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ABSTRACT 
 

 
Protein-protein interaction networks reveal that some proteins are highly connected 

to others (acting as hub proteins), whereas some others have a few interactions. The 

same or overlapping binding sites should be repeatedly used in hub proteins (single 

interface hub proteins) making them promiscuous. Alternatively, multi-interface hub 

proteins make use of several distinct binding sites to bind to different partners. 

Understanding the interactions with respect to their physical and chemical properties 

requires the atomistic details of the proteins, namely the three-dimensional structures.  

Then again, cancer-related proteins are more likely to act as hubs in interaction 

networks. In this thesis, we investigate “what features of cancer-related protein 

interfaces make them act as hubs” and “how it is possible for them to bind to many 

different proteins with varying affinity”. We provide a detailed analysis of human 

protein-protein interaction network including cancer-related interactions. First we 

analyze the global behavior of cancer-related proteins, second we hold a structural 

perspective to elucidate how these proteins interact and figure out which interactions 

can occur simultaneously and which ones exclude each other. The results reveal that 

cancer-related proteins tend to interact with their partners through distinct interfaces, 

thus corresponding mostly to multi-interface hubs (56% of cancer-related proteins are 

multi-interface) and constituting the nodes with higher essentiality in the network (76% 

of them are essential). In addition, they have smaller, more planar, more charged and 

less hydrophobic binding sites compared to non-cancer ones which may indicate low 

affinity and high specificity of the cancer-related interactions. These findings might be 

important in obtaining new targets in cancer as well as finding the details of specific 

binding regions of putative drug candidates in cancer.  
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ÖZET 
 
 

Protein-protein etkileşim ağları ortaya çıkarıyor ki bazı proteinler diğerleriyle 

oldukça iletişim halindeyken (merkez proteinler olarak görev almaktadırlar), bazılarının 

birkaç tane iletişimi vardır. Aynı veya üst üste gelen bağlanma yerleri merkez 

proteinlerde (tek ara yüzeyli merkez proteinler) ardı sıra kullanılmalıdır ki bu onları 

farksız kılar. Alternatif olarak, çoklu-ara yüzeyli merkez proteinler birkaç farklı 

bağlanma yüzeyini kullanarak farklı partnerlere bağlanırlar. Etkileşimleri fiziksel ve 

kimyasal özelliklerine göre anlamak proteinlerin atomik detaylarını; yani üç boyutlu 

yapıları gerektirir. Ve yine, kanserle ilgili proteinler etkileşim ağlarında merkez 

proteinler olarak görev yapmaya daha eğilimlidirler. Bu tezde, “kanserle ilgili protein 

ara yüzeylerinin hangi özellikleri onların merkez proteini olarak görev yapmasını 

sağlıyor” ve “bunların birçok farklı proteine değişen eğilimlerle bağlanması nasıl 

mümkün oluyor” araştırıyoruz. Kanserle ilgili etkileşimleri içeren insan protein-protein 

etkileşim ağının detaylı bir analizini sağlıyoruz. İlk olarak, kanserle ilgili proteinlerin 

genel davranışlarını inceliyor, ikinci olarak yapısal bir perspektiften bakarak bu 

proteinler nasıl etkileşime giriyor ve hangi etkileşimler aynı anda oluyor ve hangileri 

aynı anda olmuyor, aydınlatıyoruz. Sonuçlar gösteriyor ki, kanserle ilgili proteinler 

partnerleriyle farklı ara yüzeylerden etkileşime giriyor, böylece daha çok çoklu-ara 

yüzeyli merkez proteinlere denk geliyor (kanser proteinlerin %56 sı çoklu-ara yüzeyli) 

ve ağdaki gerekli düğümleri oluşturuyor. (bunların %76 sı gereklidir). Buna ek olarak, 

kanserli olmayanlarla karşılaştırıldığında, kanserle ilgili etkileşimlerin daha küçük, daha 

düzlemsel, daha yüklü, az hidrofobik bağlanma yüzeyleri vardır. Bu bulgular kanserde 

varsayılan ilaç adaylarının spesifik bağlanma bölgelerinin detaylarını bulmak açısından 

önemli olduğu kadar kanserde yeni hedefler bulmak açısından da önemlidir. 
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Chapter 1 

 

INTRODUCTION 

 

 

Protein-protein interactions play important roles in most cellular and molecular 

processes. Since proteins interact with other proteins, and with DNA, RNA and small 

molecules to become functional, observing these interactions all together in a network 

representation is crucial. Thereby, analysis of protein-protein interaction networks 

provides valuable information about protein function and complex cellular processes 

[1]. 

With the increase of protein interaction measurements, protein-protein interaction 

networks serve as important tools to understand the molecular mechanisms of disease. 

The studies, which have focused on analyzing the network properties of disease genes, 

have concluded that network topology of disease genes are quite different from those 

not involved in disease [2-4]. Thus, based on network topology, or functional 

relatedness of genes and known interactions, potential disease genes are discovered [5, 

6]. 

Recently, the studies, which analyze structural interaction networks, have gained 

importance. The underlying reason is that protein interaction networks do not reflect the 

chemical and structural properties of interactions, and a better understanding of how 

molecules interact can be obtained only from three-dimensional (3D) structures [7]. 

However, determining 3D structures has been a hard work; thus, studies have presented 

methods to model interactions on complexes of known 3D structures [7-9]. In addition, 

structural modeling has been combined by network analysis, which has revealed 

relationships between network topology, genomic features and structure [10]. 
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In this thesis study, differently from previous structural studies, we integrate 

protein-protein interfaces into structural network, focus on cancer-related proteins and 

investigate interface properties of cancer/noncancer protein interactions to shed light on 

interaction details. We provide a detailed analysis and comparison of six interaction 

networks: 1) human protein-protein interaction network, (PIN), 2) human cancer-related 

protein-protein interaction network, cPIN, a sub-network of the first. Then, we 

characterize the interactions in these networks by combining three-dimensional protein 

structures. Thus, we have: 3) the network constructed by selecting genes for which 

three-dimensional protein data is available, SPIN, a sub-network of the first, 4) human 

cancer-related structural protein-protein interaction network, cSPIN, a sub-network of 

SPIN. We map the known structural data into these networks whenever complex 

structure is available. For the rest, we predict the complex structures of the interactions 

through structural templates and hot spots using PRISM [11, 12]. So the last two 

resulting networks are “structural interface” networks: 5) human structural protein 

interface network (iSPIN) and 6) structural cancer-related protein interface network 

(ciSPIN). These six networks are analyzed and compared to highlight the advantages of 

using structures. The results reveal that cancer-related proteins tend to interact with 

their partners through distinct interfaces, thus corresponding mostly to multi-interface 

hubs and constituting the nodes with higher essentiality in the network. In addition, they 

have smaller, more planar and more hydrophilic binding sites compared to non-cancer 

ones which may indicate low affinity and high specificity of the cancer-related 

interactions.  

The outline of the thesis is arranged as follows; Chapter 2 includes the summary of 

the related work in the literature. Studies about the analysis of protein-protein 

interaction networks, applications of protein networks to disease and structural 

interaction networks are presented.  

In Chapter 3, the methodology of this thesis study is illustrated in detail. The 

approaches to map interactions to known three-dimensional structures, to define 

network topology and genomic properties, to predict interaction interfaces and verify 
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them, to classify network hub proteins with respect to number of interfaces and analysis 

of interface properties are explained. 

Chapter 4 is the results part and includes the analysis of human protein-protein 

interaction network and its corresponding structural interaction network.  

As presented in Chapter 5, this thesis study is concluded with discussion of the 

results and future directions. 
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Chapter 2 

 

LITERATURE REVIEW 

 

 

In this chapter, the summary of the related work in the literature is presented. Firstly, 

the applications of protein networks to disease are described. Then, the studies analyzing 

protein-protein interaction networks in terms of topological properties, protein function, 

expression dynamics and other genomic features are explained. This chapter continues with 

works about structural networks which combine structural modeling with network analysis.  

