
Surface Tracking from Multiview Video

by

Salih Cihan Bilir

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical and Computer Engineering

Koc University

March 2009

 ii

Koc University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Salih Cihan Bilir

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Date:

Yucel Yemez, Assistant Professor (Advisor)

T. Metin Sezgin, Assistant Professsor

 Cagatay Basdogan , Assistant Professsor

 iii

ABSTRACT

We present a fast and efficient surface tracking method for modeling dynamic objects

from multiview video streams. Starting from an initial mesh representation, the surface of a

dynamic object is tracked over time, both in geometry and connectivity, based on

multiview silhouette and 3D scene flow information. The mesh representation of each

frame is obtained by deforming the mesh representation of the previous frame towards the

optimal surface defined by the time-varying multiview silhouette information, using mesh

restructuring operations and vertex displacements assisted by 3D scene flow vectors. The

whole time-varying surface is then represented as a mesh sequence that can efficiently be

encoded in terms of restructuring operations and small-scale vertex displacements along

with the initial model. Our reconstruction method hence yields a compact time-varying

mesh representation of the dynamic object, which is smooth both in time and space. The

proposed method is not only fast and produces storage efficient mesh representations, but it

also has the ability to deal with dynamic objects that may undergo nonrigid transformation.

The time-varying mesh structure of such nonrigid surfaces, which is not necessarily of

fixed connectivity, can also successfully be tracked thanks to the restructuring operations

employed in our deformation scheme. We demonstrate the performance of the proposed

method both on real and synthetic sequences.

 iv

ÖZETÇE

Zamanla değişen nesnelerin çok-bakışlı video dizilerinden 3B geriçatımı için hızlı ve

verimli bir yüzey izleme yöntemi tanıtılmaktadır. Dinamik bir nesne örgü modelinin

geometrisi ve bağlanırlığı, çok-bakışlı silüet ve 3B sahne akış bilgisine dayalı bir yöntemle,

bir ilk gösterimden yola çıkarak, zaman içinde izlenir. Her çerçeveye ait örgü gösterimi, bir

önceki çerçevenin örgü gösterimini silüet bilgisi ile belirlenen optimal yüzeye doğru

deforme ederek elde edilir. Bu deformasyon süreci, örgü yeniden-yapılandırma işlemleri ve

3B sahne akış bilgisi ile desteklenir. Elde edilen uzay-zamanda pürüzsüz örgü dizisi, örgü

yeniden-yapılandırma işlemleri ve tepe noktalarının küçük ölçekli yerdeğiştirme vektörleri

cinsinden, ilk çerçevenin örgü gösterimi ile birlikte, verimli bir şekilde kodlanabilir.

Önerilen yöntemin hızlı olması ve gösterim maliyeti düşük örgü modelleri üretmesinin

yanısıra, bir diğer avantajı da devinimi katı olmayan dinamik nesnelerin modellenmesi için

kullanılabilmesidir. Devinimi katı olmayan bir nesneyi temsil eden örgü gösteriminin

zamanla değişebilen bağlanırlığı, deformasyon şırasında kullanılan örgü yeniden-

yapılandırma işlemleri sayesinde başarı ile izlenebilmektedir. Yöntemin başarımı, hem

gerçek hem de sentetik video dizileri üzerinde sınanmıştır.

 v

ACKNOWLEDGEMENTS

I would like to thank Assist. Prof. Yücel Yemez who has guided, inspired, and

encouraged me with his profound knowledge and genuine support throughout this journey.

His vision contributed to my perspective in life as much as it contributed to this thesis.

I would also like to thank Assist. Prof. Tevfik Metin Sezgin and Assist. Prof. Çağatay

Başdoğan for taking part in my thesis committee.

I am also grateful to Prof. Murat Tekalp, Assoc. Prof Alper Erdoğan, and Assist. Prof.

Engin Erzin for their support and guidance during my graduate studies. Each of my

colleagues in the graduate school in these years played a major role in keeping me

motivated to my goal, special thanks goes to all my colleagues.

My final gratitude is to the people who always make me feel special by their love and

care, my dear family and my precious girlfriend.

This work has been supported by TUBITAK under the project EEEAG-105E143 and

by the European FP6 Network of Excellence 3DTV.

 vi

TABLE OF CONTENTS

LIST OF TABLES.. viii

LIST OF FIGURES.. ix

NOMENCLATURE.. xi

Chapter 1: INTRODUCTION.. 1

1.1 Related Work ... 3

1.2 Overview and Organization ... 6

Chapter 2: SURFACE DEFORMATION SCHEME... 9

2.1 Vertex Displacement.. 10

2.2 Mesh Restructuring.. 11

2.3 Mesh Smoothing .. 15

2.4 Collision handling.. 17

Chapter 3: SURFACE TRACKING .. 20

3.1 Shape From Silhouette... 20

 3.1.1 Silhouette Based Deformation .. 20

 3.1.2 Fine Tuning... 22

3.2 3D Scene Flow... 24

 3.2.1 3DSF Estimation... 26

 3.2.2 Pose Registration .. 28

 vii

 3.2.3 Scene Flow Assisted Deformation.. 29

3.3 Surface Tracking Algorithm .. 32

3.4 Representation Load .. 33

Chapter 4: EXPERIMENTS AND RESULTS.. 35

4.1 Initial Reconstruction... 36

4.2 Surface Tracking Results ... 38

 4.2.1 Sequence 1: Synthetic scene with ground truth data 39

 4.2.2 Sequence 2: Real scene with various types of action 44

 4.2.3 Sequence 3: Real scene with severe non-rigid motion 55

4.3 Discussion.. 57

Chapter 5: CONCLUSIONS AND FUTURE WORK ... 63

BIBLIOGRAPHY.. 65

VITA ... 838369

 viii

LIST OF TABLES

Table 4.1: Number of mesh vertices, average error, and maximum error for

initial reconstruction of the Jumping Man with varying εmin values.........37

Table 4.3: Average statistics per frame for the Jumping Man sequence in

three different cases ...40

Table 4.3: Average statistics per frame for the reconstruction of the second

(real) sequence in three cases...45

Table 4.4: Bit-loads for the three sequences with different encoding strategies57

Table 4.5: The average and variance of the restructuring operation count and

the reconstruction time for varying time coefficient τ58

Table 4.6: Comparative statistics per frame for surface tracking at low and

high resolutions. ...58

 ix

LIST OF FIGURES

Figure 1.1: The block diagram of the overall reconstruction scheme.7

Figure 2.1: Edge operations: collapse, split and flip ...12

Figure 2.2: Handling illegal edge collapses ..13

Figure 2.3: Significance of taking the order into account when splitting edges14

Figure 2.4: An illegal flip operation ...14

Figure 2.5: The components of the smoothing operator..16

Figure 2.6: Illustration of collision handling...17

Figure 2.7: Worst case scenario for the decision of collision threshold ζ.18

Figure 2.8: The collision zone and the search space for a collision detection19

Figure 3.1: Dichotomic subdivision to accurately locate the position of a vertex23

Figure 3.2: Illustration of scene flow on an initial mesh and its target surface.........25

Figure 3.3: Illustration of pose registration ...28

Figure 4.1: Sample original images...36

Figure 4.2: The deformable mesh at various iterations for initial reconstruction

of the Jumping Man starting from the bounding sphere38

Figure 4.3: Initial meshes reconstructed at varying resolutions38

Figure 4.4: Sample reconstructions from Jumping Man sequence, along with the

original models..39

Figure 4.5: Total number of restructuring operations, reconstruction time,

maximum vertex displacement and reconstruction error for each

frame of the Jumping Man sequence in three cases................................41

Figure 4.6: Deformable mesh at various iterations for transition from frame 131

to 132 in three different cases ...43

 x

Figure 4.7: Samples from the reconstructed mesh sequence, one for each type of

action, together with corresponding silhouette images...........................45

Figure 4.8: Total number of restructuring operations, reconstruction time and

maximum vertex displacement for each frame of the second

sequence in two different cases...46

Figure 4.9: Total number of restructuring operations for each frame, when

zoomed on jumping and turning frames of the second sequence in

three cases ..47

Figure 4.10: Deformable mesh at various iterations of the transition from frame

t=878 to frame t=879 in two different cases ...50

Figure 4.11: Zoom on the right leg of the deformable mesh at various iterations

for a transition for three different cases ..51

Figure 4.12: Sample frames with computed 2D optical flows52

Figure 4.13: Visualization of the estimated 3D scene flow vectors, displayed on

sample frames ...54

Figure 4.14: The reconstructed mesh representations of two consecutive sample

frames of the third sequence together with the corresponding original

images ...55

Figure 4.15: Zoom on the dribbling hand of the deformable mesh at various

iterations of two different frame transitions..56

Figure 4.16: Restructuring operations for each frame of the third sequence.56

Figure 4.17: Comparing two resolutions. ..59

Figure 4.18: Three extreme cases, encountered while tracking Sequence 2, where

the geometry cannot correctly be recovered due to self-occlusions.61

 xi

NOMENCLATURE

t time/frame index

M
(t)

 mesh representation of frame t

T mesh transformation

S
(t) object surface at frame t

e error/distance of an object surface and its mesh representation

Dist Euclidian distance of a vertex to object surface

dsil silhouette based displacement vector of a vertex

dflow scene flow based displacement vector of a vertex

δ magnitude of a displacement vector

εmin minimum edge length constraint

εmax maximum edge length constraint

∆ smoothing component of a vertex

L Laplacian displacement for a vertex

F fairing displacement for a vertex

N surface normal

p vector representation of a vertex

ζ threshold for the collision margin

f(·) isolevel function

mü

Proj I(v) projection of a vertex to an image plane

G Bilinearly interpolated value of a sub-pixelic point.

w scene flow vector at a vertex

∧

v position of a vertex at the target surface

 xii

[Pc] projection matrix of a camera

Vis(v) set of camera viewpoints that the vertex v is visible to

C camera plane

R rotation matrix of the pose registration parameters

t translation vector of the pose registration parameters

α weight coefficient of the silhouette based displacement

β weight coefficient of the scene flow based displacement

τ time coefficient for the displacement weights

K̂ expected number of iterations to converge for a vertex

B bit-load of a mesh sequence through the proposed approach

B0 bit-load of a mesh sequence through the classical approach

P amount of bits to represent a floating point coordinate

Chapter 1: Introduction

1

Chapter 1

INTRODUCTION

3D modeling of dynamic real scenes is an emerging research field with applications in

various domains such as 3D television, free viewpoint video, virtual reality and computer

animation [1], [2]. Unlike optical motion capture systems which are widely used in

computer animation applications [3], 3D video methods aim to recover the complete shape

of a dynamic object, not only its motion. Most of the techniques addressing the dynamic

object modeling problem adhere to passive surface reconstruction methods exploiting

silhouette and/or stereo information acquired from multicamera video sequences [4], [5],

[6], [7], [8], [9], due to the limitations of active reconstruction methods in temporal axis

[10].

The goal of dynamic scene modeling schemes is usually to generate a sequence of

meshes each of which represents the geometry of a dynamic object at the corresponding

video frame. There are three major challenges involved in achieving this goal. The first two

of these challenges concern efficiency: computational complexity of the reconstruction

method and the resulting representation load. A time-varying scene sampled at a standard

rate of 30 frames per second would yield enormous 3D model data for representation and a

considerable amount of time for reconstruction if no particular care is shown to exploit

redundancies between consecutive time frames. In this respect, time-varying mesh

representations with fixed connectivity, but with changing vertex positions, would certainly

provide efficiency both for storage and processing. The third challenge concerns generality

of the proposed solutions, that is, their applicability to modeling general dynamic scenes

with arbitrary shape and motion. Existing methods often aim at fixed connectivity

Chapter 1: Introduction

2

representations and/or make use of object-specific prior models. Hence they consider

primarily rigid and/or articulated motion, and may not handle the reconstruction problem

when the object of interest undergoes an arbitrary nonrigid motion or deformation.

