
An Open-Standards Based Server-Client Model for  

Robust Streaming of Multi-View Content over the Internet 

 

by  

 

 

Cihat Göktuğ Gürler 

 

 

A Thesis Submitted to the  

Graduate School of Engineering  

in Partial Fulfillment of the Requirements for  

the Degree of  

 

Master of Science 

in 

Electrical and Computer Engineering 

 

Koc University 

 

September 2008 

 



 
 
 
 
 

ii

Koc University  

Graduate School of Sciences and Engineering 

 

 

This is to certify that I have examined this copy of a master’s thesis by 

 

Cihat Göktuğ Gürler  

 

and have found that it is complete and satisfactory in all respects, 

and that any and all revisions required by the final  

examining committee have been made. 

 

 

Committee Members: 

 

 

 

 

 

 

 

Date: 

 

Prof. A. Murat Tekalp  (Advisor) 

Assist. Prof. Oğuz Sunay 

Assist. Prof. Sibel Salman 



 
 
 
 
 

iii

 

 

 

 

 

 

 

 

 

 

 

 

 

To my wife 



 
 
 
 
 

iv

ABSTRACT 

 

The Internet Protocol (IP) is the natural choice for 3D video transmission, if we considering the 

recent success of many voice over IP (VoIP), video over IP, and IPTV applications. However, the 

choice of IP for the network layer does not make the transmission application design 

straightforward, since IP only dictates the use of unreliable packet switched networks. Its flexible 

architecture allows use of various transmission protocols and policies over IP. Therefore, it is the 

task of the application to implement an efficient scheme that will most effectively manage the 

available channel throughput. This can only be achieved by understanding the characteristics of 

each layer in the protocol stack and implementing a cross-layer design approach.  

This thesis proposes a novel framework for streaming of 3D video based on multi-view video 

(MVV) representations. The proposed streaming platform is completely open standards based, 

flexible, and backwards compatible for supporting monoscopic streaming to legacy clients. The 

MVV in the server is compressed using a simplified form of MVC with negligible loss of 

compression efficiency and streamed using RTSP, SDP and RTP to clients. Raptor Codes are used 

for fighting with the possible packet loses at the network layer. The clients can perform basic error 

concealment to reduce the effects of remaining packet losses and can decode MVC in real-time. 

The modular client can display decoded 3D content on a multitude of 3D display systems. 

The proposed streaming platform has been extensively tested over the Internet to find 

answers to the following questions related to 3DTV transmission over IP:  

i) What is the required bandwidth for 3D transmission, and what are the parameters that affact this 

ratio? ii) Is the cost of enabling slice mode justified for achieving better channel throughput? iii) 

What is the required rate of channel coding against what percentage of packet losses? iv) How does 

Raptor Codes perform when we compare its redundancy level against alternative strategies such as 

Multiple Description Coding? v) What are the required modifications over the standard streaming 

protocols for 3DTV transmission? vi) How can the design take advantage of the multi-core 

processors? vii) Are there any other parameters that have significant influence on packet loss ratio 

beside bit-rate of the stream? If there is, do they affect the packetization strategy?  

 



 
 
 
 
 

v 

ÖZET 

  

İnternet protokolü (IP) üzerinden ses, video ve IPTV gibi uygulamaların başarısı göz önüne alındığında, 

3BTV için iletiminin de IP üzerinden yapılması en makul seçimdir. Ancak bu seçimi yapmış olmak, iletimi 

gerçekleştirecek olan uygulamanın hazırlanmasını basit bir hale getirmez. Zira IP sadece ağ katmanında paket 

anahtarlamasına dayalı bir iletimin olmasını zorunlu kılar. Bunun dışındaki pek çok kararın, üstteki katmanlar 

tarafından alınmasına olanak sağlayan esnek bir yapıya sahiptir. Bu sebepten ötürü, eldeki kanalı en verimli 

şekilde kullanacak yapıyı oluşturmak uygulamanın sorumluluğundadır. Bu da ancak tüm katmanların 

özelliklerini göz önünde tutan bir yaklaşım ile mümkündür.  

Bu tez de çoklu-görüntülü tasfirlere dayalı 3B videonun akıtılması için yeni bir yapı önerilmektedir. 

Önerilen bu yapı şimdiki standardlara dayalı, esnek ve önceki sistemlerle uyumlu olacak şekilde 

hazırlanmıştır. Bu sadece şu an kullanımda olan tek görüntülü aktarımlarla birlikte çalışabilmektedir. Çoklu-

Görüntülü videonun (ÇGV) kodlaması sırasında basitleştirilmiş Çoklu-Görüntülü-Kodlama (ÇGK) sistemi 

kullanılmıştır ve basitleştirilme işlemi yüzünden kaybedilen kalite gözardı edilebilecek düzeydedir. Akıtım 

sırasında Gerçek Zamanlı Akıtım Prokolu (Real-Time Streaming Protocol ) (RTSP), Oturum Betimleme 

Protokolü (Session Description Protokol) (SDP) ve Gerçek Zamanlı Taşıma Protokolü (Real-Time Transport 

Protocol)  (RTP) kullanılmıştır. Ayrıca kaybedilen paketlerin yeniden oluşturulması için Raptor Kodlarından 

yararlanılmıştır. Buna ek olarak, geri kalan kayıpların neden olduğu görüntü bozulmalarının etkisini 

azaltabilmek için hata gizleme teknikleri kullanılmıştır. Sistem önceden ÇGK ile kodlanmış bir görüntünün, 

kod çözülmesi işlemini gerçek zamanda tamamlayıp, oluşan görüntüyü pek çok farklı ekranda 

gösterebilmektedir.  

Bu tez ile aşağıdaki sorulara cevap vermeyi amaçlıyoruz. i) 3B görüntünün aktarılması için ne kadarlık bir 

bantgenişliğine ihtiyaç duyulur? Bunu etkileyen değişkenler nelerdir? ii) Dilimlemeyi aktif hale getirmenin 

getirdiği külfetleri, kazançları göz önüne alındığında gözardı edilebilir mi?  

iii) Ne kadarlık paket kayıp yüzdesi için, ne kadarlık kanal kodlamasına ihtiyaç duyulur? iv) Raptor 

kodlarının kullanılmasının gerektirdiği yük ile alternatif çözümlerinki kıyaslandığında hangisi daha iyidir. v) 

3B görüntünün aktarılması için şu an kullanılan protokollere ne gibi değişiklikler gereklidir? vi) Kod-çözme 

ve görüntünün gösterilmesi işlemlerinde çok çekirdekli sistemlerden faydalanılabilir mi? vii) Gönderilmek 

istenen bilginin büyüklüğünden başka paket kayıplarını gözlemlenebilir ölçüde etkileyen bir değişen var 

mıdır? Eğer varsa bu paketleme seçimlerimizi etkiler mi? 

 



 
 
 
 
 

vi

ACKNOWLEDGEMENTS 

I would like to thank to my advisor Prof. A. Murat Tekalp for his guidance and 

understanding. I would also like to thank to Prof. Reha Civanlar and Prof. İrşadi Aksun for 

beliving in me. I’m very thankful to Prof. Reha Civanlar and Prof. Serdar Taşıran for their 

teachings without which I could not have come this far.  

Without my friends, it would be impossible for me to become the man I am now. Very 

special thanks to Burak Görkemli, Kagan Cetin, Umut Yıldırım, Gürkan Genç, Selçuk Erol, 

Mehmet Ali Yatbaz (a.k.a. MALİ), and many others at the Graduate School of Sciences 

and Engineering at Koç University.  

Finally, I would like to thank to my family and my future wife. Knowing that there are 

people that will support me no matter what I do gave me the confidance, which I need to 

have to achieve this success.   



 
 
 
 
 

vii

TABLE OF CONTENTS 

 

 

List of Tables           ix 

 

List of Figures          x 

 

Nomenclature           xii 

 

Chapter 1:  Introduction           1 

   1.1  Background   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1 

   1.2 Definition of Problem and Motivation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   3 

   1.3 3D Perception and 3DTV.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   4 

   1.3.1   3D Perception by Stereoscopy .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5 

   1.3.2   3D Display Systems  .  . .   .   . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5 

   1.4 Related Works . . . . . . . . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   8 

   1.4.1   Monocular Streaming Applications ..  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  8 

   1.4.2   3D Streaming Projects . . . . .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9 

   1.5 Contributions  . . . . . . . . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  10 

 

Chapter 2:  Multi-View Video Streaming Architecture      12 

   2.1  System Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12 

   2.2 3D Content Generation, Representation and Encoding/Decoding .  .  .  .  .  .   16 

   2.3 Protocol Initialization .  .  .  .  .  .   .  .  . . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   20 

   2.4 Video Streaming over UDP .  .  .  . . . . . . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   26 

   2.5 Channel Coding .. . . . .  .  .  .  .  . . . . . . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .    28 

   2.6 Multi-Threaded Decoding, Interzigging, and Display . . . . . . . .  .  .  .  . . . .     29 



 
 
 
 
 

viii

Chapter 3:  Experimental Results             37 

   3.1  Encoding Results..  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  ..  .  37 

   3.1.1   Comparison of MVC to Simulcast Coding.  .  .  .  .  .  .  .  .  .  .  .  .    38 

   3.1.2   Cost of Enabling Slice Mode.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  . ..  42 

   3.1.3   Effect of Encoding Scheme Set for Multi-Threaded Decoding  . . .   43 

   3.2 Forward Error Correction Results..  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    45 

   3.2.1   Packet Recovery .  .  .  . .  .  .  .  .  .   .   .  . .  .  .  .  .  .  .  .  .  .  .  .  .     45 

   3.2.2   Redundancy Comparison between FEC and MDC.  .  .  .  .  .  .  .  .    47 

   3.3  Network Analysis . . . . . . . . . .  . . . . . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    50 

   3.3.1   Packet Loss Behaviour .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    50 

   3.3.2   The Packet Loss Experiments .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .   .  52 

 

Chapter 4:  Conclusion              

   4.1  Summary. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .   56 

   3.2 Future Work .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .   .  .   .  .   58 

 

Bibliography             

Vita              



 
 
 
 
 

ix

LIST OF TABLES  

 

Table 3.1: Size of MVC Streams and byte allocation between B-Frames  

                 and I-Frames (Adile, PSNR 36.7)      41 

Table 3.2: Size of MVC Streams and byte allocation between B-Frames  

                 and I-Frames (Adile, PSNR 28.25)     41 

Table 3.3: Size of MVC Streams and byte allocation between B-Frames  

                  and I-Frames (Rena, PSNR 28.7)      41 

Table 3.4: Overhead of Slice Mode       42 

Table 3.5: Parameters for Forward Error Correction      46 

Table 3.6: Possibility of Recovering a Lost Packet by FEC Decoding   47 

Table 3.7: Streams in Redundancy Test      48 

Table 3.8: Packet Loss Behavior During Low Bitrate Transmission   54 

Table 3.9: Packet Loss Behavior During Comparable Bitrate Transmission  55 

 

 
 
 
 
 
 
 

 
 
 
 



 
 
 
 
 

x 

LIST OF FIGURES 

 

 

Figure 1.1: Working Principle of Stereoscopy     4 

Figure 1.2: Anaglyphic Picture       6 

Figure 2.1: Modules of Proposed Streaming Architecture    13 

Figure 2.2: MVC Standard Prediction      18 

Figure 2.3: MVC Simplified Prediction        18 

Figure 2.4: MVC Implemented Prediction      19 

Figure 2.5:   (a) Standard RTSP Message Exchange Order 

(b) Modified RTSP Message Exchange Order   22 

Figure 2.6: Convergance of TFRC rate to the available bandwdith    23 

Figure 2.7: Segment of RTSP Message Exchange     25 

Figure 2.8: Video Transmission over the Internet     29 

Figure 2.9: Group of Frames (GOP) in simulcast encoding    30 

Figure 2.10: Group of Frames (GOP) in MVC encoding    31 

Figure 2.11: Required frames for watching stereo video.    32 

Figure 2.12: Generation of independently decodable streams for the stereo case 33 

