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ABSTRACT 

 

 

We present a fast and efficient surface tracking method for modeling dynamic objects 

from multiview video streams. Starting from an initial mesh representation, the surface of a 

dynamic object is tracked over time, both in geometry and connectivity, based on 

multiview silhouette and 3D scene flow information. The mesh representation of each 

frame is obtained by deforming the mesh representation of the previous frame towards the 

optimal surface defined by the time-varying multiview silhouette information, using mesh 

restructuring operations and vertex displacements assisted by 3D scene flow vectors. The 

whole time-varying surface is then represented as a mesh sequence that can efficiently be 

encoded in terms of restructuring operations and small-scale vertex displacements along 

with the initial model. Our reconstruction method hence yields a compact time-varying 

mesh representation of the dynamic object, which is smooth both in time and space. The 

proposed method is not only fast and produces storage efficient mesh representations, but it 

also has the ability to deal with dynamic objects that may undergo nonrigid transformation. 

The time-varying mesh structure of such nonrigid surfaces, which is not necessarily of 

fixed connectivity, can also successfully be tracked thanks to the restructuring operations 

employed in our deformation scheme. We demonstrate the performance of the proposed 

method both on real and synthetic sequences.   
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ÖZETÇE 

 

 

Zamanla değişen nesnelerin çok-bakışlı video dizilerinden 3B geriçatımı için hızlı ve 

verimli bir yüzey izleme yöntemi tanıtılmaktadır. Dinamik bir nesne örgü modelinin 

geometrisi ve bağlanırlığı, çok-bakışlı silüet ve 3B sahne akış bilgisine dayalı bir yöntemle, 

bir ilk gösterimden yola çıkarak, zaman içinde izlenir. Her çerçeveye ait örgü gösterimi, bir 

önceki çerçevenin örgü gösterimini silüet bilgisi ile belirlenen optimal yüzeye doğru 

deforme ederek elde edilir. Bu deformasyon süreci, örgü yeniden-yapılandırma işlemleri ve 

3B sahne akış bilgisi ile desteklenir. Elde edilen uzay-zamanda pürüzsüz örgü dizisi, örgü 

yeniden-yapılandırma işlemleri ve tepe noktalarının küçük ölçekli yerdeğiştirme vektörleri 

cinsinden, ilk çerçevenin örgü gösterimi ile birlikte, verimli bir şekilde kodlanabilir. 

Önerilen yöntemin hızlı olması ve gösterim maliyeti düşük örgü modelleri üretmesinin 

yanısıra, bir diğer avantajı da devinimi katı olmayan dinamik nesnelerin modellenmesi için 

kullanılabilmesidir. Devinimi katı olmayan bir nesneyi temsil eden örgü gösteriminin 

zamanla değişebilen bağlanırlığı, deformasyon şırasında kullanılan örgü yeniden-

yapılandırma işlemleri sayesinde başarı ile izlenebilmektedir. Yöntemin başarımı, hem 

gerçek hem de sentetik video dizileri üzerinde sınanmıştır. 
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Chapter 1 

 

INTRODUCTION 

 

 

3D modeling of dynamic real scenes is an emerging research field with applications in 

various domains such as 3D television, free viewpoint video, virtual reality and computer 

animation [1], [2]. Unlike optical motion capture systems which are widely used in 

computer animation applications [3], 3D video methods aim to recover the complete shape 

of a dynamic object, not only its motion. Most of the techniques addressing the dynamic 

object modeling problem adhere to passive surface reconstruction methods exploiting 

silhouette and/or stereo information acquired from multicamera video sequences [4], [5], 

[6], [7], [8], [9], due to the limitations of active reconstruction methods in temporal axis 

[10].  

The goal of dynamic scene modeling schemes is usually to generate a sequence of 

meshes each of which represents the geometry of a dynamic object at the corresponding 

video frame. There are three major challenges involved in achieving this goal. The first two 

of these challenges concern efficiency: computational complexity of the reconstruction 

method and the resulting representation load. A time-varying scene sampled at a standard 

rate of 30 frames per second would yield enormous 3D model data for representation and a 

considerable amount of time for reconstruction if no particular care is shown to exploit 

redundancies between consecutive time frames. In this respect, time-varying mesh 

representations with fixed connectivity, but with changing vertex positions, would certainly 

provide efficiency both for storage and processing. The third challenge concerns generality 

of the proposed solutions, that is, their applicability to modeling general dynamic scenes 

with arbitrary shape and motion. Existing methods often aim at fixed connectivity 
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representations and/or make use of object-specific prior models. Hence they consider 

primarily rigid and/or articulated motion, and may not handle the reconstruction problem 

when the object of interest undergoes an arbitrary nonrigid motion or deformation.  

In this thesis, we present an efficient surface tracking method for modeling dynamic 

objects based on multiview silhouette and 3D scene flow information. Here the term 

“surface tracking”, in the way we use it, refers to reconstruction of the surface geometry of 

a dynamic object at time t + 1 based on the reconstruction at time t, starting from an initial 

representation at t = 0. There exist actually very few methods in the literature, which are 

surface tracking in this sense and which can build complete shape models of dynamic 

objects [4], [5], [7], [8]. The main distinction of the method that we present in this thesis, as 

compared to previous work, is in the way we represent time-varying geometry. We relax 

the fixed connectivity requirement and encode time-varying geometry in terms of both 

connectivity changes and vertex displacements. Relaxing the fixed connectivity constraint 

has two major impacts. First, in this way objects with arbitrary shape and motion can easily 

be handled. Second the reconstruction problem is reduced to an energy minimization 

problem which can be solved by a fast snake-based deformation scheme. Unlike existing 

surface tracking methods, our scheme does not require any object-specific mesh 

representation, or 3D models separately reconstructed for all frames of the sequence prior 

to the tracking process. Starting from an initial mesh representation, the surface of the 

dynamic object is tracked over time, both in geometry and connectivity, based on mesh 

deformation. We assume that the topology of the object in the scene remains unchanged 

over time, as it actually does in real scenes. Nevertheless, we address the self-collision 

problem, which is disregarded in most surface tracking methods via a very efficient 

collision handling strategy.  

The mesh representation of each frame is obtained by evolving the mesh of the 

previous frame towards the optimal surface defined by the time-varying multiview 
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silhouette information, using mesh restructuring operations and vertex displacements. 

These mesh operations and small-scale displacements along with the initial mesh 

representation yield a compact and spatiotemporally coherent representation of the whole 

time-varying surface. Our deformable model is based mainly on the dynamic triangle 

meshes scheme which was proposed in [11] for mesh editing purposes. This scheme 

enables us to control parametrization, smoothness and uniformity of the dynamic mesh 

model for a robust mesh evolution across time.  

 

1.1 Related Work 

 

There is a vast and quite mature literature on 3D reconstruction of static objects. In 

general, reconstruction  techniques for static scenes can be collected under two groups: 

active and passive. Active techniques make use of calibrated light sources such as lasers 

and coded light [10]. Most of the active scene capture technologies become inapplicable in 

the dynamic case since currently it is very difficult to scan the whole surface of an object at 

a standard rate of 30 Hz. There exist though several attempts to achieve scanning at 

standard rates such as in [12], [13] by projecting coded light patterns on the object. The 

methods proposed in these works however have severe limitations on resolution, object’s 

surface properties and its motion, and are capable of producing only depth images, not full 

surface representations. On the other hand, passive reconstruction techniques, which are 

based on solely image cues such as multiview stereo [14] and/or silhouettes [15], are 

mostly free of these limitations and hence they currently seem to be a more viable option 

for the dynamic object modeling problem.  

Most of the methods in the literature proposed for dynamic object modeling require as a 

first step that the object shape, which is usually represented as a surface mesh, be 

reconstructed from scratch, separately for each time instance [6], [7], [8], [9], [16]. The 
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resulting sequence of meshes can then be matched so as to obtain a time consistent 

representation with fixed connectivity. In order to achieve temporal coherence in this sense, 

Starck et al [6] use spherical reparametrization of the resulting mesh sequence whereas 

other methods basically cast the reconstruction problem to a surface tracking problem: 

Starting from an initial mesh, the time-varying geometry is tracked over time by preserving 

the connectivity and exploiting the temporal redundancies between consecutive frames [7], 

[8], [16]. Hence the problem becomes finding a suitable transformation that maps the 

vertices of a mesh at time t onto the surface represented by another mesh at t + 1.  

Two other recent and closely related works [4], [5] follow a very particular approach to 

capture human performances from multiview video. Prior to video recording, they first take 

a static full-body scan of the subject using a laser scanner and construct a detailed complete 

3D mesh model. This mesh model representing the shape of the human actor in the first 

frame is then tracked over time by preserving the connectivity based on multiview image 

cues. In particular, the method in [4] presents very high quality reconstructions but the 

method requires some user interaction and an extensive computation time which is reported 

as about 10 minutes per frame on a standard computer. Moreover the method, which aims 

at a fixed connectivity representation, has no mechanism to handle arbitrary nonrigid 

motion and self-collisions.  

Methods for reconstruction of dynamic objects rely mainly on multiview silhouette 

information [17]. The strength of the shape from silhouette technique lies in its simplicity, 

efficiency and robustness especially when applied to convex shapes. The main drawback of 

this technique is that it fails to capture hidden concavities. Multiview stereo information on 

the other hand can be incorporated into reconstruction schemes in several different ways. It 

can be used for instance to enhance silhouette based reconstructions so as to capture finer 

surface concavities [4], or to impose additional constraints on the silhouette reconstruction 

process to avoid self-occlusion problems [6]. Another possibility is to compute 3D scene 
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flow vectors or image feature based 3D correspondences to incorporate into the mesh 

tracking process [5], [7], [8]. Relying too much on 3D scene flow vectors, which are very 

prone to errors, as in [5] for instance, may however fail the tracking process especially 

when the motion in the scene is very fast and complex. In our earlier work [18], we have 

shown that, given a sufficient number of multiview silhouette images at each frame, the 

time-varying geometry of an object with a relatively complex shape, such as a human actor, 

can be tracked based on solely silhouette information in a very fast manner using a snake-

based deformable model. In this thesis, we basically follow the same framework but extend 

it with additional features to make it more efficient and robust such as incorporation of 3D 

scene flow into the deformation scheme.  

