
PARTICLE‐BASED MODELING  

of  

NONLINEAR VISCOELASTIC DEFORMABLE OBJECTS 

based on 

EXPERIMENTAL DATA 

 

by  

 

Mert Sedef 

 

A Thesis Submitted to the  

Graduate School of Computational Sciences and Engineering  

in Partial Fulfillment of the Requirements for  

the Degree of  

 

Master of Science 

in 

Computational Sciences and Engineering 

 

Koç University 

May 2008 



 
 

 
 
 
 
 

ii

  



 
 

 
 
 
 
 

iii

 

 

 

 

 

 

 

 

To them who have a place for me in their hearts  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 
 
 
 

iv

ABSTRACT 

 

Simulation-based training using Virtual Reality techniques is a promising 

alternative to traditional training in minimally invasive surgery. Surgical simulators let the 

trainee touch, feel, and manipulate virtual tissues and organs through the same surgical tool 

handles used in actual minimally invasive surgery while viewing images of tool-tissue 

interactions on a monitor as in real laparoscopic procedures. Developing realistic organ-

force models for simulating soft-tissue behavior is an integral part of a surgical simulator.  

The particle system approach provides a better solution than mesh-based methods to 

the topological changes encountered in simulation of surgical cutting and tearing. In 

addition, they are computationally less expensive and easier to implement than the mesh-

based methods. However, the material coefficients of each individual mesh element should 

be calculated and fine tuned  to integrate the realistic tissue properties into particle models, 

which is not trivial.  

This thesis presents an end-to-end solution to realistic particle-based simulation of 

nonlinear viscoelastic tissue behavior based on the experimental data collected by a robotic 

indenter. First, the strain-dependent nonlinear elastic response and time-dependent 

viscoelastic response of a tissue-like silicon phantom is measured via static loading and 

stress relaxation experiments performed by a robotic indenter. The collected experimental 

data is used to construct a lumped model of the tissue phantom represented by a nonlinear 

viscoelastic Maxwell Solid. Then, a 3-dimensional particle-based network is developed to 

mimic the behavior of the lumped Maxwell model. The material coefficients of the 

individual Maxwell elements connecting the particles are estimated through a set of novel 

optimization algorithms.  

 

 



 
 

 
 
 
 
 

v

ÖZET 

 

Sanal gerçeklik kullanılarak oluşturulan simülasyon bazlı eğitim, geleneksel 

minimal invasiv ameliyat eğitim tekniklerine alternatif olacaktır. Cerrahi simülatörler, 

stajyerlerin, gerçek laporoskopik operasyonlarda olduğu gibi, sanal doku ve organlara 

dokunmasına, hissetmesine ve hareket ettirmesine, doku ile cerrahi aletler arasındaki 

etkileşimleri gözlemlemesine, imkan sağlayacaktır. Yumuşak doku davranışlarını iyi taklit 

edebilmek için, gerçeğe çok yakın doku modelleri geliştirilmesi gerekmektedir.  

Parçacık modelleri, yumuşak cisimlerin simulasyonun da oldukça kullanılan bir 

yaklaşımdır. Bu teknik, cerrahi kesim ve yırtılma gibi biçimsel değişimlerin olduğu 

konularda ağ bazlı metotlara (örnek: sonlu eleman methodu) göre daha iyi bir yaklaşım 

sağlar. Ayrıca parçacık metodları, ağ bazlı olanlara göre hesaplama açısından daha basittir 

ve uygulanması daha kolaydır. Yine de, fiziksel sistemin tepkisini belirlemek için her bir ağ 

elemanının malzeme katsayıları hesaplanmalıdır. Bu nedenle, gerçekçi doku özelliklerinin 

parçacık modeline entegre edilmesi kolay değildir.  

Bu tezde, bir robot kolu aracılığıyla toplanan deney verilerini kullanan, doğrusal 

olmayan viskoelastik doku davranışını simule eden bir parçacık modeli geliştirdik. İlk 

olarak, yumuşak doku özelliği gösteren bir silikon örneğin gerilime bağlı doğrusal olmayan 

elastik tepkisi ve zamana bağlı viskoelastik tepkisi ölçüm cihazı ile yapılan statik yükleme 

ve makaslama gevşemesi deneyleriyle elde edilmiştir. Toplanan veriler yardımıyla, silikon 

örnek doğrusal olmayan viskoelastik Maxwell katısı kullanılarak modellenmiştir. Daha 

sonra, bu Maxwell katısı ile aynı davranışı gösteren, doğrusal olmayan viskoelastik 

Maxwell katılarından oluşan 3 boyutlu parçacık bazlı bir ağ kurulmuştur. Parçacıkları 

birleştiren bireysel Maxwell katılarının malzeme özellikleri, geliştirilen bir dizi özgün 

optimizasyon algoritması ile belirlenmiştir. 

 



 
 

 
 
 
 
 

vi

ACKNOWLEDGEMENTS 

 

 

 

 

I consider myself a very lucky student for being able to study under the supervision 

of Prof. Çağatay Başdoğan for almost five years. I would like to express my sincere 

gratitude and appreciation to him for his expert guidance, suggestions and constructive 

criticisms at all phases of this study and many others that we have successfully completed 

in the past. He has been more than an advisor to me and I learned a lot from him. I thank 

him for teaching me what I know about research. I am grateful to him also for his generous 

and continuous support in non-academic phases of my life. 

I would like to thank Canberk Manav for the insightful discussions we had and for 

his collaboration to my thesis; Umut Özcan, Sina Öcal, Baybora Baran, Osman Yoğurtçu, 

and İsmail İyigünler for editing and carefully proofreading my thesis, and for providing 

constructive criticism. 

 During the hardest times, two special people, Serdar İnal and Janice Osborne, were 

there to catch me whenever I was about to fall. I would like to thank them for being always 

there for me no matter what happened. 

Last but not least, I am very grateful to my family and my dearest friends, Tufan 

Berk Aras and Fatih Erdoğan, for their cheerful love and support. I could not have made it 

without them. Without them, the life would not be that beautiful… 

 

 

 

 



 
 

 
 
 
 
 

vii

TABLE OF CONTENTS 

 

 

ABSTRACT......................................................................................................................... iv 

ÖZET .................................................................................................................................... v 

LIST OF TABLES ............................................................................................................... x 

LIST OF FIGURES ............................................................................................................ xi 

NOMENCLATURE......................................................................................................... xvii 

INTRODUCTION................................................................................................................ 1 

VIRTUAL REALITY BASED SIMULATORS................................................................ 4 

for .......................................................................................................................................... 4 

TRAINING in MINIMALLY INVASIVE SURGERY.................................................... 4 

2.1 Anatomical Model and Training-Scene Generation .................................................... 9 

2.2 Soft Tissue Measurement and Characterization ........................................................ 12 

2.3 Physics-Based Modeling............................................................................................ 15 

2.3.1 Mesh-based Methods .......................................................................................... 15 

2.3.2 Mesh-free Methods ............................................................................................. 18 

2.4 Simulating Tool-Tissue Interactions.......................................................................... 19 

2.5 System Integration ..................................................................................................... 24 

2.6 Assessment, Validation and Training Transfer.......................................................... 29 

INTRODUCTION to SOLID MECHANICS.................................................................. 32 

3.1 Viscoelasticity............................................................................................................ 33 

3.1.1 Mechanical Characterization Experiments ......................................................... 34 

3.1.2 Mathematical Models for Linear Viscoelasticity................................................ 36 

3.2 Hyperelasticity ........................................................................................................... 61 



 
 

 
 
 
 
 

viii

3.2.1 Mooney-Rivlin Force Formulation of a Cylindrical Phantom under Uniaxial 

Compression ................................................................................................................ 63 

3.3 Nonlinear Viscoelasticity........................................................................................... 68 

MEASUREMENT and CHARACTERIZATION of NONLINEAR VISCOELASTIC 

MECHANICAL PROPERTIES of a CYLINDRICAL TISSUE PHANTOM............. 71 

4.1 Robotic Indenter......................................................................................................... 71 

4.1.1. Design Considerations ....................................................................................... 71 

4.1.2. Design Details .................................................................................................... 72 

4.1.3 Controller Design and GUI................................................................................. 74 

4.2 Characterization Experiments and Experimental Results.......................................... 76 

4.2.1 Tissue Phantom................................................................................................... 76 

4.2.2 Static Indentation ................................................................................................ 76 

4.2.3 Ramp & Hold Indentation................................................................................... 78 

4.3 Characterization ......................................................................................................... 83 

4.3.1 Lumped Nonlinear Viscoelastic Model .............................................................. 83 

4.3.2 Characterization of Nonlinear Elasticity............................................................. 84 

4.3.3 Characterization of Viscoelasticity ..................................................................... 89 

MATERIAL PROPERTY ESTIMATION of a 3-DIMENSIONAL PARTICLE-

BASED SYSTEM............................................................................................................... 99 

5.1 Previous Work on Parameter Estimation Techniques Used in Particle-based Systems

.......................................................................................................................................... 99 

5.2 Spring-Damper Network (SDN) .............................................................................. 101 

5.2.1 Numerical Solution of a Spring-Damper Network ........................................... 101 

5.3 Estimation of the Nonlinear Strain-dependent Stiffness Coefficient and the 

Viscoelastic Material Coefficients of the Maxwell Solids in a SDN............................. 111 



 
 

 
 
 
 
 

ix

5.3.1 An Optimization Algorithm for Estimating the Nonlinear Strain-dependent 

Behavior of the Elements in a Spring-Damper Network (SDN) ............................... 113 

5.3.2 An Optimization Algorithm for Estimating the Time-dependent Viscoelastic 

Behavior of the Elements in a SDN........................................................................... 123 

CONCLUSIONS and FUTURE WORK ....................................................................... 146 

6.1 Conclusions.............................................................................................................. 146 

6.2 Future Work ............................................................................................................. 147 

BIBLIOGRAPHY............................................................................................................ 149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 
 
 
 

x

LIST OF TABLES 

 

Table 2. 1: Classification of tissue measurement techniques .............................................. 14 

Table 2. 2: Procedure and skill classification of commercial MIS part-task simulators. Blue: 

procedural simulator; red: basic-skills simulator; green: hardware interface with haptic 

feedback; purple: hardware interface without haptic feedback [1].............................. 28 

 

Table 4. 1: Fitted polynomials of different degrees............................................................. 87 

Table 4. 2: Estimated material coefficients for Maxwell Solid with N=1........................... 91 

Table 4. 3: Estimated material coefficients for Maxwell Solid with N=2........................... 92 

Table 4. 4: Optimum K and b values for N=1 ..................................................................... 94 

Table 4. 5: Optimum K and b values for N=2 ..................................................................... 94 

 

Table 5. 1: Convergence of K∞(ε)...................................................................................... 119 

Table 5. 2: Convergence behavior of K1 and b1................................................................. 128 

Table 5. 3: Convergence behavior of b1............................................................................. 129 

Table 5. 4: Convergence of K∞(ε)...................................................................................... 131 

Table 5. 5: Optimum material coefficients for 6 mm ramp & hold input.......................... 132 

Table 5. 6: The optimum material coefficients estimated for different initial guess sets for 

6mm ramp & hold input in a 27-node mesh .............................................................. 137 

Table 5. 7: The optimum material coefficients estimated for different ramp & hold inputs in 

a 27-node mesh .......................................................................................................... 139 

Table 5. 8: The optimum material coefficients estimated for different ramp & hold inputs in 

a 125-node mesh ........................................................................................................ 143 

 

 



 
 

 
 
 
 
 

xi

LIST OF FIGURES 

 

Figure 2. 1: Components of a typical minimally invasive surgery simulator (the Simbionix 

LAP Mentor laparoscopic surgery simulator) include a visual display and surgical 

instruments fitted with haptic devices for force feedback [1]........................................ 7 

Figure 2. 2: Simulator development steps for minimally invasive surgery [1] ..................... 8 

Figure 2. 3: (a) A set of 2D medical images of the abdomen is segmented via filtering 

techniques for identifying different tissue regions, lesions, and pathologies. (b) 

Segmented contours in each image are combined to create a 3D surface model of the 

organ—the liver in this example. (c) Texture mapping over the surface gives the 

model a more realistic appearance [1] ......................................................................... 10 

Figure 2. 4:  Typical simulations of MIS tasks: basic (first row) and advanced skills 

(second row) [1]........................................................................................................... 21 

 

Figure 3. 1: Cyclic loading and response curves for various materials: a) Elastic material, b) 

Viscous material, and c) Viscoelastic material [51] .................................................... 33 

Figure 3. 2: Creep under constant stress .............................................................................. 35 

Figure 3. 3: Stress relaxation under constant strain ............................................................. 36 

Figure 3. 4: a) Arbitrary strain input, and b) Boltzmann superposition principle ............... 37 

Figure 3. 5: a) Linear (Hookean) spring. E is the spring stiffness, and b) Linear 

(Newtonian) dashpot. η is the dashpot viscosity.......................................................... 38 

Figure 3. 6: The Maxwell model.......................................................................................... 40 

Figure 3. 7: Creep behavior of the Maxwell model under different constant stresses......... 42 

Figure 3. 8: Stress relaxation behavior of the Maxwell model under different constant 

strains ........................................................................................................................... 43 

Figure 3. 9: Ramp input ....................................................................................................... 43 



 
 

 
 
 
 
 

xii

Figure 3. 10: Ramp & hold input ......................................................................................... 44 

Figure 3. 11: Stress behavior of the Maxwell model under different ramp strain inputs .... 46 

Figure 3. 12: Stress behavior of the Maxwell model under different ramp & hold strain 

inputs............................................................................................................................ 46 

Figure 3. 13: The Voigt Model ............................................................................................ 47 

Figure 3. 14: Creep behavior of the Voigt model under different constant stresses............ 48 

Figure 3. 15: Stress relaxation behavior of the Voigt model under different constant strains

...................................................................................................................................... 49 

Figure 3. 16: Stress behavior of the Voigt model under different ramp strain inputs ......... 50 

Figure 3. 17: Stress behavior of the Voigt model under different ramp & hold strain inputs

...................................................................................................................................... 51 

Figure 3. 18: The Maxwell solid.......................................................................................... 51 

Figure 3. 19: Creep behavior of the Maxwell solid under different constant stresses......... 55 

Figure 3. 20: Stress relaxation behavior of the Maxwell solid under different constant 

strains ........................................................................................................................... 55 

Figure 3. 21: Stress behavior of the Maxwell solid under different ramp strain inputs ...... 58 

Figure 3. 22: Stress behavior of the Maxwell solid under different ramp & hold strain 

inputs............................................................................................................................ 58 

Figure 3. 23: The Generalized Maxwell solid ..................................................................... 59 

Figure 3. 24: Uniaxial compression of a cylindrical phantom. The phantom is compressed 

from the top by applying a nonlinear external force F (1) in an amount ΔL (2). The 

principle stretch ratios are congruent with the Cartesian coordinates (3).................... 63 

Figure 3. 25: The nonlinear viscoelastic model proposed by Pryse et al. [55]. ................... 70 

 

 

 



 
 

 
 
 
 
 

xiii

Figure 4. 1: Our robotic indenter and its components. ........................................................ 73 

Figure 4. 2: The graphical user interface for generating a stimulus and recording 

experimental data. ........................................................................................................ 75 

Figure 4. 3: Snapshots from the static loading experiment.................................................. 77 

Figure 4. 4: Force-displacement curve obtained from the static compression experiment 

(raw data) ..................................................................................................................... 77 

Figure 4. 5: Force-displacement curve obtained from the static compression experiment 

(filtered data)................................................................................................................ 78 

Figure 4. 6: Force-relaxation curves for different ramp depths (raw data).......................... 79 

Figure 4. 7: Force-relaxation curves for different ramp depths (raw data, the first 10 

seconds)........................................................................................................................ 80 

Figure 4. 8: Filtered force-relaxation curves for different ramp depths .............................. 81 

Figure 4. 9: Filtered force-relaxation curve for different ramp depths (the first 10 seconds)

...................................................................................................................................... 82 

Figure 4. 10: The nonlinear viscoelastic model of the tissue phantom. The model is a 

Generalized Maxwell solid, which is constructed by connecting a nonlinear spring in 

parallel to N linear Maxwell elements (note that a spring and a dashpot are connected 

in series to form one Maxwell element). ..................................................................... 83 

Figure 4. 11: Experimental force-strain curve ..................................................................... 85 

Figure 4. 12: Curve fitting to experimental static indentation data using a 2nd order 

polynomial ................................................................................................................... 85 

Figure 4. 13: Curve fitting to experimental static indentation data using a 3rd order 

polynomial ................................................................................................................... 86 

Figure 4. 14: Curve fitting to experimental static indentation data using 4th order 

polynomial ................................................................................................................... 86 



 
 

 
 
 
 
 

xiv

Figure 4. 15: Curve fitting to experimental static indentation data using 5th order 

polynomial ................................................................................................................... 87 

Figure 4. 16: Nonlinear behavior of K∞(ε)........................................................................... 88 

Figure 4. 17: Estimated material coefficients for Maxwell Solid with N=1........................ 92 

Figure 4. 18: Estimated values of K∞ for Maxwell Solid with N=1 and N=2 ..................... 93 

Figure 4. 19: Estimated values of viscoelastic coefficients for Maxwell Solid with N=2... 93 

Figure 4. 20: The data collected from the ramp & hold experiments  and curve fitting to the 

experimental data using the optimum viscoelastic coefficients for N=1..................... 95 

Figure 4. 21: The data collected from the ramp & hold experiments  and curve fitting to the 

experimental data using the optimum viscoelastic coefficients for N=1 (the last 10 

seconds)........................................................................................................................ 95 

Figure 4. 22: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=1 (the first 10 

seconds)........................................................................................................................ 96 

Figure 4. 23: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=2............... 96 

Figure 4. 24: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=2 (the last 10 

seconds)........................................................................................................................ 97 

Figure 4. 25: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=2 (the first 10 

seconds)........................................................................................................................ 97 

Figure 4. 26: Comparison of K∞(ε) functions derived from the static loading  and the ramp 

& hold experiments...................................................................................................... 98 

 



 
 

 
 
 
 
 

xv

Figure 5. 1: Two arbitrary particles connected to each other with a nonlinear viscoelastic 

Maxwell Solid with N=1 in a SDN............................................................................ 103 

Figure 5. 2: A 27-node 3D cubic mesh is constructed based on Moore-neighborhood. The 

blue colored particle has 26 neighbors. For the simulations, the red colored particles 

are fixed to the ground while the remaining ones are allowed to move. ................... 112 

Figure 5. 3: Force responses of the lumped model (FREFERENCE) and that of cubic mesh after 

the first optimization iteration.................................................................................... 115 

Figure 5. 4: The ratio of reference force to the mesh response force at 97000 strain points

.................................................................................................................................... 116 

Figure 5. 5: FGUESS after multiplied by the multiplication factor....................................... 116 

Figure 5. 6: Pseudo-code for estimating the optimum nonlinear element function, K∞(ε) 117 

Figure 5. 7: Convergence of the force response obtained from the cubic mesh, FSDN, to the 

force response of the lump model.............................................................................. 119 

Figure 5. 8: Convergence of the force response obtained from the cubic mesh, FSDN, to the 

force response of the lump model (zoomed into 0-4.5 N region).............................. 120 

Figure 5. 9: Convergence of the element stiffness function, K∞(ε)ELEMENT...................... 120 

Figure 5. 10: Convergence of the element stiffness function, K∞(ε)ELEMENT (zoomed into 

0.4-1.6 N region)........................................................................................................ 121 

Figure 5. 11: Optimum K∞(ε)ELEMENT function.................................................................. 121 

Figure 5. 12: Optimum K∞(ε)ELEMENT for the 27- and 125-node meshes........................... 122 

Figure 5. 13: Absolute stiffness function of the individual elements in the 27- and 125-node 

meshes........................................................................................................................ 123 

Figure 5. 14: Force-relaxation behavior of the experimentally characterized lumped model 

in response to a ramp & hold input of ε = 0.25 (6 mm)............................................. 125 

Figure 5. 15: Force-relaxation behavior of lumped Maxwell Solid with N=1 and SDN with 

initial K1 and b1 values in response to a ramp & hold input of ε = 0.25 (6 mm)....... 127 



 
 

 
 
 
 
 

xvi

Figure 5. 16: Convergence of FPM to FPL. Note that the peak response (at time = 1 sec) 

obtained from cubic mesh gets closer to that of the lumped model after each iteration.