 

2.1. Protein-protein interaction networks 

Proteins do not function in isolation, but rather they interact with other proteins and 

with DNA, RNA and small molecules to accomplish their function. Thus, observing these 

interactions all together in a network representation seems to be crucial. Protein-protein 

interaction networks provide a valuable framework to annotate protein function and 

understand complex cellular processes [1]. Moreover, they serve as an important tool to 

understand the molecular mechanisms of disease. 

 

2.1.1. Protein networks in disease  

This section reviews the protein network analysis of human disease: the works, which 

aim to identify new candidate disease genes and investigate their network properties, are 

summarized. With the increase of human interactome data, research groups have focused 

on studying the networks underlying human disease [13].  
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Wachi et al. (2005), for the first time, have studied the predicted human interaction map 

for the analysis of cancer. They have analyzed the topological features (degree distribution 

and centrality) of differentially expressed genes in lung squamous cancer tissues. They 

have found that squamous cell lung cancer genes are highly connected and central; hence 

display the same topological properties of essential genes. These findings are explained by 

the idea that squamous cell lung cancer genes are essential for survival and proliferation of 

the cancerous tissues [4]. 

In a comprehensive study including all known human cancer genes, Jonsson and Bates 

(2006) have illustrated that network topology of cancer proteins is different from non-

cancer proteins in the human interactome. Cancer proteins, on average, have twice as many 

interaction partners as non-cancer proteins and belong to larger communities [3]. 

Goh et al. (2007) have constructed a diseasome bipartite network which shows all 

disorders and the genes associated with the disorders. To infer human genetic disorders, 

they have used OMIM (Online Mendelian Inheritance in Man) [14] database. They have 

observed that disease genes tend to be coexpressed in specific tissues and interact mostly 

with other disease genes. Also, they have investigated the essentiality of genes in the 

human disease network; essential genes tend to encode highly connected proteins. 

However, in contrast to the previous studies, most of the disease genes are found to be 

nonessential and have no tendency to encode highly connected proteins. But, they have 

excluded the disease genes with somatic mutations from this finding and argued that 

somatic mutations leading to severe disease phenotypes should affect the functional center. 

When they have studied the properties of somatic cancer genes (Cancer Genome Census; 

www.sanger.ac.uk/genetics/CGP/Census they have observed the functional and topological 

centrality of the somatic cancer genes; they are more likely to encode hubs and be more 

essential [2]. 
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In a recent study, Rambaldi et al. (2008) have determined genomic and network 

properties of ~600 human genes related with different cancer types. They have found that 

cancer related genes duplicate less than other human genes, independently of their 

molecular function and type of cancer they belong to. They have stated that genes mutated 

in cancer encode proteins which position in the centre of highly interconnected clusters of 

the human protein interaction network. Moreover, they have suggested that cancer genes 

are more fragile than other human genes toward perturbations (gene dosage modifications). 

Dosage effects on the cell cycle and sensitivity of cancer genes have been also 

experimentally confirmed [15]. 

In addition to the network topology analysis of disease, research groups have also 

aimed to predict new disease-associated genes. Human genetic diseases are mostly caused 

by multiple genes, which are likely to be functionally related. One approach for finding 

novel disease genes is to investigate the functional relatedness of genes [16]. Oti et al. 

(2006) have showed that the use of protein-protein interaction data have improved the 

prediction of candidate disease genes. A gene has been predicted as disease-related if it has 

a protein interaction with a known disease gene and is found within chromosomal locations 

associated with the given disease [5]. In a similar study, Franke et al. (2006) have 

constructed a functional human gene network based on known interactions and functional 

relationships. They have related this network to candidate genes from different disease loci. 

Around each disease gene, susceptibility loci containing 100 genes are constructed. Their 

algorithm ranks candidate genes in the susceptibility loci and is able to detect disease-

causing genes with a 2.8-fold increase over random selection [17]. 

It has been observed that disease genes preferentially interact with other disease-

causing genes. Thus, heritable disease genes might share some topological features in the 

protein network [6]. Based on this approach, Xu et al. (2006) have performed a study in 

which several topological features of protein network are compared between known disease 
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genes and genes known not to be involved in disease. They have trained their classifier on a 

set of known disease genes and non-disease genes and applied the classifier to over 5000 

human genes. They have found novel 178 putative disease genes and some of them are 

validated by biological experiments [6]. 

 

2.1.2. Linking network topology to protein function and genomic features 

In network studies, finding relations between network topology and functional, genomic 

features has been an important goal. Such a study has been accomplished by Han et al 

(2004) in which they have linked network topology to expression dynamics. They have 

classified highly connected proteins (“hubs”) in the yeast interactome network into date 

and party hubs based on their partners’ expression profiles. Calculating the average Pearson 

correlation coefficients between hubs and their partners for mRNA expression, they have 

uncovered two kinds of hubs; the ones with relatively high average Pearson correlation 

coefficients are defined as “party” and the other with relatively low average Pearson 

correlation coefficients are defined as “date”. Party hubs presumably interact with most of 

their partners simultaneously, whereas date hubs interact with their partners at different 

times [18]. 

In another study, de Lichtenberg et al (2005) have mapped microarray expression data 

onto yeast protein-protein interaction network. Thus, they have analyzed the dynamics of 

protein complexes during the yeast cell cycle. Their time-dependent interaction network 

infers functional linkages between proteins and they have revealed previously unknown 

components and modules [19]. 

Network studies have usually focused on protein hubs. In the study of Yu et al (2007), 

another topological feature has been given importance; betweenness centrality, which 

measures the total number of nonredundant shortest paths going through a certain protein 

[20]. Proteins with a high betweenness centrality have been defined as bottlenecks. Yu et al 
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(2007) have analyzed the expression dynamics and gene essentiality of hubs and 

bottlenecks in protein-protein interaction network and regulatory network in yeast. In terms 

of expression correlation, they have stated that hub-nonbottlenecks (hubs with low 

betweenness centrality) are relatively well coexpressed with their neighbors, whereas most 

of the hub-bottlenecks (hubs with high betweenness centrality) are not very well 

coexpressed. Thus, they have concluded that hub-bottlenecks tend to be date-hubs and hub-

nonbottlenecks tend to be party-hubs. When they have considered the gene essentiality, 

they have found that a protein’s degree (number of interaction partners) is a stronger 

determinant of essentiality in the protein interaction network, whereas in the regulatory 

network, betweenness is a stronger determinant of essentiality. These findings have 

indicated the relationships between dynamics and topological features in the interaction 

network [20]. 

 

2.2. Structural networks 

Protein-protein interaction networks provide a basis to understand biological processes 

and protein function. However, they provide a rather abstract network representation of 

proteins since they do not reflect the chemical and structural aspects of interactions. At this 

point, introducing structural networks is necessary to reveal biological reality of the 

interactions. Structural network studies aim to find answers to such questions; which 

interactions can occur simultaneously and which ones exclude each other, do the 

interacting proteins form transient or stable complexes, what are the affinities and kinetic 

constants [21]. 

The pioneering work of Aloy & Russell (2002) has presented a method to model 

interactions on complexes of known 3D structures and illustrated how 3D structures can be 

used to infer molecular details of the interactions [7]. Their following studies have also 

focused on finding appropriate 3D structures to model binary interactions [8, 9]. They have 
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modeled complexes on a large scale in yeast using homology modeling, electron 

microscopy and affinity purification [8]. 

In an outstanding study, Kim et al (2006) have combined structural modeling with 

network analysis. They have mapped the interactions to known structures of interfaces and 

distinguished the interfaces of each interaction. For two or more proteins interacting with a 

common protein, if they use the same binding interface, the interactions have been 

categorized as mutually exclusive. If the proteins use different interfaces, interactions are 

simultaneously possible. They further have classified the network hubs as single-interface 

and multi-interface hubs. The former has at most two distinct binding interfaces and are 

enriched in signaling proteins, whereas the latter has more than two binding interfaces and 

tend to be members of large and stable complexes. Regarding the expression dynamics, 

they have found that multi-interface hubs are relatively well coexpressed with their 

neighbors, whereas single-interface hubs are not very well coexpressed. Thereby, they have 

stated that single-interface hubs seem to correspond to date-hubs and multi-interface hubs 

correspond to party-hubs [10]. In a recent study, they have used the same structural 

interaction network to explore the role of intrinsic disorder in this network. Disordered 

regions are the flexible and unordered segments of proteins [22]. They have found that 

single-interface hubs tend to be more disordered than the proteome average. On the 

contrary, the disorder level of multi-interface hubs cannot be distinguished from other 

proteins. The higher level of disorder of single-interface hubs is rationalized by their 

tendency to bind their partners in a cascade [22]. 

