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ABSTRACT

In this thesis, the genetic regulatory dynamics within the cell cycle network of

the yeast Saccharomyces cerevisiae is examined. As the mathematical approach, an

asynchronously updated Boolean network is used to model the time evolution of the

expression level of genes taking part in the regulation of the cell-cycle. The attractors

of the model’s dynamics and their stability are investigated by means of a stochastic

transition matrix. It is shown that the cell cycle network has unusual dynamical

properties when compared with similar random networks. Furthermore, an entropy

measure is employed to monitor the sequential evolution of the system. It is observed

that the experimentally identified cell cycle phases G1, S, G2 and M correspond to

the stages of the network where the entropy goes through a local extremum.

iv



ÖZETÇE

Bu tezde Saccharomyces cerevisiae hücresinin, hücre döngüsü içindeki gen regülasyon

dinamiği incelendi. Hücre döngüsünü kontrol eden genlerin zaman içindeki ekspresyon

değerlerini bulmak için matematiksel yöntem olarak asenkron biçimde güncellenen

Bool tipi ağlar kullanıldı. Dinamiğin çekicileri ve bunların kararlılığı stokastik trans-

fer matrisi kullanılarak incelendi. Rastgele ağlar ile karşılaştırıldığında hücre döngüsü

ağının değişik dinamik özellikler sergilediği gösterildi. Sistemin sırayla geçtigi durum-

ları gözlemlemek için bir entropi ölçüsü tanımlandı. Deneylerde görülen G1, S, G2 ve

M fazlarının, ağın entropisinin yerel ekstremum noktalarına karşılık geldiği gözlendi.
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Chapter 1

PRELIMINARIES

1.1 Introduction

In the 20th century our knowledge about the molecular basis of life has increased

enormously due to the discoveries and new techniques in genetics and molecular biol-

ogy. The experimental data obtained by these new techniques are so abundant that

computational and mathematical methods must be used to analyze them. Although

mathematics and biology have always been in connection, in the last few decades they

merged into each other due to new advances in applied mathematics, such as theory of

dynamical systems, population models, and graph theory, which can explain biological

phenomena better than ever. Additionally the geometric increase of computational

power allows us to investigate large-scale problems in biology.

A main topic in this interdisciplinary field is the functional organization of the cell.

The questions waiting for answers are for example: How does the behavior of a cell

change when there is a change in the environment? How does it affect the cell if some

part of it stops functioning? How robust is the system against mutations? Among

other functions of the cell a big interest lies in the cell cycle process, and plentiful

investigations have been made analyzing different cell cycle models. Understanding

the concealed mechanism providing the cell to divide into two by transferring a copy of

its genetic code to the next generation is a big challenge. Scientific curiosity being the

most leading one, this was also needed in research of cancer, which is a consequence

of errors appearing in this process. These days we have a pretty good understanding

what is going on in cell cycle process. But a complete undertanding of it lies far from
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us. That’s why we have to develop new techniques in all branches of science and

use them together, so that we get a grip on the complex organization found in these

natural systems. I hope, with this study, we can make a tiny contribution to this

purpose.

1.2 Motivation and Purpose of the Study

In this study we want to setup a mathematical model which simulates the cell cycle

process. It must be able to show how a single cell commits to division, goes through

the cell cycle phases, G1, S, G2 and M following each other successfully and returns

back to its original steady state which it preserves until the next round of division.

As our model organism we use the one celled budding yeast Saccharomyces cerevisiae,

whose whole genome sequence, consisting of nearly 6300 genes is known. Although

the whole gene regulatory network of the yeast is very big, only 800 of them have a

role in the cell cycle process and a small subnetwork of these 800 genes is crucial for

the progression of the cycle and this enables us to investigate cell division qualitatively

and quantitatively. This model is important because the proteins taking part in the

cell cycle are well conserved through the evolution and all eukaryotic cells behave

similar in this process. So understanding the yeast cell cycle can give us an insight

into the behavior of all eukaryotic cells, including the ones of the human.

1.3 Methods

We used an asynchronous Boolean network to simulate the time-evolution of the

yeast’s cell-cycle. We analyzed our model using a transfer matrix approach that com-

pletely describes the stochastic evolution of the system. We identified the attractors

of the system with the eigenvectors of this matrix with eigenvalue 1. The only bi-

ologically relevant attractor is compared with the others by looking at their basin

of attraction sizes and stabilities under perturbations. To demonstrate the special

structure of the cell cycle network we re-wired it without changing its topology and

compared it with these new random networks.
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Chapter 2

BIOLOGICAL BACKGROUND

2.1 The Structure of the DNA and The Templated Polymerization

The DNA (Deoxyribonucleic acid) contains all the genetic instructions needed for the

development and functioning of a living organism. It consists of two strands which

twist around each other and form a double helix. Each strand is a polymer where

the monomers, called nucleotides, contain a sugar (deoxyribose) with a phosphate

group attached to it and one of the bases adenine (A), guanine (G), thymine (T) and

cytosine (C), which are strung together in a long linear sequence that encodes the

genetic information. Each base on one strand makes a hydrogen bond with the facing

base on the complementary strand. This base pairing procedure gives the DNA

molecule its stability. But as each base can only bind to its complementary base,

just two types of base pairings are possible, namely, A-T with two hydrogen bonds

and C-G with three hydrogen bonds. Since these hydrogen bonds are weaker than

the sugar-phosphate links, the two DNA strands can be pulled apart and separated

without breaking the backbones. This structure of the DNA is illustrated in Fig. 2.1.

However, in living cells, a DNA molecule cannot be synthesized in isolation. A

new DNA molecule can only be synthesized via replication of a pre-existing DNA

molecule. After the two strands of the existing DNA molecule are separated from

each other they serve as templates for the new ones. The bases on the old strand

bind to their complementary bases, namely A to T, C to G and vice versa. This

process controls the polymerization of the new complementary strand by means of

the selection of which one of the four monomers shall be added to the growing strand

next. This way of copying the information in DNA replication is called templated
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Figure 2.1: The structure of the DNA [1].

polymerization.

2.2 Reading the Genome

Since the DNA is a very long molecule it must reduce its size so that the cell can

carry it. The packaging process involves many steps and at the end the organized full

compact form of the DNA is called the chromosome. Usually the cells have multiple

numbers of chromosomes, so that the genetic information is shared among them. The

full set of the chromosomes make up the genome, the complete set of the genetic

information of an organism.

It is not enough for a cell to have the genetic information stored in a long sequence

and to duplicate it. The DNA must also be able to express its information, so that

the cell can read it and direct the cellular processes. But not all of the information

encoded in the DNA is needed at once. The DNA expresses only the portions of

itself which are needed for the cell at a particular time. The expression begins with

unzipping the required portion (segment) of the DNA. This time the segment serves as

a template for the synthesis of a shorter polymer, RNA (ribonucleic acid). This step is

called transcription. The RNA is related to DNA. Instead of deoxyribose it has ribose
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Figure 2.2: Transfer RNA [1].

as sugar and one of the bases is Uracil (U) instead of thymin (T). In addition the RNA

is a single stranded molecule. During transcription, RNA monomers are lined up and

selected for polymerization on a template strand of DNA, just as DNA monomers are

selected during replication via templated polymerization. So the sequence of a RNA

molecule represents a portion of the genetic information. As these RNAs carry the

genetic information these are called the messenger RNAs (mRNA). This information

will be used to synthesize the proteins, which are polymers of amino acids. There are

20 different types of aminoacids but the RNA uses only 4 letters for coding. Therefore

the information of the mRNA molecules is read out in groups of three nucleotides at

a time. These triplets are called codons and each corresponds to a specific amino

acid. Since there 64 (4 × 4 × 4) possible codons but only 20 aminoacids, multiple

codons may correspond to the same amino acid. The whole code, consisting of a lot

of codons, is read by another RNA molecule, the transfer RNA (tRNA). They are

called so because they help to transfer the information from mRNA to the protein

being synthesized. This process is enabled by the help of ribosomal RNA (rRNA) and

the proteins in the ribosome. Each tRNA molecule has the anti-codon sequence at

one end which can bind to the codon in the mRNA and the codon-specific aminoacid

on the other end (Fig. 2.2).
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The mRNA molecule brings the tRNA molecules together by matching up their

successive codons with the anti-codons of tRNA molecules. In this way the sequence

of amino acids is being designated. In a giant multimolecular mechanism called the

ribosomes, the amino acids are released from tRNA and linked together and build

the protein chain. The ribosome itself consists of two main chains of ribosomal RNA

(rRNA).