.................................................................................................................................... 128 

Figure 5. 17: Convergence of TSSM to TSSL........................................................................ 130 

Figure 5. 18: Comparison of the force-relaxation response of the lumped model and that of 

the mesh with optimized K1-b1 values at the end of second phase............................ 130 

Figure 5. 19: Comparison of the force-relaxation response of the mesh with the one 

obtained from the lumped model after the third phase .............................................. 132 

Figure 5. 20: Comparison of the force-relaxation response of the mesh to that of the lumped 

model after several global iterations. ......................................................................... 133 

Figure 5. 21: Pseudo-code for estimating the optimum viscoelastic and nonlinear material 

coefficients of the SDN.............................................................................................. 136 

Figure 5. 22: The optimum K1 values estimated for different ramp & hold inputs........... 140 

Figure 5. 23: The optimum b1 values estimated for different ramp & hold inputs............ 140 

Figure 5. 24: The Optimum K∞(ε) functions estimated for different ramp & hold inputs 141 

Figure 5. 25: Force-relaxation responses of the mesh is simulated using the coefficients 

optimized for 6 mm and 4 mm ramp & hold inputs. ................................................. 142 

Figure 5. 26: The optimum K1 values estimated for different ramp & hold inputs........... 144 

Figure 5. 27: The optimum b1 values estimated for different ramp & hold inputs............ 144 

Figure 5. 28: Ratio of b1 to K1 (i.e., tao1), for different ramp & hold inputs..................... 145 

Figure 5. 29: The optimum K∞(ε) functions estimated for different ramp & hold inputs . 145 

 

 

 

 

 



 
 

 
 
 
 
 

xvii

NOMENCLATURE 

 

σ  stress   

σ0  constant stress 

ε   strain 

t  time 

Ψ       creep function 

Η  viscosity 

I0  instantaneous compliance 

I(t)  compliance 

Φ  decay of stress 

E∞  long term (final) elastic modulus 

E  elastic modulus of spring 

η  viscosity of dashpot 

L0  original(initial) length 

∆L  change of length 

εS  strain in a spring 

σS  stress in a spring 

εD  strain in a dashpot 

σD  stress in a dashpot 

τ  relaxation time 

A  slope of the ramp 

u(t)   Heaviside unit step function 

δ(t)   unit-impulse function (dirac delta function) 

τσ  the relaxation time for constant stress 

 



 
 

 
 
 
 
 

xviii

F  deformation gradient tensor 

σ  Cauchy stress tensor   

ε   strain tensor 

T  first Piola-Kirchhoff stress tensor 

S  second Piola-Kirchhoff stress tensor  

E  Lagrangian Green’s strain tensor 

C10, C01 coefficients of Mooney-Rivlin strain-energy function 

I1, I2, I3 principle invariants 

Cij , μi material stiffness constants corresponding to Young’s modulus in linear 

material 

λ  principle stretch ratio 

Lf  final length 

A0  initial area 

G(t) reduced relaxation function 

Te(λ) elastic response instantaneously generated in the material when a step 

function of stretching λ is imposed on the material 

E∞(ε)  strain-dependent relaxation function of the nonlinear spring 

K∞(ε)  strain-dependent stiffness function of the nonlinear spring 

K  stiffness coefficient of the linear spring 

b  viscosity coefficient of the linear dashpot 

Ft  external force on the element at the current time step   

εt  unknown  strain value of the element at the current time step  

Ft-1   known or calculated force value in the previous time step 

εt-1   known or calculated strain value in the previous time step 

xp  position vector of a particle p 

xn   position vector of the neighboring particle n 



 
 

 
 
 
 
 

xix

L  length of the Maxwell Solid between particles 

εt  current strain of the element in the current time step 

Lt   length of the element in the current time step 

L0   rest length of the element 

Ft-1  force vector in the previous time step 

Ft  external force vector on the element 

x   unknown position vector 

K∞(ε)ELEMENT element stiffness function 

K∞(ε)OPTIMUM optimum element stiffness function 

FSDN  force response of the sdn mesh model 

FLUMPED force response of the lumped model 

FREFERENCE reference force response of the lumped model 

FPL  peak force of the lumped model  

FSSL  steady-state force of the lumped model 

TSSL  steady-state time of the lumped model 

FPM  peak force of the mesh model  

FSSM  steady-state force of the mesh model 

TSSM  steady-state time of the mesh model 

FPE  relative error between peak forces of the lumped and mesh models  

FSSE relative error between steady-state forces of the lumped and mesh models 

TSSE  relative error between steady-state times of the lumped and mesh models 



 
Chapter 1: Introduction  1 
 

 
 
 
 
 

 

 

Chapter 1  
 

INTRODUCTION 

 

Simulation-based training using Virtual Reality (VR) techniques is a promising 

alternative to traditional training in minimally invasive surgery. Surgical simulators let the 

trainee touch, feel, and manipulate virtual tissues and organs through the same surgical tool 

handles used in actual minimally invasive surgery while viewing images of tool-tissue 

interactions on a monitor as in real laparoscopic procedures. Developing realistic organ-

force models for simulating soft-tissue behavior is an integral part of a surgical simulator.  

The current physically-based approaches for developing organ-force models in 

surgery simulation literature can be classified as mesh-based and mesh-free methods. 

Mesh-based methods consider the deformable object as a continuum and are generally 

more accurate than the mesh-free techniques. One of the most widely used mesh-based 

methods in surgery simulation is the Finite Element Method (FEM). One advantage of 

FEM is that only a few material parameters are required to describe the response of a 

physical system and it is straightforward to integrate the experimentally determined 

material parameters into the system. On the other hand, FEM has a heavy computational 

load and the computational complexity usually increases quadratically with the quality of 

the underlying mesh. Moreover, if a procedure like cutting is to be simulated where the 

topology of the object is modified, element mass and stiffness matrices must be 

recalculated and reassembled during the simulation, which is computationally intensive. 

Mesh-free methods, on the other hand, utilize cloud of points only for deformation and 

force computations, and do not make any assumptions about the underlying geometry. The 
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particle system approach is a widely used mesh-free method in surgical simulation. This 

technique provides a better solution to the topological changes encountered in simulation of 

surgical cutting and tearing. In addition, they are computationally less expensive and easier 

to implement than the mesh-based methods. However, the material coefficients of each 

individual mesh element should be calculated and fine-tuned to describe the response of a 

physical system. Therefore, the integration of realistic tissue properties into particle models 

is not trivial.  

This thesis presents an end-to-end solution to realistic particle-based simulation of 

nonlinear viscoelastic tissue behavior based on the experimental data collected by a robotic 

indenter. First, the strain-dependent nonlinear elastic response and time-dependent 

viscoelastic response of a tissue-like silicon phantom is measured via static loading and 

stress relaxation experiments performed by a robotic indenter. The collected experimental 

data is used to construct a lumped model of the tissue phantom represented by a nonlinear 

viscoelastic Maxwell Solid. Then, a 3-dimensional particle-based network is developed to 

mimic the behavior of the lumped Maxwell model. The material coefficients of the 

individual Maxwell elements connecting the particles are successfully estimated through a 

set of novel optimization algorithms. 

The following chapter introduces the concepts of virtual reality-based surgical 

simulation for minimally invasive surgery. It presents the development steps of a surgical 

simulator and provides a detailed literature review for each step. The chapter is a modified 

version of our survey paper [1]. Chapter 3 introduces the fundamental concepts of solid 

mechanics. An introduction to viscoelasticity and hyperelasticity is given, and 

mathematical models for linear and nonlinear viscoelasticity are presented. Chapter 4 is 

related to the measurement and characterization of nonlinear viscoelastic material 

properties of a cylindrical tissue phantom. It first gives the design details of a robotic 

indenter that is originally developed for measuring soft tissue material properties of pig 
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liver during a minimally invasive surgery [2, 5]. Then, the chapter presents the results of 

material characterization experiments performed on a tissue-like silicon phantom using the 

indenter. For characterization, first, a lumped model of the silicon sample is constructed 

using Maxwell Solid with N=1 and N=2 and then the nonlinear and viscoelastic material 

coefficients of the model are determined using curve fitting. In Chapter 5, a particle-based 

spring-damper network (SDN) composed of nonlinear viscoelastic Maxwell Solids with 

N=1 is developed such that its behavior mimics the behavior of the lumped model. For this 

purpose, novel optimization algorithms are developed to estimate the material properties of 

the individual elements in the mesh. In Chapter 6, the thesis is concluded with a summary 

of the performed work and future research directions. 
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Chapter 2  
 

VIRTUAL REALITY BASED SIMULATORS 

for 

TRAINING in MINIMALLY INVASIVE SURGERY 

 

 Throughout medical history, the training paradigm for surgeons has not changed 

substantially. Traditionally, surgical training has followed the apprenticeship model: 

Novice surgeons receive their training over time in small groups of peers and superiors in 

the course of patient care. The operating room (OR) and the patient comprise the most 

common, the most readily available, and often the only setting where hands-on training 

takes place. Novice surgeons acquire skills by observing experienced surgeons in action 

and then progressively performing additional surgical procedures under varying degrees of 

supervision as their training advances and skill levels increase. This so-called “see one, do 

one, teach one” paradigm has proved reasonably effective for more than 2,500 years. 

 Recently, however, experts, physicians, and the public are examining this training 

model and questioning its efficiency. According to “To Err is Human,” a 1999 report from 

the Institute of Medicine of the National Academy of Sciences, more people die from 

medical mistakes each year than from highway accidents, breast cancer, or AIDS. In 

addition to this devastating human cost, the financial burden is significant. Among the 

main reasons cited for this situation are the inexperience of beginners, as well as the 

inexperience of experts with new techniques and rare medical situations. One of the major 

shortfalls identified in the report is medical education and training. 
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 In particular, minimally invasive surgery (MIS) is a revolutionary surgical 

technique that poses an immediate need for improved training methods. Physicians have 

used MIS in various procedures since the early 1960s. This technology involves a small 

video camera and a few customized surgical instruments [6]. The surgeon inserts the 

camera and instruments into the body through small skin incisions or natural orifices to 

explore internal cavities without making large openings. For patients, MIS’s major 

advantages over conventional surgery are a shorter hospital stay, a quicker return to 

activities, and less pain and scarring. Some common MIS procedures are laparoscopic 

cholecystectomy (gallbladder removal), appendectomy, and hernia repair. Using minimally 

invasive techniques is a trend in other procedures as well. We can predict that as 

instruments get smaller and thus easier for surgeons to handle, new minimally invasive 

techniques will develop. 

 In spite of the advantages of MIS over traditional surgery, surgeons are still 

handicapped by the current technology’s limitations, which pose four problems in the OR: 

 

• Visualization of internal organs achieved with a wide-angle camera is monoscopic 

and limited by the camera’s field of view. 

• Hand-eye coordination is difficult because surgeons must move the tool around a 

pivot point, thus inverting the direction of movement inside and outside the body. 

Moreover, the location of the displayed image is not the actual manipulation site. 

• Surgeons receive limited haptic (tactile sensing and force feedback) cues because 

they must interact with internal organs by means of surgical instruments attached to 

long, thin tubes. 

• The instruments rotate about a fixed entrance point, making it impossible for the 

surgeon to perform direct translational movements while interacting with organs. 
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 Although the importance of MIS training is widely acknowledged, there is no 

consensus on the most effective training method. OR time is an expensive and limited 

resource to use for training surgeons. Many leading academic institutions in the United 

States and Europe have established training centers with facilities for practicing surgical 

techniques on both inanimate and animate models. Box trainers, for instance, are inanimate 

models equipped with real surgical instruments, endoscopic cameras, and plastic tissue 

models. They provide the trainee with an environment similar to actual surgery settings. 

However, simulated surgical procedures are usually poor imitations of actual ones. It is not 

easy to customize these training systems to the trainee’s needs. Moreover, it is not easy to 

measure the trainee’s performance with these systems. 

 Currently, the most realistic training model available is animals. This model is 

dynamic and approaches real operative conditions. Animal tissues, although not always of 

the same consistency as human tissues, respond similarly to applied forces. Using animals 

for training, however, is expensive and controversial. It requires expensive, dedicated 

facilities, including care and housing of the animals. Only a few trainees (often only one) 

can practice on the same animal and for only a limited number of times. (The expensive 

training session generally ends with euthanizing the animal.) Additionally, animal 

anatomies are different from human anatomies, and ethical issues surround the use of 

animals for training. Finally, with animal models, quantitative measurement of a trainee’s 

performance is not straightforward, and evaluation (performed by the instructor) is often 

subjective. 

 With either inanimate or animate models, conventional MIS training methodologies 

suffer from the same main drawbacks: the need for an instructor or supervisor, nonstandard 

feedback methods, and subjective performance evaluation methods. Hence, new training 

approaches and devices to reduce the risks and constraints of surgical procedures are 

necessary. To meet this need, VR-based surgical simulators that give the surgeon visual 
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and haptic cues promise to be powerful aids for training medical personnel and monitoring 

their performance [6]. Computer-based simulation can revolutionize medical education and 

augment training by quantifying performance and progress, standardizing training regimens 

independent of patient population, and exposing trainees to unusual cases [7, 8, 9]. 

Integrating VR-based simulators in medical training would result in better-trained 

physicians, reducing the likelihood of error and improving patient outcome. Figure 2.1 

shows a typical VR-based surgical simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1: Components of a typical minimally invasive surgery simulator (the Simbionix 

LAP Mentor laparoscopic surgery simulator) include a visual display and surgical 

instruments fitted with haptic devices for force feedback [1] 
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 Developing a VR-based MIS simulator requires expertise in systems engineering, 

materials engineering, robotics engineering, computer science, biomedical engineering, and 

medicine. As Figure 2.2 shows, simulator development involves six steps. First, the 

developers use segmentation and reconstruction techniques of computer vision and 

computer graphics to generate 3D anatomical models of organs from medical images. 

Second, they measure and characterize the material properties of soft tissues and integrate 

these properties in organ-force models. Next, they develop collision detection and response 

techniques to simulate the real-time interactions of simulated surgical instruments and 

manipulated organs. Then, they integrate the simulator’s hardware and software 

components to form a complete system. Finally, they validate the system and measure 

training transfer through user studies. The following sections explain each step in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2: Simulator development steps for minimally invasive surgery [1] 
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2.1 Anatomical Model and Training-Scene Generation 

 

 Medical applications use various imaging modalities. Anatomical imaging 

techniques include computed tomography (CT), magnetic resonance imaging (MRI), and 

ultrasound. Functional techniques include single photon emission computed tomography 

(Spect), positron emission tomography (PET), and functional MRI. For generating 

anatomical models, anatomical techniques play the key role – mainly CT and MRI, which 

provide sufficient resolution. Today’s CT scanners, which integrate 64 detector rows, 

provide nearly isotropic voxels of approximately 0.4 mm. MRI devices provide a spatial 

resolution of about 1 mm in each direction. Besides different spatial resolutions, the main 

difference between CT and MRI is their ability to distinguish different tissues types. CT 

makes it easy to see bone structures, whereas MRI provides superior soft tissue contrast. In 

recent years, the use of CT for virtual colonoscopy and bronchoscopy has gained 

importance. These techniques supplement or even replace endoscopic procedures by 

employing a patient model derived from CT data and displayed with the help of volume-

rendering techniques without any preprocessing. Ultrasound, although widely available and 

inexpensive, suffers from a lower imaging quality than CT and MRI and is therefore not 

appropriate for anatomical modeling. 

 The National Library of Medicine’s Visible Human (Man and Woman) data sets 

have become standard sources of medical image scans of the human body. Because of their 

high resolution and good image quality, several projects have used them for highly accurate 

anatomical models. 

 To build 3D models of organs from image data, developers of surgical simulators  

use either surface or volumetric elements. Surface models represent the external border of 

the organs. Generating surface models requires extraction of the structure’s outer surface, 
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using segmentation algorithms that provide the outer contour. Figure 2.3 shows an example 

of the segmentation and generation of a 3D surface model. 

 

 

 

 

 

 

 

 

Figure 2. 3: (a) A set of 2D medical images of the abdomen is segmented via filtering 

techniques for identifying different tissue regions, lesions, and pathologies. (b) Segmented 

contours in each image are combined to create a 3D surface model of the organ—the liver 

in this example. (c) Texture mapping over the surface gives the model a more realistic 

appearance [1] 

  

The segmentation approaches often used for anatomical modeling are simple 

classification schemes such as thresholding and region growing. These techniques extract 

isocontours that serve as input to the marching cubes algorithm, which creates a polygonal 

representation of the structure’s surface. Another way to extract organ surfaces is to use 

active contour models, also known as snakes. This technique obtains a contour by adjusting 

splines that fit the structure’s outer surface, using a physical description of the image data’s 

external and internal forces. Applying the contour found in one 2D slice to the next 

neighboring slice starts a contour that is gradually refined. This process, called boundary 

tracking, delivers the organ’s 3D contour and thus its surface representation. 

a) b) c)
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 An advantage of generating surface models from CT and MRI scans is the 

reduction in data size. . Also, we can display the triangulated meshes created by this 

method using the hardware acceleration available from modern graphics boards. 

 An alternative to surface modeling and surface data visualization is direct volume 

rendering. Ray casting, a classical volume-rendering technique, provides high-resolution 

visualization but is rather slow. 

 Several commercial and free software packages are available for 3D reconstruction 

from medical images, but most are semiautomated and often require labor- and time-

intensive segmentation. Amira1, Analyze2, IDL3, Image-Pro4, and MEDx5  are commercial 

packages for medical and other scientific image data visualization and manipulation, 

anatomical structure extraction, and surface and tetrahedral model generation. The 

Visualization Toolkit6  is a free, open-source image data visualization package with 

contour extraction and mesh generation algorithms. Another free volume visualization 

system is VolVis7. Mesh generation and manipulation packages developed at academic 

institutions include TetGen8  and SUMAA3d9. 

 For a realistic visualization of reconstructed organ models, system developers map 

textures to the models’ surfaces. This process involves generating realistic textures and 

obtaining appropriate texture coordinates. The most basic method of creating organ 

textures is direct texture painting, which usually requires a medical illustrator to manually 

draw the texture with appropriate tools. Another way to obtain textures for medical images 

is to map real volumetric data to surfaces. K.D. Reinig et al. [10] use the Visible Human 
                                                 
1 http://www.amiravis.com 
2 http://www.mayo.edu/bir/Software/Analyze/Analyze.html 
3 http://www.ittvis.com/idl/ 
4 http://www.mediacy.com/ 
5 http://medx.sensor.com/products/medx/index.html 
6 http://www.vtk.org 
7 http://www.cs.sunysb.edu/~vislab/volvis_home.html 
8 http://tetgen.berlios.de/ 
9 http://www-unix.mcs.anl.gov/sumaa3d 
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data set to obtain organ textures. Recently, Paget, Harders, and Szekely [11] introduced a 

fully automatic framework for generating variable textures. The first step in their approach 

is acquiring in vivo images to form a database. Next, a texture synthesis step creates 

tileable variable textures from the in vivo images. The final step is mapping the texture to 

the 3D mesh geometry. 

 

2.2 Soft Tissue Measurement and Characterization 

 

 A core component of a VR-based surgical simulation and training system is realistic 

organ-force models. Realistic organ-force models are virtual representations of soft tissues 

that display accurate displacement and force response. To develop these models, we must 

measure and characterize the material properties of organs in living condition and in their 

native locations. Models with incorrect material properties will result in adverse training 

effects. Measuring the material properties of soft organ tissues is highly challenging. Soft 

tissues exhibit complex, nonlinear, anisotropic, nonhomogeneous behavior. Moreover, the 

tissues are layered, and each layer consists of different materials in varying combinations. 

Because of this nonhomogeneity, soft tissues have both coordinate- and direction-

dependent properties. Time- and rate-dependent behavior caused by viscoelasticity is also 

common. 

 Various methods of measuring material properties of organ tissues have appeared in 

the literature. We categorize these methods in terms of the measurement site and the degree 

of tissue damage that occurs during measurement (Table 2.1). The two types of 

measurement sites are ex vivo and in vivo. In the past, most tissue experiments were ex 

vivo studies [12, 13, 14]. For ex vivo measurements, the tissue’s biological functioning has 

ceased; in other words, the tissue to be measured is dead. Ex vivo measurements can take 

place within the body (in situ) or outside the body (in vitro). For in vitro measurements, 
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researchers use standard materials-testing methods (tension or compression tests) under 

well-defined boundary conditions. Typically, they transfer tissue samples in a chemical 

solution to a laboratory for measurements. Because they carefully decide on sample 

geometry and experimental conditions in advance, they can easily obtain stress and strain 

values from the measurement data. However, dead organ and muscle tissues typically 

stiffen with time, leading to changes in mechanical properties, so the results of in vitro 

measurements can be misleading. Ottensmeyer et al. [15] show that measurement 

environment of in-vitro studies does not represent the actual tissue conditions. Therefore, 

recent research has focused on in vivo, in situ measurement of soft tissues’ mechanical 

properties [2, 5, 12, 13, 16, 17, 18]. 

 Soft-tissue measurement methods incur three levels of tissue damage: invasive, 

noninvasive, and minimally invasive. In invasive methods, measurement instruments enter 

the body through a puncture or an incision. Because large openings allow easy insertion of 

test apparatus into the body, scientists have performed many measurements invasively [16, 

17, 19]. However, the experimental devices and procedures used for invasive 

measurements typically don’t match the actual surgical devices and procedures used during 

MIS. In addition, the invasive approach is unacceptable for conducting human experiments. 
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Table 2. 1: Classification of tissue measurement techniques 

 

 In contrast, noninvasive tissue measurements require no incisions. Noninvasive 

approaches include CT, MRI, and ultrasound [20, 21, 22, 23]. Most of these approaches 

can measure only linear material properties [13], but soft organ tissues exhibit nonlinear 

material characteristics as well. 

 Minimally invasive methods require small incisions, causing much less tissue 

damage than the invasive method does. A few research groups have recently conducted 

minimally invasive animal and human experiments to characterize nonlinear and time-

dependent material properties of soft tissues [2, 5, 12, 13, 18]. A challenge of this approach 

is characterizing the measured properties. Determining unknown material properties from 

the measured system response requires formulating an inverse solution. For this purpose, 

scientists typically construct a finite-element model of the soft tissue and use it with an 

optimization method to iteratively match the experimental data to the numerical solution 

[12, 14]. 

