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ABSTRACT

Oscillatory behavior is encountered in many types of systems including electronic, opti-

cal, mechanical, biological, chemical, financial, social and climatological systems. Carefully

designed oscillators are intentionally introduced into many engineered systems to provide

essential functionality for system operation. Oscillatory behavior in biological systems is

seen in population dynamics models, in neural systems, in the motor system, and in cir-

cadian rhythms. Intracellular and intercellular oscillators of various types perform crucial

functions in biological systems. Due to their essentialness, and intricate and interesting

dynamic behavior, biological oscillations have been a research focus for decades. Genetic

oscillators that are responsible for setting up the circadian rhythms have received particular

attention. Oscillators in electronic and telecommunication systems are adversely affected

by the presence of undesired disturbances such as noise. These have an impact on the

spectral and timing properties of the ideally periodic signals generated by oscillators, re-

sulting in power spreading in the spectrum and zero-crossing jitter and phase drift in the

time domain. Unlike other systems which contain an implicit or explicit time reference,

autonomously oscillating systems respond to noise in a peculiar and somewhat nonintuitive

manner. Understanding the behavior of oscillators used in electronic systems in the pres-

ence of disturbances and noise has been a preoccupation for researchers for many decades.

The behavior of biological oscillators under various types of disturbances has also been the

focus of a good deal of research work in the second half of 20th century. The work on

oscillator analysis in these two disparate disciplines seem to have progressed independently,

without any cross-fertilization in between. In this thesis, we first decipher previous work

on oscillator analysis in both biology and electronics by translating them into a common

terminology and formalism. We then develop a rigorous, unifying oscillator analysis theory

by using results and concepts from both domains in a synergistic manner. In doing so, we

fill certain conceptual and theoretical gaps that we identify in oscillator analysis theories

that have been developed both in electronics and biology that pertain to phase analysis.
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We formulate a general phase analysis technique that captures both state and parametric

perturbations in a unified manner. This phase analysis technique we develop can be ap-

plied to oscillators modeled with mixed differential-algebraic equations as opposed to pure

differential ones. By reviewing the numerical methods that have been developed for both

electronic and biological oscillator analysis, we show that the numerical techniques currently

in use for biological oscillators are superseded by the ones that have been recently developed

for electronic oscillator analysis. Oscillator perturbation analysis examples produced using

a Matlab oscillator analysis toolbox we have developed are presented.



ÖZETÇE

Elektronik, optik, mekanik, biyolojik, kimyasal, finansal, sosyal, iklimsel ve benzeri sis-

temlerde osilasyonlara rastlanmaktadır. Dikkatle tasarlanmış osilatörler, mühendislerce inşa

edilmiş birçok sistemde işlevsel görevleri yerine getirmektedirler. Biyolojik sistemler kap-

samında osilasyonlar, popülasyon dinamiǧi modellerinde, nöral sistemlerde, motor siste-

minde ve yirmi dört saatlik ritimlerde rol oynamaktadırlar. Hücreler arasında ve hücre

içinde biyolojik osilatörler birçok önemli işlevi üstlenmektedirler. Gerekli ve temel olmaları,

karmaşık ve ilgi çekici dinamik özelliklere sahip olmaları nedeniyle, biyolojik osilasyon-

lar, yıllardır birçok araştırmanın odaǧında yer almışlardır. Yirmi dört saatlik ritimleri

ayarlamakla yükümlü olan genetik osilatörler, önemli derecede ilgi görmüşlerdir. Elek-

tronik ve telekomünikasyon sistemlerindeki osilatörler, gürültü gibi istenmeyen olgulardan

olumsuz yönde etkilenirler. Bu gürültüler, osilatörler tarafından oluşturulan ideal periy-

odik sinyallerin spektrum ve zamanlama özelliklerini bozarlar. Bu nedenle, spektrumda

belli frekanslarda yoǧunlaşması gereken güç, çevre frekanslara da daǧılır. Ayrıca, zaman

ekseninde sinyalde faz kayması gözlenir. Bir şekilde zaman referansı olan diǧer sistem-

lerle karşı laştırıldıklarında özerk osilatörler, gürültüye karşıilk bakışta akıl yürütülemeyecek

derecede garip bir biçimde tepki gösterirler. Elektronik sistemlerde kullanılan osilatörlerin,

gürültü var olduǧu anlarda işleyişlerini anlayabilmek, araştırmacıların yıllardır kafa yor-

dukları bir konudur. Çeşitli türlerde gürültüye maruz kalan biyolojik sistemlerin incelen-

mesi de yirminci yüzyılın ikinci yarısında önemli bir araştırma konusu haline gelmiştir.

Birbirinden ayrık bu iki disiplinde osilatör analizi üzerine araştırmalar, baǧımsız olarak il-

erleyegelmişlerdir ve elektronik ile biyoloji arasında bu konu üzerine araştırmacılar arasında

görüş alışverişi şimdiye dek gerçekleşmemiştir. Bu tezde, osilatör analizi üzerine elektronik

ve biyolojide ortaya konmuş olan katkılar, belli bir terminoloji aracılıǧıyla tek bir biçime

tercüme edilerek deşifre edilmektedir. Sonrasında, her iki disiplinden de sonuçlar ve kavram-

lar kullanılarak, kesin ve birleştirici bir osilatör analizi teorisi meydana çıkarılmaktadır. Bu

katkı ortaya konulurken, elektronik ve biyolojide faz analizi kapsamında oluşagelmiş bazı
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kavramsal ve teorik boşluklar doldurulmaktadır. Zamana baǧlı, istenmeyen, hem durumsal,

hem de parametrik deǧişimlerin varlıǧında faz analizi, geliştirilen birleştirici analiz çatısı

altında, birlikte ele alınabilmektedir. Bu faz analiz tekniǧi, karışık diferansiyel-cebirsel

denklemlerle modellenmiş osilatörlere uygulanabildiǧi gibi sadece diferansiyel denklemler

de incelenebilmektedir. Elektronik ve biyolojik osilatör analizi için geliştirilmiş nümerik

yöntemler incelenerek, daha yakın zamanda geliştirilmiş olan elektronikteki yöntemlerin,

biyolojideki yöntemlere göre daha üstün oldukları gösterilmektedir. Geliştirilmiş olan Mat-

lab osilatör analizi program paketi ile osilatör analizi örnekleri oluşturulup belgelenmektedir.
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Chapter 1

INTRODUCTION

Oscillators and their analyses have drawn considerable attention from scientists in var-

ious fields of research. These autonomous components are either engineered into systems

for different purposes, or they exist naturally in, for example, biological systems. Elec-

tronic oscillators are used to generate clock signals in digital electronic systems, so that

synchronization can be maintained between various components. In communication sys-

tems, the periodic signal that is generated by an electronic oscillator is used as a carrier for

frequency translation of data signals. Neural [9], and circadian oscillators [6], are two types

in the biological domain, which have drawn considerable research effort for decades. Neural

oscillations are used for for information transfer in inter-cellular activities. A living organ-

ism possesses a circadian oscillator, setting an oscillatory schedule for biological activities

within the day. The daily cycle determined by the sun is twenty-four hours and modulates

the circadian rhythym. The name “circadian” suggests that the period of oscillation of the

oscillator maintained in an organism is about but not exactly twenty-four hours. Therefore,

if an organism is forced to bear constant darkness, the circadian oscillator gradually takes

control of the circadian rhythym, dictating its own period of oscillation. The circadian

period of human beings is twenty-five hours.

Oscillators are plagued by perturbations and noise. Perturbations have an adverse effect

on the operation of oscillators, which are expected to yield perfect periodic signals in steady-

state. It happens that both the amplitude and phase of these periodic signals are affected

by perturbations. Particularly, phase is an important concept that requires close attention,

because in many electronic applications and biological schemes oscillators are employed as

reference time generators. If the phase of an oscillator is altered through perturbations and

noise, then the output periodic waveforms of oscillators cease to be perfect time references.

Therefore, the study on the mathematical models, in terms of differential equations, of
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oscillators, particularly targeting phase, has grown to be a preoccupation in research.

Research on oscillator phase analysis has been conducted for decades. A major accom-

plishment was the derivation of a differential equation, defining phase. This differential

equation, which we will frequently refer to as the phase equation, was actually derived in

both domains, and the derivations yielded surprisingly the same expression. It appears per-

fectly unnatural to obtain the same phase equation as was derived in a seemingly-detached

domain, but noting that a unifying appeal over the theory of oscillator phase must sur-

face when oscillators are expressed as differential equations, the fact that oscillator phase is

defined through the same equation in both domains is comprehensible. The contributions

to the theory of phase in both domains have accumulated rather independently, and inter-

communication has failed to flourish between biologists and electronic engineers, researching

on phase.

A thorough examination conveys that hardly any of the studies on phase has proved

to be unifying and comprehensive. Derivation of the same phase equation suggests that

the two independently progressing fields of research can indeed complement each other

in more aspects. For example, biologists, benefitting from the contributions of interested

mathematicians as well, managed to lay the grounds for precisely defining the phase of an

oscillator. This intuitive and rigorous ground has been missing in the approach adopted by

electronic engineers. On the other hand, in the electronic domain, the phase equation was

derived intuitively, but its accuracy was justified through rigorous methods. This accuracy

justification is what is missing in the works that have amassed in the biological domain. One

of the contributions in this thesis is the reconciliation of biological and electronic approaches

to the phase equation derivation. In this aspect, we will be unifying the two approaches,

filling certain conceptual and theoretical gaps, studded over the developed theories of both

domains.

The unified theory for oscillator phase analysis, which we develop in this thesis, applies

to the computation of the effects of particularly two types of perturbations, on the phase

of oscillators. Methods for analysis, accommodating time-varying state and parameter per-

turbations, are incorporated into the theory we have developed. Numerical schemes for the

computation of phase, in the presence of these two types of perturbations exist in previous

references. We observe that in the study of phase, numerical methods of the electronic do-
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main supersede those of the biological world. It is shown thorough rigorous derivations that

the theory developed by biologists, for numerical phase computations, boil down to exactly

the methods that have been utilized in the electronic domain for about a decade. However,

numerical methods used in biology are inefficient and somewhat ad hoc. Therefore, deriva-

tions for steady-state periodic solution computations and ensuing phase-related numerical

schemes are redeveloped from scratch and documented for reference. As to the possible

types of differential equations, both ODEs (Ordinary Differential Equations) and DAEs

(Differential-Algebraic Equations) are accommodated. In biology, DAEs are not accounted

for, whereas electronic circuits are generally modeled as DAEs. The more general theory,

concerning DAEs, is the focus of more detailed derivations in the chapter on numerical

methods. In addition, a MATLAB toolbox for oscillator phase analysis has been developed,

based on the methods of the electronic domain. Results obtained with this toolbox, on

simple oscillator models, are also presented.

The outline of the thesis is as follows. The necessary background on the mathematical

methods for oscillator analysis and related theory are included in Chapter 2. In order to

precisely define the phase of an oscillator, we need to make use of the invariant sets called

isochrons. Isochrons and the oscillator phase definition are the focus of Chapter 3. Using

the phase definition, the phase equation is derived in Chapter 4, so that the phase response

of oscillators to state and parameter perturbations can be calculated. In Chapter 5, all

approaches to oscillator phase analysis are unified into a single theory, which consists of

the numerical computation of a vector function. The numerical methods for calculating

the steady-state periodic solutions of oscillators and computing the stated vector function

are presented in Chapter 6. In Chapter 7, we present results obtained with the MATLAB

toolbox for oscillator phase analysis that we have developed.
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Chapter 2

BACKGROUND

2.1 Mathematical Models and Properties

In this section, several properties of oscillator models are provided for reference, along with

definitions and mathematical notation. The basic assumptions stated in this section are

crucial in that the validity of derivations to follow throughout this work depend on these

assumptions.

2.1.1 Oscillator Models

The model presented here could belong to virtually any device or mechanism that exhibits

autonomous oscillatory behaviour. Whichever processes that the oscillator we have been

provided may model, it is assumed that the mathematical representation of this oscillator

may be translated to a system of ODEs (Ordinary Differential Equations) of the form

dx

dt
= f(x). (2.1)

If the initial value for (2.1), x at t = 0, x(0) in brief, is given, then (2.1) can be solved

through numerical techniques, for in most cases an analytical solution is not available.

The solution to (2.1), i.e. x(t), is assumed to satisfy the conditions that ensure its

uniqueness.

It is crucial to define a state transition function, Φ, associated with the system in (2.1).

The following summarizes, mathematically, the functionality of Φ.

Definition 1 (State Transition Function) The state transition function, Φ, associated

with (2.1), yields the state vector, x, at time t0 + td, given the target time t0 + td, the initial

time t0, and the state vector, x, at time t0, as in

x(t0 + td) = Φ(t0 + td, t0, x(t0)). (2.2)
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Φ merely integrates equation (2.1) from t0 to t0 + td, given the initial condition x(t0).

Note that Φ is almost never analytically available. We evaluate Φ through numerical inte-

gration of the system in (2.1), given an initial condition x(t0).

2.1.2 Model Size

The ODE in (2.1) is M -dimensional, i.e. x ∈ <M . We have M state variables, xi for

1 ≤ i ≤ M . Similarly, we have M nonlinear functions, fi: <M → <1, for 1 ≤ i ≤ M . These

fi’s constitute the nonlinear vector function, f : <M → <M . Each of these M nonlinear

functions takes the state variables vector, x, as argument.

2.1.3 Model Parameters

The ODE in (2.1) has L parameters incorporated. These L parameters will be denoted by

pj for 1 ≤ j ≤ L. pj ’s are the entries of the parameters vector, p. pj’s are not included

in the state variables vector, x, but changes in the values of these parameters affect the

whole model in (2.1), because each particular pj is included in the expressions that define

f , though the expressions for some fi’s may not explicitly include some particular pj ’s.

Remark 1 Note that in (2.1), we have used the notation, f(x), to denote the nonlinear

function, f , with its argument, x. The parameters vector, p, may be explicitly expressed as

an argument to f , if needed. In such cases, we will use the notation, f(x, p), to indicate

that f depends on x and p. Formally, f : <M ×<L → <M .

2.1.4 Steady-State Periodic Solution

The generic ODE in (2.1) usually has multiple steady-state solutions. These solutions are

such that each of them repeats itself over and over after a subsequent interval with a pre-

determined length in time. This length in time is called the period. A formal definition for

the period will follow, but the point here is that the steady-state solutions of the generic

ODE in (2.1) are periodic.

Usually, only one of the steady-state solutions of (2.1) is of interest. We will temporarily

call this solution xs(t). The solution of (2.1) with the initial condition xs(0) is xs(t).

An obvious property of the periodic xs(t) is that the time-shifted version xs(t − t0),

for any t0, is again a steady-state solution of (2.1), this time with the initial condition
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x(t = 0) = xs(t0). t0 may be called the phase difference in units of time, between the two

signals, xs(t) and xs(t − t0).

As will be clear, the computation of xs(t) is the first task in condcuting the phase analysis

of (2.1). Since in most cases, there exists no analytical expression for the state transition

function, Φ, xs(t) is calculated by numerical means.

2.1.5 Limit Cycle

xs(t), a periodic solution of the generic ODE in (2.1), visits a set of points in <M , over and

over. It is going to be necessary to refer to this set of points in the derivations to follow,

hence the following definition.

Definition 2 (Limit Cycle) The limit cycle, associated with xs(t), is formally defined as

γ =
{

x ∈ <M
∣
∣x = xs(t),∀t ∈ <+

}
. (2.3)

To be consistent, we will refer to xs(t), the steady-state solution, as xγ(t), from this

point on. γ will have to possess some assumed properties, for analyses to be carried out on

the phase of γ. These properties will shortly be formally stated.
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Figure 2.1: Van der Pol Oscillator. a) Steady-State Periodic Waveforms, b) Limit Cycle.
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2.1.6 Period and Frequency

A crucial property, at steady-state, of autonomous oscillating systems as in (2.1), is period-

icity. A periodic signal is one that repeats itself over and over, regularly, with a predefined

interval, called the period of the signal. A formal definition is as follows for the period of

xγ(t), a steady-state solution of (2.1).

Definition 3 (Period) Let xγ(t) be a steady-state solution of the generic ODE in (2.1),

with xγ(0) at t = 0 as the initial value. Let there be a set that will be denoted by T , defined

as

T =
{

T i
∣
∣xγ(t0 + T i) = xγ(t0), ∀t0 ≥ 0

}
.

xγ(t0 + T i) = Φ(t0 + T i, t0, x
γ(t0)), where Φ is the state transition function associated with

(2.1). We define T , the period of xγ(t), to be the smallest positive number in T . We may

as well refer to T as the period on γ, the limit cycle. γ is the set of points that xγ(t) visits

through time.

It must be noted again that there can be more than one periodic solution of the generic

model in (2.1). Usually, only one of these periodic solutions is of interest, and in this case,

this solution is xγ(t).

Having defined T , the period of a particular periodic solution, xγ(t), we now define the

frequency and angular frequency of xγ(t).

Definition 4 (Frequency) fγ
0 , the frequency of x̂γ(t), is given by the reciprocal of T , the

period, as in

fγ
0 = 1/T.

ωγ
0 , the angular frequency of x̂γ(t), is given by

ωγ
0 = 2πfγ

0 = 2π/T.

Figure 2.1 depicts the periodic solution and the corresponding limit cycle of the famous

Van der Pol oscillator.

2.1.7 Number of Timepoints

Ideally, we would like to compute xγ(t) analytically. Unfortunately, xγ(t) is almost never

analytically computable. We will represent xγ(t), through N samples along a single interval
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of length T .

The location of these N time points along the interval depends on the numerical method

that is employed. Timepoints are more frequent, along intervals on which the periodic signal,

xγ(t), is changing at a higher rate. Some numerical methods, on the other hand, require

timepoints to be uniformly separated.

2.1.8 Orbital Stability

We will now explain orbital stability, more commonly known as Liapunov stability, of xγ(t),

the periodic steady-state solution of the system in (2.1). As stated before, γ is the set of

points that xγ(t) visits repeatedly as time progresses.

In order to define orbital stability, we must first define a metric dist in <M . Let dist(x, γ)

be the distance between a point x and γ. We may assume that dist(x, γ) is the smallest

Euclidean distance between x and all the points in γ.

Let x0(t) be a solution of (2.1) in the close neighborhood of γ. If xγ(t) is orbitally

stable, the fact that dist(x0(0), γ) is bounded implies that dist(Φ(t, 0, x0(0)), γ) will remain

bounded for t > 0. Note that x0(t) = Φ(t, 0, x0(0)). Informally, nearby solutions remain

near γ if xγ(t) is orbitally stable. A more formal definition follows.

Definition 5 (Orbital Stability) The solution xγ(t) of (2.1) is said to be orbitally stable,

if for any ε > 0, there exists a δ > 0 such that

dist(x0(0), γ) < δ

implies

dist(Φ(t, 0, x0(0)), γ) < ε,

where x0(t) is a solution in a neighborhood W of the limit cycle γ. The set of points

constituting W are in turn called the domain of attraction.

Figure 2.2 is a depiction of the bounds employed in Definition 5.

We have to impose a stronger condition on xγ(t), for the forthcoming derivations to take

effect. This condition is given by the name asymptotic orbital stability.

Definition 6 (Asymptotic Orbital Stability) The solution xγ(t) of (2.1) is said to pos-

sess asymptotic orbital stability, if xγ(t) is orbitally stable and, if there exists a δ > 0 such
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that dist(x0(0), γ) < δ implies

lim
t→∞

dist(Φ(t, 0, x0(0)), γ) = 0,

where x0(t) is a solution in neighborhood W of the limit cycle, γ.

Figure 2.2: Depiction of bounds for orbital stability.

2.1.9 Asymptotic Phase

We stated that xγ(t) is the particular steady-state periodic solution on γ. Let us have ξ

and ζ denote two points in time, such that ξ, ζ ∈ [0, T ), where, T is the period on γ. It

is known that xγ(ξ) = xγ(ζ) if and only if ξ = ζ. Otherwise, the uniqueness of solutions

property of the generic ODE in (2.1) would be ruled out. We may extend this statement to

all time-shifted steady-state solutions on γ, i.e. xγ(t + ξ) = xγ(t + ζ) if and only if ξ = ζ,

for t ≥ 0.

Let x0(t) be a solution in <M such that x0(t) ∈ W, ∀t ≥ 0, where W is the domain of

attraction associated with γ. All states in W tend to the limit cycle γ as time progresses,

for the system in (2.1), for γ has asymptotic orbital stability.
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Note that x0(0) is the initial state of the solution x0(t), and

x0(t) = Φ(t, 0, x0(0)).

xγ(t) has the asymptotic phase property if x0(t) tends to simultaneously hit the same points

as a time-shifted version of xγ(t), as t → ∞.

Definition 7 (Asymptotic Phase) xγ(t), the steady-state periodic solution of the generic

ODE system in (2.1), has the asymptotic phase property if for each solution x0(t), such

that x0(0) ∈ W, there is a constant α(x0(0)), such that

lim
t→∞

(
Φ(t, 0, x0(0)) − xγ(t + α(x0(0)))

)
= 0.

For (2.1) to have asmptotic phase, α(x0(0)) must be constant for all possible x0(0) ∈ W.

Note that the solution x0(t) itself maps to some constant value α(x0(0)), depending on the

initial state x0(0).

Figure 2.3 summarizes this review of asymptotic phase.

Figure 2.3: Asymptotic phase property.
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2.1.10 More General Oscillator Models

In some cases, the model in (2.1) needs to be generalized. The left-hand side of this equation

may need to be expressed as, not the time derivative of just x, but the time derivative of a

nonlinear function of x, for example q(x). Then, we will have to note the following.

• The generic model, (2.1) in Section 2.1.1, will be modified as in

dq(x)

dt
= f(x). (2.4)

• The state transition function of (2.4) will be denoted by Υ, in order to rule out

confusion.

• As in Section 2.1.2, we will still maintain that the size of our dynamic system be

M . In this case, q: <M → <M , along with f , will be another vector of M nonlinear

functions, each taking again x as an argument.

• The parameters vector, of size L, associated with (2.4), will still be denoted by p, as in

Section 2.1.3. However, in the case of (2.4), a first group of entries in p are parameters

belonging to only q. A second group of entries belongs to only f . And a third group

belongs to both q and f .

The generic model in (2.4) is a DAE (Differential Algebraic Equation). The solution of

DAEs require additional capabilities, as compared to ODEs (Ordinary Differential Equa-

tions). DAEs can be regarded as the more general form of ODEs, if it be noted that the

nonlinear multi-dimensional function, q, taken (in a particular DAE model) as a linear func-

tion, in particular q(x) = IMx = x, makes the DAE an ODE. IM is the identity matrix of

size (M × M).

We will frequently refer to (2.4) as the generic DAE model. Most derivations to follow

will take (2.4) as the model to elaborate on, first, and simplifications will ensue, regarding

ODEs, when q(x) = x.

2.2 Review of Floquet Theory

The steady-state periodic solution xγ(t) and the points that constitute the limit cycle γ

are computed through numerical methods. It turns out that these steady-state periodic
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solution computation algorithms use the notion of linearization around γ. We are able

to define LPTV (Linear Periodically Time-Varying) systems, through linearization of the

original ODE, as in (2.1), or DAE, as in (2.4).

This section is mainly about the analysis of these newly-generated LPTV systems. Our

aim is to express the generic form of the state transition functions for these LPTV systems.

Through Floquet theory, these generic forms are disclosed.

Before presenting a brief review of Floquet theory, however, linearization around the limit

cycle has to be introduced. This is done in Section 2.2.1. As to defining state transition

functions for LPTV systems, we first review how this procedure works for LTI (Linear Time

Invariant) systems, in Section 2.2.2. Finally, Section 2.2.3 is a review of Floquet theory for

ODEs and DAEs.

2.2.1 Linearization Around the Limit Cycle

DAE Case

Examining the generic DAE system in (2.4), let us set x(t) = xγ(t) + y(t). Then, Taylor

expansions of both sides of (2.4) yield

d

dt

(

q(xγ(t)) +
∂q

∂x

∣
∣
∣
∣
γ

y(t)

)

≈ f(xγ(t)) +
∂f

∂x

∣
∣
∣
∣
γ

y(t). (2.5)

We know that the steady-state periodic solution on γ, namely xγ(t), would satisfy this

equation. Therefore,
d

dt
[q(xγ)] = f(xγ). (2.6)

Using (2.6) to cancel terms from both sides of (2.5), the linearized form is obtained as

d

dt

(

∂q

∂x

∣
∣
∣
∣
γ

y

)

=
∂f

∂x

∣
∣
∣
∣
γ

y. (2.7)

This process is called linearization of the generic DAE in (2.4) around xγ(t).

One solution out of the many, of (2.7), can be found as follows. Computing the deriva-

tives of both sides of (2.6), with respect to t, we obtain

d

dt

[
∂q(xγ)

∂xγ

dxγ

dt

]

=
∂f(xγ)

∂xγ

dxγ

dt
,

through the chain rule of partial differentiation. We define

G(t) =
∂f(xγ)

∂xγ
, C(t) =

∂q(xγ)

∂xγ
.
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Notice that G(t) and C(t) are T -periodic matrices. Then,

d

dt
[C(t)ẋγ ] = G(t)ẋγ , (2.8)

where dot denotes differentiation with respect to time.

Therefore, ẋγ(t) is a solution of the system of linear differential equations,

d

dt
[C(t)y] = G(t)y. (2.9)

(2.9) is the more compact form of (2.7) and is an LPTV (Linear Periodically Time-Varying)

system, and ẋγ(t) is a real, naturally T -periodic solution of this system. There might

be other solutions that are not real or periodic, but through the simple analysis we have

conducted, we can establish only ẋγ(t) as a solution. Floquet theory yields forms of the

other solutions for the system in (2.9).

We may also seek and find a few properties of the state transition function for the

LPTV system in (2.9). For linear systems like (2.9), the state transition function can be

numerically computed, by assigning the identity matrix as the initial condition and then

solving the system forward in time.

The analysis that will disclose some properties of the state transition function for (2.9),

is best conducted if we differentiate both sides of (2.6) with respect to xγ(0), to get

d

dt

[

C(t)
∂xγ(t)

∂xγ(0)

]

= G(t)
∂xγ(t)

∂xγ(0)
.

Noting that
∂xγ(0)

∂xγ(0)
= IM ,

where IM is the identity matrix with size (M × M), we observe that ∂xγ(t)/∂xγ(0) is a

legitimate state transition function for the LPTV system in (2.9). This finding leads us to

declare the following.

Definition 8 (State Transition Function of DAE LPTV Systems) The state tran-

sition function for (2.9), which is to be denoted by K(t, 0), is given as

K(t, 0) =
∂xγ(t)

∂xγ(0)
, (2.10)

and K(t, 0) is computed by solving the differential equation

d

dt
[C(t)K(t, 0)] = G(t) K(t, 0), (2.11)
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with

K(0, 0) = IM .

It is possible to write

K(t, 0) =
∂Υ(t, 0, xγ(0))

∂xγ(0)
, (2.12)

because xγ(t) = Υ(t, 0, xγ(0)). Thus, (2.12) defines the relation between Υ and K. K(t, 0),

the state transition function of the linearized system in (2.9), is Υ(t, 0, xγ(0)), the periodic

solution on γ, of the original nonlinear system in (2.4), partially differentiated with respect

to xγ(0).

Furthermore, note the following about K(t, 0). K(t, 0) is an (M × M)-sized matrix,

which takes an initial condition, y(0), to y(t), i.e. if the linear differential equation in (2.9)

were provided with an initial condition y(0) at t = 0, the solution of (2.9) at t would be

y(t) = K(t, 0)y(0). Now, suppose we compute

ẋγ(T ) = K(T, 0)ẋγ(0), (2.13)

where T is the period on γ. ẋγ(t), the time derivative of xγ , is T -periodic. Therefore, ẋγ(0) =

K(T, 0)ẋγ(0). This means K(T, 0) must have an eigenvalue of 1, and the corresponding

eigenvector is ẋγ(0).

We have to review Floquet theory to spell out the explicit form of state transition

functions for LPTV systems like (2.9). Then, the other eigenpairs associated with K(T, 0)

can be computed. As of now, (1, ẋγ (0)) is the only eigenpair that we know belongs to

K(T, 0).

ODE Case

We are to briefly adapt the observations in the previous section to the ODE case. Through

a scheme, similar to the procedure explained for the DAE case, the linearized form of the

generic ODE in (2.1) is found as
dy

dt
=

∂f

∂x

∣
∣
∣
∣
γ

y. (2.14)

Again introducing the notation G(t) = ∂f(xγ(t))/∂xγ(t), the compact form of (2.14) is

obtained as
dy

dt
= G(t)y. (2.15)
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Notice that in the ODE case, C(t) = ∂q(xγ(t))/∂xγ(t) is not needed, because q(x) = x, and

then C(t) = IM .

A periodic solution of the LPTV system in (2.15) is ẋγ(t). The forms of the other

solutions are not available through the simple analysis we conduct here. The tools of

Floquet theory are needed to express all solutions of (2.15).

The state transition function of (2.15) can be defined in a manner similar to the DAE

case.

Definition 9 (State Transition Function of ODE LPTV Systems) The state tran-

sition function for (2.15), which is to be denoted by odK(t, 0), is given as

odK(t, 0) =
∂xγ(t)

∂xγ(0)
, (2.16)

and odK(t, 0) is computed by solving the differential equation

d

dt
[odK(t, 0)] = G(t) odK(t, 0), (2.17)

with

odK(0, 0) = IM .

Notice that

odK(t, 0) =
∂Φ(t, 0, xγ(0))

∂xγ(0)
,

where Φ is the state transition function of the generic ODE system in (2.1).

The last note in this section is that a single eigenpair of odK(T, 0) is (1, ẋγ(0)).

2.2.2 State Transition Function of LTI Systems

Before presenting Floquet theory and the tools that this theory provides to help improve

analysis, it is useful to recall a well-known result from the theory related to LTI (Linear

Time-Invariant) dynamic systems. We will be computing the generic state-transition func-

tion for such systems and then stating the relation between the contributions of Floquet

theory and this function, which is special to LTI systems.

Let
dx

dt
= Ax (2.18)
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be an M -dimensional dynamic system, where A is an (M×M)-dimensional constant matrix.

If A is diagonalizable, we can decompose it in the following manner.

A = U Λ VT (2.19)

The columns of U are the eigenvectors of A, and these columns form a biorthonormal set

with the columns of V. That means, if ui is the ith column of U and vj is the jth column

of V , then the following is true.

vT

j ui = δij =







1 for i = j

0 for i 6= j
(2.20)

Alternatively, U−1 = VT. It naturally follows that UVT = VTU = IM , with IM as the

(M × M)-sized identity matrix. Λ is a diagonal matrix, whose diagonal entries are the

eigenvalues of A.

Λ =








λ1

. . .

λM








(2.21)

Since VT = U−1, the system in (2.18) can be expressed as

dx

dt
= U Λ U−1x, (2.22)

and the following is a reformulation.

d(U−1x)

dt
= Λ (U−1x)

Let us define y = U−1x, and write
dy

dt
= Λy.

In fact, since Λ is a diagonal matrix, we have uncoupled equations for 1 ≤ i ≤ M , as in

dyi

dt
= λiyi.

We can solve the equation above for any i, independent of the others.

ln yi = λit + c

Reformulating, we have

yi(t) = eλitc′.
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We solve for c′ by setting t = 0, since we assume that an initial condition at time t = 0 has

been provided. Then, we have

yi(t) = eλityi(0)

Since the solution for each i is computed, we may now stack individual entries together to

form vectors.

y(t) = eΛty(0)

eΛt is a diagonal matrix, with its expanded form given as below.

eΛt =








eλ1t)

. . .

eλM t








Inverting the employed coordinate transformation by setting y(t) = U−1x(t), we get

x(t) = UeΛtU−1x(0), (2.23)

which is the solution to (2.22).

Definition 10 (State Transition Function of LTI Systems) eAt is the state transi-

tion function of the system in (2.18), and it is expressed as in

eAt = U eΛt VT. (2.24)

As is obvious in (2.23), eAt transforms an initial condition x(0) at time t = 0 into a

solution x(t) at time t, for t > 0.

Through dyadic products, the following could also be written.

eAt =

M∑

i=1

eλit ui vT

i (2.25)

The derivation above applies to LTI systems. If A had entries that periodically varied

with period T , the formulation would have to be different. This is where we need to resort

to Floquet Theory to extend our semi-analytical approach to LPTV (Linear Periodically

Time-Varying) systems.

2.2.3 Floquet Theory

The most commonly known form of Floquet theory is best explained and understood in the

ODE case. This is why we will provide the necessary details of Floquet theory for ODEs

first, in breach of our convention of first presenting theories for systems expressed in DAEs.
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ODE Systems

We explained, in Section 2.2.1, what is meant by linearization around γ. In the ODE case,

out of the generic nonlinear equation in (2.1), it is simple to derive

dy

dt
= G(t)y, (2.26)

where, once again, G(t) = ∂f(xγ)/∂xγ . We also found out, through the simple exploration

in Section 2.2.1, that the LPTV (Linear Periodically Time-Varying) system in Section (2.26)

has a state transition function, which we called odK(t, 0), with the following property.

(1, ẋγ(0)) is an eigenpair of odK(T, 0). We will now present the explicit form of odK(t, 0),

to justify this finding. Note that Floquet Theory was not needed to compute this particular

eigenpair.

Through Floquet Theory, odK(t, s), for t ≥ s, is expressed as

odK(t, s) = U(t)D(t − s)VT(s). (2.27)

Above, D(t − s) is assumed to be a diagonal, (M × M)-sized matrix of the form

D(t − s) =








eµ1 (t−s)

. . .

eµM (t−s)








. (2.28)

µi, for 1 ≤ i ≤ M , are called the Floquet exponents.

Both U(t) and V(t) are (M×M)-sized matrices with T -periodic entries. These matrices

also satisfy U(t0) VT(t0) = VT(t0) U(t0) = IM , for any t0. This condition leads to the

biorthogonality property, which will be very useful in our derivations.

vT

i (t0)uj(t0) = δij =







1 for i = j

0 for i 6= j
(2.29)

is true for any t0 ≥ 0. Note that vi(t0) is the ith column of V(t0), and uj(t0) is the jth

column of U(t0).

It must be noted here that the state transition function of the LPTV system in (2.26),

defined as odK(t, 0), is very similar in form to the state transition function of the LTI

system in (2.18), given as eAt, in Definition 10 of Section 2.2.2. However, there is a very

conspicuous difference between the two functions. U and V, in the expanded form in (2.24),
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are constant matrices. However, U(t) and V(t), in the expanded form of (2.27), are not

only time-dependent, but also T -periodic.

As stated before, (1, ẋγ(0)) is an eigenpair of the matrix, odK(T, 0), because ẋγ(t) is a

periodic solution of the LPTV system in (2.26). It can easily be verified that ẋγ(t0) is an

eigenvector of odK(T + t0, t0), always corresponding to the eigenvalue of 1. Furthermore,

considering,

odK(t, s)ẋγ(s) = ẋγ(t),

it is clear that ẋγ(t) is one of the solutions of the LPTV system in (2.26). Then, we may call

u1(t) = ẋγ(t), without loss of generality. As to what the corresponding Floquet exponent,

µ1, may be, we consider

odK(t, s)ẋγ(s) = eµ1(t−s)ẋγ(t),

where eµ1(t−s) happens to remain 1 for any t and s satisfying t ≥ s ≥ 0. Then, µ1 = 0.

For the values of all Floquet exponents, we assume

µi







= 0 for i = 1

< 0 for i ∈ {2, ...,M}
(2.30)

Note that for simplicity, all µi are real. In general, µi may exist as complex conjugate pairs

as well. Then, on the left-hand side of the expression in (2.30), we should have not µi, but

Re(µi), i.e. the real part of µi.

Summarizing, we assume that xγ(t), is a periodic solution of the generic ODE system

in (2.1). We linearize (2.1) around γ, the limit cycle which consists of all the points traced

by xγ(t), as time progresses. The resulting LPTV system represented by (2.26) has a state

transition function, odK(t, s), given by (2.27). Furthermore, we assume that the Floquet

exponents, µi, for 1 ≤ i ≤ M , satisfy the condition in (2.30). Then, it is proven that the

steady-state periodic solution, xγ(t), has both asymptotic orbital stability and asymptotic

phase [17], reviewed in Section 2.1.8 and Section 2.1.9, respectively.

odK(t, s) can be expressed through dyadic products as well, as in

odK(t, s) =
M∑

i=1

eµi (t−s) ui(t) vT

i (s). (2.31)

Supposing we would like to compute how odK(t, s) would transform uj(s), the compu-
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tation follows as, making use of the biorthogonality property,

odK(t, s) uj(s) =
M∑

i=1

eµi(t−s)ui(t) vT

i (s)uj(s)
︸ ︷︷ ︸

δij

= eµj (t−s)uj(t). (2.32)

odK(t, s) transforms uj(s) into a scaled version of uj(t). Note that (2.32) solves the LPTV

equation in (2.26), with initial condition uj(s).