2.3 Gene Regulation

The gene is defined as a portion of the DNA molecule, which is transcribed on a

mRNA to produce a protein or a RNA molecule. For a long time it was thought that

a particular gene codes only for one type of protein. But latest discoveries showed

that through a method called RNA splicing it is possible that several proteins can be

synthesized from the same gene.

The proteins are synthesized according to the needs of the cell. So only the

genes coding for the required proteins must be expressed at a particular time. The

regulation of this process is extremely complex. The cell can regulate the rate of

transcription and translation or the activity of the proteins. Not all but the most

important regulation processes in eucaryotes for our study are presented below.

Aside from the genes, which code for the proteins, there are also noncoding nu-

cleotide sequences in the DNA molecule. A small part of these noncoding regions is

useless since they are residues of evolution and they are called junk DNA. But an

important part of the noncoding sequences is responsible for the accurate expression

of coding regions namely the genes. Some of these noncoding regions serve as bind-

ing regions for proteins especially enzymes. Of great significance are the nucleotide

sequences next to the gene sequences, called the prometer regions, where the RNA

polymerase II, an enzyme responsible for unzipping the DNA, is bound. But in order

for this enzyme to be active and let the transcription start it must build a complex

with other proteins called transcription factors. These transcription factors are also

proteins which are products of other genes. So the products of some genes regulate
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Figure 2.3: Gene Regulation [1].

the expression of other genes, a process known as gene regulation. Additionally this

complex consisting of transcription factors and RNA polymerase II is only activated

when they are bound to gene regulatory proteins via mediator proteins. These gene

regulatory proteins are bound to another nucleotide sequence called regulatory se-

quence, which can be far away from the gene. An illustration of these complexes

responsible for gene expression is shown in Fig. 2.3.

There are two types of regulatory proteins classified as activators and repressors.

The activators once bound to the regulatory sequence activate the transcription by

interacting with mediator-transcription factors-RNA polymerase II complex at the

promoter. The repressors prevent the activators from interacting with the mediator

protein so that the gene cannot be expressed. There are several ways in which eu-

karyotic gene repressor proteins can operate. They can compete with the activators

for the same regulatory region and hinder them to bind. If they both are bound to

the DNA next to each other, the repressor can bind to the activation domain of the

activator, thereby preventing it from carrying out its activation functions. In some

cases the repressor may have been bound only to the activator and not to the DNA. A

repressor can also bind to the assembly of transcription factors so that this complex

is not able to bind to the activator any more. In addition, it must be taken into
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account that an activator (or repressor) of a specific gene can behave as a repressor

(or activator) for another gene. On the other hand most regulatory proteins can only

be functional by changing their shapes via building complexes with other regulatory

proteins. Depending of the participants of the assembly they can act as an activator

or a repressor.

After the gene is translated into proteins in the ribosomes, the activity of these

proteins in the cytoplasm can also be adjusted by post-translational regulation. Ubiq-

uitination is a process where a protein called ubiquitin binds covalently to the proteins

and label them for degradation. Phosphorylation and dephosphorylation are reversible

mechanisms in which a phosphate molecule is attached to or removed from the protein,

and this leads to a conformational change in the structure of the proteins, causing

them to become activated or deactivated.

2.4 Cell Cycle

The cell cycle process involves an orderly sequence of events which provide the cell to

divide in two daughter cells. To transfer its genetic code to the next generation, the

cell has to duplicate its whole genome and segregate the chromosomes equally among

the new cells, producing genetically identical daughter cells.

The oversimplified eukaryotic cell cycle model has four main phases, namely G1

(gap 1), S (synthesis), G2 (gap 2) and M (mitosis). The G1 phase covers the time

that the cell needs to grow. In this phase, the cell also monitors the internal and

external environment to make sure that the conditions are suitable and preparations

are complete for the cell division. This is very critical because once the signal for

the division is there, the replication of the DNA begins and this process cannot be

reversed even if the external environment is not favorable anymore. This signal with

which the cell commits to replicate its genome and enters the S phase is called Start

in yeasts and restriction point in mammalian cells. In the S phase new chromosomes

are synthesized by templated polymerization and at the end of this phase the DNA

molecules in each pair of duplicated chromosomes are connected and held together
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Figure 2.4: Cell Cycle [1].

by specialized protein linkages. Then it follows the G2 phase in which the cell checks

whether the duplication was successful and if it can proceed with the cycle. At the

end of the G2 phase the control system triggers the mitotic events provided that

the duplication was errorless or the errors were rapaired. This G2/M checkpoint is

the second checkpoint after the G1/S checkpoint in the cell cycle process. The M

phase includes the mitosis and the cytokinesis both having their own subphases. In

the prophase of the mitosis the chromosomes are condensed in pairs of rigid and

compact rods called sister chromatids. The metaphase is entered when the nuclear

envelope disassembles which leads the mitotic spindle to take shape. The stage where

all the sister chromatids are aligned at the spindle equator is called the metaphase.

After pulling the sister chromatids to opposite poles of the spindle in the anaphase

and destroying the spindle to package the chromosomes into separate nuclei in the

telophase, the mitosis is completed. As a last step the cytokinesis takes place where

the cytoplasm divides into two each having one copy of the genome and also one set

of the duplicated organelles. For a schematic view of the cell cycle see Fig 2.4.
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2.5 The Budding Yeast Saccharomyces cerevisiae as a Model Organism

Saccharomyces cerevisiae is a unicellular species in genus Saccharomyces (sugar mold

in Greek) of kingdom fungi as the affix -myces suggests. Cerevisiae means ”of beer”

in Latin and this organism is named so because it is mostly used in brewing. It is also

called the budding yeast since it divides into two by budding which is the formation

of a new organism by the protrusion of part of another organism.

In the second half of the 20th century yeast has been introduced as an experimental

system for molecular biology. In 1980’s, yeast was used to produce Hepatitis B vaccine.

In 1996 yeast was the first eukaryotic organism (with nucleus in the cell containing

the genome), of which the complete genomic sequence could be established. In the

years to follow, yeast became a useful reference against which sequences of human,

animal or plant genes, and those of a multitude of unicellular organisms under study

could be compared. Moreover, the ease of genetic manipulation in yeast opened the

possibility to functionally dissect gene products from other eucaryotes in the yeast

system.

Yeast is an ideal system to investigate cell architecture and fundamental cellu-

lar mechanisms successfully. Among all other eukaryotic model organisms, Saccha-

romyces cerevisiae combines several advantages. It is a unicellular organism which can

be grown on defined media giving the investigator complete control over environmen-

tal parameters. It has a short generation time (doubling time 1.5-2 hours at 30◦C).

These are all positive characteristics in that they allow for the swift production and

maintenance of multiple specimen lines at low cost. It can be transformed allowing

for either the addition of new genes or deletion through homologous recombination

and it survives a lot of mutations. Furthermore, the ability to grow Saccharomyces

cerevisiae as a haploid simplifies the creation of gene knockouts strains. As a eucary-

ote, it shares the complex internal cell structure of plants and animals without the

high percentage of non-coding DNA that can confound research in higher eucaryotes.

Saccharomyces cerevisiae research had a strong economic driver, at least initially, as

a result of its established use in industry (e.g. beer, bread and wine fermentation).
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2.5.1 Cell Cycle Control System in Saccharomyces cerevisiae

The central problem in cell cycle process is the coordination of the several events, so

that every event occurs in the proper order with respect to each other. For example,

the segregation of chromosomes must follow the DNA duplication. Otherwise trying

to segregate unreplicated chromosomes leads to chromosome breakage or aneuploidy.

Additionally cytokinesis must follow the chromosome segregation since an earlier cy-

tokinesis leads to generation of aploid and polyploid daughter cells. On the other

hand, each event is restricted to take place only once in each cycle. For instance,

duplicating the chromosomes more than once leads to polyploidy.

The idea of an autonomous cell cycle clock suggests that different cell cycle events

should occur with a constant timing, even if one or more events are delayed due

to environmental insults or experimental manipulation. But observations in Saccha-

romyces cerevisiae showed that this idea was incorrect. In these budding yeasts the

cell cycle events are linked in dependent pathways. For example, even if the DNA

replication is delayed by several hours, the chromosome segregation does not begin.