Surface tracking methods usually resort in some way or other to mesh deformation 

methods, such as Laplacian deformation [19], which is a powerful tool for mesh morphing 

and editing, and which can be used to obtain animating mesh sequences with fixed 

connectivity [4]. However, with Laplacian deformation which is a differential but 

piecewise linear scheme, mesh connectivity cannot be altered, hence dynamic objects with 

arbitrary motion cannot be tracked. Another alternative [20] is based on volumetric level-

set technique and builds a spatially and temporally smooth surface model. Level set based 

deformation is however computationally very demanding. Although it can implicitly handle 

topological changes in geometry, the topology control is often very difficult to achieve. 

Moreover, with the level set approach, the explicit connectivity information of the initial 

shape model is lost through the iterations between the initial state and its convergence. 

Thus the level set technique becomes inapplicable to track objects in motion and to build 

efficient time-varying representations. In this respect, snake-based deformable models, 

when coupled with restructuring operations as we do in this work, enable keeping track of 

the changes both in geometry and connectivity and hence they are more appropriate to 
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track surfaces with arbitrary motion and shape. The methods in [7], [8] also employ snake-

based deformable models, but neither of them addresses the connectivity tracking problem. 

 

1.2 Overview and Organization 

 

The block diagram of the overall surface tracking scheme is given in Figure 1.1. The 

basic input data to reconstruct the surface representation at frame t+1 are:  

i) the camera calibration/projection parameters, 

ii)  the object silhouettes at frame t+1, 

iii)  the 3D scene flow vectors from frame t to t+1, 

iv) the pose registered mesh representation of frame t. 

The main tasks to prepare these input are: multicamera video acquisition, initial 

reconstruction, silhouette extraction, 3D scene flow estimation and pose registration. The 

multicamera video acquisition block provides the camera calibration/projection parameters 

and the multiview images of each frame to be used in silhouette extraction and 3D scene 

flow estimation.  

The raw input to the surface tracking scheme is the multiview video sequence of the 

dynamic scene captured with a calibrated multicamera system. The camera 

calibration/projection parameters are of use in several stages of the system. The images 

obtained are in use in two primary tasks  i) to extract the silhouettes for each view at each 

frame, ii) to estimate the 3D scene flow vectors for each consecutive frame couple. The 

initial surface model of the first frame is reconstructed prior to the surface 

tracking/deformation task by using a shape from silhouette technique that produces a 

topologically correct shape model which is eligible for further deformation [21]. The 

overall time-varying surface representation of the dynamic scene is then reconstructed by 

successively estimating the surface representation of each time frame by deforming the 



 
 
Chapter 1: Introduction 
 

 

7 

mesh representation of the previous frame based on the multiview silhouette information 

assisted by the 3D scene flow vectors. This surface tracking process produces a sequence of 

meshes, M
(0), M

(1), ..., M
(t) , ..., representing the time-varying geometry. For the surface 

evolution to successfully converge to the desired mesh representation, at each frame we 

first estimate the global rigid motion (translation and rotation) of the object from its 3D 

scene flow vectors so as to register the 3D pose of the starting mesh with reference to the 

target. This initial pose registration does not only improve the chances of the surface 

evolution to successfully converge to the desired surface, but it also speeds up the 

deformation process. Each mesh representation reconstructed at each frame t is then fed 

back to the tracker for 3D scene flow computation and pose registration at the next frame 

t+1. 
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Figure 1.1: The block diagram of the overall surface tracking scheme. 

 

The organization of the thesis is as follows. In Chapter 2 we describe the generic 

surface deformation framework that we employ for surface tracking. In Chapter 3, we 

explain how we drive this deformation scheme to track surface representations of dynamic 

objects using the time-varying silhouettes and the 3D flow vectors of the scene. In this 

chapter we also provide a pseudocode for the overall surface tracking algorithm, and 

estimate the bit-load of our dynamic connectivity representation scheme. Chapter 4 

presents and discusses the experimental results, and finally Chapter 5 gives concluding 

remarks and some future research perspectives.  
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Chapter 2 

 

SURFACE DEFORMATION SCHEME 

 

 

Our deformation technique is based on the iterative use of an appropriate 

transformation T that deforms, at each frame t, an initial triangle mesh )(
0

tM  towards the 

object surface )(t
S through the following surface evolution equation:  

( ) ( )
1 ( )t t

k kM T M+ =   

 

The deformable model )(t
kM  is required to remain as a smooth topologically correct mesh 

representation free of geometrical distortions during its evolution and to converge to an 

optimal mesh )(
'
t

kM  that faithfully represents the object surface )(tS  at the equilibrium state 

* *

( ) ( )( )t t

k k
M T M=  

 

We define T as the composition of three transformations: T = Td ○ Tr ○ Ts, which we will 

refer to as displacement, smoothing and restructuring operators, respectively. The 

displacement operator pushes the deformable mesh towards the object surface based while 

the smoothing operator regularizes the effect of this displacement and the restructuring 

operator modifies the mesh connectivity to eliminate any geometrical distortions that may 

appear during surface evolution. In this sense, the displacement operator corresponds to the 

external force whereas the other two correspond to the internal force of the classical snake 

formulation [23].  

 

 

(2.1) 

(2.2) 
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2.1 Vertex Displacement 

 

The distance between the deformable mesh Mk and the object surface S, dropping the 

index t, can be approximated by the average distance from the vertex set of Mk to the 

surface:  

,
1

1
( , ) Dist( , )

kN

k i k

i

e M S S
N =

= ∑ v  

where vi,k is the position vector of the i th vertex, Nk is the number of mesh vertices, and 

Dist(vi,k , S) is the Euclidean distance of the vertex to the surface S. To reduce the distance 

e(Mk , S), the operator Td(Mk) maps the deformable mesh Mk to kM ′  by moving each vertex 

,i k
v with a displacement ,( )

i k
d v  

, , ,( )i k i k i k
′ = +v v d v  

where { ,i k
′v } is the vertex set of the transformed mesh kM ′  which has the same 

connectivity as Mk. The direction and the magnitude of this displacement vector ,( )i kd v  is 

computed based on the signed distance from the vertex ,i k
v  to the target surface S at each 

iteration, as will later be explained in Chapter 3. Also note that the magnitude of the 

displacement has to be bounded above for a stable surface evolution.  

The distance function defined in Eq. 2.3 is only a discrete approximation of the true 

distance. Moreover it does not take into account the distance from the surface S to Mk. 

Hence the optimality of the surface obtained at convergence heavily depends on two 

factors, the resolution and the location of the initial deformable mesh. If the initial mesh is 

of sufficiently high resolution and initially placed near the object surface S, the surface 

evolution is expected to converge to an optimal surface that accurately represents the target 

surface. 

 

(2.3) 

(2.4) 
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2.2 Mesh Restructuring 

 

The restructuring operator, Tr, is the composition of three operators: Tr =Tsplit ○ Tcol ○ 

Tflip, which are edge split, edge collapse and edge flip transformations (Figure 2.1) 

introduced in [26] for mesh optimization. We use these elementary transformations in the 

way [11] uses them for mesh editing. At the end of each iteration of the surface evolution, 

the operator Tsplit first splits all edges longer than εmax at their midpoints. Then, the operator 

Tcol successively eliminates all edges shorter than εmin by edge collapses. Finally, the flip 

operator Tflip is applied to reduce the number of irregular vertices possibly created by the 

previous collapse and split operations. For the split operation to be compatible with the 

collapse operation, the   threshold εmax has to be chosen such that εmax ≥ 2εmin since 

otherwise split operations would create edges with length smaller than εmin. We set εmax = 

3εmin to have uniformly sized triangles with small aspect ratios. Since the edge length ratio 

is then bounded by εmax / εmin = 3 and the valence distribution preserves its uniformity by 

flip operations, the deformable mesh maintains a high quality in terms of the aspect ratio of 

the triangles during surface evolution. 

Thanks to the restructuring operation applied at each iteration of the surface evolution, 

the deformable mesh can adapt its shape to the object surface, avoiding geometrical 

distortions such as degenerate triangles and irregular vertices. Note that, with the 

restructuring operator as formulated above, the surface evolution results in an optimal 

surface Mk* that has the same topology as the initial mesh M0 unless explicit topology 

modifying operators for merging and/or splitting are incorporated. 
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Figure 2.1: Edge operations: collapse, split and flip. 
 

Edge collapse: As the vertices are pulled towards the object boundary by the 

displacement operator, neighboring vertices may get too closer and cause degenerate edges. 

Thus we collapse an edge by merging their endpoints to the midpoint whenever its length 

falls below the threshold εmin. The merging point can actually be optimized according to the 

needs of the application; it can be for instance one of the endpoints, whichever is 

appropriate, or the optimal position on the edge if it is possible to define one. The edge 

collapse operation may occasionally cause a mesh triangle to fold over another and may 

create a non-manifold triangulation. As explained in [26], the collapse of an edge defined 

by two vertices Pi and Pj is legal in a closed manifold mesh if and only if for all vertices Pk 

adjacent to both Pi and Pj , {Pi , Pj , Pk } is a face of the mesh. To strictly comply with the 

minimum edge length constraint, whenever an illegal collapse operation is encountered, we 

first detect those vertices Pk for which {Pi , Pj , Pk } is not a face, remove them from the 

mesh structure, and then safely apply the collapse operation. This process of handling 

illegal edge collapses is depicted in Figure 2.2: 
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Edge split: Similarly, as the deformable surface evolves, neighboring vertices may get 

further from each other and cause very long edges that degrade the regularity of the mesh. 