 

in-situ in-vitro

Measurement Site 

Tissue 
Damage 

Non-invasive 
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•Brown, et al. [18]
•Ottensmeyer [13]
•Samur, et al.[2, 5]
•Kauer [12]

Invasive 
•Brouwer, et al. [19]
•Hu and Desai [58]
•Valtorta and Mazza [59] 

•Carter, et al. [16]
•Tay, et al. [17] & Kim [14]
•Brouwer, et al. [19]

Machine-operated electro-mechanical device

Human-operated electro-mechanical device

Medical imaging technique

•Gao et al. [20]
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•Manduca et al. [22]
•Han et al. [23]
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2.3 Physics-Based Modeling 

 

 Developing realistic organ-force models for simulating soft-tissue behavior requires 

a system that reflects stable forces to the user, displays realistic smooth deformations in 

real time, and handles various boundary conditions and constraints [6]. The material 

properties and structure of organ tissues mentioned earlier make developing real-time, 

realistic organ-force models challenging. In addition, surgical-tool and soft-tissue 

interactions cause dynamic effects and contact between organs, which are difficult to 

simulate in real time. Furthermore, simulating surgical operations such as cutting and  

coagulation requires updating the organ’s geometric database frequently and can cause 

force singularities in the physics-based model at the boundaries. 

 We classify current physics-based approaches for developing organ-force models as 

mesh free and mesh based. Mesh-free methods use point clouds (vertices) only for 

deformation and force computations and make no assumptions about the underlying 

geometry. Most mesh-based methods consider the deformable object a continuum and are 

generally more accurate than mesh-free techniques. However, mesh-free techniques 

provide a better solution to topological changes encountered in simulating surgical cutting 

and tearing. In addition, they are computationally less expensive and easier to implement 

than mesh-based methods. 

 

2.3.1 Mesh-based Methods 

 

 One of the most widely used mesh-based methods is the finite-element method 

(FEM) [3, 4, 24, 25, 26, 27]. FEM solves the deformation problem by considering the 

organ a continuous body that is trying to minimize its potential energy under the influence 

of external forces. To implement this method, we divide the geometric model of an organ 
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into surface or volumetric elements, formulate each element’s properties, and combine the 

elements to compute the organ’s deformation states under the forces applied by the surgical 

instruments [6]. A major advantage of FEM is that it uses continuum mechanics and has a 

solid mathematical foundation. On the basis of the partial differential equations and the 

constitutive relation used, FEM can accurately approximate static and dynamic 

deformations of an object with linear and nonlinear material properties [3]. Another 

advantage is that FEM requires only a few material parameters to describe a physical 

system’s response. 

 However, FEM also has some drawbacks. It has a heavy computational load, and its 

computational complexity usually increases quadratically with the underlying mesh’s 

quality. Moreover, while simulating a procedure such as cutting, in which the object’s 

topology is modified, we must recalculate and reassemble element mass and stiffness 

matrices, which is computationally intensive. Precomputation and condensation have been 

suggested as remedies to these problems [25]. 

 Another mesh-based method based on continuum mechanics is the boundary 

element method (BEM). BEM discretizes an object’s surface or boundary into elements 

and patches and relies on surface integral equations to calculate displacements at the 

boundary [28]. On the assumption of linear elasticity, BEM computes small deformations 

accurately. Extending this approach to large deformation analysis is not straightforward. 

Another drawback is that direct solution of BEM is computationally too expensive to 

execute in real time. Yet, precomputation and superposition make it possible to execute a 

linear deformable model at haptic update rates [28] BEM can model changes in topology 

resulting from procedures such as cutting by using iterative solvers that update 

precomputed data to approximate the modified topology. 

 The long-element method (LEM) is another mesh-based approach. It is based on 

Hooke’s law, Pascal’s principle, and volume conservation as the boundary condition [29] 
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LEM discretizes the object into a set of two-dimensional long elements filled with an 

incompressible fluid. During deformation computation, these elements reach equilibrium 

under the effect of bulk variables including pressure, density, volume, and stress. One 

advantage of LEM is that the parameters such as pressure, density, and volume are easy to 

identify. The elements filled with an incompressible fluid can represent nonhomogeneous 

material properties. Because the method intrinsically preserves volume, it supports 

topological changes such as cutting. On the other hand, LEM produces accurate results for 

small deformations only. It yields inconsistent results for large deformations. The element 

deformations must be reevaluated when the object undergoes large deformations, a 

bottleneck for real-time performance. 

 The tensor-mass model (TMM) is also a mesh-based approach. Its methodology lies 

between the continuum mechanics and particle-based approaches. Cotin, Delingette, and 

Ayache [30] developed TMM as a continuum model based on linear elasticity. The model 

discretizes the object into tetrahedrons, and the tensors are stored at the edges of the 

tetrahedrons. Like particle-based approaches, the object’s mass is stored in the nodes of the 

tetrahedrons as lumped mass points. However, unlike particle-based approaches, TMM 

computes deformation and force through energy-based continuum mechanics, and the 

computations are independent of mesh topology. One of TMM’s main advantages is that 

the model can handle topological modifications; hence, we can use it to simulate tissue 

cutting and tearing. In addition, TMM’s time complexity is linear and lower than that of the 

standard FEM approach. The initially proposed TMM approach could simulate small 

deformations only. Later, Picinbono, Delingette, and Ayache [31] extended TMM to 

simulate large deformations as well. 
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2.3.2 Mesh-free Methods 

 

 The particle system approach, also called the mass-spring model (MSM), is a 

widely used mesh-free method in surgical simulation [24, 32, 36, 60, 61, 62, 63, 64]. This 

approach models the object as point masses connected to each other with springs and 

dampers [6]. Each point mass is represented by its own position, velocity, and acceleration 

and moves under the influence of inertial and damping forces and the forces applied by the 

surgical instrument. This technique is relatively easy to implement because the motion 

equations need not be constructed explicitly. Hence, the technique’s computational 

complexity allows real-time simulation. However, the integration of realistic tissue 

properties into particle models is not trivial. In addition, the resulting physical behavior 

depends on the point masses’ connectivity. The construction of an optimal spring network 

in 3D is a complicated process, and MSM can become oscillatory or unstable under certain 

conditions. 

 The point-associated finite-field (PAFF) approach, also called the finite-spheres 

method, is a newer meshless FEM approach applied to surgical simulation [33]. This 

method, like TMM, resides between the continuum mechanics and particle-based 

approaches. Like MSM, it is a point-based approach, using only the nodes of a 3D object 

for the displacement and force calculations. PAFF approximates the displacement field by 

using nonzero functions over small spherical neighborhoods of nodes. Like FEM, this 

technique uses a Galerkin formulation to generate the discretized versions of the partial 

differential equations governing the deformable medium’s behavior. PAFF supports 

simulation of large deformations as well as topology modifications such as cutting. PAFF 

can also be used to simulate other procedures involving particles, such as smoke generation 

during cauterization. Although the technique’s brute-force implementation is 

computationally intensive, users can generate localized solutions in real time [33]. 
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2.4 Simulating Tool-Tissue Interactions 

 

 Simulating interactions between surgical tools and soft tissues involves graphical 

rendering of computer-generated models of surgical instruments, detecting collisions 

between instruments and deformable organ models, and haptic rendering of the collision 

response in the procedure to be simulated [6]. 

 We classify MIS tools on the basis of their functionality: 

 

• long, thin, straight tools for palpation, puncture, and injection (for example, 

palpation probes and puncture and injection needles) and 

• articulated tools for grasping, pulling, clamping, cutting, and coagulating (biopsy 

and punch forceps, grasping forceps, hook scissors, and coagulation hooks). 

 

 For realistic visual display during simulations, we render 3D graphical models of 

surgical tools in exact dimensions and shape using several polygons. But we typically 

assume that the models consist of a set of geometric primitives such as points or connected 

line segments for fast detection of collisions between instruments and organs in real time. 

Collision detection algorithms developed in computer graphics cannot be used directly in 

rendering force interactions between instruments and organs. Nevertheless, to achieve real-

time update rates, haptic rendering algorithms can take advantage of computer graphics 

rendering techniques: 

 

• space partitioning (partitioning the space that encloses an object into smaller 

subspaces for faster detection of the first contact), 

• local search (searching only the neighboring primitives for possible new contacts), 

and 
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• hierarchical data structures (constructing hierarchical links between primitives 

constituting the object for faster access to the contacted primitive). 
 

 In point-based haptic interactions of surgical instruments with organs, only the 

instrument’s end point interacts with virtual organs. Each time the user moves the surgical 

instrument fitted with haptic devices in physical space, the collision detection algorithm 

checks whether the end point is inside the virtual organ. This approach provides users with 

similar force feedback as they would feel when exploring organs in real surgery settings 

with the tip of an instrument only. However, actual MIS instruments have long, slender 

bodies, so point-based rendering methods are not sufficient to render realistic tool-tissue 

interactions. 

 In ray-based haptic interaction models, the probe is a finite line segment whose 

orientation the detection algorithm takes into account while checking for collisions 

between the line segment and the objects. This technique has several advantages over 

point-based rendering. In addition to displaying forces, users can feel torques if they are 

using an appropriate haptic device, which is not possible with point-based approaches. For 

example, they can feel the coupling  moments generated by contact forces at the instrument 

tip and the forces at a trocar’s pivot point. Second, users can detect side collisions between 

the simulated tool and 3D organ models. Third, users can render multiple tissue layers by 

virtually extending the ray representing the simulated surgical probe to detect collisions 

with an organ’s internal layers. Finally, they can touch and feel multiple objects 

simultaneously. 

 Once the algorithm detects contact between an instrument and tissue, the  tool-

tissue interaction problem centers on collision response. This involves a realistic graphical 

and haptic display of tissue behavior according to instrument type and the surgical task the 

user chooses to perform. Tissue deformation is the most generic collision response. 

Simulation of basic surgery skills such as palpating, grasping, stretching, translocating, and 
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clip applying mainly involves tissue deformation. Simulation of surgical cutting such as 

transsection, dissection, and coagulation fall into a different category, in which tool-tissue 

interactions modify the geometry and the underlying model. Figure 2.4 shows several of 

these simulated interactions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4:  Typical simulations of MIS tasks: basic (first row) and advanced skills 

(second row) [1] 

 

 Realistic graphical and haptic simulation of cutting is a requirement in any surgical 

simulator. Research in this area has focused mainly on the graphical display of cut and 

tissue separation, but some recent studies report the development of mechanistic models for 

displaying forces during cutting. Cutting approaches for graphical simulation include 

straightforward element deletion, mesh subdivision, and topology adaptation. 

 Cotin, Delingette, and Ayache [30] have applied straightforward deletion of mesh 

entities to remove the elements contacted by a cutting tool. Unfortunately, this method 

leads to visual artifacts because it cannot approximate the cutting path accurately. 
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Achieving acceptable visual quality would require very high resolution meshes. Moreover, 

the method violates the physical principle of mass conservation. 

 Mesh subdivision methods have produced better visual representations of incisions. 

Bielser et al. [34] discuss the use of a state machine to keep track of incisions in tetrahedral 

meshes. All the described mesh subdivision approaches considerably increase the element 

count. Moreover, introducing new mesh elements often necessitates extensive model 

recalculations – for instance, in using implicit FEM. Another negative factor is reduction in 

element size. Researchers have also reported deformation stability problems in the 

simulation of tissue cutting. This required a significant reduction of the time step, thus 

rendering real-time simulation intractable. Finally, Molino, Bao, and Fedkiw [35] report on 

work in which they decoupled the simulation and visualization domains. Their virtual node 

algorithm copies nodes and elements so that no new elements are created. Elements are 

decomposed only in the visualization domain. A tetrahedron cannot be cut more than three 

times, however, and the surface resolution depends on the resolution of the underlying 

tetrahedral mesh. 

 Topology adaptation approaches can ameliorate some of the problems [36, 37]. 

Their central idea is to approximate a cutting path with existing vertices, edges, and 

polygons of the geometric model. This enables mesh incisions without large increases in 

element count and also without reductions in element size. Unfortunately, problems arise 

from degenerated elements, which can appear with unconditional node displacement in the 

mesh. Also, the initial mesh resolution limits incision approximation quality. In addition, 

topology adaptation approaches require an update of the undeformed mechanical model’s 

mesh parameters, which can be difficult if the displacements are large. Steinemann et al. 

[38] recently proposed a hybrid cutting approach for tetrahedral meshes. It combines 

topological update via subdivision with adjustments of the existing topology. In addition, 

after the initial cut, local mesh regularization improves element quality. Moreover, the 
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mechanical and the visual models are decoupled, allowing different resolutions for the 

underlying mesh representations. This method can closely approximate an arbitrary, user-

defined cut surface, while avoiding the creation of small or badly shaped elements, thus 

preventing stability problems in the subsequent deformation computation. 

 In addition to graphical rendering, cutting simulation research involves the 

development of a mechanistic model of the cut for realistic force feedback to the user. Most 

of these models are based on experimental data collected from tissue samples, 

Chanthasopeephan, Desai, and Lau [39] developed an instrumented hardware-software 

system for characterization of soft tissue’s mechanical response during cutting. They 

performed ex vivo cutting experiments with porcine liver using various cutting speeds and 

angles. They showed that although force displacement behavior for different combinations 

of cutting speed and angle has a characteristic pattern (loading, then a sudden puncture, 

then unloading), deformation resistance changes with the instrument’s speed and angle. 

Mahvash and Hayward [40] developed a cutting model based on a fracture mechanics 

approach. They model cutting in three steps: deformation, tearing, and cutting. Their model 

assumes that energy is recoverable during deformation, it is zero during tearing, and it is 

not recoverable during fracture generation. 

 In tissue cutting during MIS, smoke and bleeding can occur – for example, when a 

coagulation hook tears apart the membrane tissue around organs. A coagulation simulation 

requires realistic smoke generation in real time. Kuhnapfel, Cakmak, and Maab [24] use 

animation techniques to simulate smoke generation and fading away of the generated 

smoke after coagulation. They integrate this approach in their MIS training environment 

Kismet. De et al. [33] simulate smoke generation using the PAFF method, which they 

developed for simulating deformable objects. They use the Lagrangian form of the Navier-

Stokes formulation as the governing equation to simulate smoke formation. Like smoke 

simulation, real-time simulation of bleeding is a recent surgical simulation research area. 
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Basdogan, Ho, and Srinivasan [36] developed a surface flow algorithm based on Navier-

Stokes equations for bleeding simulation. They generate an auxiliary mesh for the blood 

flow and project it to the incision area. Kuhnapfel, Cakmak, and Maab [24] developed a 

mass-spring model for simulation of arterial bleeding, irrigation, and suction. Zatonyi et al. 

[41] introduce a real-time approach based on computational fluid dynamics for simulating 

blood flow in the fluid-filled uterine cavity during hysteroscopy. 

 Advanced surgical skills such as suturing, thread handling, and knot tying show 

similarities to cutting in many ways. Brown et al. [32] implemented a suturing simulation 

environment for training in microsurgical skills. The user manipulates virtual blood 

vessels, sutures them together, and then ties the knot. MSM is the underlying deformation 

model for the vessels. Berkley et al. [27] simulate suturing and knot tying in real time on a 

3D model of a hand. They use the banded-matrix approach, a fast finite-element modeling 

technique developed for real-time deformation simulation, as the underlying deformation 

model. During simulation, they visually display the highly stressed areas on the hand 

model to prevent the user from damaging the tissue during needle interactions. 

 

2.5 System Integration 

 

 A VR-based surgical simulator is actually a human-computer interface consisting of 

a network of high-end hardware and software components. Providing a realistic training 

environment in which trainees act as if they are operating on an actual patient is the 

simulator’s essential goal. Selection and design of simulator components depend on the 

type of training the simulator will serve. 

 A part-task trainer is a simulator system that is designed to train a particular 

surgical task. A part-task trainer’s hardware components typically include a computer with 

a 3D graphics accelerator for visualization of virtual organs, force feedback devices to 
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simulate haptic sensations, and auditory interfaces to guide the trainee. Force-reflecting 

devices and actuators fitted with surgical tool handles are embedded in a mannequin in a 

manner similar to standard MIS settings where surgical tools are inserted to the body 

through small incisions. During simulations, the user manipulates actual surgical 

instruments attached to the force feedback devices in the mannequin to interact with 

computer-generated anatomical organs. The computer monitor displays the organ 

manipulations (as the video monitor would do in MIS), and the haptic interfaces feed the 

reaction forces back to the user. Using this set-up, a trainee can learn to execute a specific 

procedure. The part-task trainer can monitor and record the trainee’s performance during 

the session for further analysis. 

 A full-task (team) trainer is designed to train one or more trainees at the same time 

on a full range of surgical operations in a simulated OR. Compared with part-task trainers, 

full-task trainers require a larger space and enriched sensory feedback to simulate the OR 

environment. Sensors and mechanical actuators (such as mechanical lungs, voice output, 

and drug delivery systems) sensitive to the trainee’s actions are placed in the mannequin 

and around the table to create a realistic OR environment for team training. We can 

envision a more sophisticated team trainer in which multiple trainees equipped with stereo 

glasses, head trackers, and exoskeleton haptic devices enter an immersive room such as 

CAVE, a projection-based VR system, which provides a large-scale virtual environment. 

Visual images seamlessly projected on the walls would display a 3D anatomical model, 

information charts, and a floating virtual patient’s vital signs. 

 Integrating a part-task trainer’s software components typically requires the 

construction of hierarchical data structures for storing objects’ geometric and material 

properties, a client-server model, and multithreading and multiprocessing programming 

techniques to separate visual and haptic servo loops. Each sensory loop has its own 

requirements and demands a CPU time accordingly. Although a graphics update rate of 30 
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Hz is sufficient for the human sensory system to perceive a flawless display of visual 

images, the human sensory system is far more sensitive to the haptic update rate. For a 

realistic sense of touch and stable force interactions, the haptic update rate should be as 

high as 1 kHz. Moreover, displaying surface textures and vibrations requires even more 

demanding rates: 5 to 10 kHz. 

 In a multithreading structure, a separate thread can be assigned to each sensory 

modality, and a priority level for each thread can be set in advance or dynamically during 

simulations. Threads can share the same database, but their proper synchronization in 

accessing the shared database is important for achieving real-time graphical- and haptic-

rendering update rates. However, there is always a trade-off between realism and real-time 

performance. For example, as tissue models get more sophisticated, update rates can easily 

drop below acceptable levels. To achieve real-time update rates, adaptive subdivision 

techniques can progressively increase the model’s resolution. 

 To simulate procedures that require topological modifications (such as cutting), we 

can decouple visual and haptic models or implement hybrid approaches. For example, we 

can use more accurate but computationally more demanding deformation models such as 

FEM for areas where topology is preserved. At the same time, to model cutting, we can use 

less accurate approaches such as MSM, TMM, or PAFF, which allow easier topology 

changes [30, 38]. In addition to being efficient, the simulator should provide realistic visual 

images. Instead of standard, static texture-mapping techniques, we can use view-dependent 

texture-mapping techniques to simulate the complex glistening effect of the movements of 

the endoscopic-camera light. 

 Another issue in system integration is standardization of software architectures and 

languages that bind the various simulator components efficiently. Although many 

languages and formats exist for geometric representation of 3D objects, there are no 

standards for representation of physics-based deformable objects. Because there are 
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different approaches to modeling the behavior of deformable organs, and material 

properties must be integrated uniformly in these models, the need for a generic modeling 

architecture is obvious. Recently, Chabanas and Promayon [42] have presented the idea of 

developing a standard language called Physical Model Language (PML), based on 

Extensive Markup Language (XML), for unified representation of continuous and discrete 

deformable models for surgical simulation. Cavusoglu, Goktekin, and Tendick [43] have 

developed the General Interactive Physical Simulation Interface (GiPSi), an open-source 

and open-architecture software development framework for surgical simulation. GiPSi 

provides a shared development environment and a standard API to ensure modularity. With 

GiPSi, users can generate scenarios in which they can simulate different organs with 

different deformation models. A related endeavor is the Simulation Open Framework 

Architecture (SOFA) project, a concerted activity of several groups involved in surgical 

simulation. It targets an extendible, open-source framework for easy exchange of 

algorithmic blocks between research groups. 

 Currently, many research institutions are developing simulators, and several 

medical simulation companies are offering integrated commercial systems. Leskovsky, 

Harders, and Szekely [44] provide an overview of existing simulator systems developed in 

academia. Table 2.2 lists current commercial MIS part-task simulators. Whereas some 

companies offer a complete system consisting of customized software and hardware 

modules, others develop only software solutions, often in partnership with companies that 

provide the supplementary hardware interface. Basic-skills simulators aim at training in 

fundamental skills such as navigation, hand-eye coordination, and basic tool-tissue  
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Table 2. 2: Procedure and skill classification of commercial MIS part-task simulators. Blue: 

procedural simulator; red: basic-skills simulator; green: hardware interface with haptic 

feedback; purple: hardware interface without haptic feedback [1] 
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interactions. Procedure simulators, on the other hand, provide an environment for training 

in more complex surgical skills. The training scenarios provided by procedure systems vary 

from teaching complex tool-tissue interactions such as cutting and suturing to teaching a 

complete surgical procedure such as a laparoscopic cholecystectomy. 