In this thesis, we present an efficient surface tracking method for modeling dynamic

objects based on multiview silhouette and 3D scene flow information. Here the term

“surface tracking”, in the way we use it, refers to reconstruction of the surface geometry of

a dynamic object at time t + 1 based on the reconstruction at time t, starting from an initial

representation at t = 0. There exist actually very few methods in the literature, which are

surface tracking in this sense and which can build complete shape models of dynamic

objects [4], [5], [7], [8]. The main distinction of the method that we present in this thesis, as

compared to previous work, is in the way we represent time-varying geometry. We relax

the fixed connectivity requirement and encode time-varying geometry in terms of both

connectivity changes and vertex displacements. Relaxing the fixed connectivity constraint

has two major impacts. First, in this way objects with arbitrary shape and motion can easily

be handled. Second the reconstruction problem is reduced to an energy minimization

problem which can be solved by a fast snake-based deformation scheme. Unlike existing

surface tracking methods, our scheme does not require any object-specific mesh

representation, or 3D models separately reconstructed for all frames of the sequence prior

to the tracking process. Starting from an initial mesh representation, the surface of the

dynamic object is tracked over time, both in geometry and connectivity, based on mesh

deformation. We assume that the topology of the object in the scene remains unchanged

over time, as it actually does in real scenes. Nevertheless, we address the self-collision

problem, which is disregarded in most surface tracking methods via a very efficient

collision handling strategy.

The mesh representation of each frame is obtained by evolving the mesh of the

previous frame towards the optimal surface defined by the time-varying multiview

Chapter 1: Introduction

3

silhouette information, using mesh restructuring operations and vertex displacements.

These mesh operations and small-scale displacements along with the initial mesh

representation yield a compact and spatiotemporally coherent representation of the whole

time-varying surface. Our deformable model is based mainly on the dynamic triangle

meshes scheme which was proposed in [11] for mesh editing purposes. This scheme

enables us to control parametrization, smoothness and uniformity of the dynamic mesh

model for a robust mesh evolution across time.

1.1 Related Work

There is a vast and quite mature literature on 3D reconstruction of static objects. In

general, reconstruction techniques for static scenes can be collected under two groups:

active and passive. Active techniques make use of calibrated light sources such as lasers

and coded light [10]. Most of the active scene capture technologies become inapplicable in

the dynamic case since currently it is very difficult to scan the whole surface of an object at

a standard rate of 30 Hz. There exist though several attempts to achieve scanning at

standard rates such as in [12], [13] by projecting coded light patterns on the object. The

methods proposed in these works however have severe limitations on resolution, object’s

surface properties and its motion, and are capable of producing only depth images, not full

surface representations. On the other hand, passive reconstruction techniques, which are

based on solely image cues such as multiview stereo [14] and/or silhouettes [15], are

mostly free of these limitations and hence they currently seem to be a more viable option

for the dynamic object modeling problem.

Most of the methods in the literature proposed for dynamic object modeling require as a

first step that the object shape, which is usually represented as a surface mesh, be

reconstructed from scratch, separately for each time instance [6], [7], [8], [9], [16]. The

Chapter 1: Introduction

4

resulting sequence of meshes can then be matched so as to obtain a time consistent

representation with fixed connectivity. In order to achieve temporal coherence in this sense,

Starck et al [6] use spherical reparametrization of the resulting mesh sequence whereas

other methods basically cast the reconstruction problem to a surface tracking problem:

Starting from an initial mesh, the time-varying geometry is tracked over time by preserving

the connectivity and exploiting the temporal redundancies between consecutive frames [7],

[8], [16]. Hence the problem becomes finding a suitable transformation that maps the

vertices of a mesh at time t onto the surface represented by another mesh at t + 1.

Two other recent and closely related works [4], [5] follow a very particular approach to

capture human performances from multiview video. Prior to video recording, they first take

a static full-body scan of the subject using a laser scanner and construct a detailed complete

3D mesh model. This mesh model representing the shape of the human actor in the first

frame is then tracked over time by preserving the connectivity based on multiview image

cues. In particular, the method in [4] presents very high quality reconstructions but the

method requires some user interaction and an extensive computation time which is reported

as about 10 minutes per frame on a standard computer. Moreover the method, which aims

at a fixed connectivity representation, has no mechanism to handle arbitrary nonrigid

motion and self-collisions.

Methods for reconstruction of dynamic objects rely mainly on multiview silhouette

information [17]. The strength of the shape from silhouette technique lies in its simplicity,

efficiency and robustness especially when applied to convex shapes. The main drawback of

this technique is that it fails to capture hidden concavities. Multiview stereo information on

the other hand can be incorporated into reconstruction schemes in several different ways. It

can be used for instance to enhance silhouette based reconstructions so as to capture finer

surface concavities [4], or to impose additional constraints on the silhouette reconstruction

process to avoid self-occlusion problems [6]. Another possibility is to compute 3D scene

Chapter 1: Introduction

5

flow vectors or image feature based 3D correspondences to incorporate into the mesh

tracking process [5], [7], [8]. Relying too much on 3D scene flow vectors, which are very

prone to errors, as in [5] for instance, may however fail the tracking process especially

when the motion in the scene is very fast and complex. In our earlier work [18], we have

shown that, given a sufficient number of multiview silhouette images at each frame, the

time-varying geometry of an object with a relatively complex shape, such as a human actor,

can be tracked based on solely silhouette information in a very fast manner using a snake-

based deformable model. In this thesis, we basically follow the same framework but extend

it with additional features to make it more efficient and robust such as incorporation of 3D

scene flow into the deformation scheme.

Surface tracking methods usually resort in some way or other to mesh deformation

methods, such as Laplacian deformation [19], which is a powerful tool for mesh morphing

and editing, and which can be used to obtain animating mesh sequences with fixed

connectivity [4]. However, with Laplacian deformation which is a differential but

piecewise linear scheme, mesh connectivity cannot be altered, hence dynamic objects with

arbitrary motion cannot be tracked. Another alternative [20] is based on volumetric level-

set technique and builds a spatially and temporally smooth surface model. Level set based

deformation is however computationally very demanding. Although it can implicitly handle

topological changes in geometry, the topology control is often very difficult to achieve.

Moreover, with the level set approach, the explicit connectivity information of the initial

shape model is lost through the iterations between the initial state and its convergence.

Thus the level set technique becomes inapplicable to track objects in motion and to build

efficient time-varying representations. In this respect, snake-based deformable models,

when coupled with restructuring operations as we do in this work, enable keeping track of

the changes both in geometry and connectivity and hence they are more appropriate to

Chapter 1: Introduction

6

track surfaces with arbitrary motion and shape. The methods in [7], [8] also employ snake-

based deformable models, but neither of them addresses the connectivity tracking problem.

1.2 Overview and Organization

The block diagram of the overall surface tracking scheme is given in Figure 1.1. The

basic input data to reconstruct the surface representation at frame t+1 are:

i) the camera calibration/projection parameters,

ii) the object silhouettes at frame t+1,

iii) the 3D scene flow vectors from frame t to t+1,

iv) the pose registered mesh representation of frame t.

The main tasks to prepare these input are: multicamera video acquisition, initial

reconstruction, silhouette extraction, 3D scene flow estimation and pose registration. The

multicamera video acquisition block provides the camera calibration/projection parameters

and the multiview images of each frame to be used in silhouette extraction and 3D scene

flow estimation.

The raw input to the surface tracking scheme is the multiview video sequence of the

dynamic scene captured with a calibrated multicamera system. The camera

calibration/projection parameters are of use in several stages of the system. The images

obtained are in use in two primary tasks i) to extract the silhouettes for each view at each

frame, ii) to estimate the 3D scene flow vectors for each consecutive frame couple. The

initial surface model of the first frame is reconstructed prior to the surface

tracking/deformation task by using a shape from silhouette technique that produces a

topologically correct shape model which is eligible for further deformation [21]. The

overall time-varying surface representation of the dynamic scene is then reconstructed by

successively estimating the surface representation of each time frame by deforming the

Chapter 1: Introduction

7

mesh representation of the previous frame based on the multiview silhouette information

assisted by the 3D scene flow vectors. This surface tracking process produces a sequence of

meshes, M
(0), M

(1), ..., M
(t) , ..., representing the time-varying geometry. For the surface

evolution to successfully converge to the desired mesh representation, at each frame we

first estimate the global rigid motion (translation and rotation) of the object from its 3D

scene flow vectors so as to register the 3D pose of the starting mesh with reference to the

target. This initial pose registration does not only improve the chances of the surface

evolution to successfully converge to the desired surface, but it also speeds up the

deformation process. Each mesh representation reconstructed at each frame t is then fed

back to the tracker for 3D scene flow computation and pose registration at the next frame

t+1.

Chapter 1: Introduction

8

Figure 1.1: The block diagram of the overall surface tracking scheme.

The organization of the thesis is as follows. In Chapter 2 we describe the generic

surface deformation framework that we employ for surface tracking. In Chapter 3, we

explain how we drive this deformation scheme to track surface representations of dynamic

objects using the time-varying silhouettes and the 3D flow vectors of the scene. In this

chapter we also provide a pseudocode for the overall surface tracking algorithm, and

estimate the bit-load of our dynamic connectivity representation scheme. Chapter 4

presents and discusses the experimental results, and finally Chapter 5 gives concluding

remarks and some future research perspectives.

Chapter 2: Surface Deformation Scheme

9

Chapter 2

SURFACE DEFORMATION SCHEME

Our deformation technique is based on the iterative use of an appropriate

transformation T that deforms, at each frame t, an initial triangle mesh)(
0

tM towards the

object surface)(t
S through the following surface evolution equation:

() ()
1 ()t t

k kM T M+ =

The deformable model)(t
kM is required to remain as a smooth topologically correct mesh

representation free of geometrical distortions during its evolution and to converge to an

optimal mesh)(
'
t

kM that faithfully represents the object surface)(tS at the equilibrium state

* *

() ()()t t

k k
M T M=

We define T as the composition of three transformations: T = Td ○ Tr ○ Ts, which we will

refer to as displacement, smoothing and restructuring operators, respectively. The

displacement operator pushes the deformable mesh towards the object surface based while

the smoothing operator regularizes the effect of this displacement and the restructuring

operator modifies the mesh connectivity to eliminate any geometrical distortions that may

appear during surface evolution. In this sense, the displacement operator corresponds to the

external force whereas the other two correspond to the internal force of the classical snake

formulation [23].

(2.1)

(2.2)

Chapter 2: Surface Deformation Scheme

10

2.1 Vertex Displacement

The distance between the deformable mesh Mk and the object surface S, dropping the

index t, can be approximated by the average distance from the vertex set of Mk to the

surface:

,
1

1
(,) Dist(,)

kN

k i k

i

e M S S
N =

= ∑ v

where vi,k is the position vector of the i th vertex, Nk is the number of mesh vertices, and

Dist(vi,k , S) is the Euclidean distance of the vertex to the surface S. To reduce the distance

e(Mk , S), the operator Td(Mk) maps the deformable mesh Mk to kM ′ by moving each vertex

,i k
v with a displacement ,()

i k
d v

, , ,()i k i k i k
′ = +v v d v

where { ,i k
′v } is the vertex set of the transformed mesh kM ′ which has the same

connectivity as Mk. The direction and the magnitude of this displacement vector ,()i kd v is

computed based on the signed distance from the vertex ,i k
v to the target surface S at each

iteration, as will later be explained in Chapter 3. Also note that the magnitude of the

displacement has to be bounded above for a stable surface evolution.