Moreover, parts of the deformable mesh where such long edges accumulate can not capture 

the details of the object shape. Thus whenever the length of an edge exceeds a certain 

threshold εmax= 3εmin, an additional vertex is inserted on the middle position of such an edge 

and the data structure is updated accordingly. For the split operation to be compatible with 

the collapse operation, the threshold εmax has to be chosen such that εmax ≥  2 εmin since 

otherwise the split operation would create edges with length larger than εmin. Note that the 

split operations must be applied in an appropriate order to avoid split operations causing 

new edges exceeding εmax. All the edges of the mesh, that need to be split, are first arranged 

in descending order with respect to their lengths and then split in that order. The 

significance of taking the order into account while splitting edges is illustrated in Figure 

2.3. 

Figure 2.2: Handling illegal edge collapses. (Top row) The collapse of the edge {i,j} 
produces a non-manifold triangulation. (Bottom row) The vertex m is removed from the 
mesh structure and the edge collapse operation becomes a legal move. 
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Edge flip: Edge collapse and split operations inevitably change the valence distribution 

of the mesh structure, that yield irregular vertices. To prevent this, during surface 

evolution, the common edge of any two neighboring triangles is swapped with the one 

joining the unshared vertices of the triangles, as long as this operation favors the existence 

of the vertices of valence close to 6. An edge flip is allowed if and only if the edge is 

adjacent to two triangles whose union is a convex quadrilateral. Figure 2.4 illustrates an 

edge split operation that results in a non-manifold triangulation. 

 

 

 

 
 
 
 
 
 

Figure 2.4: An illegal flip operation. Flipping the edge ik with lj creates a non-manifold 
triangulation; hence it is not allowed. 
 

Figure 2.3: Significance of taking the order into account when splitting edges. Splitting 
first the longer edge ij (top row) yields a more plausible triangulation than splitting the 
shorter edge ik (bottom row) first. 
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2.3 Mesh Smoothing 

 

The smoothing operator, Ts, is necessary for a robust mesh evolution that is free of 

topological errors and to have eventually a visually pleasant fair surface representation. It 

should be easy to compute, yet must not yield any geometrical shrinkage and bias in the 

final surface estimate. To achieve this, at the end of each frame transition we employ a 

combination of the tangential Laplacian smoothing [25] and Taubin’s surface fairing 

technique [24], and during the evolution, at each iteration, we employ the tangential 

component of the classical Laplacian smoothing such that the mesh representation of the 

surface preserves its volume without any shrinking while the mesh geometry is regularized. 

It is essential to avoid displacements along the surface normal while smoothing during the 

evolution so that the smoothing operator does not slow down the process of inflating 

towards a target surface. The operator Ts(M) maps the deformable mesh M to M ′  by 

moving each vertex v to v' (dropping the vertex index i and the iteration index k), 

according to rather the evolution has converged or not. 

T

T N

during evolution

at convergence

+ ∆
′ = 

+ ∆ + ∆

v v
v

v v v
 

where the displacements T∆v  and N∆v  correspond to smoothing along tangential and 

normal directions of the surface, respectively. We obtain the tangential component, T∆v , 

by tangential Laplacian smoothing: 

T ( ) ( ( ) )L L∆ = − ⋅v v v N N  

where L(v) denotes the Laplacian displacement that moves the vertex v to the centroid of 

the vertices in its one-ring neighborhood. The component N∆v , on the other hand, is 

obtained by fairing the surface along its normal direction:  

N ( ( ) )F∆ = ⋅v v N N  

(2.6)

(2.7)

(2.5)
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where F(v) denotes the displacement created by the non-shrinking surface fairing algorithm 

described in [24]. These two components of the smoothing operator are depicted on Figure 

2.5 by successively applying them on a random noise added mesh structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: The components of the smoothing operator on a noisy mesh structure. Left 
to right: Random noise added model; Laplacian smoothing along surface tangential; 
Fairing along surface normal (applied only once at convergence). 
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2.4 Collision handling 

 

A dynamic surface, as it moves or deforms, may collide with itself at various occasions 

(self-collision). These collisions must be detected and handled properly for a flawless 

surface evolution scheme as depicted in Figure 2.6. We have developed an efficient 

collision detection algorithm to handle such self-collisions. 

 

 
 

Our algorithm is based on the minimum and maximum edge length constraints,  εmin 

and εmax respectively, imposed on the deformable mesh. Note that the intersection of 

neighbouring vertices during the surface evolution is avoided thanks to the regularization in 

the smoothing operator in each iteration and the minimum edge length constraint εmin. Also 

recall that the magnitude of the displacement of each vertex in each iteration is bounded 

above by half of the minimum edge length constraint (εmin/2). The basic idea in collision 

detection is to prevent non-neighboring vertices from approaching each other by more than 

some distance threshold ζ. We define neighboring vertices as those which are in the two-

ring neighborhood of each other.  

Figure 2.6: Illustration of collision handling. Left to right: The initial position of two 
segments that are about to collide; A few iterations later the segments evolve into each 
other if the collisions are not handled; The segments preserve a margin to avoid collision. 
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The procedure that we use to handle collisions is as follows. Right after all the vertices 

of the deformable mesh are displaced by the displacement operator, each vertex is checked 

one by one against the non-neighboring vertices. If a vertex is found to have approached 

any other vertex by more than the collision detection threshold ζ, then a collision is 

detected and the vertex is moved back to its position before the displacement operator. The 

value of the collision threshold ζ depends on the maximum edge length parameter εmax and 

the displacement bound εmin/2. For the decision of this threshold ζ that guarantees that all 

collisions are detected, we consider the worst case scenario where the position of a vertex 

is checked against the largest possible triangle on the deformable mesh, which is an 

equilateral triangle of sides εmax, as visualized in Figure 2.7. The vertex must not approach 

to any point inside this triangle by more than the maximum possible displacement εmin/2 

since otherwise, at the next iteration, the triangle and the vertex may move at opposite 

directions, intersecting each other and falling apart by more than εmin/2 distance. Note that 

the centroid of the triangle is the farthest interior point from all three corners of the triangle 

Figure 2.7: Worst case scenario for the decision of collision threshold ζ. The vertex v 
is checked against the largest possible triangle on the mesh, that is, an equilateral 
triangle of side εmax. If the vertex approaches to any vertex of the mesh by more than 
the threshold ζ, a collision occurs. 
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with distance 3εmin / 3 = 3 εmin to each of the corners. The collision zone starts at the 

point whose vertical distance from the centroid is εmin/2. The distance of this point to each 

of the triangle vertices is given by the diagonal length of the right triangle formed by this 

point, the centroid and a triangle vertex. Hence the collision threshold ζ must satisfy the 

following inequality,  

( ) min

2

min
2

min
2

13

2
3 ε

ε
εζ ≥








+>  

 

 By using a uniform partitioning where each vertex is associated with a voxel of a 3D 

grid and by checking each vertex only against those in its neighbouring voxels, the 

collision detection algorithm is implemented in an efficient manner with O(nlogn) 

complexity, where n is the number of vertices in the deformable mesh. The length of one 

side of a voxel is set to ζ, so that wherever the vertex of interest is located in its voxel, the 

sphere of radius ζ is covered by the search space, as depicted in Figure 2.8: 

 

 

Figure 2.8: The collision zone and the search space for collision detection of a vertex. 
The vertex v is located towards an edge of its voxel. Green vertices are inside the 
collision zone. Blue vertices are within the search space (neighbouring voxels) whereas 
the black vertices are not. 

(2.8) 
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Chapter 3 

 

SURFACE TRACKING 

 

 

The mesh representation *

( )t

k
M  of the object surface at each frame t is reconstructed by 

deforming the surface reconstructed at the previous frame, *

( ) ( 1)
0

t t

k
M M −= . The deformation 

process is driven by the time-varying silhouette and the 3D scene flow information, as 

explained in detail in this chapter.  

 

3.1 Shape From Silhouette 

 

The surface deformation process is primarily driven by the time-varying silhouette 

information. Hence we need to extract these silhouettes for each frame of the multiview 

video prior to tracking. For this purpose we use the silhouette extraction method proposed 

in [31], which is based on statistical modeling of the background pixel colors with a 

training set of background images. We note that the performance of the surface tracking 

scheme is highly related to the performance of the silhouette extraction stage. 

 

3.1.1 Silhouette Based Deformation 

 

The displacement, ,( )i kd v , at each vertex i of the mesh and at each iteration k of the 

surface evolution, can be computed based on the time-varying silhouette information. Let 

sil ,( )i kd v  denote the silhouette-based displacement. The direction of this displacement 

(3.1)
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vector is set to be in the direction of the surface normal ,( )
i k

N v , inwards or outwards, 

depending on the positioning of the vertex with respect to the target surface. 

sil , sil , ,( ) ( ) ( )i k i k i kδ=d v v N v  

The magnitude of the displacement, sil ,( )
i k

δ v , is based on how far and in which direction 

(inside or outside) the vertex v is with respect to the silhouettes at that time instant. Thus 

the displacement scalar δsil , which may take negative values as well, is computed by 

projecting ,i k
v  onto the image planes and thereby estimating an isolevel value ,( )

i k
f v via 

bilinear interpolation:  

sil , min , min ,( ) ( ) min{ [Proj ( )] 0.5}
ni k i k I i kf Gδ ε ε= = −v v v  

 

where ,Proj ( )
nI i k

v  is the projection of the vertex ,i k
v  to In, the n’th binary silhouette image 

(0 for outside, 1 for inside) in the sequence. The function G, taking values between 0 and 1, 

is the bilinear interpolation of the sub-pixelic projection of the vertex ,i kv . Thus, the 

isolevel function f ( ,i kv ) takes on values between -0.5 and 0.5, and the zero crossing of this 

function reveals the isosurface. The isovalue of the vertex v is provided by the image of the 

silhouette that is farthest away from the point, or in other words, where the interpolation 

function G assumes its minimum value. So the absolute displacement scalar is bounded 

above by εmin/2, that is, the maximum displacement that a vertex is allowed to move in one 

iteration. 