Figure 2.13: Generation of independently decodable streams  

                      for the multi-view case       33 

Figure 2.14: Interzigging pattern for an 8 view display    35 

Figure 2.15: An interzigged image       35 

Figure 3.1: PSNR/Bitrate Comparison between MVC and  

                  Simulcast Coding (Stereo)      39 

Figure 3.2: PSNR/Bit-Rate comparison between MVC and  

                   Simulcast Coding (8-View)      39 



 
 
 
 
 

xi

Figure 3.3: Multi-Threaded Decoding Scheme     43 

Figure 3.4: Multi-Threaded Encoding Scheme     44 

Figure 3.5: Internal structure of a Router      49 

Figure 3.6: A Router in LAN Environment      51 

Figure 3.7: Internal Structure of a Router      52 

Figure 3.8: Packet Forwarding Model for the Internet    53 

Figure 4.1: An Example on the Modularity of Live555 Library   59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

xii

NOMENCLATURE 
 

3DTV Three Dimesional Television 

DCCP Datagram Congestion Control Protocol 

FEC Forward Error Correction 

HDTV High Definition Television 

JSVM Joint Scalable Video Model 

JVT Joint Video Team 

MCTF Motion-Compensated Temporal Filtering 

MD Multiple Description 

MDC Multiple Description Coding 

MVC Multi-View Coding 

MVV Multi-View Video 

NALU Network Abstraction Layer Unit 

QP Quantization Parameter 

RFC Request for Comment 

RTP Real-time Transport protocol 

SMDC Scalable Multiple Description Coding 

SVC Scalable Video Coding 

TCP Transmission Control Protocol 

TFRC TCP-Friendly Rate Control 

UDP User Datagram Protocol 

VPD Video plus Depth 



 
 
Chapter 1: Introduction     1 

 

 

Chapter 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

The effect of the Internet over people’s communication methods is undeniable. The 

earliest communication over the Internet was limited with the delivery of simple text 

messages. Later audio became a common component, and now it evolved to sessions where 

both audio and video are delivered. This progress was so rapid that the days when e-mail 

was perceived as an unreliable way of communication seem to be long forgotten. Now, 

people not only demand to be able to transfer multi-media, they also want it fast and 

smooth and apparently they will want it in 3D in the future.  

Although 3-D illusions had people’s imagination since 19th century, computers and 

links connecting them, recently became powerful enough accommodate 3D features. 

Developments in the last decade made it possible to implement a streaming architecture, 

which can actually meet the processing and storage demands of 3D video. One of the most 

critical improvements was the drastic decrease in the cost of computing and storage 

capacities. In 1950s, a single transistor cost around $5 whereas it was even less then 2.5 

millionth of it in 2004 [1]. Similarly in 1993, cost of 1 gigabyte storage was about $550. In 

2008, you can easily find it as low as $0.2 in the market [2]. The amount of data that has to 

be processed for generating multi-view scene is much larger than its 2D counterpart, so the 

raise in capacity of processors and storage devices was a necessity. Meanwhile, the 



 
 
Chapter 1: Introduction     2 

bandwidth of an average Internet connection increased significantly as well. In 1995, a 

typical connection was 33600bps modem over telephony lines. Today, 4Mbps 

(4194304bps) link is becoming standard connection. All those developments in the 

hardware made it possible to transmit and process multi-view video (MVV).  

Developments in software were at least as crucial as the developments in hardware. A 

new understanding named as Application Layer Framing (ALF) had emerged for 

transmitting data over unreliable channel [3]. ALF involves abandoning the cumbersome 

and uncontrollable transmission policies of TCP and forming a policy based on the actual 

requirements of the application. With ALF, an application can interfere with packetization 

of the transmitted data. It creates independently decodable data chunks so that loss of a 

single packet does not make another packet, which probably arrived, useless. The 

application can also choose between retransmitting a lost packet or focus on degrading its 

effects by error concealment or correction algorithms. It can even ignore packet losses, if 

their effects are already negligible. Following the idea of ALF, streaming protocols were 

developed such as RTP [4], RTSP [5], SDP [6], and RTCP [4]. Also, a new protocol named 

as Datagram Congestion Control Protocol (DCCP) was proposed for standardization in 

March 2006 to cope with the rising risk of congestion due to increase interest in multi-

media delivery [7]. Besides those developments in protocols, there were also improvements 

in encoding technology. In May 2003, ITU-T Video Coding Experts Group (VCEG) 

together with the ISO/IEC Moving Picture Experts Group (MPEG) completed the standards 

of the H.264 video encoder [8]. Video encoders compress raw video data by exploiting the 

spatial and temporal redundancies in order to decrease the bit rate of the content. Size of a 

single uncompressed frame with 640 by 480 resolution is larger than 7Mbit. A 3D video 

with several views at 30 fps can easily require more than one Gbps to transfer. Since 

bandwidth is the most common bottleneck in a common streaming application the 

importance of video encoders should be obvious. 



 
 
Chapter 1: Introduction     3 

1.2 Definition of Problem and Motivation 

 

Even with the developments at hand, there are still challenges that must be encountered 

in order to establish a successful multi-view streaming architecture. The key issue is to 

notice that, simply streaming multiple 2D views is not a good way of streaming 3D content. 

Unlike 2D case, there are multiple methods for representing 3D content. Protocols of the 

proposed architecture must be flexible and extendable to accommodate those different 

representations. It should also be able to support new representations without major 

modification.  

Backward compatibility is another important aspect. Although the number of available 

3D content is increasing, it is still at an incomparable level with its 2D counterpart. 

Demand for 3D displays depends on the number of available content. Supply of 3D content 

depends on the number of people who has 3D display and can view 3D content. So, if the 

backward compatibility is ignored, this vicious circle cannot be broken easily. However, if 

the system is backward compatible and people who do not have 3D displays can watch 2D 

version of the content, then the adaptation of 3D system can be easier. [9] 

The visual quality evaluation more complicated when the delivered content is 3D  

[10-12]. In 3D, we have multiple parameters that define the overall quality of visual 

experience. The first is the SNR quality of video just like in the case of 2D content. Second 

and newly added parameter is the sense of depth. There has been a lot of research going on 

about quantifying the quality of 3D visual systems and they had two important observations 

regarding SNR quality and sense of depth. First one is that, if there is a difference between 

the SNR qualities of views, then the perceived SNR quality is decided based on the view 

that has higher quality. Secondly, the sense of depth depends more on the disparity views 

rather then their quality. The combination of these finding has critical impact over the rate 

allocation strategies for 3D video streaming. If we have a stereo video, it is better to 



 
 
Chapter 1: Introduction     4 

dedicate larger bandwidth to one view instead of splitting it in half. By this way, we 

perceive both good SNR quality and sense of depth. [12] 

Our motivation for this thesis is to build a standard based architecture that pays 

attention to concepts such as extendibility, flexibility, backward and human perception. It 

must be stated that as well as the theoretical research, a good level of programming skills is 

put into this study.  

 

1.3 3D Perception and 3DTV  

 

The goal of this thesis is to propose a streaming architecture for 3D content. So the 

reader should know what a 3D content is and how human can perceive it. This section is 

dedicated to explaining those questions and introducing 3D display technologies that are 

available today. 

 

 

 Figure 1.1: Working Principle of Stereoscopy 



 
 
Chapter 1: Introduction     5 

1.3.1 3D Perception by Stereoscopy 

 

Most common understanding of 3DTV is a holographic image, which appears in the 

mid-air like in the movie Star Wars or Star Trek. Even though this can be the ultimate way 

of displaying a scene, currently we are far from this technology in terms of sharpness of the 

image. Today, the most common way of achieving 3D experiences is done by a method 

called stereoscopy. In stereoscopy, you have two distinct views of a scene recorded for 

each eye. The cameras that record this scene are calibrated to imitate the orientation of our 

eyes.  Commonly, a filtering medium such as special glasses or on-screen lenses are used to 

direct only the correct view to the eye of the observer. If the calibration of the cameras is 

done correctly, then human mind can merge those images in a way that the viewer can 

experience sense of depth. An example of stereoscopic views is shown in Figure 1.1. 

Although these two views look very similar, red and green boxes outline some noticeable 

differences. When these two separate views are presented to their corresponding eye a 

sense of depth is perceived by the observer. 

1.3.2 3D Display Systems 

 

Although there is a rising interest in 3D entertainment recently, the work on 3D devices 

is older than expected. Method of stereoscopy is dates back to 1838 when Sir Charles 

Wheatstone, a British researcher and inventor, developed a device that could display two 

different views of a scene by using mirrors [13]. In 1903, the first short movie in 3D was 

displayed in Paris, with modified stereoscope allowing only one person to watch at a time. 

Later in 1922, first full length 3D movie was demonstrated to the audience with anaglyphic 

glasses. However, the introduction of 3D to broadcast was delayed until 1950s and never 

gained much popularity. Neither 3D cinema nor 3D broadcast was successful, due to the 

poor visual quality of anaglyphic display systems and side effects such as headache and 



 
 
Chapter 1: Introduction     6 

eyestrain [14, 15]. In Figure 1.2, you can see an example of a 3D image, which can be 

viewed by red/blue anaglyphic glasses. You should notice that due to color filtering, the 

original color information of the scene is lost.  

 

 

 

 

 

The recent rise in the interest in 3D entertainment systems is probably due to the 

increase in offered visual quality. One of the newly introduced methodologies for 

stereoscopy is based on using polarization filtering. Special material polarize the light from 

emitted from two projector in different orientations. Then the polarized lights are projected 

Figure 1.2: Anaglyphic Picture 



 
 
Chapter 1: Introduction     7 

on a dielectric screen that reflects the light without losing its polarization. The user wears 

glasses with special filters allowing only one view per eye. Since the separation of views is 

not done by color filtering, the color information is conserved. Filtering polarized radiation 

is currently the most commonly used technology in 3D theatres.  

Another 3D system uses stereo parallax barrier stripes over LCD displays. The parallax 

barriers block the light from certain pixels to certain directions. This allows the user to 

watch the stereo content without wearing glasses but requires the observer to stay at a 

particular point in order to receive the content correctly. The frames from each view are 

reordered based on the location of the parallax barrier. This operation is called as 

interdigitizing and implemented at sub-pixel level.  

Yet another 3D display technology depends on lens array that divert the light instead of 

blocking it. The lens array is called lenticular sheet and can be either fixed on LCD display 

during manufacturing or used as an external device. Similar to the parallax barrier 

technology, displays with lenticular sheets does not require the glasses but they should be 

watch from a certain point. In order to distribute the pixels based on the lenticular sheet, the 

interdigiting operation is performed over the frames with a different pattern.  

Using only two views of a scene, the viewer can only experience 3D for a single point. 

Multi-view displays allow the viewer to see the scene from different directions by moving 

around. This time lens arrays are used to reflect lights to a particular direction. By this way 

the user can move around and receive different consecutive views of the scene.   

Lastly, head mounted systems and head tracking systems based on the stereoscopy 

principle are also used. They track the movement of the head and then display views 

correspondingly. They provide free-view interactivity with real time responsiveness.  [16]  

 

 

 



 
 
Chapter 1: Introduction     8 

1.4 Related Works 

 

1.4.1 Monocular Streaming Applications  

 
It has been a while since the introduction of ALF. Many streaming applications 

emerged since then. While they can be differentiated based on their transmission policies, 

all of them are developed for purpose of to playing video on the fly. Currently the most 

famous video-on-demand sites can be listed as YouTube [17], Google Video [18], and 

AolVideo [19]. Although the software used in these servers, can be categorized as video 

streaming applications, they use TCP as their transport layer protocol. Although TCP 

barely meet the standards of ALF, it is the only practical solution that can be used with all 

types of connections. UDP traffic is blocked by network administrators occasionally. Also 

the users behind Network Address Translator (NAT) cannot receive UDP packets even if 

the traffic is allowed due to the connectionless nature of UDP. Therefore, people that use a 

shared connection in a network would have difficulties in receiving UDP streams. As a 

results, in a system that use TCP the viewers experience frozen screens more frequently 

compared to UDP based transmission. This is due to the lossless transmission policy 

implemented by TCP protocol, which requires the retransmission of all lost packets even 

though some of them can be discarded with negligible loss in visual quality.  

