 0.024 -1.438 30.128 -209.89

1 9 0.008 -0.654 16.948 -118.634



Appendix 69

1 10 0.016 -1.022 22.204 -125.932

1 11 0.006 -0.382 7.662 -18.138

1 12 0.004 -0.32 6.73 -16.574

2 4 -0.612 11.67 -72.948 148.424

2 5 2.722 -90.462 1001.37 -3692.66

2 6 -1.772 75.722 -1077.84 5105.494

2 7 -0.406 19.668 -313.966 1650.222

2 8 0.004 -0.262 6.38 -42.12

2 9 0.006 -0.402 10.36 -53.432

2 10 0.018 -1.078 20.146 -86.29

2 11 0.008 -0.46 8.652 -17.636

2 12 0.008 -0.588 12.818 -60.176

3 5 6.964 -157.882 1191.5 -2993.98

3 6 1.664 -61.096 741.692 -2984.06

3 7 0.964 -36.954 473.582 -2022.57

3 8 0.07 -2.828 38.718 -166.316

3 9 0.018 -0.926 16.108 -60.08

3 10 0.024 -1.158 18.294 -57.056

3 11 0.014 -0.818 15.15 -56.424

3 12 0.016 -1.044 22.348 -127.496

4 6 13.724 -322.826 2521.006 -6539.8

4 7 0.18 -5.224 51.484 -170.292

4 8 0.15 -4.58 45.434 -137.086

4 9 0.034 -1.326 16.936 -47.466

4 10 0.05 -2.27 32.916 -127.56

4 11 0.032 -1.734 30.618 -151.66

4 12 0.03 -1.918 40.448 -261.168

5 7 6.5 -126.506 817.294 -1750.97

5 8 0.466 -11.368 91.808 -241.718

5 9 0.162 -5.228 56.444 -188.938
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5 10 0.17 -6.906 92.392 -396.036

5 11 0.034 -1.742 30.682 -173.114

5 12 0.062 -3.646 73.226 -490.13

6 8 9.972 -199.026 1319.896 -2910.22

6 9 2.93 -86.146 843.708 -2749.43

6 10 1.066 -41.384 536.702 -2325.11

6 11 -0.11 5.404 -83.572 409.418

6 12 -1.18 68.422 -1314.39 8360.75

7 9 300.404 -6846.69 52001.71 -131622

7 10 1.586 -57.262 683.492 -2699.59

7 11 66.782 -2884.51 41527.71 -199280

7 12 -3.654 130.512 -1165.2 0

8 10 12.794 -288.274 2161.074 -5392.58

8 11 7.682 -257.662 2878.398 -10710.9

8 12 -30.442 1315.262 -18933.3 90803.09

9 11 -5.164 114.526 -846.5 2084.942

9 12 98.974 -3258.04 35749.2 -130754

10 12 397.826 -8849.39 65613.25 -162156

When pair distance is less than n
ijij rr    3rd order polynomial and linear fitting is made 

depending of the behavior of potential. In addition in Table 5 some coefficients are zero 

because in optimization distance between native pairs can not be less than equilibrium 

value. 

Table 5  Coefficients for the function of pair potential for the distance less than n
ijij rr 

BEAD BEAD k l m n
1 3 38.698 -807.532 5612.858 -12997.2

1 4 -0.376 9.902 -87.152 252.306

1 5 -0.072 2.254 -23.64 77.452
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1 6 0.022 -0.856 10.846 -50.522

1 7 0 0 1.338 -27.716

1 8 0 0 0.57 -15.742

1 9 0 0 1.93 -24.362

1 10 0 0 -2.494 14.736

1 11 0 0 0 0

1 12 0 0 0 0

2 4 0 0 0 0.96

2 5 0 0 -1.096 6.626

2 6 0 0 -1.384 10.652

2 7 0.196 -6.66 74.22 -273.572

2 8 -0.234 5.38 -39.144 86.596

2 9 0 0 -0.926 8.232

2 10 0 0 0 -0.588

2 11 0 0 0 0

2 12 0 0 0 -1.88

3 5 0 0 -1.496 6.35

3 6 0 0 -1.868 12.576

3 7 0 0 -1.022 7.882

3 8 0 0 -1.568 11.242

3 9 0 0 0 -0.342

3 10 0 0 0 -0.56

3 11 0 0 0 0

3 12 0 0 -1.098 7.896

4 6 0 0 0 -3.966

4 7 0 0 -1.932 11.226

4 8 0 0 0 -0.034

4 9 0 0 0 0

4 10 0 0 0 -0.092

4 11 0 0 0.948 -6.602
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4 12 0 0 -0.084 -3.032

5 7 0 0 0 -4.19

5 8 0 0 0 -3.25

5 9 0 0 0 -1.548

5 10 1.458 -37.514 318.748 -895.666

5 11 0.444 -13.116 128.056 -416.264

5 12 0 0 0.99 -21.408

6 8 0 0 0 -5.01

6 9 0 0 -1.546 8.672

6 10 0 0 -1.594 11.616

6 11 0 0 -0.398 0.152

6 12 -0.022 0.728 -7.024 5.768

7 9 0 0 -1.91 8.318

7 10 -0.04 1.458 -17.188 61.726

7 11 0.056 -1.876 19.26 -63.984

7 12 -0.004 -0.052 3.244 -34.28

8 10 0 0 0 -1.492

8 11 0 0 -1.728 12.586

8 12 0 0 0.196 -8.936

9 11 0 0 -0.494 0.66

9 12 -0.288 7.116 -57.28 144.084

10 12 0 0 -0.3 -2.722
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