Regarding the pathways, including known or modeled structures into pathways 

provides a much better understanding of them. The order of interactions occurring through 

a pathway can be clarified by showing which interactions cannot occur simultaneously 

owing to a same binding interface. In addition, structured pathways can highlight the 

molecular mechanisms for a particular disease and provide a rational basis for designing 
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drug targets. In a recent study, Schroeder and his group (2007) have constructed a cell map 

related to pancreatic cancer by linking pathway approach, known interactions and 

structure-based interaction predictions. They have predicted 40 novel interactions that are 

specific for this disease [23]. 

 

 

 

 

 

 



 Chapter 3: Methodology                                                                                                    11   
 

 

 

Chapter 3 

 

METHODOLOGY 

 

 

This chapter contains the methodology followed in this study to generate a structured 

network and analyze the protein-protein interfaces, linking structure to network topology. 

First, the method for mapping the interactions onto known structures is presented. Then, 

interface prediction in the structured network is explained. Finally, the approach to define 

the topological properties and gene essentiality and analysis of interface properties for our 

networks are explained.  

 

3.1 Human protein-protein interaction and cancer-associated protein interaction 

datasets 

We have studied the human interactome constructed by Jonsson & Bates (2006) [3] and 

referred to this network as ‘PIN’. They have used an orthology-based method in which 

BLAST [24] searches were run for the human genome against all proteins in the DIP [25] 

and MIPS Mammalian Protein-Protein Interaction databases [26]. They have analyzed their 

putative interactions giving confidence scores based on the level of homology to proteins 

found experimentally to interact and the amount of experimental data available. After the 

ROC curve analysis, with a sensitivity of 85 % and specificity of 82 %, the human 

interactome consisted of 108113 binary gene-gene interactions and 13584 genes. From 

these interactions, the redundant ones, i.e. the interactions for which the RefSeq ID 

corresponding to the same genes, are omitted. Thereby, the network (PIN) consists of 
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85083 interactions. The list of cancer genes are taken from the comprehensive census of 

human cancer genes provided by Futreal et al (2004) [27]. 10724 interactions are cancer-

related in this interactome. In addition, we collected a set of known cancer genes from the 

Memorial Sloan Kettering computational biology website CancerGenes 

(http://www.mskcc.org/cancergenes) by the query of “tumor suppressor”, “oncogene” and 

“stability” genes. We combined that list with the known cancer genes of Futreal et al. [27]. 

Thus, cancer related interactions number increases to 27413. 

 

3.2 Mapping interactions to known 3D structures 

We used Swiss-Prot Knowledgebase [28] to map the binary interactions to known 

structures. The human genes, for which 3D structures are known, are compiled from Swiss-

Prot Knowledgebase. For each gene-gene interaction in the human interactome, a known 

complex structure is searched. If a known structure is not available for the interaction, we 

search for the structures of each gene and map each gene to the corresponding structure (as 

a single chain). If any of the genes in the binary interaction does not have a structural 

representation, then this interaction is omitted. The method can be further clarified by an 

example. In the human interactome, one of the binary interactions is TP53-MDM2 

interaction. The interaction is represented by a known complex structure in PDB [29] as 

1ycr. However, for the TP53-MDM4 interaction, there occurs no known complex structure. 

In this case, TP53 was represented by one of its corresponding structures; basically by the 

one with the highest resolution for which the PDB ID is 1aie_chain A. Similarly, for 

MDM4, the structure is 2cr8_chainA. In total, 206 interactions were mapped to known 

complexes. The summary of the mapping procedure is illustrated in Figure 3.1. 
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Figure 3.1. Flowchart shows the method of mapping interactions to 3D structures.  The 

method is applied for all the interactions in the human interactome (PIN). 

 

The mapped protein-protein interaction network called ‘structural protein interaction 

network’ (SPIN) which consists of 1702 nodes (proteins) and 5312 edges (interactions). 

From 5312 interactions, 206 interactions are mapped to known 3D structures. Thereby, the 

interfaces of these 206 interactions are known. On the other hand, the interfaces of the 

remaining 5106 interactions are left for further prediction.  
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When the list of cancer-related proteins are searched through 1702 proteins, 466 of 

them are found to be encoded by cancer-related genes (cancer gene information from 

Futreal et al. [27] and the Memorial Sloan Kettering computational biology website 

CancerGenes http://www.mskcc.org/cancergenes ), the rest (1236 of them) is taken as 

encoded by noncancer genes. As a result, we define the ‘cancer structural subnetwork’ 

(‘cSPIN’), as the one consisting of cancer-cancer and cancer-noncancer gene interactions. 

Our cSPIN contains 1303 proteins and 3221 interactions. The total number of proteins and 

interactions for each network is summarized in section 4, Table 4.1. 

 

3.3 Definition of Hubs and Bottlenecks 

Degree represents the number of interaction partners of a protein. Betweenness is a 

measure of the total number of shortest paths going through a certain node or edge in the 

network [30]. We defined hubs as the proteins that are in the top 20% of the degree 

distribution in PIN and SPIN. That corresponds to proteins with ≥9 interactions. 

Accordingly, we defined bottlenecks as the top 20% proteins with the highest betweenness 

values. To calculate betweenness within the network, we used NetworkX (NX) 

(https://networkx.lanl.gov/wiki ) which is a Python package. Hubs were classified as hub-

bottlenecks and hub-nonbottlenecks according to high betweenness or low betweenness, 

respectively. 

 

3.4 Determination of essential human genes 

Goh et al (2007) [2] predicted the essentiality of a human gene using phenotype 

information of the corresponding mouse orthologs. A human gene was defined as 

“essential” if a knock-out of its mouse ortholog results in lethality. Here; 

embryonic/prenatal lethality and postnatal lethality are considered as lethal phenotypes, and 

the rest of phenotypes as non-lethal ones. We obtain the human-mouse orthology and 
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mouse phenotype data from Mouse Genome Informatics (http://www.informatics.jax.org ) 

on May 10, 2008. Of 1702 proteins in our SPIN, 1536 have mouse orthologs and 

phenotype information. According to our classification, we find 497 genes to be essential 

and the rest is non-essential.    

 

3.5 Extracting the Protein-Protein Interfaces in the SPIN using PRISM 

PRISM (protein interactions by structural matching) [11, 12] is a web server to predict 

protein-protein interactions and protein interfaces. The prediction algorithm uses structural 

and evolutionary similarities to find possible binary interactions between proteins (targets) 

through similar known interfaces (templates). Here, target proteins are the proteins in our 

SPIN dataset for which we want to predict the interaction interfaces. As template 

interfaces, we used the representative interfaces which are generated from the 

nonredundant data set of protein-protein interfaces [31] available at 

http://prism.ccbb.ku.edu.tr/interface , for which the interactions are biological according to 

NOXclass [32] outputs. There are 1478 template interfaces.  

PRISM prediction algorithm starts with extracting the surfaces of target proteins by 

invoking NACCESS [33]. Template interfaces are split into their complementary partner 

chains and these partners are structurally aligned with the surfaces of the target proteins. 

Similarity between the target surface and one partner of the template interface is measured 

using a scoring function based on two factors. First one is the structural similarity, in which 

RMSD and residue match ratio between target protein and the template interface is scored. 

The other factor considers evolutionary similarity in which hotspot match ratio is scored. 