The distance function defined in Eq. 2.3 is only a discrete approximation of the true

distance. Moreover it does not take into account the distance from the surface S to Mk.

Hence the optimality of the surface obtained at convergence heavily depends on two

factors, the resolution and the location of the initial deformable mesh. If the initial mesh is

of sufficiently high resolution and initially placed near the object surface S, the surface

evolution is expected to converge to an optimal surface that accurately represents the target

surface.

(2.3)

(2.4)

Chapter 2: Surface Deformation Scheme

11

2.2 Mesh Restructuring

The restructuring operator, Tr, is the composition of three operators: Tr =Tsplit ○ Tcol ○

Tflip, which are edge split, edge collapse and edge flip transformations (Figure 2.1)

introduced in [26] for mesh optimization. We use these elementary transformations in the

way [11] uses them for mesh editing. At the end of each iteration of the surface evolution,

the operator Tsplit first splits all edges longer than εmax at their midpoints. Then, the operator

Tcol successively eliminates all edges shorter than εmin by edge collapses. Finally, the flip

operator Tflip is applied to reduce the number of irregular vertices possibly created by the

previous collapse and split operations. For the split operation to be compatible with the

collapse operation, the threshold εmax has to be chosen such that εmax ≥ 2εmin since

otherwise split operations would create edges with length smaller than εmin. We set εmax =

3εmin to have uniformly sized triangles with small aspect ratios. Since the edge length ratio

is then bounded by εmax / εmin = 3 and the valence distribution preserves its uniformity by

flip operations, the deformable mesh maintains a high quality in terms of the aspect ratio of

the triangles during surface evolution.

Thanks to the restructuring operation applied at each iteration of the surface evolution,

the deformable mesh can adapt its shape to the object surface, avoiding geometrical

distortions such as degenerate triangles and irregular vertices. Note that, with the

restructuring operator as formulated above, the surface evolution results in an optimal

surface Mk* that has the same topology as the initial mesh M0 unless explicit topology

modifying operators for merging and/or splitting are incorporated.

Chapter 2: Surface Deformation Scheme

12

Figure 2.1: Edge operations: collapse, split and flip.

Edge collapse: As the vertices are pulled towards the object boundary by the

displacement operator, neighboring vertices may get too closer and cause degenerate edges.

Thus we collapse an edge by merging their endpoints to the midpoint whenever its length

falls below the threshold εmin. The merging point can actually be optimized according to the

needs of the application; it can be for instance one of the endpoints, whichever is

appropriate, or the optimal position on the edge if it is possible to define one. The edge

collapse operation may occasionally cause a mesh triangle to fold over another and may

create a non-manifold triangulation. As explained in [26], the collapse of an edge defined

by two vertices Pi and Pj is legal in a closed manifold mesh if and only if for all vertices Pk

adjacent to both Pi and Pj , {Pi , Pj , Pk } is a face of the mesh. To strictly comply with the

minimum edge length constraint, whenever an illegal collapse operation is encountered, we

first detect those vertices Pk for which {Pi , Pj , Pk } is not a face, remove them from the

mesh structure, and then safely apply the collapse operation. This process of handling

illegal edge collapses is depicted in Figure 2.2:

Chapter 2: Surface Deformation Scheme

13

Edge split: Similarly, as the deformable surface evolves, neighboring vertices may get

further from each other and cause very long edges that degrade the regularity of the mesh.

Moreover, parts of the deformable mesh where such long edges accumulate can not capture

the details of the object shape. Thus whenever the length of an edge exceeds a certain

threshold εmax= 3εmin, an additional vertex is inserted on the middle position of such an edge

and the data structure is updated accordingly. For the split operation to be compatible with

the collapse operation, the threshold εmax has to be chosen such that εmax ≥ 2 εmin since

otherwise the split operation would create edges with length larger than εmin. Note that the

split operations must be applied in an appropriate order to avoid split operations causing

new edges exceeding εmax. All the edges of the mesh, that need to be split, are first arranged

in descending order with respect to their lengths and then split in that order. The

significance of taking the order into account while splitting edges is illustrated in Figure

2.3.

Figure 2.2: Handling illegal edge collapses. (Top row) The collapse of the edge {i,j}
produces a non-manifold triangulation. (Bottom row) The vertex m is removed from the
mesh structure and the edge collapse operation becomes a legal move.

Chapter 2: Surface Deformation Scheme

14

Edge flip: Edge collapse and split operations inevitably change the valence distribution

of the mesh structure, that yield irregular vertices. To prevent this, during surface

evolution, the common edge of any two neighboring triangles is swapped with the one

joining the unshared vertices of the triangles, as long as this operation favors the existence

of the vertices of valence close to 6. An edge flip is allowed if and only if the edge is

adjacent to two triangles whose union is a convex quadrilateral. Figure 2.4 illustrates an

edge split operation that results in a non-manifold triangulation.

Figure 2.4: An illegal flip operation. Flipping the edge ik with lj creates a non-manifold
triangulation; hence it is not allowed.

Figure 2.3: Significance of taking the order into account when splitting edges. Splitting
first the longer edge ij (top row) yields a more plausible triangulation than splitting the
shorter edge ik (bottom row) first.

Chapter 2: Surface Deformation Scheme

15

2.3 Mesh Smoothing

The smoothing operator, Ts, is necessary for a robust mesh evolution that is free of

topological errors and to have eventually a visually pleasant fair surface representation. It

should be easy to compute, yet must not yield any geometrical shrinkage and bias in the

final surface estimate. To achieve this, at the end of each frame transition we employ a

combination of the tangential Laplacian smoothing [25] and Taubin’s surface fairing

technique [24], and during the evolution, at each iteration, we employ the tangential

component of the classical Laplacian smoothing such that the mesh representation of the

surface preserves its volume without any shrinking while the mesh geometry is regularized.

It is essential to avoid displacements along the surface normal while smoothing during the

evolution so that the smoothing operator does not slow down the process of inflating

towards a target surface. The operator Ts(M) maps the deformable mesh M to M ′ by

moving each vertex v to v' (dropping the vertex index i and the iteration index k),

according to rather the evolution has converged or not.

T

T N

during evolution

at convergence

+ ∆
′ =

+ ∆ + ∆

v v
v

v v v

where the displacements T∆v and N∆v correspond to smoothing along tangential and

normal directions of the surface, respectively. We obtain the tangential component, T∆v ,

by tangential Laplacian smoothing:

T () (())L L∆ = − ⋅v v v N N

where L(v) denotes the Laplacian displacement that moves the vertex v to the centroid of

the vertices in its one-ring neighborhood. The component N∆v , on the other hand, is

obtained by fairing the surface along its normal direction:

N (())F∆ = ⋅v v N N

(2.6)

(2.7)

(2.5)

Chapter 2: Surface Deformation Scheme

16

where F(v) denotes the displacement created by the non-shrinking surface fairing algorithm

described in [24]. These two components of the smoothing operator are depicted on Figure

2.5 by successively applying them on a random noise added mesh structure.

Figure 2.5: The components of the smoothing operator on a noisy mesh structure. Left
to right: Random noise added model; Laplacian smoothing along surface tangential;
Fairing along surface normal (applied only once at convergence).

Chapter 2: Surface Deformation Scheme

17

2.4 Collision handling

A dynamic surface, as it moves or deforms, may collide with itself at various occasions

(self-collision). These collisions must be detected and handled properly for a flawless

surface evolution scheme as depicted in Figure 2.6. We have developed an efficient

collision detection algorithm to handle such self-collisions.

Our algorithm is based on the minimum and maximum edge length constraints, εmin

and εmax respectively, imposed on the deformable mesh. Note that the intersection of

neighbouring vertices during the surface evolution is avoided thanks to the regularization in

the smoothing operator in each iteration and the minimum edge length constraint εmin. Also

recall that the magnitude of the displacement of each vertex in each iteration is bounded

above by half of the minimum edge length constraint (εmin/2). The basic idea in collision

detection is to prevent non-neighboring vertices from approaching each other by more than

some distance threshold ζ. We define neighboring vertices as those which are in the two-

ring neighborhood of each other.

Figure 2.6: Illustration of collision handling. Left to right: The initial position of two
segments that are about to collide; A few iterations later the segments evolve into each
other if the collisions are not handled; The segments preserve a margin to avoid collision.

Chapter 2: Surface Deformation Scheme

18

The procedure that we use to handle collisions is as follows. Right after all the vertices

of the deformable mesh are displaced by the displacement operator, each vertex is checked

one by one against the non-neighboring vertices. If a vertex is found to have approached

any other vertex by more than the collision detection threshold ζ, then a collision is

detected and the vertex is moved back to its position before the displacement operator. The

value of the collision threshold ζ depends on the maximum edge length parameter εmax and

the displacement bound εmin/2. For the decision of this threshold ζ that guarantees that all

collisions are detected, we consider the worst case scenario where the position of a vertex

is checked against the largest possible triangle on the deformable mesh, which is an

equilateral triangle of sides εmax, as visualized in Figure 2.7. The vertex must not approach

to any point inside this triangle by more than the maximum possible displacement εmin/2

since otherwise, at the next iteration, the triangle and the vertex may move at opposite

directions, intersecting each other and falling apart by more than εmin/2 distance. Note that

the centroid of the triangle is the farthest interior point from all three corners of the triangle

Figure 2.7: Worst case scenario for the decision of collision threshold ζ. The vertex v
is checked against the largest possible triangle on the mesh, that is, an equilateral
triangle of side εmax. If the vertex approaches to any vertex of the mesh by more than
the threshold ζ, a collision occurs.

Chapter 2: Surface Deformation Scheme

19

with distance 3εmin / 3 = 3 εmin to each of the corners. The collision zone starts at the

point whose vertical distance from the centroid is εmin/2. The distance of this point to each

of the triangle vertices is given by the diagonal length of the right triangle formed by this

point, the centroid and a triangle vertex. Hence the collision threshold ζ must satisfy the

following inequality,

() min

2

min
2

min
2

13

2
3 ε

ε
εζ ≥

+>

 By using a uniform partitioning where each vertex is associated with a voxel of a 3D

grid and by checking each vertex only against those in its neighbouring voxels, the

collision detection algorithm is implemented in an efficient manner with O(nlogn)

complexity, where n is the number of vertices in the deformable mesh. The length of one

side of a voxel is set to ζ, so that wherever the vertex of interest is located in its voxel, the

sphere of radius ζ is covered by the search space, as depicted in Figure 2.8:

Figure 2.8: The collision zone and the search space for collision detection of a vertex.
The vertex v is located towards an edge of its voxel. Green vertices are inside the
collision zone. Blue vertices are within the search space (neighbouring voxels) whereas
the black vertices are not.

(2.8)

Chapter 3: Surface Tracking

20

Chapter 3

SURFACE TRACKING

The mesh representation *

()t

k
M of the object surface at each frame t is reconstructed by

deforming the surface reconstructed at the previous frame, *

() (1)
0

t t

k
M M −= . The deformation

process is driven by the time-varying silhouette and the 3D scene flow information, as

explained in detail in this chapter.