For the computations through (2.26) to be stable, we should have

|exp(µi(t − s))| ≤ 1. (2.33)

In (2.33), since µi ≤ 0 by our assumption in (2.30), it should be such that s ≤ t. Therefore,

forward computations in time of (2.26) are stable. Backward computations are not stable.

The matrix given by odK(T, 0) is called the monodromy matrix. Notice that

odK(T, 0) =

M∑

i=1

eµiT ui(T )vT

i (0)

=

M∑

i=1

eµiT ui(0)v
T

i (0), (2.34)

so ui(0) are the right eigenvectors, vi(0) are the left eigenvectors, and eµiT are the corre-

sponding eigenvalues of odK(T, 0), for 1 ≥ i ≥ M . For convenience, λi = exp(µiT ) are

called the Floquet multipliers. Note that, considering the assumption in (2.30), we have

|λi| = |exp(µiT )|







= 1 for i = 1

< 1 for i ∈ {2, ...,M}
(2.35)

All Floquet multipliers except for λ1 are inside the unit circle on the complex plane.

There is also an adjoint LPTV equation, associated with the forward LPTV system in

(2.26). This adjoint equation is given by

dz

dt
= −GT(t) z. (2.36)

odKT(s, t), the transpose of the expression in (2.27), is the state transition function and

v1(t) is a periodic solution of (2.36).

Notice that we have

odKT(s, t) =

M∑

i=1

e−µi(s−t)vi(s)u
T

i (t), (2.37)
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where we must have

|exp(−µi(s − t))| ≤ 1 (2.38)

for stable computations, otherwise solutions will grow without bound. In (2.38), µi ≤ 0, so

it must be such that s − t ≤ 0. Therefore, s ≤ t. This means forward computation in time

of (2.36) is unstable. (2.36) must be solved backward in time.

In order to find out how odKT(s, t) transforms vj(t),

odKT(s, t) vj(t) =

M∑

i=1

e−µi(s−t)vi(s)uT

i (t)vj(t)
︸ ︷︷ ︸

δij

= e−µj(s−t)vj(s). (2.39)

Note that (2.39) solves the adjoint equation (2.36) with initial condition vj(t), backward in

time, i.e. s ≤ t.

In order to relate the two LPTV equations, derived from the generic ODE in (2.1), we

note the following observations. The scalar product of z(t), the solution of (2.36), and the

forward LPTV equation in (2.26) yields

zT(t)
dy(t)

dt
= zT(t)G(t)y(t). (2.40)

The scalar product of y(t), the solution of (2.26), and the forward LPTV equation in (2.36)

yields

yT(t)
dz(t)

dt
= −yT(t)GT(t)z(t). (2.41)

Adding (2.40) and (2.41), we obtain, after some manipulations,

d

dt
[zT(t) y(t)] = 0. (2.42)

This means zT(t) y(t) is a constant for all t. We know that y(t) = exp(µit)ui(t) is a solution

for (2.26), with the initial condition ui(0) at t = 0. Also z(t) = exp(−µj)vj(t) is a solution

for (2.36) with thew initial condition vj(0) at t = 0. We then have, substituting these

solutions into (2.42),

d

dt

[
vT

j (t)ui(t)
]

= −(µi − µj)
[
vT

j (t)ui(t)
]
. (2.43)

The solution of (2.43) is easily written as

vT

j (t)ui(t) = exp(−(µi − µj)t)v
T

j (0)ui(0). (2.44)
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Notice that in (2.44), if i = j, that vT

i (t)ui(t) = vT

i (0)ui(0) is trivially satisfied, and by the

biorthogonality condition in (2.29) we have vT

i (t)ui(t) = vT

i (0)ui(0) = 1. On the other hand,

when i 6= j, that vT

j (t)ui(t) = vT

j (0)ui(0) is true iff vT

j (0)ui(0) = 0, and by (2.29) we have

vT

j (t)ui(t) = vT

j (0)ui(0) = 0. Note that this discussion is not a proof of the biorthogonality

relation but only an observation documenting the consequences of biorthogonality over the

LPTV equations in (2.26) and (2.36).

DAE Systems

Demir in [3] draws attention to the fact that because of the properties of the nonlinear

function q in (2.4), x(t), which is a solution of (2.4), is allowed to consist of points that are

only in a certain manifold in <M . At each point on γ, this particular manifold, which is

actually a subset of <M , can be linearized into a linear subspace, so that a general solution

of
d

dt
(C(t)y(t)) = G(t)y(t), (2.45)

at t = t0 can be expressed as a linear combination of only m < M vectors in <M . (2.45) is

the linearized form of the generic DAE in (2.4), with C(t) = ∂q(xγ(t))/∂xγ(t) and G(t) =

∂f(xγ(t))/∂xγ(t).

Demir in [3] expresses the state transition function of (2.45) as

K(t, s) =

m∑

i=1

eµi (t−s)ui(t)v
T

i (s)C(s), (2.46)

for t ≥ s. ui(t) and vi(t) are T -periodic Floquet vector functions, and µi are Floquet

exponents, all for 1 ≤ i ≤ M , associated with the LPTV system in (2.45). However, note

that upper limit of the summation in (2.46) is m, not M . The reason for this will be clear

shortly.

The biorthogonality condition for uj(t) and vi(t), where 1 ≤ i, j ≤ m, is given as

vT

i (t0)C(t0)uj(t0) = δij =







1 for i = j

0 for i 6= j
(2.47)

with t0 ≥ 0. Using (2.47), we can compute how K(t, s) transforms uj(s), for 1 ≤ j ≤ m.

K(t, s) uj(s) =
m∑

i=1

eµi(t−s)ui(t) vT

i (s)C(s)uj(s)
︸ ︷︷ ︸

δij

= eµj (t−s)uj(t) (2.48)
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It is clear that (2.48) solves the forward LPTV system equation in (2.45), with initial

condition uj(s). With t ≥ s, the computation in (2.48) is stable.

From (2.48), it can be deduced that any solution y(t) of (2.45) is such that y(0) can be

expressed as a linear combination of the vectors in {u1(0), . . . , um(0)}. Then,

y(0) =

m∑

i=1

ci ui(0) (2.49)

for coefficients ci. Through (2.48)

y(t) =

m∑

i=1

ci eµi tui(t). (2.50)

for t ≥ 0. As stated earlier, x(t) in (2.4) resides in a subset of <M . In turn, y(t) in (2.45)

at any t resides in a linear subspace of dimension m [3].

There are also other Floquet functions that constitute the set {um+1(t), . . . , uM (t)}.

These vector functions reside in the nullspace of C(t) [3], i.e.

C(t) {um+1(t), . . . , uM (t)} = 0. (2.51)

This is why the upper limit in the summation expression of (2.46) is m. The components

that are in the span of {um+1(s), . . . , uM (s)} are instantly killed by K(t, s) in (2.46).

The biorthogonality condition in (2.47) can then be expressed for all Floquet functions

as

vT

i (t0)C(t0)uj(t0) = δij =







δij for 1 ≤ i, j ≤ m

0 for m + 1 ≤ i, j ≤ M
(2.52)

for any t0 ≥ 0.

Following the discussion above, we may now introduce the assumed values for Floquet

exponents. In Section 2.2.1, we concluded that (1, ẋγ(0)) must be an eigenpair of K(T, 0),

whose explicit form is now easily computed through (2.46) via Floquet Theory. As in the

discussion for ODE systems, we set without loss of generality µ1 = 0 and u1(t) = ẋγ(t).

As a sufficient condition for asymptotic orbital stability and asymptotic phase to hold, we

assume that all other Floquet exponents are negative [17]. Considering (2.51) and in turn

(2.48), we must set the Floquet exponents that correspond to the Floquet functions in the
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nullspace of C(t) to minus infinity. In all, we have

µi







= 0 for i = 1

< 0 for i ∈ {2, ...,m}

= −∞ for i ∈ {m + 1, ...,M}

(2.53)

The adjoint LPTV equation for the DAE case [3] is given by

CT(t)
dz

dt
= −GT(t)z(t). (2.54)

The state transition function for (2.54) is not simply KT(s, t), if we are to recall the form

for the ODE case. For DAEs we have

L(s, t) =
m∑

i=1

e−µi (s−t)vi(s)u
T

i (t)C
T(t), (2.55)

as the state transition function of the adjoint equation in (2.54).

We can easily determine how L(s, t) transforms vj(t), for 1 ≤ j ≤ m.

L(s, t) vj(t) =

M∑

i=1

e−µi(s−t)vi(s)uT

i (t)C
T(t)vj(t)

︸ ︷︷ ︸

δij

= e−µj(s−t)vj(s). (2.56)

(2.56) solves (2.54) with initial condition vj(t). It is also clear that with s ≤ t, the compu-

tation in (2.56) is stable.

The following simple derivation relates the solutions of the forward LPTV equation in

(2.45) to the solutions of the adjoint equation in (2.54). A similar procedure has also been

included in the review for ODE systems.

The scalar product of z(t), the solution of (2.54), and the forward LPTV equation in

(2.45) yields

zT(t)
d

dt
(C(t)y(t)) = zT(t)G(t)y(t). (2.57)

The scalar product of y(t), the solution of (2.45), and the forward LPTV equation in (2.54)

yields

yT(t)CT(t)
dz(t)

dt
= −yT(t)GT(t)z(t). (2.58)

Adding (2.57) and (2.58), we obtain, after some manipulations,

d

dt
[zT(t)C(t)y(t)] = 0. (2.59)
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This means zT(t)C(t)y(t) is a constant for all t. Considering that µi = −∞ for m+1 ≤ i ≤

M , we can say that y(t) = exp(µit)ui(t), for 1 ≤ i ≤ M , is a solution for (2.54), with the

initial condition ui(0) at t = 0. Also z(t) = exp(−µj)vj(t), for 1 ≤ j ≤ M , is a solution for

(2.54) with thew initial condition vj(0) at t = 0. We then have, substituting these solutions

into (2.59),
d

dt

[
vT

j (t)C(t)ui(t)
]

= −(µi − µj)
[
vT

j (t)C(t)ui(t)
]
. (2.60)

The solution of (2.60) is easily written as

vT

j (t)C(t)ui(t) = exp(−(µi − µj)t)v
T

j (0)C(0)ui(0). (2.61)

For m + 1 ≤ i ≤ M , it is clear that vT

j (t)C(t)ui(t) = 0, since C(t) has a nullspace spanned

by {um+1(t), . . . , uM (t)}. Considering the case 1 ≤ i, j ≤ m, we have vT

j (t)C(t)ui(t) =

vT

j (0)C(0)ui(0), when i = j. The biorthogonality condition in (2.52) satisfies this relation by

setting vT

j (t)C(t)ui(t) = vT

j (0)C(0)ui(0) = 1. When i 6= j, vT

j (t)C(t)ui(t) = vT

j (0)C(0)ui(0)

iff vT

j (0)C(0)ui(0) = 0. (2.52) sets vT

j (0)C(0)ui(0) = 0. Again, this is not a proof of

the biorthogonality property in (2.52), but we observe through this discussion that (2.52)

satisfies (2.61).
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Chapter 3

ISOCHRONS AND PHASE OF AN OSCILLATOR

Definition 7 in Section 2.1.9 is a statement of the asymptotic phase property for dynamic

systems. Let us briefly recall Definition 7. This review will be most helpful before we

introduce the notion of isochrons.

Let x0(t) be a solution of the generic ODE in (2.1). We will assume x0(0) to be an

element of the set called the domain of attraction, W, associated with γ, the limit cycle

of interest. However, we will also assume that x0(0) is not on γ. Remembering that we

also assume xγ(t), the steady-state solution on γ, to have the asymptotic orbital stability

property, these conditions imply that, as t → ∞, the points defined by x0(t) will tend to

become elements of γ only.

Definition 7 states that any such solution x0(t) that complies with the conditions we have

just stipulated is related to xγ(t), if xγ(t) has the asymptotic phase property. Definition 7

declares, provided that xγ(t) has asymptotic phase, the points traced by xγ(t + α(x0(0)))

and x0(t) tend to become identical, t → ∞. Moreover, α(x0(0)) is a constant in units of

time.

For purposes of elucidation of the current matter, visualize two runners around the limit

cycle, footing different tracks. Let the first runner never leave γ, and let his coordinates as

a function of time be defined by xγ(t + α(x0(0))). Let the second runner follow the track

defined by x0(t). By our assumptions, the two runners can not be at the same location at

t = 0, as x0(0) is not on γ. However, as time progresses, the second runner approaches the

set of points γ, because of asymptotic orbital stability. The first runner is always stomping

along γ, but we know that eventually the second runner as well will be running along γ.

By our assumptions and then through Definition 7, we are entitled to propose that there

exists a costant α(x0(0)) that enables the two runners to eventually foot the track, or more

formally trajectory, defined by γ, side by side.

The asymptotic phase property, having xγ(t + α(x0(0))) = x0(t), in the limit as t → ∞,
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for a constant α(x0(0)), gives rise to the suspicion that there might be solutions other than

x0(t), for example x1(t), satisfying xγ(t+α(x0(0))) = x1(t), as t → ∞. Notice that we have

kept the constant term in the argument, α(x0(0)), intact, as it should be, simply because

α(x1(0)) = α(x0(0)). Also, we require that x1(0) as well resides in W, associated with

γ. If as t → ∞, x0(t) and x1(t) are hitting the same points simultaneously, together with

xγ(t + α(x0(0))), we may rightfully call x0(t) and x1(t) in phase, not just for big t, but for

all t ≥ 0. Figure 3.1 shows some solutions that are in phase and suggests that these sets

may indeed form a set.

Figure 3.1: Intuitive approach leading to the discovery of isochrons.

Let us focus on t = 0 for the moment. By our assumptions, we know that all three of

x0(0), x1(0), and xγ(α(x0(0))) are in phase. This observation suggests that there exists a

notion of phase not just on γ, but around the limit cycle as well, possibly over the whole of

W. In order to develop an understanding of phase in W, we will have to define the notions

of period, frequency, and angular frequency in W. We will sustain the likes of these notions

on γ itself and will extend the existing theory to cover the whole domain of attraction.

Therefore, our definitions will be for what we will call the generalized period, frequency,

angular frequency, and angular phase.
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Isochrons were first introduced by Winfree, who coined the term isochron and inves-

tigated into the theory of phase in oscillators around the limit cycle, through the help of

isochrons, in [22] and [19], and Guckenheimer, who proved mathematically the existence of

isochrons and their properties [7].

Winfee confesses that he was not aware of the notion of asymptotic phase, when he

foresaw that sets of points of the same phase were foliating the domain of attraction, for

γ of an oscillator [19]. Each of these sets of equal phase, Winfree called an isochron. This

term literally means “of the same time”. Winfree then inaugurating a streak to publish a

series of papers, the oldest of which dates back to 1967 [19], explored deeper into this new

theory, which he made use of in analyzing oscillator phase under perturbations. Winfree, a

renowned biologist deceased in 2002, published [22] in 1974, a work that elicited immediate

response from Guckenheimer through [7] in 1975. Winfree’s intuitive questions in [22]

focus on the existence of isochrons and whether or not a neighborhood of γ is partitioned

into isochrons, each one of which intersects a single point on γ. Guckenheimer responds

in [7] that, under certain conditions that are to be stated shortly, isochrons both exist

and foliate a neighborhood of γ. Winfree’s other questions constitute an inquiry into the

properties of “phaseless sets”, topological manifolds formed by the existence of isochrons

[22]. Guckenheimer responds [7]. with abstract mathematical proofs.

The profondity of the abstract methods, including topology, which Guckenheimer re-

sorted to, in proving the existence of isochrons and verifying the fact that isochrons foliate

the domain of attraction, which belongs to γ, is beyond the scope of the explanations and

contributions to be provided in this text. However, we note here that Guckenheimer proves

the existence of isochrons, for xγ(t) that have characteristic multipliers, all of value less

than 1 [7]. These characteristic multipliers surface in our work under the name of Floquet

multipliers, i.e. λi = exp(µiT ), for 1 ≤ i ≤ M , as defined in Section 2.2.3. It is proved in

[17] that if the Floquet multipliers, associated with xγ(t), are such that only one of these is

1 in magnitude, and all the rest are less than 1, xγ(t) posseses both the asymptotic phase

and the asymptotically orbital stability properties. Therefore, since we rely on these two

properties in stating the forthcoming definition of isochrons, we assume that having a single

Floquet multiplier as 1 and all the rest as less than 1, equivalently having the first Floquet

exponent as µ1 = 0, and the rest as µi < 0 for 2 ≤ i ≤ M , assuming again that all exponents



Chapter 3: Isochrons and Phase of an Oscillator 29

are real, implies the existence of isochrons, at least in the close neighborhood of γ.

We will be spelling out and analyzing simple examples in this part of our work, and we

will be figuring out analytical and numerical methods to illustrate the structure of isochrons

over the whole domain of attraction, associated with γ. However, these methods for finding

expressions of isochrons are just for demonstration purposes. Our eventual goal, the analysis

of oscillator phase under perturbations, is facilitated analytically and numerically in the

close neighborhood of γ, i.e. when the states vector never leaves the close neighborhood of

γ. Therefore, when carrying out analyses of oscillator phase under perturbations, we will

not have to make use of isochrons over the whole domain of attraction, W. Analyses in

the close neighborhood of γ will suffice. The accuracy of Floquet multipliers is maintained

in the close neighborhood of γ only. Noting the sufficient condition that Guckenheimer

specifies in [7] for the existence of isochrons, that all Floquet multipliers should be less than

1, and the proof in [17] that if only one Floquet multiplier is 1, and the rest are all less

1, the two crucial properties, attributed to xγ(t), asymptotic phase and asymptotic orbital

stability, exist, we rightfully assume that isochrons exist in the close neighborhood of γ, for

the types of oscillators that we venture to analyze.

Guckenheimer’s justified statement that there is no point in the close neighborhood of γ

that is not an element of any isochron, associated with γ, i.e. that isochrons foliate the close

neighborhood of γ, is also more than welcome to consolidate the veracity of our forthcoming

derivations.

We will first be providing a formal definition for the sets called isochrons.

3.1 Definition

Definition 11 (Isochron) Let xη(t) be a solution of the generic ODE in (2.1). xγ(t) is

the periodic steady-state solution of (2.1). The isochron with time tag t0, which we call ηt0 ,

is defined to be the set

ηt0 =
{

xη(t0)| lim
τ→∞

[Φ(τ, t0, x
η(t0)) − xγ(τ)] = 0

}

, (3.1)

where xγ(τ) = Φ(τ, t0, x
γ(t0)). Φ is the state transition function, associated with (2.1).

In Definition 7 of Section 2.1.9, γ is declared to have asymptotic phase for all solutions
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x0(t) of (2.1), with x0(0) ∈ W, if there is a constant α(x0(0)) in units of time, such that

lim
τ→∞

[
x0(τ) − xγ(τ + α(x0(0)))

]
= 0.

In Definition 11 above, we start at t = t0, not t = 0, and declare that xη(t0) and xγ(t0) are

on the same isochron, provided that the stated condition is satisfied. Trivially, xγ(t0) ∈ ηt0

as well. Figure 3.2 is an illustration of this definition.

Figure 3.2: Isochron definition.

Definition 7 and Definition 11 are very similar. However, Definition 11 for isochrons

introduces one particular concept that is not stated in Definition 7. Definition 7 for asymp-

totic phase may be interpreted as if each x0(0) ∈ W maps to a unique α(x0(0)). However,

Definition 11 for isochrons rules out this possibility, implying that there is a set of points

that map to α(x0(0)), and that set is a single isochron in W. Since Definition 11 introduces

a stronger condition than Definition 7, it can be noted that the existence of isochrons in

W implies the existence of asymptotic phase in W, provided that each isochron intersects

a single point on γ.

Note also that in Definition 11, ηt0 is assumed to intersect xγ(t0). The time tags are

taken the same to avoid confusion only.
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3.2 Properties

In this section, we present two crucial properties of isochrons. The first theorem relates

isochrons to Floquet Theory. As we stated before, isochron behavior in the close neighbor-

hood of γ is essential in the forthcoming analyses.

Figure 3.3: The first crucial property of isochrons.

Theorem 1 If ηt0 is linearized into a hyperplane at xγ(t0), then v1(t0) is the vector orthog-

onal to that hyperlane.

Proof: The definition of ηt0 in (3.1) suggests that the points in ηt0 form a nonlinear

hypersurface that passes through xγ(t0). The linearization of ηt0 at xγ(t0) will naturally be

a hyperplane. Hyperplanes are subspaces of dimension (M − 1) in <M . A hyperplane is

defined by a single vector that is orthogonal to every vector in that hyperplane.

Our task is to linearize ηt0 at xγ(t0). The Taylor expansion of xη(τ) = Φ(τ, t0, x
η(t0)),

around xγ(t0), as in

xη(τ) ≈ Φ(τ, t0, x
γ(t0)) +

∂Φ(τ, t0, x
γ(t0))

∂xγ(t0)
z. (3.2)

Notice that above, we have assumed z = xη(t0) − xγ(t0).
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The expression in (3.1) can then be written as, making use of the approximation in (3.2),

lim
τ→∞

[{xη(τ)} − {xγ(τ)}] = 0

lim
τ→∞

[{

Φ(τ, t0, x
γ(t0)) +

∂Φ(τ, t0, x
γ(t0))

∂xγ(t0)
z

}

− {Φ(τ, t0, x
γ(t0))}

]

= 0

lim
τ→∞

∂Φ(τ, t0, x
γ(t0))

∂xγ(t0)
z = 0. (3.3)

Notice that (3.3) can be written as

lim
τ→∞

odK(τ, t0)z = 0,

where odK is the state transition function of the linear equation, ẏ = G(t)y, with G(t) =

∂f/∂x evaluated on γ, derived from the generic ODE in (2.1). We have imposed a condition

on z, and what we need to do is to determine which values z can take.

We know through Floquet Theory that

odK(τ, t0) =
M∑

i=1

eµi(τ−t0)ui(τ)vT

i (t0),

and we have

lim
τ�t0, τ→∞

odK(τ, t0) = u1(τ)vT

1(t0), (3.4)

since our key assumption is that µ1 = 0, and µi < 0 for 2 ≤ i ≤ M . (3.3) becomes, through

(3.4),

lim
τ→∞

u1(τ)vT

1(t0)z = 0. (3.5)

Recall that u1(t) = ẋγ(t). If all entries of u1(τ) in (3.5) are zero, then u1(t) = ẋγ(t) = 0,

for t > τ , i.e. oscillation stops at t = τ . This is not possible, so we must have

vT

1(t0)z = 0. (3.6)

(3.6) above is the hyperplane expression we have been seeking. If ηt0 is linearized into a

hyperplane at xγ(t0), then (3.6) is the expression for this hyperplane.

From (3.6), we then have, because of biorthogonality,

z =

M∑

i=2

aiui(t0),

where not all coefficients ai are expected to be zero. Then, it is clear that the linearization

of ηt0 at xγ(t0), i.e. the hyperplane given by (3.6), is defined by v1(t0). �
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Figure 3.3 is an illustration of the first crucial property of isochrons. We observe that

v1(t) and u1(t) are not necessarily in the same direction, but we know that v1(t) is orthogonal

to the linearized form of an isochron, the linearization carried out at xγ(t), and that u1(t)

is tangent to the trajectory we call γ, at again xγ(t).

The second crucial property of isochrons helps to establish periodicity not only on γ,

but over the domain of attraction, W. We will justify this property, but before that the

following theorem has to be noted.

Figure 3.4: The second crucial property of isochrons.

Theorem 2 Let the initial condition xγ(0) of the steady-state periodic solution xγ(t), of

the generic ODE in (2.1), reside on the isochron η0. Let another solution x0(t) of (2.1) be

such that x0(0) ∈ η0. Then, for all t0, x0(t0) ∈ ηt0 .

Proof: Since x0(0) ∈ η0, by Definition 11, we have

lim
τ→∞

Φ(τ, 0, x0(0)) = lim
τ→∞

Φ(τ, 0, xγ(0)). (3.7)

We also have

Φ(τ, t0, x
0(t0)) = Φ(τ, 0, x0(0)), (3.8)
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for τ > t0, since

Φ(τ, t0, x
0(t0)) = Φ(τ, t0,Φ(t0, 0, x

0(0))).

Also

Φ(τ, t0, x
γ(t0)) = Φ(τ, 0, xγ(0)), (3.9)

for τ ≥ t0. Then, substituting the left-hand side expressions in (3.8) and (3.9) into (3.7),

lim
τ→∞

Φ(τ, t0, x
0(t0)) = lim

τ→∞
Φ(τ, t0, x

γ(t0)). (3.10)

(3.10) implies that x0(t0) ∈ ηt0 . �

Figure 3.4 is an illustrative explanation of the second property of isochrons.

The following corollary follows immediately from Theorem 2.

Corollary 1 (Theorem 2) If x1(t) and x2(t) are two solutions of (2.1) such that x1(0), x2(0) ∈

η0, then at t = t0, x1(t0), x
2(t0) ∈ ηt0 .

Corollary 1 will be necessary when explaining a numerical method for plotting the

isochron portrait in the domain of attraction, associated with the limit cycle of a simple

two-dimensional oscillator.

We have assumed from the beginning of our discussions that the period on the limit

cycle of interest, γ, is T . Naturally, the definition of periodicity, given in Section 2.1.6,

was stated, observing a generic dynamic system, oscillating only on γ. In this aspect, the

periodicity definition is quite strict. The next corollary that follows from Theorem 2 is

mandatory in establishing periodicity in W, the domain of attraction.

Corollary 2 (Theorem 2) Let x0(t) be a solution of the generic ODE in (2.1), and let

x0(0) reside in the domain of attraction, W, so that x0(t) approaches γ as time progresses.

Let x0(t0) be on the same isochron, ηt0 , as xγ(t0), i.e. x0(t0) ∈ ηt0 . Then, x0(t0 + nT ), for

nonnegative integers n, are also on ηt0 . T is the period on γ.

Proof (Explanation of Corollary 2): By Theorem 2, x0(t0 + nT ) ∈ ηt0+nT , for

nonnegative integers n. ηt0+nT is the isochron that passes through xγ(t0 +nT ), but xγ(t0 +

nT ) = xγ(t0), for xγ(t) is the steady-state periodic solution on γ. Also by the uniqueness

of solutions of the generic ODE in (2.1), and the existence of isochrons in W [7], there is
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Figure 3.5: Periodicity in the domain of attraction.

a single isochron associated with xγ(t0), i.e. xγ(t0) ∈ ηt0 . Therefore, ηt0+nT = ηt0 , and

x0(t0 + nT ) ∈ ηt0 . �

Proof (Alternative Proof of Corollary 2): We do not directly make of Theorem 2

while conducting this proof. This is going to be a proof by induction. The base case is that

lim
τ→∞

Φ(τ, t0, x
0(t0)) = lim

τ→∞
Φ(τ, t0, x

γ(t0)). (3.11)

This equation states that x0(t0) are xγ(t0) on the same isochron, ηt0 .

For the inductive step, we proceed as follows. The inductive hypothesis reads, for some

nonnegative integer n,

lim
τ→∞

Φ(τ, t0 + nT, x0(t0 + nT ))

= lim
τ→∞

Φ(τ, t0 + nT, xγ(t0)). (3.12)

This is a mathematical statement that x0(t0 + nT ) is assumed to be on the same isochron,

ηt0 , as xγ(t0). However, we also have

Φ(τ, t0 + nT, xγ(t0 + nT ))

= Φ(τ, t0 + nT, xγ(t0)), (3.13)
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for xγ(t0 + nT ) = xγ(t0), because of the periodicity on γ. The previous equation is true for

any τ ≥ t0 + nT . Deducing through (3.12) and (3.13), we have

lim
τ→∞

Φ(τ, t0 + nT, x0(t0 + nT ))

= lim
τ→∞

Φ(τ, t0 + nT, xγ(t0 + nT )), (3.14)

but this is obviously a natural consequence of the base case in (3.11), noting that

lim
τ→∞

Φ(τ, t0 + nT, x0(t0 + nT ))

= lim
τ→∞

Φ(τ, t0 + nT,Φ(t0 + nT, 0, x0(0)))

and

lim
τ→∞

Φ(τ, t0 + nT, xγ(t0 + nT ))

= lim
τ→∞

Φ(τ, t0 + nT,Φ(t0 + nT, 0, xγ(0)))

So the inductive hypothesis in (3.12), at iteration number n, for some nonnegative integer

n, of course, is not an assumption, but a fact.

We have

Φ(τ, t0 + nT, x0(t0 + nT ))

= Φ(τ, t0 + (n + 1)T, x0(t0 + (n + 1)T )), (3.15)

and

Φ(τ, t0 + nT, xγ(t0))

= Φ(τ, t0 + (n + 1)T, xγ(t0 + T ))

= Φ(τ, t0 + (n + 1)T, xγ(t0)), (3.16)

for τ ≥ (n + 1)T , since xγ(t) is periodic with T . The last two equations (3.15) and (3.16),

together with the inductive hypothesis in (3.12) imply

lim
τ→∞

Φ(τ, t0 + (n + 1)T, x0(t0 + (n + 1)T ))

= lim
τ→∞

Φ(τ, t0 + (n + 1)T, xγ(t0)) (3.17)

Therefore, the inductive hypothesis, or rather the fact as we have just shown, that x0(t0 +

nT ) ∈ ηt0 implies that x0(t0 + (n + 1)T ) ∈ ηt0 . The inductive inference is complete. �
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Figure 3.6: Isochron layout in the domain of attraction.

Figure 3.5 is a depiction of the periodicity in W. Figure 3.6 illustrates the structure of

isochrons in W.

The corollary above is necessary in order to define periodicity in W. We are then going to

make use of periodicity to spell out a differential equation to compute the phase, associated

with the generic ODE in (2.1). Then, the first theorem will be necessary to normalize this

phase equation. Recall that in this part of our work about isochrons, we are only concerned

in systems, with all perturbations absent, but the initial condition for a solution of (2.1)

may not reside on γ, for all perturbations applied were before t = 0. In all, the phase

equation will be applicable only to unperturbed oscillators.

3.3 Definition of Phase for an Unperturbed Oscillator

In this section, we are to define the notion of generalized period first. Definition 3 in Section

2.1.6 describes the simple procedure to compute the period on γ, the limit cycle. There, we

choose a point on the limit cycle, xγ(t0). Because of this choice on γ, our oscillator as given

in (2.1) will never leave γ. If we record the times that our oscillator hits xγ(t0) over and

over, after the initial time, t0, we may easily calculate the difference of each hitting time
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and t0. The smallest of these differences is going to be the period we seek.

Corollary 2, however, enables us to refine Definition 3. We now know that even if we

do not start our system from an initial condition on γ, we are going to be hitting a point

on the same isochron after subsequent intervals of length T , the familiar period as given by

Definition 3. therefore, via isochrons, we define the generalized period as follows.

Definition 12 (Generalized Period) Let xγ(t) be the steady-state periodic solution on

γ, the limit cycle, of the generic ODE in (2.1). Let xγ(t0), naturally a point on γ, be such

that xγ(t0) ∈ ηt0 , ηt0 being a single isochron, associated with γ. Also let x0(t) be another

solution of (2.1), and choose x0(0) such that x0(0) ∈ W, W being the domain of attraction

associated with γ, so that x0(t) tends to approach γ, as time progresses. Furthermore, let

x0(t0) ∈ ηt0 . We define the set

T =
{

T i
∣
∣Φ(t0 + T i, t0, x

0(t0)) ∈ η(t0)
}

,

and the smallest positive number in T as the generalized period in W, associated with γ.

Note that the value of the generalized period is again T , equal to the value of the period

defined on γ, as stated by Definition 3.

After formally defining the generalized period, with the help of isochrons, we proceed to

define the generalized frequency and angular frequency in W.

Definition 13 (Generalized Frequency) Through T , the generalized period as given in

Definition 12, we define the generalized frequency in W, associated with γ, as

f0 =
1

T
.

Notice that we have dropped the γ notifier, as opposed to the expression given in Definition

4, for we have developed the notion of period and then phase in W, not just on γ. The

generalized angular frequency is defined as

ω0 = 2πf0 =
2π

T
.

The transition from the generalized angular frequency to the generalized angular phase

is accomplished as follows.
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Definition 14 (Evolution of Angular Phase) We define the angular phase in W, φ, as

dφ

dt
= ω0, (3.18)

where ω0 is the generalized angular frequency in W.

φ in Definition 14 is in radians. For our purposes, we would like to have phase in units

of time.

Definition 15 (Evolution of Phase in Units of Time) Let us define the phase in units

of time, t̂, in W, associated with γ of the generic ODE in (2.1), as t̂ = φ/ω0, where ω0 is

the generalized angular frequency in W. The differential equation to compute t̂ is naturally

dt̂

dt
= 1. (3.19)

This differential equation basically applies to unperturbed systems, in ODE form, as in (2.1).

Although the definitions above, except for the generalized period, may seem inessential

and superfluous, we have carried out this tedious series of derivations, in order to spell out a

formal definition for t̂, the phase in units of time, in W. Brown et al. in [2], state that they

readily define the phase for unperturbed ODE system, as given in Definition 15, but in here

we have based our understanding, of the generalized period in the domain of attraction, on

the theory of isochrons, and then spelt out t̂, after some prosaic definitions. This approach

is similar to the one that Brown briefly outlines in [1].

(3.19) is a differential equation, defining the evolution of t̂. The solution of this differen-

tial equation is to be trivially computed. We need an initial condition as well. Let us now

formally define t̂ and then show that the form that is to be proposed solves (3.19).

Definition 16 (Phase in Units of Time) Let xγ(t∗) be the steady-state periodic solution

of (2.1), xγ(t), evaluated at t = t∗. The phase in units of time of xγ(t∗) is defined as

t̂(xγ(t∗)) = t∗. (3.20)

Let x(t) be a solution of (2.1) such that x(0) /∈ γ, but x(0) ∈ W. x(t∗) is x(t) evaluated at

t = t∗. Then the phase in units of time of x(t∗) is defined as

t̂(x(t∗)) = t̂(xγ(t′)), such that x(t∗), xγ(t′) ∈ ηt′ . (3.21)
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Examining Definition 16 above, suspicions may arise because of the periodicity of xγ(t).

Let us assume temporarily that 0 ≤ t′′ < T and that t′ = t′′ + nT , where n is an integer

and T is the period of oscillation. In (3.21), we know that xγ(t′) = xγ(t′′ + nT ) = xγ(t′′).

This makes ηt′ = ηt′′+nT = ηt′′ , since an isochron must be associated with a single point on

γ. Therefore ηt′′ is the same set as ηt′′+nT . However, then we have t̂(x∗(t)) = t̂(xγ(t′)) =

t̂(xγ(t′′ + nT )) = t′′ + nT . It seems that the phase of a single point of a solution must

not take more than one value. But recall that examining solutions versus running time

t, xγ(t) is not distinguishable from xγ(t + nT ). In fact, this is the essence of periodicity.

Therefore, it is natural that the phase of a single point, i.e. t̂(x(t∗)), is determined as a

constant number t′′ plus an indefinite expression nT . The important aspect of (3.21) is that

whichever xγ(t′) = xγ(t′′ + nT ) is found to be on the same isochron ηt′ with x(t∗), t̂(x(t∗))

must be set to the time argument of xγ(t′ = t′′ + nT ), which is t′. In all, we do not confine

t′ to the interval [0, T ).

Theorem 3 Isochrons are the level sets of t̂.

Proof: Let x(t) be a solution of (2.1) such that x(0) ∈ ηt0 . We also know that xγ(t0) ∈

ηt0 . By Definition 16, we have

t̂(x(0)) = t̂(xγ(t0)) = t0.

All possible x(0) ∈ ηt0 satisfy t̂(x(0)) = t0. This makes ηt0 the level set of t̂ corresponding

to the value t̂ = t0. Letting t0 vary in the range [0, T ), we see that isochrons are the level

sets of t̂. �

Corollary 3 (Theorem 3) Let x(t) be a solution of (2.1) such that x(0) ∈ W. Then, at

a particular t∗, x(t∗) and xγ(t̂(x(t∗))) are on the same isochron.

Proof(Explanation of Corollary 3): Let us check if the phases of x(t∗) and xγ(t̂(x(t∗)))

are equal. We have, by Definition 16,

t̂(xγ(t̂(x(t∗)))) = t̂(x(t∗)).

Then, we know that x(t∗) and xγ(t̂(x(t∗))) are on the same level set of t̂. Isochrons are the

level sets of t̂, by Theorem 3. Hence the claim. �

Theorem 3 enables us to introduce the following alternative definition for isochrons.
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Definition 17 (Alternative Isochron Definition) Let x(t) be a solution of (2.1) such

that x(0) ∈ W. ηt0 can then be defined as

ηt0 =
{

x(0)| t̂(x(0)) = t0
}

. (3.22)

Now we can show that t̂ introduced in Definition 16 solves (3.19) with an appropriate

initial condition.

Theorem 4 Let x(t) be a solution of (2.1) such that x(0) ∈ ηt0 . Then, t̂(x(t)) solves (3.19),

as in
dt̂

dt
= 1, with t̂

∣
∣
0

= t0, (3.23)

where t̂
∣
∣
0
, t̂ evaluated at t = 0, is an initial condition.