(PRISM obtains the information on hotspots from Hotsprint [34], a web server for 

predicting hotspots at protein interfaces.) Then, combining these scores, PRISM predicts 

the most possible interactions occurring between the target proteins. 
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3.6 Elimination of crystal packing interfaces and interactions 

After we obtain the interfaces of the proteins in our network using PRISM, non-

biological interfaces, if any, should be eliminated. The interfaces having a biological score 

greater than 60% according to the NOXclass [32] outputs are accepted as biologically 

relevant. Thus, 357 interaction interfaces are predicted and most of them (80%) have 

biological score greater than 80%. Also, including the known interfaces coming from 3D 

structures, the resulting network which includes interface information is called ‘iSPIN’. It 

consists of 534 proteins and 563 interactions. The subnetwork of cancer-related interactions 

(ciSPIN) includes 381 proteins and 375 interactions. The protein and interaction numbers 

are given in Table 3.1.   

 

3.7 Hub classification: Single-interface and multi-interface hub 

Kim et al. (2006) [10] has classified protein hubs as singlish-interface and multi-

interface hubs. The former has at most two distinct binding interfaces, whereas the latter 

has more than two binding interfaces. In this study, we also classified the hubs in iSPIN 

according to the number of distinct binding interfaces; we defined single-interface hubs as 

the protein hubs with only one distinct binding interface and multi-interface hubs as the 

ones with more than one distinct binding interface. To distinguish overlapping interfaces 

from non-overlapping interfaces, we looked at the shared residue percentage of the 

interfaces of hub proteins. We defined shared residue percentage as the ratio of number of 

shared residues to the number of total interface residues. If the interface residues are shared 

at a percentage greater than 20%, then the corresponding interface is an overlapping one 

and interactions occurring through this interface are mutually exclusive, i.e. the interactions 

cannot occur at the same time. On the other hand, if the interface is not shared at all, 

meaning that shared residue percentage is less than 20%, then this is a non-overlapping 
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interface and the interaction through this interface is simultaneously possible, independent 

of each other. 

 

3.8 Interface property analysis 

For interface analysis, we used PROTORP [35] which invokes NACCESS [33], 

SURFNET [36] and PRINCIP (SURFNET) [36] for interface accessible surface area and 

gap volume and planarity calculation, respectively. PROTORP calculates the amino acid 

composition of residues defined in the interface as a percentage value of those classified as 

polar, non-polar and charged as described previously by Jones and Thornton [37]. The 

amino acid compositions are weighted and then normalized by the complex ASA values 

which are calculated using NACCESS. 

 

3.9 Statistical tests 

To determine the significance of the difference between interface properties of cancer 

and noncancer genes, statistical tests (nonparametric, one-tailed) are performed using 

GraphPad InStat software. 

 

3.10 Network topology analysis 

All the parameters describing the network topology are calculated using 

NetworkAnalyzer, which is a Java plugin for Cytoscape [38]. 

 



 
Chapter 4: Protein-Protein Interaction Network to Structural Interaction Network 18                                                                                                 
 

 

 

Chapter 4 

 

PROTEIN-PROTEIN INTERACTION NETWORK TO  

STRUCTURAL INTERACTION NETWORK 

 

 

4.1 Structural Protein Interface Network (iSPIN) 

We illustrate how to obtain a structure-integrated network from PIN. The seed network 

is the human protein-protein interaction network (PIN) where the nodes are proteins and 

the edges are interactions. We search which proteins in this networks have structural 

information in PDB and constructed a subnetwork with the extracted structures called as 

SPIN (see Methods for the details). To further integrate protein interfaces into SPIN, we 

map the known structural data of complexes into SPIN whenever complex structure is 

available. If a known structure is not available for an interaction, we predict the complex 

structures of the two interacting proteins by using structural templates and hot spots 

through PRISM [11, 12]. The resulting network which contains known complexes (from 

Protein Data Bank (PDB) [29]) and predicted complexes (from PRISM) contains interface 

knowledge, and is called iSPIN. The subsets of PIN, SPIN and iSPIN, which contains 

cancer-related interactions, are called cPIN, cSPIN and ciSPIN, respectively (See Methods 

section for further information). Table 4.1 lists the protein and interaction numbers in each 

of the interaction networks. Three networks; from PIN to iSPIN are represented in Figure 

4.1.We should note that there is a dramatic decrease in the number of proteins when going 

from PIN to SPIN. As seen in Figure 4.1, while PIN contains the information of gene 

interactions, SPIN only contains those with PDB IDs. And finally iSPIN contains the 
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information at the atomic level; protein interfaces. Although we provide a topological 

analysis of the networks, the main concern of this study is to present interface analysis of 

cancer-related proteins and in addition predict which interactions can and cannot occur 

simultaneously and ultimately, to emphasize the importance of using structures in network 

studies.  

 

Table 4.1. The number of proteins and interactions in each network. 

Network name Protein Interaction Known complex in PDB 

PIN 13584 85083 NA 

cPIN 8990 27413 NA 

SPIN 1702 5312 206 

cSPIN 1303 3221 149 

iSPIN 534 563 206 

ciSPIN 381 375 149 
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Figure 4.1 Representation of PIN,SPIN and iSPIN. In A) proteins in PIN are represented; the 

ones colored black have PDB IDs and the ones colored blue do not have PDB IDs. In B) The 

proteins with PDB ID and interactions among them constitutes SPIN. In C) The proteins with 

PDB ID and protein interface information and their interactions constitutes iSPIN. The zoomed 

representations give idea about what type of information each network contains; PIN is an abstract 

representation of interactions, SPIN is a subset of PIN with information of PDB IDs, and iSPIN 

contains the most detailed information including protein interfaces into network. All the networks 

are visualized using Cytoscape [38]. 
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4.2 Analysis of the interface properties in iSPIN 

We present the interface properties of interactions in iSPIN (both predicted and known 

PDB interfaces) such as the interface accessible surface area (ASA), planarity, gap volume 

index and residue composition at the interfaces.  

 

4.2.1 Cancer proteins have smaller, more planar, less tightly packed and less 

hydrophobic binding sites compared to non-cancer ones 

Physical properties of interfaces are computed for the interactions in iSPIN. We classify 

the interactions into two groups; ‘cancer-related interactions’ are those in which at least one 

partner is a cancer-related protein in a binary interaction and ‘noncancer interactions’ are 

the ones in which none of the proteins are known to be involved in cancer. In this way, 

there are 363 and 186 cancer-related and non-cancer interactions, respectively. For 

interface ASA calculation, PROTORP [35] invokes NACCESS [33] and difference in ASA 

between monomers and the complex is given as the interface ASA. Interface residues are 

defined as those residues that have an ASA that decreases by >1.0 Ångström2 on 

complexation.  Regarding the interface ASA (∆ASA), cancer proteins on average are 

observed to have a smaller interface ASA (1009.1 Å 2) than that of noncancer proteins 

(1242.9 Å2) (standard deviations and p-values are summarized in Table 4.2). These results 

indicate that the complex interfaces which are formed through the interactions of cancer 

proteins are less buried, or likewise, the monomeric surfaces of cancer proteins are less 

exposed. When the ASA of the complex structures are considered, it is found that ASA of 

cancer proteins (2210.9 Å 2) are statistically significantly smaller than that of noncancer 

proteins (2628.1 Å 2). It is known that transient complexes have smaller interface areas 

[39]. Our results show that cancer proteins use a smaller surface area while interacting and 

we know that they have many interaction partners [3], thus it may be hypothesized that 

they are more likely to be involved in transient interactions. 
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We also investigate the complementarity of the interfaces. Gap volume gives a measure 

of complementarity and closeness of packing of the interface between the two interacting 

proteins, by measuring the volume of empty space between them. Gap volume index is the 

ratio of gap volume to the interface area, therefore it estimates the volume enclosed 

between any two molecules, delimiting the boundary by defining a maximum allowed 

distance from both interfaces [40]. PROTORP uses SURFNET [36] for gap volume 

calculation. For the cancer related interactions, the average gap volume (5076.8 Å3) is 

found to be significantly smaller than the average gap volume of noncancer interactions 

(5574.5 Å3) (p-value = 0.0194 at α = 0.05). This is an artificial result or outcome of the 

smaller interfaces of the cancer proteins since volume is proportional to the surface area. 