3.1 Shape From Silhouette

The surface deformation process is primarily driven by the time-varying silhouette

information. Hence we need to extract these silhouettes for each frame of the multiview

video prior to tracking. For this purpose we use the silhouette extraction method proposed

in [31], which is based on statistical modeling of the background pixel colors with a

training set of background images. We note that the performance of the surface tracking

scheme is highly related to the performance of the silhouette extraction stage.

3.1.1 Silhouette Based Deformation

The displacement, ,()i kd v , at each vertex i of the mesh and at each iteration k of the

surface evolution, can be computed based on the time-varying silhouette information. Let

sil ,()i kd v denote the silhouette-based displacement. The direction of this displacement

(3.1)

Chapter 3: Surface Tracking

21

vector is set to be in the direction of the surface normal ,()
i k

N v , inwards or outwards,

depending on the positioning of the vertex with respect to the target surface.

sil , sil , ,() () ()i k i k i kδ=d v v N v

The magnitude of the displacement, sil ,()
i k

δ v , is based on how far and in which direction

(inside or outside) the vertex v is with respect to the silhouettes at that time instant. Thus

the displacement scalar δsil , which may take negative values as well, is computed by

projecting ,i k
v onto the image planes and thereby estimating an isolevel value ,()

i k
f v via

bilinear interpolation:

sil , min , min ,() () min{ [Proj ()] 0.5}
ni k i k I i kf Gδ ε ε= = −v v v

where ,Proj ()
nI i k

v is the projection of the vertex ,i k
v to In, the n’th binary silhouette image

(0 for outside, 1 for inside) in the sequence. The function G, taking values between 0 and 1,

is the bilinear interpolation of the sub-pixelic projection of the vertex ,i kv . Thus, the

isolevel function f (,i kv) takes on values between -0.5 and 0.5, and the zero crossing of this

function reveals the isosurface. The isovalue of the vertex v is provided by the image of the

silhouette that is farthest away from the point, or in other words, where the interpolation

function G assumes its minimum value. So the absolute displacement scalar is bounded

above by εmin/2, that is, the maximum displacement that a vertex is allowed to move in one

iteration.

We distinguish the vertices of the deformable mesh under three categories with respect

to their isovalues. A vertex v is labeled as IN if f (,i kv) is 0.5, OUT if -0.5 and ON if in

between. According to this definition, ON vertices are those positioned within a narrow

band around the boundary surface. By Equation 3.2, the displacement at each ON vertex

varies within the interval (−εmin/2, εmin/2). The vertices which are out of this band are

(3.2)

Chapter 3: Surface Tracking

22

labeled as IN or OUT, depending on whether they are located inside or outside the

silhouettes and they have displacement scalars εmin/2 or −εmin/2

3.1.2 Fine Tuning

During surface evolution, the state of a vertex, which is initially OUT, can switch

between any two of the three categories. A vertex moves not only due to the displacement

operator, but also due to the regularization effect of the smoothing operator that alters its

positioning. Depending on the magnitude of the displacement vector, which is bounded

above by εmin/2, the state of a vertex can even switch from OUT to IN, or vice versa, at one

single iteration. The vertices of the deformable mesh, when they get close to the boundary,

may oscillate between IN and OUT states until convergence, that is, until they no longer

move. Some vertices remain as OUT or IN even at convergence. To improve accuracy and

to speed up convergence, we incorporate a fine-tuning procedure to the surface deformation

process. We detect the instances when a vertex crosses the target boundary due to the effect

of the displacement operator, that is, when its state changes from outside to inside, or vice

versa. We then precisely locate the point where it crosses the boundary via dichotomic

subdivision as described below. If the current resolution of deformation (εmin/2) does not

match the resolution of the silhouette images, it is even possible that an IN or OUT vertex

may cross the boundary several times at one single iteration, jumping over and missing fine

shape details. To prevent this, before moving an IN or OUT vertex v with the displacement

operator, we sample its motion trajectory, which is of length εmin/2, at the maximum

available resolution. If a zero-crossing is detected at any of these sampled points, say v',

the displacement of the vertex is refrained at that point and a dichotomic subdivision is

carried out to search for the point where the isolevel function f(v) is zero on the line

segment joining the point v' and the initial position v. For a sufficiently small threshold

Chapter 3: Surface Tracking

23

value µ, -ξ < f(v) <ξ, is used to determine how close the isolevel of a given point must be to

assume it as being exactly on the boundary surface (see Figure 3.1). The vertex is then

moved onto this location.

Note that the a vertex may change its state (from OUT to IN, or vice versa), even if it is

not close to the optimum coordinates where the vertex should be at the convergence of the

evolution. This would occur if the vertex is passing some boundary other than the boundary

at which it should ideally end to represent the target surface, that is, if its distance to the

target surface point, or its 3D scene flow vector (as will be explained in Section 3.2), has a

large magnitude. Thus to avoid fine tuning to be an obstacle for a smooth and fast

evolution, we only activate fine tuning for a vertex when it is close to the target surface

point.

Figure 3.1: Dichotomic subdivision to accurately locate the position of a vertex. The
vertex v is initially OUT. The boundary surface is assumed to pass through some point
on the line segment joining v and v', where the isolevel function f(.) takes a value
between -ξ < f(v) <ξ. For this example, the binary search takes four steps to locate the
boundary point.

Chapter 3: Surface Tracking

24

3.2 3D Scene Flow

Silhouette-based surface evolution may fail to track the surface in case the local motion

is too fast on small shape details that can be confused by the silhouette information. For the

algorithm to work successfully, there is generally a compromise between the frame rate, the

speed of the motion and the size of the shape details. To overcome the limitations of this

compromise and to enhance the robustness and efficiency of the surface tracking process,

we incorporate 3D Scene Flow (3DSF) information into silhouette-based deformation.

Scene flow is defined by Vedula et al. in [28] as “Just as optical flow is the two-

dimensional motion of points in an image, scene flow is the three-dimensional motion of

points in the world”. The various benefits of incorporating scene flow information is listed

below:

• It eliminates unnecessary surface shrinkages and inflations during surface evolution

by guiding the surface on a direct path towards the target surface. By this way, it reduces

the number of necessary restructuring operations and thereby decreases the representation

load and the reconstruction time.

• Pose registration parameters estimated from scene flow vectors, as will be described

below, transforms the initial mesh, in a rigid manner (translates and rotates), towards the

target surface so that the overall distance to the target surface is reduced. By this way, the

maximum distance traveled by a vertex is shortened and hence the representation load and

the reconstruction time are further decreased.

• It provides a smooth evolution by integrating a displacement direction other than the

surface normal towards the target surface and avoids unnecessary decelerations around

irrelevant surface boundaries due to small scale silhouette details and unnecessary fine

tunings.

Chapter 3: Surface Tracking

25

Obtaining the scene flow information necessary for our deformation scheme means to

estimate a vector)(t

iw for each vertex)(t

iv of the mesh representation M
(t)

 at frame t, that

describes its position at the next frame t+1:

(1) () ()ˆ t t t

i i i

+ = +v v w

as depicted with an example in Figure 3.2. To achieve this estimation we have developed

the method described in the sequel.

Figure 3.2: Illustration of 3D scene flow on an initial mesh (left) and its target surface

(3.3)

Chapter 3: Surface Tracking

26

3.2.1 3DSF Estimation

The steps towards estimating the scene flow vector)(t

iw for a vertex)(t

iv of the mesh

representation M(t) are as follows [28] (dropping the indices i and t):

i) Find the set of camera viewpoints that the vertex v is visible to, Vis(v)={C1, C2, …,

CK}, where K is the number of cameras that v is visible to. For this purpose we make use of

the voxel grid generated for collision handling. We scan the voxels located along the line of

sight from v to the optical center of a given camera Ck and check if any other vertex

occludes its visibility from that camera.

 ii) By using the camera projection matrix Pk, project the vertex v = (x,y,z) onto each

camera plane Ck in Vis(v):

T T
1 1

T T
3 3

[] (, , ,1) [] (, , ,1)
,

[] (, , ,1) [] (, , ,1)
k k

k k

k k

x y z x y z
u v

x y z x y z
= =

P P

P P

where uk = (uk,vk) is the projected point, and [Pk]1 and [Pk]3 denote the first and the third

rows of the 3×4 projection matrix, respectively.

iii) Find the 2D optical flow vector,
d

d
k

t

u
, at the projected point for each camera Ck.

We employ the hierarchical Lucas-Kanade method [29] for this purpose.

iv) Estimate the 3D scene flow vector,
d

dt
=

v
w , from the computed 2D motion vectors,

1

d

d

K

k

kt =

u
, by

d d

d d
k k

t t

∂
=

∂

u u v

v
. The Jacobian matrix k∂

∂

u

v
 can be computed explicitly for

each k by symbolic differentiation of uk with respect to x, y, and z, using the camera

projection parameters. The 3D scene flow vector,
d

dt
=

v
w , can then be estimated from the

following overdetermined set of linear equations:

Chapter 3: Surface Tracking

27

1 1 1
1

1 1 1 1

. . . .

. . . .

K K K K

KK K K

u u u u
x y z t
v v v v

x y z t

u u u u

x y z t

vv v v

tx y z

∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂
 =

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂

w

The scene flow vector of a vertex v can be estimated from its 2D motion vectors only if the

vertex is visible from at least 2 cameras, i. e., K ≥ 2.. When the number of visible cameras

is sufficient, the set of linear equations is solved via the least-squares method for w so as to

minimize the sum of the errors obtained by reprojecting the scene flow vector onto the

camera planes.

The estimated scene flow vectors theoretically represent the coordinates of each vertex

at the mesh representation of the following frame. But this data is usually not complete and

noisy, therefore it must be regularized before it can be utilized. We smoothen the estimated

scene flow vectors by averaging each in their 3-link neighbourhood and extrapolate the

missing ones during this stage, again by averaging in their neighbourhood. We employ the

scene flow vectors for two purposes. Firstly for pose registration to apply once at each

frame transition, secondly to assist the silhouette-based deformation through displacement

iterations to render the process more robust and efficient.

(3.4)

Chapter 3: Surface Tracking

28

3.2.2 Pose Registration

The purpose of pose registration is to adjust the position and orientation of the mesh

representation M(t) so that the distance between M(t) and the target surface S(t+1) is reduced

before surface evolution from frame t to t+1 gets started. This is depicted with an example

in Figure 3.3. This initial transformation does not only improve the chances of the surface

evolution to successfully converge to the desired surface, but it also speeds up the

deformation process and reduces the maximum distance traveled by a vertex thereby

decreasing the representation load.

The 3D scene flow vectors can be used to estimate the pose registration (rotation and

translation) parameters. Let us denote the global rigid body motion parameters between the

surfaces at frame t and t+1 by R(t) the rotation matrix and t(t) the translation vector. We

represent the 3D coordinates of the vertices at these consecutive frames as V(t) and (1)ˆ t+V ,

Figure 3.3: Illustration of pose registration. M(t): Mesh representation at frame t,
)(t

PRM : Pose registered mesh, S(t+1): Target surface at frame t+1.