Proof: Since xγ(t0) ∈ ηt0 , we have by Definition 16

t̂
∣
∣
0

= t̂(x(0)) = t̂(xγ(t0)) = t0,

so the initial condition in (3.23) is satisfied.

Noting that xγ(t + t0) is a solution for (2.1) with the initial condition xγ(t0), we know

that at any time t, x(t) and xγ(t + t0) will instantaneously be on the same isochron, by

Theorem 2. Then, by Definition 16, we have, at any time t,

t̂(x(t)) = t̂(xγ(t + t0)) = t + t0.

It is easy to compute
d

dt
t̂(x(t)) =

d(t + t0)

dt
= 1,

which shows that t̂(x(t)) = t + t0 solves the differential equation in (3.23). �

Summarizing, we visualize isochrons as the level sets of t̂ in W, associated with γ.

t̂ = t̂(x), t̂ depends on the states vector, x, in W. The points in W that satisfy t̂ = t0,

for example, form ηt0 , the isochron that is in phase with xγ(t0). As another example, let

us assume the points that satisfy t̂ = t1 and t̂ = t2, for t2 > t1, form the sets ηt1 and ηt2 ,

respectively. There is no doubt that ηt1 and ηt2 are the same set if t2 − t1 = nT , for a

positive integer n, where T is the generalized period in W.

Considering t̂ = t̂(x) is essential in deriving a partial differential equation. Let us rewrite

dt̂/dt = 1, as in
[

∂t̂

∂x

]T

dx

dt
=

[
∂t̂

∂x

]T

· f(x) = 1. (3.24)
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(3.24) is a PDE (Partial Differential Equation). Since we set in Definition 16 that t̂ is a

function of x only, ∂t̂/∂x is also a function of x only. In this aspect, while computing the

values for ∂t̂/∂x, x ∈ W to be able to compute ∂t̂/∂x. The same discussion is valid also for

f(x).

We also need boundary conditions to solve PDEs. Spelling out the boundary condition

for (3.24) is simple. t̂(xγ(t0)) = t0 for t0 ∈ [0, T ) is our boundary condition. This is true,

because the phase in units of time on γ is expected to be the time tag of xγ(t) for an

unperturbed oscillator. In all,

[
∂t̂

∂x

]T

f(x) = 1, with t̂(xγ(t0)) = t0, ∀t0 ∈ [0, T ) , (3.25)

is the PDE to solve for t̂ over the whole domain of attraction, W.

The next theorem associates ∂t/∂x, the phase gradient evaluated on γ, with v1(t).

Theorem 5 The phase gradient evaluated on γ,

∂t̂(xγ(t))

∂xγ(t)
= v1(t). (3.26)

Proof: Let x(t) be a solution of (2.1) such that x(0) ∈ η0, so that t̂(x(0)) = 0 by

Definition 16. And it follows that t̂(x(t)) = t, by Theorem 4.

Isochrons are the level sets of t̂ by Theorem 3. ∂t̂(x(t))/∂x(t), the phase gradient at

some x(t), must be orthogonal to the linearization of ηt at x(t). Observe that x(t) ∈ ηt

because of the way x(t) is defined.

Now, we know that ∂t̂(xγ(t))/∂xγ(t) must be orthogonal to the linearization of ηt at

xγ(t). By Theorem 1, we know that v1(t) is orthogonal to the linearization of ηt at xγ(t).

Therefore, we have ∂t̂(xγ(t))/∂xγ(t) = c v1(t), where the constant c 6= 0.

Evaluating (3.24) at xγ(t), and plugging in ∂t̂(xγ(t))/∂xγ(t) = c v1(t) and ẋγ(t) =

f(xγ(t)) = u1(t),

c vT

1(t) u1(t) = 1.

But vT

1(t) u1(t) = 1, by biorthogonality. Therefore, c = 1. We obtain (3.26). It can be de-

clared that v1(t) is used to normalize the PDE in (3.24). Also note that ∂φ(xγ(t))/∂xγ(t) =

ω0 v1(t). �

There is one other aspect of the PDE in (3.25) to note. We may visualize dx/dt as

a velocity vector. The gradient expression, ∂t̂/∂x, is by definition the vector defining the
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linearization of an isochron, at point x, in W. The linearization of an isochron is a hy-

perplane, and the gradient ∂t̂/∂x at x is orthogonal to any vector that resides in this

hyperplane. (3.25) tells us that the velocity vector, associated with the generic ODE in

(2.1), never completely resides in these linearizations of isochrons. This means that dx/dt

is always transverse to isochrons, over the whole domain of attraction, W. Otherwise, the

scalar product of the phase gradient and the velocity vector would have to be exactly zero.

As an example, recalling the proof of Theorem 1, linearized form of the isochron that passes

through xγ(t0) is spanned by {u2(t0), . . . , uM (t0)}. u1(t0) is the velocity vector at xγ(t0).

u1(t0) cannot be expressed as a linear combination of the vectors spanning the linearized

form of the isochron, because ui(t0) for 1 ≤ i ≤ M is a linearly independent set.

Isochron structures on and around γ are best perceived through simple examples. In

the next section, we explore into how expressions for isochrons can be calculated only for

very simple oscillatory dynamic systems. We demonstrate particularly two methods on an

example, expressed in polar coordinates.

3.4 Isochrons in DAE Systems

There are some subtleties to be considered when analyzing the structure of isochrons for

systems in DAE form. The first task is to modify Definition 11 for isochrons in ODE form.

This modification proves to be trivial, since only Φ is replaced by Υ. So we do not include

a definition statement for the DAE case.

Definition 18 (Isochrons for DAE Systems) Let xη(t) be a solution of the generic ODE

in (2.4). xγ(t) is the periodic steady-state solution of (2.4). The isochron with time tag t0,

which we call ηt0 , is defined to be the set

ηt0 =
{

xη(t0)| lim
τ→∞

[Υ(τ, t0, x
η(t0)) − xγ(τ)] = 0

}

, (3.27)

where xγ(τ) = Υ(τ, t0, x
γ(t0)). Υ is the state transition function, associated with (2.4).

The next theorem is the modified version of Theorem 1, which was proved for the ODE

case in Section 3.2.

Theorem 6 If ηt0 in Definition 18 is linearized into a subspace, then CT(t)v1(t0) is orthog-

onal to that subspace.
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Proof: We stated in Section 2.2.3 that generic solutions x(t) of (2.4) reside in a certain

manifold of <M , because of the properties of q, the nonlinear vector function in (2.4) [3].

Then, it can be shown that a general solution of the linearized form of (2.4),

d

dt
(C(t)y(t)) = G(t)y(t),

at t = t0 can be expressed as a linear combination of only m < M vectors in <M [3].

In view of the note stated above, it is clear that ηt0 linearized around xγ(t0) is going to

be a subspace spanned by (m − 1) vectors. Our purpose here is to find out these (m − 1)

vectors and naturally the vector that is orthogonal to these vectors.

The Taylor expansion of xη(τ) = Υ(τ, t0, x
η(t0)), in (3.27), around xγ(t0) is given by

xη(τ) ≈ Υ(τ, t0, x
γ(t0)) +

∂Υ(τ, t0, x
γ(t0))

∂xγ(t0)
z, (3.28)

where z = xη(t0)−xγ(t0). Then, the expression in (3.27), making use of the approximation

in (3.28), can be written as

lim
τ→∞

[{xη(τ)} − {xγ(τ)}] = 0

lim
τ→∞

[{

xγ(τ) +
∂Υ(τ, t0, x

γ(t0))

∂xγ(t0)
z

}

− {xγ(τ)}

]

= 0

∂Υ(τ, t0, x
γ(t0))

∂xγ(t0)
z = 0 (3.29)

Note that the last equation follows from the fact that for DAE systems

∂Υ(τ, t0, x
γ(t0))

∂xγ(t0)
= K(τ, t0)

=
m∑

i=1

exp(µi(τ − t0))ui(τ)vT

i (t0)C(t0),

where m is the number of Floquet eigenmodes, with finite Floquet multipliers. We assume

that µi > −∞ for 1 ≤ i ≤ m. On the other hand, µi = −∞ for (m + 1) ≤ i ≤ M , since

C(t)ui(t) = 0 for again (m + 1) ≤ i ≤ M , i.e. the null space of C(t) is spanned by ui(t) for

(m + 1) ≤ i ≤ M .

For τ � t0, we have

∂Υ(τ, t0, x
γ(t0))

∂xγ(t0)
=

m∑

i=1

exp(µi(τ − t0))ui(τ)vT

i (t0)C(t0)

≈ u1(τ)vT

1(t0)C(t0)
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for again, we assume that µ1 = 0, and −∞ < µi < 0 for 2 ≤ i ≤ m. This is how we get

(3.29) [3].

Now we proceed to analyze (3.29). Recall that u1(t) is a periodic solution of the forward

LPTV equation derived from (2.4), i.e. d/dt(C(t)y) = G(t)y. Not all entries of u1(t) are

allowed to be zero at the same time, for then the oscillation on γ would stop at a single

point on this limit cycle. This is not one of our assumptions. We assume that γ consists of

infinitely many points, no just one.

Then, the condition to make the left-hand side zero of (3.29) is given by the scalar

equation

vT

1(t0)C(t0)z = 0. (3.30)

We have to decide now if this equation defines a hyperplane. There is no doubt that

v1(t) · [C(t)u2(t), . . . ,C(t)um(t)] ,

for t ≥ 0 [3]. Therefore, z can only be written as a linear combination of (m − 1) linearly

independent vectors, i.e.

z =

m∑

i=2

ai ui(t0).

This fact makes v1(t) orthogonal to a subspace of dimension (m−1). To declare v1(t0) as the

vector defining a hyperplane, we should have been able to write z as a linear combination

of (M − 1) linearly independent vectors. However, also note that ẋ(t), the time-derivative

of x(t), is allowed to be a linear combination of the set

{exp(µ1t)u1(t), . . . , exp(µmt)um(t)} ,

in the close neighborhood of γ. Therefore, ẋ(t) does not have any components along any

elements of the set

{exp(µm+1t)um+1(t), . . . , exp(µM t)uM (t)} ,

in the close neighborhood of γ, because µi = −∞ for (m + 1) ≤ i ≤ M . That means

in the region very close to γ, in the domain of attraction, the linearization of ηt0 cannot

have components along {um+1(t0), . . . , uM (t0)}, i.e. the linearized form of ηt0 , in the close

neighborhood of γ, is a subspace only, not a hyperplane, and v1(t0) defines this subspace,

hence the claim. �
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Along with the theorem and its proof above, we need to modify the theorem about

periodicity and its proof for the DAE case. However, the modification is only replacing Φ

with Υ. Therefore, we state the following theorem only and not its proof.

Theorem 7 Let x0(t) be a solution of the generic ODE in (2.1), and let x0(0) reside in

the domain of attraction, W, so that x0(t) approaches γ as time progresses. Let x0(t0) be

on the same isochron, ηt0 , as xγ(t0). Then, x0(t0 + nT ), for nonnegative integers n, are

also on ηt0 . T is the period on γ.

With the help of Theorem 7, we are again induced to define periodicity in the domain of

attraction, W, associated with γ, of the system in (2.4). Therefore, we define the generalized

period as in Definition 12, for the DAE case this time. Naturally, the definitions of the

generalized frequency, angular phase, and phase in units of time follow as in Definitions 13,

14, and 15, respectively.

The following discussion differs from its counterpart of the ODE case. Through our

definitions, we define the phase in units of time, in the domain of attraction of γ, as in

dt̂

dt
= 1, with t̂(0) = 0.

Notice that in the generic DAE of (2.4), the states vector, x, is an implicit variable. (2.4)

defines the time derivative of q, the nonlinear functions vector. Let us intuitively choose to

figure out then the sensitivity of t̂, the phase, with respect to q, i.e. ∂t̂/∂q, and see where

this choice leads.

The phase equation for an unperturbed oscillator, described as a DAE, can be written

as
∂t̂

∂q
·
dq

dt
= 1.

Notice that
∂t̂

∂q
· f(x) = 1

is true over the whole domain of attraction, associated with γ. Let us evaluate these

equivalent equations on γ only. We have

∂t̂

∂q
·

[
∂q

∂xγ

dxγ

dt

]

= 1

∂t̂

∂q
· [C(t)u1(t)] = 1
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defining a normalization condition on γ. v1(t) could immediately be substituted for ∂t̂/∂q,

on γ, since v1(t) · (C(t)u1(t)) = 1 [3]. However, there may be other vectors satisfying this

condition. The question is how we know exactly that on γ, v1(t) = ∂t̂/∂q.

t̂ is a spatial variable, i.e. t̂ = t̂(q(x(t))). Notice that we have expressed t̂ as such,

because x is an implicit variable in the generic DAE of (2.4). Also we have by definition

that t̂(q(xγ(t))) = t on the limit cycle. Recall that the isochrons are actually the level sets

of t̂ over W, the domain of attraction. If we have some points x that satisfy t̂(q(x)) = t0,

that means these points x are in phase with xγ(t0), and all these points x together with

xγ(t0) constitute the isochron expressed as ηt0 .

Since we have t̂ = t̂(q(x(t))), the gradient of t̂ is actually given as ∂t̂/∂q over W. On γ,

we know by Theorem 6 that ∂t̂/∂x is in the same direction as CT(t)v1(t). However, we also

know that (∂t̂/∂q) · [C(t)u1(t)] = 1, on γ. by the phase equation that we derived. We have

the normalization condition that v1(t) · [C(t)u1(t)] = 1. Therefore, we must maintain that

∂t̂/∂q = v1(t) on γ.

Let us also state that

∂t̂

∂q
· f(x) = 1, with t̂(q(xγ(t))) = t ∀t ∈ [0, T ) (3.31)

is the PDE (Partial Differential Equation) to solve for t̂. Notice that this equation has

almost the same form as the one in the ODE case, with ∂t̂/∂x replaced by ∂t̂/∂q.

We have outlined and provided explanations above on how to modify our definitions and

theorems in Sections 3.1 to 3.3 for the DAE case. The most crucial parts of the modification

are that ∂t̂/∂q = v1(t), and that we must not forget that ∂t̂/∂q, in the close neighborhood

of γ, does not define a hyperplane, with dimension (M − 1), but a subspace with dimension

(m−1), m being the number of Floquet modes with finite Floquet exponents that correspond

to the LPTV equation derived from the generic DAE in (2.4).

3.5 Analytical Methods of Computing Isochrons For Simple Systems

Definition 11 for isochrons suggests that we make use of the state transition function, Φ, to

compute analytical expressions for isochrons over W, associated with γ. However, although

this is a plausible method, it requires that oscillator equations are analytically solvable. For

purposes of demonstration, we choose to analyze an extremely simple example, expressed
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in polar coordinates on the plane.

The coupled equations of our simple example read as follows.

ṙ = 1 − r (3.32)

θ̇ = r (3.33)

The solution for the system in (3.32) and (3.33) are as follows.

r(t) = 1 − (1 − r0)e
−t (3.34)

θ(t) = t − (1 − r0)(1 − e−t) + θ0 (3.35)

Above, r0 = r(t = 0) and θ0 = θ(t = 0). It is easy to see that as time progresses, r(t) → 1,

and θ(t) → (t + θ0 + r0 − 1). Also if r0 = 1, r(t) = 1, and θ(t) = t + θ0, ∀t ≥ 0.

It must be noted here that θ is one of the states for this particular example. In general,

the system phase, which happens to be θ in this example, does not have to be a state

variable. Therefore, this example is just a contrived one for illustration purposes. Also, we

will be showing shortly that θ accounts for the phase on γ only. The expression for phase

around γ, actually in the domain of attraction of differs from θ.

r = 1 defines the only limit cycle, γ, of this system. W, the domain of attraction

associated with r = 1, is the whole plane.

Any periodic solution, whose points constitute γ, happens to have the asymptotically

orbital stability property, for any solution, with an initial condition not on γ, approaches

r = 1, as time progresses.

Also, any periodic solution on γ has asymptotic phase. Let r(t) = 1 and θ(t) = t be a

periodic solution on γ. As stated before, a solution, whose initial condition at t = 0 is not on

γ, will take the form r(t) → 1 and θ(t) → (t+θ0 +r0−1). Therefore, the difference between

these expressions and the periodic solution, as time progresses, approaches a constant, for

the phase, θ, on γ. This constant is θ0 + r0 − 1. This fact ensures asymptotic phase.

The observation about the asymptotic phase associated with r = 1, the limit cycle,

actually defines the steps to be followed in order to compute the expression for the isochrons,

associated with γ, which is r = 1 in this system, through Definition 11. Let us formulate

the problem of finding an expression for isochrons as follows. The state transition function
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of the system in (3.32) and (3.33) is naturally

Φ(t, 0, x(0)) =




1 − (1 − r0)e

−t

t − (1 − r0)(1 − e−t) + θ0



 , (3.36)

where we have x(0) = (r0 θ0)
T, the initial condition that is not necessarily on γ, r = 1. An

initial condition on γ would have the form xγ(0) = (1 c). We have to spell out

Φ(t, 0, x(0)) − Φ(t, 0, xγ(0)) =




0

0



 ,

and evaluate both sides of this equality as t → ∞. This is what Definition 11 dictates us to

do to figure out an expression for the isochrons of this system.

The expression that we find is c = θ0 + r0 − 1. The fact that θ is a state in this example

is essential in that we may now call θ = c the level sets of θ on γ. Fortunately, the angular

phase of r = 1 is equal to θ, for this example in particular. Therefore, we readily have

access to values of the phase on γ. Suppose that c ∈ [0, 2π), so that (1, c)T is allowed to be

any point on r = 1, with no point excluded. Then, through c = θ0 + r0 − 1 we deduce that

there are are points in W that evaluate to the same value of the level set given by θ = c, for

a particular c. These points are declared to reside on the same isochron. This fact makes

ηc =






x(0) =




r0

θ0





∣
∣
∣
∣
∣
∣

θ0 + r0 − 1 = c






(3.37)

a single isochron out of the many in W. Calling φ the phase in W, we have

φ = θ + r − 1 (3.38)

as the expression for φ. Notice that φ = θ on r = 1. We stated before that the phase in

W differs from θ for this example. In fact, φ in (3.38) generally depends on r as well in W.

Brown et al. in [2] draw attention to this phenomenon.

Notice that we have called the phase of our system φ, but not t̂. We reach t̂ from φ

through a simple normalization. The angular frequency of this system in W is given by

ω0 = 2π/T = 1, for T = 2π. Using the relation that φ = ω0t̂, we find out φ yields the same

value as t̂ numerically, for this solution.

Now let us compute the gradient expression of (3.38) as in

∇φ =





∂t̂
∂r

∂t̂
∂θ



 =




1

1



 .
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The scalar product of this gradient and the velocity vector yields

(∇φ)T




1 − r

r



 = w0 = 1,

as expected. We are justified once more that φ is the same as t̂ numerically for this example.

Again, to figure out the structure of isochrons in W, we have to let φ = θ + r − 1 take

constant values in the interval [0, T ) = [0, 2π). Each such separate equation will obviously

yield the equation for a single isochron. φ0 = θ + r − 1 for example is the level set, i.e.

isochron, of φ, whose elements are in phase with (1 φ0)
T.

Noting the method outlined above as the first procedure in figuring out expressions for

isochrons in simple two-dimensional systems, we proceed to explain the second method, for

which we refer to Winfree [19]. This second method is superior to the first one in that it

does not require an analytical state transition function to exist. Winfree exploits the polar

symmetry in systems like the one in (3.32) and (3.33).

For the second method, we repeat that the angular frequency of our system is φ̇ = ω0 = 1.

Again, φ is the phase of our system in radians. Winfree in [19] guesses that φ must have

polar symmetry, so that it is of the form given in φ = θ − h(r), where h is a function of r.

Notice that this formulation for φ is only valid for systems expressed in polar coordinates

and whose limit cycles are circles with the origin as their centers. We have

dφ

dt
= 1 =

dθ

dt
−

dh

dr

dr

dt
,

and
dh

dr
=

θ̇ − 1

ṙ
=

r − 1

1 − r
= −1.

Notice that h(r) = −r + c, where c is some integration constant. Then, φ = θ − h(r) =

θ+r− c. Setting φ = θ, with r = 1, since the familiar system phase on γ is θ, we have again

the expression for the system phase in W as φ = θ + r − 1. The isochrons of the system are

the level sets of the phase.

Before moving on, let us note an interesting observation, again pointed out in [19]. If

we modify the system in our example as

ṙ = 1 − r (3.39)

θ̇ = 1 (3.40)
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the phase of this modified system turns out out be φ = θ, i.e. the phase is a function of

only θ all over W. Winfree’s method directly conveys this fact. With again φ = θ − h(r),

accounting for polar symmetry, we have

dh

dr
=

θ̇ − 1

ṙ
= 0.

Then, h(r) = 0, just a constant that turns out to be zero, to have φ = θ. This is an

exceptional case where we have radial isochrons.

Let us also analyze isochron behaviour on γ, for the modified system in (3.39) and

(3.40). Recall that u1(t) is a periodic solution of the linear equation to be derived from

these equations, and v1(t) is a periodic solution of the adjoint linear equation. We have

always employed the normalization condition in vT

1(t)u1(t) = 1. For this modified system,

we have to be able to show the validity of this normalization condition, since we have

numerically t̂ as the same as φ, for again T = 2π. Numerically speaking,

v1(t) = ∇t̂ =




0

1



 ,

at every point on γ. We also have

u1(t) =
d

dt




r

θ



 =




0

1



 ,

on γ. The normalization condition is naturally satisfied, but we observe a more conspicuous

bit of information that v1(t) = u1(t) at every point on γ. Systems like these are called

self-adjoint. They are significant in that once we have figured out u1(t), we have figured

out v1(t) as well. u1(t) is just the derivative of the steady-state periodic solution on γ,

xγ(t). We observe through this example that in self-adjoint systems, the velocity vector on

γ, u1(t0), is orthogonal to the isochron ηt0 , at xγ(t0), for all t0 ∈ [0, T ).

We must again note that these analytical methods can be used only in very simple two-

dimensional systems. In this section, we frequently pointed out that we are figuring out

expressions for isochrons, over the whole domain of attraction, W, associated with γ, the

limit cycle. This is because we most of the time assume that there is only a single limit cycle

of interest. However, when there are more limit cycles associated with the simple system we

are working on, these methods, if they can, are capable of conveying the isochron portrait

in the whole domain, in which the states vector, x, is defined.
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3.6 Comments on Numerical Methods

We outline in here a very simple numerical method, to print the isochron portrait, associated

with an oscillator, with a two-dimensional state. However, we have to note one particular

aspect of the method we are about to explain. In view of our last comment at the end of the

previous section, the following numerical methods can compute the structure of isochrons

around a single limit cycle of the oscillator at hand, as opposed to the analytical methods of

the previous section, which were able to compute isochron portraits over the whole domain,

in which the states of the oscillator are defined. Although this aspect is a limitation, this

numerical method are always more plausible, since neither an analytical state transition

function nor polar symmetry on the plane is required.

Solving the PDE in (3.25) for t̂ and then printing the level sets of t̂ in W naturally yields

the isochrons in W. However, this is not a plausible method. The method to be outlined

instead, provided by Izhikevich as an exercise in [9], overcomes most of the stated difficulties,

associated with the first numerical method. We still prefer to work on oscillators with two-

dimensional state vectors. In [9], for the purpose of displaying isochron layout around γ,

the PDE we have derived in (3.25) is not needed. Izhikevich makes use of only the generic

ODE in (2.1).

For the second method, again the steady-state periodic solution, xγ(t), is required. For

demonstration purposes, we pick two points that are very close to a single point on γ. Let

us pick two solutions of (2.1) and call these x1(t) and x2(t). Let x1(0) and x2(0) be the first

and the second point respectively, which we have chosen to be very close to a point on γ. A

time reversal operation is carried out to numerically integrate backward, starting with initial

condition x1(0), and then the same integration task is accomplished with initial condition

x2(0). The essence is that x1(0) and x2(0) are assumed to be on the same isochron, for they

are chosen to be so close to each other and to a point on γ that we will call, for simplicity,

xγ(0). So x1(0), x2(0), and xγ(0) are on the isochron called η0.

It happens that at any time −t0, which is a negative time value for we solve (2.1)

backwards in time, x1(−t0) and x2(−t0) still are instantaneously on the same isochron, but

not the isochron they were at t = 0. The isochron these two solutions are on, at t = −t0, is

η−t0 , on which also xγ(−t0) resides. Let us again note that xγ(−t0) = xγ(−t0+nT ) and η−t0

is the same set as η−t0+nT , for integer n. Therefore, on the plane, the line segment drawn
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between x1(−t0) and x2(−t0) can be assumed to consist of points that are all enclosed by

η−t0 . This line segment approximates η−t0 between x1(−t0) and x2(−t0). The essence of

Izhikevich’s approximate method revolves around this little piece of information. So this

method is able to disclose the structure of isochrons very near γ [9].

To accomplish time reversal, the velocity vector, associated with (2.1) must be reversed,

to write ẋ = −f(x), and then forward integration must be performed on this new system [9].

To see why x1(−t0) and x2(−t0) must be on the same isochron, we refer back to Theorem

2.

As can be clearly admired, Izhikevich’s method is intuitive and applicable to simple

oscillatory systems. In two-dimensional systems, this method is the one to use to plot

isochron portraits, if an acceptable level of accuracy is required.

3.7 Summary

In this chapter, we have made use of Winfree’s intuition [22, 19] and relied on Gucken-

heimer’s justified statements [7] to define isochrons and review some of their basic proper-

ties. It is perceived that the intuition leading to the discovery of isochrons is based on the

notion of asymptotic phase.

The isochron definition through the state transition function of the generic ODE in (2.1),

declared in Section 3.1, is crucial, for we could prove that the isochron gradient at xγ(t0),

a point on γ, is in the same direction as v1(t0), and that a solution x0(t), with its initial

condition x0(0) ∈ W, hits the same isochron after subsequent intervals of length T . These

proofs were given in Section 3.2. Then, in Section 3.3, we utilized these results to define

t̂, the phase in units of time, associated with xγ(t) in particular. We also established that

∂t̂/∂xγ = v1(t) on γ. In Section 3.5, we focused primarily on Winfree’s method [19] of

figuring out expressions for isochrons in simple two dimensional systems. Then, in Section

3.6, we explained Izhikevich’s method of numerically computing the structure of isochrons

around γ, for again simple two dimensional systems. We needed to modify some definitions

and proofs of Sections 3.1 to 3.3 to accommodate DAEs as well, and what we did in Section

3.4 was to primarily show that ∂t̂/∂q = v1(t) on γ. We established this and that v1(t)

defines a subspace rather than a hyperplane generally, in DAEs, i.e. the linearized form of

an isochron, in the close neighborhood of γ, is not a hyperplane but a subspace [3].
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We have to note that all the derivations and explanations provided in this chapter cover

unperturbed oscillators. In the next chapter we explore how the phase of an oscillator is

affected when perturbations are afflicted on these systems. It happens that the study of

isochrons and these derivations prove to be most helpful while analyzing perturbed oscilla-

tors.
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Chapter 4

OSCILLATOR PHASE ANALYSIS WITH PERTURBATIONS

In this chapter, we develop the theory that is needed to carry out oscillator phase analysis

in the presence of perturbations. Perturbations cause a phase drift together with orbital

deviation. Our aim is to derive a phase equation for the generic ODE in (2.1), along with the

DAE in (2.4). The concern is not only perturbations afflicted on states, but also parameters.

In developing the theory needed, we refer to [1], [2], [5], and [3].

4.1 Phase Equation for the Generic ODE System

The perturbed ODE system may be written as

dx

dt
= f(x) + g(x, t), with x(0) = xγ(0). (4.1)

where g(x, t) is the perturbations vector. Notice that g(x, t) depends on both the states

vector x and time t. When g = 0, this equation is the same as the generic ODE in (2.1).

However, in here we especially consider the case when g 6= 0. Also note that since isochrons

are the level sets of t̂, by Theorem 3, x(0), xγ(0) ∈ η0. Without loss of generality, we can

impose the initial condition x(0) = xγ(0) on the perturbed ODE in (4.1). We will first be

noting a few substantial observations.

Let x0(t) be a solution of the unperturbed equation in (2.1). Then, we know that

t̂(x0(t)) = t, ∀t ≥ 0, provided that x0(0) ∈ η0. η0, by our convention, is such that it passes

through xγ(0), a point on γ. Note that, again by our convention, t̂(xγ(0)) = 0.

In turn, let x(t) be a solution of the perturbed equation in (4.1). We have already

required that the initial condition, x(0), be on the isochron η0. In fact, x(0) = xγ(0). Then,

the initial condition for t̂ is zero, i.e. t̂(x(0)) = 0.

We have just noted that t̂(x0(0)) = 0 and t̂(x(0)) = 0. Moreover, that t̂(x0(t)) = t is

true. However, we cannot right away declare that t̂(x(t)) = t. Most probably, t̂(x(t)) 6= t,

because in (4.1) there is g present. g may affect t̂(x(t)) such that t̂(x(t)) may deviate from

the delicately computed t.
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The following sections focus on the derivation and proof of the accuracy, of a differential

equation describing t̂(x(t)), phase of the solution x(t) of the generic perturbed ODE in (4.1).

We have already set the initial condition, t̂(x(0)) = 0, for this new differential equation,

which we will from this point on call the Phase Equation.

4.1.1 Derivation of the Phase Equation

As the first step in deriving the phase equation, we proceed as follows. Noting that t̂ is a

function of the states vector, x, we write

dt̂(x)

dt
=

[
∂t̂(x)

∂x

]T

dx

dt
.

In view of (4.1), we continue to write

dt̂(x)

dt
=

[
∂t̂(x)

∂x

]T

[f(x) + g(x, t)] . (4.2)

Note that the equation above is derived through substitutions only, and therefore it is exact.

There is a further simplification which can be carried out, sustaining the exactness of

(4.2). The expression for t̂ is not explicitly known, but the gradient of t̂ is known to satisfy
[
∂t̂(x)

∂x

]T

f(x) = 1. (4.3)

Recalling the discussion in Section 3.3, t̂ is introduced in Definition 16 as t̂ = t̂(x0(t∗)),

provided that x0(t) is a solution of the unperturbed ODE in (2.1), such that x0(0) ∈ W.

Then, x0(t∗) ∈ W, ∀t∗ > 0. In Section 3.3, the only requirement to satisfy
[
∂t̂(x0(t∗))

∂x0(t∗)

]T

dx0(t∗)

dt
= 1

is that x0(t∗) ∈ W. We assume that by adding the perturbations vector g to (2.1) and

obtaining (4.1), the isochron structure in W, and W and γ themselves are not altered,

which brings about the condition on g that the magnitude of g must be small. Also we

know that f(x) is still a function of x. Therefore, (4.3) is valid for the solution x(t) of (4.1)

as well.

This observation leads to a simplified and still exact form,

dt̂(x)

dt
= 1 +

[
∂t̂(x)

∂x

]T

g(x, t), (4.4)

of (4.2). The next step will be to derive an approximate form of (4.4) to facilitate numerical

computations.
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4.1.2 Solution of Perturbed Oscillating Systems

An approximate form of (4.4) can be derived if we choose to expand

[
∂t̂(x(t))

∂x(t)

]T

g(x(t), t) (4.5)

around some point xγ(t∗). We know by Corollary 3 of Theorem 3, both that xγ(t̂(x(t)))

and x(t) are on the same isochron and that the phases of these two points are the same, i.e.

t̂(xγ(t̂(x(t)))) = t̂(x(t)). In fact, that x(t) is the solution of the perturbed ODE in (4.1) does

not matter, because t̂ is a function of the states vector in W. For this reason, we choose

xγ(t∗) = xγ(t̂(x(t))) as the point on γ, around which to expand (4.5).

Also, by Theorem 5, ∂t̂(xγ(t̂(x(t))))/∂xγ(t̂(x(t))) = v1(t̂(x(t))). We then have

dt̂(x(t))

dt
= 1 + vT

1(t̂(x(t))) g(xγ(t̂(x(t))), t), with t̂(x(0)) = 0, (4.6)

as the approximate form of the phase equation in (4.4). Naturally, at t = 0, t̂(x(0)) = 0,

because of the initial condition imposed on (4.1). Our aim was to derive the phase equation

in (4.6). The rest of this section focuses on proving the accuracy and pointing out the

significance of (4.6).

Figure 4.1: Comparison of the phases of perturbed and unperturbed equations.
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Notice that since xγ(t̂) and x(t) are on the same isochron, ηt̂, where t̂ = t̂(x(t)), if xγ(t̂)

and x(t) are sufficiently close together, we have

x(t) = xγ(t̂) +

M∑

i=2

ci ui(t̂). (4.7)

The decomposition in (4.7) holds, for
{
u2(t̂), . . . , uM (t̂)

}
span the linearized form of ηt̂ at

xγ(t̂). We assume that xγ(t̂) and x(t) are so close together that this linearization is accurate.

For simplicity, let us call

y(t̂) =

M∑

i=2

ci ui(t̂). (4.8)

Then we have x(t) = xγ(t̂) + y(t̂). Figure 4.1 depicts the perturbed solution x(t) and the

unperturbed solution xγ(t), and shows that the two solutions at t are very close to each

other but different.

Lemma 1 The following equality is valid.

d

dt
xγ(t̂) = f(xγ(t̂)) +

[
vT

1(t̂) g(xγ(t̂), t)
]
u1(t̂) (4.9)

t̂ = t̂(x(t)). x(t) is the solution of (4.1), such that x(0) = xγ(0).

Proof: Observe the obvious equalities in

dxγ(t̂)

dt̂
= u1(t̂) = f(xγ(t̂)). (4.10)

Making use of (4.10) and the approximate phase equation in (4.6), we obtain

dxγ(t̂)

dt̂

{
dt̂

dt

}

= u1(t̂)
{
1 + vT

1(t̂) g(xγ(t̂), t)
}

d

dt
xγ(t̂) = f(x(t̂)) +

[
vT

1(t̂) g(xγ(t̂), t)
]
u1(t̂), (4.11)

which is the claim. �

Theorem 8 The following equation is valid.

d

dt
y(t̂) =

∂f(xγ(t̂))

∂xγ(t̂)
y(t̂) +

M∑

i=2

[
vT

i (t̂)g(xγ(t̂), t)
]
ui(t̂) (4.12)

t̂ = t̂(x(t)). x(t) is the solution of (4.1), such that x(0) = xγ(0).
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Proof: In view of (4.7) and (4.8), (4.1) can be written as

d

dt

[
xγ(t̂) + y(t̂)

]
= f(xγ(t̂) + y(t̂)) + g(xγ(t̂) + y(t̂), t)

d

dt
xγ(t̂) +

d

dt
y(t̂) ≈ f(xγ(t̂)) +

∂f(xγ(t̂))

∂xγ(t̂)
y(t̂) + g(xγ(t̂), t), (4.13)

Taylor-expanding both sides. Notice that we have employed the zeroth order approximation

for g, since we assume that the magnitude of g is bounded.

Notice that
{
u1(t̂), . . . , uM (t̂)

}
span <M . Therefore,

g(xγ(t̂), t) =

M∑

i=1

[
vT

i (t̂)g(xγ(t̂), t)
]
ui(t̂). (4.14)

We have used the biorthogonality property to write the decomposition in (4.14).

Subtracting (4.9) from (4.13),

d

dt
y(t̂) =

∂f(xγ(t̂))

∂xγ(t̂)
y(t̂) +

M∑

i=2

[
vT

i (t̂)g(xγ(t̂), t)
]
ui(t̂). (4.15)

which is exactly the same as (4.12). While obtaining (4.15), we have utilized the decompo-

sition in (4.14).

It remains to show that y(t̂) in (4.8) actually satisfies (4.15). For this purpose, an

approximation should be employed. Basically,

d

dt
y(t̂) =

dy(t̂)

dt̂

dt̂

dt

=
dy(t̂)

dt̂

[
1 + vT

1(t̂)g(xγ(t̂), t)
]

≈
dy(t̂)

dt̂
. (4.16)

Now we obtain, from (4.15) and the approximation in (4.16),

d

dt̂
y(t̂) =

∂f(xγ(t̂))

∂xγ(t̂)
y(t̂) +

M∑

i=2

[
vT

i (t̂)g(xγ(t̂), t)
]
ui(t̂). (4.17)

In order to show that y(t̂) in (4.8) solves (4.17), we must proceed as follows. Recall that

exp(µi t)ui(t) was shown to satisfy

d

dt
[exp(µi t)ui(t)] =

∂f(xγ(t))

∂xγ(t)
[exp(µi t)ui(t)] , (4.18)

in Section 2.2.3. Manipulating (4.18), we obtain

d

dt
ui(t) =

∂f(xγ(t))

∂xγ(t)
− µi ui(t). (4.19)
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Then, through (4.8) and (4.19), we get

d

dt̂
y(t̂) =

∂f(xγ(t̂))

∂xγ(t̂)
y(t̂) −

M∑

i=2

ci µi ui(t̂). (4.20)

Substituting (4.20) in (4.17) and cancelling terms,

−
M∑

i=2

ci µi ui(t̂) =
M∑

i=2

[
vT

i (t̂)g(xγ(t̂), t)
]
ui(t̂). (4.21)

Defining

U2,M =
(

u2(t̂) · · · uM (t̂)
)
, (4.22)

an (M × (M − 1))-sized matrix,

c = (c2 · · · cM )T , (4.23)

an ((M − 1) × 1)-sized vector, and

b =

M∑

i=2

[
vT

i (t̂)g(xγ(t̂), t)
]
ui(t̂), (4.24)

another ((M − 1) × 1)-sized vector, we may express (4.21) in compact form as

U2,Mc = b. (4.25)

We will now draw attention to several facts about the system in (4.25). (4.25) is an

over-determined full-rank system. Therefore, if there is a solution c, then it must be unique.