 

2.6 Assessment, Validation and Training Transfer 

 

 Medical education focuses on knowledge-based and skill-based training. In 

knowledge-based training, trainees become familiar with surgical instruments and their 

functionality. They learn to find anatomical landmarks, to differentiate healthy and 

pathological organs through visual cues such as color and texture, and to track 

physiological changes such as heart rate and blood pressure. Training sessions guide them 

through the steps of surgical procedures such as cutting, suturing, and coagulation. Skill-

based training involves enhancement of the trainee’s visio-spatial, perceptual, and motor 

skills such as hand-eye coordination including depth perception, navigation, aiming, and 

manipulation. Hand-eye coordination is especially difficult in MIS because the 

laparoscopic camera reflects 2D mirror images of hand movements and locations of 

anatomical landmarks [6]. For good coordination, surgeons must use cues such as the sense 

of touch and the reflection of camera light from organs. Using the virtual counterparts of 

these cues in simulators, trainees can practice as much as necessary to develop good hand-

eye coordination. For example, during a laparoscopic training session, trainees learn to aim 

the laparoscopic forceps at a target and move the forceps in the abdominal cavity to learn 

the allowable range of applied movements, and manipulate organs to examine the 

allowable range of forces and torques applied by the forceps. In addition, an expert 

surgeon’s movements in a procedure can be recorded in advance and played back to the 

trainee through haptic devices [6]. If the trainee moves out of the expert surgeon’s 
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trajectory, force feedback can return the trainee to that path. Additional guidance from 

visual cues and auditory feedback strengthens the learning effect. 

 Concerns that simulators lack validity have adversely affected the adoption of this 

technology in medical training. Medical boards and councils’ growing interest in VR-based 

training has recently given rise to validation studies [8, 45]. Validation is the verification of 

training effectiveness. We can investigate a VR-based simulator’s validity, or training 

effectiveness, at several levels [9]. 

 Face validity is the level of resemblance between the simulated and real procedures. 

The factor contributing most to face validity is the fidelity of the organ-force models, as 

discussed earlier. 

 Content validity verifies that methods and metrics used for skill assessment are 

appropriate. 

 Construct validity examines whether the assessment methods can differentiate 

expert surgeons from novices. To compare novice and expert performance, we must define 

performance metrics. Unlike traditional medical training approaches, VR-based simulators 

can provide objective measurement and assessment of technical competence. In 

conventional methods, performance measurement and assessment depend on a supervisor’s 

qualitative, subjective evaluation. VR-based simulators, on the other hand, use quantitative, 

concrete metrics [8]. During a training session, the system can record movements and 

applied forces and then evaluate the trainee immediately using the performance metrics. 

Quantitative performance measures include 

 

• task completion time, 

• operational accuracy, 

• hand motion economy, 

• path length, 
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• work done by trainee (force times displacement), 

• number of tasks completed successfully, 

• amount of unnecessary tissue damage, and 

• excessive use of surgery material (for example, clamps during clip applying). 
 

Stylopoulos et al. [46] developed a standard assessment methodology that uses several of 

these measures. This methodology merges the recorded values to quantify overall 

performance by a single number after the training session. In addition, VR simulators can 

support proficiency evaluation by generating learning curves based on multiple training 

sessions. 

 Concurrent validity is the correlation between a trainee’s simulator performance 

and his or her OR performance. Finally, predictive validity is a prediction of the correlation 

between a trainee’s present simulator performance and his or her future OR performance. 

The concurrent and predictive validations are related to training transfer, also called VR-to-

OR proof, which refers to the success of simulator training in actual performance, or how 

well simulator training transfers to the real world [9]. 
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Chapter 3  
 

INTRODUCTION to SOLID MECHANICS 

 

Fung [47] has shown that mechanical properties of soft tissues do not meet the 

definition of an elastic body. Similar to some materials such as elastomers, and polymers, 

soft tissues can undergo large deformations, and hence exhibit highly nonlinear behavior. 

There are three major sources of nonlinear behavior: geometric nonlinearity, material 

nonlinearity, and boundary nonlinearity. The fact that the strain is a nonlinear function of 

the displacement is known as the geometric nonlinearity. The changes in the deformed 

shape are taken into account in the strain-displacement relation. In material nonlinearity, 

the constitutive equation (i.e. stress-strain relation) is no longer linear. Material behavior 

depends on current deformation state and possibly past history of the deformation which 

may give rise to very complex phenomena such as path dependence, and hysteresis [48]. 

For some materials, the curve of stress versus strain in dynamic loading is not elliptical, but 

has pointed ends; this behavior is a manifestation of material nonlinearity [49]. The loop is 

called a hysteresis loop which represents a lag between cause and effect. Material 

nonlinearity can be grouped into two classes. The first one is time-independent behavior 

including hyperelasticity and plasticity, and the second is time-dependent behavior such as 

viscoelasticity and viscoplasticity. The following sections give details of viscoelasticity and 

hyperelasticity, and nonlinear viscoelasticty. Finally, boundary nonlinearity arises from 

dependency of applied forces and displacements on deformation of structure. Contact is a 

typical example of nonlinear boundary condition. 
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3.1 Viscoelasticity 

  

 A viscoelastic material is a combination of the characteristic properties of liquids 

(viscous dissipative losses) and solids (storage of elastic energy) [50]. For a purely elastic 

material, all the energy stored in the sample during loading is returned when the load is 

removed. As a result, loading and response curves for elastic materials move completely in 

phase (Figure 3.1.a). A purely viscous material does not return the energy stored during 

loading (Figure 3.1.b). All the energy is lost as “pure damping” once the load is removed. 

These materials have only damping component and no stiffness component. Viscoelasticity 

is concerned with materials which exhibit both elastic and viscous behavior. Some of the 

energy stored in a viscoelastic system is recovered upon removal of the load, and the 

remainder is dissipated in the form of heat. Therefore, a phase difference occurs between 

loading and response curves (Figure 3.1.c) [51]. 

 

 

 

 

 

 

a)                                               b)                                                       c) 

Figure 3. 1: Cyclic loading and response curves for various materials: a) Elastic material, b) 

Viscous material, and c) Viscoelastic material [51] 

 

The mechanical properties of viscoelastic materials are characterized by performing simple 

laboratory tests. Once the properties are characterized, one can integrate them into 

mathematical models to model and simulate the characterized viscoelastic behavior. 
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3.1.1 Mechanical Characterization Experiments 

 

 Since time plays an important role in the behavior of viscoelastic materials, they are 

also called time-dependent materials. This time-dependency is explained by the phenomena 

of creep under constant stress and stress relaxation under constant strain. 

 

3.1.1.1 Creep 

 

 Creep is the deformation produced by the sudden application of a constant stress σ0 

applied at an initial moment of time t = 0. In general, the function of strain, ε(t), consists of 

three components: 

 

( ) ( ) ( ) ( )0 0 0 0
0

t, ,t t tε = ε σ + Ψ σ + σ
η σ       (3.1) 

 

where ε0 is the instantaneous deformation, Ψ is a function of the delayed deformation 

development, and η is a viscosity function [50]. If the creep experiment is being performed 

on a viscoelastic solid, the viscosity function becomes unlimitedly high and the last term in 

Equation 3.1 disappears: 

 

( ) ( ) ( )0 0 0, ,t t tε = ε σ + Ψ σ         (3.2) 

 

Equation 3.2 can also be written in the following form 

 

( ) ( ) ( ) ( )0I I ,
t

t t
η

= = σ + ψ σ
σ        (3.3) 
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where I(t) is compliance, I0 is the instantaneous compliance and ψ is the creep function. A 

viscoelastic solid is called linear viscoelastic if I0 and ψ do not depend on stress [50]. 

Otherwise, it is called hyperviscoelastic (i.e. nonlinear viscoelastic). Figure 3.2 presents the 

typical deformation behavior of a viscoelastic solid in a creep experiment. 

 

 

 

 

 

 

 

Figure 3. 2: Creep under constant stress 

 

3.1.1.2 Stress Relaxation 

 

 Changing the roles of σ and ε in the creep experiment, the stress relaxation 

experiment can be obtained in which the decaying stress response is monitored, which is 

produced by the sudden application of a constant strain ε 0 applied at an initial moment of 

time t = 0 (step input). The function of stress, σ(t), consists of two components [50]: 

 

( ) ( ) ( )0 0 0, Et t ∞σ = Φ ε + ε ε         (3.4) 

 

where Φ is the function representing the decay of stress and E∞ is the long term (final) 

elastic modulus. In case of a viscoelastic liquid, E∞ is zero. If the experiment is being 
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performed on a viscoelastic solid, then E∞ has a nonzero positive value. Dividing both sides 

of Equation 3.4 by ε 0 gives the elastic relaxation function: 

 

( ) ( ) ( ) ( )
0

E , E
t

t t ∞

σ
= = φ ε + ε

ε        (3.5) 

 

where φ is a function of stresses. A viscoelastic solid is called linear viscoelastic if φ and 

E∞ do not depend on the deformation [50]. Otherwise, it is called hyperviscoelastic. Figure 

3.3 presents the typical stress relaxation behavior of a viscoelastic solid under constant 

strain. 

 

 

 

 

 

 

Figure 3. 3: Stress relaxation under constant strain 

 

3.1.2 Mathematical Models for Linear Viscoelasticity 

 

 Viscoelastic materials somehow keep a record of their response history and they are 

said to possess memory. This memory can clearly be seen in the constitutive relationship 

between the stress and strain. As a result, mathematical models of viscoelastic behavior 

take the form of partial differential Volterra equation problems [52]. 
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        a)                                                               b) 

Figure 3. 4: a) Arbitrary strain input, and b) Boltzmann superposition principle 

 

 One way of deriving a constitutive relationship for linear viscoelastic materials is to 

assume that a Boltzmann superposition of strain increments can be applied to viscoelastic 

materials [52]. Consider an arbitrary strain input which is obtained through superposition 

of small strain increments (Figure 3.4) [53]. 
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These strain increments are related to corresponding stress increments by Hooke’s law as 

follows 

1 1

( ) ( ) E( )
n n

j j j j
j j

t t s t s
= =

σ = Δσ − = − Δε∑ ∑       (3.7) 

 

Each of these stress increments also relax according to the time dependency of E (Figure 

3.4.b). By taking appropriate limit, we get the following constitutive law 

 

[ ]
0

( ) E( ) ( )
t

t t s d sσ = − ε∫         (3.8) 

 

If the strain history is differentiable, Equation 3.8 reduces to the following form 

 

0

( )( ) E( )
t st t s ds

s
∂ε

σ = −
∂∫         (3.9) 

 

Time dependency of the stress relaxation function E can be more conveniently given by 

spring and dashpot models (Figure 3.5) [52].  

 

 

 

a)                                     b) 

Figure 3. 5: a) Linear (Hookean) spring. E is the spring stiffness, and b) Linear 

(Newtonian) dashpot. η is the dashpot viscosity  
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In these models, the stress carried by the spring is proportional to the strain in the spring 

and is given by Hooke’s law  

 

Eσ = ε           (3.10) 

 

where E is the stiffness of the spring and ε, the strain in the spring, is the ratio of the 

change of length of the spring to its original length. 

 

0

L
L
Δ

ε =           (3.11) 

 

σ and ε are analogous to the spring force and displacement, and E is analogous to the 

Young’s modulus [54].The stress carried in the dashpot is proportional to the strain rate 

and is given by Newton’s law of viscosity  

 

t
∂ε

σ = η
∂           (3.12) 

 

Viscoelastic materials then can be modeled as combination of springs and dashpots in 

series or parallel [52]. The most common mathematical models are Maxwell Model, Voigt 

Model, Maxwell Solid, and Generalized Maxwell Solid. 
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3.1.2.1 Maxwell Model 

 

 The Maxwell model (also referred as Maxwell body [47]) is a series connection of a 

spring and a dashpot (Figure 3.6).  

 

 

 

 

 

Figure 3. 6: The Maxwell model 

 

εS and σS denote the strain and stress in the spring alone and εD and σD denote those in the 

dashpot alone [52]. Total stress and total strain in the Maxwell model is given by 

 

S Dσ = σ = σ           (3.13) 

S Dε = ε + ε           (3.14) 

 

 

If we differentiate both sides of Equation 3.14 and use Hooke’s and Newton’s laws, we end 

up with 

 

S D1
Et t

∂ε ∂σ σ
= +

∂ ∂ η          (3.15) 

 

Making use of Equation 3.13, Equation 3.15 can be written in the form 
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E
t t

∂σ σ ∂ε
+ =

∂ τ ∂          (3.16) 

 

where 

 

E
η

τ =            (3.17) 

 

is the relaxation time. Using the initial condition ( ) ( )0 0 0σ = ε = , this ordinary 

differential equation (ODE) can be solved to give 

 

( ) ( )( ) ( )
0

E exp /
t s

t t s ds
t

∂ε
σ = − − τ

∂∫       (3.18) 

 

and this equation is actually Equation 3.9 with the scalar analogue of E given by 

 

( ) ( )E E exp /t t= − τ                     (3.19) 

 

 The creep function of the Maxwell model under a constant initial stress, σ0, is  

 

( ) 0
1
E

tt
⎛ ⎞

ε = σ +⎜ ⎟η⎝ ⎠
         (3.20) 

 

[47], and, the stress relaxation function of the Maxwell model under a constant initial 

strain, ε0, is 
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( ) ( )0E exp /t tσ = ε − τ         (3.21) 

 

Figure 3.7 and 3.8 present the creep and stress relaxation behavior of the Maxwell model 

under different constant stress and constant strain inputs respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 7: Creep behavior of the Maxwell model under different constant stresses
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Figure 3. 8: Stress relaxation behavior of the Maxwell model under different constant 

strains 

 

 The stress function of the Maxwell model in response to a ramp input such as 

( )t Atε = ( Figure 3.9) 

 

 

 

 

 

 

Figure 3. 9: Ramp input 
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( ) ( )

( ) ( )

( )
( )( )

2

E

E

E
1/

s
s s s s

At At s
s

s As s
s

As
s s

σ
σ + = ε

τ

ε = ⇒ ε =

σ
⇒ σ + =

τ

σ =
+ τ

        (3.22) 

 

Finally, taking the inverse Laplace transform of both sides in Equation 3.22, we get the 

stress function of the Maxwell model in response to a ramp strain input as the following: 

 

( ) ( )( )E 1 exp /t A tσ = τ − − τ         (3.23) 

 

 The stress function of the Maxwell model in response to a ramp & hold input such 

as ( ) ( ) ( )( )t A t t c u t cε = − − −  (see Figure 3.10), 

 

 

 

 

 

 

Figure 3. 10: Ramp & hold input 
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where u(t-c) is the Heaviside Unit Step function shifted by c units to the right in the time 

domain, can also be derived taking the Laplace transform of both sides of Equation 3.16. 

Taking the Laplace transform of both sides and substituting ( ) ( ) ( )( )t A t t c u t cε = − − −  

we get 

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

( )
( )( )

( )
( )( )

2

E

1 exp

E 1 exp

E expE
1/ 1/

s
s s s s

At A t t c u t c s cs
s

s As s cs
s

A csAs
s s s s

σ
σ + = ε

τ

ε = − − − ⇒ ε = − −

σ
⇒ σ + = − −

τ
−

σ = −
+ τ + τ

    (3.24) 

 

Taking the inverse Laplace transform of both sides in Equation 3.24, we get the stress 

function of the Maxwell model in response to a ramp & hold strain input as the following: 

 

( ) ( )( ) ( )( )( )E 1 exp / ( ) 1 exp ( ) /t A t u t c t cσ = τ − − τ − − − − − τ    (3.25) 

 

Figure 3.11 and 3.12 present the stress behavior of the Maxwell model under different 

ramp and ramp & hold strain inputs respectively. 
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Figure 3. 11: Stress behavior of the Maxwell model under different ramp strain inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 12: Stress behavior of the Maxwell model under different ramp & hold strain 

inputs 
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3.1.2.2 Voigt Model 

 

 The Voigt model (also referred as Voigt body [47]) is a parallel connection of a 

spring and a dashpot (Figure 3.13).  

 

 

 

 

 

 

 

Figure 3. 13: The Voigt Model 

 

In this model S Dε = ε = ε  and S Dσ = σ + σ [52]. Therefore,  

 

E
t

∂ε
σ = η + ε

∂          (3.26) 

 

Using the initial condition ( ) ( )0 0 0σ = ε = , this ODE can be solved to give 

 

( ) ( )( ) ( )
0

1 exp /
t

t t s s dsε = − − τ σ
η ∫        (3.27) 

 

 The creep function of the Voigt model under a constant initial stress, σ0, is  

 

σ

E

η σ

ε = εS = εS

σD

σS

σ

E

η σ

ε = εS = εS

σD

σS
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( ) ( )( ) 0
1 1 exp /
E

t tε = − − τ σ         (3.28) 

 

[47], and, the stress relaxation function of the Voigt model under a constant initial strain, 

ε0, is 

 

( ) ( ) 0Et tσ = ηδ + ε          (3.29) 

 

where δ(t) is the unit-impulse function or dirac delta function. 

 

Figure 3.14 and 3.15 present the creep and stress relaxation behavior of the Voigt model 

under different constant stress and constant strain inputs respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 14: Creep behavior of the Voigt model under different constant stresses 
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Figure 3. 15: Stress relaxation behavior of the Voigt model under different constant strains
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 One can calculate the stress function of the Voigt model in response to a ramp & 
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( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

2

2

E

1 exp

1 exp E 1 exp

s s s s
At A t t c u t c s cs
s

A As cs cs
s s

σ = η ε + ε

ε = − − − ⇒ ε = − −

⇒ σ = η − − + − −

    (3.32) 

 

Taking the inverse Laplace transform of both sides in Equation 3.32, we get the stress 

function of the Voigt model in response to a ramp & hold strain input as the following: 

 

( ) ( ) ( )( )1 ( ) E ( )t A u t c A t t c u t cσ = η − − + − − −      (3.33) 

 

Figure 3.16 and 3.17 present the stress behavior of the Voigt model under different ramp 

and ramp & hold strain inputs respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 16: Stress behavior of the Voigt model under different ramp strain inputs 
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Figure 3. 17: Stress behavior of the Voigt model under different ramp & hold strain inputs 

 

3.1.2.3 Maxwell Solid 

 

 The Maxwell solid (also referred as Kelvin body or standard linear solid [47]) is a 

parallel connection of a Maxwell model and a spring (Figure 3.18).  