These observations lead to the cell cycle clock idea which suggests that there are two

main coordinating mechanisms. One of them is a coordinating mechanism in the form

of a set of checkpoint controls such as G1/S and G2/M checkpoints. These check-

point controls ensure that cell cycle events occur in the proper order. The second

molecular mechanism is a biochemical oscillator, acting as a ”cell cycle clock”. The

basis for this clock and the central components of the cell cycle control system are

the cyclin-dependent kinases (CDKs). A kinase is a type of enzyme that transfers

phosphate groups from high-energy donor molecules, such as ATP, to specific target

molecules (substrates). Cyclins are a family of proteins involved in the progression of

cells through the cell cycle. They are named cyclins because their concentration in

the cell varies cyclically according to the phases of the cycle. CDKs are only active

when a special type of a cyclin is bound to the proper kinase. So the activities of

these kinases rise and fall as the cell progress through the cycle and this leads to

cyclical changes in the Phosphorylation of proteins that initiate or regulate the major
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events in the cell cycle. So we can conclude that cell cycle phases alternate due to the

mechanism that one cyclin family succeeds another. Hence the systematic progress of

the cell cycle depends mainly on gene regulation mechanism leading to periodically

expression of cyclins.

There are four classes of cyclins, each defined by the stage of the cell cycle at which

they bind CDKs and function. All eukaryotic cells require three of these classes. These

are:

1. G1/S cyclins: They activate CDKs in late G1 and thereby help progression

through Start, resulting in a commitment to cell cycle entry. Their levels fall in

S phase.

2. S cyclins: They bind CDKs soon after progression through Start and help

stimulate chromosome duplication. Their levels remain elevated until mitosis.

3. M cyclins: They activate CDKs that stimulate entry into mitosis at the G2/M

checkpoint. They are destroyed in mid-mitosis.

In yeast cells, the main CDK protein is Cdc28 which binds all classes of cyclins

and triggers different cell cycle events by changing cyclin partners at different stages

of the cycle. Its level does not fluctuate during the cell cycle. The cyclins and their

partners in budding yeasts are shown in Table 2.1. The cyclin proteins do not simply

activate their CDK partner but also direct them to specific target proteins. As a

result, each cyclin-CDK complex phosphorylates a different set of substrate proteins.

The most important cyclins and other proteins in the cell cycle process in budding

yeasts are shortly described below [3]. These proteins are products of the genes with

same name.

1. Cln3: Unlike the other cyclins, its transcription is not strongly periodic with

respect to the cell cycle, but there is a small rise M /G1 border over its basal

levels. Cln3-Cdc28 is the only CDK involved in activating SBF and MBF in
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Cyclin-CDK complex Cyclin CDK partner

G1-CDK Cln3 Cdc28

G1/S -CDK Cln1,2 Cdc28

S -CDK Clb5,6 Cdc28

M -CDK Clb1,2,3,4 Cdc28

Table 2.1: Cyclins of the budding yeast

normal cycling cells. Its transcription is triggered by the Start signal, when the

cell reaches a critical mass.

2. Cln1,2: They stimulate DNA synthesis indirectly by accelerating the degrada-

tion of the Clb-CDK inhibitor Sic1. In this way they enable the transition from

G1 to S phase. Their expression depends on transcription factor complex SBF.

3. Clb1,2: It activates Cdc28 to promote the transition from G2 to M phase and

accumulates during G2 and M. They negatively regulate the SBF and MBF

complexes ensuring that Cln1 and Cln2 expression is kept low until the Clb2-

Cdc28 are destroyed during mitosis.

4. Clb5,6: It is involved in DNA replication during S phase and activates Cdc28 to

promote initiation of DNA synthesis. Their expression depends on transcription

factor complex MBF.

5. Sic1: It is an inhibitor of Clb-Cdc28 complexes. One of its functions is to

prevent premature DNA replication. Because of its inhibitory effect on the

Clb-Cdc28 activity, it can be considered as an inhibitor of the G1/S transition

and an activator of M /G1 transition in the cell cycle. Its transcription depends

primarily on the transcription factor Swi5.

6. Cdh1: It is the activator of the anaphase-promoting complex (APC), which
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directs ubiquitination of cyclins resulting in mitotic exit and initiates anaphase.

It targets the APC to specific substrates including Cdc20. Its level is constant

throughout the cell cycle.

7. Cdc14,20: They are activators of APC, which is required for metaphase/anaphase

transition. They direct ubiquitination of mitotic cyclins and they are responsi-

ble for the cell to leave the mitotic phase. Their levels are strongly periodic in

the cell cycle.

8. Swi5: It is a transcription factor that activates transcription of genes expressed

at the M /G1 phase boundary and in G1 phase. Localization to the nucleus

occurs during G1 and appears to be regulated by phosphorylation by Cdc28.

9. Mcm1: It is the transcription factor of Swi5 and it requires Cdc20 as its own

transcription factor to be expressed.

10. SBF: It is a complex consisting of transcription cofactor Swi6 and DNA binding

protein Swi4. It is the dominant factor controlling the expression of Cln1 and

Cln2. It initiates events responsible for bud formation.

11. MBF: It is a complex consisting of transcription cofactor Swi6 and transcription

factor Mbp1. It is the dominant factor controlling the expression of Clb5 and

Clb6. It initiates events responsible for DNA synthesis.

How the levels of the cyclins change with the cell cycle phases is illustrated in

Fig. 2.5.

2.6 Experimental Methods

There are mainly two types of experiments whose results can be found in databases

which show interactions between proteins and genes. Yeast two-hybrid experiments

yield the protein-protein interactions and microarray chips show genes which are

expressed at the same time.
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Figure 2.5: Levels of the cyclins during the cell cycle. [19]
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Figure 2.6: The yeast two-hybrid system for detecting protein protein interactions
[1].

2.6.1 Yeast two-hybrid

The gene activator proteins have two different domains. One of the domains bind to a

specific DNA sequence and the other domain activates the gene transcription. These

domains are used to create separate ”bait” and ”prey” proteins. The ”bait” is created

by fusing the DNA sequence that codes for a target protein with the DNA sequence

that encodes the DNA-binding domain of a gene activator protein. The whole DNA

sequence is then inserted into the yeast cell and the cell produces ”bait” proteins,

with the target protein attached to the DNA-binding domain. This ”bait” protein

binds to the regulatory region of the specific gene, called the reporter gene in this

case. The candidate proteins namely the ”preys” for this protein are also created the

same way. The ”bait” protein binds to the regulatory region of the reporter gene. If

any ”prey” protein interacts with these target ”bait” proteins, it is captured by the

”bait” and binds to regulatory region. In this way the two halves of the activator

protein are united and they can now activate the transcription of the reporter gene.

An illustration of this method can be seen in Fig. 2.6.
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Figure 2.7: Small region of microarray representing expression of 110 genes from yeast
[1].

2.6.2 The Microarray Chips

The microarray chips monitor the expression of thousands of genes at the same time.

They consist of DNA fragments, each corresponding to a gene, are spotted onto a

slide by a robot. mRNA is collected from two different cell samples for a direct

comparison. If we want to monitor cell cycle genes we can take samples from dividing

and nondividing cells. These samples are converted to cDNA and labeled, one with

a red fluorochrome (sample 1), the other with a green fluorochrome (sample 2). The

labeled samples are mixed and then allowed to hybridize to the microarray. After

incubation, the array is washed and the fluorescence scanned with a scanning-laser

microscope. Red spots indicate that the gene in sample 1 is expressed at a higher level

than the corresponding gene in sample 2. Green spots indicate that expression of gene

is higher in sample 2 than in sample 1. Yellow spots reveal genes that are expressed

at equal levels in both cell samples. Dark spots indicate little or no expression in

either sample of the gene whose fragment is located at that position in the array [1].

An example is shown in Fig. 2.7.
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2.6.3 Databases

There are special databases devoted to budding yeast Saccharomyces cerevisiae. The

data in these databases are mainly curated from papers which report results from a

lot of types of experiments, yeast two-hybrid and microarray experiments being the

most important ones. These are:

1. Yeastract [4, 5]: www.yeastract.com. Here the transcription factors of the yeast

genes can be found and a regulation matrix can be constructed automatically.

2. Saccharomyces Genome Database: www.yeastgenome.org. There are tools for

the analysis of gene sequences, homology comparisons between proteins. Data

are available about functions, expressions and interactions of proteins.