We distinguish the vertices of the deformable mesh under three categories with respect 

to their isovalues. A vertex v is labeled as IN if f ( ,i kv ) is 0.5, OUT if -0.5 and ON if in 

between. According to this definition, ON vertices are those positioned within a narrow 

band around the boundary surface. By Equation 3.2, the displacement at each ON vertex 

varies within the interval (−εmin/2, εmin/2). The vertices which are out of this band are 

(3.2)
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labeled as IN or OUT, depending on whether they are located inside or outside the 

silhouettes and they have displacement scalars εmin/2 or  −εmin/2  

 

3.1.2 Fine Tuning 

 

During surface evolution, the state of a vertex, which is initially OUT, can switch 

between any two of the three categories. A vertex moves not only due to the displacement 

operator, but also due to the regularization effect of the smoothing operator that alters its 

positioning. Depending on the magnitude of the displacement vector, which is bounded 

above by εmin/2, the state of a vertex can even switch from OUT to IN, or vice versa, at one 

single iteration. The vertices of the deformable mesh, when they get close to the boundary, 

may oscillate between IN and OUT states until convergence, that is, until they no longer 

move. Some vertices remain as OUT or IN even at convergence. To improve accuracy and 

to speed up convergence, we incorporate a fine-tuning procedure to the surface deformation 

process. We detect the instances when a vertex crosses the target boundary due to the effect 

of the displacement operator, that is, when its state changes from outside to inside, or vice 

versa. We then precisely locate the point where it crosses the boundary via dichotomic 

subdivision as described below. If the current resolution of deformation (εmin/2) does not 

match the resolution of the silhouette images, it is even possible that an IN or OUT vertex 

may cross the boundary several times at one single iteration, jumping over and missing fine 

shape details. To prevent this, before moving an IN or OUT vertex v with the displacement 

operator, we sample its motion trajectory, which is of length εmin/2, at the maximum 

available resolution. If a zero-crossing is detected at any of these sampled points, say v', 

the displacement of the vertex is refrained at that point and a dichotomic subdivision is 

carried out to search for the point where the isolevel function f(v) is zero on the line 

segment joining the point v' and the initial position v. For a sufficiently small threshold 
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value µ, -ξ < f(v) <ξ, is used to determine how close the isolevel of a given point must be to 

assume it as being exactly on the boundary surface (see Figure 3.1). The vertex is then 

moved onto this location.  

 

 

 

Note that the a vertex may change its state (from OUT to IN, or vice versa), even if it is 

not close to the optimum coordinates where the vertex should be at the convergence of the 

evolution. This would occur if the vertex is passing some boundary other than the boundary 

at which it should ideally end to represent the target surface, that is, if its distance to the 

target surface point, or its 3D scene flow vector (as will be explained in Section 3.2), has a 

large magnitude. Thus to avoid fine tuning to be an obstacle for a smooth and fast 

evolution, we only activate fine tuning for a vertex when it is close to the target surface 

point. 

 

 

Figure 3.1: Dichotomic subdivision to accurately locate the position of a vertex. The 
vertex v is initially OUT. The boundary surface is assumed to pass through some point 
on the line segment joining v and v', where the isolevel function f(.) takes a value 
between -ξ < f(v) <ξ. For this example, the binary search takes four steps to locate the 
boundary point. 
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3.2 3D Scene Flow  

 
Silhouette-based surface evolution may fail to track the surface in case the local motion 

is too fast on small shape details that can be confused by the silhouette information. For the 

algorithm to work successfully, there is generally a compromise between the frame rate, the 

speed of the motion and the size of the shape details. To overcome the limitations of this 

compromise and to enhance the robustness and efficiency of the surface tracking process, 

we incorporate 3D Scene Flow (3DSF) information into silhouette-based deformation. 

Scene flow is defined by Vedula et al. in [28] as “Just as optical flow is the two-

dimensional motion of points in an image, scene flow is the three-dimensional motion of 

points in the world”. The various benefits of incorporating scene flow information is listed 

below: 

• It eliminates unnecessary surface shrinkages and inflations during surface evolution 

by guiding the surface on a direct path towards the target surface. By this way, it reduces 

the number of necessary restructuring operations and thereby decreases the representation 

load and the reconstruction time. 

• Pose registration parameters estimated from scene flow vectors, as will be described 

below, transforms the initial mesh, in a rigid manner (translates and rotates), towards the 

target surface so that the overall distance to the target surface is reduced. By this way, the 

maximum distance traveled by a vertex is shortened and hence the representation load and 

the reconstruction time are further decreased. 

• It provides a smooth evolution by integrating a displacement direction other than the 

surface normal towards the target surface and avoids unnecessary decelerations around 

irrelevant surface boundaries due to small scale silhouette details and unnecessary fine 

tunings.  
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Obtaining the scene flow information necessary for our deformation scheme means to 

estimate a vector )(t

iw for each vertex )(t

iv of the mesh representation M
(t)

 at frame t, that 

describes its position at the next frame t+1: 

( 1) ( ) ( )ˆ t t t

i i i

+ = +v v w  

as depicted with an example in Figure 3.2. To achieve this estimation we have developed 

the method described in the sequel. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Illustration of 3D scene flow on an initial mesh (left) and its target surface 

(3.3)
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3.2.1 3DSF Estimation 

 

The steps towards estimating the scene flow vector )(t

iw  for a vertex )(t

iv of the mesh 

representation M(t)  are as follows [28]  (dropping the indices i and t): 

i) Find the set of camera viewpoints that the vertex  v is visible to, Vis(v)={C1, C2, …, 

CK}, where K is the number of cameras that v is visible to. For this purpose we make use of 

the voxel grid generated for collision handling. We scan the voxels located along the line of 

sight from v to the optical center of a given camera Ck and check if any other vertex 

occludes its visibility from that camera. 

     ii) By using the camera projection matrix Pk, project the vertex v = (x,y,z) onto each 

camera plane Ck  in Vis(v): 

T T
1 1

T T
3 3

[ ] ( , , ,1) [ ] ( , , ,1)
,      

[ ] ( , , ,1) [ ] ( , , ,1)
k k

k k

k k

x y z x y z
u v

x y z x y z
= =

P P

P P
  

where uk = (uk,vk) is the projected point, and [Pk]1 and [Pk]3 denote the first and the third 

rows of the 3×4 projection matrix, respectively. 

iii) Find the 2D optical flow vector, 
d

d
k

t

u
, at the projected point for each camera Ck. 

We employ the hierarchical Lucas-Kanade method [29] for this purpose.  

iv) Estimate the 3D scene flow vector, 
d

dt
=

v
w , from the computed 2D motion vectors, 

1

d

d

K

k

kt =

 
 
 

u
, by 

d d

d d
k k

t t

∂
=

∂

u u v

v
. The Jacobian matrix k∂

∂

u

v
 can be computed explicitly for 

each k by symbolic differentiation of uk with respect to x, y, and z, using the camera 

projection parameters. The 3D scene flow vector, 
d

dt
=

v
w ,  can then be estimated from the 

following overdetermined set of linear equations: 
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1 1 1
1

1 1 1 1

. . . .

. . . .

K K K K

KK K K

u u u u
x y z t
v v v v

x y z t

u u u u

x y z t

vv v v

tx y z

∂ ∂ ∂  ∂ 
 ∂ ∂ ∂  ∂   

∂ ∂ ∂  ∂ 
 ∂ ∂ ∂  ∂   
   =   
   
 ∂ ∂ ∂ ∂ 
   ∂ ∂ ∂ ∂   ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂ 

w
 

 

The scene flow vector of a vertex v can be estimated from its 2D motion vectors only if the 

vertex is visible from at least 2 cameras, i. e., K ≥ 2.. When the number of visible cameras 

is sufficient, the set of linear equations is solved via the least-squares method for w so as to 

minimize the sum of the errors obtained by reprojecting the scene flow vector onto the 

camera planes.  

The estimated scene flow vectors theoretically represent the coordinates of each vertex 

at the mesh representation of the following frame. But this data is usually not complete and 

noisy, therefore it must be regularized before it can be utilized. We smoothen the estimated 

scene flow vectors by averaging each in their 3-link neighbourhood and extrapolate the 

missing ones during this stage, again by averaging in their neighbourhood. We employ the 

scene flow vectors for two purposes. Firstly for pose registration to apply once at each 

frame transition, secondly to assist the silhouette-based deformation through displacement 

iterations to render the process more robust and efficient. 

 

 

 

(3.4)
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3.2.2 Pose Registration 

 

The purpose of pose registration is to adjust the position and orientation of the mesh 

representation M(t)  so that the distance between M(t) and the target surface S(t+1) is reduced 

before surface evolution from frame t to t+1 gets started. This is depicted with an example 

in Figure 3.3. This initial transformation does not only improve the chances of the surface 

evolution to successfully converge to the desired surface, but it also speeds up the 

deformation process and reduces the maximum distance traveled by a vertex thereby 

decreasing the representation load.  

 

 

The 3D scene flow vectors can be used to estimate the pose registration (rotation and 

translation) parameters. Let us denote the global rigid body motion parameters between the 

surfaces at frame t and t+1 by R(t) the rotation matrix and t(t) the translation vector. We 

represent the 3D coordinates of the vertices at these consecutive frames as V(t) and ( 1)ˆ t+V ,  

Figure 3.3: Illustration of pose registration. M(t): Mesh representation at frame t, 
)(t

PRM : Pose registered mesh, S(t+1): Target surface at frame t+1. 
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( ) ( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1)
1 2 1 2

ˆ ˆ ˆ ˆ, ,...,      , ,...,   t t t t t t t t

n n

+ + + +   = =   V v v v V v v v  

where n is the number of vertices in M(t). Recall also that ( 1) ( ) ( )ˆ t t t

i i i

+ = +v v w  where ( )t

iv and 

( )t

iw  are column vectors consisting of 3D coordinates. In this case, the relationship between 

V(t) and ( 1)ˆ t+V  is given by: 

( )
( 1) (t) (t)

T
ˆ   =  

 

t

t+
 

    
 

V
V R t

1
 

 

R(t) and t(t) are estimated from this equation using a nonlinear unitary-constraint 

optimization technique as described in [30]. The rotation and translation parameters are 

estimated prior to each frame transition to apply pose registration. This process of pose 

registration provides a good initialization of the surface at each frame and hence improves 

stability of the surface tracking process. The benefits of pose registration will be 

demonstrated with experiments in Chapter 4. 