There is no doubt that b in (4.24) is in the column space of U2,M in (4.22). Then, (4.25)

has a solution c, and c is unique. Indeed,

ci = −
vT

i (t̂)g(xγ(t̂), t)

µi
. (4.26)

This proves that y(t̂) in (4.8) satisfies (4.17) exactly, and that y(t̂) satisfies (4.15) after

approximations. �

The form of the phase equation remains the same as in (4.6) for the DAE case. Noting

that ∂t̂(q(xγ(t̂)))/∂q(xγ(t̂)) = v1(t̂) for a DAE, (4.6) can again be easily derived. This

derivation is presented in detail in [3].
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4.2 Incorporation of Parameter Perturbations into Oscillator Phase Analysis

Up to this point, we had the need to orient our derivations to analyze our generic oscillators,

in the presence of perturbations appended to the system states that reside on the limit cycle,

γ. However, in the generic system of equations, describing an oscillator in ODE form, as in

(2.1) for example, there exist usually a set of parameters, which we are obliged to consider,

to fully describe the system. In some applications, one is required to analyze oscillator

phase when time-dependent perturbations are appended to these parameters.

The generic set of equations are given as ẋ = f(x), for an ODE. The assumption is that

we have M states, i.e. the states vector, x, has M entries. In addition to x, f is usually

a function of p, a parameters vector that we assume has L entries. Therefore, we have

f = f(x, p).

Note that the actual number of parameters incorporated in f might be more than L,

so p usually is not required to consist of all the possible parameters we could include in it.

The essence is to comprise p of those parameters that we could wish to perturb in a time-

dependent manner. The other parameters, which we might deem ineligible for perturbations,

could just be regarded as constants.

Also note that, although the values of x on γ vary in time, the values of p on γ are

strictly constants. The perturbations appended on p will, on the other hand, naturally be

time-dependent.

Little work has been done in the relevant literature, to analyze oscillator phase drift in

the presence of parameter perturbations. Most of the contributions seem to accumulate

in a single paper. In [6], some basic theory is borrowed from [10], in order to bear the

ground for oscillator phase analysis when parameter perturbations exist. However, neither

in [10], nor in [6], association of the developed theory with the familiar Floquet theory is

established. We have, in this work, after defining the phase of an oscillator in ODE form,

namely t̂, shown that ∂t̂/∂xγ(t) = v1(t). Also we have stated that the phase referred to in

[10] is again our t̂. We have shown that the numerical scheme, given in [10], to compute the

gradient of t̂ with respect to the states of an oscillator on γ, again computes precisely v1(t).

The aim now is to utilize our knowledge of Floquet and sensitivity theories to bind a

link between the theory developed in [6] and v1(t). The first task will be to express the

parameters vector, p, in our system of equations, such that the entries of p also become the
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states of our generic ODE system, given in (2.1).

4.2.1 Augmenting the Generic ODE for Parameter Perturbations

We now have to derive a new representation for the generic ODE system in (2.1), which is

simply ẋ = f(x). We have already stated that f = f(x, p), where x has M entries and p

has L. We would like to convert this generic system, in which p will be explicitly available

as if its entries were also the states of the system.

Let us define a new vector w. In w, we concatenate the entries of x and p, as in

w = (x1 · · · xM p1 · · · pL)T . (4.27)

Then, we may declare that f = f(w). Noting that wj = xj for 1 ≤ j ≤ M , the generic

ODE in (2.1), is simply modified as

ẇj = fj(w) ∀j ∈ {1, . . . ,M} . (4.28)

Notice that, above, we have M equations, but the argument of every fj, which is w, has

(M + L) entries.

There is no doubt that (4.28) is an under-determined system. We have to append L

many equations to the system given in (4.28). Here is how we proceed. On the limit cycle,

the parameters vector, p, does not vary with time. Every entry of p has a nominal constant

value. Let us call these nominal values pnom
i for 1 ≤ i ≤ L. The L more equations we need

are

0 = pnom
i − wM+i ∀i ∈ {1, . . . , L} , (4.29)

noting that wM+i = pi for 1 ≤ i ≤ L.

In all, we have

ẇj = fj(w) ∀j ∈ {1, . . . ,M}

0 = pnom
i − wM+i ∀i ∈ {1, . . . , L}

(4.30)

from (4.28) and (4.29), as the modified and augmented system. The next step is to try and

write (4.30) in compact form. Let us define a vector q, as

q = ( w1 · · ·wM 0 . . . 0
︸ ︷︷ ︸

Lmany

)T. (4.31)

Defining also

i = ( f1(w) · · · fM (w) h1(w) · · · hL(w) )T , (4.32)
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where hi(w) = pnom
i − wM+i for 1 ≤ i ≤ L. Then, (4.30) is written in compact form as

dq(w)

dt
= i(w). (4.33)

Comparing this compact form with (2.4), we observe that (4.33) is a DAE.

In the forthcoming derivations, we will also need the explicit forms of the Jacobians of

q and i, with respect to w. Examining q in (4.31) and w in (4.27), we have

∂q

∂w
=




IM 0M×L

0L×M 0L×L



 , (4.34)

where IM is the identity matrix of size (M × M), and the others are zero matrices of the

subscripted sizes. Similarly, examining i in (4.32) and w in (4.27), we have

∂i

∂w
=





∂f
∂x

∂f
∂p

0L×M −IL



 . (4.35)

Above, ∂f/∂p is evaluated by substituting the values for x and the nominals for p, after

considering p as a variable and figuring out the expression for the partial differential.

Having figured out the compact DAE form in (4.33), the matter now is how to append

time-varying perturbations to the nominal parameter values. The solution is very simple.

Let us define a perturbations vector

s(t) = (s1(t) · · · sL(t))T , (4.36)

and a perturbation modulation matrix

B =




0M×L

IL



 . (4.37)

In view of (4.36) and (4.37), we incorporate the compact form in (4.33) with the parameter

perturbations functionality, as in

dq(w)

dt
= i(w) + Bs(t). (4.38)

The time-dependent perturbations vector, s(t) above, directly modifies the nominal value

of the perturbations vector, p.

In order to be able to monitor the effects of parameter perturbations on the phase

of our generic ODE system in (2.1), we first modified the M -sized original system into
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the (M + L)-sized system of (4.33). Then, we spelt out (4.38), in which p also became a

perturbation-prone part of the augmented state variable w, along with the old states vector,

x. We focus on only parameters in our analysis, so we needed to define s(t) and B, through

which only the nominal values in p have become vulnerable.

We have already associated v1(t) with the generic ODE in (2.1), and repeated this

reservation many times. The new augmented compact system in (4.33) also has a similar

vector function, which we will call vaug
1 (t). Although (4.33) is a DAE, it has been derived

from (2.1). Therefore, vaug
1 (t) is related to v1(t) through a very simple expression. We will

be deriving this relation, but we need to explain first the theory developed in [6]. vaug
1 (t)

will surface naturally through the methods crafted in [6].

4.2.2 Augmenting the Generic DAE for Parameter Perturbations

We now describe how to modify the generic DAE in (2.4) to be able to carry parameter

perturbation analysis. This procedure proves to be very similar to the scheme that we

described in Section 4.2.1.

We do not redefine the augmented vector w, already defined in (4.27). Let us simply

state that w = ( xT pT )T, where x is the (M × 1)-sized states vector, and p the (L× 1)-sized

parameters vector. Let us note again that pnom
i , for 1 ≤ i ≤ L, are the constant nominal

values for the parameters, defined on γ.

The nonlinear functions q and f in (2.4) actually share the entries in p. Recall that we

do not dump into p, all the available parameters to be used in expressing q and f . Some

parameters may be ineligible for perturbation, and we treat these parameters merely as

constants. These parameters are not among the entries of p. p consists of the parameters

that are eligible for parameter perturbation analysis. Some entries in p may belong to only

q, another set of entries may belong to only f , and then there may be a third set that

belongs to both q and f .

In the following derivations, we regard the nonlinear functions as f = f(x, p) and q =

q(x, p). We have already intoduced the augmented vector w, so we have indeed f(w) and

q(w).
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We now repeat what we did in the ODE case as follows.

q̇j(w) = fj(w) ∀j ∈ {1, . . . ,M}

0 = pnom
i − wM+i ∀i ∈ {1, . . . , L}

(4.39)

In the ODE case, the ODE that we have, in the form of (2.1) , is converted into a DAE, in

the form of (2.4). The DAE derived from an ODE is of the form q̇(w) = i(w). However, we

are now trying to derive another DAE from an original DAE, so let us have the new DAE

in the form given by Q̇(w) = I(w). Q and I are to be defined as

Q = ( q1 · · · qM 0 · · · 0
︸ ︷︷ ︸

Lmany

)T (4.40)

and

I = ( f1 · · · fM h1 · · ·hL )T (4.41)

respectively. Note that hi = pnom
i − pi = pnom

i − wM+i, for 1 ≤ i ≤ L.

In solving Q̇(w) = I(w), we need

∂Q

∂w
=





∂q
∂x

∂q
∂p

0 0



 (4.42)

and

∂I

∂w
=





∂f
∂x

∂f
∂p

0 −IL



 . (4.43)

Both matrices above are (M + L) × (M + L). IL is the (L × L)-sized identity matrix. The

zero matrices are of the appropriate sizes.

We may again write
dQ(w)

dt
= I(w) + Bs(t), (4.44)

in order to append actual perturbations to the parameters only. B, the perturbation modu-

lation matrix, is defined in (4.37), and s(t), the vector of appended perturbations, is defined

in (4.36).

We assume that v1(t) is a periodic solution of the adjoint LPTV equation, derived from

the generic DAE in (2.4). Let us now assume that vaug
1 (t) is a periodic solution of the

adjoint equation derived from the augmented DAE, Q̇(w) = I(w).
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Chapter 5

RELATIONSHIP WITH PREVIOUS WORK

Previous work on oscillator phase analysis has much in common with the theory de-

veloped in the last chapter. In this chapter, we review some methods to compute v1(t),

although in most references oscillator phase analysis has not been pointed out as related

to Floquet theory. We show through rigorous derivations that all the theory developed for

oscillator phase analysis in the presence of state and parameter perturbations indeed aim

to compute v1(t) first.

5.1 ISF (Impulse Sensitivity Function)

It happens that if we set the perturbation vector to be an impulse, shifted in time, t̂

computed through the phase equation turns out to be a single sample of v1(t). Therefore,

exciting the perturbed system by impulses, each of the coupled equations at all timepoints

along a period, waiting long enough so that the system again returns to steady-state, and

then measuring the phase difference with an unperturbed system that was initially in-phase

with the perturbed system, we can theoretically compute v1(t). This approach was first

introduced by Winfree in 1967 [19], [9]. Later in 1998, Hajimiri et al. [8], utilized the same

method for electronic oscillators, possibly unaware of Winfree’s innovation.

5.2 PPV (Perturbation Projection Vector)

In the electronic domain, particularly Kaertner in [21], foresaw u1(t) as the vector function,

on which perturbations appended to a system of the generic ODE form in (2.1) must be

projected, in order to compute the phase drift that plagues such oscillators. Thereon,

it is easier to guess that perturbations along the other functions, ui(t) for 2 ≤ i ≤ M ,

contribute to orbital deviation. However, provided that the states vector, x, never leaves

the close neighborhood of γ, the appended orbital deviation dies out in time, for oscillators

possessing the asymptotically orbital stability property. This latter property is maintained
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if, again, we assume that the first Floquet exponent is zero, i.e. µ1 = 0, and all the other

exponents are negative, i.e. µi < 0 for 2 ≤ i ≤ M [17].

Remembering Floquet theory, ui(t), for 1 ≤ i ≤ M , and vj(t), for 1 ≤ j ≤ M , are

biorthogonal sets at any t = t0. Therefore, supposing we have an arbitrary vector a which

may be written as

a =

M∑

i=1

aiui(t0),

we may compute coefficient a1, through a1 = v1(t0) · a. a1 is the coefficient of component

along u1(t0). This simple projection demonstrates why we need to compute v1(t), i.e. in

order to figure out the perturbation component along u1(t).

It was Kaertner’s intuitive approach in [21] to compute first v1(t), in order to figure out

the phase drift afflicting oscillators. Later, Demir et al. in [5] derived a phase equation,

bearing the ground of their work on Kaertner’s intuition and particularly the biorthogonality

property dictated by Floquet theory. Demir et al. in [5] assume u1(t) to be the only

persistent mode, again referring to the basic assumption that µ1 = 0 and all other Floquet

exponents are negative, which is what we have assumed right from the outset. Since they

adopt Kaertner’s exclusive intuition in [21] to project perturbations over u1(t), Demir et al.

rightfully call v1(t), the Perturbation Projection Vector (PPV) [5].

5.3 Phase Gradient Computation for ODEs

In Chapter 3, we stated several findings relating Floquet Theory to the concept of isochrons.

That we have established ∂t̂/∂x = v1(t) is theoretically valuable information, but practically

we still do not know how to compute v1(t). When explaining numerical methods, it will be

clear how we compute v1(t). However, we are now going to introduce a simpler numerical

method, based on an intuitive understanding of phase, that is aimed to compute the phase

gradient, i.e. v1(t), the vector function we need. When this method was introduced in an

earlier work, no relation to Floquet theory was established. We are going to prove that

this proposed numerical method computes exactly v1(t). This proof will consolidate the

comprehension of Floquet theory and will publicly declare its power.

Kramer et al. in [10] develop a numerical method to compute the partial derivative,

∂t̂/∂x, when x is on γ, the limit cycle of interest. Through the derivations given in [10],
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the notion of phase is shown to originate from a more familiar sensitivity expression, in

particular ∂xγ
j (τ)/∂xγ

i (t). This expression can be translated into simpler language as the

sensitivity of the jth entry of xγ(τ) with respect to the ith entry of xγ(t). The reservation

adhered to in [10] is that if a perturbation is appended to xγ
i (t), i.e. to the ith entry of xγ(t),

the effect of this perturbation on the jth entry can be observed only when the oscillator

returns to the limit cycle, γ. The oscillators we are concerned with are assumed to have the

asymptotically orbital stability property. Therefore, our oscillator is not expected to return

to γ before a long enough time has passed. It naturally follows that

lim
τ→∞

∂xγ
j (τ)

∂xγ
i (t)

(5.1)

must be analyzed.

Kramer et al. in [10] split the previous partial differential expression into two factors in

order to develop their notion of phase, as in

lim
τ→∞

∂xγ
j (τ)

∂xγ
i (t)

= lim
τ→∞

dxγ
j (τ)

dt

∂t̂

∂xγ
i (t)

. (5.2)

Notice that above t̂ emerges suddenly, and therefore it is not for certain that t̂ is the phase

of the generic ODE in (2.1), as defined in Chapter 3. We will assume for now that t̂ in

(5.2) is the t̂ of Definition 15 in Chapter 3. dxγ
j (τ)/dt is a derivative expression evaluated

at time τ . ∂t̂/∂xγ
i (t) is then the ith entry of the gradient expression we are looking for,

evaluated at t. Algebraically, there is no doubt whether ∂t̂/∂xγ
i (t) should have been scaled

by a coefficient, because t̂ is the phase in units of time, and the derivation carried out in

[10] leaves the familiar t intact. There is no need to scale the gradient to be computed.

Since ∂t̂/∂xγ
i (t) is not a function of τ , the following is automatically written.

∂t̂

∂xγ
i (t)

= lim
τ→∞

∂xγ
j (τ)

∂xγ
i (t)

/

dxγ
j (τ)

dt
(5.3)

is the expression to compute the ith entry of the isochron gradient at xγ(t), which is a point

on γ.

Some facts must be noted about the expression in (5.3). First of all, it is clear that

(5.3) can be used as a numerical method to compute the phase gradient. So far, we have

not derived any numerical methods to compute this gradient, and (5.3) is, as of now, the

only available and reliable numerical method for this purpose. However, we may readily
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list three problems that afflict the scheme of (5.3). Evaluation of the limit at infinity is not

possible, and practically there is no hint suggesting how big τ must be chosen. Also (5.3) is

able to compute only a single entry of the isochron gradient, at a single shot. We are going

to spell out more accurate and systematic schemes in the numerical methods chapter, to

compute not only a single entry, but the entries of this gradient, all together.

The second fact that must be noted about (5.3) is that this expression does not seem

to depend on the choice of j. In [10], it is stated that the phase, t̂, is a property of the

whole oscillator. Therefore, the claim that the choice of j can be arbitrary is stated without

justification. Shortly, we are going to prove that j can indeed be arbitrary.

The third fact about (5.3) is we have already noted that v1(t) = ∂t̂/∂xγ(t). However, in

(5.3), this equality is not at first obvious. The theorem and its proof that we are shortly to

present will establish clearly that the gradient expression computed through (5.3) is exactly

v1(t).

Again, the scheme in (5.3) and the problems that are stated about this scheme hold if t̂

in (5.3) is actually the t̂ introduced in Definition 15.

Theorem 9 Let the phase, associated with the generic ODE in (2.1), be t̂. The ith entry

of the gradient of t̂, evaluated at xγ(t), which is a point on γ, the limit cycle of interest, can

be computed through

∂t̂

∂xγ
i (t)

= lim
τ→∞

∂xγ
j (τ)

∂xγ
i (t)

/

dxγ
j (τ)

dt
,

the same expression as in (5.3). The gradient expression in (5.3) is exactly equal to the ith

entry of v1(t), i.e.

∂t̂/∂xγ
i (t) = v1,i(t)

Also, the choice of j in (5.3) is arbitrary.

Proof: Let us first recall that if we linearize the generic ODE equation around γ, we

get an equation of the form, ẏ = G(t)y, where dot denotes derivative with respect to time.

u1(t) is a periodic solution of this equation. Again, G(t) = ∂f/∂x, evaluated at xγ(t).

This linear differential equation has a state transition function that is written in a straight-

forward manner as odK(τ, t) = ∂xγ(τ)/∂xγ(t), for τ > t. Regard τ as a dummy variable.

The adjoint of this linear equation is then written as ż = −GT(t)z. v1(t) is a periodic
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solution of this adjoint equation. The state transition function of the adjoint form is the

transpose of the original, i.e. odKT(t, τ).

Let us now express odK(τ, t) in explicit form as

odK(τ, t) =









∂xγ
1 (τ)

∂xγ
1 (t)

· · ·
∂xγ

1 (τ)

∂xγ
M

(t)
...

. . .
...

∂xγ
M

(τ)

∂xγ
1 (t)

· · ·
∂xγ

M
(τ)

∂xγ
M

(t)









.

It is then possible to express the entries of odKT(t, τ) as in

(odKT(t, τ))ij =
∂xγ

j (τ)

∂xγ
i (t)

. (5.4)

Through Floquet theory, odK(τ, t) is known to be

odK(τ, t) =
M∑

i=1

eµi(τ−t)ui(τ)vT

i (t).

Recalling our basic assumption that µ1 = 0 and µi < 0 for 2 ≤ i ≤ M , and that we have to

let τ � t, we have

odK(τ, t) = u1(τ)vT

1(t).

Then, we may express the expanded form

odKT(t, τ) =








v1,1(t)
...

v1,M (t)








(

u1,1(τ) · · · u1,M (τ)
)

.

Spelling out a single row,

(odKT(t, τ))i∗ =
(

v1,i(t)u1,1(τ) · · · v1,i(t)u1,M (τ)
)

.

The previous equality together with (5.4) justify

(odKT(t, τ))ij =
∂xγ

j (τ)

∂xγ
i (t)

= v1,i(t)u1,j(τ), (5.5)

for τ � t.

We have figured out an expression for the numerator in (5.3), which is true in the limit.

Let us now examine the denominator term. dxγ(τ)/dt is the time derivative of xγ , evaluated

at τ . u1(t) is in the same direction as the time derivative of xγ , and one of assumptions is

to have dxγ(t)/dt = u1(t).
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In all, we have the means to simplify (5.3), as in

∂t̂

∂xγ
i (t)

=
v1,i(t)u1,j(τ)

u1,j(τ)
= v1,i(t), (5.6)

where the limit notifier is omitted for convenience. Recall that the equality is true for τ � t.

(5.6) establishes that the gradient of the level sets of t̂, which we have called isochrons,

on γ, the limit cycle, is v1(t), the vector function, which is the solution of the adjoint linear

equation derived from the generic ODE in (2.1).

Another obvious significance, examining (5.6), is that the claim in [10] that the compu-

tation in (5.3) does not depend on the choice of j is now justified, for the terms depending

on j cancel in (5.6). �

5.4 Phase Response to Parametric Perturbations

5.4.1 Parameter Sensitivity Equation for an ODE

The theory developed in [6] requires the sensitivity equation to be derived. We will be

spelling out the differential equation whose solution is ∂x/∂p on γ. We will also be solving

this equation and giving the explicit form of the solution.

Kramer et al. in [10] derive the sensitivity equation for a generic ODE, as given in (2.1).

They show that this equation is an inhomogeneous version of the LPTV equation, derived

from (2.1). Therefore, as it can be easily deduced, the solution of the sensitivity equation

involves a convolution expression with odK(t, 0), the state transition function of the LPTV

equation, ẏ = G(t)y, with G(t) = ∂f/∂x computed on γ. Taylor et al. in [6] borrow this

formulation and use the explicit form of the solution for the sensitivity equation to conduct

a part of their derivations. However, neither in [10], nor in [6], Floquet theory for spelling

out odK(t, 0) is exploited.

Larter in [11] explores sensitivity based on Floquet theory. However, this approach is

not generalizable, since Larter assumes that the solutions of the LPTV equation, which we

write as exp(µit)ui(t), for i ≤ i ≤ M , not only span the column space of odK(t, 0), but

are the actual columns of odK(t, 0). Then, it is awfully difficult to deduce the benefits of

biorthogonality and projections based on this feature. Larter distinguishes between a single

persistent mode and the others, i.e. implicitly assumes that the first Floquet exponent

is zero, µ1 = 0 and that the others are less than zero. However, without spelling out
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the explicit form of odK(t, 0) through Floquet theory, it is not possible to benefit from

the biorthogonality property that we extensively exploit in this work. As a consequence,

Larter is able to apply this approach only to specific, simple chemical oscillator models of

low dimension, and these analyses cannot cover the generic oscillator of the form in (2.1),

because the approach in [11] consists of and is hampered by the difficulty of figuring out

the column space of odK(t, 0), associated with the LPTV equation derived from (2.1).

In this section, we again derive the sensitivity equation for the ODE case, as carried out

in [10]. We spell out the solution in terms of odK(t, 0) and make use of the explicit of this

solution, derived with the help of Floquet theory, in the next section.

In 2.1.3, we stated that the nonlinear multi-dimensional function, f , of the generic ODE

equation in (2.1), is actually a function of both the states vector, x, and the parameters

vector, p, i.e. f = f(x, p). x, in turn, is naturally a function of both time, t, and also the

parameters, vector, p. Therefore, it would be most accurate to express f as f = f(x(t, p), p).

For our purposes, we would like to compute, numerically, the sensitivity of the states

vector, x, with respect to the parameters vector, p, i.e. ∂x/∂p. The sensitivities around

the limit cycle, γ, will suffice. Therefore, we will again be able to make use of the notion of

linearization around the limit cycle.

Now, let us evaluate the partial derivative of both sides of (2.1), with respect to p, as in

∂

∂p

(
dx(t, p)

dt

)

=
∂

∂p
(f(x(t, p), p)) .

Using the chain rule of partial derivatives and evaluating x on the limit cycle, γ, we obtain

d

dt

{
∂xγ(t, p)

∂p

}

=
∂f(xγ(t, p), p)

∂xγ(t, p)

{
∂xγ(t, p)

∂p

}

+
∂f(xγ(t, p), p)

∂p
. (5.7)

We must note that the second expression on the right-hand side of the equation above

is the partial derivative of f with respect to the second argument of f , which is p. The

expression in set brackets is the sensitivity we are trying to compute. (5.7) is a linear

ordinary differential equation. We can make use of this equation and the initial condition,

∂xγ(t, p)

∂p

∣
∣
∣
∣
t=0

= 0, (5.8)

to compute the sensitivity, ∂xγ/∂p, with the arguments of xγ omitted for convenience, for

all t ≥ 0.
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(5.7) is actually an inhomogeneous equation. Its homogeneous form reads

d

dt

{
∂xγ(t, p)

∂p

}

=
∂f(xγ(t, p), p)

∂xγ(t, p)

{
∂xγ(t, p)

∂p

}

.

We may recall that the equation above is the linearized form of the generic ODE equation

in (2.1). The linearization has been done around γ. Also, through Floquet theory, we

have established that the state transition function of the homogeneous equation above is

odK(t, 0). As this section is just a brief restatement of sensitivity computations, we will

not again spell out the explicit form of odK(t, 0), but this explicit form will be needed in

the derivations to come.

From linear systems theory, we know that solutions of inhomogeneous equations like

(5.7) are of a certain form. These solutions consist of homogeneous and inhomogeneous

parts. In this case, let us call the homogeneous part, Shom, and the inhomogeneous part,

Sinh. Then, we may express the solution to (5.7) as

∂xγ

∂p
(t) = Shom + Sinh. (5.9)

We know, again through linear systems theory, that to express the explicit forms of Shom

and Sinh, we need to make use of the state transition function, odK(t, 0).

In (5.9), Shom is to be expressed explicitly as

Shom = odK(t, 0)
∂xγ

∂p
(0). (5.10)

However, through (5.8), Shom = 0. Therefore, we only need the inhomogeneous part of the

solution, Sinh.

Sinh in (5.9) is expressed explicitly as

Sinh =

∫ t

0
odK(t, τ)

∂f

∂p
(τ) dτ. (5.11)

The arguments of the nonlinear function, f , were omitted for convenience. (5.11) is actually

a convolution expression.

In summary, the solution of the linear inhomogeneous differential equation, with the

initial condition of (5.8), is

∂xγ

∂p
(t) =

∫ t

0
odK(t, τ)

∂f

∂p
(τ) dτ. (5.12)
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We must note that we mean, by the abbreviated notations,

∂xγ

∂p
(t) =

∂xγ(t, p)

∂p
,

and
∂f

∂p
(τ) =

∂f(xγ(τ, p), p)

∂p
.

We again note that the second expression is the partial derivative of f with respect to the

second argument of f , which is p.

In order to compute the sensitivity of the states vector, x, with respect to p, we need to

fix p to its nominal value, around the limit cycle, γ. The nominal values of the parameters

are constant on γ. This is the reason why we do not need a time tag for p, as in p(t).

Having derived the sensitivity equation and having spelt out its solution, we now move

on to analyzing the contribution in [6], with the help of this equation and Floquet theory.

5.4.2 Phase Sensitivity with Respect to the Parameters of an ODE System

Taylor et al. in [6] refer to the work of Kramer et al. in [10], in order to develop a reliable

numerical method that computes oscillator phase changes when parameter perturbations

do exist.

We showed earlier that ∂t̂/∂xγ(t), the partial differential expression, for which Kramer

et al. in [10] devise a numerical method to compute, is exactly v1(t). v1(t) is a periodic

solution of the adjoint linear equation, ż = −GT(t)z, associated with generic ODE equation

in (2.1).

Taylor et al. in [6] focus on a single parameter pj out of the L entries of the parameters

vector p. Having defined the same t̂ in our work, which satisfies dt̂/dt = 1, in the absence of

perturbations, so that their notion of phase is again in units of time, they venture to spell

out
∂t̂

∂pj
=

M∑

i=1

∂t̂

∂xγ
i

∂xγ
i

∂pj
, (5.13)

which is a simple consequence of the chain rule of partial differentiation. Both terms in the

summation above are functions of time, so any argument notifier is omitted for convenience.

Then, Taylor et al. derive the time derivative of the expression in (5.13) through what may
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be called a lengthy proof. The derived expression reads

d

dt

(
∂t̂

∂pj

)

=

M∑

i=1

∂t̂

∂xγ
i

∂fi

∂pj
, (5.14)

where again both terms in the summation are functions of time [6].

Examining (5.14), we observe that both terms in the summation are periodic with T .

This makes the whole expression in (5.14) periodic with T . Then it is easy to deduce that

the expression in (5.13) is not necessarily periodic, because it is the time integral of (5.14).

Taylor et al. in [6] make use of ∂t̂/∂xγ(t) to compute the phase deviation of oscilla-

tors when state perturbations are present. However, when it is the parameters that are

perturbed, they do not resort to ∂t̂/∂pj in (5.13), to utilize in the same manner as they

handle ∂t̂/∂xγ(t). The time derivative expression in (5.14) seems to be the counterpart

of ∂t̂/∂xγ(t), when they switch from state pertubations to parameter perturbations. This

counterparts relation is not well justified in [6], although the proof enabling the derivation

of (5.14) from (5.13) is correct. In fact, this proof is the major contribution of [6].

We will next show that the time derivative expression in (5.14) is related to vaug
1 (t),

associated with the DAE system that we derived in the previous section. There, we main-

tained that v1(t) is associated with the generic ODE system in (2.1), and similarly vaug
1 (t)

is associated with q̇(w) = i(w), the augmented system with w accounting for the states

vector, x, and the parameters vector, p, of (2.1). Then, we will provide a very simple and

short proof for the transition from (5.13) to (5.14), with the help of Floquet theory.

Theorem 10 In 4.2.1, we modified the generic ODE in (2.1) into (4.33), concatenating

x and p in w. We also let vaug
1 (t) be a periodic solution of the adjoint linear equation,

associated with this augmented nonlinear equation, i.e. q̇(w) = i(w). Our claim is that

vaug
1,M+j(t) =

d

dt

(
∂t̂

∂pj

)

, (5.15)

where the explicit form of the right-hand side expression is given in (5.14).

Proof: As stated before, we take for granted the transition from (5.13) to (5.14),

for the moment. We will be providing the proof of this transition as the justification of a

following lemma.
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Let us first figure out the differential equation representation of the LPTV system derived

from q̇(w) = i(w). We get




IM 0

0 0





∣
∣
∣
∣
∣
∣
γ

d

dt
yaug =





∂f
∂x

∂f
∂p

0 −IL





∣
∣
∣
∣
∣
∣
γ

yaug,

where both matrices are evaluated on γ, i.e. xγ(t) and pnom are substituted for evaluation.

recall that the nominal values for the parameters, pnom, are everywhere constant on γ. IM

is the identity matrix of size (M × M). ∂f/∂x on γ is the familiar G(t). ∂f/∂p is the

partial differential expression of f(x, p) with respect to its second argument. Remembering

that this linear system is of size (M + L), the zeros matrices must be regarded as being of

appropriate sizes so as to make both matrices square. Also, yaug = (yT

1 yT

2)
T, where y1 and

y2 are (M × 1)- and (L × 1)-sized vectors, respectively.

The linear adjoint equation, associated with q̇(w) = i(w), is then




IM 0

0 0





∣
∣
∣
∣
∣
∣
γ

d

dt
zaug = −





(
∂f
∂x

)
T

0
(

∂f
∂p

)
T

−IL





∣
∣
∣
∣
∣
∣
γ

zaug, (5.16)

where clearly zaug = (zT

1 zT

2)T, where z1 and z2 are (M × 1)- and (L × 1)-sized vectors,

respectively. (5.16) can be written as two sets of coupled equations.

dz1

dt
= −GT(t) z1 (5.17)

(

∂f

∂p

∣
∣
∣
∣
γ

)
T

z1 = z2 (5.18)

It is no surprise that the first equation above is the adjoint equation, associated with the

original generic ODE in (2.1). Then, z1 = v1(t) is a periodic solution for (5.17). Obviously,

if we set z1 = v1(t) and then compute z2 with the help of (5.18), The concatenation of z1

and z2 will be zaug = vaug
1 (t), associated with the augmented adjoint equation in (5.16).

Let us focus on the jth component of both vectors on each side of (5.18). We naturally

substitute z1 = v1(t) = ∂t̂/∂xγ(t), to get

M∑

i=1

∂t̂

∂xγ
i

∂fi

∂pj
= z2,j .

However, z2,j becomes, with our substituting z1 = v1(t),

z2,j = vaug
1,M+j.
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As a result, considering (5.14), we have (5.15). �

The previous proof is significant in that once we figure out a reliable and accurate

numerical scheme to compute v1(t), associated with the generic ODE in (2.1), and vaug
1 (t),

associated with q̇(w) = i(w), which is derived very simply from (2.1), we will not need the

numerical schemes for ∂t̂/∂xγ
i (t) in (5.3) and ∂t̂/∂pj in (5.14). If we spell out a scheme to

compute v1(t) for the generic ODE in (2.1) and the generic DAE in (2.4), then the sensitivity

of t̂, the phase of a generic ODE, with respect to both its states and parameters, on γ, can

be calculated very easily.

We now provide the justification of the transition from (5.13) to (5.14).

Lemma 2 The time derivative of the expression in

∂t̂

∂pj
=

M∑

i=1

∂t̂

∂xγ
i

∂xγ
i

∂pj
,

where both terms in the summation are functions of t, is given by

d

dt

(
∂t̂

∂pj

)

=

M∑

i=1

∂t̂

∂xγ
i

∂fi

∂pj
.

Above, xγ(t) is the steady-state periodic solution on γ, p is the parameters vector, associated

with the generic ODE in (2.1), and f is the nonlinear functions vector in (2.1).

Proof: Let us conduct this proof with not the extries of vectors but with vectors

themselves.

We know that ∂t̂/∂xγ(t) = v1(t). Also, we know the explicit expression for ∂xγ/∂p,

through the analysis given in 5.4.1. All we need to do is to substitute the expression for

odK(t, τ), the state transition function of the LPTV equation, derived from (2.1). We have

∂xγ

∂pj
=

∫ t

0
odK(t, τ)

∂f

∂pj
(τ)dτ

=

∫ t

0

[
M∑

i=1

eµi(t−τ)ui(t)v
T

i (τ)

]

∂f

∂pj
(τ)dτ

=
M∑

i=1

eµitui(t)

∫ t

0
e−µiτvT

i (τ)
∂f

∂pj
(τ)dτ. (5.19)

Let us define for convenience

Si(t) =

∫ t

0
e−µiτvT

i (τ)
∂f

∂pj
(τ)dτ. (5.20)
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Then, we proceed as in

∂t̂

∂pj
=

M∑

i=1

eµit vT

1(t)ui(t)
︸ ︷︷ ︸

δ1i

Si(t)

= S1(t)

=

∫ t

0
vT

1(τ)
∂f

∂pj
(τ)dτ. (5.21)

Let us not forget our assumption that µ1 = 0, and µi < 0 for 2 ≤ i ≤ M .

By the fundamental theorem of calculus, we get

d

dt

(
∂t̂

∂pj

)

= vT

1(t)
∂f

∂pj
(t),

which is the same as the expression in (5.14). �

The proof above is much simpler than the one provided in [6]. Considering that the

justification of Lemma (2) is the main contribution of [6], the proof above, making use of

the results of Floquet theory, is significant.

We have shown that the time derivative of ∂t̂/∂pj = vaug
1,M+j(t), where this augmented

vector is associated with the augmented system given as q̇(w) = i(w), derived from the

generic ODE in (2.1). A reliable numerical scheme to compute vector function v1(t), asso-

ciated with either an ODE, as in (2.1), or a DAE, as in (2.4), would suffice in replacing all

the related theory developed in [10] and [6]. Particularly, two such numerical procedures

will be presented in the numerical methods section.

The question remains as to whether we may also modify originally a generic DAE in order

to incorporate our analysis with the capability of exploring into parameter perturbations

afflicting DAEs. The answer is in the affirmative, and this is what we try to show next.

5.4.3 Parameter Sensitivity Equation for a DAE

The technique in deriving the sensitivity equation in the DAE case is very similar to that

exercised in the ODE case, of Section 5.4.1. The forms of the generic solutions in the two

cases are not that similar.

(2.4) has the form q̇(x) = f(x). Recalling that q and f depend on both x and p and

that x is a function of both t and p, we have q = q(x(t, p), p) and f = f(x(t, p), p). We take

the partial derivative of both sides of (2.4) with respect to p.

d

dt

(
∂

∂p
[q(x(t, p), p)]

)

=
∂

∂p
[f(x(t, p), p)]
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x is the first argument of both q and f . p is the second argument of both q and f . So let

us call arg1 = x and arg2 = p. We proceed as follows.

d

dt

(
∂q

∂arg1

∂arg1

∂p
+

∂q

∂arg2

∂arg2

∂p

)

=
∂f

∂arg1

∂arg1

∂p
+

∂f

∂arg2

∂arg2

∂p

Notice that
∂arg2

∂p
=

∂p

∂p
= 1,

and then in compact form we have

d

dt

(
∂q

∂x

∂x

∂p
+

∂q

∂p

)

=
∂f

∂x

∂x

∂p
+

∂f

∂p
.