3. Database of Interacting Proteins: http://dip.doe-mbi.ucla.edu. This database

catalogs experimentally determined interactions between proteins. It combines

information from a variety of sources to create a single, consistent set of protein-

protein interactions. The data stored within the DIP database were curated,

both, manually by expert curators and also automatically using computational

approaches that utilize the knowledge about the protein-protein interaction net-

works extracted from the most reliable, core subset of the DIP data.

4. MIPS: http://mips.gsf.de/genre/proj/yeast. The MIPS Comprehensive Yeast

Genome Database (CYGD) aims to present information on the molecular struc-

ture and functional network of the entirely sequenced, well-studied model eu-

caryote, the budding yeast Saccharomyces cerevisiae. In addition the data of

various projects on related yeasts are used for comparative analysis.
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Chapter 3

MATHEMATICAL BACKGROUND

3.1 Graphs and Networks

Mathematically a graph G is defined as a nonempty set V together with an irreflex-

ive, symmetric relation R on V [2]. Although this seems to be very abstract, graphs

are very powerful tools to visualize interactions between objects. A graph is a rep-

resentation of a set of entities where pairs, having a connection, are linked by lines.

The interconnected entities are represented usually by dots which are called vertices

(sing. vertex) or nodes . The links that connect two nodes are represented by curves

and these are called the edges of the graph. In this simplest case where the curves

have no direction the graph is said to be undirected or simple. When the connections

between the nodes are determined by their directions, the graph is called a directed

graph where the edges are represented by arrows. Depending on the properties of

interactions between the nodes the arrows can specify the weight or type of connec-

tions. The indegree of a node is the number of arriving arrows at this node and the

outdegree is the number of the arrows leaving the node. A network is just a directed

graph (digraph) with weighted edges. The graphs can also be classified as connected

or disconnected. Defining the path in a graph as a sequence of nodes such that from

each of these nodes there is an edge to the next node in the sequence, two nodes are

said to be connected if there exists a path between these two nodes. A graph is called

connected if every pair of distinct nodes in the graph is connected and disconnected

otherwise.

The connectivity matrix of a network with N nodes is the N ×N matrix C whose

elements cij represent the type and the weight of the connection from node j to the

node i. In our study the weights of activators and inhibitors will be equal. The type
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of the connection is determined by the sign of the weight. So a connectivity matrix

element cij = 1(or − 1) will represent the activation (inhibition) of node i by node j.

3.2 Gene Regulatory Networks

Gene regulatory networks consist of nodes which represent the genes or the products

of them (proteins). The nodes are connected with arrows defining the type of the

interaction. If a protein is the inhibitor of another gene there is a negative interaction

or if a protein is the activator of some other gene (transcription factor) there is a

positive interaction. These networks allow us to calculate the rates at which genes in

the network are transcribed into mRNA and so their expression levels. As the protein

levels in a cell determine its type or function, it is important to know when or how

much a cell produces specific kinds of proteins.

3.3 Modelling Gene Regulatory Networks

There are different mathematical tools to analyze gene regulatory networks. These

models are mainly divided into three classes: Logical models, continuous models and

single-molecule models. Which model to choose depends on what we want to observe

and analyze. Some of these models are shortly explained here [6].

3.3.1 Logical Models

Models that belong to this category are discrete models so they can explain the

investigated network qualitatively. They allow a basic understanding of the dynamics

and functions of a network under different conditions. Their advantages lie in their

applicability to a wide range of systems including biological phenomena. Here we will

list some of them.

Boolean Networks:

This modelling technique was introduced by Kauffman [21, 22]. These networks
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are called Boolean because the nodes in these networks can only have two levels:

active (1) or inactive (0). In a gene regulatory network, for example, a gene can be

expressed (active) or not expressed (inactive) at any specific time. The level of one

node is the local state and the vector whose components are the levels of each node,

e.g. (0, 0, 1, 0, 1), is the global state of the system and a sequence of global states

constitutes the trajectory. So the number of all possible global states of a network

with N nodes is 2N . The level of each node is updated with a Boolean function whose

input variables are the levels of the nodes by which it is regulated. Each of the nodes

can be assigned a different update (regulation) function. In principle at every time

step all of the nodes are updated synchronously, such that the new value of a node is

determined by the levels of its regulators at the previous time step. So once the global

state of the system is known at one time step, the trajectory of the network can be

obtained deterministically. The global state which, once reached, repeats itself in the

trajectory is the steady state. The trajectory can also be cycle of a sequence of global

states which is an important behavior in biological systems. The steady states and

cycles which the network arrives at after traversing a transient trajectory are called

the attractors.

The update functions can be in different forms [7]. Let us investigate the possible

functions for a Boolean network. For a node which has K regulatory nodes from

which it receives input, the input vector can have M = 2K values. These M vectors

build the ”input vector space”. Each element of the input vector space must specify

the local state of its target node at the next time step. So the number of all possible

functions, whose domain is the ”input vector space” with M elements and whose

range is the set 0,1, can be calculated as 2M . As an update function for any node, we

can choose any of these possible functions. In Table 3.1 an example of functions for

a node receiving two inputs are shown.

When we look at Table 3.1, we see that there are four types of functions. The

first two functions f1 and f2 belong to class ”frozen”. These are the functions whose

value does not depend on the input vector. The value is always 1 or always 0. The
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Input Frozen Canalyzing I Canalyzing II Reversible

vector f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

0, 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0

0, 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1

1, 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1

1, 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

Table 3.1: Possible functions for a node with K = 2. The total number of functions
is 22K

= 16

.

canalyzing functions of the first type (f3,4,5,6) have the property that their value

depends only on one of the inputs. f3 and f4 simply copy and invert the value of

the first input respectively. f5 and f6 do the same for the second input, where the

first input has no effect. The eight functions belonging to canalyzing functions of the

second type have three times 1 or three times 0 in their outputs, such that for each

of the two inputs there exists one value that fixes the output irrespective of the other

input. f15 and f16 are the reversible functions because they change whenever an input

changes.

When assigning a function to a specific node we can choose one of these possible

functions according to a probability distribution. The simplest case is the constant

distribution, where each function has the probability 1/2M . The other most frequently

used probability distributions are listed below.

1. Biased functions: If a functions has the output value 1 n times and 0 M − n

times, it has the probability pn(1 − p)M−n. For the special case p = 1/2 all

functions have the same probability 1/2M .

2. Weighted Classes: The classes are assigned a weight and all the functions in the

same class have equal probability. The sum of the weights of the classes must
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equal to 1.

3. Canalyzing functions: Only the functions belonging to the canalyzing class are

chosen. The motivation for this is the fact that gene regulatory networks have

many canalyzing functions [8, 9].

4. Threshold functions: If we denote the local state of each node with si, i being

the index of the node, the update rule for a network with N nodes is in the

form:

si(t + 1) =





1, if
∑N

j=1(cij(2sj − 1) + h) ≥ 0

0, else

The cij coefficients are the coupling constants. If node i does not receive any

input from node j, cij is zero. If node j is the activator or inhibitor of node i

then cij = 1 or cij = −1 respectively.

5. If the K values of each node is the same, all nodes can be assigned the same

function, so the network is then a cellular automaton with random wiring.

An illustration of the dynamics of a Boolean network with three nodes is shown

in Fig. 3.1 [7].

Figure 3.1: Trajectory of a Boolean network.
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Probabilistic Boolean Networks:

Often, the experimental results are not enough to fully understand the system and

choose the appropriate functions. This uncertainty must be involved in the system.

A method for this is as follows. The functions are assigned a probability consistent

with prior data. According to this probability distribution, at each time the node

is updated a randomly chosen function is assigned to the node [10]. This model

generates a sequence of global states constituting a Markov chain. A Markov chain

is a stochastic process in which the next state depends only on the present state,

irrespective of the past states leading the trajectory to the present states [11].

Additionally, Thomas [23] suggested that time delays must be introduced to these

models. Because if the signal is fired for activation or deactivation of a specific gene

it takes some time for this gene to respond. This response time depends both on the

regulator and the regulated gene. So for every interaction in the system a time delay

must be assigned. Such modelling reveals steady states other than those observed

without time delays.

The disadvantage of the Boolean network models lies in the exponential growth of

the the number of global states and possible functions. So the dynamics can efficiently

be analyzed only for small networks.