 

3.2.3 Scene Flow Assisted Deformation 

 

In addition to pose registration, 3D scene flow vectors are also used at the deformation 

stage to contribute to the computation of the displacement operator. It is possible to 

integrate scene flow vectors into the deformation stage in several different ways. Although 

in theory a scene flow vector gives the exact location of a vertex on the surface of the next 

frame, scene flow computation itself is usually a noisy and unstable process in practice and 

hence cannot alone be relied upon for a robust mesh evolution. Nevertheless, 3D scene 

flow can assist silhouettes in driving the deformation process by ensuring that majority of 

the vertices are correctly led towards the target surface. That is, the direction and 

magnitude of the displacement vector of a vertex at a given iteration will depend partially 

(3.5)

(3.6)
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on the silhouettes and partially on the scene flow vectors. The best way to achieve this in 

our deformation framework is to use a linear combination of these two information sources 

while calculating the displacement vector defined by Equation 2.4: 

, , sil , , flow ,( ) ( ) ( )i k i k i k i k i kα β= +d v d v d v  

where ,i kα  and ,i kβ  are weighting coefficients varying for every vertex i and iteration k; 

they take values between [0,1] and their sum is always unity: , , 1i k i kα β+ = . The silhouette-

based component sil ,( )
i k

d v  is calculated according to Equations 3.1 and 3.2, 

sil , min , ,( ) min{ [Proj ( )] 0.5} ( )
ni k I i k i kGε= −d v v N v  

where ,( )i kN v represents the unit surface normal at vertex ,i kv . The scene flow based 

component flow ,( )i kd v  is calculated based on iw such that its direction is always towards 

the initial target ˆ
iv  that the scene flow vector points to and its magnitude is bounded by 

εmin/2 just like the silhouette-based displacement component sil ,( )i kd v : 

,min min
,

,flow ,

,

ˆ
ˆ               if 

ˆ2 2( )

ˆ( )                       otherwise

i i k

i i k

i i ki k

i i k

ε ε−
− >

−= 
 −

v v
v v

v vd v

v v

 

Recall from Equation 3.3 that ˆ
iv , representing the target point, is different for each vertex 

and remains fixed throughout the iterations of a frame transition from t to t+1. 

The weights ,i kα  and ,i kβ  in Equation 3.7 vary with iteration counter k. The purpose 

here is to provide a deformation where the scene flow vectors dominate the silhouette 

information at the early iterations ( ,0 1
i

α = , ,0 0
i

β = ). As iterations proceed, this favour 

should gradually be carried to silhouette information ( *,
0

i k
α ≅ , *,

1
i k

β ≅ ). In this way, the 

scene flow information will smoothly lead the deformation towards the target surface on a 

(3.7)

(3.8)

(3.9)
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stable and short path while the final surface reconstructed will totally be determined by the 

silhouette information. We set these weights as a function of iteration counter k such that: 

, , ,,      1ik

i k i k i k
e

τα β α−= = −  

 

The choice of the time coefficient τi here is crucial because it determines how long the 

scene flow information will be effective. The optimal value of τi is determined separately 

for each vertex based on the scene flow magnitude at that vertex. Our strategy is as follows: 

Taking into account the fact that the maximum vertex displacement at one iteration is 

bounded above by εmin/2, the total number of iterations for a vertex iv  to reach its target 

point ˆ
iv  by using only the scene flow vector is expected to be min

ˆ 2 || || /iK ε= w  (see Eq. 

3.9). The coefficient τi is then chosen so that the weights satisfy 5.0,, == kiki βα  at the half 

of this iteration count:  

1
minln(0.5) ( / )i iτ ε −= − ⋅ w  

 

To summarize, the displacement ,( )i kd v  at the vertex ,i kv  is calculated in a similar way 

as given in Equation 3.2, but this time using also the scene flow information via dflow(vi,k). 

When using scene flow vectors, the fine tuning procedure described in Chapter 3.1.2 is 

invoked only when the vertex is close to its target point ˆ
iv . In this way, unnecessary 

decelerations around irrelevant surface boundaries are avoided. Integrating the scene flow 

information into the deformation process not only improves the stability of the surface 

tracking but also considerably decreases the operation count and the reconstruction time by 

leading the surface smoothly towards the target surface without unnecessary restructuring 

operations during surface evolution. 

 

(3.10)

(3.11)
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3.3 Surface Tracking Algorithm 

 

We now describe the overall algorithm that generates a sequence of meshes 

representing the time-varying geometry. The inputs are the multiview video, the silhouette 

images at every frame, the initial mesh model M
(0) representing the surface at the first 

frame, and the projection parameters of the multi-camera system. The vertices of the initial 

deformable mesh, M0
(t), are all set to be active prior to deformation at each frame. The 

overall algorithm is then as follows: 

 

Iterate on t 

• Set M0
(t) = M(t−1); 

• Estimate 3D scene flow w(t); 

• Estimate the rotation matrix R(t) and the translation vector t(t); 

• Pose register M0
(t) using  R(t) and t(t); 

• Iterate on k 

� Displace active vertices in Mk
(t)

 by Td(Mk
(t)); 

� Detect and handle collisions; 

� Smooth active vertices in Mk
(t)

 by Ts(Mk
(t)); 

� Restructure active edges in Mk
(t)

 by Tr(Mk
(t)); 

� Deactivate vertices that no longer move; 

• Till convergence 

• Set M 
(t) = Mk*

(t) as final mesh representation at frame t; 

Till end of scene 

 

Note that the displacement and smoothing operators are applied only to active vertices of 

the deformable mesh whereas the restructuring operator is invoked only for active edges,  
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that is, for edges with at least one active vertex. The vertices that are detected to no longer 

move through iterations of the deformation algorithm are deactivated. Thus as iterations 

proceed and as more and more vertices become inactive, the time spent at each iteration 

significantly reduces, yielding on overall a computationally efficient algorithm. The 

algorithm converges when the vertices of the deformable mesh no longer move, that is, 

when the equilibrium condition in Equation 2.2 is satisfied. 

 

3.4 Representation Load 

 

The resulting mesh sequence, M
(0), M

(1), … M
(t), …, representing the time-varying 

geometry, can be efficiently encoded in terms of the small-scale vertex displacements and 

the restructuring operations along with the initial model and the pose registration 

parameters of each frame. We will show in the experimental results section that this 

encoding approach significantly improves space efficiency as compared to encoding each 

frame separately. To calculate the bit-load of a sequence reconstructed by our method we 

use the number of restructuring operations, the number of vertices, and the maximum 

vertex displacements in x, y, and z directions for each frame.  

Let us first assume the vertex coordinates are encoded with P-bit precision. We denote 

the number of vertices at frame t by t

vN , the number of restructuring operations at frame t 

by r
tN , the ratio of the radius of the sphere bounding the surface at frame t to the maximum 

displacements in x, y, and z directions to frame t+1 by respectively t

xs , t

ys  and t

zs , and the 

total number of frames in a sequence by T. The bit-load B for a mesh sequence can then be 

calculated (omitting the bit-load for the initial mesh M(0), the pose registration parameters 

for each frame and the maximum displacements in each direction for each frame) as 

follows: 
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( )2 2 2 2r
1

3 log log log 2 log
T

t t t t t t

v x y z v

t

B N P s s s N N
=

       = − − − +       ∑  

In this equation, the first term in the sum corresponds to the bit-load of the vertex 

displacements, and the second term corresponds to the bit-load of the restructuring 

operations. The bit-load of the x-component for each vertex displacement at frame t is 

given by 2log t

xs    which is usually much less than the required bit precision P. The same 

argument holds for y and z directions as well, to compute the total bit-load of each vertex 

displacement. Assuming that the number of edges in a mesh representation is equal to the 

number of vertices t

vN , and noting that a restructuring operation can be represented by an 

edge and an edge can be represented with two vertex indices, the bit-load of a restructuring 

operation is twice the bit load of a vertex 22 log t

vN    at frame t. 

If each mesh representation in a sequence were to be encoded separately using the 

classical vertex-triangle list, the bit-load B0 of the whole sequence would be calculated as: 

20
1

3 6 log
T

t t t

v v v

t

B N P N N
=

 = +  ∑  

In this equation the first term in the sum corresponds to the bit-load of the vertex 

coordinates and the second term corresponds to the bit-load of the triangles. Here we 

assume that a triangle is represented with three vertex indices and that the number of 

triangles is twice the number of vertices, and also P-bit precision is used for each of the x, 

y, and z coordinates. 

We have compared the representation load efficiency of our method with the classical 

vertex-triangle list representation and observed that it provides an approximately 1-to-5 

encoding efficiency without applying a statistical compression algorithm. The experimental 

results on encoding efficiency will be presented in the next chapter. 

(3.12)

(3.13)
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Chapter 4 

 

EXPERIMENTS AND RESULTS 

 

We have conducted experiments to demonstrate the performance of our surface 

tracking method on three different sequences, one synthetic and two real sequences.  