All our evaluations are on γ. Invoking the definitions C(t) = ∂q/∂x and G(t) = ∂f/∂x,

which hold on γ, and rearranging,

d

dt

(

C(t)

{
∂xγ

∂p

})

= G(t)

{
∂xγ

∂p

}

+

[
∂f

∂p
−

d

dt

(
∂q

∂p

)]

. (5.22)

Above is the very sensitivity equation we have been seeking. We know that C(t) and G(t)

are T -periodic. ∂q/∂p and ∂f/∂p are also T -periodic. The time derivative of ∂q/∂p is again

T -periodic. Therefore, (5.22) is a T -periodic LPTV system, excited with an input of the

same period, T .

Let us call y = ∂xγ/∂p and

b(t) =
∂f

∂p
−

d

dt

(
∂q

∂p

)

.

Then, we have
d

dt
(C(t)y) = G(t)y + b(t). (5.23)

It is clear that the equation above is the inhomogeneous form of the LPTV equation, derived

from the generic DAE in (2.4). Demir in [3] shows that the solution of the equation in

(5.23) is the sum of a homogeneous part, Shom(t), and an inhomogeneous part, Sinh(t), i.e.

y(t) = Shom(t) + Sinh(t).

In [3], the generic forms given by

Shom(t) = K(t, 0)y(0)

=

m∑

i=1

exp(µit)ui(t)v
T

i (0)C(0)y(0) (5.24)
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and

Sinh(t) =

∫ t

0
odK(t, τ)b(τ)dτ + z(t)b(t)

=

m∑

i=1

ui(t)

∫ t

0
exp(µi(t − τ))vT

i (τ)b(τ)dτ

+ z(t)b(t) (5.25)

are proposed and justified. Above,

K(t, τ) =

m∑

i=1

exp(µi(t − τ))ui(t)v
T

i (τ)C(τ)

is the state transition function of the LPTV equation given by d/dt(C(t)y) = G(t)y, the

equation derived from (2.4).

odK(t, τ) =

m∑

i=1

ui(t) exp(µi(t − τ))vT

i (τ)

is in the form of the state transition function of the LPTV equation derived from the generic

ODE in (2.1) , but the Floquet exponents and functions, the Floquet components overall,

belong to the forward and adjoint LPTV equations derived from the generic DAE in (2.4).

Notice that in (5.24) and (5.25), the upper limit of both summations is not M , the

dimension of our generic system, but m ≤ M . The reason for this is that there may be

some modes, belonging to the LPTV equation d/dt(C(t)y) = G(t), that are in the nullspace

of C(t). We have, therefore,

C(t) [ um+1(t), . . . , uM (t) ] = 0.

These modes, ui(t) for (m + 1) ≤ i ≤ M , are nullified instantly by K(t, 0), so µi = −∞,

for (m + 1) ≤ i ≤ M [3]. Therefore, examining Shom(t) in (5.24), whether or not y(0) has

components along ui(0), for (m + 1) ≤ i ≤ M , Shom(t) will not have components along

ui(t), for t > 0.

By the biorthogonality conditions proved in [3], we have the following.

vT

j (t)C(t)ui(t) = δij , 1 ≤ i, j ≤ m

vT

j (t)C(t)ui(t) = 0, 1 ≤ i ≤ m, (m + 1) ≤ j ≤ M

vT

j (t)G(t)ui(t) = 0, (m + 1) ≤ i ≤ M, 1 ≤ j ≤ m
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In [3], it is shown through these conditions that

{C(t)u1(t), . . . ,C(t)um(t),G(t)um+1(t), . . . ,G(t)uM (t) }

is a legitimate basis set for <M , for any t ≥ 0. Therefore, b(t) in (5.23) can be written as a

linear combination of the basis functions in this set at any t.

z(t) in Sinh(t) of (5.25) has the following property [3].

z(t) [C(t)u1(t), . . . ,C(t)um(t)] = 0

Therefore, C(t)ui(t), for 1 ≤ i ≤ m, reside in the nullspace of z(t). Also, the following is

true.

zT(t) [CT(t)v1(t), . . . ,C
T(t)vm(t)] = 0

CT(t)vi(t), for 1 ≤ i ≤ m, span the left nullspace of z(t).

In all, we have the following. Let us have b(t) = b1(t) + b2(t), where

b1(t) =

m∑

i=1

ciC(t)ui(t)

and

b2(t) =

M∑

j=m+1

cjG(t)uj(t).

We get through the contributions provided by [3], that

∫ t

0
odK(t, τ)b2(τ)dτ = 0

and

z(t)b1(t) = 0.

In addition,
∫ t

0
odK(t, τ)b1(τ)dτ 6= 0

and

z(t)b2(t) 6= 0,

if not all of ci’s are zero, for 1 ≤ i ≤ M . Therefore, if b(t) has components in the subspace

spanned by C(t)ui(t), for 1 ≤ i ≤ m, then these components show up in y(t) through the

convolution expression in Sinh(t) of (5.25). If b(t), on the other hand, has components in
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the subspace spanned by G(t)ui(t), (m + 1) ≤ i ≤ M , these components show up in y(t)

through the expression containing z(t) in Sinh(t) [3].

This review of Demir’s work in [3] was necessary, for we will make use of the explicit form

of Sinh(t) in (5.25). Particularly, we will utilize the information about the vector functions

spanning the left nullspace of z(t), in addition to the explicit form of the convolution

expression in Sinh(t).

The homogeneous part of the solution, Shom(t) in (5.24), is not necessary, since we

assume that

y(0) =
∂xγ

∂p
(0) = 0.

This initial condition follows from the assumption that changes in p start affecting xγ(t) at

t = 0. Also, xγ(0−) should be strictly on the limit cycle, γ, which is naturally true.

We proceed now to mathematically relate the drift in t̂, the phase, due to parameter

perturbations, to vaug
1 (t). vaug

1 (t) is associated with the adjoint LPTV system, to be derived

from Q̇(w) = I(w). Q̇(w) = I(w) is the new augmented system we derived from the generic

DAE in (2.4), through augmenting the states vector x with p, the parameters vector, to get

w = (xT pT)T.

5.4.4 Phase Sensitivity with Respect to the Parameters of a DAE System

In Section (2.1), we showed that

d

dt

(
∂t̂

∂pj

)

= vaug
1,M+j(t),

where t̂ is the phase of the generic ODE in (2.1), pj is the jth entry of the parameters vector,

p, associated with the nonlinear functions vector, f in (2.1). v1(t) is a periodic solution of

the adjoint LPTV equation derived from (2.1). We augmented (2.1) by assigning the entries

of p as states, in Section 4.2.1, and obtained q̇(w) = i(w), the augmented system, with x

and p concatenated in w. In Section (2.1), what we did was to find the periodic solution

of the adjoint LPTV equation, derived from q̇(w) = i(w) and call it vaug
1 (t). The work of

Taylor et al. in [6] was referred to as crucial in showing that

d

dt

(
∂t̂

∂pj

)

=
∂t̂

∂xγ
·

∂f

∂pj
,

but we also provided our own proof for justifying this equality. Then, with the tools of

Floquet theory, we related ∂t̂/∂pj to vaug
1 (t) as above.
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We are now exploring the DAE case, and we are again induced to define ∂t̂/∂pj and

its time derivative. The definition will be different compared to the ODE case. However,

the essence of our derivations is the same as those presented in Section 5.4.2. First, we will

define ∂t̂/∂pj . We will naturally face ∂xγ/∂pj , through this definition, but fortunately we

know how to solve for ∂xγ/∂pj , considering the contributions of Demir’s work in [3], which

we reviewed in the last section. Second, we will compute the time derivative of ∂t̂/∂pj and

will obtain an expression. Third, we will figure out the form of the adjoint LPTV equation,

to be derived from Q̇(w) = I(w), which is the augmented system we acquired through our

derivation in Section 4.2.2. There, we assigned the entries of the parameters vector, p, as

states, and augmented the generic DAE system in (2.4), to get Q̇(w) = I(w). And the last

but not the least, we will figure out the periodic solution of the adjoint equation obtained

from Q̇(w) = I(w), and calling it vaug
1 (t), we will finally relate vaug

1 (t) to the time derivative

of ∂t̂/∂pj , computed in the second step. The series of derivations in this section will once

more establish the vitality of v1(t), associated with any oscillatory system, whether ODE or

DAE, if we concerned with analyzing the phase of such systems in the close neighborhood

of γ.

Let us define the following partial differential expression through the chain rule.

∂t̂

∂pj
=

∂t̂

∂q
·

∂q

∂pj
(5.26)

We define ∂t̂/∂pj as such since we have already established ∂t̂/∂q = v1(t) on γ. Let us

review briefly how we figured out this finding. Note that the trivial differential equation

given by dt̂/dt = 1, with t̂(0) = 0, is correct for a DAE, as in (2.4), as well. We showed that

dt̂

dt
=

∂t̂

∂q
·
dq

dt
= 1

is true over the whole domain of attraction, W, associated with γ, the limit cycle of interest,

for γ is assumed to have asymptotic orbital stability and asymptotic phase. Then, on γ,

∂t̂

∂q
·
dq

dt
=

∂t̂

∂q(xγ(t))
·

[
∂q(xγ(t))

∂xγ(t)

dxγ

dt

]

= 1.

Invoking the usual notations ∂q/∂x = C(t) on γ and dxγ/dt = u1(t), we had

∂t̂

∂q(xγ(t))
· (C(t)u1(t)) = 1.
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After showing that ∂t̂/∂q is in the same direction as v1(t), we had to recall the biorthogo-

nality relation for DAEs, given as vT

1C(t)u1(t) = 1. Then, this discussion led us to deduce

that ∂t̂/∂q = v1(t) on γ.

We now return to the current discussion to process the definition of ∂t̂/∂pj , in (5.26) as

∂t̂

∂pj
= v1(t) ·

∂q

∂pj
, (5.27)

on γ. We now have to prove the following lemma to figure out what the time derivative of

∂t̂/∂pj is.

Lemma 3 Let t̂ be the phase of the generic DAE in (2.4) and p be the vector of parameters

that are eligible for perturbation and take place in the analytic expressions constituting the

nonlinear functions q and f in (2.4). Having defined ∂t̂/∂pj as in (5.27), the time derivative

of this expression is given as

d

dt

(
∂t̂

∂pj

)

=
dv1

dt
·

∂q

∂pj
+ v1(t) ·

∂f

∂pj
. (5.28)

Proof: We start by noting that q in (2.4) is a function of both x and p, and in turn,

x is a function of both time t and p. Therefore, we have q = q(x(t, p), p) and we compute

∂q/∂pj on γ as
∂q

∂pj
=

∂q(xγ(t))

∂xγ(t)

∂xγ

∂pj
+

∂q

∂pj
= C(t)

∂xγ

∂pj
+

∂q

∂pj
.

We stated through the contributions in [3] that ∂xγ/∂pj = Sinh(t) with Sinh(t) given in

(5.25), with now

b(t) =
∂f

∂pj
−

d

dt

(
∂q

∂pj

)

.

Simply substituting, we have

∂t̂

∂pj
=

m∑

i=1

vT

1(t)C(t)ui(t)
︸ ︷︷ ︸

δ1i

∫ t

0
exp(µi(t − τ))vT

i (τ)b(τ)dτ

+ vT

1(t)C(t)z(t)b(t)

+ v1(t) ·
∂q

∂pj
.

Notice that above in the first expression on the right-hand side, the biorthogonality relation

holds because the upper limit of the summation is m, not M . m is the number of Floquet

modes, to which correspond finite Floquet multipliers, i.e. ui(t), for 1 ≤ i ≤ m, are not in

the nullspace of C(t), whereas ui(t), for (m + 1) ≤ i ≤ M , are in the nullspace of C(t).
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Also, CT(t)v1(t) is in the left nullspace of z(t) [3], so the second term on the right-hand

side vanishes. We have, therefore,

∂t̂

∂pj
=

∫ t

0
vT

1(τ)b(τ)dτ

+ v1(t) ·
∂q

∂pj
,

noting our assumption that µ1 = 0. Taking the time derivative of both sides,

d

dt

(
∂t̂

∂pj

)

= v1(t) · b(t) +
d

dt

(

v1(t) ·
∂q

∂pj

)

,

through the fundamental theorem of calculus. Now it is time to substitute the expression

for b(t) and invoke the differentiation rule for products of functions, as in

d

dt

(
∂t̂

∂pj

)

= v1(t) ·
∂f

∂pj

−

{

v1(t) ·
d

dt

(
∂q

∂pj

)}

+
d

dt

(

v1(t) ·
∂q

∂pj

)

= v1(t) ·
∂f

∂pj

−

{
d

dt

(

v1(t) ·
∂q

∂pj

)

−
dv1

dt
·

∂q

∂pj

}

+
d

dt

(

v1(t) ·
∂q

∂pj

)

.

After the obvious cancellation, we have

d

dt

(
∂t̂

∂pj

)

= v1(t) ·
∂f

∂pj
+

dv1

dt
·

∂q

∂pj
,

which is the same result as in (5.28). �

We are now going to use the lemma above to relate the time derivative of ∂t̂/∂pj to the

periodic solution of the adjoint LPTV system, derived from Q̇(w) = I(w).

Theorem 11 Q̇(w) = I(w) is the augmented DAE system derived from the generic DAE

in (2.4), w = (xT pT)T. Let vaug
1 (t) be the periodic solution of the adjoint LPTV equation,

derived from Q̇(w) = I(w). Then,

vaug
1,M+j =

d

dt

(
∂t̂

∂pj

)

, (5.29)

i.e. the (M + j)th entry of vaug
1 (t) is the same as the expression in (5.28).
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Proof: The LPTV equation that is derived from Q̇(w) = I(w) is

d

dt

(

∂Q

∂w

∣
∣
∣
∣
γ

yaug

)

=
∂I

∂w

∣
∣
∣
∣
γ

yaug.

Note that the dimension of this system is (M + L), so yaug(t) is an ((M + L) × 1)-sized

vector function. The explicit form of this LPTV equation is written as

d

dt










∂q
∂x

∂q
∂p

0 0





∣
∣
∣
∣
∣
∣
γ

yaug




 =





∂f
∂x

∂f
∂p

0 −IL





∣
∣
∣
∣
∣
∣
γ

yaug.

The adjoint equation can then be written as





(
∂q
∂x

)
T

0
(

∂q
∂p

)
T

0





∣
∣
∣
∣
∣
∣
γ

dzaug

dt
= −





(
∂f
∂x

)
T

0
(

∂f
∂p

)
T

−IL





∣
∣
∣
∣
∣
∣
γ

zaug. (5.30)

Let us assume zaug(t) = vaug
1 (t) is a periodic solution of this adjoint equation. Also let us

denote zaug(t) as a concatenated vector function as in zaug(t) = (zT

1(t) zT

2(t))T, where z1(t)

is (M × 1)-sized and z2(t) is (L × 1)-sized.

We can now write a set of coupled equations, originating from the adjoint equation.

(
∂q

∂xγ

)
T dz1

dt
= −

(
∂f

∂xγ

)
T

z1

(
∂q

∂p

)
T dz1

dt
= −

(
∂f

∂p

)
T

z1 + z2

The first equation above, when expressed in the form of C(t)ż = −G(t)z, strikes us as the

adjoint LPTV equation derived from the original DAE in (2.4). v1(t) is a periodic solution

of this adjoint form. When we set z1(t) = v1(t) in the second equation above, we get

z2 =

(
∂q

∂p

)
T dv1

dt
+

(
∂f

∂p

)
T

v1(t). (5.31)

There is no doubt that zaug(t) = (zT

1(t) zT

2(t))T, when we set z1(t) = v1(t), will be a periodic

solution of the augmented adjoint form in (5.30) above. We deduce that vaug
1 (t) is the

periodic solution we have been seeking.

The jth entry of z2 in (5.31) can be written as

z2,j =
dv1

dt
·

∂q

∂pj
+ v1(t) ·

∂f

∂pj
.

Notice that z2,j = vaug
1,M+j(t) in this case. Examining (5.28), we have the result, (5.29). �
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Through our derivations we have established the following. v1(t) is the periodic solution

of CT(t)ż = −GT(t)z, the adjoint LPTV equation derived from the generic DAE in (2.4). In

fact, any multiple of v1(t) is a periodic solution, but with the normalization condition given

by vT

1(t)C(t)u1(t) = 1, with u1(t) = dxγ/dt, v1(t) becomes unique. vaug
1 (t), on the other

hand, is the periodic solution of the adjoint LPTV equation to be derived from Q̇(w) = I(w),

the augmented nonlinear system. vaug
1 (t) accounts for both ∂t̂/∂q = v1(t) and d/dt(∂t̂/∂pj),

on γ.

If we had a reliable and accurate numerical scheme to compute v1(t), associated with

any DAE system, as given in (2.4), then we could apply this scheme on the adjoint forms

of both (2.4) and Q̇(w) = I(w), and then we could calculate the effects of both state and

parameter perturbations on a system in DAE form, through the phase equation for DAEs.
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Chapter 6

NUMERICAL METHODS

6.1 Numerical Solution of Linear Equation Systems

A linear system of equations is of the form

Ax = b, (6.1)

where A is a square matrix of size (M × M), and x and b are (M × 1)-sized vectors. x is

the solution of the problem in (6.1).

Generally, two methods of solving linear equation systems are used. Gaussian Elimina-

tion computes an exact solution and therefore requires that A in (6.1) is full-rank. Krylov

Subspace Methods, on the other hand, are iterative schemes. A convergence check may be

employed to decide whether an iterate is as accurate as desired. Also, Krylov Methods do

not require that A in (6.1) be full-rank.

6.2 Newton’s Method for Solving Nonlinear Algebraic Equation Systems

Newton’s method is devised to solve nonlinear algebraic equations of the form

h(x) = 0, (6.2)

where h is a nonlinear function of x, and h : <M → <M .

In order to solve (6.2), an iterative scheme is employed through Newton [14]. Letting

the kth iterate of x, the solution, be xk, the following system of linear equations are solved

at iteration k.
∂h(xk)

∂xk

[

xk+1 − xk
]

= −h(xk) (6.3)

Above, Jk = ∂h(xk)/∂xk is called the Jacobian of h at iteration k. Jk is an (M ×M)-sized

matrix. Also in (6.3), we may define

∆xk = xk+1 − xk (6.4)
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to be the update that enables the computation of the next iterate xk+1. Obviously, xk+1 =

xk + ∆xk.

Since Newton’s method is iterative, a convergence check is needed to decide whether xk

is as accurate as desired to be declared as a solution. Both convergence checks in

∣
∣
∣h(xk)

∣
∣
∣ < εh (6.5)

∣
∣
∣∆xk

∣
∣
∣ < εa + εrx

k+1 (6.6)

are necessary at iteration k. (6.5) is needed for the actual function value needs to be small,

considering (6.2). (6.6) ensures that the update ∆xk does not perturb xk to some value

xk+1 that is far away. Subscripted ε values are arranged according to specifications and

absolute values of the vectors involved.

Newton’s method is proved to converge quadratically provided that a guess, close enough

to the actual solution x, is initially supplied as x1. In order to facilitate convergence, in the

case of initial guesses that are far away, continuation schemes may be employed [14].

6.3 Multistep Methods for Differential Equations

Multistep discretization is one of the methods that facilitates the numerical solution of

differential equations. In this section, we are going to focus on solving the generic DAE in

(2.4) through multistep discretization and Newton’s method.

Let x(t0) be the initial condition provided for solving the generic DAE in (2.4). Then,

the solution of (2.4) for t > t0 is required. Through numerical methods, the values of the

solution x(t) for discrete values of time can be calculated. In other words, we are required

to compute the elements of

χ = {x(t0), x(t1), x(t2), ..., x(tN )} , (6.7)

through numerical methods, supposing that (2.4) is to be solved from t = t0 until t = tN .

Before presenting the discretized form of (2.4), we define the set

H = {hi, . . . , hi−r+1} , (6.8)

where we know that hj = tj − tj−1, for 1 ≤ j ≤ N . H is a set with r elements, these r

elements being the lengths of the intervals between consecutive timepoints. We are going

to need this set when spelling out the discretized form below.
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The discretized form of (2.4) reads

r∑

j=0

α̂j(H)q(x(ti−j)) =
r∑

j=0

β̂j(H)f(x(ti−j)), (6.9)

α̂j(H) and β̂j(H), for 0 ≤ j ≤ r, above are the multistep coefficients. These coefficients are

numerical values that implicitly depend on all the elements of H.

Note that the discretization method given in (6.9) is designed to accommodate variable

timesteps, i.e. all elements of H are allowed to be different from each other. This multi-step

discretized form is presented as an r-step method, i.e. we are computing sample x(ti), but

in doing that we make use of the r samples before x(ti), which are x(ti−j) for 1 ≤ j ≤ r.

The discretized form in (6.9) might be thought of as having an r-deep memory.

Note also that we, by no means, imply that r in (6.9) is constant. r can be a function of i,

as in r = r(i). This means the depth of memory that the discretization method exploits may

change according to which sample is computed. In this aspect, we accommodate, through

(6.9), variable order schemes as well.

Remark 2 There are simpler multistep discretization schemes that we can utilize. For

example, note the first element in H, hi = ti − ti−1. There are (r − 1) other elements in

H. Let us set hi−j = hi for 1 ≤ j ≤ r − 1. Then, all elements in H will be equal to hi.

This means we will have H = {hi}, i.e. H will consist of only one element. In addition

to this modification, in simpler schemes, we have different forms for α̂j(H) and β̂j(H), as

in α̂j(hi) = αj/hi and β̂j(hi) = βj , for 0 ≤ j ≤ r. αj and βj are constant predetermined

coefficients, calculated according to the multistep method employed. Then, the scheme in

(6.9) is simplified into

1

hi

r∑

j=0

αjq(x(ti−j)) =

r∑

j=0

βjf(x(ti−j)). (6.10)

Notice that the discretization scheme in (6.9) is used to solve for x(ti) through Newton’s

method. (6.9) can be solved for x(ti), provided that x(ti−j), for 1 ≤ j ≤ r, are known. Note

the manipulation of (6.9) into the following.

h(x(ti)) =
[

α̂0(H)q(x(ti)) − β̂0(H)f(x(ti))
]

+

r∑

j=1

[

α̂j(H)q(x(ti−j)) − β̂j(H)f(x(ti−j))
]

= 0 (6.11)
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(6.11) is in the form that is convenient for the application of Newton’s method, i.e. a

nonlinear function of a vector variable, equated to zero. In short, (6.11) could be written

as h(x(ti)) = 0, where h is the nonlinear function in (6.11).

In order to solve (6.11) for x(ti), we proceed as follows. Let us introduce the auxiliary

notation, at iteration l of Newton’s method,

Jl
i,j =

∂h(xl(ti−j))

∂xl(ti−j)
= α̂j(H)

∂q(xl(ti−j))

∂xl(ti,j)
− β̂j(H)

∂f(xl(ti,j))

∂xl(ti,j)
. (6.12)

Note that the lth iterate for x(ti) is xl(ti). Then, the linear system of equations to solve at

iteration l is, making use of the definition notation in (6.12),

∂h(xl(ti))

∂xl(ti)

[

xl+1(ti) − xl(ti)
]

= Jl
i,0 ∆xl(ti)

= −h(xl(ti)). (6.13)

In (6.13), we solve for ∆xl(ti) = xl+1(ti) − xl(ti). The Jacobian Jl
i,0 = ∂h(xl(ti))/∂xl(ti)

above is a sparse full-rank matrix. Therefore, (6.13) may be solved through computing the

LU factors of Jl
i,0, i.e Jl

i,0 = Ll
i,0U

l
i,0, and calculating xl(ti) through

∆xl(ti) =
(

Ul
i,0

)−1 (

Ll
i,0

)−1 (

−h(xl(ti))
)

. (6.14)

Note that x1(ti) = x(ti−1) is a legitimate initial guess for solving x(ti) through New-

ton’s method, because solutions of (2.4) are assumed to be smooth and continuous. When

Newton’s method converges, we call the computed solution x(ti), the ith timepoint in χ of

(6.7).

In addition, we may make a note of the Jacobian and its LU factors at the last iteration

of Newton’s method. We have, dropping the l notifier,

Ji,0 = Li,0Ui,0

= α̂0(H)C(ti) − β̂0(H)G(ti), (6.15)

with C(ti) = ∂q(x(ti))/∂x(ti) and G(ti) = ∂f(x(ti))/∂x(ti). The LU factors of Ji,0 will have

to be stored when running particularly one of the steady-state periodic solution algorithms

in Section 6.4, along with other factors.

Remark 3 Notice that in this section, we utilize Newton’s method of Section 6.2, for com-

puting each timepoint of a solution x(t) of the generic DAE in (2.4). In turn, each iteration
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of Newton’s method must make use of the linear system of equation solutions, explained

in Section 6.1. The particular linear system solution technique employed here is Gaussian

Elimination, for we compute LU factors. In all, considering differential equation solutions

through multistep methods, we make use of, in descending order of hierarchy,

1. Multistep discretization for each timepoint as in (6.11)

2. Newton’s method to solve (6.11) for x(ti)

3. Gaussian Elimination to solve the linear equation in (6.13) for ∆xl(ti) = xl+1(ti) −

xl(ti) at each iteration l of Newton’s method

One of the steady-state periodic solution methods in Section 6.4 will again be designed as an

iterative technique, and each iteration of that method will exploit the encapsulated hierarchy

noted in this remark, i.e. this particular method in Section 6.4 will top the above list,

considering the new hierarchy formed.

6.4 Steady-State Periodic Solutions

We have maintained throughout our derivations that we call a particular steady-state peri-

odic solution on γ, the limit cycle of interest, xγ(t). Most of our derivations rely on xγ(t),

since, for our purposes, we see it fit to employ linearizations around γ. However, up to this

point, we have not been concerned about how xγ(t) may actually be computed numerically.

Our only former statement that can be regarded as related to the numerical computation

of xγ(t) is that we are to obtain a discretized form of xγ(t) and that the number of samples

over a single period of length T , we set as N .

Definition 19 (Timepoints on γ) In this section of our work, whenever we refer to

xγ(t), the particular steady-state periodic solution on γ, we mean the N samples of xγ(t)

over a single period of length T . Set

χ = {xγ(ti) for 0 ≤ i ≤ N − 1} (6.16)

includes these N samples as necessary. Let us have 0 ≤ i, j ≤ N − 1 Naturally, ti = tj if

and only if i = j. Also, if j > i, then tj > ti. We also have the convention that if we are
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to employ tN in our discussions, that tN − t0 = T is tacitly conceded beforehand. Then,

naturally xγ(tN ) = xγ(t0), and xγ(t0) and xγ(tN ) are indeed treated as the same sample.

Definition 20 (Timepoint Intervals) The lengths of the intervals between consecutive

timepoints are defined as

hi = ti − ti−1, (6.17)

for 1 ≤ i ≤ N . Naturally, tN = tN−1 + hN .

Remark 4 Observe that we have called the first time tag t0, but for all practical purposes,

we may accept to use the convention that t0 = 0. However, in the forthcoming derivations,

it would be confusing to have the first time tag as zero and the others as ti for 1 ≤ i ≤ N−1.

Therefore, we let t0 remain as it is but recall that setting t0 = 0 is perfectly legitimate. What

is important is the value of sample xγ(t0), not its time tag.

Remark 5 The distribution of the timepoints along the interval of length T depends on the

numerical method to be used. It is most convenient to have frequent samples when xγ(t)

is changing at a high rate. When xγ(t) stagnates, however, we can have sparse samples

along the particular interval. Some numerical methods do not allow this suitable timepoint

distribution to be utilized. In those cases, we are to take

hi = ti − ti−1 =
T

N
for 1 ≤ i ≤ N, (6.18)

so that our samples are uniformly spaced along the interval of length T .

Having defined the timepoints and their distribution along a single period, we still wonder

how the samples in set χ of (6.16) are to be computed numerically. A feasible method could

be outlined as follows.

Let x0(t) be a solution of, for example, the generic ODE in (2.1), and let x0(0) ∈ W,

where W is the domain of attraction associated with γ, the limit cycle of interest. We

know x0(t), as time progresses, will approach γ, through our assumption that γ has the

asymptotically orbital stability property. Therefore, we intuitively guess that x0(τ) for

some τ � 0 will almost be on γ. Whether x0(τ) is as close to γ as desired is numerically

distinguishable through the following procedure.

One of the M signals in x0(t) could be monitored through time. A minimum or maximum

in the waveform of this signal could be watched, as the value of this critical point on
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watch would, in time, seem to settle to a stable equilibrium. Then, after deciding that the

simulation had run long enough to achieve this equilibrium, we would measure the length of

the time interval between two consecutive instances, where the signal of choice would have

crossed the equilibrium value, and we would call this length the period, T , of xγ(t). The

discrete points together with their time tags in between these two instances would define

xγ(t) as follows. We would shift our time scale so as to call the time tag of the first instance,

t = 0, and the time tag of the second instance, t = T . In between and including times t = 0

and t = T , we would have a number of time points. We would call this number, N + 1.

Then, we would throw out the time point with tag t = T , because xγ(t) would take the

same value at t = 0 and t = T . Therefore, at the end of this scheme, we would have figured

out T and the set of discrete points defining xγ(t), together with their time tags.

The problem with the crude method outlined above is that it is not accurate enough,

and the computation takes a very long time to complete. Although this brute-force scheme

would require only the oscillator model and a differential equation solver, the stated caveats

on accuracy and computational complexity would outdo this minor advantage.

In the schemes called shooting, explained in Section 6.4.1, and harmonic balance, of

Section 6.4.2, we are forced to modify differential equation solvers or implement procedures

outside the scope of such solvers. However, we maintain that the computational complexity

is reduced and a tractable measure of accuracy can be achieved through these methods.

As a final note before proceeding to explain shooting, regard our convention to outline

these methods for only DAEs, as in the equations given by (2.4), in this part of our work.

The simplifications to incorporate the similar theory with the ability to encompass ODEs

as well, as given in (2.1), can be found in the appendices.

6.4.1 Shooting Method

The key property of γ, the limit cycle, and xγ(t), the solution on γ, is periodicity. We have

called the period of xγ(t) simply T . Periodic signals are expect to return to the same state

after subsequent intervals of their period as the lentgh. Therefore, we know that if we start

simulating from a point on γ, xγ(t0) for example, we are going to return to the same state

after T units of time. Mathematically speaking, we have xγ(t0 + T ) = xγ(t0). Let us write
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this as

Υ(t0 + T, t0, x
γ(t0)) − xγ(t0) = 0, (6.19)

where Υ is the state transition function associated with (2.4). We are going to be explaining

the related theory for DAEs, but the simplifications regarding ODEs can be found in the

appendices.

(6.19) is the main equation that the shooting method is based on [14]. Basically, we

aim to solve for xγ(t0), provided with an initial guess for this vector. An iterative solution

scheme, particularly Newton’s method, is employed in this case, for (6.19) is a nonlinear

equation, with its right-hand side zero.

Another key aspect of steady-state solution computations, as can be obviously noted, is

that we do not have previous information about the period of the signal to be figured out.

Therefore, in (6.19), T , the period of xγ(t), is also an unknown. We have got to have an

initial guess on T as well, before embarking on numerical computations.

Although the intuition leading to shooting is simple enough, the computations require

rigorous theory to be developed. In the following section, we derive which components are

to be rigorously computed, in relation to the shooting method.

Required Computational Components

Recall once more that we are going to employ Newton’s method, an iterative scheme to solve

(6.19). In this section, we are to define the setup at iteration number k. The transition

from iteration k to k + 1 can be accomplished through the scheme we are about to outline.

Let us denote the fact that we are spelling out computational components for iteration

k by superscripting our related variables with k. The steady-state periodic solution is given

by xk(t). Let us denote our timepoints at iteration k, by tki for 0 ≤ i ≤ N . Notice that we

employ tkN as well, but we also concede that tkN − tk0 = T k, T k being the proposed solution

for T , at iteration k. Also, we denote the length of the time intervals between consecutive

timepoints by hk
i = tki − tki−1 for 0 ≤ i ≤ N .

In all, the samples we have at iteration k are given in set

χk =
{

xk(tki ) for 0 ≤ i ≤ N
}

,

and we have T k as the proposed solution for T . Again, notice that we need xk(tkN ) as well.
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Now let us return to the basic equation of the shooting method in (6.19). If we write this

equation with the corresponding computational components at iteration k, we are going to

have

F k
sh = Υ(tk0 + T k, tk0 , x

k(tk0)) − xk(tk0), (6.20)

where F k
sh might be regarded as a residual. This residual is not exactly equal to zero, for

xk(tk0) is not exactly on γ. In the equation above, we are going to treat xk(tk0) as a variable,

and the expression with Υ as a function of xk(tk0), to complete some parts of our derivations.

However, the numerical value of F k
sh is also known, and it is given by F k

sh = xk(tkN )−xk(tk0).

Newton’s method for solving nonlinear equations of the form in (6.19) requires that we

compute the Jacobian of the residual at iteration k, with respect to the proposed solution

vector, again at iteration k. In our case, we call this necessary Jacobian, Jk
sh = ∂F k

sh/∂xk(tk0).

The expression for Jk
sh is yet to be derived, but there we are going to make use of the symbolic

expression in (6.20). As to how we utilize F k
sh and Jk

sh, we have to define

∆xk(tk0) = xk+1(tk+1
0 ) − xk(tk0). (6.21)

Our aim through the computation we are now to present is to figure out xk+1(tk+1
0 ), the

proposed solution vector at iteration k + 1. The linear system of equations given by

Jk
sh ∆xk(tk0) = −F k

sh, (6.22)

is solved for ∆xk(tk0), and we figure out xk+1(tk+1
0 ) through (6.21).

If all we needed to do were to figure out xk+1(tk+1
0 ) for use in the next iteration, we

would be done. However, recall that T , the period, is also an unknown in (6.19). Remember

that xγ(t0) is an (M ×1)-dimensional vector, and there is also T . Therefore, we have M +1

unknowns in (6.19), but only M equations. (6.19) is an under-determined system. We need

another equation to append to the system in (6.19), to have a fully determined system.

We now proceed to provide the intuitive explanation as to why we need an extra condi-

tion, in addition to (6.19), to obtain a fully determined system. γ, the limit cycle, consists

of infinitely many points. Each of these points is a candidate for xγ(t0). If there is no

condition fixing xγ(t0), any point on γ will satisfy the condition in (6.19).

The extra condition to fix xγ(t0) may be figured out follows. Newton’s method needs

an initial guess for the solution, in order to operate iteratively to find a solution. This
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initial guess must be close enough to the actual solution for Newton’s method to converge

quadratically. Otherwise, this method may not converge. Our initial guess for xγ(t0) is

simply x1(t10), the proposed solution at the first iteration. We suppose that x1(t10) is very

close to some point that is exactly on γ, so that Newton’s method may converge. However,

x1(t10) is not expected to be exactly on γ. We may suppose that an entry in x1(t10), one

of the M entries in this vector, will not change very much by the time Newton’s method

converges. So we are encouraged to fix a single entry of xγ(t0) to the value contained in

x1(t10). Mathematically speaking, let us have vector el, with l fixed. el is one of the standard

basis vectors, and its lth entry is one while its other entries are zero. Then, we write

eT

l xγ(t0) − x1
l (t

1
0) = 0, (6.23)

as the appended condition alongside (6.19). The residual at iteration k, corresponding to

(6.23) is

Gk
sh = eT

l x
k(tk0) − x1

l (t
1
0), (6.24)

which is again not expected to be sufficiently close to zero before convergence.

Since we now have another unknown T , we need another update equation as well. The

proposed solution for T at iteration k is T k. We have to define another update as in

∆T k = T k+1 − T k. (6.25)

Notice that T k+1 is the proposed solution for T at iteration k + 1.

(6.22) would be all that would be needed at iteration k to solve for xk+1(tk+1
0 ) if xk(tk0)

were the only unknown. However, T is also an unknown. Therefore, we declare that F k
sh

and Gk
sh are functions of both xk(tk0) and T k. The coupled linear equations to be solved at

iteration k become

∂F k
sh

∂xk(tk0)
∆xk(tk0) +

∂F k
sh

∂T k
∆T k = −F k

sh (6.26)

∂Gk
sh

∂xk(tk0)
∆xk(tk0) +

∂Gk
sh

∂T k
∆T k = −Gk

sh (6.27)

instead of (6.22). Above, we have already called ∂F k
sh/∂xk(tk0) = Jk

sh, and we need to figure

out a systematic method to compute Jk
sh. Simply, ∂Gk

sh/∂xk(tk0) = eT

l and ∂Gk
sh/∂T k = 0.

However, ∂F k
sh/∂T k is another vector whose calculation requires a systematically derived

method. We will call ∂F k
sh/∂T k = JT k

sh.
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We now need to summarize the discussion above to spell out the problem definition of

shooting. The task after that will be to figure out iterative methods to compute Jk
sh and

JT k
sh.

Shooting Problem Definition

Let Υ be the state transition function of the generic DAE in (2.4). The shooting problem

is to solve the following set of nonlinear equations for xγ(t0) and T .