On the other hand, the average gap volume indeces for these two categories are 2.76A˚ and 

2.54 A˚, respectively. The difference is significant; meaning cancer related interactions are 

less optimized in terms of complementarity. This indicates that, in fact, the 

complementarity and packing of two types (cancer/noncancer) are distinguishable from 

each other. 

To analyze the shapes of the interfaces, the planarity indices are used. PROTORP uses 

PRINCIP program which is a part of SURFNET package [36]. PRINCIP models a best-fit 

plane through the atoms defined in the interaction site using principal component analysis. 

For cancer-related interactions, the average planarity index (2.84) is smaller than that of 

non-cancer ones (3.06) with p-value 0.02 indicating that cancer-related interfaces are more 

planar. It is known that there is a high correlation between the planarity of the interfaces 

and the ASAs of the interfaces [41]. As the ASAs of the interfaces increases, the planarity 

index also increases, the interfaces become less planar, deviating from their principal axes. 

It is also known that transient complexes usually have more planar interfaces [39]. Here, 

consistent with previous findings, we observe that cancer proteins use more planar binding 

sites in their complexes. The results are summarized in Table 4.2. 
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Previously, smaller interfaces have been shown to display a reduced hydrophobic effect 

[42]. We investigate if this finding agrees with our results. Residue composition in the 

interface (polar, non-polar or charged) is analyzed using PROTORP. The residue 

compositions are normalized by the ASA in the complex structures (see Methods). The 

results reveal that cancer-related interactions show a reduction in hydrophobicity and an 

increase in charged interactions; thus having more hydrophilic interfaces compared to non-

cancer interactions. Although, in general, it is agreed that protein-protein interfaces are 

highly hydrophobic and hydrophobicity is a dominant force in protein-protein interactions 

[43], there are also studies indicating the importance of hydrophilic interface regions. In the 

study of Tormo et al. (1999), the interactions of NK (natural killer) receptors (which 

regulates NK cell function) have been studied and the interface of C-type-lectin-like 

receptor family (Ly49 A) has been detected to be highly hydrophilic and dominated by 

charged interactions [44]. For our iSPIN interfaces, charged interactions appear to play 

important roles as well, implying the significance of electrostatics in binding. A recent 

study indicated that favorable electrostatic interactions were not prerequisite for stable 

complex formation between proteins whereas hydrophobic effects were found to be 

favorable in native complexes [45]. Here, we also observe that cancer related proteins, 

which are intrinsically more disordered and transient [46], have less hydrophobic 

interactions as opposed to other proteins. 

 

Table 4.2. Average interface properties of cancer and non-cancer interactions. 

Interface property Cancer-related 

interactions 

Non-cancer 

interactions 

p-value (at α=0.05) 

∆ASA (A˚2 ) 1009.1(±611) 1242.9(±942) 3.1e-005 

ASA of the complex (A˚2 )  2210.9 (±1475) 2628.1(±1947) 3.2e-004 

Planarity (A˚ ) 2.84(±1.28) 3.06(±1.23) 0.02 
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Gap Volume Index  2.76(±1.48) 2.54(±1.27) 0.035 

% Polar residues in 

interface 

29.7 (±14.8) 

 

30.7 (±13.5) Not significant (0.07) 

% Non-polar residues in 

interface 

27.1 (±13.6) 28.8 (±12.9) 0.0035 

% Charged residues in 

interface 

43.2 (±16.6) 40.5 (±15.4) 0.003 

 

 

4.2.2 Hub proteins have smaller, more planar, less tightly packed binding sites 

compared to non-hub ones 

We also classified the interactions as “hub-involved” and “non-hub-involved” 

interactions. For the hub-involved interactions, at least one protein of the binary interaction 

is a hub protein, whereas for the latter, none of the proteins correspond to a hub. There are 

455 and 94 hub-involved and non-hub-involved interactions, respectively. As hub proteins, 

we considered the hubs of SPIN. We find that, on average, hub proteins tend to form 

smaller, more planar interfaces with their partners. In contrast to previous studies [47, 48], 

we find no significant difference on the residue composition of the interfaces (including 

charged residue content) of hub proteins. In terms of complementarity of the interfaces, hub 

proteins form looser complexes (gap volume index of 2.72 versus 2.49). The results are 

summarized in Table 4.3. 
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Table 4.3 Average interface properties of hub and nonhub interactions 

Interface property Hub-involved 

interactions 

Single-interface 

hubs 

Nonhub-

involved 

interactions 

p-value (at α=0.05) 

∆ASA (A˚2 ) 1011.0 (±434) 

1022.1(374) 

1459.9 (±1484) 1.8e-004  

0.0050 

ASA of the complex (A˚2 ) 2230.0 (±1326) 

2228.1(1178) 

2943.9 (±2691) 0.0015 

0.0011 

Planarity (A˚ ) 2.82 (±1.13) 

2.97(1.13) 

3.34 (±1.72) 0.0043 

0.0370 

Gap Volume Index  2.72 (±1.40) 

2.53(1.06) 

2.49 (±1.48) 0.0350 

Not significant (0.17) 

% Polar residues in 

interface 

30.5 (±14.5) 

32.5 (±14.6) 

29.9 (±13.3) Not significant (0.40) 

0.016 

% Non-polar residues in 

interface 

28.0 (±13.3) 

28.6(±12.2) 

28.1 (±13.1) Not significant (0.38) 

Not significant (0.29) 

% Charged residues in 

interface 

41.5 (±16.4) 

38.8(±0.16) 

42.0 (±15.4) Not significant (0.38) 

0.011 

 

4.2.3 Multi-interface and single-interface hubs have different interface characteristics 

Some hubs are single-interface (communicating with their partners by using the same 

interface) whereas others are multi-interface. We mapped hub proteins of SPIN onto iSPIN. 

The proteins which correspond to hubs of SPIN and have interaction number≥3 are 

considered as multi-interface or single-interface hubs. In this way, there are 79 hub proteins 

from which 42 of them are multi-interface and 37 are single-interface hubs. Interestingly 
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when we compared the interface characteristics of these two types of hubs, we observe that 

they have different characteristics. Usually multi-interface hubs are similar to non-hub 

interfaces. On the other hand, single-interface hubs are more polar and less charged than 

the multi-interface hubs and non-hub proteins (See the second lines in each row of Table 

4.3).  

 

4.3 Network Topology of the networks and relationship with essentiality 

To address the topological properties of each network, we calculated the degree 

distribution of proteins which is a measure of the number of interaction partners of the 

proteins. In Figure 4.2, the topological properties are visualized for SPIN. It is observed 

that the degree distribution of the proteins decreases slowly following a power-law (P(k) 

~kγ ,where k is the number of partner proteins) for each network. (For example, in Figure 

4.2A, R2 = 0.914 for power law fit for SPIN) This implies the fact that the networks have 

scale-free properties [49]. On average proteins in SPIN have 6.24 interaction partners.  In 

Figure 4.2B, average clustering coefficient which is a measure of proteins to form clusters 

in the network [49] is shown. Average clustering coefficient decreases as the number of 

interactions of the proteins increases since sparsely connected proteins are neighbors of 

highly connected proteins (hub proteins). For the hub proteins, the number of neighbors 

increase, but the number of connected pairs does not increase that much which causes 

average clustering coefficient to decrease. This behavior indicates the hierarchical 

organization in the protein interaction network [49].  In Figure 4.2C, the topological 

coefficient which is a relative measure for the extent to which a protein shares neighbors 

with other proteins [50] is displayed. The decreasing behavior of the topological coefficient 

as the number of interactions of a protein increases confirms the modular network 

organization, hub proteins do not share more neighbors with other proteins than the 

sparsely connected proteins. Figure 4.2D shows the shortest length distribution and 
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indicates that proteins are closely linked. The topological properties of other networks 

(PIN, cPIN, cSPIN, iSPIN, ciSPIN) show similar trends to those of SPIN explained above. 