Apple developed a product named as Darwin Streaming Server [20], which uses RTP 

over UDP and RTSP protocols for data transmission and signaling respectively. Similarly, 

VideoLAN is another streaming application, which can serve as both sender and receiver 

for a streaming environment [21]. VideoLAN uses Live555 as network library for 

implementing protocols such as RTP, RTSP, and RTCP. Live555 is another open-source 

project that we use in our streaming system. 

 



 
 
Chapter 1: Introduction     9 

1.4.2 3D Streaming Projects 

 
 

Capture, representation and rendering real-life scenes are hot topics, which are 

addressed by various research programs such as ATTEST project[22] and 3DTV NoE[23] 

in Europe or FTV[24] project in Japan. These research programs have already produced 

mature results. However, there has been relatively little research on the transmission 

aspects of 3D video. In the following paragraphs, we will present the current state of the 

research projects about the transmission of MVV.  

Mitsubishi Electric Research Laboratories (MERL) initiated a 3DTV project in 2004 

[25]. They were able to transmit high resolution (1024x768) videos of 16 cameras over 

gigabit Ethernet. They had used an array of cameras and PC for real-time accusation and 

encoding. At the receiver side, they had decoded and displayed the views for multiple types 

of display [26,27]. Although at first glance their system seems to be complete, there are 

critical missing parts, which make it impossible to implement over the Internet. It is very 

difficult to encode high resolution video in real time. This is the main reason of using Gbit 

Ethernet and local area network. Secondly, in LAN, they had no need of error concealment 

or error correction feature, which is another key aspect for a complete streaming system 

over the Internet. Lastly, the handshaking protocol seems to be a custom one making it 

difficult to interact with the current applications that are in use. Nevertheless, their system 

forms a basis for broadband 3D transmission application  

Electronics and Telecommunications Research Institute (ETRI) developed another 

ambitious project about 3D HDTV over ATM [28]. The system was fairly similar to the 

MERL’s implementation but it was composed of more advanced equipments. They used 

polarized projector system, since currently there is no lenticular display or parallax barrier, 

which can accommodate HD resolution. The HD content was streamed over an ATM 

connection at 155 Mbps. Projects of ETRI and MERL had similar objectives such as 



 
 
Chapter 1: Introduction     10 

transmitting 3D content in case of abundant available bandwidth. Neither of them was 

intended for the common user over the Internet.  

Video Coding and Architectures (VCA) group at the Eindhoven University of 

Technology has proposed a streaming architecture for 3D-IPTV. They have designed and 

implemented a stereoscopic and multiple-perspective video streaming system [29]. 

However, their work was at the elementary level. 

Lastly, there are two other FP7 projects. FP7 MOBILE3DTV project addresses the 

research towards the delivery of 3DTV over DVB-H [30]. The project intended for 

developing the optimal representation and coding formats for stereo video and its robust 

transmission over DVB-H utilizing novel, stereo-video dedicated UEP schemes. 3DTV 

broadcast solutions are studied in the 3D4YOU project [31]. It favors the “video+depth” 

representation format as the most broadcast-friendly one and aims at developing format 

conversion tools and carrying out broadcast demonstrations.  

1.5 Contributions 

 
The contributions of this thesis can be summarized as follows; 

• Complete streaming architecture is proposed and implemented. It is 

demonstrated in several high-profile events, such as the IBC Amsterdam in 

September 2007. The system was one of the most successful demonstrations of 

NoE, 3DTV project. 

• We had investigated with encoding schemes to determine the required 

bandwidth to transmit MVV. We focused the performance of MVC coding in 

particular and compared it with legacy H264 encoders. 

• We had measured the cost of enabling slice mode during the encoding process. 

We evaluated the gain in the bit-rate by disabling slice mode versus introducing 

FEC when slice mode is enabled.  



 
 
Chapter 1: Introduction     11 

• We performed tests on Raptor Codes and determined the amount of channel 

coding required under variety of network conditions.  

• We had compared the redundancy of Raptor Codes with a proposed MDC 

model. 

• We framed the required modifications upon the current streaming protocols to 

accommodate the extended data exchange required for multi-view streaming.  

• A novel module is proposed for allowing multi-threaded decoding with decoders 

that are designed for single thread. This is especially important for streaming 

MVV in real-time.  

• We had defined the effect of packet rate as the second most important parameter 

for the packet loss rate.  



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

12 

 

 

Chapter 2 

 

MULTI-VIEW VIDEO STREAMING ARCHITECTURE 

 

 

2.1 System Overview 

 

Modules that compose 2D and 3D streaming system have similar objectives. However, 

almost each one of them is more complicated in the 3D case. In Figure 2.1, presents the 

order and the list of these modules. In this section, we will first describe the overall 

working principles of the implemented 3D streaming system. Then, we will give detailed 

information about each module. 

The initial task is to generate or capture the content. A variety of methods is present in 

the literature for acquiring 3D content [25], [32-34]. The first one is capturing the scene 

from multiple viewpoints. For this purpose, you can either use an array of cameras or a 

single camera with multiple objectives such as Bumblebee [35]. Another option is to 

generate 3D content using standard 2D video. A very successful algorithm for a static scene 

captured by a moving camera is already proposed and demonstrated in HHI headquarters 

[36]. Yet another method depends on the estimation of the depth values of pixels and then 

generating artificial views. Beside the special equipments, which provide the depth-map, 

one can also use multiple cameras and estimate depth-map by protection. Lastly, you can 

generate 3D content by using computer graphics technology. Taking snapshots from 

different locations is a straightforward procedure when you have the 3D model.  



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

13 

 

Figure 2.1: Modules of Proposed Streaming Architecture 

 

Once the content is available, a representation format is required to store the visual 

data. Two common formats are present for storing raw video. In the first one, each view is 

stored in a separate stream. This allows accessing every captured frame without any 

information loss but requires high storage capacity. In video-plus-depth format (VPD) in 

addition to the video stream, the depth map information is stored. The depth map requires 

less storage area and utilizes generation of artificial views. Therefore, it is not necessary to 

store every view with depth-map representation. However, it is not possible to recover all 

of the frames exactly. The occlusions and semi-transparent object cause difficulties in 

generating correct artificial views. As a solution, a new method that uses N video-plus-

depth streams to generate M views, is proposed (M > N). There is an ongoing study for the 

standardization of this representation as well [37].  

The next step is to compress the 3D data before transmitting over the Internet. There 

are two fundamental solutions for encoding MVV. In simulcast encoding, each video 

stream is considered independent video stream and encoded one by one. In standard 

monocular video encoding, spatial redundancy and temporal redundancy are targeted to 

3D Scene 

Capture Representation Coding 

Decoding Display Transmission 

3D Reconstruction 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

14 

decrease the bitrate of the content. The current state of art encoding standard is H264 

Advanced Video Coding (H264/AVC) defined in [38]. MVV introduces interview 

redundancy, which is due to high correlation between views. In simulcast coding, interview 

redundancy is not exploited and independently decodable video streams are generated. 

Multi-View Coding (MVC) [39] is and extension of H264/AVC and it is developed to take 

advantage of the interview redundancies. MVC takes advantage of similarities between 

different views by referring frames not only in time axis but also in views. These 

dependencies, decreases the overall size of the content, but makes the decoding process 

more complicated. A frame in a dependent stream cannot be decoded without receiving all 

of the referred frames in other views. As a result, MVC decoding mandates buffering 

mechanisms to feed the decoder in correct order. 

A compressed video stream is packetized using ALF conventions and streamed via 

well-known protocols such as, RTP, RTSP and RTCP. RTSP is an out of band protocol for 

signaling and handshaking purposes. RTSP runs over TCP and offers remote control 

abilities such as play, pause, rewind, and stop. It also grants handshaking mechanism by 

getting the description of the video using SDP. Handshaking allows the receiver to 

understand whether the content is suitable or not before actual data transfer. A video 

content may not be compatible with the client due to variety of reasons such as missing 

codec. In 3D, the display requirements of the content can be another reason for 

incompatibility. Once the handshaking is over, RTP is responsible for the actual data 

transmission. As a control mechanism, RTCP handles the report exchange between server 

and client. The server may adjust to network conditions based on the information available 

in these reports. In section 2.2, we introduced our proposed modifications for RTSP and 

SDP protocols.  

Once the handshaking is over, the server initiates transmission and the receiver can start 

decoding the incoming packets. During the video transmission, the available bandwidth is 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

15 

divided between source coding and channel coding. Channel coding enables the receive to 

recover lost packets using FEC mechanisms. The optimum rate for channel coding depends 

on the characteristics of the link. As an example, every bit dedicated to channel coding is a 

waste in a lossless medium. However, experiments show that, packets are lost due to early 

discard mechanism employed by the routers even if the transmission does not exceed the 

available bandwidth. Therefore, dedicating a reasonable rate for channel coding improves 

the overall quality of the transmission. 

As the packets arrive at the client, they are stored at the buffer and forwarded to 

decoder when all the required packets received. Generation of 3D scene is the last part of 

the streaming. In the 2D case, basic operation is to display the decoded frames at a steady 

rate. In 3D, both the content representation format and the features of the display have 

affects on the scene generation. In video-plus-depth representation, we need to generate the 

artificial view(s) before any other operation. If the frames are ready, we may project them 

on screen immediately, like in the case of projector based display systems. In some display 

systems, we have to merge all frames at a time instant generate single image for an 

instance. Due to the difference in the orientation of lens array, the pattern for merging 

(Interdigitizing) views differs from one display to another. Once the interdigitizing 

operation is over, we simply display frames based on their timestamps.  

In the paragraphs above, we have summarized the modules that compose a complete 

streaming architecture. During the implementation, we focus on both individual 

performance of each module and the efficiency of the interfaces between them. In theory, 

the increase in performance in any module should increase the overall performance. 

However, if the interfaces between modules are not efficient, it may not be possible to 

observe the expected performance gain. Therefore, a successful implementation should 

consider collaborative efficiency of modules as well as their stand-alone performance. 

When compared with 2D systems, structure of each module is more complex In order to 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

16 

meet the demands of such a rapid growing technology, the modularity of design is crucial. 

Otherwise, the streaming software can become obsolete with in a short period.  

2.2 3D Content Generation, Representation and Encoding/Decoding 

 

In our tests, we used contents created by several methods in order to investigate the 

encoding performance and visual quality of 3D experience. The first one is a computer 

generated artificial model of Adile Naşit by Momentum, a company that was also member 

in the 3DTV project. The second content, labeled as Iceberg, was an example of 2D to 3D 

conversion. BBC did the original shooting and the artificial views generated by Sebastian 

Knorr at the Technical University of Berlin [36]. In the scene, there are no mobile objects, 

so that it was possible to generate an artificial view based on the motion of the camera. 

Third content was captured in Japan with a 1D-camera array that composed of 100 

cameras. Finally, Microsoft break-dance record was the last content and used for testing the 

depth map feature of the application.  

The features of content like the amount of motion and the ratio of high frequency 

components affect the encoding performance of a codec. The introduction of multiple 

views adds even more complexities such as white balance and focus settings of the 

recording camera setup. Naturally, it is expected that, encoding artificially created content 

by 2D-3D conversion yields better results compared to an actually captured video due to 

absence of difference between cameras. Even better results can be achieved in a completely 

artificially generated computer graphics.  

Encoding structure of MVC may need more explanation. In Figure 2.2, you can see the 

proposed MVC prediction algorithms. Horizontal axis represents the flow of time and the 

vertical axis is the view id. Each arrow in the figure corresponds to dependency. The 

arrows mean that the target frame is taken as a reference by the source frame. As a result, 

dependencies generated since target frame is require decoding the source frame. Figure 2.2  



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

17 

describes full dependency between frames of multi-content. In this architecture, each frame 

is dependent to all the frames in adjacent views in addition to the frames in the same view. 