 

 

 

 

 

 

 

 

Figure 3. 18: The Maxwell solid 
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In Maxwell solid the stress in the spring is 

 

E∞ ∞σ = ε           (3.34) 

 

and the stress in the Maxwell model is 

 

D1
1 1 S1 1E

t
∂ε

σ = ε = η
∂          (3.35) 

 

The total strain in the Maxwell solid is 

 

S1 D1ε = ε + ε           (3.36) 

 

and total stress is the sum of the stresses in the Maxwell model and spring [47] 

 

( )
1

1 S1 1 1 D1E E E +E E
∞

∞ ∞

σ = σ + σ

σ = ε + ε = ε − ε        (3.37) 

 

Multiplying the result in Equation 3.37 by (η1 / E1) and taking the derivative with respect to 

time gives: 

 

( )1 1 D1
1 1

1 1
E +E

E Et t t
∞

η ∂σ η ∂ε ∂ε
= − η

∂ ∂ ∂        (3.38) 

 

If we add Equation 3.38 to the result we get in Equation 3.37, we have 

 



 
Chapter 3: Introduction to Solid Mechanics  53 
 

 
 
 
 
 

( ) ( )1 1 D1
1 1 D1 1 1

1 1
E +E E E +E

E Et t t
∞ ∞

η ∂σ η ∂ε ∂ε
σ + = ε − ε + − η

∂ ∂ ∂     (3.39) 

 

Finally, replacing the last term in Equation 3.39 by E1εS1, and using Equation 3.36, we get 

 

1 1
1

EE 1
Et t

∞
∞

∂σ ∂ε⎛ ⎞σ + τ = ε + η +⎜ ⎟∂ ∂⎝ ⎠
       (3.40) 

 

where τ1 = (η1 / E1) [47]. Using the initial condition ( ) ( )0 0 0σ = ε = , this ODE can be 

solved to give [52] 

 

( ) ( ) ( )( )1 1

0

( )E E exp /
t st t t s ds

s
∞

∂ε
σ = ε + − − τ

∂∫      (3.41) 

 

 The creep function of the Maxwell solid under a constant initial stress, σ0, is  

 

( ) ( )1
0

1 1 1 exp /
E

t t σ

∞ σ

⎡ ⎤τ⎛ ⎞ε = − − − τ σ⎢ ⎥⎜ ⎟τ⎝ ⎠⎣ ⎦
      (3.42) 

 

where τσ is called the relaxation time for constant stress [47] and is equal to 

 

1

1

E1
E E

∞
σ

∞

η ⎛ ⎞τ = +⎜ ⎟
⎝ ⎠

         (3.43) 
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 The stress relaxation function of the Maxwell solid under a constant initial strain, 

ε0, is 

 

( ) ( )1 0
1

E 1 1 exp /t tσ
∞

⎡ ⎤τ⎛ ⎞σ = − − − τ ε⎢ ⎥⎜ ⎟τ⎝ ⎠⎣ ⎦
      (3.44) 

 

[47]. If we substitute Equation 3.43 for τσ in Equation 3.44, we get 

 

 ( ) ( )1 1 0E E exp /t t∞⎡ ⎤σ = + − τ ε⎣ ⎦        (3.45) 

 

and the relaxation function of the Equation 3.45 is actually the well-known Prony Series 

expression with N = 1 

 

( ) ( )
1

E E E exp /
N

j j

j

t t∞

=

= + − τ∑        (3.46) 

 

Figure 3.19 and 3.20 present the creep and stress relaxation behavior of the Maxwell Solid 

under different constant stress and constant strain inputs respectively. 
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Figure 3. 19: Creep behavior of the Maxwell solid under different constant stresses 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 20: Stress relaxation behavior of the Maxwell solid under different constant 

strains 
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 The stress function of the Maxwell solid in response to a ramp input such as 

( )t Atε = can be derived taking the Laplace transform of both sides of Equation 3.40 and 

and substituting ( )t Atε =  

 

( ) ( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

1 1
1

2

12
1

1 1
2

1 1

1
1 11

2 2
1

1

EE 1
E

1 E 1E 1
E E1 E 1
E 1

EE 1
EE

11

s s s s s s

At At s
s

A A s ss s s A
s s s

s
s A s A

s s s s s

∞
∞

∞
∞

∞
∞

∞
∞

∞

⎛ ⎞σ + τ σ = ε + η + ε⎜ ⎟
⎝ ⎠

ε = ⇒ ε =

⎡ ⎤⎛ ⎞+ η +⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎢ ⎥σ + τ = + η + ⇒ σ =⎜ ⎟ + τ⎢ ⎥⎝ ⎠
⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞ ⎡ ⎤+ η +⎜ ⎟⎢ ⎥ ⎢ ⎥η η⎝ ⎠⎢ ⎥σ = ⇒ σ = + −⎢ ⎥
+ τ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥τ⎣ ⎦⎣ ⎦

 (3.47) 

 

Taking the inverse Laplace transform of both sides of the result in Equation 3.47, we get 

the stress function of the Maxwell solid in response to a ramp strain input as the following: 

 

( ) ( )
( ) ( )( )1 1=E 1 exp /

t Az t

z t t t∞

σ =

+ η − − τ        (3.48) 
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 Similarly, the stress function of the Maxwell solid in response to a ramp & hold 

input such as ( ) ( ) ( )( )t A t t c u t cε = − − −  can be derived taking the Laplace transform of 

both sides of Equation 3.40 and substituting ( ) ( ) ( )( )t A t t c u t cε = − − −  

 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )( )

1 1
1

2

1
1

2
1

1 1

2

1

EE 1
E

1 exp

EE 1
E1 exp

1

E1 exp
1

s s s s s s

At A t t c u t c s cs
s

s
s A cs

s s

s A cs
s s s

∞
∞

∞
∞

∞

⎛ ⎞σ + τ σ = ε + η + ε⎜ ⎟
⎝ ⎠

ε = − − − ⇒ ε = − −

⎡ ⎤⎛ ⎞+ η +⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥σ = − −
+ τ⎢ ⎥

⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥η η

σ = − − + −⎢ ⎥
⎢ ⎥+
⎢ ⎥τ⎣ ⎦

    (3.49) 

 

Taking the inverse Laplace transform of both sides of the result in Equation 3.49, we get 

the stress function of the Maxwell solid in response to a ramp & hold strain input as the 

following: 

 

( ) [ ]( ) ( ) ( )t A z t z t c u t cσ = − − −        (3.50) 

 

Figure 3.21 and 3.22 present the stress behavior of the Maxwell solid under different ramp 

and ramp & hold strain inputs respectively. 
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Figure 3. 21: Stress behavior of the Maxwell solid under different ramp strain inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 22: Stress behavior of the Maxwell solid under different ramp & hold strain 

inputs 
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3.1.2.4 Generalized Maxwell Solid 

 

 The Generalized Maxwell solid is a parallel connection of N Maxwell models and a 

spring (Figure 3.23).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 23: The Generalized Maxwell solid 

 

Using the similar idea performed in the previous section, the constitutive relationship 

between the stress and strain in the Generalized Maxwell Solid can be found as the 

following 

 

( ) ( )
0

( )E
t st t s ds

s
∂ε

σ = −
∂∫         (3.51) 

 

where the relaxation function  

E1 η1

σ1

εS1 εD1

σ σ

ε

E∞

σ∞

.....
εSN εDN

EN ηN

σN

E1 η1

σ1

εS1 εD1

σ σ

ε

E∞

σ∞

.....
εSN εDN

EN ηN

σN
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( ) ( )j j

1

E E E exp /
N

j

t t∞

=

= + − τ∑        (3.52) 

 

is the Prony series expression for N elements [52] and  

 

E
j

j
j

η
τ =           (3.53) 

 

 Similar to the Maxwell solid, the stress relaxation function of the Generalized 

Maxwell solid under a constant initial strain, ε0, is 

 

( ) ( )j j 0

1

E E exp /
N

j

t t∞

=

⎡ ⎤
σ = + − τ ε⎢ ⎥

⎣ ⎦
∑        (3.54) 

 

 Similarly, the stress function of the Generalized Maxwell solid in response to a 

ramp input such as ( )t Atε = is 

 

( ) ( )

( ) ( )( )
1

=E 1 exp /
N

j j

j

t Az t

z t t t∞

=

σ =

+ η − − τ∑        (3.55) 

 

and the stress function of the Generalized Maxwell solid in response to a ramp & hold 

input such as ( ) ( ) ( )( )t A t t c u t cε = − − −  is 

 

( ) [ ]( ) ( ) ( )t A z t z t c u t cσ = − − −        (3.56) 
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3.2 Hyperelasticity 

 

 The mathematical models for linear viscoelasticity discussed in section 3.1.2 are 

limited to model the soft tissues in the linear range where the deformations are assumed to 

be small and the constitutive relationship between stress and strain is linear. However, soft 

tissues can undergo large deformations and the stress-strain relationship is actually not 

linear due to the layered and non-homogeneous complex structure of the soft tissues. 

 Hyperelasticity is a time-independent material nonlinearity where the relationship 

between stress and strain is nonlinear. A material is called hyperelastic if it has a scalar 

function from which stresses can be derived. The function is called strain-energy function 

depending only on deformation gradient tensor, F [47].   In linear continuum mechanics, 

the Cauchy stress tensor, σ, which is the true stress in the body, and the strain tensor, ε, are 

used to describe the constitutive equation. In nonlinear continuum mechanics, quantities 

are required that are invariant to rigid-body movements. Two different stress tensors can be 

defined in addition to Cauchy stress tensor as  

 

( )

1

1T

−

−

=

=

T JF σ

S T F           (3.57) 

 

where T is the first Piola-Kirchhoff Stress Tensor and S is the second Piola-Kirchhoff 

Stress Tensor. The second Piola-Kirchhoff stresses are directly related to strain-energy 

function as follows 

 

W∂
=

∂
S

E           (3.58) 
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where E is the Lagrangian Green’s strain tensor 

 To describe a constitutive equation for hyperelastic materials, Equation 3.58 is used 

based on several strain-energy functions. If isotropy and incompressibility are assumed for 

soft tissues, hyperelasticity can be modeled using different strain-energy functions such as, 

neo-Hookean, Mooney-Rivlin, polynomial, Yeoh, Ogden and Arruda-Boyce. Some of the 

most common strain-energy functions are as follows  

 

Neo-Hookean model:  )3( 110 −= ICW      (3.59) 

Mooney-Rivlin model: )3()3( 201110 −+−= ICICW    (3.60) 

Polynomial form:  ∑
==

−−=
N

ji

ji
ij IICW

0,0
21 )3()3(    (3.61) 

Yeoh model:   ∑
=

−=
N

i

i
i ICW

0
10 )3(      (3.62) 

Ogden model:   ∑
=

−++=
n

i i

i iiiW
1

321 )3( ααα λλλ
α
μ

   (3.63) 

 

where Cij and μi are material stiffness constants corresponding to Young’s modulus in 

linear material. Except the Ogden model, above models are based on the principle 

invariants and the strain energy function depends on the first and the second principle 

invariants (i.e. W = f (I1, I2)) due to incompressibility conditions. The Ogden model is 

directly based on principle stretch ratios, λ. 
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3.2.1 Mooney-Rivlin Force Formulation of a Cylindrical Phantom under Uniaxial 

Compression 

 

 A constitutive relation can be derived between the applied force and the resulting 

strain of a hyperelastic cylindrical phantom going under uniaxial compression based on a 

Mooney-Rivlin strain-energy function. The three principle invariants for a cylindrical 

phantom represented in Figure 3.24 are as follows 

 
2 2 2

1 1 2 3
2 2 2 2 2 2

2 1 2 1 3 2 3
2 2 2

3 1 2 3

I

I

I

λ λ λ

λ λ λ λ λ λ

λ λ λ

= + +

= + +

=

        (3.64) 

 

where λ1, λ2, and λ3 are the principle stretch ratios in the direction of cartesian coordinate 

axes.  

 

 

 

 

 

 

 

 

 

Figure 3. 24: Uniaxial compression of a cylindrical phantom. The phantom is compressed 

from the top by applying a nonlinear external force F (1) in an amount ΔL (2). The 

principle stretch ratios are congruent with the Cartesian coordinates (3). 
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Stretch ratio is a measure of deformation defined as  

 

0

fL
L

λ =           (3.65) 

 

in one dimension where L0 is the rest length and Lf is the final length of the cylindrical 

phantom. If we assume incompressibility, then the multiplication of the principle stretch 

ratios is equal to 1. 

 

1 2 3 1λ λ λ =           (3.66) 

 

Also, uniaxial compression implies that the stretch ratios other than the one in the 

compression direction are equal to each other because of the symmetry of the cylinder’s 

geometry in the horizontal. 

 

2 3λ λ=           (3.67) 

 

Substituting Equation 3.67 into Equation 3.66, one can get 

 

1 2 2

2
2

1

2 3
1

1
1

1

λ λ λ

λ
λ

λ λ
λ

=

=

= =

         (3.68) 

 

λ1, stretch ratio along the compression direction, can be written as 
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0
1

0 0 0

1 1fL L L L
L L L

λ ε− Δ Δ
= = = − = −        (3.69) 

 

Substituting the calculated values of the stretch ratios into Equation 3.64, and substituting λ 

for λ1 for a more general representation, we get 

 
2 2

2 2 2
1 1 1

1 1 1

2 2 2 2

2 2
2 1 1 1 2 2

1 1 1 1 1

3

1 1 2 2

1 1 1 1 1 12 2

1

I

I

I

λ λ λ
λ λ λ λ

λ λ λ λ
λ λ λ λ λ λ

⎛ ⎞ ⎛ ⎞
= + + = + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
=

  (3.70) 

 

Engineering stress is a measure of the force per unit area within a body 

 

0

F
A

σ =           (3.71) 

 

where A0 is the initial area of the cylinder before compression (Figure 3.24). Engineering 

stress is also defined as the rate of change of strain energy with respect to strain, which can 

also be represented in terms of the stretch ratio 

 

W W λσ
ε λ ε

∂ ∂ ∂
= =

∂ ∂ ∂
         (3.72) 
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Two most common Mooney-Rivlin strain-energy formulations are 2- and 5-term Mooney-

Rivlin formulations (MR2 and MR5 respectively) 

 

MR2 10 1 01 2

2
MR5 10 1 01 2 20 1

2
11 1 2 02 2

( 3) ( 3)

( 3) ( 3) ( 3)

           ( 3)( 3) ( 3)

W C I C I

W C I C I C I

C I I C I

= − + −

= − + − + −

+ − − + −

     (3.73) 

 

If the calculated values of principle invariants from Equation 3.70 are substituted into 

Equation 3.73, one can get the strain energy formulations in terms of the stretch ratio: 

 

2
2 10 01 2

2 2 2
5 10 01 202

2 2
11 022 2

2 1( 3) (2 3)

2 1 2( 3) (2 3) ( 3)

2 1 1           ( 3)(2 3) (2 3)

MR

MR

W C C

W C C C

C C

λ λ
λ λ

λ λ λ
λ λ λ

λ λ λ
λ λ λ

= + − + + −

= + − + + − + + −

+ + − + − + + −

   (3.74) 

 

From Equation 3.69, the derivative of the stretch ratio with respect to the strain is  

 

(1 ) 1λ ε
ε ε

∂ ∂ −
= = −

∂ ∂
         (3.75) 

 

Taking the derivative of the strain-energy functions in Equation 3.74 with respect to the 

stretch ratio and substituting in Equation 3.72 along with Equation 3.75, one can get 
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 (3.76) 

 

where 
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( )

( ) ( )
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1 22
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λ ε
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λ ε
λ ε

= − = − −
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Finally, substituting Equation 3.71 into the result achieved in Equation 3.76, one can get a 

constitutive relationship between the applied force and the resulting strain based on MR2 

and MR5 formulations during the uniaxial compression of a cylindrical phantom as 

 

[ ]

[ ]

( )

( )

2 10 1 01 2
0

2 0 10 1 01 2

5 10 1 01 2 20 1 3 11 1 4 2 3 02 2 4
0

5 0 10 1 01 2 20 1 3 11 1 4 2 3 02 2 4

2

2

2 2 2

2 2 2

MR

MR

MR

MR

F C A C A
A

F A C A C A
F C A C A C A A C A A A A C A A
A

F A C A C A C A A C A A A A C A A

σ

σ

= = − +

= − +

= = − + + + + +⎡ ⎤⎣ ⎦

= − + + + + +⎡ ⎤⎣ ⎦

 (3.76) 

 

3.3 Nonlinear Viscoelasticity 

 

 Fung [47] has modified the standard linear viscoelastic constitutive relationship in 

Equation 3.9 to come up with the quasi-linear viscoelasticity (QLV) which is able to model 

the viscoelastic materials undergoing large deformations accurately. According to Fung’s 

QLV theory, the relaxation function can be separated as follows: 

 

( )
0

e

( )( ) E( )

E( ) G( )T

t st t s ds
s

t t

∂ε
σ = −

∂

= λ

∫
        (3.77) 

 

where G(t) is the reduced relaxation function and Te(λ) is the elastic response 

instantaneously generated in the material when a step function of stretching λ is imposed 

on the material [47]. Pryse et al. [55] states that Fung’s QLV model can be considered as a 
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specific case of a more general nonlinear viscoelastic formulation having a constitutive 

relationship as the following: 

 

0

( )( ) E( , )
t st t s ds

s
∂ε

σ = − ε
∂∫         (3.78) 

 

where the relaxation function E(t,ε) is both time and strain dependent. The relaxation 

function can also be separated into a discrete relaxation notation 

 

( ) ( ) ( )( )
1

E( , ) E E , exp /
N

j j

j

t t t∞

=

ε = ε + ε − τ ε∑       (3.79) 

 

where ( ) ( )
( )E

j
j

j

η ε
τ ε =

ε  are strain-dependent time constants and Ej(ε) are strain-dependent 

amplitudes corresponding to τj(ε) [55]. Actually the nonlinear viscoelastic constitutive 

relation given in Equation 3.79 corresponds to the Generalized Maxwell solid with N 

elements having nonlinear springs and dashpots presented in Figure 3.25 [55] 
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Figure 3. 25: The nonlinear viscoelastic model proposed by Pryse et al. [55]. 

 

The Generalized Maxwell solid with the strain-dependent nonlinear springs and dashpots in 

Figure 3.25 is able to model the nonlinear viscoelastic materials that undergo large 

deformations. 
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Chapter 4  
 

MEASUREMENT and CHARACTERIZATION of NONLINEAR VISCOELASTIC 

MECHANICAL PROPERTIES of a CYLINDRICAL TISSUE PHANTOM 

 

 This chapter first provides an overview of a robotic indenter developed for 

measuring the mechanical properties of soft tissues and deformable objects. The strain-

dependent nonlinear elastic response and time-dependent viscoelastic response of a tissue-

like silicon phantom are measured via static loading and ramp & hold experiments using 

this robotic indenter. A lumped nonlinear viscoelastic Maxwell Solid with N=1 and N=2 is 

used to model the behavior of the phantom and also to estimate its material properties. 

 

4.1 Robotic Indenter 

 

4.1.1. Design Considerations 

 

 One method to measure complex material behavior of soft tissues is to make 

mechanical indentations on tissue and record force response with respect to indentation 

depth and elapsed time for further analysis. In addition to the classification discussed in 

Section 2.2, there are also two forms of measuring soft tissue response during a minimally 

invasive surgery: a) free-form measurements and b) robotic measurements, which are both 

considered as possible candidates for our design. A “free-form” measurement typically 

involves the use of a hand-held probe equipped with position and force sensors. An 

operator holds the instrument and indents organ surface manually to measure displacement 
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and force response [12, 16]. Major benefit of using a hand-held probe over a robotic arm is 

safety. Since the operator manually derives the probe, unexpected and risky movements are 

unlikely to happen. However, there are two problems with this design. First, the 

measurements are made manually and not repeatable. Carter et al. [16] used a load-cell 

triggered by the operator to make more controlled indentations, which provides a partial 

solution to the repeatability problem. The second difficulty is the identification of a 

reference point for the displacement measurements. Linear Variable Differential 

Transformers (LVDTs) have been used as position sensors for relative measurement of 

tissue displacement with respect to a reference point. However, it is not easy to keep the 

probe stationary during the measurements and hence the reference point changes as the 

probe moves. 

 The second group of measurements involves the use of a robotic device for 

providing better controlled stimuli [2, 5, 13, 17, 18, 57, 58, 59]. If a robotic arm is used for 

the measurements, the problems related to the actuation and position sensing can be solved. 

More controlled indentations can be performed on tissue surface by a pre-programmed 

robotic arm and an indenter attached to the arm. In addition, a robotic arm can be 

programmed to generate different types of stimuli. Thus, dependency to a user is 

eliminated and repeatability is achieved. Besides, the tip coordinates of the indenter can be 

acquired using encoders of the robotic arm with respect to the fixed coordinate frame.  

 

4.1.2. Design Details 

  

 Based on the design requirements discussed above, we have developed a robotic 

indenter and measured the material properties of soft tissues in the abdominal region during 

a MIS in one of our previous studies [2, 5]. The indenter was specifically designed to be 

operated in MIS. We made minor modifications on the indenter to measure the material 
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properties of the silicon tissue phantom via compression experiments in laboratory 

conditions. The major components of our system include a robotic arm which can be 

programmed to make indentations on tissue, a flat aluminum plate that compresses the 

tissue phantom from the top surface of the phantom, and a force sensor attached to the plate 

for the measurement of force response of the tissue (Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1: Our robotic indenter and its components. 

 

Using this system, we can make large indentations up to 10 mm. The robotic arm can be 

programmed to make cyclic indentations or indentations along a user-defined straight path 
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with a given velocity. We used the Phantom Premium haptic device (Model 1.0A from 

Sensable Technologies Inc.) as our robotic manipulator due to its versatility in position and 

velocity control in 3D space.  The Phantom haptic device has a 13 x 18 x 25 mm 

workspace and a nominal position resolution of 0.03 mm. The resonant frequencies of the 

device for x, y and z axes are 90 Hz, 60 Hz and 65 Hz, respectively [56]. A force-torque 

transducer (Nano 17 from ATI Industrial Automation) [69] is used for the purpose of 

measuring force response. The Nano 17 has a force range of ± 50 N in the x and y 

directions and ± 70 N in the z direction and has a resolution of 1/1280 N along each of the 

three orthogonal axes when attached to a 16-bit A/D converter. Data acquisition unit 

includes a 16-bit analog input card NI PCI-6034E (National Instruments) [65] with a 

maximum sampling rate of 200 kS/s. 

 

4.1.3 Controller Design and GUI 

 

 A motion control algorithm must be implemented to make indentations on tissue 

surface.  Using the software library of the Phantom haptic device and its position encoders, 

position of the end-effector point can be acquired in 3D space and appropriate torque 

commands can be sent to the actuators to control its motion. Using a PID controller, the tip 

point can be programmed to follow a straight line path with a specified rate. The proper 

selection of controller gains (i.e. PID tuning) is important for stable output response and the 

minimization of the steady-state error. We tuned our controller gains on six different 

material samples having varying softness before the experiments. This process enabled us 

to construct a look-up table for the feasible set of controller gains to be used in the 

experiments.  

 We also developed a graphical user interface (GUI) to record current time, 

displacement, and force data in a text file following each experiment (Figure 4.2). The GUI 
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was developed in MS Visual C++ environment using an ActiveX component to acquire 

force values from the force sensor attached to the indenter and the position values from the 

encoders of the robotic arm at 1 kHz.  Using the GUI and the controller, static and dynamic 

stimuli can be generated easily.  Using the GUI, the values of stimulus parameters such as 

pre-indentation depth, rate of indentation, final indentation depth, and stimulation time can 

be entered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2: The graphical user interface for generating a stimulus and recording 

experimental data. 
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4.2 Characterization Experiments and Experimental Results 

 

4.2.1 Tissue Phantom 

 

The tissue phantom is a circular cylinder with a radius of 12 mm and a height of 24 

mm. It is made of Smooth-Sil 910. Smooth-Sil 910 is a two-component silicone rubber 

(base plus curative; Part A and Part B) and available in hardness range of very soft to 

medium. It can be cured with either a platinum or a tin catalyst [66].  30 units of Part A and 

1 unit of Part B (in terms of mass) are mixed to obtain a tissue-like softness. 