Υ(t0 + T, t0, x
γ(t0)) − xγ(t0) = 0 (6.28)

eT

l x
γ(t0) − x1

l (t
1
0) = 0 (6.29)

x1(t10) and T 1 are our initial guesses for xγ(t0), an initial point on γ, and T , the period

on γ, respectively. l in el above is a fixed value such that 1 ≤ l ≤ M . The shooting problem

is solved using Newton’s method. Then, the linear set of equations to be solved at iteration

k can be spelt out as




Jk

sh JT k
sh

eT

l 0








∆xk(tk0)

∆T k



 = −




F k

sh

Gk
sh



 . (6.30)

Above, we have to note the following.

• ∆xk(tk0), the state update at iteration k, is as given in (6.21).

• ∆T k, the period update at iteration k, is as given in (6.25).

• F k
sh is the numerical value for the expression in (6.20).

• Gk
sh is the numerical value for the expression in (6.24).

• Jk
sh = ∂F k

sh/∂xk(tk0). We may refer to Jk
sh as the shooting Jacobian.

• JT k
sh = ∂F k

sh/∂T k.

• eT

l = ∂Gk
sh/∂xk(tk0).

With close enough initial guesses x1(t10) and T 1, Newton’s method can converge quadrati-

cally. The next sections focus on the systematic computation of Jk
sh and JT k

sh.
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Shooting Jacobian Calculation

We proceed to explore Jk
sh, the shooting Jacobian. Let us first write, in a straight-forward

manner,

Jk
sh =

∂F k
sh

∂xk(tk0)

=
∂Υ(tk0 + T k, tk0 , x

k(tk0))

∂xk(tk0)
−

∂xk(tk0)

∂xk(tk0)

=
∂Υ(tk0 + T k, tk0 , x

k(tk0))

∂xk(tk0)
− IM , (6.31)

where IM is the identity matrix of size (M × M). The challenge here is to figure out the

first expression in (6.31), with Υ, the state transition function of (2.4). We know and have

stated before tkN = tk0 + T k. Therefore, that xk(tkN ) = Υ(tk0 + T k, tk0 , x
k(tk0)) is true. In all,

we have to compute ∂xk(tkN )/∂xk(tk0).

For simplicity, let us introduce the notation in

Sk
i =

∂xk(tki )

∂xk(tk0)
, (6.32)

which is actually a sensitivity matrix. Note that Sk
N = ∂xk(tkN )/∂xk(tk0). Shortly, we will

also need

G(tkj ) =
∂f(xk(tkj ))

∂xk(tkj )
(6.33)

and

C(tkj ) =
∂q(xk(tkj ))

∂xk(tkj )
, (6.34)

in order to spell out our iterative method.

Let us now return to the discretized form of (2.4) in (6.9) and compute

∂

∂xk(tk0)





r∑

j=0

α̂j(H)q(xk(tki−j))





=
∂

∂xk(tk0)





r∑

j=0

β̂j(H)f(xk(tki−j))



 .

We then have

r∑

j=0

α̂j(H)
∂q(xk(tki−j))

∂xk(tki−j)

∂xk(tki−j)

∂xk(tk0)

=

r∑

j=0

β̂j(H)
∂f(xk(tki−j))

∂xk(tki−j)

∂xk(tki−j)

∂xk(tk0)
.
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Then, using our definitions, we obtain a simpler form as in

r∑

j=0

α̂j(H)C(tki−j)S
k
i−j =

r∑

j=0

β̂j(H)G(tki−j)S
k
i−j .

Let us now collect the terms corresponding to j = 0 on the left-hand side and the others on

the right-hand side to get

[

α̂0(H)C(tki ) − β̂0(H)G(tki )
]

Sk
i

= −
r∑

j=1

[

α̂j(H)C(tki−j) − β̂j(H)G(tki−j)
]

Sk
i−j .

Now let us define

Jk
i,j =

[

α̂j(H)C(tki−j) − β̂j(H)G(tki−j)
]

, (6.35)

to obtain finally

Jk
i,0 Sk

i = −
r∑

j=1

Jk
i,j Sk

i−j . (6.36)

Note that

Sk
0 =

∂xk(tk0)

∂xk(tk0)
= IM ,

and this is the initial condition to use when utilizing (6.36) in order to calculate Sk
i =

∂xk(tki )/∂xk(tk0). Our final objective is to calculate

Sk
N =

∂xk(tkN )

∂tk0
=

∂Υ(tk0 + T k, tk0 , x
k(tk0))

∂xk(tk0)
.

Of course, we compute the shooting Jacobian, through Jk
sh = Sk

N − IM .

Notice that Sk
i , for 0 ≤ i ≤ N , are generally dense matrices. On the other hand, G(tki )

and C(tki ), for 0 ≤ i ≤ N , are sparse matrices in most applications. Therefore, numerically

we would not like to compute and store Sk
i at each time point, tki , for 0 ≤ i ≤ N . Instead,

we would like to exploit the sparsity of G(tki−j) and C(tki−j), which lend Jk
i,j in (6.35) the

same graceful property.

The part of the shooting Jacobian that is tricky to compute, Sk
N , can be stored in sparse

factors, instead of storing all dense Sk
i . Examining the recursive scheme defined by (6.36),

we deduce that the sparse LU factors of Jk
i,0 can be stored, along with Jk

i,j, for 1 ≤ j ≤ r,

themselves, at each time point tki , for 0 ≤ i ≤ N .

Notice again that these components to be stored can be assembled from the by-products

of the inner Newton’s method, used to solve the discretized equation in (6.9), for xk(tki ).
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At iteration k of the shooting method, we make use of a differential equation solver to

solve for xk(tki ), for 1 ≤ i ≤ N . xk(tk0) is already available at the beginning of iteration

k. The differential equation solver employs Newton’s method, to solve for xk(tki ). At each

timepoint tki , for 0 ≤ i ≤ N , we have some auxiliary computational components that this

inner Newton’s method uses to generate xk(tki ). These components, which may be regarded

as the by-products of the differential equation solver, can then be manipulated to assemble

the necessary factors to generate Jk
sh, the shooting Jacobian.

Recall that we are to use not Gaussian Elimination but Krylov Subspace Methods to

compute the update in (6.30), which is the linear equation to solve at each iteration of

Newton’s method. There we will be required to compute the product of the shooting

Jacobian, Jk
sh, with vectors. It happens that the sparse factors of Sk

N that we store facilitate

the computation of these matrix vector products.

For example, let b0 be some vector that will be multiplied with Sk
N . Observe that the

computation goes simply as Sk
0b0 = IMb0 = b0, at time point tk0. Let bj = Sk

j b0, for

convenience. By the time we reach time point tki in our recursive scheme of (6.36), bj ,

for (i − r) ≤ j ≤ (i − 1), will already have been calculated, and then our task will be to

compute bi = Sk
i b0. Letting Li and Ui be the L and U factors of Jk

i,0, respectively, in (6.36).

Then,

bi = −U−1

i L−1

i





r∑

j=1

Jk
i,jbi−j,





and we will finally compute bN = Sk
N b0, at time point tkN .

Remark 6 If we require set H to consist of only hk
i , as stated in Remark 2, and so employ

α̂j(H) = αj and β̂j(H) = hk
i βj , then the auxiliary Jacobian, Jk

i,j, can be written as

Jk
i,j =

[

αjC(tki−j) − hk
i βjG(tki−j)

]

, (6.37)

instead of (6.35). This is a minor simplification of the recursive scheme in (6.36).

For this part of our work, involving the shooting Jacobian calculation, we have referred

to [14].
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Derivative with Respect to the Period

We now explain how to compute JT k
sh = ∂F k

sh/∂T k. We have

JT k
sh =

∂Υ(tk0 + T k, tk0 , x
k(tk0))

∂T k
−

∂xk(tk0)

∂T k

=
∂Υ(tk0 + T k, tk0 , x

k(tk0))

∂T k
, (6.38)

where we assume ∂xk(tk0)/∂T k = 0. Notice again that xk(tkN ) = Υ(tk0 + T k, tk0 , x
k(tk0)), and

so we have to compute JT k
sh = ∂xk(tkN )/∂T k.

Let us take the discretized form in (6.9) and compute

∂

∂T k





r∑

j=0

α̂j(H)q(xk(tki−j))





=
∂

∂T k





r∑

j=0

β̂j(H)f(xk(tki−j))



 .

We explicitly express the left- and right-hand sides of the equation above, as in LHS and

RHS, respectively.

LHS =
r∑

j=0

α̂j(H)
∂q(xk(tki−j))

∂xk(tki−j)

∂xk(tki−j)

∂T k

+

r∑

j=0

(
r−1∑

m=0

∂α̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

q(xk(tki−j))

RHS =
r∑

j=0

β̂j(H)
∂f(xk(tki−j))

∂xk(tki−j)

∂xk(tki−j)

∂T k

+

r∑

j=0

(
r−1∑

m=0

∂β̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

f(xk(tki−j))

We have used the fact that set H, defined in (6.8), consists of r interval lengths. Therefore,

we needed the chain rule of partial differentiation.

Now, let us define, for simplicity,

Ψk
i =

∂xk(tki )

∂T k
. (6.39)

Note that

Ψk
N =

∂xk(tkN )

∂T k
=

∂Υ(tk0 + T k, tk0 , x
k(tk0))

∂T k
= JT k

sh.
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Invoking (6.33) and (6.34), we may carry out the following simplifications in notation.

LHS =

r∑

j=0

α̂j(H)C(tki−j)Ψ
k
i−j

+

r∑

j=0

(
r−1∑

m=0

∂α̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

q(xk(tki−j))

RHS =

r∑

j=0

β̂j(H)G(tki−j)Ψ
k
i−j

+
r∑

j=0

(
r−1∑

m=0

∂β̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

f(xk(tki−j))

Now let us group some terms and exploit the fact that LHS = RHS to write the following.

[

α̂0(H)C(tki ) − β̂0(H)G(tki )
]

Ψk
i

= −

r∑

j=1

[

α̂j(H)C(tki−j) − β̂j(H)G(tki−j)
]

Ψk
i−j

−

r∑

j=0

(
r−1∑

m=0

∂α̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

q(xk(tki−j))

+
r∑

j=0

(
r−1∑

m=0

∂β̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

f(xk(tki−j))

Finally, through the definition of the auxiliary Jacobian, Jk
i,j , in (6.35),

Jk
i,0Ψ

k
i = −

r∑

j=1

Jk
i,jΨ

k
i−j

−

r∑

j=0

(
r−1∑

m=0

∂α̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

q(xk(tki−j))

+

r∑

j=0

(
r−1∑

m=0

∂β̂j(H)

∂hk
i−m

∂hk
i−m

∂T k

)

f(xk(tki−j)). (6.40)

The previous equation is used to compute Ψk
i = ∂xk(tki )/∂T k, at timepoint tki . Our final

objective is again to figure out Ψk
N = JT k

sh. We assume Ψk
0 = 0.

In (6.40), everything except ∂hk
j /∂T k, for 1 ≤ j ≤ N , is known. It happens that we

have to decide on the values of ∂hk
j /∂T k before we start executing the shooting method.

One of the two methods in [18] is to set these ratios as

hk
j

T k
=

h1
j

T 1
,
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for 1 ≤ j ≤ N , and k > 1. h1
j and T 1 are our initial guesses for interval lengths between

consecutive timepoints and the period, respectively. These values are obtained through

simulating the system in a differential equation solver. As the proposed solution for the

period, T , changes through iterations of Newton’s method, hk
j /T

k ratios remain the same.

This means that the ratios of the changes in these variables remain the same. Therefore,

we have
hk

j

T k
=

∂hk
j

∂T k
=

h1
j

T 1
,

for 1 ≤ j ≤ N , and k > 1. This method is more plausible than having the first N−1 interval

lengths the same, throughout the execution of shooting, and having the last interval length,

hk
N , change, since the latter method would at times require backward integration [18].

Note again that Newton’s method is used to solve the shooting problem. At each itera-

tion of Newton’s method, we have to solve a linear system of equations, in order to compute

the updates, for the states vector, xγ(t0), and the period, T . The linear system to be solved

at iteration k, for example, is given in (6.30). We have stated that we are going to solve this

linear system by Krylov Subspace Methods, not Gaussian Elimination. For this purpose,

we have explained how matrix vector products, involving Jk
sh, the shooting Jacobian, may

be facilitated via storing the sparse factors of Jk
sh.

Examining (6.30), we observe that in the required matrix vector products scheme of

Krylov methods concerning this linear system, we have to calculate JT k
sh = Ψk

N multiplied

with a scalar factor. This is easily managed by calculating Ψk
N first. The recursive scheme

in (6.40) tells us that by the time Ψk
i is to be calculated, Ψk

i−j for 1 ≤ j ≤ r will already have

been computed. Then, again calling the L and U factors of Jk
i,0, Li and Ui, respectively,

and naming the right-hand side of (6.40) ςi, for convenience, we have Ψk
i = U−1

i L−1

i ςi.

In order to solve for Jk
sh, the shooting Jacobian, we have to store, at each tki , for 1 ≤

i ≤ N , the LU factors of Jk
i,0, which we call Li and Ui, and Jk

i,j, for 1 ≤ j ≤ r, themselves.

As we stated before, these components can be generated from the by-products of the inner

Newton’s method that the differential equation solver employs. At each iteration k of the

shooting method, which we may also call the shooting Newton, we utilize a differential

equation solver to generate xk(tki ), for 1 ≤ i ≤ N . At each tki , xk(tki ) is calculated through

this inner Newton’s method. The by-products of this method, then, may be used to assemble

the components above.
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In addition to the components needed for Jk
sh, the shooting Jacobian, we have to obtain

f(xk(tki )) and q(xk(tki )) for 0 ≤ i ≤ N , in order to solve for Ψk
i through (6.40). The partial

derivatives of multi-step coefficients with respect to timepoint intervals are also necessary.

It happens that all these other components can be acquired from the by-products of the

inner Newton’s method. The timepoint intervals over the period ratios are determined again

by the differential equation solver, prior to the shooting Newton.

Remark 7 If we require as in Remark (2) that H =
{
hk

i

}
and so α̂j(H) = αj and β̂j(H) =

hk
i βj , then we will obtain several simplifications in the recursive scheme of (6.40). First,

we will have
r−1∑

m=0

∂α̂j(H)

∂hk
i−m

∂hk
i−m

∂T k
=

∂αj

∂hk
i

∂hk
i

∂T k
= 0,

since αj is a constant. Second, we will have

r−1∑

m=0

∂β̂j(H)

∂hk
i−m

∂hk
i−m

∂T k
=

∂(hk
i βj)

∂hk
i

∂hk
i

∂T k
= βj

∂hk
i

∂T k
.

In all, the recursive scheme will be modified as follows.

Jk
i,0Ψ

k
i = −

r∑

j=1

Jk
i,jΨ

k
i−j

+
∂hk

i

∂T k

r∑

j=0

βjf(xk(tki−j)) (6.41)

Above, Jk
i,j is as defined in (6.37).

In this section, we have elaborated on the method stated in [18].

A Simple Walkthrough and Summary

We now present a simple walktrough, defining in order the steps of the shooting method.

1. Generate an initial guess, through a differential equation solver, for xγ(t0), a point on

γ, and T , the period on γ, and call them x1(t10) and T 1, respectively, so that these

values are used in the first iteration of shooting. Make sure that these are guesses,

close enough to the actual solution. A multistep discretization scheme, employed in

the differential equation solver, is required. Make sure that the computation of x1(t11)

from x1(t10) is accomplished through the Backward Euler scheme. The reason will be

clear when explaining the persistent mode calculation based on shooting.
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2. Fix an integer l such that 1 ≤ l ≤ M . Store the lth entry of x1(t10), i.e. x1
l (t

1
0). At

iteration k, eT

l x
k(tk0)− x1

l (t
1
0) = xk

l (t
k
0)− x1

l (t
1
0) must be computed, since this measure

will be one of the two conditions to decide on convergence.

3. After generating the initial guesses for the timepoints, call h1
j = t1j − t1j−1, for 1 ≤

j ≤ N . h1
j are the lengths of the intervals between consecutive timepoints. The ratios

h1
j/T

1 must be stored for 1 ≤ j ≤ N . At iteration k of shooting, the guess for T will

be called T k, however, for our purposes, the hk
j /T

k ratios will have been determined

a priori. We will set hk
j /T

k = h1
j/T

1.

4. At the beginning of iteration k, xk(tk0) and T k will be available, as initial guesses for

xγ(t0) and T , respectively. Using these guesses and employing again a differential

equation solver, compute xk(tkN ) = xk(tk0 + T k). Again, the timepoints along the

interval of length T k must be distributed such that hk
j /T

k = h1
j/T

1, for 1 ≤ j ≤ N .

Also, remember to generate xk(tk1) from xk(tk0), through Backward Euler.

5. While solving for xk(tk0 + T k), some by-products of the differential equation solver

must be stored such that Jk
sh, the shooting Jacobian at iteration k, and JT k

sh, the

derivative with respect to the period again at iteration k, can be easily computed

afterwards. Since matrix-vector products constitute the essence of Krylov Subspace

Methods for solving linear systems of equations, it will be advantageous to store only

the sparse factors of Jk
sh and JT k

sh, for use in a matrix-vector product computation

procedure.

6. Since there will be access to the numerical values F k
sh = xk(tkN ) − xk(tk0), Gk

sh =

eT

l x
k(tk0) − x1

l (t
1
0), Jk

sh, JT k
sh, and eT

l , the linear system at iteration k, spelt in (6.30),

can be solved through Krylov Subspace Methods. Using the updates that are the

solutions of (6.30), xk+1(tk+1
0 ) and T k+1 can be computed.

7. At this point, a check for convergence is necessary, since the algorithm might generate

a result without running the next iteration of shooting. Checking the norms of F k
sh and

Gk
sh to be small and also making sure that the norms of the updates, i.e. the solutions

of the linear system of equations in (6.30), are small enough is enough justification to
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end shooting and yield a solution for xγ(t0) and T . Otherwise, go back to step 4, for

iteration k + 1.

For close enough initial guesses x1(t10) and T 1, the algorithm outlined above should

converge quadratically. A continuation scheme might be necessary to incorporate into the

procedure above, in order to enhance performance.

The Finite Differences Formulation

Note that the differential equation solver that we employ in shooting is able to compute

the timepoints one by one. It can be arranged such that we figure out all timepoints at

any iteration of the shooting method, at once. For this purpose, we will have to formulate

the finite differences approach. However, the essence is that we would not like to make use

of finite differences to compute the steady-state periodic solution of an oscillator. Rather,

persistent mode calculation, i.e. figuring out v1(t), through finite differences, is facilitated,

utilizing the samples of xγ(t), along with other useful ingredients, computed via shooting.

We will be investigating more into this scheme in Section 6.5.3.

6.4.2 Harmonic Balance

In steady-state periodic solution computations, the problem is to compute N samples of

xγ(t) along a single period. We observe that the shooting method, at any iteration during

its runtime, computes the candidates for these N samples one by one, through a differential

equation solver. It should be possible, however, to compute these N candidates altogether,

at any iteration. In this section, we review and devise a method that accomplishes the

required task in the stated manner.

Let us work again on the generic DAE in (2.4). We will be introducing several notations

to facilitate the current presentation.

Definition 21 (Concatenated Timepoints) Recalling that xγ(ti), for 1 ≤ i ≤ (N − 1),

are the timepoints to be computed, we define

x̄γ =
(

(xγ(t0))
T · · · (xγ(tN−1))

T
)

T

(6.42)

as the concatenated timepoints vector. We will not be needing timepoint xγ(tN ) = xγ(t0)
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for the particular numerical method we are to derive in this section. This information is

already embedded in the method.

We may proceed to generalize f and q in (2.4), in the same manner.

Definition 22 (Concatenated Nonlinear Functions) Following the notation in Defi-

nition 21, let us define f̄(x̄γ) and q̄(x̄γ) as

f̄(x̄γ) =
(

(f(xγ(t0)))
T · · · (f(xγ(tN−1)))

T
)

T

(6.43)

and

q̄(x̄γ) =
(

(q(xγ(t0)))
T · · · (q(xγ(tN−1)))

T
)

T

, (6.44)

respectively.

Notice that x̄γ , f̄(x̄γ), and q̄(x̄γ) are all defined in the time domain. We may need

transformation functions to switch back and forth between the time domain and another

domain, where numerical computation might be facilitated. In harmonic balance, this other

domain is the frequency domain. Thus, the basis to switch to is the Fourier basis.

The transformation into the frequency domain has several advantages. When we operate

on discrete samples in time, the switch to the frequency domain means, in the case of har-

monic balance particularly, computing the Fourier coefficients associated with the discrete

samples in time. Fourier basis functions computed over a single fundamental frequency are

inherently periodic and these functions inherently form an orthogonal set. These properties

of Fourier bases deem the transformations between the time and frequency domains com-

putationally less expensive, compared to the cases where other types of bases are employed.

Another advantage of switching to the frequency domain is that with a Fourier basis

employed, the counterpart, in the frequency domain, of differentiation with respect to time,

in the time domain, is multiplication with a diagonal matrix only. This differentiation

scheme is also numerically more accurate, compared to the multi-step discretization scheme,

carried out in the time domain.

The disadvantage of resorting to harmonic balance is that we lose the ability to vary the

time intervals between consecutive timepoints. The time intervals, provided that N is the

number of samples along a single period, are given by

hi = ti − ti−1 =
T

N
, for 1 ≤ i ≤ N, (6.45)
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i.e. consecutive timepoints are separated by uniform intervals. This is the only scheme in

which Fourier transforms do work.

In addition to the disadvantage stated above we are required to solve larger linear systems

at each iteration of harmonic balance. In shooting, the dimension of the linear systems was

only M . However, in harmonic balance, we aim to compute all timepoints via a linear

system solution, at each iteration, i.e. the dimension of this linear system is the product of

the number of signals, M , and the number of timepoints, N .

We have stated several items in comparing the two steady-state periodic solution finding

algorithms that we have. In all, harmonic balance is shown to be numerically more accurate

than shooting. However, the size of the linear systems to solve and the loss of variable

timestep utilization through harmonic balance may still render shooting more desirable.

We go on to introduce the computational components that we need to solve for, in the

harmonic balance method. The next steps will be to define the harmonic balance problem

and figuring out numerical procedures to calculate the required components. We will be

primarily referring to [13] in the forthcoming sections about harmonic balance.

Computational Components

Note first that we will denote the DFT (Discrete Fourier Transform) matrix by Γ and the

inverse of Γ is given by Γ−1. Let us start by defining the states vector in the frequency

domain.

Definition 23 (Concatenated Harmonics) We choose to let the states vector in the

frequency domain have an odd number of harmonics. The total number of harmonics is, of

course, N , the number of samples along an interval of length T . Therefore, N = 2K + 1,

for some integer K. Then, we let X̄γ , the concatenated harmonics vector, alias the states

vector in the frequency domain, be

X̄γ =
(
(Xγ

−K)∗ · · · (Xγ
K)∗

)
∗
, (6.46)

with Xγ
i being the ith harmonic, i.e. Xγ

i is the Fourier coefficient that corresponds to (iωγ
0 ),

an integer multiple of the fundamental angular frequency on γ, ωγ
0 . We can, by all means,

adopt the convention to use the generalized angular frequency notation, ω0, due to the fact

that periodicity exists in the domain of attraction, W, associated with γ, and we will do so.
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Note that we naturally have

X̄γ = Γx̄γ and x̄γ = Γ−1X̄γ , (6.47)

where x̄γ is the concatenated timepoints vector, introduced in Definition 21.

We also have to define the differentiation operator in the frequency domain.

Definition 24 The differentiation operator in the frequency domain will be denoted by jΩγ,

where j is the imaginary number notifier with j2 = −1. We have

jΩγ = j








ω0(−K)IM

. . .

ω0(+K)IM








, (6.48)

defining this operator that depends on ω0. jΩγ is a block diagonal matrix with N -many

(M × M)- sized diagonal blocks.

We have the tools ready to spell out the basic equation of the harmonic balance problem.

jΩγΓq̄(x̄γ) − Γf̄(x̄γ) = 0 (6.49)

Notice that unlike shooting, we do not need a differential equation solver this time.

We have to solve (6.49) through Newton’s method. At iteration k of Newton the proposed

solution for x̄γ will be denoted by x̄k. The Fourier transform of x̄k will be given by X̄k = Γx̄k.

We do not know the exact the period either, so let us denote the proposed solution for ω0,

the angular frequency, by ωk
0 , at again iteration k. jΩγ , the differentiation operator, depends

on ω0, therefore we will also need jΩk. We may now define a residual at iteration k as

F k
hb = jΩkΓq̄(x̄k) − Γf̄(x̄k), (6.50)

which may not be sufficiently close to zero at iteration k. The objective is to reduce the

norm of F k
hb through the iterations of Newton’s method.

In (6.49) we have actually X̄γ , the state harmonics defined in the frequency domain, as

the unknown. Therefore, we can actually modify (6.49) as

jΩγΓq̄(Γ−1X̄γ) − Γf̄(Γ−1X̄γ) = 0.
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Notice F k
hb in (6.50) is a vector in the frequency domain, and we may visualize F k

hb as

the concatenation of N = 2K + 1 harmonics, as in

F k
hb =

((

F k
hb,−K

)∗

· · ·
(

F k
hb,+K

)∗)∗

with F k
hb,i as the ith harmonic of F k

hb, which corresponds to iω0, an integral multiple of the

fundamental angular frequency, ω0. In harmonic balance, our aim is to reduce the norms

of all these residual harmonics. Indeed, this is the objective of collocation methods, as

opposed to Galerkin schemes. In Galerkin schemes, the essence is to make the residual,

F k
hb, orthogonal to the Fourier basis functions in the range given by −K ≤ i ≤ K, with the

fundamental frequency chosen as ω0, i.e. in Galerkin schemes, we seek to make Γ−1F k
hb, the

residual transformed into the time domain, orthogonal to the Fourier basis functions given

by exp(jω0i), for −K ≤ i ≤ K. Γ−1F k
hb in this case will be spanned by exp(jω0i), with

|i| > K.

The scheme we use to solve the harmonic balance problem is called, in view of the last

paragraph, the pseudo-spectral collocation method.

In solving (6.49) through Newton’s method, we have to define the following update at

iteration k, after introducing the residual in (6.50).

∆X̄k = X̄k+1 − X̄k (6.51)

If we treat F k
hb as a function of X̄k only, as in F k

hb = F k
hb(X̄

k), the linear system to solve at

iteration k becomes
∂F k

hb

∂X̄k
∆X̄k = −F k

hb. (6.52)

Let us call Jk
hb = ∂F k

hb/∂X̄k the harmonic balance Jacobian. We do not yet explain how

to numerically compute Jk
hb but note it as a computational component necessary to be

calculated to fully implement the harmonic balance method.

As in shooting and as we stated before in this section, we do not have prior knowledge

about the period of oscillation on γ. All we have is an initial guess for the angular frequency,

which we call ω1
0, the guess for ω0 at the first iteration of Newton’s method. Therefore, we

need to figure out a solution for ω0 as well. F k
hb is a function not only of X̄k but also of

ωk
0 , i.e. F k

hb = F k
hb(X̄

k, ωk
0 ). That means the nonlinear system of equations in (6.49) is

an under-determined system. We have (NM + 1) unknowns, X̄γ and ω0, but only NM

equations. We need another condition to fully determine the system.
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The answer to the question as to why we need another condition to exactly specify this

system of equations is very similar to the answer given in the shooting problem discussion.

Any time-shifted version of x̄k is a legitimate solution to (6.49), provided the exact frequency,

ω0, is given. We have to be able to pick a single solution out of the infinitely many. The

extra condition to append to the system in (6.49) will be designed to accomplish this task.

The extra condition is described in [12]. The facts that x̄k is a real multi-dimensional

signal and X̄k = Γx̄k are exploited therein. If we pick a single signal out of the M that

we have, and call its index sig, we know that X̄k
sig,+i, the ith harmonic of x̄k

sig, will be

the complex conjugate of X̄k
sig,−i, i.e. X̄k

sig,+i =
(

X̄k
sig,−i

)
∗

. This is true because x̄k is a

real signal. It can also be proved that via shifting x̄k by a particular length in time, the

imaginary part of X̄k
sig,+i can be set to zero. It follows naturally that

(

Im(X̄k
sig,+i) = 0

)

⇒
(

Im(X̄k
sig,−i) = 0

)

. Then, the extra condition to append to (6.49) becomes

sT

sig X̄γ = 0. (6.53)

ssig is used here to extract a multiple of Im(X̄k
sig,1). Recalling that X̄k is a concatenated

harmonics vector, the harmonics being in the order given by −K ≤ i ≤ K, we set ssig as

follows. Let the entry with index (M(K − 1) + sig), of ssig, be −1, and let the entry with

index (M(K + 1) + sig), of ssig, be 1. Then, (6.53) is the condition to set the imaginary

part of X̄k
sig,1 to zero.

The condition given in (6.53) requires us to augment the residual vector, F k
hb in (6.50).

We define

Gk
hb = sT

sig X̄k. (6.54)

We may treat Gk
hb as Gk

hb = Gk
hb(X̄

k, ωk
0 ).

We have set the condition in (6.53), for ω0 is another unknown in the system of equations

given by (6.49). Then, we also need to define the update for ωk
0 , at iteration k of Newton’s

method, as

∆ωk
0 = ωk+1

0 − ωk
0 . (6.55)

We can now modify the linear system to be solved at iteration k.
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We have both F k
hb = F k

hb(X̄
k, ωk

0 ) and Gk
hb = Gk

hb(X̄
k, ωk

0). The linear system of equations

to solve at iteration k must be modified as

∂F k
hb

∂X̄k
∆X̄k +

∂F k
hb

∂ωk
0

∆ωk
0 = −F k

hb, (6.56)

∂Gk
hb

∂X̄k
∆X̄k +

∂Gk
hb

∂ωk
0

∆ωk
0 = −Gk

hb, (6.57)

instead of (6.52). We have already called Jk
hb = ∂F k

hb/∂X̄k the harmonic balance Jacobian.

Let us call Jωk
hb = ∂F k

hb/∂ωk
0 . We simply know that ∂F k

hb/∂ωk
0 = sT

sig and ∂Gk
hb/∂ωk

0 = 0.

After stating the problem definition of harmonic balance in the next section, the following

task will be to figure out numerical methods for calculating Jk
hb and Jωk

hb.

Harmonic Balance Problem Definition

The following equations form a nonlinear set, for whose solution we require the use of the

harmonic balance method. Harmonic balance is one of the methods of figuring out the

steady-state periodic solution of interest, of the generic DAE in (2.4).

jΩγΓq̄(x̄γ) − Γf̄(x̄γ) = 0 (6.58)

sT

sig X̄γ = 0 (6.59)

Note x̄γ in Definition 21, X̄γ = Γx̄γ in Definition 23, f̄(x̄γ) and q̄(x̄γ) in Definition 22, jΩγ ,

the differentiation operator in Definition 24, and Γ, the DFT (Discrete Fourier Transform)

operator.

Newton’s method is used to solve the system in (6.58) and (6.59). The linear system of

equations to solve at iteration k of Newton’s method reads as follows.




Jk

hb Jωk
hb

sT

sig 0








∆X̄k

∆ωk
0



 = −




F k

hb

Gk
hb



 (6.60)

We must note the following items about (6.60)

• ∆X̄k is the harmonics update vector as given in (6.51).

• ∆ωk
0 is the frequency update vector as given in (6.55).

• F k
hb is the numerical value of the residual defined in (6.50).
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• Gk
hb is the numerical value of the residual defined in (6.54).

• Jk
hb is called the harmonic balance Jacobian and it is defined as Jk

hb = ∂F k
hb/∂X̄k.

• Jωk
hb = ∂F k

hb/∂ωk
0 .

• sT

sig = ∂Gk
hb/∂X̄k.

The related items in (6.60) have been superscripted with k, in order to notify that these

values are valid during only iteration k of Newton’s method.

The task now is to figure out numerical methods to compute Jk
hb, the harmonic balance

Jacobian, and Jωk
hb.

Harmonic Balance Jacobian

We explain here the method to compute Jk
hb = ∂F k

hb/∂X̄k, the harmonic balance Jacobian.

The computation is straight-forward, but we have to introduce some more notation for

convenience.

Let us define

Ḡ(x̄k) =
∂f̄(x̄k)

∂x̄k

=








G(tk0)

. . .

G(tkN−1)








(6.61)

and

C̄(x̄k) =
∂q̄(x̄k)

∂x̄k

=








C(tk0)

. . .

C(tkN−1)








, (6.62)

where

G(tki ) =
∂f

∂x

∣
∣
∣
∣
xk(tki )

, and C(tki ) =
∂q

∂x

∣
∣
∣
∣
xk(tki )

,
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for 0 ≤ i ≤ N − 1. Ḡ(x̄k) and C̄(x̄k) are (NM × NM)-sized block diagonal matrices. The

diagonal blocks are obviously (M × M)-sized and there are N -many such blocks in each of

Ḡ(x̄k) and C̄(x̄k).

We have to make use of the chain of partial differentiation to write

∂f̄(x̄k)

∂X̄k
=

∂f̄(x̄k)

∂x̄k

∂x̄k

∂X̄k

= Ḡ(x̄k) Γ−1

and

∂q̄(x̄k)

∂X̄k
=

∂q̄(x̄k)

∂x̄k

∂x̄k

∂X̄k

= C̄(x̄k) Γ−1.

We use the fact that x̄k = Γ−1X̄k. Then, we compute Jk
hb, the harmonic balance Jacobian,

as in

Jk
hb =

∂F k
hb

∂X̄k

= jΩkΓ
∂q̄(x̄k)

∂X̄k
− Γ

∂f̄(x̄k)

∂X̄k

Jk
hb = jΩkΓC̄(x̄k)Γ−1 − ΓḠ(x̄k)Γ−1. (6.63)

Above, the fact that jΩk is a linear operator is implicitly necessary to use. In deriving Jk
hb,

we have referred to [13] and [14].

Note that Jk
hb in (6.63) does not itself turn out to be a sparse matrix. However, all

factors of Jk
hb are sparse, except Γ, the DFT operator, and Γ−1, its inverse, but computing

the Fourier transform of a vector is computationally less costly through FFT (Fast Fourier

Transform) than through straight-forward matrix vector multiplication. Therefore, Jk
hb

times a vector can be calculated via exploitation of the sparse factors structure in (6.63).

We draw attention to the observations in the last paragraph, because the linear systems

at each iteration of Newton’s method, as given in (6.60), will not be solved through Gaussian

Elimination. These systems are to be solved through Krylov Subspace Methods, which ben-

efit from computationally inexpensive matrix vector product computations to solve linear

systems.
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Derivative with Respect to the Frequency

We now move on to the numerical computation of Jωk
hb = ∂F k

hb/∂ωk
0 . There is only one

term in F k
hb that depends on ωk

0 , and that is the term with jΩk, the differentiation operator.

This observation allows us to write

Jωk
hb =

∂F k
hb

∂ωk
0

=
∂(jΩk)

∂ωk
0

Γq̄(x̄k). (6.64)

The partial differential term above can easily be spelt out as

∂(jΩk)

∂ωk
0

=








(−K)IM

. . .

(+K)IM








. (6.65)

Authors of [12] are credited for this particular contribution.

6.5 Computing Floquet Modes of LPTV Systems

6.5.1 Eigenvalue Problems in Floquet Theory

We are to explain how to numerically compute the persistent Floquet mode through har-

monic balance. After the steady-state periodic solution computation is accomplished through

harmonic balance, we gain access to the harmonic balance Jacobian after convergence, Jhb

with the iteration k notifier dropped, which will facilitate the computation of v1(t), the

persistent mode. Before making use of Jhb, however, we have to introduce the auxiliary

topic of eigenvalue problems in Floquet theory. This reservation will enable us to derive

the components of a theory that will help in numerically computing not only the persistent

mode, but all Floquet modes, v1(t) through vM (t).

Our discussion again focuses on the more general DAE case. Remember from [3]

that in the DAE case, some modes are in the nullspace of C(t) = ∂q/∂xγ . We have

C(t)ui(t) = 0, for (m + 1) ≤ i ≤ M , with m < M . Therefore, the biorthogonality condition

vT

j (t)C(t)ui(t) = δij holds only for 1 ≤ i ≤ m and 1 ≤ j ≤ m.

Also, let us assume that the Floquet exponents, µk for 1 ≤ k ≤ M , are real, for simplicity.
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LPTV Equation

In this case, we explore, first, how the eigenfunction uk(t), for any k ∈ {1, . . . ,m}, at t = 0,

namely uk(0), is transformed by means of the state transition function, K. We call the

transformed solution yk(t).

yk(t) = K(t, 0) uk(0)

=

m∑

i=1

eµitui(t) vT

i (0)C(0)uk(0)
︸ ︷︷ ︸

δik

= eµktuk(t) (6.66)

Recall that

G(t) =
∂f

∂x

∣
∣
∣
∣
xγ(t)

, C(t) =
∂q

∂x

∣
∣
∣
∣
xγ(t)

.