While it may increase the performance encoding, it introduces complexities for the 

decoding process. Yet another side effect is the propagation of distortion due to packet 

losses. In Figure 2.3, a simplified model is proposed. In the simplified model, the interview 

dependencies are restricted to only I-Frames for each GOP. By definition, an  

I-Frame is independently decodable. Once an I-Frame refers to frames in another view, it is 

no longer decodable independently. We label such frames as key-frame. Figure 2.4  

displays the dependency structure that is adopted in our implementation. At the Figure 2.3 

taken from [40], you can see the comparison of encoding performance of those models. 

Notice that the simplified model performs very close to the complex model. Considering 

the side effects of complex model, simplified case forms the basis of our model. In both 

standard and simplified prediction, the view 0 is independently decodable. In our model 

however, the independent view is in the middle. This scheme introduces simpler 

dependencies for stereo displays.  

 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

18 

 

Figure 2.2: MVC Standard Prediction 

 

Figure 2.3:  Implemented Prediction Model 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

19 

 

 

Figure 2.4:   MVC Implemented Prediction 

 
2.3 Protocol Initialization 

 

We use client driven Real Timer Streaming Protocol (RTSP) defined in [5] for the 

handshaking and initial setup. RTSP is a text-based, extendible protocol and runs over TCP 

for lossless data exchange. RTSP is not intended for actual data transfer, instead it allows 

remote control capabilities to the client such as play, pause, rewind, and stop. RTSP is not a 

connection-oriented protocol meaning; A client can use distinct TCP connections to issue 

RTSP requests during a single session. However, the server does keep session information 

in order to respond the requests correctly. The diagram in Figure 2.5 exemplifies a typical 

RTSP message traffic. In Figure 2.5 (a), you can see the standard RTSP while in (b) you 

can see modified version that we use in our proposed architecture. In the rest of this 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

20 

section, we present our proposed modifications for handshaking procedure and session 

setup.  

The first expected message in an RTSP session is describe. The client interprets the 

response to understand whether it is suitable to play or not. The response is in the format 

defined by Session Description Protocol. Our proposed modifications for RTSP and SDP 

protocols are as follows;  

SDP Modification: In the proposed system, each view contained in the multi-view 

content is declared as a separate media-level section in the SDP announcement. This allows 

the receivers to select the views they would like to receive. Although the output of MVC is 

a single compressed file that includes NAL units of all views, we propose to break this 

single file into separate streams for each view. While this has no effect on the total file size, 

it facilitates fast disk access to the NAL units belonging to different views. Obviously, 

most of these streams will not be independently decodable due to the inter-view 

dependencies generated by MVC compression. Therefore, we extend the SDP standard by 

adding a new media-level attribute called x-ref in order to declare dependencies between 

streams. In accordance with [6],this new attribute is used as a=x-ref:REF LIST, where REF 

LIST is a space separated list of rtpmap values for the streams referenced by this stream, 

Rtpmap is a dynamically assigned RTP payload type identifier for a H.264/AVC stream 

and is unique for each view. Therefore, REF LIST defines all the required views for which 

the REF LIST belongs. The client should go through the list of references in a recursive 

fashion and initiate streaming for all streams in the dependency hierarchy. If REF LIST is 

an empty string or there are no x-ref attributes for a media-level section, it means that the 

stream in question does not depend on any other streams and can be decoded 

independently. That completes our modification for inter-view dependency.  

The second modification for SDP was the use of depth maps that are required to 

generate artificial views. In case depth map streams are present, we tag those streams in 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

21 

order to distinguish them from the video streams. We propose to accomplish that using 

another SDP attribute in addition to x-ref. Let us call this boolean attribute  

x-depthmap. For any depth map stream both x-depthmap and x-ref need to be present.  

x-depthmap declares the stream as a depth map stream and x-ref denotes the stream that 

depthmap is indented for. Obviously, the client has to assume the SDP announcement 

generated by the server is correct in the semantics as well as well in syntax, i.e. correct 

depth streams need to be associated with the correct video streams in order to achieve 

meaningful rendering at the client side. This method of declaring dependencies, is 

completely backwards compatible. In accordance with original SDP specification, a client, 

which does not understand the proposed SDP attributes, ignores them. However, such a 

client might request and fail to decode dependent streams due to its inability to make sense 

of dependency information. Similarly, a 3-D client can still display in 2-D if it is connected 

to a conventional video server with no support for the proposed SDP attributes. 

 

 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

22 

 

 

 

 

 

 

RTSP Modification: Amount of bandwidth requirements of 3D Video, especially in 

eight or nine views, can be overwhelming for client’s connection. It is best if the server can 

give feedback on the connection quality of the client, and state whether it is adequate to 

play the content or not. For this purpose, we include a new phase in the RTSP message 

exchange list in which the server will try to estimate the bandwidth currently available to 

the client. In this optional phase, we use the TFRC rate adaptation formula, defined in [41], 

for measuring the available bandwidth between server and client. This procedure is 

initialized by a request from the client, containing both the list of streams that are about to 

be played and the duration of the test. Figure 2.6, generosity of Burak Görkemli, displays 

Figure 2.5 

 (a) Standard RTSP Message Exchange Order 

(b) Modified RTSP Message Exchange Order 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

23 

the average time elapsed until the calculated rate converges to the actually available 

bandwidth. The figure shows that TFRC rapidly converges to the available bandwidth. 

Duration of five to ten seconds is adequate for measuring the bandwidth of the client. 

Server replies with a recommendation based on the total bandwidth requirement of the 

requested contents and the calculated available bandwidth. It is the decision of the client to 

follow or ignore the recommendation of the server.  

 

Figure 2.6:  Convergance of TFRC rate to the available bandwdith  

 

Once the client interprets the messages in SDP and decides to play the content, it 

advances to the next phase of RTSP. In this setup phase, the client and server declare 

communication parameters such as port number of both actual data transfer (RTP) and 

reporting (RTCP). In our architecture, the actual data transfer is done over RTP/UDP/IP 

protocol stack, which works on best effort principle. In order to struggle with possible 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

24 

packet losses we use Raptor Codes as Forward Error Correction mechanism. The forward 

error correction layer can be present above and below RTP in the protocol stack. In our 

case, once the initial parameters are set, the sequence number field on the RTP header is 

adequate for tracing the FEC packets. Therefore, if FEC packets are payload for RTP is 

possible to use Raptor Codes without additional header. However, a modification in SDP is 

required for setting the initial parameters of raptor decoding operation. 

In Figure 2.6, you can see a typical SETUP request and response during an RTSP 

message exchange. The bold texts are due to the modifications we propose in the setup 

phase. In our architecture, the client can determine the rate of protection for each stream 

separately, allowing unequal protection between video streams. The independent stream is 

clearly the most crucial for the decoding process. Therefore, the client may wish higher 

level of protection for the independent stream and less for the ones that depend on it. 

fecRate:numProtectionSymbols-numTotalSymbols syntax fully describes the rate 

allocation between source and channel coding. The term block refers to a group of source 

packets along with the protection packets generated to protect the source packets. As the 

name suggests, numTotalSymbols is the total number of packets in a block. The 

numProtectionSymbols is the number of protection packets present per single block. The 

higher the ratio of protection symbols to the total symbols means higher level of protection 

for the stream. Section 2.5 describes the effect of those parameters. 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

25 

 Figure 2.7: Segment of RTSP Message Exchange  

2.4 Video Streaming over UDP 

 

We generate a byte-stream by encoding raw video. It is composed of data chunks, 

named as macro-blocks, which include information about a limited number of pixels in a 

frame. The term slice is a group of macro-blocks and header for the common parameters of 

the macro-blocks. As we decode slices, we get portion of a frame. The word “streaming” 

refers to delivering of those slices in timely fashion. 

RTP header wraps slices and includes that includes sequence number and timestamps. 

Based on the sequence number, receiver can detect losses and may trigger retransmission. 

It may also run error correction algorithms to recover that lost packets if channel coding is 

present. It may also choose to ignore the packet loss event. The next field in the RTP 

header is timestamp, which defines the instant that the payload is intended to play.  

TCP, UDP, and DCCP are the transport layer protocols that are commonly used 

network applications. DCCP is a protocol still under development and is not implemented 

by all OS. TCP can provide reliable data transfer over unreliable channels. However, 

streaming applications prefer UDP for its customizable policies. At this point, it may be 

Client � Server 

SETUP rtsp://88.255.97.55:8555/adileLong2/track1 RTSP/1.0 

CSeq: 2 

Transport: RTP/AVP;unicast;client_port=3740-3741;fecRate:30-400 

User-Agent: adileLong2 (LIVE555 Streaming Media v2006.12.08) 

 

Server � Client 

RTSP/1.0 200 OK 

CSeq: 3 

Date: Tue, Sep 09 2008 12:03:29 GMT 

Transport: RTP/AVP;unicast;destination=127.0.0.1;client_port=3740-

3741;server_port=5002-5003;fecRate:30-400;fecSize:1430 

Session: 2 

 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

26 

unclear why an unreliable transport is preferred over a reliable one. The fundamental 

benefits using UDP during video transmission are summarized as follows;  

• Application Layer Framing: In TCP as the transport protocol, the application 

cannot participate in packetization. It is not possible to select the exact bitstream 

within each packet. Therefore, it is very likely that the packets will contain data 

that can be nullified when a particular packet is lost. This policy is a clear 

violation of ALF.  

• Retransmission Policy: TCP is designed for lossless data transmission for files 

that get corrupt in case of information loss. However, multi-media streams are 

tolerable to losses. Consider a TV show display at 30 frames in a second. Loss 

of a single frame is most likely to be unnoticed by the audience. Since UDP 

does not enforce retransmission of lost packets, it is possible to ignore that lost 

frame and keep the video playing. However, TCP will try to resend that lost 

frame and halt the stream if unable to do. As a side effect, the video is paused 

and the quality of the visual experience is degraded. UDP allows the application 

to choose the action in case of packet loss. The application may choose to ask 

the server to retransmit the packet, or try to run error correction algorithms or do 

nothing and try to hide its side effects. 

• Steady Transfer Rate: TCP is designed for transmission of bulky data and it is 

under the influence of two driving forces, bandwidth utilization and congestion 

control. The former one dictates indefinite increase in transfer rate to increase 

the throughput of the channel. However, this eventually forces a packet loss at 

some point since the channels have a limited capacity. On the other hand, the 

congestion control policy try to avoid congestion by demanding drastic 

reduction of transfer rate in case of a packet loss, which is unavoidable due to 

first policy. Under the influence of these forces, rate of data transfer displays 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

27 

fluctuations. Unlike bulky data transmission, a streaming application prefers 

steady transmission rate, thus UDP is more preferable.  

We propose to stream multi-view content over RTP/UDP/IP in a similar fashion to 

[14]. In the case of simulcast streaming, views are independent of each other so it is not 

different then well-known 2D case. For the case of MVC encoding however, we have a 

single file that contains slices from all views. As stated previously, we propose to split this 

file, to multiple streams, each containing slices from single view. Then the generated 

streams are compatible with RTP/UDP/IP stack and the receiver can identify them based of 

the dynamic payload type in the RTP header.  

 

2.5 Channel Coding  

 

In the previous section, we explained the transmission of video slices. Now we will 

describe the Forward Error Correction mechanism, which initiated when a data packet is 

lost. The term `forward` stands to the fact that, we generate the protection packets before 

actual data transfer and obviously before the occurrence of any packet losses.  

XOR operation forms the basis of packet generation in almost all FEC algorithms. For 

the simplest case, assume that we have data packets A and B. We try to transmit A, B and 

C where C is A XOR B. The client can reconstruct A and B as long as it receives two out 

of three packets in any combination. This simple scheme has the two fundamental 

problems. First, the protection system is useless in case of two consecutive packet losses 

and secondly the protection packets introduce 50% bandwidth overhead. Therefore, 

advanced FEC techniques are developed.   

Among many alternatives, we used Raptor Codes with is an implementation of 

Fountain coding. Fountain coding is a novel technique that became recently popular as 

Error Correction algorithms for streaming applications [42-44]. Some practical 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

28 

implementations are can be listed as Online codes [45], LT codes [46], and Raptor codes 

[45]. Fountain codes require byte chunks, named as symbols, at fixed length. The slices 

generated by video encoders are good candidates for this requirement. However, due to the 

nature of video encoding size of slices are not fixed. Nevertheless, we can overcome this 

problem simply by padding zeros at the end of NAL units. 