Petri Nets:

Petri nets [12] are non-deterministic models which enable analysis of large metabolic

networks [13]. Chaouiya et al. showed that Petri nets can also be used by modelling

gene regulatory networks using Boolean functions [14]. Steggles et al. found out that

the synchronous dynamics of a Boolean network can be observed using Petri nets

where the uncertainties are also a part of the model [15].

In Fig. 3.2 a small Petri net is shown [6]. Here the light blue circles are the

”places” which correspond to the nodes in the Boolean networks. The rectangles show

the ”transitions” representing the regulatory functions. Input places are connected
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to transitions and transitions to their output places with arcs. Places that receive

discrete values are called tokens (dark blue dots). The distribution of the tokens

determine the state of the system. If a transition is fired (activated) it takes one

token from the input place and puts it into the output place. Only the transitions

that have enough tokens in their input places can be fired at any time. In this example,

every transition takes one token from every input place and puts one token per each

output place. On the arrows the fired transition is labeled. Transitions t1 and t3 can

be fired alternately but after t2 has fired no other transition is possible.

Figure 3.2: Illustration of a Petri net.

3.3.2 Continuous Models

Since the logical models are discrete valued their results are not accurate. Generally

the biological experiments yield real continuous results such as reaction rates, cell

mass, cell cycle length and amount of gene expression. A comparison between the

experiment results and those of the model are more reliable when we use continuous

models where real valued parameters are used over a continuous time-scale. Some

important models belonging to this class are, continuous linear models, models of

transcription factor activity, regulated flux balance analysis and ordinary differential

equations [6].
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Ordinary Differential Equations:

With ordinary differential equations it is possible to describe instantaneous changes

in the levels of some network entities. Via a set of coupled differential equations one

can relate for example the changes in the gene expression levels (Si) with time to the

levels of proteins present in the medium in the form:

dSi

dt
= fi(S1, S2, ....SN).

In the equations parameters are involved representing the reaction constants or

rate of synthesis and degradation. This system can be solved analytically if the

network is small. The solutions then will give the changes in the levels over time.

Large networks usually require numerical solutions.
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Chapter 4

YEAST CELL CYCLE NETWORK

4.1 Network Structure

Regulatory interactions among cell cycle proteins can be found in a variety of sources [17,

18]. A recent study claims that 11 genes (see Chp. 2) suffice to simulate and under-

stand the cell cycle process in Saccharomyces cerevisiae. The regulatory interactions

between these genes and their proteins comprise a simplified network (Fig. 4.1). Here

Figure 4.1: Cell Cycle Network of Li et al.

the green edges represent the activators and the red edges represent the inhibitors.

The blue loops indicate a self degradation of the genes which are not down regulated

by other genes in this network. So the genes inhibited by the products of genes not

belonging to this network are treated as self degraded, which is a simplification of

the real degradation process. To study the dynamics of this network Li et al. used

Kauffman’s Boolean network approach [24], where the state of gene i at time t + 1 is
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determined by a Boolean threshold function in the form

Si(t + 1) =





1,
∑

j cijSj(t) > 0

0,
∑

j cijSj(t) < 0

Si(t),
∑

j cijSj(t) = 0

(4.1)

where cij = 1, for a green arrow from gene j to gene i and cij = −1, for a red arrow

from j to i. Hence the inhibition and activation effects have the same strength. This

function (4.1) corresponds to a majority rule. For a gene, if more activator genes

are expressed at time t, itself will be activated at time t + 1. If more inhibitor genes

are expressed at time t the corresponding gene will be turned off in the next step. If

there are equal numbers of activators and inhibitors which are expressed, the gene

preserves its state.

However the function 4.1 is only used for the genes which are not self-regulated.

For the self degraded genes, this function is slightly modified. A time delay parameter

td is defined such that a gene with a blue loop will be turned off at time t + td, if its

total input is zero from time t + 1 to t + td. i.e. Si(t + td) = 0. In the currently used

model td = 1, so that a gene with zero input at time t will be off at time t + 1.

We can specify two sets Gs and Gns which contain the self degraded and the not

self degraded genes respectively:

Gs = {Cln3, Cln1− 2, Cdc20− 14, Swi5, McM1/SFF} (4.2)

Gns = {SBF, MBF, Sic1, Clb5− 6, Clb1− 2, Cdh1} (4.3)

The modified function (4.1) which will be used throughout the study has now the

form:

Si(t + 1) =





1,
∑

j cijSj(t) > 0, ∀i
0,

∑
j cijSj(t) < 0, ∀i

0,
∑

j cijSj(t) = 0 ∧ i ∈ Gs

Si(t),
∑

j cijSj(t) = 0 ∧ i ∈ Gns

(4.4)

Updating each node (gene) in this network at every timestep gives the trajectory

of the states in time. Among other features of the network Li et al. were able to



Chapter 4: YEAST CELL CYCLE NETWORK 29

observe that when they start the cell cycle process by exciting the stationary G1 state

with the cell size signal (Start), the system follows the cell cycle sequence, going from

G1 to the S phase, the M phase and finally returning back to the stationary G1 state.

Additionally they saw that this stationary G1 phase is the attractor of the network

with the biggest basin of attraction. The gene configurations corresponding to specific

phases of the cell cycle are identified in their article as in Table 4.1.

1 2 3 4 5 6 7 8 9 10 11

Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1,2 Mcm1

Stationary G1 0 0 0 0 1 0 0 0 1 0 0

Start 1 0 0 0 1 0 0 0 1 0 0

G1 time 2 0 1 1 0 1 0 0 0 1 0 0

G1 time 3 0 1 1 1 1 0 0 0 1 0 0

G1 time 4 0 1 1 1 0 0 0 0 0 0 0

S 0 1 1 1 0 0 0 1 0 0 0

G2 0 1 1 1 0 0 0 1 0 1 1

M time 7 0 0 0 1 0 0 1 1 0 1 1

M time 8 0 0 0 0 0 1 1 0 0 1 1

M time 9 0 0 0 0 0 1 1 0 1 1 1

M time 10 0 0 0 0 0 1 1 0 1 0 1

M time 11 0 0 0 0 1 1 1 0 1 0 0

G1 time 12 0 0 0 0 1 1 0 0 1 0 0

Table 4.1: Global states corresponding to cell cycle phases.Since G1 and M phases
are subdivided into short phases there are multiple global states corresponding to the
same main phase.

Since all of the genes are updated synchronously, given an initial state vector,

−→
S s(t = 0) = [S1(0), S2(0), · · · , Si(0), · · · , SN(0)] , 1 ≤ i ≤ N (4.5)

with N being the total number of nodes (11 in this case), the trajectory of the system
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is determined by the Boolean functions in (4.4). Here the subscript s refers to the

synchronous case. Thus the global state vector of the system at every time step can

be written as

−→
S s(t + 1) = [S1(t + 1), S2(t + 1), · · · , Si(t + 1), · · · , SN(t + 1)] , 1 ≤ i ≤ N, (4.6)

where Si(t + 1) is given by Eq. (4.4).

But it is more natural to think that the genes are updated at different times.

Because after one gene is activated it takes some time to produce the amount of sub-

stance which interacts with another gene positively or negatively. This time interval

is different for all genes, so if two genes are activated at the same time, their effect will

be felt by other genes at different times. The same is the case when a gene is to be

turned off. The products of different genes fall in different times under the threshold

value. So although the genes are inactive their products continue to interact with

other genes. Therefore it is impossible that all genes are updated at the same time.

Hence, it is generally accepted that an asynchronously updated network is more re-

alistic. We here perform an asynchronous analysis of the cell cycle network of the

budding yeast.

At the end of our study we will compare our results with those obtained by Li et

al.

4.2 Asynchronously Updated Cell Cycle Network

The same network discussed above is used in our study with two additions. In our

model the cell size signal is also a node which is down regulated by Clb5 and activates

Cln3. The reason for this choice is that the cell size signal does not turn off immedi-

ately after the cell cycle process has begun. Until the S phase the cell size is still big

for just one set of chromosomes. But when the DNA synthesis begins at the S phase

the relative cell size is reduced so that this signal should be turned off. We added

a negative signal from Clb5 to cell size due to the fact that Clb5 is a gene which is

active in the S phase and indicates that the G1 phase is over and also the duplication
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of the DNA has begun. So in our network Clb5 inhibits the cell size signal, which

initiates all the cell cycle process. The modified network with N = 12 nodes and

31 edges can be seen in Fig. 4.2. By doing so the global states corresponding to cell

Figure 4.2: Gene regulatory network of the yeast cell cycle.

phases in Table 4.1 are also slightly modified. The new states are shown in Table 4.2.