When the cancer subnetworks are compared with the original ones (cPIN with PIN, cSPIN 

with SPIN and ciSPIN with iSPIN), the average clustering coefficient values are lower; i.e. 

the proteins have a lower tendency to form clusters. This is reasonable since cancer 

proteins are the key nodes that link different pathways and they spread throughout the 

network to function in these pathways. For example, the Cancer Cell Map 

(http://cancer.cellmap.org/cellmap/), which is a collection of human-focused cellular 

pathways implicated in cancer, contains ten pathways each having around 100-400 

interactions and usually the cancer genes function in more than one pathway. The network 

parameters calculated for each network are displayed in Table 4.4.  

 

Table 4.4 Network parameters calculated for each network 

 

Network type 

 

Parameter 

PIN cPIN SPIN cSPIN iSPIN ciSPIN 

Number of nodes 13584 8990 1702 1303 534 381 

Number of edges 85083 27413 5312 3221 563 375 

Clustering coefficient 0.109 0.080 0.143 0.113 0.089 0.051 

Characteristic path length 4.086 4.589 4.661 5.064 9.533 8.221 

Network diameter 11 11 11 11 23 20 

Network density 0.001 0.001 0.004 0.004 0.004 0.005 

Avg. number of neighbors 11.27 5.45 6.24 4.94 2.11 1.97 

 



 
Chapter 4: Protein-Protein Interaction Network to Structural Interaction Network         28    

  

 
 
 
 
 
 
 
Figure 4.2. Topological properties of SPIN. (A) Degree distribution of proteins, R2 = 0.914 

for power law fit (B) Average clustering coefficient (C) Topological coefficients (D) 

Shortest path length distribution 
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4.3.1 Hubs are more important to characterize essential genes rather than bottlenecks 

Recently, Yu et al (2007) [20] have analyzed the significance of hubs (proteins with 

high degree distribution) and bottlenecks (proteins with high betweenness) in the yeast 

protein-protein interaction network and regulatory networks. They have investigated which 

quantity (degree distribution or betweenness) is a better predictor of protein essentiality. It 

has been found that in directed networks, for example in regulatory network, betweenness 

is a more important feature in terms of essentiality. In yeast regulatory networks, they have 

observed that bottlenecks (both hub-bottlenecks and nonhub-bottlenecks) are generally 

products of essential genes, whereas hub-nonbottlenecks are not essential at all. When they 

have analyzed the protein-protein interaction network in yeast (undirected network), they 

found that degree is a much better predictor of essentiality since hub-nonbottlenecks are 

much more essential than nonhub-bottlenecks. 

We have also investigated how degree and betweenness correlate with essentiality in 

protein-protein interaction network in human. We have classified all proteins into four 

categories; hub-bottleneck, hub-nonbottleneck, nonhub-bottleneck and nonhub-

nonbottleneck. Figure 4.3 (A, B) show the essentiality of different categories of proteins, 

in PIN and in SPIN. In addition to these networks, a random network is generated from 

PIN which is the same size as SPIN and has the same average degree distribution. In 

Figure 4.3, the hub-bottlenecks are the most essential category compared to others in both 

networks. It is observed that hub-nonbottlenecks are more essential than nonhub-

bottlenecks; i.e. degree is a more important parameter in terms of essentiality all in PIN, 

SPIN and the random network. This finding confirms the hypothesis stated by Yu et al 

(2007) [20]. 

Although the relationship trend for the fraction of essential genes in different categories 

of proteins is quite the same among PIN and SPIN, the essentiality fraction values in SPIN 

are much higher than the ones in PIN. (see the y-axes of Figure 4.3A and Figure 4.3B) 
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The reason for higher fraction of essential genes in SPIN may stem from the possible bias 

towards proteins which have structural information since they are well studied proteins. 

Another reason would be the physical bias due to the fact that PIN is a large-scale data. To 

investigate the reason for this bias, we generated a random network from PIN which is the 

same size as SPIN and has the same average degree distribution. Figure 4.3C displays the 

fraction of essential genes in random network. We observe that the fraction of essentiality 

is higher for random network than PIN. However, compared to SPIN, the values are still 

much smaller. Thus, we conclude that the reason for higher essentiality in SPIN probably 

arises from a bias towards well studied proteins rather than a physical bias. 

 
 
 
 
Figure 4.3 Essentiality of different categories of proteins in A) PIN, B) SPIN and C) 

random network.  
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4.3.2 Essentiality of cancer hubs is significantly higher than non-cancer hubs 

It is known that hub proteins are more likely encoded by essential genes [18, 51]. In 

addition, somatic cancer genes are more likely to encode hub proteins [2]. From these, we 

can hypothesize that essential cancer genes are more likely to encode hub proteins than 

non-essential cancer genes. Thus, we classified all of the cancer genes in the networks as 

hub and non-hub, and observed that cancer-hubs are more essential than cancer-nonhubs, 

which confirms our above hypothesis; essential cancer genes are more likely to encode hub 

proteins than non-essential cancer genes. The essentiality percentage in each category; hubs 

and non-hubs are 50% (total 532) and 37% (total 650) for PIN, 66% (total 158) and 44% 

(total 286) for SPIN, 47% (total 85) and 37% (total 140) for random network, respectively. 

The essentiality percentage values are visualized in Figure 4.4A. 

From a similar point of view, another question to be addressed is that; if we classify the 

hubs as cancer and non-cancer, which category is more essential. We found that when we 

classify the hub proteins as cancer-hubs and non-cancer-hubs, there is a significant 

difference in essentiality. In SPIN, there are 158 cancer hubs and 66% of them are essential 

while the value decreases to 38% when we consider the non-cancer-hub (197 non-cancer 

hubs) essentiality percentage. In PIN and the random network, similarly, cancer hubs 

(fraction of essential genes: 50% (532 in total) and 47% (85 in total), respectively) are 

much more essential than non-cancer hub proteins (fraction of essential genes: 24% (1801 

in total) and 30% (246 in total), respectively). The fraction of essential genes in cancer 

hubs and non-cancer hubs for each network are shown in Figure 4.4B.  
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Figure 4.4 A) Essentiality of cancer proteins classified as hub & non-hub B) Essentiality of 

hub proteins classified as cancer and noncancer in each network.  

 

4.3.3 Multi-interface and single-interface proteins: Correspondence with degree, 

betweenness and essentiality 

Some hubs, as discussed above, are single-interface (communicating with their partners 

by using the same interface) whereas others are multi-interface. We investigated to which 

category (hub-bottleneck or hub-nonbottleneck) multi-interface and single-interface 

proteins mostly belong to. We observe that multi-interface proteins mostly correspond to 

hub-bottleneck proteins rather than hub-nonbottlenecks (71 % of multi-interface proteins 

are hub-bottlenecks.) When the single-interface proteins are considered, the percentage of 

hub-bottleneck correspondence decreases to 59%. To put it in other words, 58% of hub-

bottleneck proteins are multi-interface and 42% are single-interface. Previously, we have 

shown that hub-bottlenecks are the most essential category of proteins in SPIN and in PIN. 

Here, in structural interface network, we find that the essentiality of multi-interface hubs 

(68% is essential) is higher than that of single-interface (52% is essential). This result 

agrees with a previous finding [10] indicating that it is the number of interfaces that leads 
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to higher essentiality. In addition, Aragues et al. (2007) found that yeast hubs with multiple 

interacting motifs are more likely to be essential than hubs with one or two interacting 

motifs [52]. Being more essential and corresponding mostly to hub-bottlenecks, multi-

interface hubs are the key points in the protein-protein interaction network.  

In terms of cancer/noncancer comparison, cancer proteins are more enriched in multi-

interface proteins. (56% of cancer proteins are multi-interface, 44% being single-interface) 

This is reasonable since it is known that on average cancer proteins are longer with larger 

surface areas. To cope with many interactions at the same time, they tend to be multi-

interface hubs, with distinct interfaces interacting with different proteins. Although cancer 

proteins tend to have more than one distinct interface, we found that on average their 

interfaces are smaller, which can indicate their binding behavior acting as hub proteins. In 

addition, average number of interfaces of cancer multi-interface hubs and noncancer multi-

interface hubs are 2.5 and 2.3, respectively, being greater for the cancer multi-interface 

hubs. The correspondence of hub-bottlenecks, hub-nonbottlenecks to multi/single interface 

proteins and essentiality percentage in cancer/noncancer & multi/single interface proteins 

are displayed in Table 4.5. 