A raptor code is composed of two parts. The encoder resides at the server side and 

generates the protection symbols in real-time once the data symbol are available. The 

decoder, resides at the client side, and tries to recover lost data symbols using the 

information available in the protection packet. During the transmission, we feed a 

predefined number of data symbols to the FEC encoder and receive protection symbols. 

The data symbols, together with the corresponding protection symbols are called a block. It 

is the task of the server to deliver the symbol blocks to the client. Upon receipt of a single 

symbol block, the client has does the following operations; if no data symbols is lost then it 

simply ignores the protection symbols. If one or more of the data symbols are lost, it 

initiates FEC decoding process and tries to reconstruct (decode) as many data symbols as 

possible. Figure 2.7 summarizes the FEC encoding and decoding process.  



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

29 

 

Figure 2.8: Video Transmission over the Internet 

 

2.6 Multi-Threaded Decoding, Interzigging, and Display 

 

Once the channel coding is over, we strip the NAL Units from their RTP header and 

forward them to NALU Manager. NALU Manager is the module that is responsible for 

queuing and decoding operations. It has multiple threads for performing operations 

simultaneously if multiple cores are present. Once the stream is processed by NALU 

Server Client 

File Source 
Data Symbol Queue 

FEC Encoder 

NAL Units 

Full Block 
NAL Units + Protection 

RTP Packetizer 

7 Packets with RTP Header 

 
The Internet 

2 Lost Packets 

1 3 4 5 6 

FEC Decoder 

NALU Manager 

8 

1 3 4 2 

Data Symbols 
Protection Symbols 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

30 

Manager, the final task is to display the frames in a timely fashion. Therefore, it is correct 

to say that NALU Manager is the final link step of the multi-view streaming system. 

2.6.1 NALU Buffering 

 

Queuing is required to synchronize the frames of separate views, which get more or less 

unsynchronized due to the nature of the packet transferring mechanism in the Internet. 

Queuing also utilizes the decoding operation if inter-view dependencies introduced by the 

MVC encoder.  

We insert intra-coded frames (I-Frames) periodically during simulcast encoding.  

An I-Frame does not depend on any other frame therefore, it is independently decodable.  

The frames between two consecutive I-Frames are called Group of Pictures (GOP). A 

frame within one GOP can not refer to another frame in another GOP. Therefore I-Frames 

also work as a boundary point in the dependency hierarchy. Yet another meaning is that in 

simulcast coding GOP is independently decodable as long as I-Frames a received.  

 

Figure 2.9: Group of  frames (GOP) in simulcast  encoding 

 

 However, MVC introduces inter-view dependencies defined for I-frames, which are 

now called key frames. As a result, in order to achieve independently decodable block all 

dependent frames should be received beforehand. The dependency hierarchy is summarized 

in Figure 2.9. Based on this hierarchy, in order to decode GOP in view 2, I-Frames in view 

I 

Two Independently 
decodable  
frame blocks (GOP) 

time 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

31 

3 should be received. Likewise, in order to decode the GOP in view 5, key frames in view 4 

and I-Frames in view 3 should have arrived.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Group of Frames (GOP) in MVC  Encoding 
 

If the client requests less then the available views, we can use the dependency hierarchy 

to stream only the required frames. The ability to stream the content selectively allows the 

client to adjust the disparity, which is the difference between left and right views due to 

orientation of cameras. This is especially important if we consider that, the optimum 

disparity depends on the display and may differ from person to person. Figure 2.10 

specifies the requires frames for decoding the GOP in view 0 and 5.  

I-Frame in 
independent view 

B-P Frames 

I-Frame in 
dependent view 

view 5 

view 6 

view 4 

view 0 

time 

View 

view 1 

view 2 

view 3 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

32 

 

 

2.6.2 Multi-Threaded Decoding 

 

In our streaming system, we dedicate most of the computational resources for the 

decoding operation of NAL Units. During the transmission for 9-view, clients has to 

decode 270 frames per second in order to reach the 30fps limit. Due to the structure of the 

decoder software, it cannot take advantage of multi-core processors automatically. 

Therefore, we propose a systematic methodology for simultaneous decoding operation. 

As a way of implementing multi-threaded decoding, we propose to initiate multiple 

instances of decoder objects. Once we create the instances, what remains is feed them with 

independently decodable byte-streams. The highlighted frames In Figure 2.10 describe two 

independently decodable streams. If these frames are fed into the decoder, then 

simultaneous decoding operation can be performed. 

The task of creating multiple instances of decoders and multiple threads is a 

straightforward implementation. However, creating the independently decodable byte-

Required Frame  

Unnecessary Frame 

view 5 

view 6 

view 4 

view 0 

time 

View 

view 1 

view 2 

view 3 

Figure 2.10: Required frames for watching stereo video. 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

33 

streams requires special attention. For this purpose, we propose a new object named as 

GOP-Manager, which is responsible for generating independently decodable byte-streams. 

Given the inter-view dependencies, GOP-Manager tries to create two or more streams that 

has all of the required frames.  

 

Figure 2.12: Generation of independently decodable streams for the stereo case 

 

 

Figure 2.13: Generation of independently decodable streams  

for the multi-view case 

view 5 

view 6 

view 4 

view 0 

Duplicated  
I-Frames view 1 

view 2 

view 3 

Decoded by  
CPU - 1 

Decoded by  
CPU - 2 

cam 5 

cam 6 

cam 4 

cam 0 

cam 1 

cam 2 

cam 3 
Duplicated  
I-Frames 

Decoded by  
CPU - 1 

Decoded by  
CPU - 2 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

34 

We start by defining the term of independently decodable byte-stream in a GOP. A 

stream is independently decodable if it requires no other frame to decode all the frames it 

includes. In Figure 2.10, the frames that are highlighted with dark red border forms an 

independently decodable stream. However, with its current order it cannot be divided into 

two separate streams. In order to achieve this we need to duplicate the I-Frames as shown 

in Figure 2.11. The same idea is valid for the multi-view displays as shown in Figure 2.12 

 

2.6.3 Interdigitizing 

 

Both the number of required views and the way these views are displayed on the screen 

depends on the type of the display. Views from the same time instant needs to be merged 

before presentation for lenticular-sheet or parallax-barrier displays. This process is called 

interdigitizing, where N-views from WxH size images are combined to generate a single 

image of same size. As a result, the actual spatial resolution of the video is decremented.   

In RGB representation each pixel at x and y coordinate has three values that represents 

the strength of red, blue, and green color. Commonly each pixel is represented by 3 bytes 

for RGB values. In such configuration, the maximum value for a single color is 255.  

If we numerate these RGB colors as 1, 2 and 3 respectively then we can identify each 

sub-pixel value in an image with three variables x, y and c. Let x and y be the coordinate of 

the interdigitized image and c as the sub-pixel number, then we can define F(x; y; c) which 

maps a sub-pixel at the interzigged image to a sub-pixel in original views. For instance, if 

F(50; 70; 1) = 5, then the red component of the pixel in 50th column and 70th row of the 

interdigitized image mapped to the 5th camera’s red component at the corresponding pixel 

location. The Figure 2.13 is a visual representation of the function we define and name it as 

the Interzigging pattern of the display. Once the interdigitizing operation is over, the 

generated image is ready to display. 



 

 

Chapter 2: Architecture for Streaming Multi-View Media    

 

35 

 

 

Figure 2.14: Interzigging pattern for an 8 view display 

 

 

Figure 2.15: An interdigitized image 

R G B R G B R G B R G B R G B R G B R G B R G B

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2

4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5

6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5

7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6

8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2

4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3

5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5

6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5

7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6

8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

21 3 4 5 6 7 8



 

 

Chapter 3: Experimental Results    

37 

 

 

Chapter 3 

 

EXPERIMENTAL RESULT 

 

 

Efficient method for streaming video over the Internet depends on multiple parameters. 

Parameters such as bandwidth capacity of the link or rate of packet loss are not adjustable 

neither by the streaming system. However, the system can adapt to those input parameters 

by adjusting rate of channel coding. In this chapter, we will start with introducing the 

experimental results for estimating these parameters. Later, we will describe our settings 

for the actual video streaming over the Internet.  

Video encoding performance, channel coding performance, and network analysis are 

three main subjects of our experiments. In the video encoding experiments, we investigate 

the compression efficiency of MVC and compare it with simulcast encoding. Another aim 

is to observe the effect of encoding schemes that allows multi-threaded decoding and 

calculate the cost of suboptimal encoding which is required for multi-threaded decoding. In 

the channel coding experiments, we tried to identify the performance of Raptor codes that 

is the FEC mechanism available in our implementation. Our performance criterion is the 

ability to recover the lost source packets that appear at varying rate. The aim is to 

determine the effective rate of channel coding for fighting against packet losses efficiently. 

Finally in the network analysis, we tried to determine the characteristics of the link between 

KU and METU as a case study. Network analysis and channel coding experiments provide 

valuable feedback to determine the rate of protection for real packet loss scenarios. The 

packetization strategy is also selected based on the results of network analysis.  



 

 

Chapter 3: Experimental Results    

38 

3.1      Encoding Results 

 

3.1.1 Comparison of MVC coding and Simulcast Coding 

 

 

Implementing an MVC compatible streaming architecture requires modifications in  

protocols, mandates efficient buffering algorithms and introduces complexities in decoding 

process. Therefore, the performance gain of MVC encoding should be justified. Otherwise 

software developers can prefer simplicity to insignificant performance increase in 

encoding. 

Naturally, the tests reveal that MVC has higher compression efficiency then simulcast 

coding for both stereo and multi-view cases. However, the gain highly depends on the 

features of the content. In Figure 3.1 and 3.2, you can see the PSNR/bitrate comparison of 

MVC and simulcast encoding for eight-view Adile and Iceberg sequences respectively. The 

difference in the encoding performance of MVC for a syntactic content and an actual 

recording is noticeable.  The x-axis is the required bandwidth to achieve the PSNR value in 

the y-axis. Figures exhibits that simulcast encoding require higher bandwidth to achieve the 

same quality when compared with the MVC encoding.  

The difference in the encoding performance between MVC encoding and simulcast 

becomes more obvious as the number of views increase. This fact can be explained as 

follows; Although MVC encoding cannot compress the independent view better than the 

simulcast encoder, for each additional view MVC introduce a stream at relatively lower 

rate due to interview dependencies. Therefore, as the number of views increase, the gap 

between the simulcast and MVC encoding increase as well. 

 



 

 

Chapter 3: Experimental Results    

39 

PSNR (dB) vs Bit rat e (kbps) f or  Adile  Sequence

33,000

34,000

35,000

36,000

37,000

38,000

39,000

40,000

0 1000 2000 3000 4000 5000 6000 7000

Sim ulcast

MVC Sing le

Co re
MVC Dual Core

MVC Quad  Co re

 

Figure 3.1 PSNR/Bitrate Comparison between MVC and Simulcast Coding  

  

PSNR (dB) vs Bit rat e (kbps) f or  Ice Sequence

34,000

35,000

36,000

37,000

38,000

39,000

40,000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sim ulcast

MVC Single

Core
MVC Dual

Core
MVC Quad

Core

 

Figure 3.2: PSNR/Bit-Rate comparison between MVC and Simulcast Coding (8-View) 



 

 

Chapter 3: Experimental Results    

40 

We aim to find a performance criterion that does not depend on the number of views. 

Such parameter should reflect the on the aim of MVC encoding scheme. If we consider the 

implemented hierarchical model in Figure 2.4, it is clear that MVC tries to decrease the size 

of I-frames at the dependent views. Therefore, we can calculate the efficiency of MVC by 

comparing the total size of I-Frames in independent stream vs. dependent streams. Such 

comparisons are presented in Table 3.1, 3.2 and 3.3.   

Table 3.1 lists the size of streams generated by encoding Adile sequence with MVC. 