Chapter 3: Surface Tracking

29

() () () () (1) (1) (1) (1)
1 2 1 2

ˆ ˆ ˆ ˆ, ,..., , ,..., t t t t t t t t

n n

+ + + + = = V v v v V v v v

where n is the number of vertices in M(t). Recall also that (1) () ()ˆ t t t

i i i

+ = +v v w where ()t

iv and

()t

iw are column vectors consisting of 3D coordinates. In this case, the relationship between

V(t) and (1)ˆ t+V is given by:

()
(1) (t) (t)

T
ˆ =

t

t+

V
V R t

1

R(t) and t(t) are estimated from this equation using a nonlinear unitary-constraint

optimization technique as described in [30]. The rotation and translation parameters are

estimated prior to each frame transition to apply pose registration. This process of pose

registration provides a good initialization of the surface at each frame and hence improves

stability of the surface tracking process. The benefits of pose registration will be

demonstrated with experiments in Chapter 4.

3.2.3 Scene Flow Assisted Deformation

In addition to pose registration, 3D scene flow vectors are also used at the deformation

stage to contribute to the computation of the displacement operator. It is possible to

integrate scene flow vectors into the deformation stage in several different ways. Although

in theory a scene flow vector gives the exact location of a vertex on the surface of the next

frame, scene flow computation itself is usually a noisy and unstable process in practice and

hence cannot alone be relied upon for a robust mesh evolution. Nevertheless, 3D scene

flow can assist silhouettes in driving the deformation process by ensuring that majority of

the vertices are correctly led towards the target surface. That is, the direction and

magnitude of the displacement vector of a vertex at a given iteration will depend partially

(3.5)

(3.6)

Chapter 3: Surface Tracking

30

on the silhouettes and partially on the scene flow vectors. The best way to achieve this in

our deformation framework is to use a linear combination of these two information sources

while calculating the displacement vector defined by Equation 2.4:

, , sil , , flow ,() () ()i k i k i k i k i kα β= +d v d v d v

where ,i kα and ,i kβ are weighting coefficients varying for every vertex i and iteration k;

they take values between [0,1] and their sum is always unity: , , 1i k i kα β+ = . The silhouette-

based component sil ,()
i k

d v is calculated according to Equations 3.1 and 3.2,

sil , min , ,() min{ [Proj ()] 0.5} ()
ni k I i k i kGε= −d v v N v

where ,()i kN v represents the unit surface normal at vertex ,i kv . The scene flow based

component flow ,()i kd v is calculated based on iw such that its direction is always towards

the initial target ˆ
iv that the scene flow vector points to and its magnitude is bounded by

εmin/2 just like the silhouette-based displacement component sil ,()i kd v :

,min min
,

,flow ,

,

ˆ
ˆ if

ˆ2 2()

ˆ() otherwise

i i k

i i k

i i ki k

i i k

ε ε−
− >

−=
 −

v v
v v

v vd v

v v

Recall from Equation 3.3 that ˆ
iv , representing the target point, is different for each vertex

and remains fixed throughout the iterations of a frame transition from t to t+1.

The weights ,i kα and ,i kβ in Equation 3.7 vary with iteration counter k. The purpose

here is to provide a deformation where the scene flow vectors dominate the silhouette

information at the early iterations (,0 1
i

α = , ,0 0
i

β =). As iterations proceed, this favour

should gradually be carried to silhouette information (*,
0

i k
α ≅ , *,

1
i k

β ≅). In this way, the

scene flow information will smoothly lead the deformation towards the target surface on a

(3.7)

(3.8)

(3.9)

Chapter 3: Surface Tracking

31

stable and short path while the final surface reconstructed will totally be determined by the

silhouette information. We set these weights as a function of iteration counter k such that:

, , ,, 1ik

i k i k i k
e

τα β α−= = −

The choice of the time coefficient τi here is crucial because it determines how long the

scene flow information will be effective. The optimal value of τi is determined separately

for each vertex based on the scene flow magnitude at that vertex. Our strategy is as follows:

Taking into account the fact that the maximum vertex displacement at one iteration is

bounded above by εmin/2, the total number of iterations for a vertex iv to reach its target

point ˆ
iv by using only the scene flow vector is expected to be min

ˆ 2 || || /iK ε= w (see Eq.

3.9). The coefficient τi is then chosen so that the weights satisfy 5.0,, == kiki βα at the half

of this iteration count:

1
minln(0.5) (/)i iτ ε −= − ⋅ w

To summarize, the displacement ,()i kd v at the vertex ,i kv is calculated in a similar way

as given in Equation 3.2, but this time using also the scene flow information via dflow(vi,k).

When using scene flow vectors, the fine tuning procedure described in Chapter 3.1.2 is

invoked only when the vertex is close to its target point ˆ
iv . In this way, unnecessary

decelerations around irrelevant surface boundaries are avoided. Integrating the scene flow

information into the deformation process not only improves the stability of the surface

tracking but also considerably decreases the operation count and the reconstruction time by

leading the surface smoothly towards the target surface without unnecessary restructuring

operations during surface evolution.

(3.10)

(3.11)

Chapter 3: Surface Tracking

32

3.3 Surface Tracking Algorithm

We now describe the overall algorithm that generates a sequence of meshes

representing the time-varying geometry. The inputs are the multiview video, the silhouette

images at every frame, the initial mesh model M
(0) representing the surface at the first

frame, and the projection parameters of the multi-camera system. The vertices of the initial

deformable mesh, M0
(t), are all set to be active prior to deformation at each frame. The

overall algorithm is then as follows:

Iterate on t

• Set M0
(t) = M(t−1);

• Estimate 3D scene flow w(t);

• Estimate the rotation matrix R(t) and the translation vector t(t);

• Pose register M0
(t) using R(t) and t(t);

• Iterate on k

� Displace active vertices in Mk
(t)

 by Td(Mk
(t));

� Detect and handle collisions;

� Smooth active vertices in Mk
(t)

 by Ts(Mk
(t));

� Restructure active edges in Mk
(t)

 by Tr(Mk
(t));

� Deactivate vertices that no longer move;

• Till convergence

• Set M
(t) = Mk*

(t) as final mesh representation at frame t;

Till end of scene

Note that the displacement and smoothing operators are applied only to active vertices of

the deformable mesh whereas the restructuring operator is invoked only for active edges,

Chapter 3: Surface Tracking

33

that is, for edges with at least one active vertex. The vertices that are detected to no longer

move through iterations of the deformation algorithm are deactivated. Thus as iterations

proceed and as more and more vertices become inactive, the time spent at each iteration

significantly reduces, yielding on overall a computationally efficient algorithm. The

algorithm converges when the vertices of the deformable mesh no longer move, that is,

when the equilibrium condition in Equation 2.2 is satisfied.

3.4 Representation Load

The resulting mesh sequence, M
(0), M

(1), … M
(t), …, representing the time-varying

geometry, can be efficiently encoded in terms of the small-scale vertex displacements and

the restructuring operations along with the initial model and the pose registration

parameters of each frame. We will show in the experimental results section that this

encoding approach significantly improves space efficiency as compared to encoding each

frame separately. To calculate the bit-load of a sequence reconstructed by our method we

use the number of restructuring operations, the number of vertices, and the maximum

vertex displacements in x, y, and z directions for each frame.

Let us first assume the vertex coordinates are encoded with P-bit precision. We denote

the number of vertices at frame t by t

vN , the number of restructuring operations at frame t

by r
tN , the ratio of the radius of the sphere bounding the surface at frame t to the maximum

displacements in x, y, and z directions to frame t+1 by respectively t

xs , t

ys and t

zs , and the

total number of frames in a sequence by T. The bit-load B for a mesh sequence can then be

calculated (omitting the bit-load for the initial mesh M(0), the pose registration parameters

for each frame and the maximum displacements in each direction for each frame) as

follows:

Chapter 3: Surface Tracking

34

()2 2 2 2r
1

3 log log log 2 log
T

t t t t t t

v x y z v

t

B N P s s s N N
=

 = − − − + ∑

In this equation, the first term in the sum corresponds to the bit-load of the vertex

displacements, and the second term corresponds to the bit-load of the restructuring

operations. The bit-load of the x-component for each vertex displacement at frame t is

given by 2log t

xs which is usually much less than the required bit precision P. The same

argument holds for y and z directions as well, to compute the total bit-load of each vertex

displacement. Assuming that the number of edges in a mesh representation is equal to the

number of vertices t

vN , and noting that a restructuring operation can be represented by an

edge and an edge can be represented with two vertex indices, the bit-load of a restructuring

operation is twice the bit load of a vertex 22 log t

vN at frame t.

If each mesh representation in a sequence were to be encoded separately using the

classical vertex-triangle list, the bit-load B0 of the whole sequence would be calculated as:

20
1

3 6 log
T

t t t

v v v

t

B N P N N
=

 = + ∑

In this equation the first term in the sum corresponds to the bit-load of the vertex

coordinates and the second term corresponds to the bit-load of the triangles. Here we

assume that a triangle is represented with three vertex indices and that the number of

triangles is twice the number of vertices, and also P-bit precision is used for each of the x,

y, and z coordinates.

We have compared the representation load efficiency of our method with the classical

vertex-triangle list representation and observed that it provides an approximately 1-to-5

encoding efficiency without applying a statistical compression algorithm. The experimental

results on encoding efficiency will be presented in the next chapter.

(3.12)

(3.13)

Chapter 4: Experiments and Results

35

Chapter 4

EXPERIMENTS AND RESULTS

We have conducted experiments to demonstrate the performance of our surface

tracking method on three different sequences, one synthetic and two real sequences.

The synthetic mesh sequence, Jumping Man, originally reconstructed from a real scene

by the authors of [27], exhibits the realistic motion of the jumping act of a human actor at

30 fps with 220 frames. We have artificially created the time-varying multiview silhouette

images, each of size 1280 × 1024, from the 3D models of this sequence, using a horizontal

circular camera configuration consisting of 16 cameras modeled with perspective

projection. In the synthetic case, the silhouettes, the scene flow vectors and the camera

calibration parameters are all given and error-free. Hence we can assess the performance of

our method in ideal conditions. Moreover since we have the ground-truth mesh sequence in

hand, we can quantitatively measure the quality of the reconstructed mesh sequence with

respect to the original.

We have recorded two real video sequences at 30 fps by using the multicamera system

equipped with 8 cameras (1332 × 980) in MVGL Lab at Koç University1. Original images

from the 8 cameras of a sample frame is given in Figure 4.1. We have calibrated the

multicamera system by using the technique described in [33]. For silhouette extraction, we

have used the method presented in [31], which is based on statistical modeling of the

background pixel colors with a training set of background images. To improve the accuracy

of the silhouette extraction process, we have employed an artificial black background.

1 http://mvgl.ku.edu.tr/

Chapter 4: Experiments and Results

36

The first real sequence is a relatively long sequence (about 1260 frames) with various

types of actions such as standing, walking, running, jumping, turning, stretching and kick-

boxing. These actions have been chosen to test different types of motions varying in speed,

locality and complexity (e.g., jumping is for slow local motion and fast global motion while

kick-boxing is for fast local motion and slow global motion, and stretching is for self-

collisions). The second real sequence has been chosen to test the performance of our

deformation scheme in the case of highly non-rigid motion, e.g., total shrinking and

inflation of a ball in the hands of a player while dribbling. The animation videos of the

reconstructions of all three sequences together with a view from the original scenes may be

reached from the public MVGL website2.