 

4.2.2 Static Indentation 

 

 Nonlinear elastic response of the phantom is characterized via static loading. In the 

static loading experiment, the phantom is compressed to a predefined depth slowly to 

eliminate the influence of viscoelastic and inertial effects. The phantom is compressed to 

9.76 mm at a rate of 0.1 mm/sec until the servos of robotic indenter warms up and the 

computer returns an error message of “high temperature error”. Figure 4.3 shows the static 

compression of the silicon phantom at different stages of loading. The experimental data 

(Figures 4.4 and 4.5) indicates that the force response of the tissue phantom is nonlinear. 
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Figure 4. 3: Snapshots from the static loading experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 4: Force-displacement curve obtained from the static compression experiment 

(raw data) 
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Figure 4. 5: Force-displacement curve obtained from the static compression experiment 

(filtered data) 

 

4.2.3 Ramp & Hold Indentation 

 

In each of the ramp & hold indentation experiments, the tissue phantom is ramped 

to the depths of 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, and 7 mm in one second. After the 

fast indentation to the desired depth, the indenter was held there for 200 seconds to 

characterize the relaxation response of the tissue phantom. The raw and filtered relaxation 

responses of the phantom for different ramp depths are shown in Figures 4.6, 4.7, 4.8 and 

4.9. Note that, we could not collect data for 200 seconds during the 7 mm experiment. The 

servos of the Phantom device warmed up, the computer returned an error message of “high 

temperature error”, and the robotic indenter shutted itself down around 150th seconds. Due 

to the same reason, ramp & hold experiments requiring a ramp depth larger than 7 mm 

could not be performed.    
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Figure 4. 6: Force-relaxation curves for different ramp depths (raw data) 
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Figure 4. 7: Force-relaxation curves for different ramp depths (raw data, the first 10 

seconds) 
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Figure 4. 8: Filtered force-relaxation curves for different ramp depths 
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Figure 4. 9: Filtered force-relaxation curve for different ramp depths (the first 10 seconds) 
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4.3 Characterization 

 

4.3.1 Lumped Nonlinear Viscoelastic Model 

  

 The tissue phantom is modeled using a Generalized Maxwell solid by connecting a 

nonlinear spring in parallel to N linear Maxwell elements (Figure 4.10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 10: The nonlinear viscoelastic model of the tissue phantom. The model is a 

Generalized Maxwell solid, which is constructed by connecting a nonlinear spring in 

parallel to N linear Maxwell elements (note that a spring and a dashpot are connected in 

series to form one Maxwell element). 

  

The material properties of the phantom are  characterized using this lumped model for N=1 

and N=2. 
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4.3.2 Characterization of Nonlinear Elasticity 

 

 The nonlinear strain-dependent material properties of the phantom are characterized 

using its force response under the static loading. Since the phantom is compressed very 

slowly during the static loading, all time-dependent effects of the Maxwell elements on the 

force response are void. Hence, the force response of the phantom during static loading is 

governed by the strain-dependent nonlinear spring only. Therefore, the characterization of 

nonlinear material properties of the phantom involves the  estimation of the strain-

dependent stiffness coefficient K∞(ε). 

 For the nonlinear spring, the relation between the force and the displacement along 

the direction of static compression can be written as 

 

( )KF ∞= ε ε           (4.1) 

 

The experimental force-displacement response presented in Figure 4.5 can be converted to 

force-strain representation (Figure 4.11) by dividing the displacement to the original height 

of the cylindrical phantom, which is 24 mm.  
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Figure 4. 11: Experimental force-strain curve 

 

Polynomial functions with degrees of 2, 3, 4 and 5 (Figures 4.12, 4.13, 4.14 and 4.15, also 

see Table 4.1) are fitted to the experimental force-strain data using the “polyfit” function of 

MATLAB. 

 

 

 

 

 

 

 

 

 

 

Figure 4. 12: Curve fitting to experimental static indentation data using a 2nd order 

polynomial 
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Figure 4. 13: Curve fitting to experimental static indentation data using a 3rd order 

polynomial 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 14: Curve fitting to experimental static indentation data using 4th order 

polynomial 
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Figure 4. 15: Curve fitting to experimental static indentation data using 5th order 

polynomial 

 
Degree Polynomial Norm residual 

2 2F 8.66 7.24= ε + ε  3.38 

3 3 2F 8.13 3.69 8.05= ε + ε + ε  0.98 

4 4 3 2F 18.07 - 6.58 7.54 7.7= ε ε + ε + ε  0.65 

5 5 4 3 2F 146.89 131.36  47.47 0.70 8.18= ε − ε + ε − ε + ε  0.22 

 

Table 4. 1: Fitted polynomials of different degrees 

 

Among the polynomials that we have tested, the 5th degree polynomial (Figure 4.15) fits 

best to the experimental data. The coefficients of this polynomial are 

 
5 4 3 2F 146.89 131.36  47.47 0.70 8.18= ε − ε + ε − ε + ε     (4.2) 
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By dividing Equation 4.2 with strain, the strain-dependent stiffness coefficient of the 

nonlinear spring is calculated as 

 

( ) 4 3 2K 146.89 131.36  47.47 0.70 8.18∞ ε = ε − ε + ε − ε +     (4.3) 

 

Figure 4.16 shows the variation of K∞ as a function of ε. 

 

 

 

 

 

 

 

 

 

Figure 4. 16: Nonlinear behavior of K∞(ε) 

 

It is important to emphasize here that the stiffness coefficient K∞(ε) given in Equation 4.3 

is in units of Newton and independent of the original height of the tissue phantom used in 

the experiment. Hence, one can simply divide the stiffness coefficient K∞(ε) given in 

Equation 4.3 with the original length of any sample to calculate its stiffness coefficient. 
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4.3.3 Characterization of Viscoelasticity 

 

The characterization of viscoelastic response of the phantom involves the 

calculation of the spring and damper coefficients in the Maxwell elements for N=1 and 

N=2. We calculate these coefficients by curve fitting to the experimental force relaxation 

data collected via the ramp and hold experiments. 

The stress function of a generalized Maxwell Solid for the ramp & hold input 

of ( ) ( ) ( )( )t A t t c u t cε = − − − was derived in Section 3.1.2.3 as in Equation 3.56 earlier. 

 

( ) [ ]( ) ( ) ( )t A z t z t c u t cσ = − − −        (3.56) 

 

where A is the slope of the ramp, c is the starting time for the hold, u(t-c) is the heaviside 

unit step function shifted by c units to the right in the time domain and z(t) was given in 

Equation 3.55 earlier. 

 

( ) ( )( )
1

=E 1 exp /
N

j j

j

z t t t∞

=

+ η − − τ∑        (3.55) 

 

where 

 

E
j

j
j

η
τ =           (3.53) 

 

We are interested in the relaxation (hold) component of the Equation 3.56. Therefore, for t 

> c, the equation becomes 
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( ) [ ]( ) ( )t A z t z t cσ = − −         (4.4) 

 

Plugging z(t) into the Equation 4.4 and then rearranging the terms, the following relation 

for stress is obtained 

 

( ) ( ) ( )( )
1

E exp / 1 exp /

E

N

j j j

j

j
j

j

t A c t c∞

=

⎡ ⎤
σ = − η − τ − τ⎢ ⎥

⎣ ⎦
η

τ =

∑
     (4.5) 

 

Assuming a constant cross sectional area, the elastic moduli E∞, and Ej, and the damping 

coefficient ηj are replaced by the K∞, Kj and bj respectively to obtain 

 

( ) ( ) ( )( )
1

K exp / 1 exp /

K

N

j j j

j

j
j

j

F t A c b t c

b

∞

=

⎡ ⎤
= − − τ − τ⎢ ⎥

⎣ ⎦

τ =

∑
    (4.6) 

 

After including the nonlinear strain-dependent stiffness coefficient, Equation 4.6 becomes 

 

( ) ( ) ( ) ( )( )
1

K exp / 1 exp /
N

j j j

j

F t Ac Ac A b t c∞

=

= − − τ − τ∑     (4.7) 

 

The formulation given in Equation 4.6 is used for curve fitting to the experimental 

force relaxation data of 12 different ramp & hold experiments. For curve fitting, 
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LSQNONLIN function of MATLAB is used. In addition to estimating the viscoelastic 

coefficients, we also allow the curve fitting function to estimate the strain-dependent 

stiffness coefficient K∞ for each ramp depth. Tables 4.2 and 4.3 list the estimated K∞ and 

the viscoelastic coefficients (also, see Figures 4.17 , 4.18 and 4.19). 

 
Ramp depth (mm) Ramp depth (strain) K∞ (N) K1 (N) b1 (Ns) 

1.5 0.0625 7.672 1.1217 19.701 

2 0.083333 8.0268 1.143 21.2056 

2.5 0.104167 8.12448 1.1435 21.6366 

3 0.125 8.3152 1.2065 18.3739 

3.5 0.145833 8.797714 1.2247 15.3627 

4 0.166667 8.9454 1.2338 15.7101 

4.5 0.1875 9.129067 1.2878 14.5289 

5 0.208333 9.15696 1.2123 18.0238 

5.5 0.229167 9.024 1.1983 21.8755 

6 0.25 9.1844 1.2189 20.2069 

6.5 0.270833 9.430523 1.2838 18.3432 

7 0.291667 9.809829 1.3421 15.8973 

 

Table 4. 2: Estimated material coefficients for Maxwell Solid with N=1 
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Figure 4. 17: Estimated material coefficients for Maxwell Solid with N=1 

 
Ramp depth (mm) Ramp depth (strain) K∞ (N) K1 (N) b1 (Ns) K2 (N) b2 (Ns) 

1.5 0.0625 7.608 2.3573 3.8118 0.634 29.8469 

2 0.083333 7.9824 2.2852 3.52 0.7026 27.4352 

2.5 0.104167 8.06304 2.2897 3.7776 0.6817 31.2822 

3 0.125 8.2736 2.276 3.5098 0.682 23.8653 

3.5 0.145833 8.756571 2.4121 3.5052 0.6194 20.6645 

4 0.166667 8.904 2.3032 3.5462 0.6254 21.0861 

4.5 0.1875 9.088533 2.3816 3.5891 0.6125 19.6925 

5 0.208333 9.10992 2.4522 3.716 0.6553 24.4958 

5.5 0.229167 8.972945 2.378 3.692 0.7268 29.2931 

6 0.25 9.1376 2.5257 3.6713 0.7127 26.714 

6.5 0.270833 9.389169 2.513 3.6146 0.7123 23.6864 

7 0.291667 9.749486 2.624 3.5387 0.7144 22.3128 

 

Table 4. 3: Estimated material coefficients for Maxwell Solid with N=2 
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Figure 4. 18: Estimated values of K∞ for Maxwell Solid with N=1 and N=2 

 

 

 

 

 

 

 

 

 

 

Figure 4. 19: Estimated values of viscoelastic coefficients for Maxwell Solid with N=2 
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procedure is developed to estimate the optimum values of the viscoelastic material 

coefficients for N=1 and N=2. 

 

• The minimum and the maximum values of the viscoelastic coefficients K and b, 

estimated for 12 different indentation depths through curve-fitting, are determined 

• The range for K and b is equally divided into 20 smaller intervals  

• All possible combinations of K and b values within the range are inserted into 

Equation 4.6 along with the corresponding K∞ value taken from Table 4.2 for N= 1 

and Table 4.3 for N = 2 and the total residual is calculated by taking the absolute 

value of the difference between the experimental and curve-fitted relaxation curves 

• The K and b values resulting in the minimum total residual are selected as the 

optimum viscoelastic coefficients. 

 

The following tables present the optimum viscoelastic coefficients K and b calculated using 

the above procedure.  
K1 (N) b1 (Ns) 

1.2962987 17.873062 

Table 4. 4: Optimum K and b values for N=1 

K1 (N) b1 (Ns) K2 (N) b2 (Ns) 

2.5847711 3.6146000 0.68530360 23.964533 

Table 4. 5: Optimum K and b values for N=2 

And the following figures present the fitted relaxation curves produced by the optimum 

viscoelastic coefficients for N=1 and N=2. The relaxation curves constructed by using the 

optimum coefficients fit well to the experimental data of all 12 experiments. 
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Figure 4. 20: The data collected from the ramp & hold experiments  and curve fitting to the 

experimental data using the optimum viscoelastic coefficients for N=1 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. 21: The data collected from the ramp & hold experiments  and curve fitting to the 

experimental data using the optimum viscoelastic coefficients for N=1 (the last 10 seconds) 
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Figure 4. 22: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=1 (the first 10 

seconds) 

 

 

 

 

 

 

 

 

 

 

Figure 4. 23: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=2 
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Figure 4. 24: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=2 (the last 10 

seconds) 

 

 

 

 

 

 

 

 

 

 

Figure 4. 25: The data collected from the ramp and hold experiments  and curve fitting to 

the experimental data using the optimum viscoelastic coefficients for N=2 (the first 10 

seconds) 
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Figure 4.22 shows that the Generalized Maxwell Solid with N=1 is not able to model the 

initial relaxation behavior of the viscoelastic phantom well, but N=2 returns acceptable 

results (see Figure 4.25).  

Finally, Figure 4.26 compares the K∞(ε) function derived from the static loading 

experiments to the similar function derived from the ramp & hold experiments . 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 26: Comparison of K∞(ε) functions derived from the static loading  and the ramp 

& hold experiments 

 

As can be seen from Figure 4.26, the values of K∞ function derived from the ramp & hold 

experiments are slightly less than the values of K∞ function derived from the static loading 

experiment for the same strain values. While the static compression rate used in the 

experiments is quite low (0.1 mm/sec), Figure 4.26 suggests that it must be further reduced 

to eliminate the inertial and viscoelastic effects completely.  
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Chapter 5  
 

MATERIAL PROPERTY ESTIMATION of a 3-DIMENSIONAL PARTICLE-

BASED SYSTEM  

 

 This chapter first provides background information on previous studies in literature 

on parameter estimation techniques developed for particle-based systems. It then explains 

the development steps and numerical solution of a 3-dimensional (3D) particle based 

spring-damper network in which the neighboring particles are connected to each other with 

nonlinear viscoelastic Maxwell Solid elements. The chapter then introduces a set of novel 

optimization algorithms that are developed to estimate the nonlinear and viscoelastic 

material coefficients of each element in the network. 

 

5.1 Previous Work on Parameter Estimation Techniques Used in Particle-based 

Systems 

 

Most of the earlier studies in this area have focused on the estimation of elastic 

properties of soft objects. In [67], the authors establish a link between discrete mass-spring 

models and the classical theory of elasticity. By using a finite difference formulation and 

small deformation assumption, a particle-based model is developed from a continuum 

model. In [68], a genetic optimization algorithm is used to determine the topology of the 

mass-spring system. Unlike the previous approaches, the authors consider the topology as a 

variable and treat the mass distribution and the spring coefficients as the constants of the 

optimization. The optimization iterations are terminated when the behavior of the 
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topologically altered mass-spring model is sufficiently close to the behavior of a reference 

mass-spring model in 2D. In [69], this work was extended to 3D. In addition to the 

topology, spring coefficients are also added to the optimization problem as variables, and 

the optimization algorithm returns the optimum topology and stiffness coefficients 

simultaneously. The results of this study suggest that using the same spring constant for all 

elements in a mesh fail to simulate linear elastic deformations if the sizes of the elements in 

the mesh are different. In a recent study [70], a 2D mass-spring-damper system is trained to 

behave like a nonlinear finite element model. The authors use a model-free optimization 

approach to determine the spring constants. A more advanced approach is taken in [71]. By 

using a layer of 2D linear springs and dashpots supported by non-linear springs in parallel, 

the dynamical deformations of the human thigh is simulated. The coefficients of the springs 

are estimated from the experimental data using a least squares minimization method. To 

collect the experimental data, the authors measure the force response of the human thigh 

using a force sensor mounted on a robotic arm. In [72], a method is introduced to derive 

analytical expressions for the spring coefficients of a particle model from a reference FE 

model. The main idea is to make the stiffness matrix of the linearized mass-spring system 

identical to that of the reference FE model in equilibrium. One of the drawbacks of this 

approach is that these analytical formulas are only valid for specific Poisson ratios. 

None of the approaches above attacks the problem of parameter identification for 

viscoelastic materials. Viscoelasticity is an important characteristic of the soft tissues. 

Viscoelastic tissues show time-dependent behavior and one way to observe this time-

dependent behavior is through the stress relaxation test. Under a constant strain, the 

response force of the system decreases with time and eventually it converges to a steady-

state value. We suggest that a particle-based model can be developed to behave like a 

nonlinear viscoelastic soft object if the particles are connected to each other using Maxwell 
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Solids. The following sections present the methods developed to identify of the material 

coefficients of nonlinear viscoelastic elements in a particle-based system.  

 

5.2 Spring-Damper Network (SDN) 

  

 Spring-Damper Network is a network of massless particles (i.e. joints) connected to 

each other with spring & damper elements in between. Basically, SDN is an ordinary 

differential equation set where the unknowns are the position of the particles in the 

network. SDN can be solved using numerical differentiation techniques. Stability and 

accuracy problems can be solved if an appropriate numerical method and time step for the 

problem are used and the material coefficients are selected properly. In Section 4.3, we 

already demonstrated that the nonlinear viscoelastic response the tissue phantom could be 

modeled using a single Maxwell Solid (i.e., lumped model). In this chapter, we show that a 

particle network composed of nonlinear viscoelastic Maxwell Solids between the particles 

can be developed to mimic the behavior of the lumped model. 

 

5.2.1 Numerical Solution of a Spring-Damper Network 

 

The ODE relating stress to strain in a Maxwell Solid with N=1 was given in 

Equation 3.40 earlier. For a nonlinear viscoelastic Maxwell Solid having a strain-dependent 

nonlinear E∞(ε) function, Equation 3.40 becomes  

 

( ) ( )
1 1

1

E
E 1

Et t
∞

∞

⎛ ⎞ε∂σ ∂ε
σ + τ = ε ε + η +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

      (5.1) 
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Since the element does not have an area at the tip, the stress in Equation 5.1 can be 

replaced with the force function as 

 

( ) ( )
1 1

1

K
K 1

K
FF b
t t

∞
∞

⎛ ⎞ε∂ ∂ε
+ τ = ε ε + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

      (5.2) 

 

If Equation 5.2 is discretized in time via backward difference, we obtain 

 

( ) ( )1 1

1 1
1

K
K 1

K

tt t t t
t t tF FF b

t t

− −∞

∞

⎛ ⎞ε− ε − ε⎜ ⎟+ τ = ε ε + +
⎜ ⎟Δ Δ⎝ ⎠

    (5.3) 

 

where Ft and εt refer to unknown force and strain values of the element at the current time 

step, and similarly Ft-1 and εt-1 refer to the known or calculated values in the previous time 

step. If τ1 is replaced by its equivalent (b1 / K1) in Equation 5.3 and then this equaiton is 

solved for Ft, the following relation is obtained 

 

( ) ( ) 1
1 1

1
1 1

1

1

K
K 1

K

1

t t t
t t t

t

bb F
t K t

F
b

K t

−∞
−

∞

⎛ ⎞ε ε − ε⎜ ⎟ε ε + + +
⎜ ⎟ Δ Δ⎝ ⎠=

+
Δ

    (5.4) 

 

Figure 5.1 presents a nonlinear viscoelastic Maxwell Solid model with N=1 between two 

particles in a SDN. 
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Figure 5. 1: Two arbitrary particles connected to each other with a nonlinear viscoelastic 

Maxwell Solid with N=1 in a SDN 

 

In this representation, xp is the position vector of a particle p, xn is the position 

vector of the neighboring particle n, and L is the length of the Maxwell Solid in between. 

The positions of the particles in the current time step are the unknowns thet we seek to 

determine.  

In the following sections, we derive the differential equations necessary for the 

numerical solution of a SDN composed of many nonlinear viscoelastic Maxwell Solids 

such as the one presented in Figure 5.1. 

First, the Equation 5.4 can be rewritten as 

 
tF A C= +           (5.5) 

 

where 

 

K1 b1

K∞(ε) F
xpxn

Connections to 
neighboring particles

L

K1 b1

K∞(ε) F
xpxn

Connections to 
neighboring particles

L
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K t
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K tC F
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−
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∞

−

⎛ ⎞ε ε − ε
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 (5.6) 

 

εt is the current strain of the element at current time step 

 
0

0 0
1

t t
t L L L

L L
−

ε = = −          (5.7) 

 

where Lt is the length of the element in the current time step and L0 is the rest length of the 

element. 