Stream 4 is the independent view so its total size overmatches the other streams. The rate 

allocation for B-Frames is roughly one fifth of the I-Frames for stream 4. MVC coding 

reduces the total size of I-Frames in the dependent views such that it becomes less than 

total size of B-Frames, indicating successful compression. The rate of reduction is given 

under the efficiency column and you can compare it with Table 3.2, which displays the 

results for the same content only for lower quality. As the quality decreases, compression 

becomes an easier task, allowing further reduction in the size of I-Frames.  

The rate of compression decreases for an actual recording when compared with a 

computer-generated content. The difference in the settings of cameras such as white 

balance, calibration and noise decrease the efficiency of MVC encoding. Table 3.3 presents 

rate allocation between I-Frames and B-Frames for the Rena sequence that is captured by 

1D camera array. Both the rate of I-Frames and also the efficiency of interview 

compression decreased drastically. Therefore MVC did not provide very significant results 

for Rena sequence when compared with the computer generated Adile sequence. Although 

the compression efficiency decreased only by half, the reduction in the size of I-Frames 

further reduced the effect of compression.  

 



 

 

Chapter 3: Experimental Results    

41 

 

Adile 8 View MVC (PSNR 36,7) 

 Total B-Frame I-Frame B/I Ratio Compression 

Stream 0 1710,70 1101,17 609,53 1,81 0,12 

Stream 1 1679,47 1091,17 588,30 1,85 0,11 

Stream 2 1648,85 1081,90 566,95 1,91 0,11 

Stream 3 1762,32 1066,85 695,47 1,53 0,13 

Stream 4 6218,14 1039,35 5178,79 0,20 - 

Stream 5 1770,94 1067,26 703,68 1,52 0,14 

Stream 6 1662,25 1079,23 583,02 1,85 0,11 

Stream 7 1666,42 1083,74 582,68 1,86 0,11 

Table 3.1: Size of MVC Streams and byte allocation between  

B-Frames and I-Frames (Adile, PSNR 36.7) 

 

Adile 8 View MVC (PSNR 28,25) 

 Total B-Frame I-Frame B/I Ratio Compression 

Stream 0 390,66 291,97 98,69 2,96 0,07 

Stream 1 388,20 288,59 99,60 2,90 0,07 

Stream 2 375,60 280,85 94,75 2,96 0,07 

Stream 3 406,20 275,84 130,36 2,12 0,10 

Stream 4 1599,83 265,89 1333,93 0,20 - 

Stream 5 409,88 278,84 131,05 2,13 0,10 

Stream 6 378,86 283,39 95,48 2,97 0,07 

Stream 7 382,45 284,01 98,44 2,89 0,07 

Table 3.2: Size of MVC Streams and byte allocation between  

B-Frames and I-Frames (Adile, PSNR 28.25) 

 

Rena 8 View MVC  (PSNR: 28,7 )  

  Total B-Frame I-Frame  B/I Ratio Compression 

Stream 0 760,09 671,99 88,10 7,63 0,23 

Stream 1 752,53 666,48 86,05 7,75 0,22 

Stream 2 846,92 772,03 74,89 10,31 0,19 

Stream 3 800,37 717,67 82,70 8,68 0,21 

Stream 4 892,05 502,04 390,01 1,29 - 

Stream 5 800,37 717,67 82,70 8,68 0,21 

Stream 6 846,92 772,03 74,89 10,31 0,19 

Stream 7 752,53 666,48 86,05 7,75 0,22 

Table 3.3: Size of MVC Streams and byte allocation between  

B-Frames and I-Frames (Rena, PSNR 28.7) 

 

 



 

 

Chapter 3: Experimental Results    

42 

3.1.2 Effect of Slice Mode 

 

Slice mode is an encoding parameter that has an effect over the bitrate of the output 

stream. When slice mode is disabled, single NAL Unit encapsulates each frame. If the size 

of that NAL Unit is larger than path MTU, then the packet is fragmented at the network 

layer and payload is distributed to multiple fragments. Loss of any of those fragments 

makes the rest of them useless. This is a clear violation of application layer framing.  

It is possible to perform fragmentation at the application layer by enabling slice mode. 

ALF is achieved by dividing the frame into slices and appending header information that is 

required for decoding the slice. This approah increases the chance of benefiting from each 

received fragment.  

However, appending headers to slices increase the bitrate. In Table 3.4 presents the 

overhead of introducing splitting frames into slices. Notice that as the quality of the video 

decreases, size of each frame decreases, and the overhead of slice mode decreases as well. 

 

 

 

 

 

 

 

 

 

 

 

 

Slice Overhead 

  PSNR Total Size Increase % 

Adile QP28 w Slice 37,90 9186,43   

Adile QP28 wo Slice 37,98 8795,85 0,04 

Adile QP30 w Slice 36,38 7463,81   

Adile QP30 wo Slice 36,45 7156,25 0,04 

Adile QP34 w Slice 33,51 4618,25   

Adile QP34 wo Slice 33,59 4450,57 0,04 

Adile QP38 w Slice 30,76 2779,18   

Adile QP38 wo Slice 30,80 2698,24 0,03 

Adile QP42 w Slice 28,29 1723,99   

Adile QP42 woSlice 28,32 1673,78 0,03 

Adile QP46 w Slice 26,07 1168,33   

Adile QP46 wo Slice 26,09 1145,61 0,02 

Table 3.4: Overhead of Slice Mode 



 

 

Chapter 3: Experimental Results    

43 

3.1.3 Effect of Encoding Scheme Set for Multi-Threaded Decoding 

 

In order to perform simultaneous decoding, client needs to generate independently 

decodable code blocks based on the encoding scheme. The encoding schemes can deviate 

from each other. In one extreme each view is independently encoded. One the other 

extreme, complex dependency architectures are introduced to decrease the bitrate.  

Figure 3.4 presents the encoding schemes for single, dual and quad-core processors.  

As an example, in Figure 3.4 (b) I-Frame at view 4 is referenced by four different paths. 

Following these paths, it is possible to see the required frames for decoding by quad-core 

processors. Figure 3.3 summarizes the required frames for each configuration and presents 

the workload of each core.   

 

Figure 3.3: Multi-Threaded Decoding Schemes 
 



 

 

Chapter 3: Experimental Results    

44 

 

Figure 3.4: Multi-Threaded Encoding Schemes 

 

The encoding efficiency of each scheme is not identical. In dual-core scheme, each 

view refers to an adjacent view. In the case of quad-core scheme, there are non-adjacent 

references. As the camera locations deviate from each other, the similarities within the 

captured frames decrease as well. Therefore, quad-core encoding scheme is not as efficient 

as the dual-core case. The encoding efficiencies of each configuration are presented in 

Table 3.5. 

 



 

 

Chapter 3: Experimental Results    

45 

3.2      Forward Error Correction Results 

 

3.2.1      Packet Recovery  

 

Channel coding is the major tool for fighting packet losses in our streaming system. We 

performed series of tests to understand its strengths and weaknesses. The major goal of the 

tests was to identify the packet loss behavior in which FEC seems useful and identify the 

cases where FEC does not provide gain. Once we have that knowledge, we can choose the 

parameters that will give us the maximum throughput or decide not to use forward error 

correction at all. In the rest of this section, we will describe the test conditions and then 

present our results.  

   The test is initiated by setting the parameters such as the block size, channel coding 

rate and loss percentage. Then the data symbols are fed to FEC encoder to generate the 

protection symbols. The collection of data and protection symbols is named as a symbol 

block. The packet-loss simulator marks some of the symbols as lost based on the lost 

percentage that we set initially. Finally, the FEC decoder tries to reconstruct the data 

symbols without using the marked symbols.  

In order to define our performance criteria for channel coding, let us assume that we 

have the parameters listed in Table 3.5. Once the decoding operation is performed there are 

three possible outcomes, namely successful decoding, partial decoding, or failed decoding. 

Successful decoding occurs when we recover all of the lost data symbols. In other words 

number of recovered symbols (r) is equal to number of lost symbols (r = l). If the decoder 

could recover some of the data symbols, then it is partial decoding (0 <r < l). Finally, if we 

cannot recover any of the symbols, it is failed-decoding (r = 0). 



 

 

Chapter 3: Experimental Results    

46 

 

m number of data symbols 

n  number of protection symbols 

k block size ( m + n ) 

mR number of received data symbols at client 

nR number of received protection symbols at client 

l number of lost packets. ( k - (mR + nR) ) 

r number of recovered symbols after FEC decoding ( 0 <= r <= l ) 

mD number of decoded data symbols. ( mD <= m ) 

nReq number of protection symbols required for successful FEC decoding 

Table 3.5 Parameters for Forward Error Correction 

 

We want to achieve successful decoding using fewer protection symbols as possible. In 

the best case, we get successful decoding when protection symbols are equal to lost 

symbols, n = l. However, a single protection symbol cannot contain more information than 

data symbols. Therefore, recovering lost packets with the same number of protection 

packets can only be possible if we repeat those packets. For this reason, partial or even 

failed decoding can occur when the number of protection symbols is larger than the number 

of lost symbols.  

Our performance criterion for the channel coding is the probability of recovering a lost 

packet through the FEC decoding operation (r/l). In Table 3.6, you can see the performance 

of Raptor Codes for varying inputs that are block size, protection rate and channel coding 

rate. We have two important observations out of this test. Firstly, the cells of same the color 

display the improvement in packet recovery rate as the block size increases. It is a well-

known fact that as the block size increases the efficiency of Fountain Codes increases [45]. 

The second observation is the critical drop in performance, which is highlighted by the 

vivid and pale cell pairs. The vivid colored cells are the cases when the loss rate is equal to 

the protection rate. When compared with the pale colored cell, you can notice the drastic 



 

 

Chapter 3: Experimental Results    

47 

drop in the performance. This observation leads the following conclusion. The required 

protection rate is higher than the packet loss rate for effective loss recovery.  

 

BLOCK SIZE Protection Rate Loss Percentage 

    4 5 9 10 14 15 

5 0.62 0.37 0.00 0.00 0.00 0.00 

10 0.99 0.99 0.68 0.38 0.01 0.00 100 

15 1.00 1.00 0.99 0.98 0.64 0.37 

                

                

5 0.79 0.39 0.00 0.00 0.00 0.00 

10 1.00 1.00 0.80 0.39 0.00 0.00 200 

15 1.00 1.00 1.00 1.00 0.80 0.39 

                

                

5 0.95 0.40 0.00 0.00 0.00 0.00 

10 1.00 1.00 0.95 0.39 0.00 0.00 400 

15 1.00 1.00 1.00 1.00 0.95 0.40 

Table 3.6: Possibility of Recovering a Lost Packet by FEC Decoding 

 

3.2.2      Redundancy Comparison between FEC and MDC 

 

Forward Error Correction mechanism is not the only way of struggling against packet-

losses. Automatic Repeat Query (ARQ) and Multiple Description Coding [47], [48] are 

other alternatives for the same purpose. MDC recently gain the attention in video 

transmission and presents promising results. All of these methods require extra bandwidth, 

which would not be needed lossless transmission. In this section, we compare the amount 

extra data we introduce with FEC and MDC.  

In this test, we have three video streams, which are all used the same content as source. 

The first stream is encoded with H264/AVC and added %8 FEC protection symbols. The 

second content is again encoded by H264/AVC with %16 protection packets. In order to 

match their bandwidth, the second video has lower initial PSNR value. The third content is 



 

 

Chapter 3: Experimental Results    

48 

the sum of two MDC pairs. Finally, we introduced low bandwidth H264 video with again 

%8 coding. In the configuration of the first two content, we tried to match the video rate of 

the MDC stream. Trying to match a particular bit-rate decreases the efficiency of encoders. 

The last stream is to show the effect of inefficiency. In Table 3.7, you can see the bit-rate of 

each content and in Figure 3.3 and 3.4 you can see the simulation results for %1 and %4 

packet loss respectively.  

 

No Contents Bitrate PSNR 

1 H264 + %8 FEC 1,695 46,05 

2 H264 + %16 FEC 1,728 45,74 

3 MDC (total) 1,674 43 

4 FEC 8 (low) 0,634 42,45 

Table 3.7: Streams in the Redundancy Test 

 

Results show that, Raptor Codes has higher PSNR/Bitrate performance when compared 

with the proposed MDC descriptions. The repetition of base layer in the MDC codec 

introduces the high redundancy. Therefore, for the purpose of loss recovery MDC is costly.  