The synthetic mesh sequence, Jumping Man, originally reconstructed from a real scene 

by the authors of [27], exhibits the realistic motion of the jumping act of a human actor at 

30 fps with 220 frames. We have artificially created the time-varying multiview silhouette 

images, each of size 1280 × 1024, from the 3D models of this sequence, using a horizontal 

circular camera configuration consisting of 16 cameras modeled with perspective 

projection. In the synthetic case, the silhouettes, the scene flow vectors and the camera 

calibration parameters are all given and error-free. Hence we can assess the performance of 

our method in ideal conditions. Moreover since we have the ground-truth mesh sequence in 

hand, we can quantitatively measure the quality of the reconstructed mesh sequence with 

respect to the original.  

We have recorded two real video sequences at 30 fps by using the multicamera system 

equipped with 8 cameras (1332 × 980) in MVGL Lab at Koç University1. Original images 

from the 8 cameras of a sample frame is given in Figure 4.1. We have calibrated the 

multicamera system by using the technique described in [33]. For silhouette extraction, we 

have used the method presented in [31], which is based on statistical modeling of the 

background pixel colors with a training set of background images. To improve the accuracy 

of the silhouette extraction process, we have employed an artificial black background.  

                                                 
1 http://mvgl.ku.edu.tr/ 
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The first real sequence is a relatively long sequence (about 1260 frames) with various 

types of actions such as standing, walking, running, jumping, turning, stretching and kick-

boxing. These actions have been chosen to test different types of motions varying in speed, 

locality and complexity (e.g., jumping is for slow local motion and fast global motion while 

kick-boxing is for fast local motion and slow global motion, and stretching is for self-

collisions). The second real sequence has been chosen to test the performance of our 

deformation scheme in the case of highly non-rigid motion, e.g., total shrinking and 

inflation of a ball in the hands of a player while dribbling. The animation videos of the 

reconstructions of all three sequences together with a view from the original scenes may be 

reached from the public MVGL website2. 

 

4.1 Initial Reconstruction 

 

Recall that the mesh representation of the initial frame, M(0),  has to be reconstructed as 

the first step to be able to initiate the surface tracking process. Our reconstruction of the 

initial mesh is based on the silhouette-based static object reconstruction method described 

                                                 
2 http://mvgl.ku.edu.tr/surftrack 

Figure 4.1: Sample original images. Views from cameras 1 to 8 at frame 1205  
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in [32]. This method uses a deformation scheme that is similar to the one described in this 

thesis. In Figure 4.2, we provide views of the deformable model at various iterations of the 

surface deformation process as it evolves starting from the bounding sphere towards the 

object boundary at the first frame.. We decide on the resolution of the deformable mesh 

model, hence the value of εmin, to model all sequences at the initial frame. The value of εmin 

should be small enough to describe small shape details but as large as possible to reduce 

the total vertex count. In Table 4.1, we give the number of vertices and the reconstruction 

error for varying εmin. The values of εmin and the reconstruction error are both normalized 

with respect to the size of the object, e.g., the value of εmin is given as the ratio of the 

minimum edge length to the radius of the bounding sphere. In Figure 4.2., we display the 

resulting meshes reconstructed at these varying resolutions. In Table 4.1, we detect a break 

point in the reconstruction error at εmin= 0.025. For εmin values larger than this breakpoint, 

the reconstruction error increases rapidly, and as also observed from Figure 4.3, the arms of 

the jumping man for instance start to get eroded and cannot be modeled properly. This 

optimal value, which corresponds 2.5% of the radius of the bounding sphere, can be 

applied to any sequence where the object in the scene is a human actor. Hence we will use 

this value for reconstruction of all other sequences, though we will also present results at 

higher resolutions.  

εmin Vertex 
(#) 

Average 
Error (10-3) 

Maximum 
Error (10-3) 

0.010 9052 2.85 99.46 
0.015 3826 3.06 99.34 
0.020 2203 3.47 100.24 
0.025 1258 4.09 98.63 
0.030 856 6.29 144.87 
0.035 697 7.07 145.44 

 

 

Table 4.1: Number of mesh vertices, average error, and maximum error for initial 
reconstruction of the Jumping Man  with varying εmin values. 
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4.2 Surface Tracking Results 

 
      We have tested the performance of our surface tracking method on three sequences. For 

each of them, we consider three distinct cases to demonstrate the contribution of each 

different component of our scheme. In the first case, the deformation is driven by only 

silhouette-based displacements without employing any pose registration or scene flow 

vectors. In the second case, we make use of silhouette information along with PR (pose 

Figure 4.2: The deformable mesh at various iterations for initial reconstruction of the 
Jumping Man starting from the bounding sphere. 

Figure 4.3: Initial meshes reconstructed at varying resolutions with εmin values: (from left 
to right) 0.010, 0.015, 0.020, 0.025, 0.030. 
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registration). In the third case, we consider the complete scheme that we have described in 

the previous chapter, i.e., we integrate the scene flow vectors to the deformation scheme to 

assist silhouette information and also for pose registration. We will refer these three distinct 

cases, respectively, as 1) Silhouette-only, 2) Silhouette-PR, and 3) Silhouette-PR-3DSF. In 

the sequel we present the results that we have obtained. 

 

4.2.1 Sequence 1: Synthetic scene with ground truth data 

 

In Figure 4.4, we display sample frames from the reconstructed mesh sequence side by 

side with the corresponding meshes from the original sequence. In this case, the mesh 

sequence has been reconstructed by employing the complete surface tracking scheme, that 

is, Silhouette-PR-3DSF. Although some discrepancies can be observed on the 

reconstructed mesh as compared to the original geometry, which are mainly due to the well 

known limitations of shape-from-silhouette approach, the geometry is recovered as 

smoothly and as faithfully to the original as possible. 

 

 

Figure 4.4: Sample reconstructions from Jumping Man sequence, along with the original 
models. From left to right, frames 19, 40 and 73. 
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In Table 4.2, we provide statistics per frame to quantitatively  assess the performance of 

our method in three cases. In this table we give the average values per frame for the 

number of restructuring operations, reconstruction time, maximum vertex displacements 

and reconstruction error. Recall that the maximum vertex displacement of the deformable 

mesh within a given frame determines how much bit-load would be necessary to encode 

vertex displacements. Likewise, the number of restructuring operations also contributes to 

the representation load of each frame. It is observed from Table 4.2 that adding more and 

more components to the base scheme improves the performance of the surface tracking 

scheme by decreasing both reconstruction time and representation load. Also note that the 

average reconstruction error decreases only slightly as expected since inserting additional 

components into the deformation scheme rather aims to improve stability and efficiency 

but not the reconstruction quality. We would also like to note that the surface tracking 

process has failed twice over the whole sequence when Silhouette-only scheme is in use 

(case 1), whereas we have successfully tracked the whole time-varying geometry with 

additional features incorporated into the scheme, i.e., for both Silhouette-only and  

Silhouette-PR cases.   

 Silhouette- 
only 

Silhouette- 
PR 

Silhouette- 
PR-3DSF 

Total restructuring (#) 204.12 58.42 18.58 
Split (#) 42.31 13.02 4.30 
Collapse (#) 52.91 15.98 4.01 
Flip (#) 108.90 29.42 10.26 
Reconstruction time (sec) 14.16 7.38 5.93 
Iterations (#) 26.60 22.21 19.13 
Max. displacement (10-3) 132.88 78.25 62.75 
Reconstruction error (10-3) 4.41 4.37 4.35 

 
Table 4.2: Average statistics per frame for the Jumping Man sequence in three different 
cases. 
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Figure 4.5: Total number of restructuring operations, reconstruction time, maximum 
vertex displacement and reconstruction error for each frame of the Jumping Man sequence 
in three cases: Silhouette-only (white), Silhouette-PR-3DSF (black), and only on the first 
plot, Silhouette-PR (gray).  
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In Figure 4.5, we plot per frame the number of restructuring operations, reconstruction 

time, reconstruction error and maximum vertex displacement. The four global peaks 

observed for the operation count, reconstruction time and maximum displacement plots 

correspond to the four jumping acts (respectively, forward and backward then again 

forward and backward) in the sequence. The local maxima within these peaks correspond 

to the fast motion of the arms during these jumps. The increases in operation count, which 

imply more changes in the mesh connectivity, are as expected where the motion of the 

object is faster. The increases in reconstruction time and maximum vertex displacements 

are correlated with the operation count, as also expected.  

 

In Figure 4.6 we display the deformable mesh at various iterations within a frame 

transition for three different cases. We also zoom on a specific region, i.e., on one of the 

arms, to emphasize the differences between the cases. It is observed that pose registering 

the initial mesh so as to start from a closer location to the target surface provides some 

segments (e.g., arms) of the object to fall inside the target surface at the beginning; 

therefore eases the evolution process avoiding total shrinking and re-modeling of segments, 

and eventually reduces the number of mesh restructuring operations. However pose 

registration only partly avoids shrinking and re-modeling. When the 3D scene flow vectors 

are also incorporated, the deformable mesh evolves in a much smoother path towards the 

target surface without almost no shrinkage, as observed in Figure 4.6. 
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Figure 4.6: Deformable mesh at various iterations for transition from frame 131 to 132 in 
three different cases. (Below) Zoom on the left arm. Dark blue areas correspond to IN, light 
blue areas correspond to OUT, and green areas correspond to ON vertices. Total number of 
restructuring operations in three cases are respectively 760, 510 and 294. 
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4.2.2 Sequence 2: Real scene with various types of action 

 

The first real sequence is a relatively long one, containing about 1260 frames, with 

various types of actions such as standing, walking, running, jumping, turning, stretching 

and kick-boxing. The manner how the motion pattern and intensity differ globally and 

locally at varying parts of the body for varying actions makes this long sequence a 

challenging experiment to test the performance of our deformation scheme. In Figure 4.7, 

we display sample frames from the reconstructed mesh sequence together with sample 

silhouette images from that frame. 