Notice that we have not yet taken into account the modes that happen to reside in the

nullspace of C(t). Let us see how uk(t), for (m + 1) ≤ k ≤ M , are transformed. We have

simply

yk(t) = K(t, 0) uk(0)

=

m∑

i=1

eµitui(t) vT

i (0)C(0)uk(0)
︸ ︷︷ ︸

0

= 0. (6.67)

These modes are killed instantly by the state transition function. However, we can still

write these trivial solutions in the form given in (6.66), if we consider that eµktuk(t) = 0,

with µk = −∞ for (m + 1) ≤ k ≤ M . Therefore, the Floquet exponent that corresponds to

each of these modes is −∞. This Floquet exponent has (M − m) multiplicity.

In all, we have

yk(t) = K(t, 0)uk(0) = eµktuk(t), (6.68)

considering both cases, 1 ≤ k ≤ m and (m+1) ≤ k ≤ M , with µk = −∞ for (m+1) ≤ k ≤

M .

Second, we substitute the expression for yk(t), since we have explicitly made use of the

state transition function, K, to calculate yk(t), and we know that it will satisfy the LPTV
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equation for the DAE case.

d

dt

[
C(t)

{
eµktuk(t)

}]
= G(t)

{
eµktuk(t)

}

d

dt
(C(t)uk(t)) − G(t)uk(t) = −µkC(t)uk(t) (6.69)

Remark 8 We must note that (6.69) is an instance of a generalized eigenvalue problem.

Finding the eigenpairs, i.e. the negated Floquet exponents, −µk, and the eigenfunctions,

uk(t), for 1 ≤ k ≤ M , requires sophisticated numerical methods. We can represent the

eigenvalue problem in (6.69), through matrices, in the time or frequency domain, and then

apply numerical methods to solve it. We will shortly relate this eigenvalue problem statement

to the finite differences formulation and the harmonic balance method.

Adjoint LPTV Equation

In the same manner as in the previous section, we now present the eigenvalue problem,

which may be used to figure out the eigenfunctions vk(t), for 1 ≤ k ≤ m. We, first, need

to explore how the state transition function, L, of the adjoint LPTV equation transforms

vk(t). We call the transformed solution zk(t), for t < 0, with vk(0) as the initial condition.

zk(t) = L(t, 0) vk(0)

=

m∑

i=1

e−µitvi(t)uT

i (0)C
T(0)vk(0)

︸ ︷︷ ︸

δik

= e−µktvk(t) (6.70)

Again, we have to consider vk(t), for (m+1) ≤ k ≤ M . Just as uk(t), for (m+1) ≤ k ≤

M , span the nullspace of C(t), vk(t), for (m + 1) ≤ k ≤ M , span the nullspace of CT(t) [3].

Therefore, we have for (m + 1) ≤ k ≤ M ,

zk(t) = L(t, 0) vk(0)

=

m∑

i=1

e−µitvi(t)uT

i (0)C
T(0)vk(0)

︸ ︷︷ ︸

0

= 0. (6.71)

We have already assigned µk = −∞ to these modes. Recalling that computation of the

adjoint equation is stable only backward in time, i.e. t < 0, we have zk(t) = e−µktvk(t) = 0,

for (m + 1) ≤ k ≤ M . We can indeed keep the same form as in (6.70).
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In all, we have

zk(t) = L(t, 0)vk(0) = e−µktvk(t), (6.72)

considering both cases, 1 ≤ k ≤ m and (m+1) ≤ k ≤ M , with µk = −∞ for (m+1) ≤ k ≤

M .

We know that zk(t) satisfies the adjoint LPTV equation, for the DAE case, since we

have used L, the corresponding state transition function. Therefore, all we need to do is

substitute.

CT(t)
d

dt

{
e−µktvk(t)

}
= −GT(t)

{
e−µktvk(t)

}

−CT(t)
dvk

dt
− GT(t)vk(t) = −µkC

T(t)vk(t) (6.73)

Remark 9 The equation in (6.73) defines another instance of generalized eigenvalue prob-

lems. The eigenvalues are the same as those of the problem in (6.69), the negated Floquet

exponents, −µk, for 1 ≤ k ≤ M . However, the eigenfunctions that correspond to these

values are, for the adjoint case, vk(t). We again have to resort to numerical linear algebra

to solve this eigenvalue problem. The finite differences formulation and harmonic balance

are two media facilitating this computation.

Other Eigenpairs

In (6.69), we have presented an eigenvalue problem, where −µk is the eigenvalue, and uk(t)

is the corresponding eigenfunction, for 1 ≤ k ≤ M . We now propose that eigenvalues of the

form −(µk − jH) and eigenfunctions ejHtuk(t) are also solutions of the problem in (6.69),

for some jH.

Let us modify the problem in (6.69) and try to figure out a condition on jH.

d

dt

[
C(t)

{
ejHtuk(t)

}]
−

G(t)
{
ejHtuk(t)

}
= −(µk − jH)C(t)

{
ejHtuk(t)

}
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After simplifications and grouping we get the following.

jHejHtC(t)uk(t) −

jHejHtC(t)uk(t) = −ejHt d

dt
(C(t)uk(t))

+ ejHtG(t)uk(t)

− µke
jHtC(t)uk(t)

The left-hand side of the equation above is obviously zero, and the right-hand side is zero

by (6.69). Therefore, we get no constraint on jH, through the eigenpair we have proposed.

However, since we are interested in only periodic eigenfuctions, we can figure out discrete

values for jH. ejHt must be of the same period with uk(t), with T being the period. This

is possible if jH = j2π/Tn, for an integral values of n. Therefore, the eigenpairs that solve

the problem in (6.69) are the eigenvalues, −(µk − j2π/Tn), and the periodic eigenfuctions,

ej2π/Tntuk(t), for 1 ≤ k ≤ M and integral values of n.

We must check if the set of eigenvalues we have proposed satisfy (6.73), the eigenvalue

problem in the adjoint case. In this case, we will have −(µk + jH) as the eigenvalues, and

ejHtvk(t) as the corresponding eigenfunctions. Again, jH = j2π/Tn, for integral values of

n, will hold, to have T -periodic eigenfuctions.

Let us reformulate the eigenvalue problem in the same manner as for the LPTV case.

− CT(t)
d

dt

{
ejHtvk(t)

}
−

GT(t)
{
ejHtvk(t)

}
= −(µk + jH)

{
ejHtvk(t)

}

After evaluations and grouping terms, we get the following.

jHejHtCT(t)vk(t) −

jHejHtCT(t)vk(t) = ejHtCT(t)
dvk(t)

dt

+ ejHtGT(t)vk(t)

− µke
jHtCT(t)vk(t)

The left-hand side of the equation above is zero. The right-hand side is identically equal to

zero by (6.73). Other than the particular choice jH = j2π/Tn, for integral values of n, to

make the eigenfunctions, ejHtvk(t), T -periodic, there is again no constraint on n.
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We may now express the generalized eigenvalue problems, associated with the LPTV

and adjoint LPTV equations in the DAE case. Furthermore, we can spell out the general

forms of the solutions to these problems, the eigenvalues and the corresponding periodic

eigenfunctions.

All Eigenvalues and Periodic Eigenfunctions

Below is the generic form of the eigenvalue problem for the DAE LPTV case.

d

dt
(C(t)ykn(t)) −G(t)ykn(t) = λknC(t)ykn(t) (6.74)

λkn is the generic eigenvalue, and ykn(t) is the corresponding eigenfunction. For the adjoint

LPTV case, we have the following formulation.

−CT(t)
dzkn

dt
− GT(t)zkn(t) = λ∗

knC
T(t)zkn(t) (6.75)

The complex conjugate of λkn, as in (6.74), is the eigenvalue, whereas we have zkn(t) as the

corresponding eigenfunction.

We have figured out that λkn is of the form

λkn = −(µk − j2π/Tn). (6.76)

µk is the kth Floquet exponent, T is the period on the limit cycle, γ. n is an integer. For

fixed values of k and n, λkn is an eigenvalue for (6.74), and λ∗

kn is an eigenvalue for (6.75).

The corresponding eigenfunctions, ykn(t) and zkn(t), are given as follows.

ykn(t) has the form

ykn(t) = ej2π/Tntuk(t), (6.77)

where uk(t) is the kth Floquet eigenfunction of the forward LPTV equation.

zkn(t) has the form

zkn(t) = ej2π/Tntvk(t), (6.78)

where vk(t) is the kth Floquet eigenfunction, corresponding to the adjoint case.

Notice that throughout the derivations in this section, we have assumed that the Floquet

exponents µk, for 1 ≤ k ≤ M , are real. Our derivations still remain intact when µk are

complex numbers. K(t, 0) in this case becomes

K(t, 0) =

m∑

i=1

exp(µit)ui(t)v
∗

i (0)C(0).
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Then, L(t, 0), the state transition function of the adjoint form, becomes

L(t, 0) =
m∑

i=1

exp(−µ∗

i t)vi(t)u
∗

i (0)C
T(0).

We replace T, the transpose operator, with the Hermitian transpose operator, ∗. Also we

have to use the complex conjugate of µi for the expression of L(t, 0). These changes bring

about λ∗

kn = −(µ∗

k + j2π/Tnt) in (6.75).

In the next sections, we aim to show the relation of these derivations to the finite

difference formulations and the harmonic balance Jacobian after convergence, Jhb.

6.5.2 Computation Through Shooting

In order to compute Floquet modes through shooting, the steps to be taken are listed as

follows. Let us only concentrate on vi(t), for 1 ≤ i ≤ m, in the DAE case.

1. Solve for L(−T, 0) through CT(t)ż = −GT(t)z with L(0, 0) = IM .

2. Eigen-decompose L(−T, 0) and compute those eigenvectors not in the nullspace.

3. Associate eµiT with vi(T ) = vi(0), i.e. the eigenvalues with the eigenvectors respec-

tively.

4. Solve CT(t)ż = −GT(t)z for e−µitvi(t) backwards in time, for 0 ≥ t ≥ −T . Scale

e−µitvi(t) with eµit to get vi(t) for all t.

6.5.3 Computation Through Finite Differences

It happens that we can manipulate the multistep discretization scheme in (6.9) to formulate

a finite differences approach as given below.

Let us derive the finite differences scheme over the data computed through the shooting

method, i.e. after shooting converges, we may write the scheme in (6.9) with the k notifier

dropped. In view of this remark, we have

r∑

j=0

α̂j(H)q(xγ(ti−j)) =
r∑

j=0

β̂j(H)f(xγ(ti−j)), (6.79)

where α̂j(H) and β̂j(H), for 0 ≤ j ≤ r, are multistep coefficients that depend on the r

elements of H = {hi, . . . , hi−r+1}. Recall that (6.79) is a scheme that states the relation
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of essentially xγ(ti) to the other samples along the interval of length T . (6.79) is an r-step

discretization scheme, i.e. the memory of (6.79) is r-deep, and (6.79) applies to the sample

given by xγ(ti) only. That means r can actually change with respect to i, i.e. r = r(i), the

depth of the memory, allocated for a sample, depends on the particular sample. Numerical

concerns involving truncation errors determine this depth of the memory incorporated. In

all, we accommodate variable order schemes through (6.79).

Since we have N samples, xγ(ti) for 0 ≤ i ≤ (N − 1), along a period of length T , let us

assume for simplicity that the memory of our discretization is (N − 1)-deep for all samples.

We will make use of the simple notations α̂i
j and β̂i

j , the jth multistep coefficients for the ith

sample. α̂i
j and β̂i

j depend on H = {hi, hi−N+2}. Notice that the interval lengths between

consecutive timepoints exhibit periodicity with period N , i.e. hi+nN = hi, where n is an

integer. Note the matrix formulation in

ℵ̂ =











α̂0
0 α̂0

N−1 · · · α̂0
2 α̂0

1

α̂1
1 α̂1

0 α̂1
N−1 · · · α̂1

2

. . .
. . .

. . .

α̂N−1
N−1 α̂N−1

N−2 · · · α̂N−1
1 α̂N−1

0











⊗ IM (6.80)

and

î =











β̂0
0 β̂0

N−1 · · · β̂0
2 β̂0

1

β̂1
1 β̂1

0 β̂1
N−1 · · · β̂1

2

. . .
. . .

. . .

β̂N−1
N−1 β̂N−1

N−2 · · · β̂N−1
1 β̂N−1

0











⊗ IM . (6.81)

⊗ denotes Kronecker product, and ℵ̂ and î are block matrices. We may then locate the

relations in the form of (6.79) for all timepoints along a single period, noting that after

shooting converges, we have xγ(tN = t0 + T ) = xγ(t0). This compact form reads

ℵ̂











q(xγ(t0))

q(xγ(t1))
...

q(xγ(tN−1))











= î











f(xγ(t0))

f(xγ(t1))
...

f(xγ(tN−1))











. (6.82)

(6.82) is called the finite difference scheme of discretizing the generic DAE in (2.4). Notice

that in (6.82), we have put in q and f evaluated at the samples on γ, i.e. we have formulated
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the finite differences scheme over the samples along a single period, obtained through the

convergence of shooting. We have a point in doing that, because our purpose is not spelling

out another scheme for figuring out the steady-state solution on γ. Rather, we would like

to use (6.82) for computing the persistent mode of the adjoint LPTV equation, associated

with (2.4), after shooting converges.

We have to make sure the left-hand side of (6.82) performs discrete differentiation. For

this purpose we will have to define

Λ =














ĥN

ĥ1

. . .

ĥN−2

ĥN−1














⊗ IM , (6.83)

where it may be such that ĥi 6= hi = (ti − ti−1), for 1 ≤ i ≤ N . The values of ĥi depend

on the multi-step coefficients, and the reason behind this reservation is again to ensure that

the scaling is correct so that the left-hand side of

ℵ











q(xγ(t0))

q(xγ(t1))
...

q(xγ(tN−1))











= i











f(xγ(t0))

f(xγ(t1))
...

f(xγ(tN−1))











, (6.84)

is a numerically correct measure of the time derivatives of the nonlinear q functions con-

catenated. Note that ℵ = Λ−1ℵ̂ and i = Λ−1î.

The procedure for figuring out v1(t) through finite differences is yet to follow. Let us for

now just spell out the forward and adjoint LPTV equations, obtained from (6.84).

The forward LPTV equation reads

ℵC̄(x̄γ)ȳ = iḠ(x̄γ)ȳ. (6.85)

And the adjoint LPTV reads

C̄T(x̄γ)ℵTz̄ = −ḠT(x̄γ)iTz̄. (6.86)
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Note that above we have

C̄(x̄γ) =








C(t0)

. . .

C(tN−1)








and

Ḡ(x̄γ) =








G(t0)

. . .

G(tN−1)








,

where C(ti) = ∂q(xγ(ti))/∂xγ(ti) and G(ti) = ∂f(xγ(ti))/∂xγ(ti). Also

x̄γ =
(

(xγ(t0))
T · · · (xγ(tN−1))

T
)

T

,

ȳ =
(

(y(t0))
T · · · (y(tN−1))

T
)

T

,

and

z̄ =
(

(z(t0))
T · · · (z(tN−1))

T
)

T

.

We will make use of the adjoint equation in (6.86) to numerically figure out v1(t).

Note that ℵ and i need not be dense matrices, in terms of their block structure, because

the multistep discretization scheme for each sample needs not have (N − 1)-deep memory.

As stated before, the depth of this memory can vary over samples. However, the block

sparsity structures of ℵ and i are the same in any case.

Now, we proceed to numerically figure out v1(t) through the finite differences formu-

lation. In fact, this formulation can be utilized to compute all modes, as will be clear

shortly.

Referring to the findings of the previous section, we may spell out the eigenvalue problem,

derived from the forward LPTV equation in (6.85), as

[
ℵC̄(x̄γ) − iḠ(x̄γ)

] {
ϑ̄
}

= λC̄(x̄γ)
{
ϑ̄
}

, (6.87)

where the solutions are of the form

λ = λkn = −(µk − j2π/Tn), (6.88)

for the eigenvalues, and

ϑ̄ =
( (

ejω0nt0uk(t0)
)∗

· · ·
(
ejω0ntN−1uk(tN−1)

)∗
)∗

, (6.89)
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for the eigenfunctions.

Fortunately, we need only u1(t), so the (−µ1 = 0, u1(t)) eigenpair will suffice. However,

we have already set u1(t) = dxγ/dt, i.e. u1(t) can be readily computed through the discrete

differentiation of xγ(t), the samples of xγ(t) having been found via the shooting method.

Note that to satisfy the normalization condition in vT

1(t)C(t)u1(t) = 1, we need to have

access to C(t)u1(t), and we can easily verify, again, that dq(xγ)/dt = C(t)u1(t) = f(xγ). We

will shortly spell out the normalization condition, spelt via the finite differences formulation,

but the discrete samples for v1(t) have to be computed first.

Let us derive the eigenvalue problem through the adjoint equation in (6.86) as

[
−C̄T(x̄γ)ℵT − ḠT(x̄γ)iT

]
{%̄} = λ∗C̄T {%̄} , (6.90)

whose solutions are

λ∗ = λ∗

kn = −(µk + j2π/Tn) (6.91)

for the eigenvalues, and

%̄ =
( (

ejω0nt0vk(t0)
)∗

· · ·
(
ejω0ntN−1vk(tN−1)

)∗
)
∗

(6.92)

for the eigenfunctions. Also, we are able to solve for all the modes, all we need is the

(−µ1 = 0, v1(t)) eigenpair. We resort to the methods of numerical linear algebra to figure

out this eigenpair. Numerically, the eigenvalue is not exactly to be zero. Therefore, we seek

the eigenfunction that corresponds to the smallest absolute eigenvalue.

Having computed the samples for v1(t), the next task is to make sure v1(t) is normalized.

Following our previous discussion, we have vT

1(t)f(xγ(t)) = 1 as a legitimate normalization

condition. The finite differences formulation allows us to write

ℵq̄(x̄γ) = if̄(x̄γ),

which helps us to spell the normalization condition as

v̄T

1 if̄(x̄γ) = N, (6.93)

considering that we have N timepoints. Note that we have

f̄(x̄γ) =
(

(f(xγ(t0)))
T · · · (f(xγ(tN−1)))

T
)

T
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and

v̄1 =
(

(v1(t0))
T · · · (v1(tN−1))

T
)

T

.

Let us now summarize the computation of v1(t) through the finite differences formula-

tion.

1. Compute the samples for xγ(t) through shooting. Store such factors as C(t), G(t),

q(xγ(t)), f(xγ(t)), and the multistep coefficients used for computing each timepoint.

These factors are necessary for having available C̄(x̄γ), Ḡ(x̄γ), q̄(x̄γ), f̄(x̄γ), ℵ, and

i.

2. Compute v̄1, the samples of v1(t) concatenated, through solving the eigenvalue prob-

lem in (6.90), which is derived from the adjoint equation in (6.86).

3. Normalize v̄1 through the normalization condition in (6.93).

The finite differences method for figuring out v1(t), i.e. solving for all the samples of

v1(t) along an interval of length T , is proved to be numerically more accurate compared to

the procedure outlined in Section 6.5.2. Also, we still retain the capability to adjust the

time intervals between the samples, as desired. Indeed, the same interval lengths between

the consecutive samples of xγ(t) are naturally used to compute the samples of v1(t).

For the sake of obtaining more accuracy and retaining the feature of computing all the

samples of v1(t) at once, we are going to explain the persistent mode computation through

harmonic balance. However, we are to lose the adjustable interval lengths feature through

this calculation, because DFT (Discrete Fourier Transform) requires uniform interval lengths

between consecutive samples.

6.5.4 Computation Through Harmonic Balance

The method of harmonic balance also facilitates the computation of the persistent Floquet

mode. Our assumption that there is a single persistent mode again holds. However, unlike

the shooting method, we are induced to make note of the inferred assumption that there is

a single Floquet exponent that is zero and that all other Floquet exponents are negative, i.e.

µ1 = 0, by our convention, and µi < 0, for 2 ≤ i ≤ M . Recall that this inferred assumption,

in view of the original assumption that there is a single persistent mode, is equivalent to
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the condition that there is a single Floquet multiplier that is equal to 1 and that all other

Floquet multipliers are between zero and 1, i.e. λ1 = 1, by our convention, and λi < 1, for

2 ≤ i ≤ M .

There is an obvious link between the notion of eigenvalue problems, derived through

Floquet theory in 6.5.1, and persistent Floquet mode computation through harmonic bal-

ance. We herein explore further into this link to figure out a numerical scheme to compute

u1(t) and v1(t).

Eigenpairs through the Forward LPTV Equation

We aim to numerically solve the eigenvalue problem derived as (6.74), through frequency

transformation methods. The DFT of both sides in

d

dt
(C(t)ϑ(t)) − G(t)ϑ(t) = λC(t)ϑ(t)

can be written as

[
jΩγΓC̄(x̄γ)Γ−1 − ΓḠ(x̄γ)Γ−1

] {
Γϑ̄
}

= λΓC̄(x̄γ)Γ−1
{
Γϑ̄
}

, (6.94)

with

ϑ̄ =
(

(ϑ(t0))
T · · · (ϑ(tN−1))

T
)

T

.

ti are the timepoints calculated through the harmonic balance method. They are the same

timepoints as used in the definition of x̄γ . Recall that ti are separated by uniform intervals.

Notice that (6.94) can actually be written in compact form as

Jhb

{
Γϑ̄
}

= λΓC̄(x̄γ)Γ−1
{
Γϑ̄
}

, (6.95)

where Jhb is the harmonic balance Jacobian after convergence.

Fortunately, we already know the eigenpair solutions of (6.95). For fixed k and n, we

have

λ = λkn = −(µk − j2π/Tn) (6.96)

and

ϑ̄ =
( (

ejω0nt0uk(t0)
)∗

· · ·
(
ejω0ntN−1uk(tN−1)

)∗
)
∗

. (6.97)
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Therefore, we have transformed the eigenvalue problem in (6.74) into the frequency domain,

and we can utilize the methods of numerical linear algebra to solve (6.94), or in more compact

form (6.95). The solutions are theoretically given by (6.96), as the eigenvalues, and (6.97)

as the eigenfunctions in the time domain.

Above we know that 1 ≤ k ≤ M , however, one may still wonder what the range for n is.

Since we have an odd number, N = 2K + 1, of timepoints in x̄γ , we have the same number

N of harmonics in X̄γ . We stated before that naturally the range of the harmonics in X̄γ

is −K ≤ i ≤ +K, with i a dummy variable. Note that the range for n is −K ≤ n ≤ +K.

Through the eigenvalue problem stated as (6.95), we can solve for all the eigenpairs.

Jhb, the harmonic balance Jacobian after convergence, is thus indispensible. However,

we indeed need only the (−µ1 = 0, u1(t)) pair. Then, it is really not necessary to solve

(6.95), because we have already set u1(t) = dxγ/dt. In the frequency domain, we have

Γū1 = jΩγX̄γ = jΩγΓx̄γ . ū1 is naturally the timepoints of u1(t) concatenated into a single

vector, in the same manner as in x̄γ . X̄γ is supposed to be figured out by the time the

harmonic balance method converges, so it is no trouble computing ū1 = Γ−1jΩγX̄γ .

Note also that

C̄(x̄γ)ū1 = f̄(x̄γ) (6.98)

is a natural consequence of the fact that

dq

dt

∣
∣
∣
∣
γ

= C(t)
dxγ

dt
= C(t)u1(t) = f(xγ(t)).

This note will be necessary when normalizing v1(t), which is to be computed as follows.

Eigenpairs through the Adjoint LPTV Equation

The task is now to numerically solve the eigenvalue problem in (6.75). Let us spell the DFT

of both sides of

−CT(t)
d%(t)

dt
− GT(t)%(t) = λ∗CT(t)%(t)

as

−ΓC̄T(x̄γ)Γ−1jΩγ {Γ%̄} − ΓḠT(x̄γ)Γ−1 {Γ%̄}

= λ∗ΓC̄T(x̄γ)Γ−1 {Γ%̄} . (6.99)
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Note again that

%̄ =
(

(%(t0))
T · · · (%(tN−1))

T
)

T

.

ti are the timepoints, the intervals between which have been calculated through harmonic

balance.

(6.99) in compact form is

J∗

hb {Γ%̄} = λ∗ΓC̄T(x̄γ)Γ−1 {Γ%̄} , (6.100)

where Jhb is the harmonic balance Jacobian after convergence.

The eigenpair solutions for (6.100) are, for fixed k and n,

λ∗ = λ∗

kn = −(µk + j2π/Tn) (6.101)

and

%̄ =
( (

ejω0nt0vk(t0)
)∗

· · ·
(
ejω0ntN−1vk(tN−1)

)∗
)
∗

. (6.102)

We can employ the methods of numerical linear algebra to solve the eigenvalue problem in

(6.99), or in more compact form (6.100). The solutions are theoretically given by (6.101) as

the eigenvalues and (6.102) as the corresponding eigenfunctions.

We have outlined a technique to figure out all eigenpairs, associated with the adjoint

LPTV equation. In fact, all we need is to find the (−µ1 = 0, v1(t)) pair. After making use of

numerical techniques to figure out v̄1, i.e. v1(t) with all timepoints concatenated into a single

vector, we have to make sure to satisfy the biorthonormality relation vT

1(t)C(t)u1(t) = 1.

Recalling that we have N timepoints, the normalization condition can be written as any of

v̄1 ·
{
C̄(x̄γ)ū1

}
= N

v̄1 · f̄(x̄γ) = N (6.103)

{Γv̄1} ·
{
Γf̄(x̄γ)

}
= N (6.104)

{Γv̄1} ·
{[

ΓC̄(x̄γ)Γ−1
]
[Γū1]

}
= N

{Γv̄1} ·
{[

ΓC̄(x̄γ)Γ−1
] [

jΩγX̄γ
]}

= N (6.105)

Notice that the harmonic balance method we described operates in the frequency domain.

Therefore, harmonic balance figures out X̄γ = Γx̄γ . Following the formulations in this

section, through numerical methods, we find not v̄1 but Γv̄1, again a frequency transformed
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variable. Above, (6.105) is the most straight-forward method to carry out the necessary

normalization, but it is not the simplest.

In (6.105), we calculate jΩγX̄γ , after harmonic balance yields X̄γ , the concatenated

harmonic baance vector. jΩγX̄γ is the DFT of dx̄γ/dt. If we store C̄(x̄k) at each iteration k

of harmonic balance, then after convergence we will have access to C̄(x̄γ). After numerically

computing a vector in the direction of Γv̄1, we can readily normalize Γv̄1 according to (6.105).

Consider now (6.103) and (6.104). We know that dq̄(x̄γ)/dt = C̄(x̄γ)ū1, on the limit

cycle γ. This is why (6.103) works. However, since we carry out harmonic balance in the

frequency domain, the normalization scheme of and (6.104) is more plausible than (6.103).

We just need to store f̄(x̄k) at each iteration k of harmonic balance. Then, we will have

f̄(x̄γ) ready after convergence. Through (6.104), we omit the differentiation via jΩγ that is

necessary in (6.105).

After obtaining a normalized Γv̄1 through (6.104), we can use inverse DFT to get v̄1,

which is the concatenated form of v1(ti) for 0 ≤ i ≤ (N − 1). Note that we may make use

of either Γv̄1 or v̄1 as required by the application.

Summary

Let us briefly summarize how to calculate v1(t) after harmonic balance converges.

1. We make sure to store C̄(x̄k), Ḡ(x̄k), and f̄(x̄k) at each iteration k of harmonic

balance. This way we will readily have access to C̄(x̄γ), Ḡ(x̄γ) and f̄(x̄γ) after the

harmonic balance method converges.

2. We spell out in (6.99) and also in (6.100), the generalized eigenvalue problem that

emerges from the adjoint LPTV equation, associated with the generic DAE in (2.4).

We have, after harmonic balance converges, the sparse factors of J∗

hb, the Hermitian

conjugate of the harmonic balance Jacobian. ω0 to construct jΩγ , along with C̄(x̄k)

and Ḡ(x̄k) are the necessary sparse factors.

3. We solve the generalized eigenvalue problem in (6.100) for the eigenpair that is theoret-

ically stated as (−µ1 = 0,Γv̄1). Full eigen-decomposition is a valid choice. Notice that

because of numerical errors, an eigenvalue of exactly zero is unexpected. We there-
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fore seek the eigenfunction that corresponds to the real eigenvalue with the smallest

absolute value.

4. After computing a vector in the direction of Γv̄1, the normalization scheme in (6.104)

must be employed, with f̄(x̄γ) readily available.

5. Inverse DFT is necessary to return to the time domain, i.e. to get v̄1, the concatenated

form of v1(ti) for 0 ≤ i ≤ (N − 1).

As can be observed, the method outlined above involves solving a larger sparse eigenvalue

problem, in order to solve v1(t), at all timepoints {t0, . . . , tN−1}, at once.

6.6 Numerical Methods for Solving the Phase Equation

The phase equation reads
dt̂

dt
= 1 + vT

1(t̂) g(xγ(t̂), t) ,

where g is the perturbations vector. In many applications we need to solve for t̂, when

deterministic perturbations are present. In this case, a discretization scheme may be applied

to this equation, and a solution may be sought step by step, at each timepoint. However,

notice that we have access to v1(ti), for 0 ≤ i ≤ (N − 1), i.e. only some discrete values are

available, of v1(t) along a single period of length T , although the values of v1(t) at instances

other than these timepoints might needed as well. Therefore, interpolation methods are

employed to generate approximations over virtually the whole period. This aspect deems

the phase computation ad hoc.

There is the method contributed in [23] that makes use of again systematic techniques

to calculate t̂ through again the phase equation. In [23], t̂ is computed through an improved

harmonic balance method, when the perturbations vector that is present is a periodic signal.

It is proved that in this case, t̂ happens to be the sum of a monotonously increasing ramp

function and a periodic wave. Then, this knowledge is exploited to compute t̂ through

harmonic balance. However, again note that this method is valid only in the case of periodic

perturbations.
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Chapter 7

RESULTS

We present some results obtained with the Matlab toolbox that we have developed.

7.1 Van der Pol Oscillator

Van der Pol oscillator has two states and one parameter. We consider only state pertur-

bations for this oscillator. The steady-state periodic solution has been computed through

shooting and harmonic balance. We present plots of u1(t) computed through shooting, finite

differences, harmonic balance. Also v1(t) has been computed through harmonic balance.

Figure 7.8 is an indication of the relative accuracy of the computed period versus the

number of timepoints employed. As the number of timepoints is increased, the relative

accuracy is reduced by several orders, as expected.

Figure 7.1 compares u1(t), a periodic solution of the forward LPTV equation obtained

from the Van der Pol oscillator, computed through shooting and finite differences. The

data obtained through the steady-state solution calculation in shooting has been utilized

to formulate the finite differences system. As seen in Figure 7.1 the two solutions are in

agreement. Also Figure 7.5 provides a shifted version of the same u1(t), this time obtained

through harmonic balance. The solutions through all three methods are in agreement.

Figure 7.2 is a plot of the finite differences matrix eigenvalues on the complex plane.

Since the derivative computation is not exact as in harmonic balance, we expect to observe

detached sets of eigenvalues for each Floquet exponent. In Figure 7.2, we see two sets

constituting circles, whose left-most points are occupied by the Floquet exponents associated

with the system. On the other hand, as seen in Figures 7.3 and 7.4, the detached sets of

eigenvalues are on straight vertical segments, for the harmonic balance Jacobian. This

complies with the theory presented through generalized eigenvalue problems, although for

higher harmonics we have some eigenvalues off the expected trail, perhaps due to aliasing.

The eigenvalues of the harmonic balance Jacobian in Figure 7.3 and its Jacobian in Figure
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7.4 are naturally the same.

In Figure 7.6, v1(t) computed through harmonic balance is presented. Figure 7.7 com-

pares three methods of normalization for Floquet vectors obtained through harmonic bal-

ance. The crude method employs vT

1(t0)C(t0)u1(t0) = 1 at the first timepoint, and then at

all other timepoints, the scaling factor that is obtained at t0 is used. The better method is

to make use of v̄T

1C̄ū1 = N , for all timepoints at once. The best method is as stated before

v̄T

1 f̄(x̄γ) = N . There is no difference in accuracy between the better and best method,

and they both beat the crude method. The better method requires a differentiation in the

frequency domain and a sparse matrix-vector multiplication, along with an inverse FFT, in

excess of the best method.

7.2 Circadian Oscillator

We analyze the circadian oscillator whose equations and parameters are presented in [6].

The harmonic balance Jacobian has seven distinct sets of eigenvalues as shown in Figure

7.9, which means that all seven Floquet exponents of this system are real.

The analysis that we carry out is plotting PRCs (Phase Resetting Curves) for this

system. After v1(t) is computed, it is used to solve the phase equation repeatedly for

different perturbations. In Figure 7.10, we present these PRCs. The perturbations are

pulses of amplitude L and and duration d. Each such perturbation is shifted along the

period by a predetermined interval in time, for each instance of the computation, and then

the phase equation is solved with the perturbation set as the shifted pulse. A PRC for a

set L and a d is the continuous curve of the computed phases, plotted on the same graph,

after the pulse is finally shifted through the whole period.
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Figure 7.1: u1(t) computed through shooting and finite differences.

Figure 7.2: Eigenvalues of the finite differences Jacobian, plotted on the complex plane.
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Figure 7.3: Eigenvalues of the harmonic balance Jacobian.

Figure 7.4: Eigenvalues of the Hermitian transpose of the harmonic balance Jacobian.



Chapter 7: Results 137

Figure 7.5: u1(t) computed through harmonic balance.

Figure 7.6: v1(t) computed through harmonic balance.
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Figure 7.7: Normalization in harmonic balance, through three particular schemes.

Figure 7.8: Relative accuracy of the computed period.
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Figure 7.9: Eigenvalues of the harmonic balance Jacobian, for the circadian oscillator.

Figure 7.10: PRC (Phase Response or Resetting Curve) plots for the circadian oscillator.
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Chapter 8

CONCLUSION

The first achievement in this thesis is to define the phase of an oscillator with the help

of isochrons. This has already been accomplished in the biological domain. We thorougly

present the necessary derivations that lead to the definition of oscillator phase. Then, the

phase equation for perturbed solutions of oscillators is derived. The phase equation has

been known in the biological and electronic domains for decades, although the related work

has progressed independently. We also point out the significance of the phase equation,

with the help of Floquet theory, while proving the accuracy of this equation. Through this

evaluation, a certain component of perturbations is shown to contribute to phase, whereas

the other components are proved to cause orbital deviation. In all, in this thesis, we unify

the approches to defining the phase of an oscillator.

The second achievement is the development of a unified approach to oscillator noise

analysis in the presence of both state and parameter perturbations. This is possible through

system augmentation and use of the phase equation, for the DAE case in general.

There has already been contributions targeting state and parameter perturbation-based

phase drift, in both biological and electronic domains. The third major contribution of this

thesis is to rigorously prove that all these approaches boil down to the computation of v1(t).

For the numerical computation of v1(t), we observe that the methods in biology are

indeed ad hoc, so we refer to the methods in electronics. Steady-state periodic solution

techniques, shooting and harmonic balance in particular, are rederived. As a fourth contri-

bution, we introduce the generalized eigenvalue problems derived through Floquet theory

and adjoint equations, to formulate systematic and accurate methods for the computation

of v1(t). Shooting, finite differences and harmonic balance methods are shown to aid in

Floquet mode computation, through the generalized eigenvalue problem formulation.
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Appendix A

LOSS OF THE ASYMPTOTIC PHASE PROPERTY

In Section 3.5, we presented an example for illustration purposes of computing the

isochron layout associated with the limit cycles of simple oscillators. We now move on to

another simple example, which is more interesting than the previous one. The example

that we have already presented only had one limit cycle, the unit circle. Also the previous

oscillator possessed the asymptotic phase property. We were able to analytically figure out

the state transition function for the previous system of differential equations, and then we

made use of this state transition function to spell out an expression for the level sets of

the phase, associated with that oscillator. These level sets are, as stated before, called the

isochrons.

The current oscillator example is again expressed in polar coordinates. It has not one

but three limit cycles. The first of these limit cycles is degenerate, only a single point located

at the origin. The second limit cycle does not have a domain of attraction, except the set

of points that constitute this particular limit cycle, i.e. when we start simulating from a

point not on this second limit cycle, the trajectory traversed by the current system never

approaches this particular limit cycle, as time progresses. The third limit cycle is again the

unit circle.

The aspects stated above are not the only ones that make the current example more

interesting than the first. A parameter employed within the model that describes this

oscillator may be utilized to change the structure of isochrons on the plane, which are

associated with this oscillator. We are going to be exploring how isochrons herald the loss

of the asymptotic phase property.

The oscillator model is a modified version of an example, presented by Winfree [19]. The

model we aim to analyze is expressed through the following equations. (r, θ) are again the
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polar coordinate notifiers, on the plane. Dot denotes derivative with respect to time.

ṙ = (1 − r)(r − pv)r (A.1)

θ̇ = 1 + ε(1 − r) (A.2)

Above, pv is the variable parameter, which we are going to use to restructure the isochrons

associated with the system. ε serves as a parameter, again restructuring the isochrons, but

pv is the main parameter that we are going to focus on. We are going to assume that ε 6= 0,

because otherwise, changes in pv cannot produce different isochron loci on the plane, i.e.

the choice, ε = 0, produces a degenerate, not very interesting case.