The nodes are enumerated such that in the connectivity matrix C, the row and

the column with index i represent the gene with the corresponding id number. In this

matrix the elements cij are the coefficients used in Eq. (4.4). For example c5,4 = −1

shows that Cdh1 is down regulated by Cln1. The id numbers for the genes and the

connectivity matrix C are as follows:
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Fixed state 1 2 3 4 5 6 7 8 9 10 11 12 ID Number

Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1,2 Mcm1 Cell Size

Stationary G1 0 0 0 0 1 0 0 0 1 0 0 0 137

Start 0 0 0 0 1 0 0 0 1 0 0 1 138

G1 time 2 0 1 1 0 1 0 0 0 1 0 0 1 1674

G1 time 3 0 1 1 1 1 0 0 0 1 0 0 1 1930

G1 time 4 0 1 1 1 0 0 0 0 0 0 0 1 1794

S 0 1 1 1 0 0 0 1 0 0 0 0 1809

G2 0 1 1 1 0 0 0 1 0 1 1 0 1815

M time 7 0 0 0 1 0 0 1 1 0 1 1 0 311

M time 8 0 0 0 0 0 1 1 0 0 1 1 0 103

M time 9 0 0 0 0 0 1 1 0 1 1 1 0 111

M time 10 0 0 0 0 0 1 1 0 1 0 1 0 107

M time 11 0 0 0 0 1 1 1 0 1 0 0 0 233

G1 time 12 0 0 0 0 1 1 0 0 1 0 0 0 201

Table 4.2: Global states corresponding to cell cycle phases after modification of the
network. The ID numbers are calculated as shown in Eq. (4.11).

C =




0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 1 −1 0 −1 0 0

0 0 0 0 0 0 1 0 0 −1 1 0

0 0 0 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 −1 0 −1 0 0 0

0 0 0 −1 0 1 1 −1 0 −1 0 0

0 0 0 0 −1 0 −1 1 −1 0 1 0

0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 −1 0 0 0 0




, with

i, j Protein

1 Cln3

2 MBF

3 SBF

4 Cln1

5 Cdh1

6 Swi5

7 Cdc14,20

8 Clb5,6

9 Sic1

10 Clb1

11 Mcm1

12 Cell Size

At each step only one node is chosen randomly and updated via the update func-

tion given in (4.4). At any time step, the probability of choosing node i out of all
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nodes {1, 2, · · · , N} is constant and given by

P (i) =
1

N
=

1

12
, ∀ i. (4.7)

The evolution of the global state vector is now not deterministic and with subscript

a referring to the asynchronous case, it can be given as

−→
S a(t + 1) = [S1(t), S2(t), · · · , Si−1(t), Si(t + 1), Si+1(t) · · · , SN(t)] , (4.8)

where i can have any value in {1, 2, · · · , N} with probability P (i) given in (4.7).

Compared to the synchronous case, N steps of updates in asynchronous case are

equivalent to a one step update in synchronous case, since we expect that after N

steps all of the nodes will have been updated once on average.

4.2.1 The Simulation Procedure of The Cell Cycle Process

To investigate the time evolution of the network beginning from an initial global state,

we calculated the time average values of the genes in each Nstep = 200 time steps over

Nsim = 100 simulations. The method of the procedure is described below:

1. Choose an initial global state:
−→
S a(t = 0) = [S1(0), S2(0), · · · , SN(0)]

2. Pick a random node i ∈ {1, 2, · · · , N} with probability P(i) in Eq. (4.7).

3. Find the new local states:

Sj(t + 1) =





Eq. (4.4), j=i

Sj(t), j 6= i
, 1 ≤ j ≤ N

4. Repeat the 2. and 3. steps Nstep times and find all

Sj(t), 0 ≤ t ≤ 200, 1 ≤ j ≤ N .

5. Perform Nsim simulations by repeating the whole process and find all

Sk
j (t), 0 ≤ k ≤ 100, 0 ≤ t ≤ 200, 0 ≤ j ≤ N.

where k is the number of simulation.
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6. Find average values Savg
i (t), 0 ≤ t ≤ Nstep over Nsim simulations:

Savg
j (t) =< Sk

j (t) > over all k, ∀j

7. Plot Savg
j (t) vs t for each j ∈ {1, 2, · · · , N}.

The results of the simulations described above are shown in Fig. 4.3 with the initial

global state being the Start state (see Table 4.2). Here each vertical line corresponds

to a cell cycle phase. The intersection points of graphs with these lines show the

expression levels of genes in these phases. In the stationary G1 phase the cell is small

and there are only the products of the genes Cdh1 and Sic1 are present. These two

are the inhibitors of the other genes responsible for the cell cycle process. But as the

size of the cell gets big enough to divide the cell size signal is activated, by a process

which is not entirely understood until now [16]. So the Start state in Table 4.2 is the

biologically relevant state for initiating the cell cycle process. We were able to observe

that this coarse grained simulation help us to follow the cell cycle phases according

to Li.

4.2.2 Transfer Matrix Description

The second method makes use of the advantages of the matrix algebra. With the

help of the update function (Eq. (4.4)), it is possible to find the probabilities of N

global states which are accessible from an initial state, when one of the N local states

is changed. Totally there are

M = 2N = 4096 (4.9)

global states. We can construct a M×M stochastic evolution matrix T whose elements

give the transition probabilities between the global states such that

Tij = p(n(
−→
S (t + 1)) = i | n(

−→
S (t)) = j), (4.10)

where

n(
−→
S ) = 1 +

N∑

k=1

Sk · 2N−k. (4.11)
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Figure 4.3: Results obtained by the average of 100 simulations.
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The global state id, defined as in Eq. (4.11), is the decimal number corresponding to

binary sequence
−→
S . This ordering elucidates the internal structure of the matrix T

as discussed below.

To find the elements of T, we update one of the local states of a global state i in

each turn. Looking at the total numbers of different outcomes we can assign a value

to each element of the evolution matrix.

Since there are 4096 global states among which only 12 are accessible from any

specific state, the evolution matrix is very sparse. Using the Hamming Distance (HD),

the distribution of the nonzero elements can be found which gives its unique pattern

to the matrix. HD between two strings of equal length is the number of positions for

which the corresponding symbols are different. Hence in our case we can define HD

as

d(
−→
S i ,

−→
S j) =| −→S i −−→S j |2 (4.12)

whose result gives the number of different local states. Since each time at most one

local state is changed, a transition between the states is only possible when their HD

is at most 1. This leads to the property that

Tij =





0, d(
−→
S i,
−→
S j)> 1

0 ≤ p ≤ 1, d(
−→
S i,
−→
S j)≤ 1.

(4.13)

The pattern of a evolution matrix for a system with 7 nodes is presented in Fig. 4.4.

In addition to this pattern there is also one more constraint on the nonzero el-

ements due to the Eq. (4.4). First look at the cases where the updated local state

belongs to a not-self-regulating node. Even if the node changes its local state, the

local states of its neighbors stay the same. So the updated node must preserve its

value and cannot go back to the original state. So the number of nonzero elements is

almost reduced to half such that

Tij 6= 0 ⇒ Tji = 0. (4.14)

If a self-regulating node is updated, this property may not hold. But we observed that

due the structure of our network, such a case does not exist and (4.14) is a general
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Figure 4.4: The pattern of the evolution matrix for a 7-node network. The black
points represent the nonzero elements.

feature of the evolution matrix. As a result the evolution matrix obtained by our

network with the majority rule function has the pattern shown in Fig. 4.5.

The evolution matrix is a stochastic matrix so that

M∑

i=1

Tij = 1,∀j. (4.15)

A fixed global state
−→
S =

−→
F is characterized by the property that the diagonal element

Tii = 1, (4.16)

where i is given with Eq. (4.11). This means that this state has zero probability of

passing to another global state other than itself and stays in this state indefinitely.

In our network there are 9 fixed states compared to the 7 fixed states in Li’s article.

The two additionally fixed states are those with gene Cln3 active. They are shown in

Table 4.3 with their corresponding state numbers.