4.1 Initial Reconstruction

Recall that the mesh representation of the initial frame, M(0), has to be reconstructed as

the first step to be able to initiate the surface tracking process. Our reconstruction of the

initial mesh is based on the silhouette-based static object reconstruction method described

2 http://mvgl.ku.edu.tr/surftrack

Figure 4.1: Sample original images. Views from cameras 1 to 8 at frame 1205

Chapter 4: Experiments and Results

37

in [32]. This method uses a deformation scheme that is similar to the one described in this

thesis. In Figure 4.2, we provide views of the deformable model at various iterations of the

surface deformation process as it evolves starting from the bounding sphere towards the

object boundary at the first frame.. We decide on the resolution of the deformable mesh

model, hence the value of εmin, to model all sequences at the initial frame. The value of εmin

should be small enough to describe small shape details but as large as possible to reduce

the total vertex count. In Table 4.1, we give the number of vertices and the reconstruction

error for varying εmin. The values of εmin and the reconstruction error are both normalized

with respect to the size of the object, e.g., the value of εmin is given as the ratio of the

minimum edge length to the radius of the bounding sphere. In Figure 4.2., we display the

resulting meshes reconstructed at these varying resolutions. In Table 4.1, we detect a break

point in the reconstruction error at εmin= 0.025. For εmin values larger than this breakpoint,

the reconstruction error increases rapidly, and as also observed from Figure 4.3, the arms of

the jumping man for instance start to get eroded and cannot be modeled properly. This

optimal value, which corresponds 2.5% of the radius of the bounding sphere, can be

applied to any sequence where the object in the scene is a human actor. Hence we will use

this value for reconstruction of all other sequences, though we will also present results at

higher resolutions.

εmin Vertex
(#)

Average
Error (10-3)

Maximum
Error (10-3)

0.010 9052 2.85 99.46
0.015 3826 3.06 99.34
0.020 2203 3.47 100.24
0.025 1258 4.09 98.63
0.030 856 6.29 144.87
0.035 697 7.07 145.44

Table 4.1: Number of mesh vertices, average error, and maximum error for initial
reconstruction of the Jumping Man with varying εmin values.

Chapter 4: Experiments and Results

38

4.2 Surface Tracking Results

 We have tested the performance of our surface tracking method on three sequences. For

each of them, we consider three distinct cases to demonstrate the contribution of each

different component of our scheme. In the first case, the deformation is driven by only

silhouette-based displacements without employing any pose registration or scene flow

vectors. In the second case, we make use of silhouette information along with PR (pose

Figure 4.2: The deformable mesh at various iterations for initial reconstruction of the
Jumping Man starting from the bounding sphere.

Figure 4.3: Initial meshes reconstructed at varying resolutions with εmin values: (from left
to right) 0.010, 0.015, 0.020, 0.025, 0.030.

Chapter 4: Experiments and Results

39

registration). In the third case, we consider the complete scheme that we have described in

the previous chapter, i.e., we integrate the scene flow vectors to the deformation scheme to

assist silhouette information and also for pose registration. We will refer these three distinct

cases, respectively, as 1) Silhouette-only, 2) Silhouette-PR, and 3) Silhouette-PR-3DSF. In

the sequel we present the results that we have obtained.

4.2.1 Sequence 1: Synthetic scene with ground truth data

In Figure 4.4, we display sample frames from the reconstructed mesh sequence side by

side with the corresponding meshes from the original sequence. In this case, the mesh

sequence has been reconstructed by employing the complete surface tracking scheme, that

is, Silhouette-PR-3DSF. Although some discrepancies can be observed on the

reconstructed mesh as compared to the original geometry, which are mainly due to the well

known limitations of shape-from-silhouette approach, the geometry is recovered as

smoothly and as faithfully to the original as possible.

Figure 4.4: Sample reconstructions from Jumping Man sequence, along with the original
models. From left to right, frames 19, 40 and 73.

Chapter 4: Experiments and Results

40

In Table 4.2, we provide statistics per frame to quantitatively assess the performance of

our method in three cases. In this table we give the average values per frame for the

number of restructuring operations, reconstruction time, maximum vertex displacements

and reconstruction error. Recall that the maximum vertex displacement of the deformable

mesh within a given frame determines how much bit-load would be necessary to encode

vertex displacements. Likewise, the number of restructuring operations also contributes to

the representation load of each frame. It is observed from Table 4.2 that adding more and

more components to the base scheme improves the performance of the surface tracking

scheme by decreasing both reconstruction time and representation load. Also note that the

average reconstruction error decreases only slightly as expected since inserting additional

components into the deformation scheme rather aims to improve stability and efficiency

but not the reconstruction quality. We would also like to note that the surface tracking

process has failed twice over the whole sequence when Silhouette-only scheme is in use

(case 1), whereas we have successfully tracked the whole time-varying geometry with

additional features incorporated into the scheme, i.e., for both Silhouette-only and

Silhouette-PR cases.

 Silhouette-
only

Silhouette-
PR

Silhouette-
PR-3DSF

Total restructuring (#) 204.12 58.42 18.58
Split (#) 42.31 13.02 4.30
Collapse (#) 52.91 15.98 4.01
Flip (#) 108.90 29.42 10.26
Reconstruction time (sec) 14.16 7.38 5.93
Iterations (#) 26.60 22.21 19.13
Max. displacement (10-3) 132.88 78.25 62.75
Reconstruction error (10-3) 4.41 4.37 4.35

Table 4.2: Average statistics per frame for the Jumping Man sequence in three different
cases.

Chapter 4: Experiments and Results

41

Figure 4.5: Total number of restructuring operations, reconstruction time, maximum
vertex displacement and reconstruction error for each frame of the Jumping Man sequence
in three cases: Silhouette-only (white), Silhouette-PR-3DSF (black), and only on the first
plot, Silhouette-PR (gray).

Chapter 4: Experiments and Results

42

In Figure 4.5, we plot per frame the number of restructuring operations, reconstruction

time, reconstruction error and maximum vertex displacement. The four global peaks

observed for the operation count, reconstruction time and maximum displacement plots

correspond to the four jumping acts (respectively, forward and backward then again

forward and backward) in the sequence. The local maxima within these peaks correspond

to the fast motion of the arms during these jumps. The increases in operation count, which

imply more changes in the mesh connectivity, are as expected where the motion of the

object is faster. The increases in reconstruction time and maximum vertex displacements

are correlated with the operation count, as also expected.

In Figure 4.6 we display the deformable mesh at various iterations within a frame

transition for three different cases. We also zoom on a specific region, i.e., on one of the

arms, to emphasize the differences between the cases. It is observed that pose registering

the initial mesh so as to start from a closer location to the target surface provides some

segments (e.g., arms) of the object to fall inside the target surface at the beginning;

therefore eases the evolution process avoiding total shrinking and re-modeling of segments,

and eventually reduces the number of mesh restructuring operations. However pose

registration only partly avoids shrinking and re-modeling. When the 3D scene flow vectors

are also incorporated, the deformable mesh evolves in a much smoother path towards the

target surface without almost no shrinkage, as observed in Figure 4.6.

Chapter 4: Experiments and Results

43

Figure 4.6: Deformable mesh at various iterations for transition from frame 131 to 132 in
three different cases. (Below) Zoom on the left arm. Dark blue areas correspond to IN, light
blue areas correspond to OUT, and green areas correspond to ON vertices. Total number of
restructuring operations in three cases are respectively 760, 510 and 294.

Silhouette-
only

Silhouette-
PR

Silhouette-
PR-3DSF

Silhouette-
only

Silhouette-
PR

Silhouette-
PR-3DSF

Chapter 4: Experiments and Results

44

4.2.2 Sequence 2: Real scene with various types of action

The first real sequence is a relatively long one, containing about 1260 frames, with

various types of actions such as standing, walking, running, jumping, turning, stretching

and kick-boxing. The manner how the motion pattern and intensity differ globally and

locally at varying parts of the body for varying actions makes this long sequence a

challenging experiment to test the performance of our deformation scheme. In Figure 4.7,

we display sample frames from the reconstructed mesh sequence together with sample

silhouette images from that frame.

In Table 4.3, we provide statistics per frame to quantitatively assess the performance of

our method in three different cases. In this table we give the average values per frame for

the number of restructuring operations, reconstruction time and maximum vertex

displacements. The given reconstruction times do not include the time spent for scene flow

estimation which takes about 8 sec per frame for this sequence at this resolution. Note also

that we cannot establish a reconstruction error as we could in the synthetic case, since this

time a ground-truth mesh sequence is not available. Similarly to the experiments on the

first sequence, the surface tracking process has failed, a couple of times in thousands

frames, when only the silhouette based deformation is used (case 1), though we have been

able to track the time-varying geometry successfully when the additional system

components, i.e., pose registration and scene flow vectors, are incorporated. We observe

from the table again that adding more and more components to the base scheme improves

the performance of the surface tracking scheme by decreasing both reconstruction time and

representation load (through maximum displacement). Finally note that the 3D scene flow

vectors were much more beneficial in the synthetic case when they were read from the

ground-truth and clean but not estimated and noisy.

Chapter 4: Experiments and Results

45

 Silhouette-

only
Silhouette-

PR
Silhouette-
PR-3DSF

Total restructuring (#) 216.24 119.14 97.92
Split (#) 43.23 23.44 18.98
Collapse (#) 52.13 28.30 21.71
Flip (#) 120.88 67.40 57.23
Reconstruction time (sec) 11.95 8.01 7.30
Iterations (#) 26.35 23.59 25.33
Max. displacement (10-3) 133.33 102.47 97.53

Figure 4.7: Samples from the reconstructed mesh sequence, one for each type of
action, together with corresponding silhouette images.

Table 4.3: Average statistics per frame for the reconstruction of the second (real)
sequence in three cases.

Chapter 4: Experiments and Results

46

Figure 4.8: Total number of restructuring operations, reconstruction time and maximum
vertex displacement for each frame of the second sequence in two different cases:
Silhouette-only (white) and Silhouette-PR-3DSF (black)

Chapter 4: Experiments and Results

47

Figure 4.8 plots the total number of restructuring operations, reconstruction time, and

maximum vertex displacement for each of the 1280 frames of the second sequence in two

cases, Silhouette-only and Silhouette-PR-3DSF. In Figure 4.9, the restructuring operation

plot is zoomed on the “jumping” and “turning” frames of the sequence. We observe that

there is a strong correlation between the type of motion and the number of restructuring

operations (due to change in connectivity), the time cost of the reconstruction (due to fast

motion and/or high restructuring), and the maximum vertex displacement (due to fast local

motion).

Standing: The initial frames of the sequence exhibit almost no motion, so the mesh

connectivity is preserved and the restructuring operation count remains almost zero

throughout these frames for all three cases.

Figure 4.9: Total number of restructuring operations for each frame, when zoomed on
jumping and turning (frames 720 to 970) of the second sequence in three cases: Silhouette-
only (white), Silhouette-PR-3DSF (black), and Silhouette-PR (gray).

Chapter 4: Experiments and Results

48

Walking & Running: The oscillations observed in “walking” and “running” frames in

all of the plots are due to two reasons: i) fast motion of the body parts while taking a step

(rise) and the relatively slower motion while having the feet on the ground (fall), ii) mesh

restructuring -shrinkage and inflation- between the legs when they are close and crossing

each other and no such restructuring while apart. Here shrinkage and inflation occur mostly

at the cavities between the legs, which suffer from severe self-occlusions. Note also that the

frequency and the intensity of the oscillations at “Running” are almost twice the

oscillations at walking as expected..

Jumping & Turning: The global motion is the strongest in these two actions when

compared to other types of action available in the sequence. “Jumping” is the action with

the strongest global translation while “Turning” is the action with the strongest global

rotation. Due to these reasons, the benefit of pose registration is observed to be the highest

for these two actions in Figure 4.9. The two peaks observed on the plots for the “Jumping”

action correspond to forward and backward jumps, respectively. The frames in between

these two have relatively slower motion and hence the benefit of pose registration at these

frames decreases as observed. A similar decrease in benefit of pose registration for the

“Turning” action occur while the legs are close and crossing each other where the major

share of the reconstruction time and edge operation observed is due to mesh restructuring

operations, similarly to “Walking” and “Running” actions.