The closed form solution of the system of equations in (A.1) and (A.2) is not available,

so we do not have access to the analytical form of the state transition function, associated

with this system. We will have to resort to computations with limits to figure out the limit

cycles and their domains of attraction.

Analyzing (A.1), we figure out that all three elements of set

γs = {r = 1, r = pv, r = 0} (A.3)

are limit cycles of the system in (A.1) and (A.2), because these choices nullify the change

in r with respect to time.

We will maintain the choice that 0 < pv < 1. Let us define the vector solution to (A.1)

and (A.2) as x(t) = ( r(t) θ(t) )T. In order to figure out the domain of attraction, associated

with each of the limit cycles in γs, we have to analyze for which choices of x(0), the initial

condition provided, the system produces a trajectory approaching a particular element in

set γs, as time progresses.

The system in (A.1) and (A.2) does not have an analytical state transition function, but

we are free to try our best with analytical methods when analyzing this system. When we

organize and integrate the equation in (A.1), we get

− t + c =

(
1

1 − pv

)

ln (1 − r)

−

(
1

pv (1 − pv)

)

ln (r − pv)

+

(
1

pv

)

ln r,
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where c is an integration constant given by

c =

(
1

1 − pv

)

ln (1 − r0)

−

(
1

pv (1 − pv)

)

ln (r0 − pv)

+

(
1

pv

)

ln r0.

Notice that the argument of the natural logarithm function should be strictly positive. We

then have

e−t =

(
1−r
1−r0

) 1
1−pv

(
r
r0

) 1
p

(
r−pv

r0−pv

) 1
pv(1−pv)

. (A.4)

As t → ∞ above, both sides of the equality should approach zero. Let us r = rs the steady-

state value of r. Obviously, rs different for different values of r0. We will examine, first,

two cases. In each of these cases, one of the bases in the numerator will have to equate to

zero, as time progresses, i.e. the value of rs will make one these bases zero.

Recall once more that all three bases in the numerator and denominator of (A.4) were

the arguments of separate natural logarithm functions. So these bases still have to remain

positive. Let us examine the first case with pv < r0. The base in the denominator tells

us that (pv < r0) ⇒ (pv < rs). Looking at the second base in the numerator we have

(pv < rs) ⇒ (0 < rs). Therefore, this second base can never equate to zero. The only choice

that will make the whole right-hand side zero is rs = 1. Therefore, (pv < r0) ⇒ (rs = 1).

For the second case, let us assume pv > r0. Looking at the base in the denominator of

(A.4), we have (pv > r0) ⇒ (pv > rs). However, we also have the assumption that 0 < pv <

1. We can never equate the first base in the numerator zero, so we have (pv > r0) ⇒ (rs = 0).

In all, we have (pv < r0) ⇒ (rs = 1) and (pv > r0) ⇒ (rs = 0), but there is also the case

that r0 = pv. r = pv is a stable limit cycle of this system. So (r0 = pv) ⇒ (rs = pv). It

follows that the domain of attraction, associated with r = 0, Wr=1 = {r > pv}. Similarly,

Wr=0 = {r < pv} and Wr=pv = {r = pv}. So r = pv has no domain of attraction associated

with it, except the points that constitute itself.

Before proceeding, let us set pv = 1 and carry out a similar analysis. However, we are

to examine what happens to the limit cycles, their domains of attraction, and the structure
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of isochrons when pv = 1 exactly. Setting pv = 1, we have the following

ṙ = − (1 − r)2 r (A.5)

θ̇ = 1 + ε (1 − r) (A.6)

This system has two limit cycles r = 1 and r = 0. We cannot solve (A.5) analytically, but

let us at least try to integrate to write

e−t =

(
r
r0

)

e
1

1−r

(
1−r
1−r0

)

e
1

1−r0

, (A.7)

where r0 = r(t = 0). The bases in parentheses in both the numerator and denominator

should remain positive, since they were the arguments of separate natural logarithm func-

tions after analytical integration. As t → ∞, we expect both sides of (A.7) to approach

zero. Let us again call rs the steady-state value of r.

We have to examine two cases, r0 < 1 and r0 > 1, to figure out the domains of attraction

associated with the limit cycles of (A.5) and (A.6). rs will change according to r0. r0 < 1

is the simpler case. (r0 < 1) ⇒ (rs < 1), for (1 − r) / (1 − r0) must remain positive. If we

then choose rs = 1 − ∆ for diminishing positive values of ∆, the exponential term in the

denominator will explode. rs = 0 is a legitimate choice, looking at the first base in the

numerator. Therefore, (r0 < 1) ⇒ (rs = 0).

The second case is a little more tricky. Since (1 − r) / (1 − r0) must remain positive,

(r0 > 1) ⇒ (rs > 1). The first base in the numerator can never equate to zero. We guess

that rs = 1, but we write this proposition in the form given by rs = 1 + ∆, as ∆ → 0+. In

(A.7), we plug in r = 1 + ∆, to evaluate

lim
∆→0+

e−
1
∆

−∆
.

We must simply define C = 1/∆ to write

lim
C→+∞

−
C

eC
= lim

C→+∞

−
1

eC
= 0,

by L’Hôspital’s rule after the first equality sign. Therefore, (r0 > 1) ⇒ (rs = 1).

For the system in (A.5) and (A.6), we have now figured out the domains of attraction

as Wr=1 = {r ≥ 1} and Wr=0 = {r < 1}. Both limit cycles have the asymptotically orbital

stability property. We are going to make use of these results shortly.
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Since the state transition function of the system in (A.1) and (A.2) is not analytically

available, we are not able to figure out the analytical expression for the isochrons through

the first method described when analyzing the first simple example. Let us use Winfree’s

method in [19] to figure out an expression for the isochrons of the system in (A.1) and (A.2),

assuming that these isochrons exhibit polar symmetry around the origin.

A.1 Vanishing Isochrons

In this example, we do not know beforehand where the isochrons are defined. We have

figured out the domain of attraction associated with each of the three limit cycles, but

isochrons are defined in the domain of attraction, associated with a limit cycle if that limit

cycle has the asymptotic phase property. In this particular case, we will have to make

an educated guess on which domain of attraction bears the isochrons. r = pv does not

have a domain of attraction except the points on itself. Therefore, it cannot have the

asymptotically orbital stability property, and it does not have asymptotic phase. r = 0 is

a degenerate limit cycle, and the period on r = 0 is not defined. Crossing out two of the

limit cycles and their domains of attraction, we pick r = 1 as a promising limit cycle, whose

domain of attraction might yield the isochrons we are looking for. So we guess that the

isochrons, associated with the system in (A.1) and (A.2), foliate r > pv. Then, we also have

to compute the angular frequency in r > pv. ω0 = 1 on r = 1, and due to our assumption

that r > pv bears the isochrons of this system, we guess that ω0 = 1 in r > pv.

Applying Winfree’s method to (A.1) and (A.2), we set dφ/dt = ω0 = 1, where φ is the

angular phase of this system, following the discussion in the preceding paragraph. Guessing

that the isochron structure has polar symmetry, we have φ = θ − h(r), h is a function of r,

and we are figure out what h(r) is. Reformulating,

dh

dr
=

θ̇ − 1

ṙ
=

ε

r (r − pv)
.

h(r) becomes

h(r) =
ε

pv
ln
(

1 −
pv

r

)

+ c,

where c is an integration constant. Setting φ = θ on r = 1, since φ, the phase in the domain

of attraction, is equal to θ, the familiar phase of a system defined in polar coordinates, on
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the limit cycle, we have

φ = θ −
ε

pv
ln

(
r − pv

r (1 − pv)

)

, (A.8)

as the expression describing the isochrons of this system. Since we have assumed from the

beginning that 0 < pv < 1, (A.8) is defined in r > pv. This is what we had proposed as an

educated guess in our discussion above. Let us also check that





∂φ
∂r

∂φ
∂θ



 ·




ṙ

θ̇



 = ω0 = 1.

This requires a tedious but simple calculation, and it turns out to be true. Since

∂φ

∂r
= −

ε

pv

(
1

r − pv
−

1

r

)

=
−ε

r(r − pv)
and

∂φ

∂θ
= 1,

∂φ

∂r

dr

dt
=

−ε

r(r − pv)
(1 − r)(r − pv)r = −ε(1 − r),

and the result follows that ω0 = 1.

Examining the isochron expression in (A.8), we repeat that isochrons may only exist in

and foliate r > pv, the domain of attraction associated with r = 1. Therefore, we maintain

that r = 1, one of the three stable limit cycles of this system, has the asymptotic phase

property. The structure of isochrons in this example is such that r = pv can be described

as a vortex, with the isochrons asymptotically approaching r = pv in a revolving manner.

The isochrons, of course, can never intersect r = pv.

Notice that when a particular limit cycle has the asymptotic phase property, each point

on this limit cycle can be associated with a single isochron in its domain of attraction. If

an isochron intersected more than two points on the limit cycle, the phase of a point on

this isochron would have to be indeterminate, and then this limit cycle would not possess

asymptotic phase.

Proceeding with our intuitive discussion, recall that we have chosen pv as a variable

parameter in this example, such that 0 < pv < 1. pv → 0 is not interesting, but pv → 1 is,

as we will convey right now. There is no asymptotic phase for r = pv, and the isochrons

of the system in (A.1) and (A.2) approach r = pv, as if this limit cycle were a vortex.

Each isochron becomes parallel to r = pv, in the limit as r → p+
v . Each isochron has to foot

infinitely many cycles around r = pv, before intersecting it. This behavior is as explained for

all values in 0 < pv < 1. When pv is changed, the structure of isochrons in r > pv changes.
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As pv → 1−, each isochron will still be associated with a unique point on r = 1, but also

each isochron has to geometrically whirl around r = pv, infinitely many times. This means

each isochron will have all points constituting itself very near r = 1, since each isochron is

confined in pv < r < 1. In this region, the isochrons should not intersect eachother, they

should not intersect r = pv. Also they must foliate r > pv, i.e. each point in r > pv must

be contained by a unique isochron.

The description above help us deduce that the isochrons for this system must be re-

structured when pv = 1, such that no asymptotic phase for r = 1 exists, in this case. In

the limit as pv → 1−, each isochron is forced to intersect all points on r = 1, following the

discussion in the paragraph above. This phenomenon, as stated before, harbingers the loss

of asymptotic phase for r = 1.

We will again resort to Winfree’s method in [19], to figure out the structure of isochrons

in the system given by (A.5) and (A.6), since there is no access to the analytical form of

the state transition function. Through our discussion above, we maintain that r = 1 does

not have asymptotic phase for the system in (A.5) and (A.6). r = 0 is a degenerate limit

cycle, with no period defined on it, so we cannot define phase based on period in its domain

of attraction. Then, we intuitively guess that there are no isochrons on the plane for any

limit cycle of the system in (A.5) and (A.6).

The period on r = 1 is again T = 2π. We guess that there is periodicity in the domain

of attraction, r ≥ 1, associated with r = 1. Through this assumption, ω0 = 2π/T = 1

in r ≥ 1. We then again define the angular phase in r ≥ 1 as in φ̇ = 1. We again guess

that the isochrons in r ≥ 1 exhibit polar symmetry, i.e. φ = θ − h(r). Then, after tedious

calculations, we have
dh

dr
=

θ̇ − 1

ṙ
= −

ε

r (1 − r)
,

and

φ = θ + ε ln

(
r

1 − r

)

+ c,

for some integration constant c. It happens that above, we cannot set r = 1 to have φ = θ on

the limit cycle of interest, which is again r = 1. Tentatively speaking, this test might have

turned out inconclusive. We cannot right away state that the system in (A.5) and (A.6) has

no isochrons, depending on this test. However, we do not have another example, in which

we come across the same consequence, the inability to figure out c, the integration constant,
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whereas isochrons indeed do exist, unlike this example. Therefore, we do not have enough

evidence to call this test inconclusive, in similar cases. We had intuitively guessed that the

asymptotic phase property is lost as a result of the parameter change as in pv → 1−. Above

is what may be called a candidate for the algebraic justification for our educated intuition.

A.2 Loss of Biorthogonality

As to what happens to the phase of the system in (A.1) and (A.2) as pv → 1−, in the close

neighborhood of r = 1, we have to linearize this system and apply Floquet theory. However,

let us first guess what to expect. As pv → 1−, the isochrons of the system are confined in

the tight region defined by (1 − ∆) < r ≤ 1, with ∆ as an infinitesimal value. The isochrons

should not intersect each other, or else there will be no asymptotic phase for r = 1. Also

each isochron has to swirl infinitely many times around r = pv. These conclusions were

drawn simply through Winfree’s analytic method of figuring out expressions for isochrons

[19].

Let us recall several important definitions. Defining x(t) = (r(t) θ(t))T, we let xγ(t)

be the particular steady-state solution on r = 1, by our convention. The intercept of ηt0

on r = 1 is again accepted as xγ(t0). The gradient of ηt0 at xγ(t0) is again v1(t0), and

ẋγ(t0) = u1(t0), with the normalization condition in v1(t0) · u1(t0) = 1. These statements

are true for 0 ≤ t0 < T = 2π. Under the circumstances reviewed above, the isochrons of this

system are expected to reside very close to the steady-state periodic trajectory, r = 1. This

phenomenon should cause v1(t0), the isochron gradient at xγ(t0), to become orthogonal to

the steady-state periodic trajectory, r = 1. However, u1(t0) is tangent to the trajectory.

Therefore, it should be such that v1(t0) · u1(t0) = 0. This rules out the very normalization

condition we have relied on so far. Biorthogonality is lost as pv → 1−. Therefore, the system

given by (A.5) and (A.6), with pv = 1, not only does not have isochrons in the domain of

attraction that belongs to r = 1, but also v1(t) and u1(t) are orthogonal on r = 1. This is

no more than intuitive thinking, but the following calculations justify our claim.

In addition to x(t) = (r(t) θ(t))T, let us also define f(x) = (ṙ(t) θ̇(t))T. We aim to

linearize the system in (A.1) and (A.2) to derive

dy

dt
=

∂f

∂x

∣
∣
∣
∣
γ

y,
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where γ = {r = 1}. Simple calculations yield

dy

dt
=




1 − pv 0

−ε 0



 y. (A.9)

Suspicions may arise as to why (A.9) does not seem to be LPTV (Linear Periodically Time-

Variant). In fact, the system described by (A.9) is LPTV, but the initial choice of the

coordinate system facilitates computations by transforming the system at hand into one of

the form in (A.9). The solution of this equation can be obtained through stright-forward

linear algebra and matrix functions methods. We have to eigen-decompose the matrix in

this equation to get

∂f

∂x

∣
∣
∣
∣
γ

=




0 1 − pv

1 ε








0 0

0 pv − 1









−ε
1−pv

1

1
1−pv

0



 ,

since the eigenvalues are {0, pv − 1}. We aim to compute u1(t) and v1(t) in particular.

However, let us note that the solution of (A.9) is y(t) = U(t) exp(Λt)VT(0)y(0), with

U(t) =




0 1 − pv

1 ε



 , VT(t) =





−ε
1−pv

1

1
1−pv

0



 .

and

eΛt =




1 0

0 e(pv−1)t



 .

It happens that we have already found ui(t) and vi(t) for 1 ≤ i ≤ 2. Let us define sets

U = {u1(t), u2(t)} =










0

1



 ,




1 − pv

ε











and

V = {v1(t), v2(t)} =











−ε
1−pv

1



 ,





1
1−pv

0










.

In particular, we have chosen u1(t) as such because ẋγ(t) = f(xγ) = (0 1)T. We can easily

check that v1(t) ·u1(t) = 1, v2(t) ·u2(t) = 1, v1(t) ·u2(t) = 0, and v2(t) ·u1(t) = 0. However,

observe the form of v1(t) above. As pv → 1−, the magnitude of the first entry of v1(t), v1,1(t),

grows unbounded with respect to v1,2(t). This consequence is physically not possible, v1,2(t)

is zero with respect to the magnitude of v1,1(t). Examining the tangential velocity vector,

u1(t), on r = 1, we deduce that as pv → 1−, v1(t) · u1(t) → 0. So biorthogonality is lost,

and this is the mathematical justification of our intuitive claim above.
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A.3 Loss of Asymptotic Phase

We may also attempt on analyzing the effect of having no asymptotic phase, on θ, in the

close neighborhood of r = 1, for the system in (A.5) and (A.6), where pv = 1. Let us again

resort to linearizations. We have

dy

dt
=

∂f

∂x

∣
∣
∣
∣
γ

y

=




0 0

−ε 0



 y (A.10)

and

∂f

∂x

∣
∣
∣
∣
γ

=




0 −1

ε

1 i








0 1

0 0








εi 1

−ε 0



 , (A.11)

which is of the form in U(t)ΛWT(t). i is an arbitrary constant. Let us define sets U and

W as

U = {u1(t), u2(t)} =










0

1



 ,




−1

ε

i











and

W = {w1(t), w2(t)} =










εi

1



 ,




−ε

0










.

We may check that u1(t) · w1(t) = 1, u2(t) · w2(t) = 1, u1(t) · w2(t) = 0, and u2(t) ·

w1(t) = 0. The solution to (A.10), derived from (A.5) and (A.6), is given as y(t) =

U(t) exp(Λt)WT(0)y(0).

Now we have to consider that (A.11) is in Jordan Canonical Form. ∂f/∂xγ has two

eigenvalues of zero, but it has only one eigenvector, which is u1(t). Eigenvalue zero of

∂f/∂xγ is said to have algebraic multiplicity of two but geometric multiplicity of one. The

trick is to decompose ∂f/∂xγ as we did in (A.11), in such situations.

Let us note that the state transition function of (A.10) is given by odK(t, 0) = U(t) exp(Λt)WT(0).

We can easily compute the explicit form of this function through

exp(Λt) =




1 0

0 1



+




0 t

0 0



 =




1 t

0 1



 ,

since the square of Λ is the matrix of all zeros. Then, we have

odK(t, 0) =
(

u1(t) u2(t)
)




1 t

0 1








wT

1(0)

wT

2(0)



 . (A.12)
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We must now compute y(t) in (A.10), through y(t) = odK(t, 0)y(0), for different values of

y(0).

Recall that u1(t) = (0 1)T for all t, but this is the representation that is true in polar

coordinates only. At every point on r = 1, this expression for u1(t) is true in polar coor-

dinates. u1(t1) and u1(t2) are the same vector when t1 and t2 are separated by an integer

multiple of the period on r = 1. Otherwise, u1(t1) and u1(t2) are not the same vector.

However, the represention of u1(t) in polar coordinates is always u1(t) = (0 1)T.

Let us pick an arbitrary y(0) vector, and represent it as

y(0) = a1u1(0) + a2u2(0).

a1 and a2 are arbitrary constants, not both of which are zero. Considering the form of

odK(t, 0) above, y(t) = odK(t, 0)y(0) = a1u1(t), if we let a2 = 0. On the other hand,

if we let a1 = 0, we have y(t) = a2tu1(t) + a2u2(t). Notice that y(t), in this case, has a

component that grows linearly with time. t multiplies u1(t) = (0 1)T. Remember that the

second entry, y2(t) = θ̇(t). Therefore, through tu1(t), the growth in θ̇(t) is linear in t. We

have crafted this simple analysis, in order to show that when we pick an initial condition,

x(0), not on r = 1, but very close to this limit cycle, provided that r(t = 0) > 1, the growth

in the time derivative of θ(t) is linear in t. Therefore, the system in (A.5) and (A.6) cannot

have asymptotic phase in the intersection of the close neighborhood of r = 1 and r ≥ 1, the

domain of attraction of r = 1.

A.4 A Published Example

We now present another example, in which we again observe the loss of asymptotic phase

through a parameter change. The system to be analyzed this time is very similar to the one

we have elaborated on since the beginning of this section. The system in polar coordinates

is

ṙ = (1 − r)3 (A.13)

θ̇ = r (A.14)

and the properties of this set of equations were analyzed in [4].
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It is fortunate that the solution is analytically available, and is given as follows.

r(t) = 1 −
(1 − r0)

√

1 + 2(1 − r0)2t
(A.15)

θ(t) = θ0 + t +

√

1 + 2(1 − r0)2t

1 − r0
(A.16)

Again r0 = r(t = 0) and θ0 = θ(t = 0). We can easily conclude that this system has a single

limit cycle, r = 1. r = 1 has asymptotic orbital stability, and the domain of attraction

associated with r = 1 is the whole plane.

We would have also deduced that r = 1 had the asymptotic phase property, had the

fractional term in (A.16) been such that it died away as time progressed. However, this

fractional term grows with time, and r = 1 does not have asymptotic phase.

It is difficult to analyze the system in (A.13) and (A.14) as it is, but we introduce as an

auxiliary

ṙ = (pv − r)2(1 − r) (A.17)

θ̇ = r (A.18)

where 0 < pv < 1 is a parameter whose value is going to be altered to help analyze the

properties of the system in (A.13) and (A.14). Obviously, when pv = 1, (A.17) and (A.18)

are the same as (A.13) and (A.14), respectively.

Let us first determine the limit cycles and the domains of attraction for the system in

(A.17) and (A.18). Obviously, one limit cycle is r = 1 and the other is r = pv. In order to

figure out the domains of attraction, we proceed as follows.

We are going to try solve for r through (A.17), but again the solution is not analytically

available. Through simple integration we get

e−t =

(
1−r
1−r0

) 1
(1−pv)2

(
pv−r
pv−r0

) 1
(1−pv)2

exp
(

1
1−pv

1
pv−r0

)

exp
(

1
1−pv

1
pv−r

) . (A.19)

(1 − r)/(1 − r0) and (pv − r)/(pv − r0) are allowed to be positive only, since they become

the arguments of separate natural logarithm functions after integration. The exponent of

both these bases is a positive finite number, since pv < 1.

In order to figure out a steady-state value for r, which we call rs, we have to let r0 take

a different value in each case. We assume that as time progresses, both sides of (A.19)

approach zero. The computed value for rs should satisfy this condition in each case.
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The natural exponent expression in the numerator of (A.19) is a constant, for each

different set of values for pv and r0. Therefore, we do not take this expression into account

when carrying out our analysis through limits. The two cases for r0 are r0 > pv and r0 < pv.

The r0 > pv case is easy. We deduce that (r0 > pv) ⇒ (r > pv), for (pv−r)/(pv−r0) > 0.

We have to choose one of the two cases, rs = pv or rs = 1. Notice that the rs = pv choice with

r > pv) in time lets the denominator go to zero, so the right-hand side of (A.19) explodes.

The choice that makes this right-hand side zero is rs = 1. Therefore, (r0 > pv) ⇒ (rs = 1).

Analyzing the second case is a little more tricky. We have (r0 < pv) ⇒ (r < pv), and

naturally (r0 < pv) ⇒ (r < 1). Therefore, (1−r)/(1−r0) in the numerator is neither infinite

nor zero for all time. We are induced to guess that rs = pv, but this needs to be proved.

Through our guess, we have r = pv−∆, in time, where ∆ is a small positive number. In this

case, we take into account neither (1 − r)/(1 − r0) nor the natural exponent expression in

the numerator. With the remaining terms in the right-hand side of (A.19), and substituting

r = pv − ∆, we have to check the value of the limit given by

lim
∆→0+

exp(−1/∆)

∆
.

For convenience, we define again C = 1/∆ and write

lim
C→+∞

C

eC
= lim

C→+∞

1

eC
= 0,

where we have used L’Hôspital’s rule. This proves that (r0 < pv) ⇒ (rs = pv).

The domain of attraction associated with r = 1 is therefore Wr=1 = {r| r > pv}, and

Wr=pv = {r| r ≤ pv}. We will now apply the methods of our analyses to the model in (A.17)

and (A.18).

Let us make use of Winfree’s method [19] to figure out an expression for the isochrons

over the whole plane. We have two regions, which the isochrons of this system may foliate.

r = pv has r ≤ pv as the domain of attraction. Simulations starting from a point in r > pv

do not approach r = pv. We guess that the isochrons foliating r > pv intersect r = pv

only after traversing infinitely many cycles around r = pv, while approaching this particular

limit cycle. Therefore, we guess that r = 1 has asymptotic phase, whereas r = pv does

not, so the period on r = 1 is equal to the generalized period over the whole domain of

attraction, r > pv. Denoting this period by T = 2π, the generalized angular frequency in

r > pv becomes ω0 = 2π/T = 1.
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By Winfree’s method [19], we define φ, the angular phase in r > pv, through the dif-

ferential equation dφ/dt = ω0 = 1, with φ(0) = 0. Then, assuming that the isochrons in

r > pv exhibit polar symmetry, φ must have the form φ = θ − h(r), where h is a function

r. Simple computation yields

dh

dr
=

r − 1

(pv − r)2(1 − r)
=

−1

(pv − r)2
.

Integrating the expression above and invoking the initial condition that φ = θ when r = 1,

we have

φ = θ +
1

pv − r
−

1

pv − 1
, (A.20)

as the expression for the phase in r > pv. Recall that isochrons are the level sets of φ.

For example, for a single φ0 ∈ [0, 2π), φ0 = θ + 1
pv−r − 1

pv−1 is the expression for a single

isochron.

We observe through (A.20) that the isochrons foliating r > pv revolve infinitely many

times around r = pv before intersecting this limit cycle. However, it is clear that each

isochron must intersect r = 1 at a single point. This observation proves that our educated

guess was correct.

Geometrically speaking, as pv → 1−, each isochron tends to lie very close to the limit

cycle r = 1. These isochrons must not intersect each other, must not intersect r = pv, and

each must intersect r = 1 at a single point still, as pv → 1−. Satisfying all these conditions

become impossible for pv = 1, so isochrons vanish for the system in (A.17) and (A.18).

Let us now examine the biorthogonality relation as pv → 1−. Let us linearize the system

in (A.17) and (A.18) into

dy

dt
=




−(pv − 1)2 0

1 0



 y,

where y is a two dimensional column vector. Calling the square matrix in the equation

above, A, we have

A =




0 (pv − 1)2

1 −1








0 0

0 −(pv − 1)2








1/(pv − 1)2 1

1/(pv − 1)2 0





as the eigen-decomposition of A. Employing polar coordinates, we have obtained a time-

invariant expression, although our linearized system is indeed LPTV, so A is a matrix with

constant coefficients.
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Recall that u1(t) is the persistent mode of the forward LPTV equation, and v1(t) is the

persistent mode of the adjoint LPTV equation. Let us denote u1(t) as u1 in this case, to

benefit from the time-invariant form. Similarly, let us denote v1(t) as v1. We deduce from

the eigen-decomposition of A above that

u1 =




0

1



 and v1 =




1/(pv − 1)2

1



 .

Observe that v1 · u1 = 1, satisfying the normalization condition. However, as pv → 1−, the

first entry of v1, i.e. v1,1 → +∞. Therefore, as pv → 1−, v1,1/v1,2 → 0. This means as

pv → 1−, v1 · u1 → 0, i.e. biorthogonality is lost.

As a note, observe that the gradient of φ in (A.20),




∂φ
∂r

∂φ
∂θ



 =




1/(pv − r)2

1



 ,

is numerically equal to v1 on the limit cycle r = 1. Normally, we would have obtained ω0v1

as the gradient of φ on r = 1, but remember that ω0 = 1 on r = 1.

Lastly in this series of analyses, let us examine the loss of asymptotic phase from the

linearization point of view. We set pv = 1, and obtain the system in (A.13) and (A.14).

The linearized equation takes the following time-invariant form in polar coordinates.

dy

dt
=




0 0

1 0



 y

Calling the square matrix E above, we have

E =




0 1

1 i








0 1

0 0








−i 1

1 0



 ,

as the Jordan canonical form. i is an arbitrary number. y(t), the solution of the linearized

system, is given as

y(t) =




0 1

1 i








1 t

0 1








−i 1

1 0



 y(0).

Note that we may express y(t) as

y(t) =
(

u1 u2

)




1 t

0 1








wT

1

wT

2



 y(0).
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Obviously, w1 · u1 = 1, w2 · u1 = 0, w1 · u2 = 0, and w2 · u2 = 0. Observe that u1

and u2 constitute a linearly independent set. For a set of coefficients {a1, a2}, we have

y(0) = a1u1 + a2u2. For a2 = 0, observe that y(t) = a1u1. However, when a1 = 0,

y(t) = a2tu1 + a2u2. In this case, there is time t multiplying u1. However, u1,2 contributes

to θ̇(t). For the unperturbed system in (A.13) and (A.14), the growth in θ̇(t), with an initial

condition not on but in the close neighborhood of r = 1, is linear in t. Therefore, r = 1

cannot have asymptotic phase.

The published example is indeed very similar to the earlier example we presented, in

order to show the gradual loss of asymptotic phase, as a parameter pv is altered. We tried

intuitively and rigorously, in these examples, to portray the vanishing isochrons, the loss of

biorthogonality, and the loss of asymptotic phase through the analysis employing the LPTV

equat on derived from the original system.

A.5 Summary

Both examples in this section, the system in (A.5) and (A.6), and the system in (A.13)

and (A.14), which we borrowed from [4], are plagued by the same phenomenon. In both

examples, there is a limit cycle, given by r = pv in particular, which does not have asymp-

totic phase. The isochrons around r = 1, the limit cycle that does have asymptotic phase,

for both examples, have to revolve infinitely many times around r = pv, before actually

intersecting r = pv. Then, as pv is changed, the structure of the isochrons, foliating r > pv,

changes. As pv → 1−, the isochrons are confined in pv < r ≤ 1, each isochron intersecting

r = 1 at a single point and revolving infinitely many times around r = pv. We have adopted

an intuitive approach to deduce that in such a case, the isochrons are forced to vanish.

Then, we have mathematically shown that u1(t) and v1(t), the persistent modes of the for-

ward and adjoint LPTV equations, respectively, derived from the original system at hand,

become orthogonal on r = 1, obviating the biorthogonality relation. The last observation

was that the asymptotic phase property, in the close neighborhood of r = 1, is lost through

this parameter change.
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Appendix B

PARAMETER SENSITIVITY - LENGTHIER PROOF

We stated before that the proof of Lemma 2 in 5.4.2 is the justification of the major

contribution of Taylor et al. in [6]. Also, we noted that our proof is quite simple and

comprehensible. We will now conduct a more intuitive but also more tedious proof of the

same Lemma. This time, we will resort to the eigenvalue problems, originating through

Floquet theory, explained in 6.5.1, along with sensitivity theory.

The problem is again to figure out an expression for the time derivative of

∂t̂

∂pj
=

M∑

i=1

∂t̂

∂xγ
i

∂xγ
i

∂pj
.

We derived in 5.4.2 that

∂xγ

∂pj
=

M∑

i=1

eµitui(t)

∫ t

0
e−µiτvT

i (τ)
∂f

∂pj
(τ)dτ.

Let us redefine, for convenience,

Si(t) =

∫ t

0
e−µiτvT

i (τ)
∂f

∂pj
(τ)dτ.

We also know by now that ∂t̂/∂xγ(t) = v1(t), by the discussion provided in 5.3.

Let us now note that

d

dt

(
∂t̂

∂pj

)

=

(
dv1

dt

)
T ∂xγ

∂pj
+ vT

1(t)
d

dt

(
∂xγ

∂pj

)

.

We proceed to compute

d

dt

(
∂xγ

∂pj

)

=

M∑

i=1

µie
µitui(t)Si(t)

+
M∑

i=1

eµit
dui

dt
Si(t)

+

M∑

i=1

eµitui(t)
dSi

dt
. (B.1)
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The first term at the right-hand side is easy enough to compute. For the second term, we

must note that u̇i = G(t)ui(t) − µiui(t), by the derivations in 6.5.1, where G(t) = ∂f/∂x,

evaluated on γ. Finally, for the third term, we recall the fundamental theorem of calculus

to spell out, in all,

d

dt

(
∂xγ

∂pj

)

=

M∑

i=1

eµitG(t)ui(t)Si(t)

+
M∑

i=1

ui(t)v
T

i (t)
∂f

∂pj
(t). (B.2)

We must now consider

vT

1(t)
d

dt

(
∂xγ

∂pj

)

=

M∑

i=1

vT

1(t)e
µitG(t)ui(t)Si(t)

+ vT

1(t)
∂f

∂pj
(t), (B.3)

and proceed to the next step.

The next step requires the evaluation of the time derivative of v1(t). This is simple

enough, because v1(t) is a periodic solution of ż = −GT(t)z, the adjoint equation associated

with (2.1). We then have v̇T

1(t) = −vT

1(t)G(t). We get

(
dv1

dt

)
T ∂xγ

∂pj
= −

M∑

i=1

vT

1(t)e
µitG(t)ui(t)Si(t). (B.4)

Considering the sum of the terms in (B.3) and (B.4), we have

d

dt

(
∂t̂

∂pj

)

= vT

1(t)
∂f

∂pj
(t),

which is what we wanted to prove in Lemma 2.
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Appendix C

SIMPLIFICATIONS IN COMPUTATION PERTAINING TO ODE

SYSTEMS

C.1 Eigenpairs Associated with LPTV Systems

The eigenvalue problem, derived for the generic ODE in (2.1), reads

dykn(t)

dt
− G(t)ykn(t) = λknykn(t) (C.1)

in the forward LPTV case and

−
dzkn

dt
− GT(t)zkn(t) = λ∗

knzkn(t) (C.2)

in the adjoint LPTV case. Notice that neither of the statements above are generalized

eigenvalue problems. In the ODE case, we are to solve simple eigenvalue problems. We

again know the theoretical forms of the solutions to the problems above.

For the problem in (C.1), which is derived from the forward LPTV equation, we have

λkn = −(µk − j2π/Tn) (C.3)

as the eigenvalues and

ykn(t) = ej2π/Tntuk(t) (C.4)

as the corresponding eigenfunctions. n is an integer and 1 ≤ k ≤ M .

Similarly, for the problem in (C.2), which is derived from the adjoint LPTV equation,

we have

λ∗

kn = −(µk + j2π/Tn) (C.5)

as the eigenvalues and

zkn(t) = ej2π/Tntvk(t) (C.6)

as the eigenfunctions.

To numerically solve (C.1) and (C.2), we have to switch to the frequency domain. Again,

this computation is facilitated through odJhb, the harmonic balance Jacobian after conver-

gence, in the ODE case.
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C.2 Persistent Mode Computation Through Harmonic Balance

We are now going to outline the eigenvalue problem solution scheme, through the aid of the

harmonic balance Jacobian, odJhb in the ODE case. Recall that a variable name with a

bar above denotes the concatenated timepoints vector corresponding to that variable.

We may transform the problem in (C.1) to the frequency domain as in

[
jΩγ − ΓḠ(x̄γ)Γ−1

] {
Γϑ̄
}

= λ
{
Γϑ̄
}

, (C.7)

which, in more compact form, is

odJhb

{
Γϑ̄
}

= λ
{
Γϑ̄
}

. (C.8)

The solution to the transformed problem above is given by the eigenpair

λ = λkn = −(µk − j2π/Tn) (C.9)

and

ϑ̄ =
( (

ejω0nt0uk(t0)
)∗

· · ·
(
ejω0ntN−1uk(tN−1)

)∗
)∗

. (C.10)

Although the statement above is designed to help in finding all the eigenpairs associated, all

we need for our purposes is the (−µ1 = 0, u1(t)) pair. However, we have set u1(t) = dxγ/dt,

so Γū1 = jΩγΓx̄γ = jΩγX̄γ . Therefore, we do not need to solve (C.8).

Transforming (C.2) into the frequency domain, we get

− jΩγ {Γ%̄} − ΓḠT(x̄γ)Γ−1 {Γ%̄} = λ∗ {Γ%̄} . (C.11)

In more compact form, we have

odJ∗

hb {Γ%̄} = λ∗ {Γ%̄} . (C.12)

The solution to the transformed problem above is given by the eigenpair

λ∗ = λ∗

kn = −(µk + j2π/Tn) (C.13)

and

%̄ =
( (

ejω0nt0vk(t0)
)∗

· · ·
(
ejω0ntN−1vk(tN−1)

)∗
)∗

. (C.14)

Although the formulation above helps in figuring out all the eigenpairs, we seek the pair

(−µ1 = 0, v̄1) for our purposes. One may resort to the methods of numerical linear algebra
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to solve (C.12). Numerically, the eigenfunction that corresponds to the real eigenvalue with

the smallest absolute value is the eigenfunction that we would like to obtain.

After acquiring a vector in the direction of Γv̄1, the next task is to normalize this vector.

All of the normalization conditions below, considering that we have N timepoints, are

legitimate.

v̄1 · ū1 = N

v̄1 · f̄(x̄γ) = N (C.15)

{Γv̄1} ·
{
Γf̄(x̄γ)

}
= N (C.16)

{Γv̄1} · {Γū1} = N

{Γv̄1} ·
{
jΩγX̄γ

}
= N (C.17)

As we are working in the frequency domain throughout harmonic balance, (C.17) is the

most natural choice for the normalization condition, but we can furthermore omit the time

derivative computation in the frequency domain, through jΩγ , by choosing (C.16) for nor-

malization. (C.16) is the simplest method, provided we have f̄(x̄k) stored at each iteration

k of harmonic balance, so that we f̄(x̄γ) ready after convergence.
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