 

( ) ( ) ( )2 2 20 0 0 0 0 0 0
px nx py ny pz nzL x x x x x x= − + − + −      (5.8) 

 

( ) ( ) ( )2 2 2t t t t t t t
px nx py ny pz nzL x x x x x x= − + − + −      (5.9) 

 

Since we are trying to simulate a SDN in 3D space, Equation 5.5 must be 

represented in vectorial form. Term C in Equation 5.5 contains the 3D Ft-1 vector and 

therefore C can be represented as a vector without any modification. However, term A, is a 

scalar and can be represented in vectorial form by being projected (via dot product) onto 
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the direction of the Maxwell Solid in space (i.e., tL
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

t t
p nx - x

). Therefore, Equation 5.5 can 

be represented in 3D vectorial form as 

 

A= +tF B C          (5.10) 

 

where 
1

1
1

1

1

1

1

1

1
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t t t
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+
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=

Δ
=

+
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t t
p n

t-1

x - x
B

C F

      

 (5.11) 

 

The Equation 5.10 can be reorganized as 

 

( )A− + =tF B C 0          (5.12) 

 

At each time step of the numerical solutions, the vectorial summation of all the 

forces acting on a particle should be equal to zero. Equation 5.12 actually indicates that the 

sum of external Ft vector acting on particle p and the internal forces acting on the same 
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particle is zero. If we decompose Equation 5.12 into x, y, and z degree of freedoms (dof), 

then we have the following set of equations in each dof: 

 

( )
( )
( )

-

-

-

t
x x x x

t
y y y y

t
z z z z

I F AB C

I F AB C

I F AB C

= +

= +

= +
         (5.13) 

 

where 
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+
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= = =

Δ Δ Δ
= = =

+ + +
Δ Δ Δ

    (5.14) 

 

 

Equation 5.13 explains the force relation of the particle p with one of its neighboring 

particle n only. To develop the same relation between all m particles and all of their 

neighbors in a SDN, Equation 5.13 can be generalized as follows: 
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...
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...

  (5.15) 

 

Using the equation set given in Equation 5.15, the unknown positions of the particles x at 

the current time step t can be computed. 
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⎢ ⎥⎣ ⎦

x
          (5.16) 

 

The unknown positions of the particles in Equation 5.15 form a nonlinear set of 

equations and it can be solved using Newton’s Method. To apply Newton’s Method to 

Equation 5.15, we need to take the derivative of this equation with respect to (wrt) the 

unknown position vector x (Equation 5.16), which leads to the Jacobian matrix. Jacobian 
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matrix of Equation 5.15 is a square matrix having the dimensions of Ndof x Ndof. Ndof is the 

total number of dofs in the system and is equal to 3 x m for a SDN having m particles. 

Each row of the Jacobian matrix corresponds to the equation of motion of a particle along 

one positional dof and each column corresponds to an unknown positional dof. If the 

Equation 5.15 contains a term related to a particular dof, then the corresponding cell in the 

Jacobian matrix is the derivative of the equation wrt that dof. Otherwise, it is zero. 

The following set of equations is the derivatives of the equations given in Equation 

5.13  
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To solve the nonlinear equation given in Equation 5.15, the Newton’s Method can 

be used, but this method does not guarantee convergence unless the initial guess is 

sufficiently close to the correct solution. On the other hand, the Newton’s Method with 

Line Search combines the rapid local convergence of the Newton’s method with a globally 
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convergent strategy that guarantees some progress towards the correct solution at each 

iteration [73]. The computational complexity of the Newton’s Method with Line Search 

does not allow real-time performance even for a particle system having rather small 

number of particles Since the optimization computations are performed off-line, this is not 

a concern. 

The numerical solution of the SDN for the cubic mesh is developed in C++ using 

the Newton’s Method with Line Search algorithm supplied by Numerical Recipes [73]. Our 

C++ implementation is validated by comparing our solution with the numerical solution 

returned by ANSYS finite element package. It is observed that the results are identical. 

The derivation of the numerical solution of an SDN composed of Voight Models or 

Maxwell Solids with N=2 is very similar to the given derivation for Maxwell Solid with 

N=1. The force function given in Equation 5.4 should be changed according to the 

characteristic constitutive equation of the element used in SDN. 

 

5.3 Estimation of the Nonlinear Strain-dependent Stiffness Coefficient and the 

Viscoelastic Material Coefficients of the Maxwell Solids in a SDN 

 

 This section presents a set of novel optimization algorithms developed for 

estimating the nonlinear strain-dependent stiffness coefficient, and the viscoelastic material 

coefficients of a SDN composed of Maxwell Solids with N=1. 

 As a proof of concept, a 27-node (3x3x3) 3D cubic mesh having an edge-length of 

24 mm is formed (see Figure 5.2). The particles of the mesh are connected to each other 

based on Moore-neighborhood. Each line in Figure 5.2 corresponds to a Maxwell solid 

with N = 1 between two neighboring particles. In Moore-Neighborhood, a particle can have 

up to 26 neighbors (see the blue particle in Figure 5.2). We observed that the SDN model 

of the tissue phantom shows a more realistic deformation behavior when Moore-
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Neighborhood is used. Since the mesh has diagonal elements in addition to the elements 

along the principal axes in Moore-neighborhood, the bulging effect (i.e. bending outward) 

can be simulated successfully when the model is compressed from the top just like the 

bulging effect observed when the silicon phantom is compressed using the robotic indenter 

(see Figure 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2: A 27-node 3D cubic mesh is constructed based on Moore-neighborhood. The 

blue colored particle has 26 neighbors. For the simulations, the red colored particles are 

fixed to the ground while the remaining ones are allowed to move. 

 

A set of optimization algorithms is developed to estimate the material coefficients of the 

elements in the 27-node mesh and also in a 125-node cubic mesh. 
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5.3.1 An Optimization Algorithm for Estimating the Nonlinear Strain-dependent 

Behavior of the Elements in a Spring-Damper Network (SDN) 

 

 The optimization algorithm explained in this section estimates the K∞(ε) coefficient, 

such that the response of the cubic mesh is sufficiently close to that of the lumped model 

under the same static loading. 

For the implementation, the particles on the bottom surface of the cubic mesh are 

fixed in all dofs (see Figure 5.2). The particles on the top surface of the mesh are also fixed 

in x- and z-dofs, but allowed to move in the y direction during the static loading. The cubic 

mesh is compressed to 9.7 mm depth (ε = 0.4) along the –y direction at a rate of 0.1 

mm/sec (10-4 mm/millisecond) as the way the silicone sample is compressed by the robotic 

indenter. Note that it takes 97000 compression steps to reach 9.7 mm depth. The time step 

used for the numerical solution of the SDN is set to 1 millisecond and the force response of 

the mesh to static loading is calculated at each time step. The force response of the cubic 

mesh along the +y direction is the sum of the response forces along the +y direction of all 

the particles on the top surface. 

 During the static loading, the influence of the time-dependent viscoelastic effects on 

the force response is negligible since the rate of loading is very slow. Hence, the influence 

of the Maxwell Model used in the generalized Maxwell Solid on the force response is 

insignificant and it does not matter what type of viscoelastic model is used during static 

loading for the estimation of stiffness coefficient K∞(ε). For computational efficiency, the 

cubic mesh is constructed from nonlinear Voight Models instead of nonlinear viscoelastic 

Maxwell Solids. The Voight Model reaches to the steady-state immediately after a constant 

initial strain is applied whereas the Maxwell Solid of any kind require some time to reach 

the steady-state (Section 3.1.2.3). At each time step of the static loading, the mesh is 

compressed by 10-4 mm and the load is applied long enough to eliminate the influence of 
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viscoelastic effects. Although there is no difference between the magnitudes of steady-state 

force values of the Voight Model and the Maxwell Solid to a unit strain, (note that the 

steady-state response depends on the value of K∞(ε) only), the amount of time needed to 

complete the static loading simulation is much shorter when a mesh composed of Voight 

Models is used.  

During the optimization, we seek for the best solution of strain-dependent elastic 

modulus and set the value of b in the Voight Model to a small value such that the numerical 

solution of SDN does not become unstable under the static loading. The optimization 

algorithm seeks to determine the optimum coefficients of the polynomial K∞(ε)ELEMENT 

such that the force response of the cubic mesh, FSDN, is sufficiently close to the force 

response of the lumped model,  FLUMPED, under the same static loading (see Equation 4.3). 

The algorithm first evaluates FLUMPED(ε) at 97000 different strain values varying from zero 

strain to 0.4, and records the data set as FREFERENCE. It also takes a copy of FREFERENCE into 

FGUESS. It then sets the K∞(ε)ELEMENT to the K∞(ε)LUMPED as an initial guess for the 

optimizations. Then, the cubic mesh is compressed to 9.7 mm depth (ε = 0.4) at a rate of 

10-4 mm/millisecond (recall that it takes 97000 compression steps to reach 9.7 mm depth). 

At each time step, the force response of the mesh is calculated using the particles on the top 

surface of the mesh. After reaching the desired compression depth, the force response of 

the cubic mesh for 97000 steps is saved to FSDN, and compared with the desired force 

response, FREFERENCE, of the lumped model  (Figure 5.3).  
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Figure 5. 3: Force responses of the lumped model (FREFERENCE) and that of cubic mesh after 

the first optimization iteration 

  

To compute a polynomial function guess for the stiffness of the elements, K∞(ε)ELEMENT, 

we first divide FREFERENCE (Figure 5.3) to FSDN (Figure 5.3) term-by-term (for 97000 data 

points) to obtain a ratio, what we named as “multiplication factor” (see Figure 5.4) and 

then multiply FGUESS by this multiplication factor (see Figure 5.5).  
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Figure 5. 4: The ratio of reference force to the mesh response force at 97000 strain points 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5: FGUESS after multiplied by the multiplication factor 

 

Finally, the algorithm fits a 5th order polynomial to the updated FGUESS to arrive at a new 

polynomial function similar to the one given in Equation 4.3. If the resulting polynomial is 
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divided by ε, a new polynomial guess for K∞(ε)ELEMENT is obtained. This procedure is 

repeated until the current residual error (FREFERENCE – FSDN) is more than the minimum 

residual calculated so far. The polynomial function with the minimum residual is the 

optimum polynomial function for the strain-dependent element stiffness. In Figure 5.6 we 

provide the pseudo-code of the optimization algorithm. 

 
Initialization 

K∞(ε)ELEMENT = K∞(ε)LUMPED 

Form FREFERENCE data set from FLUMPED(ε) 

FGUESS = FREFERENCE 

CurrentResidual = ∞ 

 

Iteration 

DO 

MinimumResidual = CurrentResidual 

K∞(ε)OPTIMUM = K∞(ε)ELEMENT 

 Form FSDN data set via applying static loading to mesh 

 CurrentResidual = norm(FREFERENCE – FSDN, 2) 

 MultiplicationFactor = FREFERENCE ./ FSDN (term-by-term division) 

 FGUESS = FGUESS .* MultiplicationFactor (term-by-term multiplication) 

 PolynomialFit = polyfit(FGUESS, 5) 

K∞(ε)ELEMENT = PolynomialFit / ε 

WHILE (CurrentResidual < MinimumResidual) 
 

Figure 5. 6: Pseudo-code for estimating the optimum nonlinear element function, K∞(ε) 

 

When the algorithm is executed for the 27-node cubic SDN mesh, it converges to the 

optimum K∞(ε) function in 10 iterations. Table 5.1 lists the guessed polynomial functions 

and the resulting residuals after each iteration. 
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Iteration # K∞(ε)OPTIMUM & K∞(ε)ELEMENT Residual 

1 ( ) 4 3 2K 146.89 131.36  47.47 0.70 8.18
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 32.82 23.54  8.17 0.18 0.47
ELEMENT

∞ ε = ε − ε + ε − ε +  

8243.89 

2 ( ) 4 3 2K 32.82 23.54  8.17 0.18 0.47
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 67.91 46.94  14.48 0.68 0.49
ELEMENT

∞ ε = ε − ε + ε − ε +  

91.22 

3 ( ) 4 3 2K 67.91 46.94  14.48 0.68 0.49
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 99.48 68.62  19.91 1.16 0.51
ELEMENT

∞ ε = ε − ε + ε − ε +  

35.79 

4 ( ) 4 3 2K 99.48 68.62  19.91 1.16 0.51
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 124.53 86.13  24.15 1.53 0.52
ELEMENT

∞ ε = ε − ε + ε − ε +  

16.17 

5 ( ) 4 3 2K 124.53 86.13  24.15 1.53 0.52
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 143.74 99.72  27.42 1.82 0.53
ELEMENT

∞ ε = ε − ε + ε − ε +  

8.55 

6 ( ) 4 3 2K 143.74 99.72  27.42 1.82 0.53
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 158.33 110.13  29.91 2.04 0.53
ELEMENT

∞ ε = ε − ε + ε − ε +  

5.45 

7 ( ) 4 3 2K 158.33 110.13  29.91 2.04 0.53
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 169.34 118.04  31.81 2.21 0.54
ELEMENT

∞ ε = ε − ε + ε − ε +  

4.31 

8 ( ) 4 3 2K 169.34 118.04  31.81 2.21 0.54
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54
ELEMENT

∞ ε = ε − ε + ε − ε +  

3.96 

9 ( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54
OPTIMUM

∞ ε = ε − ε + ε − ε +  

( ) 4 3 2K 183.84 128.54  34.34 2.44 0.55
ELEMENT

∞ ε = ε − ε + ε − ε +  

3.92 

10 ( ) 4 3 2K 183.84 128.54  34.34 2.44 0.55
OPTIMUM

∞ ε = ε − ε + ε − ε +  3.97 
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( ) 4 3 2K 188.49 131.92  35.15 2.51 0.55
ELEMENT

∞ ε = ε − ε + ε − ε +  

 

Table 5. 1: Convergence of K∞(ε) 

 

As can be seen from Table 5.1, the optimum stiffness function for the elements is 

 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54
OPTIMUM

∞ ε = ε − ε + ε − ε +     (5.21) 

 

Figures 5.7 through 5.10 present the convergence behavior of FSDN to FREFERENCE, and the 

behavior of the estimated K∞(ε)ELEMENT. Figure 5.11 shows the nonlinear response of the 

K∞(ε)ELEMENT as function of strain. 

 

 

 

 

 

 

 

 

 

 

Figure 5. 7: Convergence of the force response obtained from the cubic mesh, FSDN, to the 

force response of the lump model 
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Figure 5. 8: Convergence of the force response obtained from the cubic mesh, FSDN, to the 

force response of the lump model (zoomed into 0-4.5 N region) 

 
 
 

 

 

 

 

 

 

 

Figure 5. 9: Convergence of the element stiffness function, K∞(ε)ELEMENT 
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Figure 5. 10: Convergence of the element stiffness function, K∞(ε)ELEMENT (zoomed into 

0.4-1.6 N region) 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 5. 11: Optimum K∞(ε)ELEMENT function 
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The optimization algorithm was also tested with a refined 125-node (5x5x5) cubic mesh 

having the same dimensions. It took 7 iterations to converge to an optimum polynomial 

function K∞(ε) with a residual of 4.76.  

 

( ) 4 3 2K 68.69 50.59  13.53 1.0 0.19
OPTIMUM

∞ ε = ε − ε + ε − ε +     (5.22) 

 

Figure 5.12 presents the optimum element stiffness functions for the 27- and 125-node 

meshes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 12: Optimum K∞(ε)ELEMENT for the 27- and 125-node meshes 

 

 Note that the K∞(ε)ELEMENT function calculated through this optimization algorithm 

is in units of Newton and must be divided by the “characteristic” length of any given mesh 

(i.e. the rest length of the shortest element in the mesh) to calculate the stiffness function of 
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of 0.024 m, the characteristic length is 0.012 m in a 27-node cube mesh and 0.006 m in a 

125-node mesh. Figure 5.13 presents the absolute stiffness function of the individual 

elements in 27-node and 125-node meshes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 13: Absolute stiffness function of the individual elements in the 27- and 125-node 

meshes 

 

5.3.2 An Optimization Algorithm for Estimating the Time-dependent Viscoelastic 

Behavior of the Elements in a SDN 

 

The optimization algorithm explained in this section estimates the optimum value 

of the viscoelastic material coefficients K1 and b1, such that the force response of the cubic 

mesh is sufficiently close to that of the lumped nonlinear viscoelastic model in ramp & 

hold experiments. 
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The time-dependent stress response of the Maxwell Solid with N=1 to a ramp & 

hold strain input was given in Equation 3.50. Rearranging this equation for a nonlinear 

viscoelastic Maxwell Solid having a strain-dependent nonlinear E∞(ε) function, we have 

 

( ) [ ]
( ) ( )( )1 1

( ) ( ) ( )

=E ( ) 1 exp /

t A z t z t c u t c

z t t t∞

σ = − − −

ε + η − − τ        (5.23) 

 

Since the element does not have an area at the tip, the stress in Equation 5.23 can be 

replaced with the force function as 

 

( ) [ ]
( ) ( )( )1 1

1
1

1

( ) ( ) ( )

( ) 1 exp /

F t A z t z t c u t c

z t K t b t

b
K

∞

= − − −

= ε + − − τ

τ =

       (5.24) 

 

The nonlinear and viscoelastic material properties of the lumped Maxwell Solid model with 

N=1 were already derived in Chapter 4. To examine the force-relaxation response of the 

lumped model to an arbitrary ramp & hold input, we calculated the response of the lump 

model to a ramp & hold input of ε = 0.25 (6 mm) applied for 50 seconds by inserting these 

properties into Equation 5.24 (see Figure 5.14). 
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Figure 5. 14: Force-relaxation behavior of the experimentally characterized lumped model 

in response to a ramp & hold input of ε = 0.25 (6 mm) 

 

To come up with an optimization scheme for the estimation of K1 and b1, we inspect the 

hold part ( t c≥ ) of Equation 5.24, which can be written as 

 

( ) 1 1
1

1 1

( ) 1 exp expH H

K KF t K Ab c t
b b

∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ε ε − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

    (5.25) 

 

where εH is the constant strain during the ramp part of the experiment, HA
c

ε
=  is the slope 

of the ramp, and c = 1 second is the ramp duration. 

  

A careful examination of Figure 5.14 and Equation 5.25 reveal 3 pieces of important 

information which are used to develop an optimization algorithm to estimate the material 

coefficients of the elements in a SDN. FPL is the peak force of the lumped model at t = 1 
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sec. TSSL is the time when the force response of the model reaches to steady-state. It is 

assumed that the force response reaches to steady-state when the slope of the curve is less 

than 10-3. And finally, FSSL is the steady-state force at TSSL. We attempt to match the peak 

force, the steady-state time, and the steady-state force of the cubic mesh (i.e., FPM, TSSM, 

FSSM) to those of the lump model. As a result, the optimization scheme for estimating the 

optimum values of K1 and b1 is composed of three phases: the first phase is for matching 

FPM to FPL, the second phase is for matching TSSM to TSSL, and the third phase, which 

performs a fine-tuning on K∞(ε), is necessary for matching FSSM to FSSL. 

During the initialization part of the optimization algorithm, Equation 5.25 is 

executed with the material coefficients of the lumped model to calculate FPL, TSSL, and FSSL 

in response to the ramp & hold strain input. The initial values for K∞(ε), K1, and b1 of the 

elements in the mesh model are set to the values estimated in Chapter 4 for the lumped 

model. Then, the mesh is simulated under the given ramp & hold input to calculate the 

values of FPM, TSSM, and FSSM (Figure 5.15). Finally, the optimization iterations are 

initialized to reduce the relative error for the optimization variables (i.e., FPE, TSSE, and 

FSSE) to less than 1%. 

 

 

 

 

 

 

 

 

 

 



 
Chapter 5: Material Property Estimation of a 3-Dimensional Particle-Based System 127 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 5. 15: Force-relaxation behavior of lumped Maxwell Solid with N=1 and SDN with 

initial K1 and b1 values in response to a ramp & hold input of ε = 0.25 (6 mm) 

 

In each iteration of the first phase, the algorithm runs the mesh model with the 

current values of K1 and b1 for 1 second and apply the ramp input to compute FPM and the 

relative error in peak response. If the relative error is more than 1%, it then multiplies both 

K1 and b1 (so that the ratio of 
1

1

K
b  is constant) by 

PL

PM

F
F ratio.  The first phase is iterated 

until either FPM is close enough to FPL so that the relative error in peak response is less than 

1% or the relative error starts becoming larger than the minimum relative error calculated 

so far (see Figure 5.16 and Table 5.2). At the end of the first phase, for example, the FPM is 

calculated as 2.711750 N for the cubic mesh of 27 nodes. 
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Figure 5. 16: Convergence of FPM to FPL. Note that the peak response (at time = 1 sec) 

obtained from cubic mesh gets closer to that of the lumped model after each iteration. 

 
Iteration # K1 OPTIMUM (N) – b1 OPTIMUM (Ns) FPE (%) 

1 K1 OPTIMUM = 1.296299, b1 OPTIMUM = 17.873062 164.06 

2 K1 OPTIMUM = 0.490900, b1 OPTIMUM = 6.768420 50.42 

3 K1 OPTIMUM = 0.326346, b1 OPTIMUM = 4.499580 27.20 

4 K1 OPTIMUM = 0.256555, b1 OPTIMUM = 3.537327 17.35 

5 K1 OPTIMUM = 0.218616, b1 OPTIMUM = 3.014230 12 

6 K1 OPTIMUM = 0.195193, b1 OPTIMUM = 2.691272 8.69 

7 K1 OPTIMUM = 0.179579, b1 OPTIMUM = 2.475994 6.49 

8 K1 OPTIMUM = 0.168633, b1 OPTIMUM = 2.325071 4.94 

9 K1 OPTIMUM = 0.160685, b1 OPTIMUM = 2.215486 3.82 

10 K1 OPTIMUM = 0.154766, b1 OPTIMUM = 2.133873 2.98 

11 K1 OPTIMUM = 0.150274, b1 OPTIMUM = 2.071937 2.35 

12 K1 OPTIMUM = 0.146816, b1 OPTIMUM = 2.024260 1.86 

13 K1 OPTIMUM = 0.144124, b1 OPTIMUM = 1.987154 1.48 

14 K1 OPTIMUM = 0.142012, b1 OPTIMUM = 1.958029 1.18 

15 K1 OPTIMUM = 0.140343, b1 OPTIMUM = 1.935015 0.95 

Table 5. 2: Convergence behavior of K1 and b1 
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 In each iteration of the second phase, the algorithm runs the mesh model with the 

current values of K1 and b1 for the ramp & hold input until the force response of the cubic 

mesh reaches to steady-state. Then, the steady-state time is recorded as TSSM and compared 

to TSSL. If the relative error is more than 1%, K1 is kept constant and b1 is multiplied by 

SSL

SSM

T
T ratio.   The second phase is iterated until either TSSM is close enough to TSSL so that 

the relative error is less than 1% or it is larger than the minimum relative error calculated so 

far (see Table 5.3 and Figure 5.17). At the end of the second phase, for example, TSSM is 

calculated as 43.717 sec for the cubic mesh of 27 nodes. However, as expected, it is 

observed that the change in b1 slightly influenced FPM, which is updated to 2.714767 N. 