 

 

Chapter 3: Experimental Results    

49 

PSNR Rena42 %1 Loss

30,00

35,00

40,00

45,00

50,00

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281

Frame No

P
S

N
R

H264 + %8 

H264 %16

H264 %8 (low)

MDC

hhh

 

PSNR Rena42 %4 Loss

30,00

35,00

40,00

45,00

50,00

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287

Frame No

P
S

N
R

H264 + %8

H264 + %16

H264 + %8 (low)

MDC

hhh

Figure 3.5: Redundancy Comparison between H264+FEC and  

SVC/MDC    Network Analysis  



 

 

Chapter 3: Experimental Results    

50 

Analyzing the behaviors of a link between two end-points without accessing the parts in 

the middle is a channeling task. Beside the high number of parameters that seriously affect 

the overall performance of the system, most of the time these parameters cannot be 

determined simply. In this section, we will first pinpoint the possible packet loss cases that 

these parameters have influence. Later we will briefly describe our test platform and 

present its results. Finally, we will combine the results and explain the conclusions we 

reach.  

 

3.2.3     Packet Loss Behavior 

 

There are many possible reasons for a packet loss such as unsuitable buffer size at the 

end nodes, the policies on the routers in between, simple bit-errors and many more. Among 

this variety of possibilities, the most common one is the failure of a router to forward a 

packet. Therefore, we will focus on routers and split them into two groups, the edge 

routers, and intermediate routers. The intermediate routers are in between the first and the 

last router on the link. They simply forward the packets to the next routers in the path as 

best as they can. On the other hand, unlike intermediate-routers, the edge routers are also 

responsible for fair distribution of available bandwidth in the local area network they 

reside. If we consider Figure 3.8, you can see two separate networks connected to the 

Internet through a router. The router separates two networks and isolates their internal 

traffic. Isolation of internal traffic increases the individual throughput of each network. 

Beside isolation of networks, the router keeps track of connections to the Internet and tries 

to distribute the available bandwidth as fairly as possible. If one of the connections tries to 

use more than its share, the router drops packets that belongs to that particular connection. 

In the case of an institution network, like Koc University, the router sides inside the 

institution and the network administrator had the privilege to set the bandwidth limit of 



 

 

Chapter 3: Experimental Results    

51 

each node. In the case of home users, the router resides in the ISP and the bandwidth limit 

is based on the fee paid. 

The InternetThe Internet

A: 172.2.18.1

B: 172.2.18.2

C: 172.2.18.3

D: 172.4.18.1

E: 172.4.18.2

F: 172.4.18.3

Routing Table

Link Cother

Link B172.4

Link A172.2

Any internal communication in 172.2 network

A communication from any node in 172.4 

network to Internet

Link A Link B

Link C

 

Figure 3.6: A Router in LAN Environment 

 

Packet loss can occur even when you send at a rate below your available bandwidth. This is 

due to the best effort forwarding mechanism of the Internet. As shown in Figure 3.5 each 

router has a queue to store the packets, which the router cannot immediately upload to its 

outgoing link. When the rate of incoming packets is larger than the upload rate, the queue 

starts to grow. When the queue is full, the router discards any the incoming packets and 

they are lost. Considering chance of queue overflow in every router between the source and 



 

 

Chapter 3: Experimental Results    

52 

the destination, there is a fair amount of packet loss error when sending below the rate of 

available bandwidth.  

 

  

Figure 3.7: Internal structure of a Router 

 

 

3.2.4     The Packet Loss Experiments  

 

We perform the actual network tests over the link between Koc University and METU. 

The Figure 3.9 summarizes the underlying packet forwarding mechanism for our test case. 

In the initialization period, the sender and receiver agrees on test variables over a reliable 

TCP connection. During a test, sender appends incremental sequence numbers to the UDP 

packets and forwards them to the receiver, similar to the RTP transmission. The receiver 

can trace the packet losses and records both their frequency and duration. When the test is 

over the receiver composes a report, and forwards it to the sender. 

The set of test variables consist of three elements, duration, transfer rate (bit-rate), and 

packet size. The packet size is the amount of data that a single packet carries. The 

adjustment of packet size allows us to set the packet-rate without modifying the bit-rate of 

the transfer. In our experiments, we fixed the duration to ten minutes and used packets of 

700 or 1400 size in bytes. We had performed multiple tests over a wide range of bit-rate. 



 

 

Chapter 3: Experimental Results    

53 

Based on our observations on loss reports, we noticed that modifying bit-rate and packet-

rate has different consequences for different bit-rates. Therefore, we will present the results 

for two specific cases. In the first case the bit-rate will be below the available bandwidth, 

for the second case, they will be comparable to each other. 

 

 

Figure 3.8: Packet Forwarding Model for the Internet 

 

If the transmission rate is below the available bandwidth, then the packet loss rate 

remains close to the vicinity of a relatively steady rate. Although the increase in packet rate 

has an incremental influence, packet loss rate does not reach to a disturbing level for the 

sake of streaming. This can be justified if we consider our model of the packet forwarding 

in the Internet. As you can see in Figure 3.6, if the bit-rate is below the available 

bandwidth, then packets are not filtered at the edge routers leaving overflowed queues as 

the prime reason for packet loss. In such a case, increase in the packet rate, increases the 



 

 

Chapter 3: Experimental Results    

54 

chance of queue overflows. As a result, the connection experiences packet losses with short 

duration. In table 3.8 you can see the results for low bit-rate transmission.  

 

INPUTS                         

Rate (bps) 100 100 150 150 200 200 250 250 300 300 350 350 

Rate (pps) 9 18 13 27 18 36 22 45 26,785 54 31 63 

Duration (min) 10 10 10 10 10 10 10 10 10 10 10 10 

NALU Size 1400 700 1400 700 1400 700 1400 700 1400 700 1400 700 

OUTPUTS                         

Packets Send 5357 10714 8035 16071 10714 21428 13392 26785 16071 32142 18750 37500 

Packets Received 5356 10704 8031 16052 10703 21418 13381 26748 14452 31998 18731 37478 

Packets Lost 1 10 7 19 11 38 11 37 30 144 45 120 

Loss Percent 0,02 0,09 0,09 0,12 0,10 0,18 0,08 0,14 0,19 0,45 0,24 0,32 

1-10 100 100 100 100 100 100 100 100 100 100 100 100 

11-20 0 0 0 0 0 0 0 0 0 0 0 0 

21-50 0 0 0 0 0 0 0 0 0 0 0 0 

50-100 0 0 0 0 0 0 0 0 0 0 0 0 

Loss Length 
Distrubution 

100+ 0 0 0 0 0 0 0 0 0 0 0 0 

Table 3.8: Packet Loss Behavior During Low Bitrate Transmission 

 

When the rate of the transmission gets closer to the available bandwidth, there is a 

drastic increase in the packet loss percent. In addition to the increase in packet loss 

frequency, the duration of the packet losses grows as well. This time the edge-routers are 

responsible for packet loss as they drop the packets for exceeding the bandwidth limitation. 

As a result, the ratio of packet loss becomes proportional to the transfer rate. In Table 3.8, 

we present the results for transmission over a channel, which has a capacity comparable to 

the desired rate of transmission. One important conclusion is reached if we combine this 

result with the recovery rate of FEC. We stated in section 3.2 that the ratio of protection 

symbols should be more than the ratio of packet losses. If we introduce more protection 

packets when the bandwidth is a bottleneck, we create proportional packet losses. In such a 

case, the ratio of protection packets cannot be more then the packet loss rate making the 

channel coding useless.  



 

 

Chapter 3: Experimental Results    

55 

 

INPUTS   

Rate (kbps) 1000 1000 1200 1200 1400 1400 1500 1500 1600 1600 2000 2000 

Rate (packet/s) 89 179 107 214 125 250 134 268 143 286 179 357 

Duration (min) 10 10 10 10 10 10 10 10 10 10 10 10 

Packet Size 1400 700 1400 700 1400 700 1400 700 1400 700 1400 700 

OUTPUTS   

Packets Send 53571 107142 64285 128571 75000 150000 80357 160714 85714 171428 107142 214285 

Packets Received 53569 107126 64173 128435 22754 54471 21826 29682 22248 44791 15668 66886 

Packets Lost 49 18 144 294 51784 95696 58260 121353 62902 126631 89437 177545 

Loss Percent 0,1 0,0 0,2 0,2 69,0 63,8 72,5 75,5 73,4 73,9 83,5 82,9 

1-10 100 100 100 100 100 2 99 1 100 1 1 3 

11-20 0 0 0 0 0 98 1 98 0 99 99 71 

21-50 0 0 0 0 0 0 1 1 0 0 0 26 

50-100 0 0 0 0 0 0 0 0 0 0 0 0 

Loss Length 
Distrubution 

100+ 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 3.9: Packet Loss Behavior When Bitrate is Comparable with Available Bandwidth 

 



 

 

Chapter 4: Conclusion    

56 

 

 

Chapter 4 

 

CONCLUSION 

 

 

4.1      Summary 

 

 

In this study, we have investigated the modules that compose a complete MVV 

streaming system. We have performed series of tests to understand the characteristics of 

each module and searched the opportunities for their joint optimization. The results from 

these tests provide us the answers for several fundamental questions about a MVV 

streaming system. In the rest of this section, we will present the questions and their answer 

as the summary of the work done.  

The required bandwidth for transmitting multi-view content is a very critical is valuable 

information. For this purpose, we encoded both computer generated and actual recording 

sequences. We saw that the required bandwidth to transmit multi-view content is closely 

related to the number of views requested. In the case of stereo, MVC coding performed 

poorly as it requires nearly double the bitrate of what it had been for the monocular case. 

Therefore, one can choose to simulcast encoding for the transmission of stereo video.  

However, for the multi-view case (8-view), MVC proves to be useful requiring only 2.75 

times of the monocular case for a computer generated sequence. It is nearly one third of 

what it would have been in case of simulcast coding. For an actual recording, it is close to 5 



 

 

Chapter 4: Conclusion    

57 

times the monocular case meaning that it is still beneficial to use. Although the encoding is 

very dependent on the features of the content, these numbers still serve as a guideline. 

Secondly, we have investigated the performance of channel coding under varying 

network conditions. In addition to recoding the rate of channel coding needed for different 

packet loss, we had identified general characteristic of FEC. We saw that for achieving 

convenient packet recovery rate, the number of protection packets should be more than the 

number of lost packet. In order words, the rate of protection should be higher than rate of 

packet loss. Later we combined this fact, with the loss behavior of the edge-routers. We 

stated that increasing the channel-coding rate does not produce useful results if the 

transmission rate is already comparable to the available bandwidth. FEC is a good method 

for fighting against packet losses, which are due to queuing mechanisms of the 

intermediate routers. On the other hand, if the packet losses are occurring to the bandwidth 

limitations in the edge routers, then it is best not to use channel coding at all. We have also 

compared the redundancy of FEC with MDC. We found that FEC-H264 encoding achiever 

higher PSNR/bitrate performance when compared with MDC-SVC.  

Another issue was the required modifications on the streaming protocols and their 

backward compatibility. We have proposed modifications to the streaming protocols to 

accommodate the extra data exchange required for a multi-view streaming session. In the 

Session Description Protocol, we defined a new parameter for describing the dependency 

hierarchy of the encoding schemes. We have also proposed a modification for RTSP 

protocol which allows the client to set the rate of channel-coding. In all the proposals, we 

have considered the backward compatibility issue.  

  The packetization strategy and understanding the network characteristics are important 

not only for multi-view streaming systems, but also for the monocular streamers. 

Therefore, we have constructed tests to understand the behavior of the channel over the link 

between Koc University and METU as a case study. We have identified that beside the 



 

 

Chapter 4: Conclusion    

58 

transmission rate, the rate of packets is another important criteria. In our software, we used 

slice mode and NALU aggregation to reduce the number of packets introduced to the 

network.  