Stretching & Kick-boxing: The “Kick-boxing” action has almost no global motion since

the subject is standing at the same place. However the local motion is the strongest in this

action with the two punches and two kicks (total of four moves). Therefore the benefit of

scene flow assistance is observed to be the highest in these four moves. These moves and

the benefit of scene flow assistance at these moves are observed at the peaks of the plots,

Chapter 4: Experiments and Results

49

especially at the two highest peaks of maximum vertex displacement. The “Stretching”

action is similar to “Kick-boxing” action as the model stands at the same place. The

peculiarity of the “Stretching” action is that it contains intentional self-collisions of the

arms with the body. Since the initial topology is preserved in these self-collisions and since

our collision-detection algorithm handles these collisions properly, these frames exhibit no

different behavior than the others in terms of restructuring operations as observed from the

plots.

Chapter 4: Experiments and Results

50

 Figure 4.10: Deformable mesh at various iterations of the transition from frame

t=878 to frame t=879 in two different cases: Silhouette-only and Silhouette-PR-
3DSF. Dark blue areas correspond to IN, light blue areas correspond to OUT and
green areas correspond to ON vertices.

Chapter 4: Experiments and Results

51

In Figure 4.10 we display the deformable mesh at various iterations within a frame

transition for two different cases. In Figure 4.11, we zoom on the right leg to better

visualize the differences between the cases. As observed in Figures 4.10 and 4.11, the pose

registration carries the initial surface to a position so that the mesh evolution does not need

to re-model any surface segment from scratch. Although some small number of vertices

may even get further away from their target destination after pose registration, the mesh

evolution process is improved for majority of the vertices and on overall pose registration

improves the algorithm efficiency. When the local motion at some small shape segment is

too fast such that the pose registration parameters -estimated from the global motion of the

Silhouette-
only

Silhouette-
PR

Silhouette-
PR-

3DSF

Figure 4.11: Zoom on the right leg of the deformable mesh at various iterations for
transition from frame t=1255 to frame t=1256 for three different cases. Dark blue areas
correspond to IN, light blue areas correspond to OUT and green areas correspond to ON
vertices. The evolution converges at iterations 49, 35 and 25 respectively for the three
cases.

Chapter 4: Experiments and Results

52

whole shape- are not sufficient to carry the position of the segment close enough to its

target location, the 3D scene flow assistance serves to complete this task at the early

iterations of the surface evolution by smoothly guiding that shape segment towards its

target.

In Figure 4.12, we visualize the 2D optical flow vectors that we have computed on two

sample frames t with respect to t+1 by using the hierarchical Lucas-Kanade technique.

Note that 2D optical flow is estimated only for those pixels that are projections of the

vertices of the mesh representation at that frame. We also eliminate the erroneous optical

flows of the vertex projections near the silhouette boundaries, that cannot be estimated in a

Figure 4.12: Sample frames with computed 2D optical flows. (Left) View from the 8th
camera at frame t = 748 and (right) from the 2nd camera at frame t = 1040.

Chapter 4: Experiments and Results

53

robust manner due to covered and uncovered regions of the scene. The optical flow vectors

of the remaining visible pixels, when combined for all available views, produce plausible

3D scene flow vectors, as visualized in Figure 4.13. Note that the 3D scene flow

information is not available on some of the vertices due to self-occlusions. Finally we note

that, in this case, the total time cost of computing the 2D optical flows with a Lucas-

Kanade implementation of three-level hierarchy and a window size of 30×30 pixels for all

visible vertex projections from 8 camera planes, and estimating the 3D scene flow vectors

from these optical flows together with smoothing the estimated scene flow in a 3-link

neighbourhood is about 8 seconds. The share of different tasks in this total time spent is

approximately 1.25, 4.25 and 2.50 seconds, respectively for building the 3D voxel grid and

computing visibilities, calculating the visible 2D optical flows and estimating the 3D scene

flow.

Chapter 4: Experiments and Results

54

Figure 4.13: Visualization of the estimated 3D scene flow vectors, displayed on
sample frames, corresponding to walking, running, jumping, falling, turning, stretching
and kick-boxing, for frames 178, 493, 748, 751, 922, 1040 and 1222, respectively.

Chapter 4: Experiments and Results

55

4.2.3 Sequence 3: Real Scene with severe non-rigid motion

Our third experiment aims to track the same subject of the second sequence while

dribbling a ball so to challenge our surface tracking scheme in a video sequence with

severe non-rigid motion. Our intention is to represent the body holding a ball as one whole

surface instead of two adjacent surfaces. The purpose of this is to test the tracking scheme

to model a surface inflation (when the ball arrives) and a surface shrinkage (when the ball

departs) by utilizing the mesh restructuring operators so as to rearrange the connectivity of

that region, namely the dribbling hand.

We have successfully tracked a multiview video sequence of 60 frames with 3 dribbles

(3 receives and 3 throws) starting from an initial reconstruction. Figure 4.14 displays the

reconstructed mesh representations of two sample consecutive frames of the sequence

together with the corresponding original images. Figure 4.15 zooms on the dribbling hand

with heavy restructuring operations for two different frame transitions (receiving and

throwing).

Figure 4.14: The reconstructed mesh representations of two consecutive sample frames
of the third sequence together with the corresponding original images.

Chapter 4: Experiments and Results

56

We observe from Figure 4.16 that inflation of the surface representation for the purpose

of modeling a new segment requires mostly split operations. However the disconnection of

a segment from the surface representation by shrinking that segment cannot be handled

only by collapse operations but split operations are also necessary. Although it is counter-

intuitive to observe edge splits while a mesh representation is shrinking, they arise due to

the successive collapse and flip operations at each iteration which create edges longer then

εmax, The split operations remove these edges to maintain a smooth and topologically

correct evolution.

Figure 4.16: Restructuring operations for each frame of the third sequence. (Left)
Total number. (Right) Split operations in white, collapse operations in black.

Figure 4.15: Zoom on the dribbling hand of the deformable mesh at various iterations
of two different frame transitions. (Top row) Receiving the ball, and (bottom row)
throwing the ball. Dark blue areas correspond to IN, light blue areas correspond to OUT
and green areas correspond to ON vertices.

Chapter 4: Experiments and Results

57

4.3 Discussion

In the previous sections, we have presented the basic tracking results with optimum

parameter setting. We now analyze our tracking scheme in several other aspects.

Regarding the representation load efficiency of our tracking algorithm, Table 4.4

provides the bit-load B of each sequence when encoded with the encoding scheme

described in Chapter 3.4 (Equation 3.12) versus the bit-load B0 when encoded with the

standard vertex-triangle list approach (Equation 3.13), both with 12-bit precision. The

results show that the representation load efficiency of the former strategy is about 5 times

better than the classical approach. The Bit-load of each frame consists of three components,

the bit-load of encoding the header containing the parameters (pose registration parameters

and the amount of bits necessary to encode the maximum displacement in that frame

transition), the bit-load of encoding the small-scale displacements Bdisp, and the bit-load of

encoding the restructuring operations Bop. We note that the storage cost of the initial mesh

representation has not been included in the bit-loads given in the table.

 Frames B0 (MB) B (MB) Bdisp(MB) Bop(MB)

Sequence 1 (Jumping Man) 220 3.91 0.74 0.72 0.01
Sequence 2 (real) 1280 25.53 4.83 4.45 0.34
Sequence 3 (real) 60 1.33 0.23 0.21 0.01

Recall from Chapter 3.2.3 that the scene flow information dominates the deformation

process at the beginning of mesh evolution and its influence decreases gradually as

iterations proceed. Recall also from Eq. 3.10 that the choice of the time coefficient τ

determines how long the scene flow information will be effective on a vertex based on the

expected number K̂ of the total iterations until convergence. For all the experiments that

we have presented so far, the coefficient τ was chosen so that α = β at the half of the

Table 4.4: Bit-loads for the three sequences with different encoding strategies. The bit-
load of the header of each frame in our strategy is fixed and it is 28.5 bytes per frame.

Chapter 4: Experiments and Results

58

iterations, that is, at iteration ˆ0.5K . In Table 4.5, we present the results that we have

obtained on Sequence 2 by varying this equilibrium point. We observe that, for a fairly

large interval around ˆ0.5K , the reconstruction time and operation count change only very

slightly, whereas outside of this interval, the efficiency of the tracking process starts to

decrease significantly, especially at those frames where the local motion is very fast.

Time coefficient τ 0.2 K̂ 0.3 K̂ 0.4 K̂ 0.5 K̂ 0.6 K̂ 0.7 K̂ 0.8 K̂
Restructuring operation (#) 99.58 86.83 84.05 80.46 79.66 75.85 91.58
Reconstruction time (sec) 9.00 9.61 9.12 9.24 9.24 9.32 9.14

We have tested the performance of our surface tracking method also at a resolution

higher than the optimum (εmin= 0.025 vs. εmin= 0.015). The results per frame, in terms of

vertex number, operation count and reconstruction time, are given in Table 4.6, where the

given reconstruction times do not include the time spent for scene flow estimation which

takes about 8 sec per frame at low resolution and about 12 sec at high resolution. We

observe that the efficiency decreases quadratically with the value of εmin as expected.

Therefore we do not recommend to exceed the optimal resolution unless the tradeoff

between this quadratically increasing cost and the visual quality pays off. In Figure 4.17,

we observe that the quality of the reconstruction does not significantly improve at higher

resolutions since the number of cameras is limited with 8 in our case.

Sequence 1 Sequence 2 Sequence 3
Optimum
Resolution

High
Resolution

Optimum
Resolution

High
Resolution

Optimum
Resolution

High
Resolution

Vertex (#) 1394 4216 1564 4364 1710 4295
Restruct. op. (#) 18.58 109.78 97.92 393.30 80.99 292.21
Recons. time (sec) 5.93 29.80 7.30 55.28 6.78 32.34

Table 4.5: Number of restructuring operations and the reconstruction time per frame
for varying time coefficient τ over frames 720-820 of Sequence 2.

Table 4.6: Comparative statistics per frame for surface tracking at low and high
resolutions. Minimum edge length constraint εmin is 0.025 and 0.015 for the optimum and
high resolutions, respectively.

Chapter 4: Experiments and Results

59

Figure 4.17: Comparing two resolutions. Top row: Mesh representations at optimum
resolution (εmin=0.025), Middle row: Corresponding high resolution reconstructions
(εmin=0.015). Bottom row: Zoom on a sample reconstruction at the two resolutions.

Chapter 4: Experiments and Results

60

Regarding the quality of the reconstructed mesh sequences, there are noticeable

geometrical discrepancies between the mesh representations and the original scene. These

discrepancies are mostly related to the well-known limitation of the shape-from-silhouette

technique, which is basically the inability to recover hidden cavities. This drawback does

not fortunately lead to disturbing surface artifacts when the object to be tracked is mostly

convex or composed of convex parts as in our case, and/or can be compensated by texture

mapping.

There is however another source of geometrical discrepancy which may yield

disturbing surface artifacts, especially when the number of cameras is limited. This is

related to the self-occlusion problem. We display in Figure 4.18 the three extreme cases

that have been encountered while tracking Sequence 2. These three problems are all due to

self-occlusions and can be eliminated by using more cameras for multiview recording. In

the synthetic case for instance, there were 16 cameras available and hence we did not

encounter such extreme cases. In the sequel, we provide a more detailed analysis of these

three cases.