 
Iteration # b1 OPTIMUM (Ns) TSSE  (%) 

1 1.935015 12.17 

2 2.203140 4.7 

3 2.312092 1.83 

4 2.355420 0.72 

 

Table 5. 3: Convergence behavior of b1 
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Figure 5. 17: Convergence of TSSM to TSSL 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 18: Comparison of the force-relaxation response of the lumped model and that of 

the mesh with optimized K1-b1 values at the end of second phase 
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 Figure 5.18 compares the force-relaxation behavior of the lumped model to that of 

the mesh after the second phase. It is observed that the peak forces and the steady-state 

times of the mesh and the lumped models are very close to each other. However, the force 

values at steady-state are slightly off. The relative error in steady-state force is 5.4% for 

this particular case. The reason behind this difference was explained in Section 4.3.3. 

Hence, in the third phase, we fine-tune the K∞(ε) function so that FSSM matches to FSSL. The 

algorithm multiplies the K∞(ε) with a coefficient until the steady-state error is less than 1 % 

(refer to the pseudo-code in Figure 5.21 for the calculation of this coefficient at each 

iteration). Table 5.4 shows the drop in steady-state force error after each iteration in the 

third phase, and Figure 5.19 compares the force-relaxation response of the mesh to the one 

obtained from the lumped model after the third phase. 

 

Iteration # K∞(ε)OPTIMUM (N) FSSE (%) 

1 ( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54
OPTIMUM

∞ ε = ε − ε + ε − ε +  5.4 

2 ( ) 4 3 2K 167.98 117.29  31.45 2.21 0.51
OPTIMUM

∞ ε = ε − ε + ε − ε +  0.2 

 

Table 5. 4: Convergence of K∞(ε) 
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Figure 5. 19: Comparison of the force-relaxation response of the mesh with the one 

obtained from the lumped model after the third phase 

 

As it is observed from Figure 5.19, fine-tuning on K∞(ε) in phase 3 resulted in a 

change in the values of FPM and FSSM. The relative error in peak force and steady-state time 

are now 3.3% and 2.2%, respectively. To remedy this problem, all three phases of the 

proposed optimization algorithm are repeated until all the relative errors are smaller than 

1%. For instance, for the case of 6 mm ramp & hold input, the algorithm estimated the 

optimum material coefficients in 3 global iterations. The optimum values are given in 

Table 5.5 and Figure 5.20 compares the force-relaxation response of the mesh to the one 

obtained from the lumped model.  

 
Optimized values for 6mm ramp & hold input FPE   

(%) 

TSSE 

 (%) 

FSSE  

(%) 

K1 = 0.159 N 

b1 = 2.251 Ns 

( ) 4 3 2K 167.98 117.29  31.45 2.21 0.51
OPTIMUM

∞ ε = ε − ε + ε − ε + N 

0.85 0.36 0.91 

Table 5. 5: Optimum material coefficients for 6 mm ramp & hold input 
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Figure 5. 20: Comparison of the force-relaxation response of the mesh to that of the lumped 

model after several global iterations. 

 

As can be seen from Figure 5.20, the mesh response with the optimum coefficients is very 

close to the response of the lumped model for the same ramp & hold strain input (6 mm). 

The errors in Table 5.5 can be further reduced if an error bound smaller than 1% is used. 

However, having a tighter error bound would result in more iterations and increase the 

computation time. Figure 5.21 summarizes the optimization algorithm in the form of a 

pseudo-code. 
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Initialization 

Initialize ErrorBound 

Initialize MaximumNumberOfIterations 

Compute FPL, TSSL, FSSL via applying ramp & hold input to Equation 5.24 

K∞(ε) = K∞(ε)OPTIMUM 

K1 = K1 INITIAL 

b1 = b1 INITIAL 

Compute FPM, TSSM, FSSM via applying ramp & hold input to the mesh 

FPE = abs(FPM - FPL) / FPL 

TSSE = abs(TSSM - TSSL) / TSSL 

FSSE = abs(FSSM – FSSL) / FSSL 

 

Iteration 

WHILE (FPE > ErrorBound OR TSSE > ErrorBound OR FSSE > ErrorBound) 

 

PHASE 1 

 

 MinimumFPE = ∞ 

 

DO 

Compute FPM via applying ramp input to the mesh 

FPE = abs(FPM - FPL) / FPL 

   

IF (FPE < MinimumFPE) 

  K1 OPTIMUM = K1 

  b1 OPTIMUM = b1 

 MinimumFPE = FPE 

ELSE 

 break 

END 
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IF (FPE > ErrorBound) 

K1 = K1 x (FPL / FPM) 

b1 = b1 x (FPL / FPM) 

END 

 WHILE (FPE > ErrorBound) 

 

PHASE 2 

 

MinimumTSSE = ∞ 

 

DO 

Compute FPM, TSSM and FSSM via applying ramp & hold input to the mesh 

TSSE = abs(TSSM - TSSL) / TSSL 

 

IF (TSSE < MinimumTSSE) 

  b1 OPTIMUM = b1 

 MinimumTSSE = TSSE 

ELSE 

 break 

END 

 

IF (TSSE > ErrorBound) 

b1 = b1 x (TSSL / TSSM) 

END 

WHILE (TSSE > ErrorBound) 

 

 Phase 3 

 

MinimumFSSE = ∞ 

NoIter = 0 
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 DO 

NoIter = NoIter + 1 

Compute FSSM via applying ramp & hold input to the mesh 

FSSE = abs(FSSM – FSSL) / FSSL 

 

  IF (FSSE > ErrorBound) 

   IF (FSSE < MinimumFSSE) 

MinimumFSSE = FSSE 

MinimumErrorFSSM = FSSM 

MinimumErrorK∞(ε) = K∞(ε) 

  Difference = FSSE 

  ELSE 

   Difference = Difference / 2 

  END 

 

IF (MinimumErrorFSSM > FSSL) 

  MultiplicationFactor = (1 - Difference) 

ELSE 

  MultiplicationFactor = (1 + Difference) 

END 

   

K∞(ε) = MultiplicationFactor x MinimumErrorK∞(ε) 

  END 

 WHILE ( (FSSE > ErrorBound)  AND (NoIter < MaximumNumberOfIterations) ) 

END 

 

Figure 5. 21: Pseudo-code for estimating the optimum viscoelastic and nonlinear material 

coefficients of the SDN 
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The optimization algorithm explained above can handle different initial guesses as long as 

the guesses don’t make SDN unstable. When the optimization algorithm is given different 

sets of initial guesses as shown in Table 5.6, the estimated material coefficients do not 

change much. 

 
Initial guesses Estimated coefficients 

K1 = 1.296, b1 = 17.873 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.159, b1 = 2.251 

( ) 4 3 2K 167.98 117.29  31.45 2.21 0.51∞ ε = ε − ε + ε − ε +  

K1 = 12.962, b1 = 17.873 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.165, b1 = 2.241 

( ) 4 3 2K 170 118.71  31.83 2.24 0.52∞ ε = ε − ε + ε − ε +  

K1 = 0.1296, b1 = 17.873 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.166, b1 = 2.246 

( ) 4 3 2K 169.34 118.25  31.70 2.23 0.52∞ ε = ε − ε + ε − ε +  

K1 = 1.296, b1 = 178.73 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.166, b1 = 2.240 

( ) 4 3 2K 169.36 118.26  31.70 2.23 0.52∞ ε = ε − ε + ε − ε +  

K1 = 1.296, b1 = 1.7873 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.165, b1 = 2.241 

( ) 4 3 2K 169.98 118.69  31.82 2.24 0.52∞ ε = ε − ε + ε − ε +  

K1 = 12.962, b1 = 1.787 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.165, b1 = 2.238 

( ) 4 3 2K 169.81 118.58  31.79 2.24 0.52∞ ε = ε − ε + ε − ε +  

K1 = 0.1296, b1 = 1.7873 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.158, b1 = 2.263 

( ) 4 3 2K 169.42 118.30  31.71 2.23 0.52∞ ε = ε − ε + ε − ε +  

K1 = 12.96, b1 = 178.73 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε +  

K1 = 0.158, b1 = 2.252 

( ) 4 3 2K 167.92 117.25  31.43 2.21 0.51∞ ε = ε − ε + ε − ε +  

Table 5. 6: The optimum material coefficients estimated for different initial guess sets for 

6mm ramp & hold input in a 27-node mesh 
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On the other hand, when the same optimization algorithm is executed with different ramp 

& hold inputs, the estimated material properties change with the input strain. For the 27-

node SDN, the optimization algorithm was executed with different ramp & hold inputs for 

the initial guesses of K1 = 1.296, b1 = 17.873, and 

( ) 4 3 2K 177.63 124.03  33.25 2.34 0.54∞ ε = ε − ε + ε − ε + . Table 5.7 tabulates the 

optimum material coefficients estimated for the different inputs (also see Figures 5.22, 5.23 

and 5.24). 

 
Ramp & Hold Input (mm) Optimized values for 6mm ramp & hold input 

2 K1 = 0.061, b1 = 0.908 

( ) 4 3 2K 172.3 120.31  32.25 2.27 0.53∞ ε = ε − ε + ε − ε +  

2.5 K1 = 0.07, b1 = 1.029 

( ) 4 3 2K 173.342 121.04  32.45 2.28 0.53∞ ε = ε − ε + ε − ε +  

3 K1 = 0.082, b1 = 1.199 

( ) 4 3 2K 173.20 120.94  32.42 2.28 0.53∞ ε = ε − ε + ε − ε +  

3.5 K1 = 0.095, b1 = 1.376 

( ) 4 3 2K 172.54 120.48  32.3 2.28 0.53∞ ε = ε − ε + ε − ε +  

4 K1 = 0.107, b1 = 1.548 

( ) 4 3 2K 171.67 119.87  32.14 2.26 0.52∞ ε = ε − ε + ε − ε +  

4.5 K1 = 0.12, b1 = 1.73 

( ) 4 3 2K 170.77 119.24  31.97 2.25 0.52∞ ε = ε − ε + ε − ε +  

5 K1 = 0.131, b1 = 1.907 

( ) 4 3 2K 169.9 118.63  31.8 2.24 0.52∞ ε = ε − ε + ε − ε +  

5.5 K1 = 0.145, b1 = 2.065 

( ) 4 3 2K 169 118.01  31.64 2.23 0.52∞ ε = ε − ε + ε − ε +  
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6 K1 = 0.159, b1 = 2.251 

( ) 4 3 2K 167.98 117.29  31.45 2.21 0.51∞ ε = ε − ε + ε − ε +  

6.5 K1 = 0.168, b1 = 2.463 

( ) 4 3 2K 169.47 118.33  31.72 2.23 0.52∞ ε = ε − ε + ε − ε +  

7 K1 = 0.18, b1 = 2.706 

( ) 4 3 2K 169.27 118.2  31.68 2.23 0.52∞ ε = ε − ε + ε − ε +  

7.5 K1 = 0.198, b1 = 2.944 

( ) 4 3 2K 169.1 118.08  31.65 2.23 0.52∞ ε = ε − ε + ε − ε +  

8 K1 = 0.203, b1 = 3.339 

( ) 4 3 2K 166.6 116.33  31.19 2.19 0.51∞ ε = ε − ε + ε − ε +  

8.5 K1 = 0.219, b1 = 3.499 

( ) 4 3 2K 167.76 117.14  31.4 2.21 0.51∞ ε = ε − ε + ε − ε +  

9 K1 = 0.223, b1 = 3.591 

( ) 4 3 2K 167.74 117.13  31.4 2.21 0.51∞ ε = ε − ε + ε − ε +  

 

Table 5. 7: The optimum material coefficients estimated for different ramp & hold inputs in 

a 27-node mesh 
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Figure 5. 22: The optimum K1 values estimated for different ramp & hold inputs 

 

 

 

 

 

 

 

 

 

 

Figure 5. 23: The optimum b1 values estimated for different ramp & hold inputs 
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Figure 5. 24: The Optimum K∞(ε) functions estimated for different ramp & hold inputs 

 

As can be seen from Table 5.7, the estimated material coefficients of the elements in the 

mesh are different for different ramp & hold inputs (see Figure 5.25) This is consistent 

since Figures 5.22 and 5.23 suggest that K1 and b1 coefficients are actually strain-

dependent functions just like K∞.  
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Figure 5. 25: Force-relaxation responses of the mesh is simulated using the coefficients 

optimized for 6 mm and 4 mm ramp & hold inputs. 

 

For the 125-node SDN, the optimization algorithm was executed with different 

ramp & hold inputs for the initial guesses of K1 = 1.296, b1 = 17.873, and 

( ) 4 3 2K 68.69 50.59  13.53 1.0 0.19
OPTIMUM

∞ ε = ε − ε + ε − ε + . Table 5.8 tabulates the 

optimum material coefficients estimated for different inputs. (also see Figures 5.26, 5.27, 

5.28, and 5.29) 

 
Ramp & Hold Input (mm) Optimized values for 6mm ramp & hold input 

2 K1 = 0.018, b1 = 0.266 

( ) 4 3 2K 66.87 49.24  13.17 0.97 0.18∞ ε = ε − ε + ε − ε +  

2.5 K1 = 0.021, b1 = 0.3 

( ) 4 3 2K 67.61 49.79  13.32 0.98 0.18∞ ε = ε − ε + ε − ε +  

3 K1 = 0.025, b1 = 0.351 

( ) 4 3 2K 67.8 49.93  13.36 0.98 0.18∞ ε = ε − ε + ε − ε +  

3.5 K1 = 0.029, b1 = 0.405 

( ) 4 3 2K 67.74 49.88  13.35 0.98 0.18∞ ε = ε − ε + ε − ε +  
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4 K1 = 0.033, b1 = 0.46 

( ) 4 3 2K 67.58 49.77  13.31 0.98 0.18∞ ε = ε − ε + ε − ε +  

4.5 K1 = 0.036, b1 = 0.511 

( ) 4 3 2K 67.45 49.67  13.28 0.98 0.18∞ ε = ε − ε + ε − ε +  

5 K1 = 0.04, b1 = 0.561 

( ) 4 3 2K 67.38 49.62  13.27 0.98 0.18∞ ε = ε − ε + ε − ε +  

5.5 K1 = 0.043, b1 = 0.61 

( ) 4 3 2K 67.38 49.62  13.27 0.98 0.18∞ ε = ε − ε + ε − ε +  

6 K1 = 0.046, b1 = 0.655 

( ) 4 3 2K 67.42 49.65  13.28 0.98 0.18∞ ε = ε − ε + ε − ε +  

6.5 K1 = 0.05, b1 = 0.704 

( ) 4 3 2K 67.45 49.67  13.29 0.98 0.18∞ ε = ε − ε + ε − ε +  

7 K1 = 0.053, b1 = 0.753 

( ) 4 3 2K 67.38 49.62  13.27 0.98 0.18∞ ε = ε − ε + ε − ε +  

7.5 K1 = 0.057, b1 = 0.811 

( ) 4 3 2K 67.14 49.45  13.23 0.97 0.18∞ ε = ε − ε + ε − ε +  

8 K1 = 0.063, b1 = 0.88 

( ) 4 3 2K 66.31 48.83  13.06 0.96 0.18∞ ε = ε − ε + ε − ε +  

8.5 K1 = 0.07, b1 = 0.948 

( ) 4 3 2K 64.85 47.75  12.77 0.94 0.18∞ ε = ε − ε + ε − ε +  

9 K1 = 0.078, b1 = 1.01 

( ) 4 3 2K 63.68 46.89  12.54 0.92 0.17∞ ε = ε − ε + ε − ε +  

 

Table 5. 8: The optimum material coefficients estimated for different ramp & hold inputs in 

a 125-node mesh 
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Figure 5. 26: The optimum K1 values estimated for different ramp & hold inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 27: The optimum b1 values estimated for different ramp & hold inputs 
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Figure 5. 28: Ratio of b1 to K1 (i.e., tao1), for different ramp & hold inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 29: The optimum K∞(ε) functions estimated for different ramp & hold inputs
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Chapter 6  
 

CONCLUSIONS and FUTURE WORK 

 

6.1 Conclusions 

  

 Soft tissues exhibit complex, nonlinear, anisotropic, nonhomogeneous behavior. 

Because of this nonhomogeneity, soft tissues have both coordinate- and direction-

dependent properties. Time- and rate-dependent behavior caused by viscoelasticity is also 

common. Development of realistic organ-force models is an integral part of the surgical 

simulators that are used for training surgeons in real-like surgery settings. A realistic organ-

force model should be able to present the complex nonlinear (i.e., strain-dependent) 

viscoelastic (i.e., time- and rate-dependent) mechanical properties of the real tissues. 

 In this thesis, we developed and presented parameter estimation techniques for a 

particle system that is able to mimic the complex nonlinear viscoelastic behavior of an 

experimentally-measured and characterized tissue-like phantom. The earlier studies on 

parameter estimation of particle-based systems are limited to estimation of the linear and 

nonlinear spring coefficients, mass distribution and topology identification. To our 

knowledge, none of the previous studies present a solution to the problem of material 

property estimation of a nonlinear and viscoelastic particle-based system based on the 

experimental data. 

 We first measured the strain-dependent nonlinear response and time-dependent 

viscoelastic response of a tissue-like silicon phantom using a robotic indenter fitted with a 

force sensor. We modeled the phantom using a lumped nonlinear viscoelastic Maxwell 
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Solid with N=1 and N=2, and characterized the material properties of the lumped model via 

curve-fitting. Then, we constructed a 3D massless SDN based on Moore Neighborhood. 

The elements of the network connecting the particles are nonlinear viscoelastic Maxwell 

Solids with N=1. The system is validated using ANSYS. We developed a set of novel 

optimization algorithms for estimating the material coefficients of the elements in the mesh 

such that the response of the simulated mesh is identical to the lumped model. The 

optimization algorithm first estimates the nonlinear strain-dependent elastic response of the 

network elements via static-loading experiments and then, estimates the viscoelastic 

material properties K1 and b1 using the ramp & hold experiments through simulation..  

  

6.2 Future Work 

 

 It is discussed in Section 4.3.3 that Maxwell Solid with N=2 is a better 

approximation for the experimentally-measured relaxation force response. It is possible to 

construct a 3D mesh composed of Maxwell Solids with N=2, however, it is not straight-

forward to come up with an optimization algorithm for the estimation of the parameters of 

such a mesh. The force-relaxation function of a single nonlinear Maxwell Solid with N=2 

is given as: 

 

( ) ( ) 1 1 2 2
1 2

1 1 2 2

K exp 1 exp exp 1 expK K K KF t Ac Ac Ab t c Ab t c
b b b b

∞

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (6.1) 

 

Finding an optimization scheme for Equation 6.1 is not trivial because the force-relaxation 

behavior of each element in the mesh is affected by K1, K2, b1, and b2. It is difficult to 

come up with intelligent guesses for these parameters based on a methodology which 

minimizes the residual between the reference and the simulated responses. The first idea 
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that comes to my mind is to apply simulated-annealing which will assign random guesses 

for those parameters within some range and then try to find the guesses that result in the 

minimum residual. Obviously, this approach does not return the optimum solution, In fact, 

the solution may stuck at local minima. 

 In this thesis, the optimization results are presented for 27- and 125-node-meshes. 

In the future, we are planning to test the optimization algorithm with a much finer mesh to 

investigate with the effect of mesh resolution on the results. Also, we used voxels (i.e. 

cubes) for the geometric model of the mesh, but the goal is to run the same optimization 

algorithm with different size and type of geometric mesh elements In this way, 

experimentally measured nonlinear and viscoelastic tissue properties can be integrated into 

a reference FE model in arbitrary shape to estimate the material properties of the 

corresponding 3D particle model. 

 Currently, the SDN is time-discretized and solved via Newton’s Method with Line 

search due to the nonlinear set of equations in the system. The computational complexity of 

the algorithm does not allow us to run the model in real-time. While this is not the most 

critical issue for the off-line optimization computations, it is a concern for the surgical 

simulations. We are planning to develop a faster algorithm to solve the nonlinear set of 

equations for achieving real-time performance. 

We did not consider the mass of the object during the formulation of the particle-

based model in Chapter 5. Mass of the object introduces inertial effects and should be 

considered for more realistic modeling. However, adding mass resulted in oscillatory 

motion in our initial attempts, which did not allow us to apply a logical optimization 

scheme for parameter estimation. We are planning to work on this problem in the future. 
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