In Table 4.3, we provide statistics per frame to quantitatively assess the performance of 

our method in three different cases. In this table we give the average values per frame for 

the number of restructuring operations, reconstruction time and maximum vertex 

displacements. The given reconstruction times do not include the time spent for scene flow 

estimation which takes about 8 sec per frame for this sequence at this resolution. Note also 

that we cannot establish a reconstruction error as we could in the synthetic case, since this 

time a ground-truth mesh sequence is not available. Similarly to the experiments on the 

first sequence, the surface tracking process has failed, a couple of times in thousands 

frames, when only the silhouette based deformation is used (case 1), though we have been 

able to track the time-varying geometry successfully when the additional system 

components, i.e., pose registration and scene flow vectors, are incorporated. We observe 

from the table again that adding more and more components to the base scheme improves 

the performance of the surface tracking scheme by decreasing both reconstruction time and 

representation load (through maximum displacement). Finally note that the 3D scene flow 

vectors were much more beneficial in the synthetic case when they were read from the 

ground-truth and clean but not estimated and noisy. 
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 Silhouette- 

only  
Silhouette- 

PR 
Silhouette- 
PR-3DSF  

Total restructuring (#) 216.24 119.14 97.92 
Split (#) 43.23 23.44 18.98 
Collapse (#) 52.13 28.30 21.71 
Flip (#) 120.88 67.40 57.23 
Reconstruction time (sec) 11.95 8.01 7.30 
Iterations (#) 26.35 23.59 25.33 
Max. displacement (10-3) 133.33 102.47 97.53 

 

Figure 4.7: Samples from the reconstructed mesh sequence, one for each type of 
action, together with corresponding silhouette images. 
 

Table 4.3: Average statistics per frame for the reconstruction of the second (real) 
sequence in three cases. 
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Figure 4.8: Total number of restructuring operations, reconstruction time and maximum 
vertex displacement for each frame of the second sequence in two different cases: 
Silhouette-only (white) and Silhouette-PR-3DSF (black) 
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Figure 4.8 plots the total number of restructuring operations, reconstruction time, and 

maximum vertex displacement for each of the 1280 frames of the second sequence in two 

cases, Silhouette-only and Silhouette-PR-3DSF. In Figure 4.9, the restructuring operation 

plot is zoomed on the “jumping” and “turning” frames of the sequence. We observe that 

there is a strong correlation between the type of motion and the number of restructuring 

operations (due to change in connectivity), the time cost of the reconstruction (due to fast 

motion and/or high restructuring), and the maximum vertex displacement (due to fast local 

motion). 

 

Standing: The initial frames of the sequence exhibit almost no motion, so the mesh 

connectivity is preserved and the restructuring operation count remains almost zero 

throughout these frames for all three cases.  

 

Figure 4.9: Total number of restructuring operations for each frame, when zoomed on 
jumping and turning (frames 720 to 970) of the second sequence in three cases: Silhouette-
only (white), Silhouette-PR-3DSF (black), and Silhouette-PR (gray). 
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Walking & Running: The oscillations observed in “walking” and “running” frames in 

all of the plots are due to two reasons: i) fast motion of the body parts while taking a step 

(rise) and the relatively slower motion while having the feet on the ground (fall), ii) mesh 

restructuring -shrinkage and inflation- between the legs when they are close and crossing 

each other and no such restructuring while apart. Here shrinkage and inflation occur mostly 

at the cavities between the legs, which suffer from severe self-occlusions. Note also that the 

frequency and the intensity of the oscillations at “Running” are almost twice the 

oscillations at walking as expected.. 

 

Jumping & Turning: The global motion is the strongest in these two actions when 

compared to other types of action available in the sequence. “Jumping” is the action with 

the strongest global translation while “Turning” is the action with the strongest global 

rotation. Due to these reasons, the benefit of pose registration is observed to be the highest 

for these two actions in Figure 4.9. The two peaks observed on the plots for the “Jumping” 

action correspond to forward and backward jumps, respectively. The frames in between 

these two have relatively slower motion and hence the benefit of pose registration at these 

frames decreases as observed. A similar decrease in benefit of pose registration for the 

“Turning” action occur while the legs are close and crossing each other where the major 

share of the reconstruction time and edge operation observed is due to mesh restructuring 

operations, similarly to “Walking” and “Running” actions. 

 

Stretching & Kick-boxing: The “Kick-boxing” action has almost no global motion since 

the subject is standing at the same place. However the local motion is the strongest in this 

action with the two punches and two kicks (total of four moves). Therefore the benefit of 

scene flow assistance is observed to be the highest in these four moves. These moves and 

the benefit of scene flow assistance at these moves are observed at the peaks of the plots, 
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especially at the two highest peaks of maximum vertex displacement. The “Stretching” 

action is similar to “Kick-boxing” action as the model stands at the same place. The 

peculiarity of the “Stretching” action is that it contains intentional self-collisions of the 

arms with the body. Since the initial topology is preserved in these self-collisions and since 

our collision-detection algorithm handles these collisions properly, these frames exhibit no 

different behavior than the others in terms of restructuring operations as observed from the 

plots.  
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 Figure 4.10: Deformable mesh at various iterations of the transition from frame  

t=878 to frame t=879 in two different cases: Silhouette-only and Silhouette-PR-
3DSF. Dark blue areas correspond to IN, light blue areas correspond to OUT and 
green areas correspond to ON vertices.  
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In Figure 4.10 we display the deformable mesh at various iterations within a frame 

transition for two different cases. In Figure 4.11, we zoom on the right leg to better 

visualize the differences between the cases. As observed in Figures 4.10 and 4.11, the pose 

registration carries the initial surface to a position so that the mesh evolution does not need 

to re-model any surface segment from scratch. Although some small number of vertices 

may even get further away from their target destination after pose registration, the mesh 

evolution process is improved for majority of the vertices and on overall pose registration 

improves the algorithm efficiency. When the local motion at some small shape segment is 

too fast such that the pose registration parameters -estimated from the global motion of the 

 
 

Silhouette-
only 

 
 
 
 

Silhouette-
PR 

 
 
 
 

Silhouette-
PR- 

3DSF 

Figure 4.11: Zoom on the right leg of the deformable mesh at various iterations for 
transition from frame t=1255 to frame t=1256 for three different cases. Dark blue areas 
correspond to IN, light blue areas correspond to OUT and green areas correspond to ON 
vertices. The evolution converges at iterations 49, 35 and 25 respectively for the three 
cases. 
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whole shape- are not sufficient to carry the position of the segment close enough to its 

target location, the 3D scene flow assistance serves to complete this task at the early 

iterations of the surface evolution by smoothly guiding that shape segment towards its 

target.  

 

 
 

In Figure 4.12, we visualize the  2D optical flow vectors that we have computed on two 

sample frames t with respect to t+1 by using the hierarchical Lucas-Kanade technique. 

Note that 2D optical flow is estimated only for those pixels that are projections of the 

vertices of the mesh representation at that frame. We also eliminate the erroneous optical 

flows of the vertex projections near the silhouette boundaries, that cannot be estimated in a 

Figure 4.12: Sample frames with computed 2D optical flows. (Left) View from the 8th 
camera at frame t = 748 and (right) from the 2nd camera at frame t = 1040.  
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robust manner due to covered and uncovered regions of the scene. The optical flow vectors 

of the remaining visible pixels, when combined for all available views, produce plausible 

3D scene flow vectors, as visualized in Figure 4.13. Note that the 3D scene flow 

information is not available on some of the vertices due to self-occlusions. Finally we note 

that, in this case,  the total time cost of computing the 2D optical flows with a Lucas-

Kanade implementation of three-level hierarchy and a window size of 30×30 pixels for all 

visible vertex projections from 8 camera planes, and estimating the 3D scene flow vectors 

from these optical flows together with smoothing the estimated scene flow in a 3-link 

neighbourhood is about 8 seconds. The share of different tasks in this total time spent is 

approximately 1.25, 4.25 and 2.50 seconds, respectively for building the 3D voxel grid and 

computing visibilities, calculating the visible 2D optical flows and estimating the 3D scene 

flow.  
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Figure 4.13: Visualization of the estimated 3D scene flow vectors, displayed on 
sample frames, corresponding to walking, running, jumping, falling, turning, stretching 
and kick-boxing, for frames 178, 493, 748, 751, 922, 1040 and 1222, respectively. 
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4.2.3 Sequence 3: Real Scene with severe non-rigid motion 

 

Our third experiment aims to track the same subject of the second sequence while 

dribbling a ball so to challenge our surface tracking scheme in a video sequence with 

severe non-rigid motion. Our intention is to represent the body holding a ball as one whole 

surface instead of two adjacent surfaces. The purpose of this is to test the tracking scheme 

to model a surface inflation (when the ball arrives) and a surface shrinkage (when the ball 

departs) by utilizing the mesh restructuring operators so as to rearrange the connectivity of 

that region, namely the dribbling hand.  

We have successfully tracked a multiview video sequence of 60 frames with 3 dribbles 

(3 receives and 3 throws) starting from an initial reconstruction. Figure 4.14 displays the 

reconstructed mesh representations of two sample consecutive frames of the sequence 

together with the corresponding original images. Figure 4.15 zooms on the dribbling hand 

with heavy  restructuring operations for two different frame transitions (receiving and 

throwing). 

 

 
 
 

Figure 4.14: The reconstructed mesh representations of two consecutive sample frames 
of the third sequence together with the corresponding original images.  
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We observe from Figure 4.16 that inflation of the surface representation for the purpose 

of modeling a new segment requires mostly split operations. However the disconnection of 

a segment from the surface representation by shrinking that segment cannot be handled 

only by collapse operations but split operations are also necessary. Although it is counter-

intuitive to observe edge splits while a mesh representation is shrinking, they arise due to 

the successive collapse and flip operations at each iteration which create edges longer then 

εmax, The split operations remove these edges to maintain a smooth and topologically 

correct evolution. 

Figure 4.16: Restructuring operations for each frame of the third sequence. (Left) 
Total number. (Right) Split operations in white, collapse operations in black. 