Case a: A surface protrusion between the arms of the subject appears because there is no

camera view to carve out the extra part growing out. When both the left arm and the right

arm self-occlude the camera’s visibility at the chest of the model, the isolevel function in

Equation 3.2 returns positive values at that region and hence the vertices displace outwards

in the direction of their surface normal. If there were one more camera, e.g., positioned

above, then the corresponding isovalues would be negative and that region would be carved

out.

Case b: The empty space between the legs cannot be carved out. Although the

problematic region returns negative isolevel values, the colliding feet create a torus/cycle

that imprisons the excessive surface between the legs, avoiding it to vanish out by

restructuring operations. This case could be resolved either by applying a topology

Chapter 4: Experiments and Results

61

modification operator, or if the reconstruction of this frame had started from a problem-free

mesh structure where the excessive surface had already been carved out, prior to the

collision of the feet, by using an extra camera viewpoint.

Case c: This has occurred because in the previous frames while the model was

stretching towards her left, the problematic region was covered by the model herself, self-

occluding all the available camera viewpoints and causing the collision region to move

along the surface almost randomly. This case could be resolved again either by adding a

camera viewpoint, for example positioned on the floor of the scene, or by implementing a

collision-handling algorithm that keeps track of the positions of the vertices up to that

frame transition.

Figure 4.18: Three extreme cases, encountered while tracking Sequence 2,
where the geometry cannot correctly be recovered due to self-occlusions.

b) c)

a)

Chapter 4: Experiments and Results

62

 Our final remark is on the robustness of the proposed surface tracking algorithm. Recall

that the algorithm has failed to track the surface for all the three sequences we have tested,

when the 3D scene flow information is not incorporated and only silhouette-based

deformation is applied (case 1). The reason why the silhouette-only scheme crashes, which

occurred approximately once for hundred frames in our experiments, is because the initial

mesh geometry with which we start the evolution may sometimes be positioned such that a

segment of the object may partially fall inside another segment of the object in the target

surface that has not yet been evolved into. Usually this can be handled by mesh

restructuring and silhouette-based displacements but there are extreme cases when the

motion of a segment is too fast so that the segment may evolve into a totally separate part

of the surface which would then rise the necessity of changing the mesh topology around

those segments. We avoid such extreme cases by incorporating 3D scene flow assistance

into silhouette-based deformation. We enforce each such segment of an object to position

correctly according to the target surface thanks to pose registration, and if it does not, we

rely on the scene flow vectors to smoothly carry the surface at the early iterations towards

the target position.

Chapter 5: Conclusions and Future Work

63

Chapter 5

CONCLUSIONS AND FUTURE WORK

This work has shown that the silhouette geometry of a non-rigid dynamic object can

efficiently be tracked from multiview video based on silhouette and scene flow information

by using a fast snake-based deformation scheme coupled with mesh restructuring

operations and a collision detection algorithm. The proposed surface tracking method

exploits the temporal redundancies between consecutive frames, and as a result, the

reconstruction time and the representation load of the time-varying geometry are

significantly reduced when compared to reconstructing each frame from scratch. The mesh

restructuring operations and small-scale vertex displacements can be used to efficiently

encode the whole mesh sequence representing the smooth time-varying surface that has

been tracked.

We have tested our method on relatively long and challenging real sequences exhibiting

complex and diverse motion patterns. A remarkable advantage of the proposed method is

its ability to track objects that may undergo an arbitrary non-rigid deformation since our

scheme can track both geometry and connectivity of a dynamic surface mesh, in contrast to

few other surface tracking methods available in the literature.

The only limitations to the presented framework are that the resulting surface

representations lack the ability to model hidden cavities and that the quality of the

reconstructions is restricted to the number of available camera views, which are both

classical limitations of the shape-from-silhouette techniques. One can overcome the latter

restriction, to some degree, simply by increasing the number of cameras used during

multiview acquisition, however the complexity of the acquisition itself and the cost of the

Chapter 5: Conclusions and Future Work

64

image processing would linearly increase with the number of added viewpoints. We note

that such multiview video recording systems, which employ 16 or even more cameras, are

becoming more and more commonplace. As future work we plan to address both of these

limitations. Currently we utilize the multiview texture information only to compute the 3D

scene flow vectors. However the multistereo information, that could be extracted from

multiview texture images, can be used to further enhance the produced silhouette-based

reconstructions so as to capture finer surface concavities

Bibliography

65

BIBLIOGRAPHY

[1] A. Alatan, Y. Yemez, U. Gudukbay, X. Zabulis, K. Muller, C¸ . E. Erdem, C. Weigel,

and A. Smolic, “Scene representation technologies for 3dtv a survey,” IEEE Trans.

Circuits and Systems for Video Tech., vol. 17, no. 11, pp. 1587–1605, 2007.

[2] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G. B. Akar, G. A.

Triantafyllidis, and A. Koz, “Coding algorithms for 3dtv a survey,” IEEE Trans. Circuits

and Systems for Video Tech., vol. 17, no. 11, pp. 1606–1621, 2007.

[3] T. B. Moeslund, A. Hilton, and V. Kr¨uger, “A survey of advances in vision-based

human motion capture and analysis,” Computer Vision and Image Understanding, vol. 104,

no. 2, pp. 90–126, 2006.

[4] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H. P. Seidel, and S. Thrun,

“Performance capture from sparse multi-view video,” Proc. SIGGRAPH, pp. 1– 10, 2008.

[5] E. de Aguiar, C. Theobalt, C. Stoll, and H. P. Seidel, “Marker-less deformable mesh

tracking for human shape and motion capture,” Proc. Computer Vision and Pattern

Recognition (CVPR), pp. 1–8, 2007.

[6] J. Starck and A. Hilton, “Surface capture for performance-based animation,” IEEE

Computer Graphics and Applications, vol. 27, no. 3, pp. 21–31, 2007.

[7] T. Matsuyama, X. Wu, T. Takai, and S. Nobuhara, “Real-time 3d shape reconstruction,

dynamic 3d mesh deformation, and high fidelity visualization for 3d video,” Computer

Vision and Image Understanding, vol. 96, no. 3, pp. 393–434, 2004.

[8] K. Varanasi, A. Zaharescu, E. Boyer, and R. Horaud, “Temporal surface tracking using

mesh evolution,” Proc. European Conference on Computer Vision (ECCV), pp. 30–43,

2008.

Bibliography

66

 [9] S. W¨urmlin, E. Lamboray, O. G. Staadt, and M. H. Gross, “3d video recorder: a

system for recording and playing free-viewpoint video,” Computer Graphics Forum, vol.

22, no. 2, p. 181193, 2003.

[10] B. Curless, “Overview of active vision techniques,” Proc. SIGGRAPH Course on 3D

Photography, 1999.

[11] L. P. Kobbelt, T. Bareuther, and H. Seidel, “Multiresolution shape deformations for

meshes with dynamic vertex connectivity,” Computer Graphics Forum (Eurographics’ 00),

vol. 19, 2000.

[12] O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-

light range scanning of moving objects,” IEEE Int. Conf. on Computer Vision (ICCV), pp.

359–366, 2001.

[13] L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: Shape recovery for dynamic

scenes,” Proc. Computer Vision and Pattern Recognition (CVPR), pp. 367–374, 2003.

[14] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and

evaluation of multi-view stereo reconstruction algorithms,” Proc. Computer Vision and

Pattern Recognition (CVPR), pp. 519–526, 2006.

[15] C. H. Esteban and F. Schmitt, “Silhouette and stereo fusion. for 3d object modeling,”

Computer Vision and Image Understanding, vol. 96, no. 3, pp. 367–392, 2004.

[16] K. Mueller, A. Smolic, P. Merkle, M. Kautzner, and T. Wiegand, “Coding of 3d

meshes and video textures for 3d video objects,” Proc. Picture Coding Symposium, 2004.

[17] K. M. Cheung, S. Baker, and T. Kanade, “Shapefrom- silhouette across time part i:

Theory and algorithms,” Int. Journal of Computer Vision, vol. 63, no. 3, pp. 221–247,

2004.

[18] S. C. Bilir and Y. Yemez, “Time varying surface reconstruction from multiview

video,” IEEE Int. Conf. on Shape Modeling and Applications (SMI), pp. 47– 51, 2008.

Bibliography

67

[19] M. Botsch and O. Sorkine, “On linear variational surface deformation methods,” IEEE

Trans. Visualization and Comp. Graphics, vol. 14, no. 1, pp. 213–230, 2008.

[20] M. A. Magnor and B. Goldlcke, “Spacetimecoherent geometry reconstruction from

multiple video streams,” Int. Symp. 3DPVT, pp. 365–372, 2004.

[21] Y. Sahillioglu and Y. Yemez, “A surface deformation framework for 3d shape

recovery,” Workshop on Multimedia Content Representation, Classification and Security,

pp. 570–577, 2006.

[22] Y. Yemez and F. Schmitt, “3d reconstruction of real objects with high resolution shape

and texture,” Image and Vision Computing, vol. 22, pp. 1137–1153, 2004.

[23] M. Kaas, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int.

Journal of Computer Vision, vol. 1, no. 4, pp. 321–332, 1988.

[24] G. Taubin, “A signal processing approach to fair surface design,” Proc. SIGGRAPH,

pp. 315–358, 1995.

[25] Z. J. Wood, P. Schr¨oder, D. Breen, and M. Desbrun, “Semi-regular mesh extraction

from volumes,” Proc. Visualization’00, pp. 275–282, 2000.

[26] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh

optimization,” Proc. SIGGRAPH, pp. 19–26, 1993.

[27] P. Sand, L. McMillan, and J. Popovic, “Continuous capture of skin deformation,” Int.

Conf. on Computer Graphics and Interactive Techniques, 2003.

[28] S. Vedula, S. Baker, P. Rander, R. Collins, T. Kanade, “Three-Dimensional Scene

Flow”, IEEE Trans. PAMI, pp. 475-480, 2005.

[29] B. D. Lucas, T. Kanade, “An iterative image registration technique with an application

to stereo vision”, International Joint Conference on Artificial Intelligence, 1981.

[30] J. H. Manton, “Optimization algorithms exploiting unitary constraints”, IEEE

Transactions on Signal Processing, pp. 635–650, 2002.

Bibliography

68

[31] T. Horprasert, D. Harwood, L. S. Davis, “A robust background subtraction and

shadow detection”, Asian Conference on Computer Vision, 2000.

[32] Y. Sahillioglu and Y. Yemez, “Building Topologically Correct Mesh Models from

Silhouette Images Using Mesh Deformation”, submitted to Pattern Recognition Letters,

2008.

[33] T. Svoboda, D. Martinec, T. Pajdla, “A convenient multi-camera self-calibration for

virtual environments”, PRESENCE: Teleoperators and Virtual Environments, pp. 407-422,

2005.

Vita

69

VITA

Salih Cihan Bilir was born in Ankara, Turkey on May 05, 1985. He graduated from

Gazi Anatolian High School, Ankara in 2002. He received his B.S. degree in Electrical and

Electronics Engineering from Bilkent University, Ankara in 2006. In September 2006, he

joined the M.S. Program in Electrical and Computer Engineering at Koç University, as a

research and teaching assistant. Having received the M.S. degree in March 2009, he is now

preparing to join the Turkish army to serve his duty.