 

Table 4.5. Correspondence of HB, H-NB to Multi/single interface proteins and Essentiality 

% in cancer/noncancer & Multi/single interface proteins 

  

HB 

 

H-NB 

 

Total 

Multi-interface # 30 12 42 

Single-interface # 22 15 37 

 Essentiality percentage (%) 

Multi-interface 68 

Single-interface 52 
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Cancer 76 

Non-cancer 42 

 

4.4 Case Studies 

The interface information is an asset to predict which interactions can and cannot co-

exist. In other words, it will help to deduce which interactions can occur simultaneously 

and which are mutually excluded. Addressing this question, may add a fourth dimension 

into interaction maps: that of sequence of processes. Including the sequence dimension in 

structural networks is an immense asset; transforming network node-and-edge maps into 

cellular processes, and assisting in the comprehension of cellular pathways and their 

regulation. Here, we present two case studies; a multi-interface cancer protein and a single-

interface cancer protein in iSPIN and an inhibitor targeting the network for characterization 

of the interactions and inferring the order of processes. In Figure 4.5, a visualization of 

iSPIN is displayed together with multi-interface and single-interface proteins.  
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Figure 4.5 iSPIN representation. The nodes colored in green and red are multi-interface 

hubs and single-interface hubs, respectively. In the zoomed representation, the interactions 

of a multi-interface hub; ERBB3 is displayed. 

 

4.4.1 A multi-interface hub: ErbB3 (Her3) 

Here, we show how the interface information is used to deduce which interactions can 

and cannot co-exist. If each interaction partner of a hub protein use distinct interface on the 

hub while interacting, then these interactions are more likely to occur simultaneously. In 

addition, quaternary structure of the complex should well be considered to ensure that the 

interaction partners do not collide.  To exemplify the idea, we present a so-called ‘multi-
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interface’ hub protein; ERBB3 (or HER3), which is one of the hub proteins in SPIN. 

Receptor tyrosine-protein kinase erbB-3 precursor (ERBB3) belongs to EGF receptor 

subfamily and acts as a heregulin receptor and as an epidermal growth factor receptor. 

Amplification of this gene and/or overexpression of its protein have been reported in 

numerous cancers, including prostate, bladder, and breast tumors [53].  According to 

KEGG database [54], ERBB3 functions in ErbB signaling pathway and Calcium signaling 

pathway. In ErbB signaling pathway, NRG1 (neuregulin 1, heregulin), which is a direct 

ligand for ERBB3, binds and activates ERBB3. We have modeled this interaction using the 

PDB accession codes 1hae_A (NMR structure of heregulin) for NRG1; and 1m6b_A 

(crystal structure of ERBB3 taken from a homodimer structure) for ERBB3, respectively. 

PRISM results indicate that these two proteins (1hae_A and 1m6b_A) interact and using 

NOXclass [32], we find that the interaction is biologically relevant. Predicted binding sites 

on both proteins and interacting residues for NRG1-ERBB3 interaction are shown in 

Figure 4.6A. The interaction was experimentally studied in a previous study of Jones et al 

(1998) [55], where they mutated individual residues of the egf domain of heregulinβ (same 

as egf domain of heregulinα-NRG1- except four residues) to alanine in order to determine 

residues critical for binding receptors and initiating signal transduction. They have found 

that when His2, Leu3, Val4, Phe13, Val15–Gly18, Val23, Arg31, Lys35, Gly42–Gln46 residues 

were changed to alanine, binding affinity for ERBB3 was dramatically reduced. We have 

observed that most of these critical residues are included in our predicted binding site for 

NRG1. In Figure 4.6A, these residues are labeled. 
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Figure 4.6 Representation of ERBB3-NRG1 interaction schematically using VMD [56] A) 

ERBB3 (1m6b_A) and NRG1 (1hae_A) are shown as newcartoon diagram in blue and red 

color, respectively. The transparent surface represents the interface region. The labeled 

residues (represented by their Cα atoms) of 1hae_A are reported to be critical for binding in 

a previous work [55]; i.e. when they are mutated to alanine, the binding affinity for ERBB3 

was significantly reduced. B) HER3 (blue) – pertuzumab heavy chain (yellow) is shown, 

docked conformation using HEX [57]. Pertuzumab shares the same interface with NRG1 

(see the next section). 

 

In ErbB signaling pathway, NRG1 also binds to ERBB4, and the binding affinity is 

similar to that of ERBB3 [55]. According to our interface prediction, ERBB3 and ERBB4 

binding interfaces on NRG1 are overlapping; i.e. the same binding site is used for the 

ERBB3 and ERBB4 interactions. Thereby, NRG1-ERBB3 and NRG1-ERBB4 interactions 

are mutually exclusive; they cannot occur at the same time. 



 
Chapter 4: Protein-Protein Interaction Network to Structural Interaction Network         38    

  

According to the Calcium signaling pathway in KEGG [54], ERBB3 interacts with 

PLCG1. Although the interaction is not reported in public databases as in DIP [25], BIND 

[58], in a recent study, it has been observed on the protein microarrays [59]. PLCG1 

(Phospholipase C-gamma-1) is a major substrate for heparin-binding growth factor 1 

(acidic fibroblast growth factor)-activated tyrosine kinase. PDB structure of SH3 domain of 

PLCG1 is 1hsq. The predicted interface residues of ERBB3-PLCG1 (1m6b_A-1hsq_A) 

interaction are displayed in Figure 4.7 labeled as A. 

Two other possible interactions of ERBB3 occur with EPOR (Erythropoietin receptor) 

and ACK1 (Activated CDC42 kinase 1) according to the human interactome constructed by 

Jonsson and Bates. No experimental confirmation is available for these interactions yet, 

however they have high confidence scores to be interacting in Jonsson and Bates’s network 

[3]. Since they are also predicted to be interacting via PRISM [11, 12], these interactions of 

ERBB3 are further investigated. Subcellular location for ERBB3, EPOR and ACK1 is the 

cell membrane. EPOR and ERBB3 function as single-pass type I membrane protein.  The 

predicted interfaces for these interactions are illustrated in Figure 4.7, labeled as B and C. 

Our results show that ERBB3 uses at least three different binding sites while 

interacting. Of these interactions, we propose that ERBB3 cannot interact with EPOR and 

ACK1 at the same time. Because if we model the quaternary structure of ERBB3-EPOR-

ACK1 complex, the residues of EPOR and ACK1 will collide. Thus, they cannot bind 

simultaneously. But, we should keep in mind that proteins are dynamic, and hinge-like 

motion of the two domains of ERBB3 can eliminate the collision between EPOR and 

ACK1. 
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Figure 4.7 Ribbon diagram and interface representation of ERBB3 interactions with 

PLCG1, EPOR and ACK1 labeled as A, B, C respectively. ERBB3 (1m6b_A), PCLG1 

(1hsq_A), EPOR (1eer_B) and ACK1 (1u46_A) are colored in blue, red, pink and orange 

respectively. Interface residues are shown as spheres.  

 

4.4.2 An inhibitor affecting Erb signaling pathway: pertuzumab 

To illustrate the importance of sequence of processes, we further focus on ERRB3 

interactions and investigate how it functions if its partners use the same interface while 

interacting (in this case the interactions cannot occur at the same time). In general, 

HER/erbB family of proteins (EGFR (HER1), HER2, HER3, and HER4) activate 

intracellular signaling pathways in response to extracellular signals [53]. The signaling 

mechanism is as follows; first EGFR and HER3 are activated by ligand binding (ligands 

are EGF and NRG1 for EGFR and HER3, respectively), then EGFR or HER3 forms 

heterodimer with HER2 followed by the transphosphorylation of their C-terminal tails. 