Figure 4.15: Zoom on the dribbling hand of the deformable mesh at various iterations 
of two different frame transitions. (Top row) Receiving the ball, and (bottom row) 
throwing the ball. Dark blue areas correspond to IN, light blue areas correspond to OUT 
and green areas correspond to ON vertices. 
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4.3 Discussion 

 

In the previous sections, we have presented the basic tracking results with optimum 

parameter setting. We now analyze our tracking scheme in several other aspects.  

Regarding the representation load efficiency of our tracking algorithm, Table 4.4 

provides the bit-load B of each sequence when encoded with the encoding scheme 

described in Chapter 3.4  (Equation 3.12) versus the bit-load B0 when encoded with the 

standard vertex-triangle list approach (Equation 3.13), both with 12-bit precision. The 

results show that the representation load efficiency of the former strategy is about 5 times 

better than the classical approach. The Bit-load of each frame consists of three components, 

the bit-load of encoding the header containing the parameters (pose registration parameters 

and the amount of bits necessary to encode the maximum displacement in that frame 

transition), the bit-load of encoding the small-scale displacements Bdisp, and the bit-load of 

encoding the restructuring operations Bop. We note that the storage cost of the initial mesh 

representation has not been included in the bit-loads given in the table. 

 Frames B0 (MB) B (MB) Bdisp(MB) Bop(MB) 

Sequence 1 (Jumping Man) 220 3.91 0.74 0.72 0.01 
Sequence 2 (real)  1280 25.53 4.83 4.45 0.34 
Sequence 3 (real)  60 1.33 0.23 0.21 0.01 

 
 

Recall from Chapter 3.2.3 that the scene flow information dominates the deformation 

process at the beginning of mesh evolution and its influence decreases gradually as 

iterations proceed. Recall also from Eq. 3.10 that the choice of the time coefficient τ 

determines how long the scene flow information will be effective on a vertex based on the 

expected number K̂  of the total iterations until convergence. For all the experiments that 

we have presented so far, the coefficient τ was chosen so that α = β at the half of the 

Table 4.4: Bit-loads for the three sequences with different encoding strategies. The bit-
load of the header of each frame in our strategy is fixed and it is 28.5 bytes per frame. 
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iterations, that is, at iteration ˆ0.5K . In Table 4.5, we present the results that we have 

obtained on Sequence 2 by varying this equilibrium point. We observe that, for a fairly 

large interval around ˆ0.5K , the reconstruction time and operation count change only very 

slightly, whereas outside of this interval, the efficiency of the tracking process starts to 

decrease significantly, especially at those frames where the local motion is very fast. 

Time coefficient τ 0.2 K̂  0.3 K̂  0.4 K̂  0.5 K̂  0.6 K̂  0.7 K̂  0.8 K̂  
Restructuring operation (#) 99.58 86.83 84.05 80.46 79.66 75.85 91.58 
Reconstruction time (sec) 9.00 9.61 9.12 9.24 9.24 9.32 9.14 

  
 

We have tested the performance of our surface tracking method also at a resolution 

higher than the optimum (εmin= 0.025 vs. εmin= 0.015). The results per frame, in terms of 

vertex number, operation count and reconstruction time, are given in Table 4.6, where the 

given reconstruction times do not include the time spent for scene flow estimation which 

takes about 8 sec per frame at low resolution and about 12 sec at high resolution. We 

observe that the efficiency decreases quadratically with the value of εmin as expected. 

Therefore we do not recommend to exceed the optimal resolution unless the tradeoff 

between this quadratically increasing cost and the visual quality pays off. In Figure 4.17, 

we observe that the quality of the reconstruction does not significantly improve at higher 

resolutions since the number of cameras is limited with 8 in our case. 

 

Sequence 1 Sequence 2 Sequence 3  
Optimum  
Resolution 

High 
Resolution 

Optimum  
Resolution 

High 
Resolution 

Optimum  
Resolution 

High 
Resolution 

Vertex (#) 1394 4216 1564 4364 1710 4295 
Restruct. op. (#) 18.58 109.78 97.92 393.30 80.99 292.21 
Recons. time (sec) 5.93 29.80 7.30 55.28 6.78 32.34 

Table 4.5: Number of restructuring operations and the reconstruction time per frame 
for varying time coefficient τ over frames 720-820 of Sequence 2.  

Table 4.6: Comparative statistics per frame for surface tracking at low and high 
resolutions. Minimum edge length constraint εmin is 0.025 and 0.015 for the optimum and 
high resolutions, respectively. 
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Figure 4.17: Comparing two resolutions. Top row: Mesh representations at optimum 
resolution (εmin=0.025), Middle row: Corresponding high resolution reconstructions 
(εmin=0.015). Bottom row: Zoom on a sample reconstruction at the two resolutions. 
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Regarding the quality of the reconstructed mesh sequences, there are noticeable 

geometrical discrepancies between the mesh representations and the original scene. These 

discrepancies are mostly related to the well-known limitation of the shape-from-silhouette 

technique, which is basically the inability to recover hidden cavities. This drawback does 

not fortunately lead to disturbing surface artifacts when the object to be tracked is mostly 

convex or composed of convex parts as in our case, and/or can be compensated by texture 

mapping.  

There is however another source of geometrical discrepancy which may yield 

disturbing surface artifacts, especially when the number of cameras is limited. This is 

related to the self-occlusion problem. We display in Figure 4.18 the three extreme cases 

that have been encountered while tracking Sequence 2. These three problems are all due to 

self-occlusions and can be eliminated by using more cameras for multiview recording. In 

the synthetic case for instance, there were 16 cameras available and hence we did not 

encounter such extreme cases. In the sequel, we provide a more detailed analysis of these 

three cases. 

Case a: A surface protrusion between the arms of the subject appears because there is no 

camera view to carve out the extra part growing out. When both the left arm and the right 

arm self-occlude the camera’s visibility at the chest of the model, the isolevel function in 

Equation 3.2 returns positive values at that region and hence the vertices displace outwards 

in the direction of their surface normal. If there were one more camera, e.g., positioned 

above, then the corresponding isovalues would be negative and that region would be carved 

out. 

Case b: The empty space between the legs cannot be carved out. Although the 

problematic region returns negative isolevel values, the colliding feet create a torus/cycle 

that imprisons the excessive surface between the legs, avoiding it to vanish out by 

restructuring operations. This case could be resolved either by applying a topology 
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modification operator, or if the reconstruction of this frame had started from a problem-free 

mesh structure where the excessive surface had already been carved out, prior to the 

collision of the feet, by using an extra camera viewpoint. 

Case c: This has occurred because in the previous frames while the model was 

stretching towards her left, the problematic region was covered by the model herself, self-

occluding all the available camera viewpoints and causing the collision region to move 

along the surface almost randomly. This case could be resolved again either by adding a 

camera viewpoint, for example positioned on the floor of the scene, or by implementing a 

collision-handling algorithm that keeps track of the positions of the vertices up to that 

frame transition. 

 

 

 

Figure 4.18: Three extreme cases, encountered while tracking Sequence 2, 
where the geometry cannot correctly be recovered due to self-occlusions. 

b) c) 

a) 
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 Our final remark is on the robustness of the proposed surface tracking algorithm. Recall 

that the algorithm has failed to track the surface for all the three sequences we have tested, 

when the 3D scene flow information is not incorporated and only silhouette-based 

deformation is applied (case 1). The reason why the silhouette-only scheme crashes, which 

occurred approximately once for hundred frames in our experiments, is because the initial 

mesh geometry with which we start the evolution may sometimes be positioned such that a 

segment of the object may partially fall inside another segment of the object in the target 

surface that has not yet been evolved into. Usually this can be handled by mesh 

restructuring and silhouette-based displacements but there are extreme cases when the 

motion of a segment is too fast so that the segment may evolve into a totally separate part 

of the surface which would then rise the necessity of changing the mesh topology around 

those segments. We avoid such extreme cases by incorporating 3D scene flow assistance 

into silhouette-based deformation. We enforce each such segment of an object to position 

correctly according to the target surface thanks to pose registration, and if it does not, we 

rely on the scene flow vectors to smoothly carry the surface at the early iterations towards 

the target position.  
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Chapter 5 

 

CONCLUSIONS AND FUTURE WORK 

 

 

This work has shown that the silhouette geometry of a non-rigid dynamic object can 

efficiently be tracked from multiview video based on silhouette and scene flow information 

by using a fast snake-based deformation scheme coupled with mesh restructuring 

operations and a collision detection algorithm. The proposed surface tracking method 

exploits the temporal redundancies between consecutive frames, and as a result, the 

reconstruction time and the representation load of the time-varying geometry are 

significantly reduced when compared to reconstructing each frame from scratch. The mesh 

restructuring operations and small-scale vertex displacements can be used to efficiently 

encode the whole mesh sequence representing the smooth time-varying surface that has 

been tracked.  

We have tested our method on relatively long and challenging real sequences exhibiting 

complex and diverse motion patterns. A remarkable advantage of the proposed method is 

its ability to track objects that may undergo an arbitrary non-rigid deformation since our 

scheme can track both geometry and connectivity of a dynamic surface mesh, in contrast to 

few other surface tracking methods available in the literature.  

The only limitations to the presented framework are that the resulting surface 

representations lack the ability to model hidden cavities and that the quality of the 

reconstructions is restricted to the number of available camera views, which are both 

classical limitations of the shape-from-silhouette techniques. One can overcome the latter 

restriction, to some degree, simply by increasing the number of cameras used during 

multiview acquisition, however the complexity of the acquisition itself and the cost of the 
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image processing would linearly increase with the number of added viewpoints. We note 

that such multiview video recording systems, which employ 16 or even more cameras, are 

becoming more and more commonplace. As future work we plan to address both of these 

limitations. Currently we utilize the multiview texture information only to compute the 3D 

scene flow vectors. However the multistereo information, that could be extracted from 

multiview texture images, can be used to further enhance the produced silhouette-based 

reconstructions so as to capture finer surface concavities  
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