 

4.2      Future Work 

 

The methods in video streaming are continuously evolving rapidly, offering new 

opportunities for the transmission of video over the Internet. Unless extendibility and 

flexibility issues are considered at the very initial phase of the software development, it is 

could be very difficult to take advantage of these opportunities. In this section we will first 

introduce the flexibility of our software and then consider the possible future developments 

that could take place.  

The core of the software is build over an open-source streaming library named as 

Live555 [49]. It has a very flexible architecture and used by many well-known streaming 

solutions such as VideoLAN player. Clear abstraction of tasks and well-designed interfaces 

makes the modification or total replacement of single module very straightforward. In 

Figure 4.1, you can see a simplified server model build for H263 video delivery. The 

source object is responsible for extracting a single frame out of the video file stream and 

forwards it to the RTP Framer. The RTP Framers encapsulates the data without knowing its 

content. After padding the RTP header, framer forwards to the encapsulated data to the 

UDP socket where the frame is introduced to network. The only modification for upgrading 

the system to H264 was the replacement of H263 FileSourceObject. The rest of the stream 

was unaffected by this modification. 

We can introduce a scalable video codec pack to the system in a very similar way. A 

scalable codec allows the content to be displayed at varying bit-rates. It allows adaptation 



 

 

Chapter 4: Conclusion    

59 

to the network conditions. SVC adjusts the visual quality of the content depending on the 

available bandwidth. The combination of scalable video and FEC can be a powerful couple.  

  

 

 

The next possible modification is the replacement of UDP with the newly developed 

DCCP protocol. DCCP is a transport protocol, which is allows application layer framing, 

similar to UDP. Additionally, DCCP has major advantages over UDP. DCCP is a 

connection-oriented protocol and that makes it possible to bypass firewalls if the network 

administrators approve. It is not possible to bypass firewall automatically when we use 

UDP as our transmission protocol. In TCP and DCCP there is a phase for establishing and 

destroying connection. Therefore, the NAT router can automatically trace those 

connections and perform appropriate forwarding. Since UDP is connectionless, it is not 

possible to understand when a connection is establish and/or finalized. Secondly, DCCP 

gives feedback about the state of the network, allowing the scalable video to adjust 

correspondingly. There is no built-in feedback mechanism in UDP. The combination of 

scalable codec with DCCP is the candidate for next generation video transmission.  

Figure4.1: An Example on the Modularity of Live555 Library 



 

 

Bibliography   57

   

 

BIBLIOGRAPHY 

 

[1] Maly, W., "Cost of Silicon Viewed from VLSI Design Perspective," Design 

Automation, 1994. 31st Conference on , vol., no., pp. 135-142, 6-10 June 1994 

[2] E.Grochowski, and R.D. Halem, “Technological impact of magnetic disk drives on the 

storage systems” IBM Systems Journal 2003, Vol.42, Num 2. 

[3] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a new generation 

of protocols,” in SIGCOMM Symp. Communications Architectures and Protocols, 

Philadelphia, PA, Sept. 1990, pp. 200–208. 

[4] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. RTP: A Transport Protocol 

for Real-Time Applications. RFC 3550, July 2003. 

[5] H. Schulzrinne, A. Rao and R. Lanphier. Real Time Streaming Protocol (RTSP). RFC 

2326, April 1998. 

[6] M. Handley, V. Jacobson. SDP: Session Description Protocol. RFC 2327, April 

1998. 

[7] E. Kohler, M.Handley, S.Floyd. DCCP: Datagram Congestion Control Protocol. RFC 

4340, March 2006. 

[8] “Draft ITU-T recommendation and final draft international standard of joint video 

specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC,” Joint Video Team (JVT) of 

ISO/IEC MPEG and ITU-T VCEG, JVT-G050, 2003. 

[9] Tekalp, A.M.; Kurutepe, E.; Civanlar, M.R., "3DTV over IP," Signal Processing 

Magazine, IEEE , vol.24, no.6, pp.77-87, Nov. 2007 

[10] Magnusson, M.; Lenz, R.; Danielsson, P.-E., "Evaluation of methods for shaded 

surface display of CT-volumes," Pattern Recognition, 1988., 9th International Conference 

on , vol., no., pp.1287-1294 vol.2, 14-17 Nov 1988 



 

 

Bibliography   58

   

 

[11] Diamond, R., Wynn, A., Thomsen, K., and Turner, J. (1982). Three-dimensional 

perception for one-eyed guys, in Computational Crystallography, Oxford, Clarendon Press. 

[12] Stelmach, L.B.; Tam, W.J.; Meegan, D.V.; Vincent, A.; Corriveau, P., "Human 

perception of mismatched stereoscopic 3D inputs," Image Processing, 2000. Proceedings. 

2000 International Conference on , vol.1, no., pp.5-8 vol.1, 2000  

[13] Wheatstone C. On Some Remarkable, and Hitherto Unobserved, Phenomena of 

Binocular Vision. Philosophical Transactions of the Royal Society of London, 1838. 

[14] IJsselsteijn W.A., Seuntiëns P.J.H., and Meesters L.M.J. State-of-the-Art in Human 

Factors and Quality Issues of Stereoscopic Broadcast Television. Technical Report D1, 

IST-2001-34396 (ATTEST), 2002. 

[15] Tiltman R.F. How “Stereoscopic” Television is Shown. Radio News, 1928. 

[16] B. Javidi and F. Okano, eds., Three-dimensional television, video, and display 

technologies, (Springer, New York, 2002) 

[17] YouTube,  http://www.youtube.com 

[18] GoogleVideo, http://video.google.com 

[19] Video AOL,  http://video.aol.com/ 

[20] Helix Projec, http://developer.apple.com/opensource/server/streaming/index.html 

[21] VideoLAN Streaming Software, http://www.videolan.org/vlc/ 

[22] C. Fehn, P. Kauff, M. de Beeck, F. Ernst, W. Ijsselsteijn, M. Pollefeys, L. Van Gool, 

E. Ofek, and I. Sexton, “An Evolutionary and Optimised Approach on 3D-TV,” Proc. of 

IBC, 2002. 

[23] L. Onural, T. Sikora, and A. Smolic, “An overview of a new european consortium: 

Integrated three-dimensional television–capture, transmission and display (3DTV),” 

Proceedings of European Workshop on the Integration of Knowledge, Semantics and 

Digital Media Technology (EWIMT), 2004. 



 

 

Bibliography   59

   

 

[24] M. Tanimoto, “Free viewpoint television-ftv,” Picture Coding Symposium 2004, pp. 

15–17. 

[25] W. Matusik and H. Pfister, “3D TV: A scalable system for real-time acquisition, 

transmission, and autostereoscopic display of dynamic scenes,” SIGGPRAPH 2004; 

ACM Trans. on Graphics (TOG) , vol. 23, no. 3, pp. 814-824, August 2004.  

[26] A. Vetro, W. Matusik, H. Pfister, and J. Xin, “Coding approaches for end-to-end 

3D TV systems,” in Proc. Picture Coding Symp. (PCS), December 2004. 

[27] G.J. Conklin, G.S. Greenbaum, K.O. Lillevold, A.F. Lippman, Y.A. Reznik, R.N. 

Inc, and W.A. Seattle, “Video coding for streaming media delivery on the Internet,” 

IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp. 269–281, 2001. 

[28] N. Hur, G. Lee, W. You, J. Lee, and C. Ahn,.”An HDTV-compatible 3DTV 

broadcasting system,” ETRI Journal, vol.. 26, no..2, pp..71-82, Apr. 2004. 

[29] G. Petrovic and P. H. N. de With, “Near-future streaming framework for 3D TV 

applications,” Proc. IEEE Int. Conf. Multimedia and Expo (ICME), pp. 1881-1884, 

Toronto, Canada, July 2006. 

[30] Mobile3DTV Project, http://sp.cs.tut.fi/mobile3dtv 

[31] 3D4YOU Project, http://www.3d4you.eu/index.php 

[32] Cha Zhang, Tsuhan Chen, "Multi-View Imaging: Capturing and Rendering Interactive 

Environments," cviie,pp.51-67, Computer Vision for Interactive and Intelligent 

Environment (CVIIE'05), 2005 

[33] David E. DiFranco, Tat-Jen Cham, James M. Rehg, "Reconstruction of 3-D Figure 

Motion from 2-D Correspondences," cvpr, p. 307,  2001 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition (CVPR'01) - Volume 1,  2001 

[34] P. Kauffa, N. Atzpadina, C. Fehna, M. Müllera, O. Schreer , A. Smolica and R. 

Tangera. " Depth map creation and image-based rendering for advanced 3DTV services 



 

 

Bibliography   60

   

 

providing interoperability and scalability", Signal Processing: Image Communication, vol 

22, no2, pp. 217–234 , February 2007. 

[35] http://www.ptgrey.com/products/bumblebee2/ 

[36] Knorr, S.; Sikora, T., "An Image-Based Rendering (IBR) Approach for Realistic 

Stereo View Synthesis of TV Broadcast Based on Structure from Motion," Image 

Processing, 2007. ICIP 2007. IEEE International Conference on , vol.6, no., pp.VI -572-VI 

-575, Sept. 16 2007-Oct. 19 2007 

[37] Chai, B.-B, "A depth map representation for realtime transmission and view-based 

rendering of a dynamic 3D-scene. " In: First International Symposium on 3D Data 

Processing Visualization and Transmission, Padova Italy, Sept. 2002.  

[38] I. Rec, “H. 264 & ISO/IEC 14496-10 AVC, Advanced video coding for generic 

audiovisual services,” ITU-T, May, 2003. 

[39] K. Mueller, P. Merkle, H. Schwarz, T. Hinz, A. Smolic, T. Oelbaum, and T. Wiegand, 

“Multi-view video coding based on H.264/AVC using hierarchical B-frames,” in Picture 

Coding Symposium 2006. PCS, 2006. 

[40] Ugur, K.; Hui Liu; Lainema, J.; Gabbouf, M.; Houqiang Li, "Parallel Encoding - 

Decoding Operation for Multiview Video Coding with High Coding Efficiency," 3DTV 

Conference, 2007 , vol., no., pp.1-4, 7-9 May 2007 

[41] M. Handley, S. Floyd,J. Padhye,J. Widmer, "TCP Friendly Rate Control (TFRC): 

Protocol Specificat", RFC 3448, January 2003 

[42] J.-P. Wagner, J. Chakareski, and P. Frossard, “Streaming of scalable video from 

multiple servers using rateless codes,” in Proceedings of the IEEE International 

Conference onMultimedia and Expo (ICME ’06), pp. 1501–1504, Toronto, Canada, July 

2006. 



 

 

Bibliography   61

   

 

[43] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, “Reliable multimedia 

download delivery in cellular broadcast networks,” IEEE Transactions on Broadcasting, 

vol. 53, no. 1, part 2, pp. 235–245, 2007. 

[44] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W.Xu, “Raptor codes for 

reliable download delivery in wireless broadcast systems,” in Proceedings of the 3rd IEEE 

Consumer Communications and Networking Conference (CCNC ’06), 

[45] P.Maymounkov, “Online codes,” Tech. Rep. TR2002-833, New York University, New 

York, NY, USA, November 2002. 

[46] M. Luby, “LT codes,” in Proceedings of the 43rd Annual IEEE Symposium on 

Foundations of Computer Science (FOCS ’02), pp. 271–280, Vancouver, Canada, 

November 2002. 

[47] Y. Wang, A. R. Reibman, and S. Lin, “Multiple description coding for video 

delivery,” Proc. IEEE, vol. 93, no. 1, pp. 57-70, Jan. 1995. 

[48]  Goyal, V.K., "Multiple description coding: compression meets the network," Signal 

Processing Magazine, IEEE , vol.18, no.5, pp.74-93, Sep 2001 

[49] Live555 Streaming Protocol Library, http://www.live555.com/ 

 



 

 

Bibliography   62

   

 

VITA 

Cihat Göktığ Gürler was born in İstanbul, Turkey on February 2, 1982. He received 

his BSC. Degree in Electric and Electronic Engineering from Koç University, Istanbul.  He 

worked as a teaching and research asistanant from September 2006 and August 2008. 

During his study he worked for the 3DTV Project under the six framework of the European 

Union.  

 