Heterodimer formation of HER2 with EGFR and HER3 induces different pathways. For 

example, The PI3K/Akt pathway, which is critically important in tumorigenesis, is 
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activated by phosphorylated HER3. Deregulation of signaling functions of HER family of 

proteins causes cell transformation and tumorigenic growth [53]. In anti-cancer drug 

development, EGFR and HER2 proteins are the main targets. For example, pertuzumab, 

which targets HER2 dimerization region, tries to inhibit HER2-HER3 or HER2-EGFR 

interactions.  

In a recent study [60] which investigates the effect of pertuzumab in lung cancer cells, it 

is found that pertuzumab blocked NRG1-stimulated phosphorylation of HER3 and in 

contrast, it failed to block epidermal growth factor (EGF)-stimulated phosphorylation of 

EGFR in human non-small cell lung cancer cell line 11_18. It is somewhat interesting since 

HER2 uses same binding region for dimerization with HER3 and EGFR and this region is 

assumed to be blocked by pertuzumab. However, at that point, it may be hypothesized that 

in addition to its inhibiting effect on dimerization region of HER2, pertuzumab should also 

affect the ligand binding region of HER3 and EGFR; namely HER3-NRG1 interaction and 

EGFR1-EGF interaction.  

In order to investigate the effect of pertuzumab on HER3-NRG1 interaction, we used 

HEX [57], a protein docking program, to dock pertuzumab heavy chain (PDB ID 1s78) to 

HER3 (PDB ID 1m6b) and the docked conformation is visualized in Figure 4.6B. 

NOXclass results indicate that the docked conformation is biological (biological score is 

70%). Although HER2 and HER3 are similar in structure, the interface region on HER2 

and HER3 through which the interaction with pertuzumab occur, are not exactly the same 

in structure, but rather they use overlapping regions. We have observed that pertuzumab 

binding interferes with NRG1 binding region, which indicates that pertuzumab may also 

block ligand binding to HER3 and thus preventing HER3 activation. 36% of interface 

residues (8 out of 22) of HER3-NRG1 interface are also used by pertuzumab, which makes 

the interactions of HER3 with NRG1 and pertuzumab mutually exclusive. In Figure 4.8, 
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both interactions are visualized together and the black surface region shows the shared 

interface region. 

Thus, our results indicate that pertuzumab may block NRG1 interaction region of 

HER3. Probably, pertuzumab would not affect the binding of EGF to EGFR and thus it is 

not effective against (EGF)-stimulated phosphorylation of EGFR in the aforementioned 

lung cancer cells. 

 

Figure 4.8 HER3 (blue) interactions with NRG1 (red) and pertuzumab (yellow). The 

interface regions for HER3-NRG1 and HER3-pertuzumab interactions are shown spheres 

in surface representation in blue-red and blue-yellow color, respectively. The black surface 

is the shared interface region which implies that these two interactions cannot occur at the 

same time.  
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4.4.3 A Single-interface Hub: RAF1 

If the interaction partners of a hub protein use the same interface region, then these 

interactions are more likely to be mutually exclusive. For example, in iSPIN, RAF1 has 9 

interactions partners which compete for binding. RAF proto-oncogene serine/threonine-

protein kinase involves in the transduction of mitogenic signals from the cell membrane to 

the nucleus and protects cells from apoptosis mediated by STK3. Among its interaction 

partners, we were able to predict interaction interfaces for CDC25, YWHAZ and MAP2K2. 

Interaction with RAP1A is a known structure with PDB ID 1c1y. Also possible interactions 

of RAF1 in iSPIN are with RALA, DIRAS1, DIRAS2, CCNA2 and RRAD. Although the 

interface region is not completely the same for each interaction partner, most of the 

interface residues are shared (shared percentage > 20, which is the cutoff value for 

assigning the interface as distinct or same). Thus, these interactions cannot occur at the 

same time. Three predicted binding sites are illustrated in Figure 4.9. In Figure 4.10, 

RAF1 is displayed with its three binding partners; RAF1 (1c1y_B) is shown in blue color, 

the partners YWHAZ (1qja_A), MAP2K2 (1s9i_A) and CDC25A (1c25_A) are colored in 

red, cyan and purple respectively. Since the interface is highly shared, the interface region 

is assigned as the same (not distinct) for all of the interactions which hypothesize that 

RAF1 is a single-interface protein and involved in mutually exclusive interactions. RAF1 is 

a protein kinase and it is a signaling protein; thus it probably interacts transiently with most 

of its targets. A recent study confirms this interaction behavior of RAF1 by showing that 

the binding of Cdc25 and of Rad24 (14-3-3 homolog that is important in the DNA damage 

checkpoint) to Raf-1 is mutually exclusive [61]. 
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Figure 4.9 Ribbon diagram and interface representation of RAF1 interactions with 

YWHAZ, MAP2K2 and CDC25A labeled as A, B, C respectively. RAF1 (1c1y_B), 

YWHAZ (1qja_A), MAP2K2 (1s9i_A) and CDC25A (1c25_A) are colored in blue, red, 

cyan and purple respectively. Interaction interfaces of RAF1 through YWHAZ, MAP2K2 

and CDC25A are highly overlapping; the interactions are mutually exclusive. 
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Figure 4.10  RAF1 is displayed with its three binding partners; RAF1 (1c1y_B) is shown 

in blue color, the partners YWHAZ (1qja_A), MAP2K2 (1s9i_A) and CDC25A (1c25_A) 

are colored in red, cyan and purple respectively. The interface regions are shown as 

surfaces; the surface colored in black is the shared interface residues between the 

interactions. 
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Chapter 5 

 

CONCLUSION 

 

 

The proposition that protein-protein interaction networks are scale-free [62] has 

directed the focus onto highly connected proteins, namely “hub proteins”, which are known 

for their critical significance. In addition, cancer genes are known to encode hub proteins. 

In this work, we analyzed hub proteins and cancer proteins in human protein-protein 

interaction network first by considering their global behavior in the network, second, from 

a structural perspective. 

We know that hub proteins are considered to be essential proteins in the biological 

networks [51]. Upon investigating another topological property, betweenness, together with 

node degree to observe which one is a better determinant of essentiality, we found that 

hubs are more important to characterize essential genes rather than bottlenecks, similar to 

what is observed for protein interaction networks previously by Yu et al. [20]. 

Interestingly, this notion is found to be more pronounced for cancer-related hub proteins, 

being much more essential than non-cancer hubs in our network. Thus, the reason for 

cancer genes to act mostly as hub proteins stems from the fact that they correspond mostly 

to essential genes, which are known to encode hubs. 

Although topological properties can provide an explanation of hub proteins in the 

global sense, we need more concrete reasons to clarify the ability of a hub to interact with 

multiple partners. One way to do that is using structural information. Integrating three-

dimensional protein structures into our network revealed important aspects about hubs and 
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cancer-related proteins. Interface property analysis has served to identify structural 

tendencies in hubs that assist their binding to multiple proteins and observe the 

characteristics that differentiate hubs from non-hubs and cancer from non-cancer proteins. 

We find that hub proteins have smaller, less tightly packed and more planar interfaces 

compared to non-hub ones. The differences in interface properties are more pronounced 

when we consider the cancer/non-cancer case. The interfaces of cancer proteins, on 

average, are smaller in size, more planar, less tightly packed and more hydrophilic 

compared to non-cancer ones. Friedler et al. (2005) [63] observed a highly electrostatic 

binding site in a cancer protein, p53, interacting with Rad51 and other peptide sequences 

with different affinity. The results imply that cancer proteins and hubs interact with their 

partners with high specificity and low affinity. Therefore, it becomes possible for them to 

bind to many different proteins with varying affinity. 

To exemplify different kind of hubs with respect to the number of distinct binding sites, 

we present a multi-interface and a single-interface hub protein as case studies. Here, 

structural information provides answers regarding to which interactions are simultaneously 

possible and which ones exclude each other. Protein structures, whether known or modeled 

provide crucial information about binding behavior and interaction specificity. In this thesis 

study, we illustrated the advantages of including structures into protein interaction 

networks.  
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