These fixed states can also be found by looking at the eigenvectors of the evolution

matrix. Since the sum of elements in every column of matrix T is unity the deter-
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Figure 4.5: The pattern of the evolution matrix, with top left corner zoomed.

minant of the matrix T − I is equal to zero and the Perron − Frobenius theorem

ensures that one of the eigenvalues must be equal to 1 and the absolute values of other

eigenvalues are lower than 1. The eigenvectors corresponding to the eigenvalue 1 have

a very special meaning. Its components yield the probabilities to find the system in

each of its states for n →∞. Hence the eigenvector with eigenvalue 1 in the form

−→a =




a1

a2

...

ai

...

aM




=




0

0
...

1
...

0




, (4.17)

shows that the probability of finding the system at the gloabal state with id number

i is 1, when the system has been updated sufficiently long.

These 9 fixed states are called the point attractors of the network. Since our

update function (Eq. (4.4)) does not allow a cycle between the global states, all of
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Fixed state 1 2 3 4 5 6 7 8 9 10 11 12 Number

Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5 Sic1 Clb1,2 Mcm1 Cell Size
−→
F 1 (G1) 0 0 0 0 1 0 0 0 1 0 0 0 137
−→
F 2 0 0 1 1 0 0 0 0 0 0 0 0 769
−→
F 3 0 1 0 0 1 0 0 0 1 0 0 0 1161
−→
F 4 0 0 0 0 0 0 0 0 1 0 0 0 9
−→
F 5 0 1 0 0 0 0 0 0 1 0 0 0 1033
−→
F 6 0 0 0 0 0 0 0 0 0 0 0 0 1
−→
F 7 0 0 0 0 1 0 0 0 0 0 0 0 129
−→
F 8 1 0 1 1 0 1 1 0 0 1 1 1 2920
−→
F 9 1 1 1 1 0 1 1 0 0 1 1 1 3944

Table 4.3: 9 fixed states of the network.

the global states will arrive at one of these fixed states, when the network is updated

sufficiently long. The nth power of the evolution matrix

T
(n)
ij = T · T · · ·T · T︸ ︷︷ ︸

n

(4.18)

gives the probability of arriving at state i at t=n when the initial state is j such that

p(
−→
S (t = n) =

−→
S i | −→S (t = 0) =

−→
S j) = T

(n)
ij . (4.19)

To find the probabilities with which an initial state arrives at each of the fixed states,

we define the fixed evolution matrix as

T∞ = lim
n→∞T (n). (4.20)

Denoting the probability of arriving at
−→
S i, when the initial state is

−→
S j, as P (

−→
S i,

−→
S j),

the elements of this matrix have the property that

P (
−→
F k,

−→
S j) = p( lim

n→∞
−→
S (t = n) =

−→
F k | −→S (t = 0) =

−→
S j) = T∞

ij , (4.21)

where i is given by Eq. (4.11). We say that the fixed state Fk, k = 1, 2, · · · , 9 is

preferred by the initial state
−→
S j, if the probability of arriving at this fixed state is

the highest for
−→
S j. The preferred fixed state being

−→
F m, this highest probability is

denoted as

Pm(
−→
S j) = Max(P (

−→
F k,

−→
S j)), k ∈ {1, 2, · · · , 9}. (4.22)
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and that
−→
F m is preferred by

−→
S j is symbolically shown as

−→
S j → −→

F m.

The global state
−→
S j then lies in the basin of attraction of

−→
F m. The basin of

attraction of a fixed state
−→
F m expressed as B(

−→
F m) is the set of all initial states

which prefer
−→
F m. Hence,

B(
−→
F m) = {−→S 1, · · · ,−→S j, · · · , | −→S j → −→

F m}. (4.23)

Knowing the initial state, T∞ allows us to compute the probabilities of arriving at

different fixed states. With the help of this matrix we can also find the probabilities

of reaching different fixed sates, when the initial state is chosen randomly. Let’s an

ensemble
−→
V as

−→
V =




v1

v2

...

vi

...

vM




, (4.24)

where M is given by Eq. (4.9) and vi is the probability of finding
−→
S i in the ensemble.

Then the elements of the column vector

−→
V
∞

= T∞ · −→V , (4.25)

have the property that

−→
V
∞
i = P (

−→
S i,

−→
S j | P (

−→
S (t = 0) =

−→
S j) = vi). (4.26)

Now we can calculate two different average probabilities. The first one is the

average probability of arriving at fixed state Fm,m = 1, 2, · · · , 9, among the initial

states which prefer it. So we can define

Pavg(
−→
F m) =< Pm(

−→
S j) >| −→S j ∈ B(

−→
F m). (4.27)
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Attractor | B(
−→
F m) | Pavg Prandom

−→
F 1 3679 0.66 0.620224
−→
F 2 225 0.67 0.07402
−→
F 3 102 0.59 0.045991
−→
F 4 20 0.54 0.203688
−→
F 5 14 0.57 0.013335
−→
F 6 5 0.64 0.011774
−→
F 7 2 0.5 0.007585
−→
F 8 31 0.63 0.017256
−→
F 9 9 0.58 0.006129

Table 4.4: Probabilities of fixed states. Basin of attraction is the number of initial
states preferring the attractor. Pavg is the average probability to reach the attractor
among the initial states preferring the attractor. Prandom is the probability to reach
the attractor from a random initial state.

The second average probability is the probability of arriving at
−→
F m, when the

initial state is random. These values are the 9 non-zero values of
−→
V
∞

, corresponding

to each of the fixed states. So,

Prandom(
−→
F m) =

−→
V
∞
i , (4.28)

with i=n(
−→
F m).

These two types of average probability values for all fixed states are shown in

Table 4.4, where for calculating Prandom, all the states are assigned equal probability

of 1/M , with M given by Eq. (4.9).

We see that G1 phase has the biggest basin of attraction and the system prefers

to arrive at this global state. Beginning from a random initial state the system

will return to this phase with a probability of 0.62 which is a big probability when

compared with the others.

The fixed state
−→
F 4 has also a relative high Prandom value of 0.203, which makes
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td P (
−→
F 1) P (

−→
F 4)

1 0.742 0.248

2 0.874 0.118

3 0.918 0.074

4 0.966 0.031

5 0.986 0.01

Table 4.5: Probabilities of arriving at F1 and F4 when the initial state is Start while
changing the parameter td.

it also favorable as an attractor. This was unexpected, because this state has no

biological meaning. We investigated how the system behaves, as the parameter td

changes. We observed that as we increased it from 1 to 5 the probability of reaching

it decreases when the initial state is Start and at td = 5 it reaches a value below

0.025. But meanwhile the probability of reaching
−→
F 1 increases. The results are show

in Table 4.5. This tells us that the lifetimes of the transcription factors are also

relevant parameters for the time evolution of the cell-cycle regulation.

4.2.3 Stability of the Attractors

The only biologically relevant fixed state is the
−→
F 1. So if the cell really tries to arrive

at this phase, this state must be very stable. And the other biologically irrelevant

fixed states are expected to be unstable. For this reason we investigated how these

attractors behave under perturbation. The perturbation process we used here in-

cludes changing the value of one of the local states. The stability of an attractor is

then examined by looking at the probabilities of returning back to itself, denoted as

Pback(
−→
F m), under 12 possible perturbations, where

Pback(
−→
F m) = P (

−→
F m,

−→
S j | d(

−→
F m,

−→
S j) = 1). (4.29)
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All of these values can be found in fixed evolution matrix
−→
T
∞

and the results are

shown in Table 4.6. Only two attractors,
−→
F 1 (G1) and

−→
F 2, tend to return back

Perturbed gene Pb(
−→
F 1) Pb(

−→
F 2) Pb(

−→
F 3) Pb(

−→
F 4) Pb(

−→
F 5) Pb(

−→
F 6) Pb(

−→
F 7) Pb(

−→
F 8) Pb(

−→
F 9)

Cln3 0.577 0.504 0.5 0.415 0.5 0.3385 0.3351 0.5 0.3333

MBF 0 0.0093 0 0 0 0.012 0.005 0 0

SBF 0 0 0 0 0 0 0 0 0

Cln1,2 0.3333 1 0.393 0.5 0.509 1 0.5 0.5 0.5

Cdh1 0 1 0 0 0 0 0 0.5 0.5

Swi5 1 1 1 1 1 0.5 0.5 1 1

Clb5 0.771 0.143 0.34 0.53 0.065 0.025 0.032 0.5 0

Sic1 0 1 0.22 0 0.02 0 0 0 0

Clb1,2 0.79 0.11 0.34 00.46 0.25 0.07 0.34 0 0

Mcm1 1 0.667 1 0.625 0.625 0.31 0.46 0.5 0.5

Cell size 0.74 0.04 0 0.248 0 0.0055 0.0018 0 0

Average 0.5176 0.5366 0.4 0.357 0.289 0.2127 0.2162 0.375 0.2778

Table 4.6: Behavior under perturbation. Pb ≡ Pback Example: If Cln3 changes its
value in F1, this new state return back to F1 with probability 0.577.

to itselves with an average probability greater than 0.5. This suggests that these

fixed states are relatively stable compared to the others. It can be seen that under

perturbation of SBF none of the fixed states can turn back but a perturbation in Swi5

does not have a big influence on the trajectory of the fixed states.

The average values of probabilities of coming back for 12 different perturbations,

can be extended to average probabilities of choosing another attractor under pertur-

bation. We show these probabilities as

Ppert(
−→
F m,

−→
F n) =

∑

j

P (
−→
F m,

−→
S j | d(

−→
S j,

−→
F n) = 1) (4.30)

In this way we can analyze if the system has any fixed states which attract other fixed

states when there is a perturbation in them. In Table 4.7 we see the
−→
F 1 can attract

the perturbed fixed states with relatively big probability.
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−→
F 1

−→
F 2

−→
F 3

−→
F 4

−→
F 5

−→
F 6

−→
F 7

−→
F 8

−→
F 9

−→
F 1 0.517 0.097 0.0972 0.153 0 0.029 0.104 0 0
−→
F 2 0.275 0.536 0 0.09 0 0.0916 0.0018 0 0
−→
F 3 0.388 0.001 0.4 0.095 0.1069 0.0034 0.0038 0 0
−→
F 4 0.318 0.097 0 0.356 0.0972 0.128 0.0014 0 0
−→
F 5 0.317 0.001 0.188 0.196 0.289 0.0049 0.0017 0 0
−→
F 6 0.331 0.097 0.006 0.248 0.0021 0.212 0.1007 0 0
−→
F 7 0.464 0.097 0.022 0.0682 0.0018 0.128 0.216 0 0
−→
F 8 0.402 0.001 0 0.134 0 0.0022 0.00057 0.375 0.0833
−→
F 9 0.460 0.001 0.003 0.154 0.0013 0.0022 0.00057 0.097 0.277

Table 4.7: The matrix Aij, where Aij = PPert(Fj, Fi)

4.2.4 Dynamics of the System

The evolution matrix Tij has all the information about the system. By examining

this matrix, it was seen that a global state mostly tries to stay in its state. The

probabilities of transitions to other states are lower, but they are equal to each other.

If enough updates are done, a global state will pass to a new state at the end. We

are only interested in the transitions between the global states and investigate if they

occur in the proper order. The time required to arrive at a specific global state is

not our main concern. Therefore we set the diagonal elements to zero (except for

the fixed states) and normalize the probabilities of passing to other accessible states,

so that they add up to one. We called this new evolution matrix ”transition matrix

(TN)”. So the elements have the property that,

(TN)ii =





1,
−→
S i ∈ {−→F 1, · · · ,−→F 9}

0,
−→
S i /∈ {−→F 1, · · · ,−→F 9}

(4.31)

and,
M∑

i=1

(TN)ij = 1,∀j. (4.32)
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The pattern for TN looks like in Fig. 4.6. When this new transition matrix is used a

1 50 100 128

1

50

100

128

1 50 100 128

1

50

100

128

Figure 4.6: The pattern of TN for a 7-node network.

global state cannot preserve its state at any time step and must pass to a new global

state, unless it reaches a fixed one.

We begin with the Start state and look at the possible pathways the system can

follow. In Fig. 4.7 we illustrate how the system evolves in time. Since there are

a lot of different pathways it is impossible to show them all. So we only take the

transitions into account which have a probability greater than 0.025. With the help

of the transition matrix we can find that the probability to reach the stationary G1

state (F1) is 74% which is 24.6% for F4 and 1.4% for other fixed states. The time

steps leading to this result is shown in this figure.

As it can be seen in Fig. 4.7, between time steps 8 and 17 the system can be

in different global states. Since we use the transition matrix, these steps do not

correspond to the actual time steps. But as the M phase is reached the number

of possible global states is decreased. To describe this behavior quantitatively the
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Figure 4.7: Flow of the system beginning from Start. Each line corresponds to a time
step. The widths of the arrows are proportional to the transition probabilities.
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Figure 4.8: Sequential evolution of entropy. The number of steps are greater than
those in the Fig. 4.7, because the states with very low probabilities are not shown in
that figure.

entropy values at each time step are calculated as

S(t) =
∑

i

pi(t) · ln[pi(t)], (4.33)

where pi(t) is the probability of being at the global state i at time step t. The extreme

values for the entropy correspond to the biologically defined cell phases. The evolution

of the entropy is illustrated in Fig. 4.8.

If we use the original evolution matrix T in place of the transition matrix TN we

cannot observe these peaks in the behavior of entropy. Instead we have a smooth

curve, which can be seen in Fig. 4.9.

4.2.5 Comparison with Random Networks

To see whether this gene regulatory network of Saccharomyces cerevisiae is a special

network, we compared the features of this networks with the ones of random networks.

Random networks are generated by reshuffling the edges of our regulatory network,

such that the numbers of in degrees and out degrees of the nodes do not change. First

we compared the entropy behavior in time. The random networks have a smoother

behavior and the extreme values are not so ostensible. In Fig. 4.10 the results are



Chapter 4: YEAST CELL CYCLE NETWORK 48

Figure 4.9: Time evolution of entropy when the original evolution matrix is used.

shown for some random networks (blue). The red curve is the average of the blue

curves for 50 random networks. For comparison, the green curve belonging to gene

regulatory network is also plotted.

4.2.6 Perplexities for Attractors

The number of fixed nodes have also been compared between the gene regulatory

network and the random networks. 100 random networks have been investigated and

in general they have more than 9 fixed states, the most being 34. Just 6 of these

random networks have 8 or 9 fixed states indicating that the gene regulatory network

is special in the sense of having very few fixed states. But in fact it is not so important

how many fixed states there are. The significant feature is the probability distribution

among the fixed states. For example consider a network having only two fixed states.

If the size of the basins of attraction are the same for each of them, there won’t be any

preferred fixed state for the system. So neither of them characterizes the behavior. In

the gene regulatory network there are 9 fixed states but one of them has the biggest

basin of attraction, so there is a fixed state which is preferred by the system. In

our case this is the F1 state, at which the system arrives with a probability of 62%

(Table 4.4). The probabilities ending at another fixed state are very low compared to
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Figure 4.10: Entropy evolution for 8 random rewirings of the cell-cycle network and
the yeast network for comparison.

F1. A quantitative description for this is the perplexity. Perplexity is calculated as

P = 2−
∑

i
pi·log2pi (4.34)

where pi is the probability of arriving at fixed state i. If a network has a preferred

fixed state with a dominant basin of attraction, the perplexity value will be small.

The perplexity increases as the probabilities for fixed states are getting closer. When

compared with the 100 random graphs the gene regulatory network has a very low

perplexity value of 3.32. The results for random networks are shown in Fig. 4.11.

4.3 Conclusion

We used a stochastic procedure to analyze the evolution of the gene regulatory cell

cycle network of the yeast. But a low perplexity value of 3.32 tells us that the structure

of this network allows the cell to act in an almost deterministic fashion. The fixed

state with the biggest basin of attraction is the biologically relevant G1 phase. When

the system is stimulated to begin the cell cycle process, it tries to go back to the G1

phase, after following the other cell cycle phases in proper order.
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Figure 4.11: Perplexities of 100 random networks with the same topology as the gene
regulatory network. The perplexity value of the yeast’s cell cycle network lies in the
second column.

Our results suggest that, the cell-cycle network is a special network when com-

pared with random networks with the same topology. The perplexity of the network

(a normalized estimate of the attractor number) is significantly lower than its ran-

domly rewired cousins. The network dynamics shows no limit cycles. The dynamical

evolution of the system when perturbed by the ’cell-size’ signal out of the G1 phase

follows a path that has a non-monotonic entropy evolution, unlike the behavior of

similar random networks. The extrema of the entropy evolution agree fairly well with

the cell-cycle phases.

By increasing the value of td, we also found that, the correct choice of the lifetime

of transcription factors is also an important factor for a realistic model. Although in

the synchronous case Li et al. found that the behavior of the system is independent

of this value, we found that it may significantly change the relative importance of the

attractors.
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